1
|
Pérez-de-Oliveira ME, Wagner VP, Bingle CD, Vargas PA, Bingle L. Disruption of oncogenic pathways in mucoepidermoid carcinoma: CREB inhibitor 666.15 as a potential therapeutic agent. Oral Oncol 2024; 159:107029. [PMID: 39332274 DOI: 10.1016/j.oraloncology.2024.107029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 09/07/2024] [Indexed: 09/29/2024]
Abstract
OBJECTIVES Mucoepidermoid carcinoma (MEC) is the most common malignant salivary gland tumour with around 50 % of cases carrying the CRTC1-MAML2 translocation. The CREB pathway has been associated with the transforming activity of this translocation. The aim of this study was to determine the effects of CREB inhibition on MEC cell behaviour in vitro. MATERIAL AND METHODS Two translocation-positive (UM-HMC-2 and H292) and one translocation-negative (H253) MEC cell lines were treated with 666.15, a CREB inhibitor. Drug IC50 doses were determined for each cell line. Clonogenic and spheroid assays were used to assess survival, including percentage of cancer stem cells, and transwell and scratch assays evaluated invasive and migratory capacities, respectively. Immunofluorescence staining was used to determine E-cadherin expression. RESULTS CREB inhibition significantly reduced the number of surviving colonies and spheroids and delayed cell invasion in all cell lines, but this was more significant in the fusion positive, UM-HMC-2 cells. The expression of E-cadherin was significantly higher in treated UM-HMC-2 and H292 cells. CONCLUSION CREB inhibition with 666.15 impaired key MEC oncogenic behaviours associated with metastasis and drug resistance, including cell invasion and survival.
Collapse
Affiliation(s)
- Maria Eduarda Pérez-de-Oliveira
- Department of Oral Diagnosis, Piracicaba Dental School, Universidade Estadual de Campinas, Piracicaba, São Paulo, Brazil; School of Clinical Dentistry, University of Sheffield, Sheffield, United Kingdom
| | - Vivian Petersen Wagner
- Department of Oral Diagnosis, Piracicaba Dental School, Universidade Estadual de Campinas, Piracicaba, São Paulo, Brazil; School of Clinical Dentistry, University of Sheffield, Sheffield, United Kingdom; Department of Oral Medicine, School of Dentistry, Universidade de São Paulo, São Paulo, São Paulo, Brazil
| | - Colin D Bingle
- Division of Clinical Medicine, School of Medicine and Population Health, University of Sheffield, Sheffield, United Kingdom
| | - Pablo Agustin Vargas
- Department of Oral Diagnosis, Piracicaba Dental School, Universidade Estadual de Campinas, Piracicaba, São Paulo, Brazil
| | - Lynne Bingle
- School of Clinical Dentistry, University of Sheffield, Sheffield, United Kingdom.
| |
Collapse
|
2
|
Kim S, Chaudhary PK, Kim S. Molecular and Genetics Perspectives on Primary Adrenocortical Hyperfunction Disorders. Int J Mol Sci 2024; 25:11341. [PMID: 39518893 PMCID: PMC11545009 DOI: 10.3390/ijms252111341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 10/15/2024] [Accepted: 10/20/2024] [Indexed: 11/16/2024] Open
Abstract
Adrenocortical disorders encompass a broad spectrum of conditions ranging from benign hyperplasia to malignant tumors, significantly disrupting hormone balance and causing a variety of clinical manifestations. By leveraging next-generation sequencing and in silico analyses, recent studies have uncovered the genetic and molecular pathways implicated in these transitions. In this review, we explored the molecular and genetic alterations in adrenocortical disorders, with a particular focus on the transitions from normal adrenal function to hyperfunction. The insights gained are intended to enhance diagnostic and therapeutic strategies, offering up-to-date knowledge for managing these complex conditions effectively.
Collapse
Affiliation(s)
| | | | - Soochong Kim
- College of Veterinary Medicine, Chungbuk National University, Cheongju 28644, Republic of Korea; (S.K.); (P.K.C.)
| |
Collapse
|
3
|
Staebler S, Rottensteiner-Brandl U, El Ahmad Z, Kappelmann-Fenzl M, Arkudas A, Kengelbach-Weigand A, Bosserhoff AK, Schmidt SK. Transcription factor activating enhancer-binding protein 2ε (AP2ε) modulates phenotypic plasticity and progression of malignant melanoma. Cell Death Dis 2024; 15:351. [PMID: 38773108 PMCID: PMC11109141 DOI: 10.1038/s41419-024-06733-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 05/04/2024] [Accepted: 05/08/2024] [Indexed: 05/23/2024]
Abstract
Malignant melanoma, the most aggressive form of skin cancer, is often incurable once metastatic dissemination of cancer cells to distant organs has occurred. We investigated the role of Transcription Factor Activating Enhancer-Binding Protein 2ε (AP2ε) in the progression of metastatic melanoma. Here, we observed that AP2ε is a potent activator of metastasis and newly revealed AP2ε to be an important player in melanoma plasticity. High levels of AP2ε lead to worsened prognosis of melanoma patients. Using a transgenic melanoma mouse model with a specific loss of AP2ε expression, we confirmed the impact of AP2ε to modulate the dynamic switch from a migratory to a proliferative phenotype. AP2ε deficient melanoma cells show a severely reduced migratory potential in vitro and reduced metastatic behavior in vivo. Consistently, we revealed increased activity of AP2ε in quiescent and migratory cells compared to heterogeneously proliferating cells in bioprinted 3D models. In conclusion, these findings disclose a yet-unknown role of AP2ε in maintaining plasticity and migration in malignant melanoma cells.
Collapse
Affiliation(s)
- Sebastian Staebler
- Institute of Biochemistry, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Fahrstraße 17, 91054, Erlangen, Germany
| | - Ulrike Rottensteiner-Brandl
- Institute of Biochemistry, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Fahrstraße 17, 91054, Erlangen, Germany
| | - Zubeir El Ahmad
- Institute of Biochemistry, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Fahrstraße 17, 91054, Erlangen, Germany
- Faculty of Computer Science, Deggendorf Institute of Technology, Dieter-Görlitz-Platz 1, 94469, Deggendorf, Germany
| | - Melanie Kappelmann-Fenzl
- Institute of Biochemistry, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Fahrstraße 17, 91054, Erlangen, Germany
- Faculty of Computer Science, Deggendorf Institute of Technology, Dieter-Görlitz-Platz 1, 94469, Deggendorf, Germany
| | - Andreas Arkudas
- Laboratory for Tissue-Engineering and Regenerative Medicine, Department of Plastic and Hand Surgery, University Hospital Erlangen-Friedrich Alexander University of Erlangen-Nürnberg FAU, 91054, Erlangen, Germany
| | - Annika Kengelbach-Weigand
- Laboratory for Tissue-Engineering and Regenerative Medicine, Department of Plastic and Hand Surgery, University Hospital Erlangen-Friedrich Alexander University of Erlangen-Nürnberg FAU, 91054, Erlangen, Germany
| | - Anja-Katrin Bosserhoff
- Institute of Biochemistry, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Fahrstraße 17, 91054, Erlangen, Germany.
- CCC Erlangen-EMN: Comprehensive Cancer Center Erlangen-EMN (CCC ER-EMN), 91054, Erlangen, Germany.
- CCC WERA: Comprehensive Cancer Center Alliance WERA (CCC WERA), 91054, Erlangen, Germany.
- BZKF: Bavarian Cancer Research Center (BZKF), 91054, Erlangen, Germany.
| | - Sonja K Schmidt
- Institute of Biochemistry, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Fahrstraße 17, 91054, Erlangen, Germany
| |
Collapse
|
4
|
Feng S, Wei F, Shi H, Chen S, Wang B, Huang D, Luo L. Roles of salt‑inducible kinases in cancer (Review). Int J Oncol 2023; 63:118. [PMID: 37654200 PMCID: PMC10546379 DOI: 10.3892/ijo.2023.5566] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 08/01/2023] [Indexed: 09/02/2023] Open
Abstract
Salt inducible kinases (SIKs) with three subtypes SIK1, SIK2 and SIK3, belong to the AMP‑activated protein kinase family. They are expressed ubiquitously in humans. Under normal circumstances, SIK1 regulates adrenocortical function in response to high salt or adrenocorticotropic hormone stimulation, SIK2 is involved in cell metabolism, controlling insulin signaling and gluconeogenesis and SIK3 coordinates with the mTOR complex, promoting cancer. The dysregulation of SIKs has been widely detected in various types of cancers. Based on most of the existing studies, SIK1 is mostly considered a tumor inhibitor, SIK2 and SIK3 are usually associated with tumor promotion. However, the functions of SIKs have shown contradictory in certain tumors, suggesting that SIKs cannot be simply classified as oncogenes or tumor suppressor genes. The present review provided a comprehensive summary of the roles of SIKs in the initiation and progression of different cancers, aiming to elucidate their clinical value and discuss potential strategies for targeting SIKs in cancer therapy.
Collapse
Affiliation(s)
- Shenghui Feng
- Department of Gastroenterology, Research Institute of Digestive Diseases, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
- Queen Mary School, Medical Department, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Fangyi Wei
- Department of Gastroenterology, Research Institute of Digestive Diseases, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
- Queen Mary School, Medical Department, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Haoran Shi
- Department of Gastroenterology, Research Institute of Digestive Diseases, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Shen Chen
- Department of Gastroenterology, Research Institute of Digestive Diseases, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
- Queen Mary School, Medical Department, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Bangqi Wang
- Department of Gastroenterology, Research Institute of Digestive Diseases, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
- Queen Mary School, Medical Department, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Deqiang Huang
- Department of Gastroenterology, Research Institute of Digestive Diseases, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Lingyu Luo
- Department of Gastroenterology, Research Institute of Digestive Diseases, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| |
Collapse
|
5
|
Yang C, Rybchyn MS, De Silva WGM, Matthews J, Dixon KM, Holland AJA, Conigrave AD, Mason RS. The CaSR Modulator NPS-2143 Reduced UV-Induced DNA Damage in Skh:hr1 Hairless Mice but Minimally Inhibited Skin Tumours. Int J Mol Sci 2023; 24:ijms24054921. [PMID: 36902353 PMCID: PMC10002576 DOI: 10.3390/ijms24054921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 02/20/2023] [Accepted: 02/21/2023] [Indexed: 03/08/2023] Open
Abstract
The calcium-sensing receptor (CaSR) is an important regulator of epidermal function. We previously reported that knockdown of the CaSR or treatment with its negative allosteric modulator, NPS-2143, significantly reduced UV-induced DNA damage, a key factor in skin cancer development. We subsequently wanted to test whether topical NPS-2143 could also reduce UV-DNA damage, immune suppression, or skin tumour development in mice. In this study, topical application of NPS-2143 (228 or 2280 pmol/cm2) to Skh:hr1 female mice reduced UV-induced cyclobutane pyrimidine dimers (CPD) (p < 0.05) and oxidative DNA damage (8-OHdG) (p < 0.05) to a similar extent as the known photoprotective agent 1,25(OH)2 vitamin D3 (calcitriol, 1,25D). Topical NPS-2143 failed to rescue UV-induced immunosuppression in a contact hypersensitivity study. In a chronic UV photocarcinogenesis protocol, topical NPS-2143 reduced squamous cell carcinomas for only up to 24 weeks (p < 0.02) but had no other effect on skin tumour development. In human keratinocytes, 1,25D, which protected mice from UV-induced skin tumours, significantly reduced UV-upregulated p-CREB expression (p < 0.01), a potential early anti-tumour marker, while NPS-2143 had no effect. This result, together with the failure to reduce UV-induced immunosuppression, may explain why the reduction in UV-DNA damage in mice with NPS-2143 was not sufficient to inhibit skin tumour formation.
Collapse
Affiliation(s)
- Chen Yang
- School of Medical Sciences and Bosch Institute, University of Sydney, Sydney, NSW 2006, Australia
| | - Mark Stephen Rybchyn
- School of Medical Sciences and Bosch Institute, University of Sydney, Sydney, NSW 2006, Australia
- School of Chemical Engineering, University of New South Wales, Sydney, NSW 2033, Australia
| | | | - Jim Matthews
- Sydney Informatics Hub, University of Sydney, Sydney, NSW 2008, Australia
| | - Katie Marie Dixon
- School of Medical Sciences and Bosch Institute, University of Sydney, Sydney, NSW 2006, Australia
| | - Andrew J. A. Holland
- Douglas Cohen Department of Paediatric Surgery, The Children’s Hospital at Westmead Clinical School, The Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2145, Australia
| | - Arthur David Conigrave
- School of Life and Environmental Sciences, Charles Perkins Centre (D17), University of Sydney, Sydney, NSW 2006, Australia
| | - Rebecca Sara Mason
- School of Medical Sciences and Bosch Institute, University of Sydney, Sydney, NSW 2006, Australia
- School of Life and Environmental Sciences, Charles Perkins Centre (D17), University of Sydney, Sydney, NSW 2006, Australia
- Correspondence:
| |
Collapse
|
6
|
Kilanowska A, Ziółkowska A, Stasiak P, Gibas-Dorna M. cAMP-Dependent Signaling and Ovarian Cancer. Cells 2022; 11:cells11233835. [PMID: 36497095 PMCID: PMC9738761 DOI: 10.3390/cells11233835] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 11/23/2022] [Accepted: 11/24/2022] [Indexed: 12/02/2022] Open
Abstract
cAMP-dependent pathway is one of the most significant signaling cascades in healthy and neoplastic ovarian cells. Working through its major effector proteins-PKA and EPAC-it regulates gene expression and many cellular functions. PKA promotes the phosphorylation of cAMP response element-binding protein (CREB) which mediates gene transcription, cell migration, mitochondrial homeostasis, cell proliferation, and death. EPAC, on the other hand, is involved in cell adhesion, binding, differentiation, and interaction between cell junctions. Ovarian cancer growth and metabolism largely depend on changes in the signal processing of the cAMP-PKA-CREB axis, often associated with neoplastic transformation, metastasis, proliferation, and inhibition of apoptosis. In addition, the intracellular level of cAMP also determines the course of other pathways including AKT, ERK, MAPK, and mTOR, that are hypo- or hyperactivated among patients with ovarian neoplasm. With this review, we summarize the current findings on cAMP signaling in the ovary and its association with carcinogenesis, multiplication, metastasis, and survival of cancer cells. Additionally, we indicate that targeting particular stages of cAMP-dependent processes might provide promising therapeutic opportunities for the effective management of patients with ovarian cancer.
Collapse
Affiliation(s)
- Agnieszka Kilanowska
- Department of Anatomy and Histology, Collegium Medicum, University of Zielona Gora, 65-046 Zielona Gora, Poland
- Correspondence: ; Tel.: +48-683-283-148
| | - Agnieszka Ziółkowska
- Department of Anatomy and Histology, Collegium Medicum, University of Zielona Gora, 65-046 Zielona Gora, Poland
| | - Piotr Stasiak
- Department of Anatomy and Histology, Collegium Medicum, University of Zielona Gora, 65-046 Zielona Gora, Poland
| | - Magdalena Gibas-Dorna
- Department of Anatomy and Histology, Collegium Medicum, University of Zielona Gora, 65-046 Zielona Gora, Poland
| |
Collapse
|
7
|
Ahmed MB, Alghamdi AAA, Islam SU, Lee JS, Lee YS. cAMP Signaling in Cancer: A PKA-CREB and EPAC-Centric Approach. Cells 2022; 11:cells11132020. [PMID: 35805104 PMCID: PMC9266045 DOI: 10.3390/cells11132020] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 06/17/2022] [Accepted: 06/23/2022] [Indexed: 02/01/2023] Open
Abstract
Cancer is one of the most common causes of death globally. Despite extensive research and considerable advances in cancer therapy, the fundamentals of the disease remain unclear. Understanding the key signaling mechanisms that cause cancer cell malignancy may help to uncover new pharmaco-targets. Cyclic adenosine monophosphate (cAMP) regulates various biological functions, including those in malignant cells. Understanding intracellular second messenger pathways is crucial for identifying downstream proteins involved in cancer growth and development. cAMP regulates cell signaling and a variety of physiological and pathological activities. There may be an impact on gene transcription from protein kinase A (PKA) as well as its downstream effectors, such as cAMP response element-binding protein (CREB). The position of CREB downstream of numerous growth signaling pathways implies its oncogenic potential in tumor cells. Tumor growth is associated with increased CREB expression and activation. PKA can be used as both an onco-drug target and a biomarker to find, identify, and stage tumors. Exploring cAMP effectors and their downstream pathways in cancer has become easier using exchange protein directly activated by cAMP (EPAC) modulators. This signaling system may inhibit or accelerate tumor growth depending on the tumor and its environment. As cAMP and its effectors are critical for cancer development, targeting them may be a useful cancer treatment strategy. Moreover, by reviewing the material from a distinct viewpoint, this review aims to give a knowledge of the impact of the cAMP signaling pathway and the related effectors on cancer incidence and development. These innovative insights seek to encourage the development of novel treatment techniques and new approaches.
Collapse
Affiliation(s)
- Muhammad Bilal Ahmed
- BK21 FOUR KNU Creative BioResearch Group, School of Life Sciences, College of Natural Sciences, Kyungpook National University, Daegu 41566, Korea; (M.B.A.); (J.-S.L.)
| | | | - Salman Ul Islam
- Department of Pharmacy, Cecos University, Peshawar, Street 1, Sector F 5 Phase 6 Hayatabad, Peshawar 25000, Pakistan;
| | - Joon-Seok Lee
- BK21 FOUR KNU Creative BioResearch Group, School of Life Sciences, College of Natural Sciences, Kyungpook National University, Daegu 41566, Korea; (M.B.A.); (J.-S.L.)
| | - Young-Sup Lee
- BK21 FOUR KNU Creative BioResearch Group, School of Life Sciences, College of Natural Sciences, Kyungpook National University, Daegu 41566, Korea; (M.B.A.); (J.-S.L.)
- Correspondence: ; Tel.: +82-53-950-6353; Fax: +82-53-943-2762
| |
Collapse
|
8
|
Li JY, Li CJ, Lin LT, Tsui KH. Multi-Omics Analysis Identifying Key Biomarkers in Ovarian Cancer. Cancer Control 2021; 27:1073274820976671. [PMID: 33297760 PMCID: PMC8480361 DOI: 10.1177/1073274820976671] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Ovarian cancer is one of the most common malignant tumors. Here, we aimed to study the expression and function of the CREB1 gene in ovarian cancer via the bioinformatic analyses of multiple databases. Previously, the prognosis of ovarian cancer was based on single-factor or single-gene studies. In this study, different bioinformatics tools (such as TCGA, GEPIA, UALCAN, MEXPRESS, and Metascape) have been used to assess the expression and prognostic value of the CREB1 gene. We used the Reactome and cBioPortal databases to identify and analyze CREB1 mutations, copy number changes, expression changes, and protein-protein interactions. By analyzing data on the CREB1 differential expression in ovarian cancer tissues and normal tissues from 12 studies collected from the "Human Protein Atlas" database, we found a significantly higher expression of CREB1 in normal ovarian tissues. Using this database, we collected information on the expression of 25 different CREB-related proteins, including TP53, AKT1, and AKT3. The enrichment of these factors depended on tumor metabolism, invasion, proliferation, and survival. Individualized tumors based on gene therapy related to prognosis have become a new possibility. In summary, we established a new type of prognostic gene profile for ovarian cancer using the tools of bioinformatics.
Collapse
Affiliation(s)
- Ju-Yueh Li
- Department of Obstetrics and Gynaecology, Kaohsiung Veterans General Hospital, Kaohsiung.,Department of Nursing, Shu-Zen Junior College of Medicine and Management, Kaohsiung
| | - Chia-Jung Li
- Department of Obstetrics and Gynaecology, Kaohsiung Veterans General Hospital, Kaohsiung.,Institute of BioPharmaceutical Sciences, National Sun Yat-sen University, Kaohsiung
| | - Li-Te Lin
- Department of Obstetrics and Gynaecology, Kaohsiung Veterans General Hospital, Kaohsiung.,Institute of BioPharmaceutical Sciences, National Sun Yat-sen University, Kaohsiung.,Department of Obstetrics and Gynaecology, National Yang-Ming University School of Medicine, Taipei
| | - Kuan-Hao Tsui
- Department of Obstetrics and Gynaecology, Kaohsiung Veterans General Hospital, Kaohsiung.,Institute of BioPharmaceutical Sciences, National Sun Yat-sen University, Kaohsiung.,Department of Obstetrics and Gynaecology, National Yang-Ming University School of Medicine, Taipei.,Department of Pharmacy and Master Program, College of Pharmacy and Health Care, Tajen University, Pingtung County
| |
Collapse
|
9
|
Ebrahimi Sadrabadi A, Bereimipour A, Jalili A, Gholipurmalekabadi M, Farhadihosseinabadi B, Seifalian AM. The risk of pancreatic adenocarcinoma following SARS-CoV family infection. Sci Rep 2021; 11:12948. [PMID: 34155232 PMCID: PMC8217230 DOI: 10.1038/s41598-021-92068-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Accepted: 06/04/2021] [Indexed: 02/05/2023] Open
Abstract
COVID 19 disease has become a global catastrophe over the past year that has claimed the lives of over two million people around the world. Despite the introduction of vaccines against the disease, there is still a long way to completely eradicate it. There are concerns about the complications following infection with SARS-CoV-2. This research aimed to evaluate the possible correlation between infection with SARS-CoV viruses and cancer in an in-silico study model. To do this, the relevent dataset was selected from GEO database. Identification of differentially expressed genes among defined groups including SARS-CoV, SARS-dORF6, SARS-BatSRBD, and H1N1 were screened where the |Log FC| ≥ 1and p < 0.05 were considered statistically significant. Later, the pathway enrichment analysis and gene ontology (GO) were used by Enrichr and Shiny GO databases. Evaluation with STRING online was applied to predict the functional interactions of proteins, followed by Cytoscape analysis to identify the master genes. Finally, analysis with GEPIA2 server was carried out to reveal the possible correlation between candidate genes and cancer development. The results showed that the main molecular function of up- and down-regulated genes was "double-stranded RNA binding" and actin-binding, respectively. STRING and Cytoscape analysis presented four genes, PTEN, CREB1, CASP3, and SMAD3 as the key genes involved in cancer development. According to TCGA database results, these four genes were up-regulated notably in pancreatic adenocarcinoma. Our findings suggest that pancreatic adenocarcinoma is the most probably malignancy happening after infection with SARS-CoV family.
Collapse
Affiliation(s)
- Amin Ebrahimi Sadrabadi
- Department of Stem Cells and Developmental Biology at Cell Science Research Centre, Royan Institute, Tehran, Iran
| | - Ahmad Bereimipour
- Department of Stem Cells and Developmental Biology at Cell Science Research Centre, Royan Institute, Tehran, Iran
- Faculty of Sciences and Advanced Technologies in Biology, University of Science and Culture, Tehran, Iran
| | - Arsalan Jalili
- Department of Stem Cells and Developmental Biology at Cell Science Research Centre, Royan Institute, Tehran, Iran
- Parvaz Research Ideas Supporter Institute, Tehran, Iran
| | - Mazaher Gholipurmalekabadi
- Cellular and Molecular Research Centre, Department of Tissue Engineering and Regenerative Medicine, Iran University of Medical Sciences, Tehran, Iran
- Department of Medical Biotechnology, Iran University of Medical Sciences, Tehran, Iran
| | | | - Alexander M Seifalian
- Nanotechnology and Regenerative Medicine Commercialization Centre (Ltd), London BioScience Innovation Centre, London, UK.
| |
Collapse
|
10
|
Watson MJ, Berger PL, Banerjee K, Frank SB, Tang L, Ganguly SS, Hostetter G, Winn M, Miranti CK. Aberrant CREB1 activation in prostate cancer disrupts normal prostate luminal cell differentiation. Oncogene 2021; 40:3260-3272. [PMID: 33846571 PMCID: PMC10760404 DOI: 10.1038/s41388-021-01772-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 03/12/2021] [Accepted: 03/29/2021] [Indexed: 02/02/2023]
Abstract
The molecular mechanisms of luminal cell differentiation are not understood well enough to determine how differentiation goes awry during oncogenesis. Using RNA-Seq analysis, we discovered that CREB1 plays a central role in maintaining new luminal cell survival and that oncogenesis dramatically changes the CREB1-induced transcriptome. CREB1 is active in luminal cells, but not basal cells. We identified ING4 and its E3 ligase, JFK, as CREB1 transcriptional targets in luminal cells. During luminal cell differentiation, transient induction of ING4 expression is followed by a peak in CREB1 activity, while JFK increases concomitantly with CREB1 activation. Transient expression of ING4 is required for luminal cell induction; however, failure to properly down-regulate ING4 leads to luminal cell death. Consequently, blocking CREB1 increased ING4 expression, suppressed JFK, and led to luminal cell death. Thus, CREB1 is responsible for the suppression of ING4 required for luminal cell survival and maintenance. Oncogenic transformation by suppressing PTEN resulted in constitutive activation of CREB1. However, the tumor cells could no longer fully differentiate into luminal cells, failed to express ING4, and displayed a unique CREB1 transcriptome. Blocking CREB1 in tumorigenic cells suppressed tumor growth in vivo, rescued ING4 expression, and restored luminal cell formation, but ultimately induced luminal cell death. IHC of primary prostate tumors demonstrated a strong correlation between loss of ING4 and loss of PTEN. This is the first study to define a molecular mechanism whereby oncogenic loss of PTEN, leading to aberrant CREB1 activation, suppresses ING4 expression causing disruption of luminal cell differentiation.
Collapse
Affiliation(s)
- M J Watson
- Center for Cancer and Cell Biology, Van Andel Research Institute, Grand Rapids, MI, USA
| | - P L Berger
- Center for Cancer and Cell Biology, Van Andel Research Institute, Grand Rapids, MI, USA
| | - K Banerjee
- Department of Cellular and Molecular Medicine, University of Arizona Cancer Center, University of Arizona, Tucson, AZ, USA
| | - S B Frank
- Department of Cellular and Molecular Medicine, University of Arizona Cancer Center, University of Arizona, Tucson, AZ, USA
| | - L Tang
- Department of Cellular and Molecular Medicine, University of Arizona Cancer Center, University of Arizona, Tucson, AZ, USA
| | - S S Ganguly
- Department of Cellular and Molecular Medicine, University of Arizona Cancer Center, University of Arizona, Tucson, AZ, USA
| | - G Hostetter
- Center for Cancer and Cell Biology, Van Andel Research Institute, Grand Rapids, MI, USA
| | - M Winn
- Center for Cancer and Cell Biology, Van Andel Research Institute, Grand Rapids, MI, USA
| | - C K Miranti
- Center for Cancer and Cell Biology, Van Andel Research Institute, Grand Rapids, MI, USA.
- Department of Cellular and Molecular Medicine, University of Arizona Cancer Center, University of Arizona, Tucson, AZ, USA.
| |
Collapse
|
11
|
Travers JB, Rohan JG, Sahu RP. New Insights Into the Pathologic Roles of the Platelet-Activating Factor System. Front Endocrinol (Lausanne) 2021; 12:624132. [PMID: 33796070 PMCID: PMC8008455 DOI: 10.3389/fendo.2021.624132] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 02/17/2021] [Indexed: 12/15/2022] Open
Abstract
Described almost 50 years ago, the glycerophosphocholine lipid mediator Platelet-activating factor (PAF) has been implicated in many pathologic processes. Indeed, elevated levels of PAF can be measured in response to almost every type of pathology involving inflammation and cell damage/death. In this review, we provide evidence for PAF involvement in pathologic processes, with focus on cancer, the nervous system, and in photobiology. Importantly, recent insights into how PAF can generate and travel via bioactive extracellular vesicles such as microvesicle particles (MVP) are presented. What appears to be emerging from diverse pathologies in different organ systems is a common theme where pro-oxidative stressors generate oxidized glycerophosphocholines with PAF agonistic effects, which then trigger more enzymatic PAF synthesis via the PAF receptor. A downstream consequence of PAF receptor activation is the generation and release of MVP which provide a mechanism to transmit PAF as well as other bioactive agents. The knowledge gaps which when addressed could result in novel therapeutic strategies are also discussed. Taken together, an enhanced understanding of the PAF family of lipid mediators is essential in our improved comprehension of the relationship amongst the diverse cutaneous, cancerous, neurologic and systemic pathologic processes.
Collapse
Affiliation(s)
- Jeffrey B. Travers
- Department of Pharmacology & Toxicology, Boonshoft School of Medicine at Wright State University, Dayton, OH, United States
- Department of Dermatology, Boonshoft School of Medicine at Wright State University, Dayton, OH, United States
- Dayton Veterans Administration Medical Center, Dayton, OH, United States
- *Correspondence: Jeffrey B. Travers, ; orcid.org/0000-0001-7232-1039
| | - Joyce G. Rohan
- Naval Medical Research Unit Dayton, Environmental Health Effects Directorate, Wright Patterson Air Force Base, OH, United States
| | - Ravi P. Sahu
- Department of Pharmacology & Toxicology, Boonshoft School of Medicine at Wright State University, Dayton, OH, United States
| |
Collapse
|
12
|
Sapio L, Salzillo A, Ragone A, Illiano M, Spina A, Naviglio S. Targeting CREB in Cancer Therapy: A Key Candidate or One of Many? An Update. Cancers (Basel) 2020; 12:3166. [PMID: 33126560 PMCID: PMC7693618 DOI: 10.3390/cancers12113166] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 10/23/2020] [Accepted: 10/27/2020] [Indexed: 12/11/2022] Open
Abstract
Intratumor heterogeneity (ITH) is considered the major disorienting factor in cancer treatment. As a result of stochastic genetic and epigenetic alterations, the appearance of a branched evolutionary shape confers tumor plasticity, causing relapse and unfavorable clinical prognosis. The growing evidence in cancer discovery presents to us "the great paradox" consisting of countless potential targets constantly discovered and a small number of candidates being effective in human patients. Among these, cyclic-AMP response element-binding protein (CREB) has been proposed as proto-oncogene supporting tumor initiation, progression and metastasis. Overexpression and hyperactivation of CREB are frequently observed in cancer, whereas genetic and pharmacological CREB downregulation affects proliferation and apoptosis. Notably, the present review is designed to investigate the feasibility of targeting CREB in cancer therapy. In particular, starting with the latest CREB evidence in cancer pathophysiology, we evaluate the advancement state of CREB inhibitor design, including the histone lysine demethylases JMJD3/UTX inhibitor GSKJ4 that we newly identified as a promising CREB modulator in leukemia cells. Moreover, an accurate analysis of strengths and weaknesses is also conducted to figure out whether CREB can actually represent a therapeutic candidate or just one of the innumerable preclinical cancer targets.
Collapse
Affiliation(s)
| | | | | | | | | | - Silvio Naviglio
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, Via L. De Crecchio 7, 80138 Naples, Italy; (L.S.); (A.S.); (A.R.); (M.I.); (A.S.)
| |
Collapse
|
13
|
Steven A, Friedrich M, Jank P, Heimer N, Budczies J, Denkert C, Seliger B. What turns CREB on? And off? And why does it matter? Cell Mol Life Sci 2020; 77:4049-4067. [PMID: 32347317 PMCID: PMC7532970 DOI: 10.1007/s00018-020-03525-8] [Citation(s) in RCA: 118] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 03/21/2020] [Accepted: 04/06/2020] [Indexed: 12/16/2022]
Abstract
Altered expression and function of the transcription factor cyclic AMP response-binding protein (CREB) has been identified to play an important role in cancer and is associated with the overall survival and therapy response of tumor patients. This review focuses on the expression and activation of CREB under physiologic conditions and in tumors of distinct origin as well as the underlying mechanisms of CREB regulation by diverse stimuli and inhibitors. In addition, the clinical relevance of CREB is summarized, including its use as a prognostic and/or predictive marker as well as a therapeutic target.
Collapse
Affiliation(s)
- André Steven
- Institute for Medical Immunology, Martin Luther University Halle-Wittenberg, Magdeburger Str. 2, 06112, Halle (Saale), Germany
| | - Michael Friedrich
- Institute for Medical Immunology, Martin Luther University Halle-Wittenberg, Magdeburger Str. 2, 06112, Halle (Saale), Germany
| | - Paul Jank
- Institute of Pathology, Philipps University Marburg, 35043, Marburg, Germany
| | - Nadine Heimer
- Institute for Medical Immunology, Martin Luther University Halle-Wittenberg, Magdeburger Str. 2, 06112, Halle (Saale), Germany
| | - Jan Budczies
- Institute of Pathology, University Clinic Heidelberg, 69120, Heidelberg, Germany
| | - Carsten Denkert
- Institute of Pathology, Philipps University Marburg, 35043, Marburg, Germany
| | - Barbara Seliger
- Institute for Medical Immunology, Martin Luther University Halle-Wittenberg, Magdeburger Str. 2, 06112, Halle (Saale), Germany.
| |
Collapse
|
14
|
Bang J, Zippin JH. Cyclic adenosine monophosphate (cAMP) signaling in melanocyte pigmentation and melanomagenesis. Pigment Cell Melanoma Res 2020; 34:28-43. [PMID: 32777162 DOI: 10.1111/pcmr.12920] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 07/24/2020] [Accepted: 08/07/2020] [Indexed: 12/12/2022]
Abstract
The second messenger cyclic adenosine monophosphate (cAMP) regulates numerous functions in both benign melanocytes and melanoma cells. cAMP is generated from two distinct sources, transmembrane and soluble adenylyl cyclases (tmAC and sAC, respectively), and is degraded by a family of proteins called phosphodiesterases (PDEs). cAMP signaling can be regulated in many different ways and can lead to varied effects in melanocytes. It was recently revealed that distinct cAMP signaling pathways regulate pigmentation by either altering pigment gene expression or the pH of melanosomes. In the context of melanoma, many studies report seemingly contradictory roles for cAMP in tumorigenesis. For example, cAMP signaling has been implicated in both cancer promotion and suppression, as well as both therapy resistance and sensitization. This conundrum in the field may be explained by the fact that cAMP signals in discrete microdomains and each microdomain can mediate differential cellular functions. Here, we review the role of cAMP signaling microdomains in benign melanocyte biology, focusing on pigmentation, and in melanomagenesis.
Collapse
Affiliation(s)
- Jakyung Bang
- Department of Dermatology, Joan and Sanford I. Weill Medical College of Cornell University, New York, NY, USA
| | - Jonathan H Zippin
- Department of Dermatology, Joan and Sanford I. Weill Medical College of Cornell University, New York, NY, USA
| |
Collapse
|
15
|
Yang X, Chen G, Chen Z. MicroRNA-200a-3p Is a Positive Regulator in Cardiac Hypertrophy Through Directly Targeting WDR1 as Well as Modulating PTEN/PI3K/AKT/CREB/WDR1 Signaling. J Cardiovasc Pharmacol 2019; 74:453-461. [PMID: 31651553 DOI: 10.1097/fjc.0000000000000732] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Cardiac hypertrophy is an adaptive expansion of the myocardium due to the overloaded stress of heart. Recently, emerging studies have drawn a conclusion that microRNAs (miRNAs) are involved in myocardial hypertrophy and even heart failure. To figure out the role of microRNA-200a-3p (miR-200a-3p) in cardiac hypertrophy, the in vitro cardiac hypertrophy model was established in H9c2 cells using angiotensin II (Ang-II) as previously described. First of all, we observed a significant increase of miR-200a-3p expression in Ang-II-induced hypertrophic H9c2 cells. Moreover, inhibition of miR-200a-3p dramatically reversed the Ang-II-upregulated expression of hypertrophic markers (atrial natriuretic peptide, brain natriuretic peptide, and β-MHC) and the expanded cell surface area in H9c2 cells. In addition, our results indicated that miR-200a-3p directly targeted both WDR1 and phosphatase and tensin homolog (PTEN). In this regard, miR-200a-3p further activated PI3K/AKT/CREB pathway so as to intensify its negative regulation on WDR1. At length, WDR1 silence, PTEN inhibitor, and PI3K activator recovered the repressive effect of miR-200a-3p suppression on the development of cardiac hypertrophy. Jointly, our study suggested that miR-200a-3p facilitated cardiac hypertrophy by not only directly targeting WDR1 but also through modulating PTEN/PI3K/AKT/CREB/WDR1 signaling, therefore proving novel downstream molecular pathway of miR-200a-3p in cardiac hypertrophy.
Collapse
Affiliation(s)
- Xiaomei Yang
- Department of Clinical Laboratory, The Second People's Hospital of Hefei, Hefei, China
| | - Gang Chen
- Department of Cardiology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Zhengxu Chen
- Department of Clinical Laboratory, The Second People's Hospital of Hefei, Hefei, China
| |
Collapse
|
16
|
Tsui KH, Wu MY, Lin LT, Wen ZH, Li YH, Chu PY, Li CJ. Disruption of mitochondrial homeostasis with artemisinin unravels anti-angiogenesis effects via auto-paracrine mechanisms. Theranostics 2019; 9:6631-6645. [PMID: 31588240 PMCID: PMC6771251 DOI: 10.7150/thno.33353] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2019] [Accepted: 07/30/2019] [Indexed: 12/19/2022] Open
Abstract
Rationale: Tumor angiogenesis promotes tumor development, progression, growth, and metastasis. Metronomic chemotherapy involves the frequent administration of low-dose chemotherapeutic agents to block angiogenic activity and reduce side effects. Methods: MDA-MB-231 cells were treated with various concentrations of artemisinin (ART) and vinorelbine (NVB) and the cytotoxic effects of ART/NVB were determined using the CCK-8 assay. Mitochondrial reactive oxygen species (ROS) levels, mitochondrial membrane potential (∆Ψm) and mass were assessed using MitoSOX, TMRE and MitoTracker green staining. Western blot analysis was used to quantify the expression of autophagy-related proteins. Herein, by using bioinformatics analysis and experimental verification, we identified CREB as a master in MDA-MB-231 cells. Results: We found that artemisinin (ART), which exhibits anti-angiogenic and anti-cancer effects via mitochondrial regulation, synergized with vinorelbine (NVB) to inhibit MDA-MB-231 cell proliferation. ART and NVB cooperated to regulate mitochondrial biogenesis. CREB acted as a crucial regulator of PGC1α and VEGF, which played critical roles in NVB-dependent growth factor depletion. Moreover, CREB suppression significantly reversed mitochondrial dysfunction following ART/NVB co-treatment. In addition, combination treatment with ART and NVB significantly suppressed tumor growth in a nude mouse xenograft model, with downregulated CREB and PGC1α expression levels observed in tumor biopsies, in agreement with our in vitro and ex vivo data. Conclusions: These findings support the hypothesis that ART affects cancer and endothelial cells by targeting the auto-paracrine effects of VEGF to suppress mitochondrial biogenesis, angiogenesis, and migration between cancer cells and endothelial cells.
Collapse
Affiliation(s)
- Kuan-Hao Tsui
- Department of Obstetrics and Gynecology, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
- Department of Obstetrics and Gynecology, National Yang-Ming University School of Medicine, Taipei, Taiwan
- Department of Pharmacy and Master Program, College of Pharmacy and Health Care, Tajen University, Pingtung County, Taiwan
- Institute of Biomedical Sciences, National Sun Yat-sen University, Kaohsiung 80424, Taiwan
| | - Meng-Yu Wu
- Department of Emergency Medicine, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei, Taiwan
- Department of Emergency Medicine, School of Medicine, Tzu Chi University, Hualien, Taiwan
| | - Li-Te Lin
- Department of Obstetrics and Gynecology, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
- Department of Obstetrics and Gynecology, National Yang-Ming University School of Medicine, Taipei, Taiwan
- Department of Biological Science, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Zhi-Hong Wen
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung, Taiwan
- Marine Biomedical Laboratory and Center for Translational Biopharmaceuticals, Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiun, Taiwan
| | - Yi-Han Li
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, Texas, USA
| | - Pei-Yi Chu
- School of Medicine, College of Medicine, Fu Jen Catholic University, New Taipei city, Taiwan
- Department of Pathology, Show Chwan Memorial Hospital, Changhua, Taiwan
- Department of Health Food, Chung Chou University of Science and Technology, Changhua, Taiwan
| | - Chia-Jung Li
- Department of Obstetrics and Gynecology, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
- Institute of Biomedical Sciences, National Sun Yat-sen University, Kaohsiung 80424, Taiwan
| |
Collapse
|
17
|
Huang W, Zhong Z, Luo C, Xiao Y, Li L, Zhang X, Yang L, Xiao K, Ning Y, Chen L, Liu Q, Hu X, Zhang J, Ding X, Xiang S. The miR-26a/AP-2α/Nanog signaling axis mediates stem cell self-renewal and temozolomide resistance in glioma. Am J Cancer Res 2019; 9:5497-5516. [PMID: 31534499 PMCID: PMC6735392 DOI: 10.7150/thno.33800] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2019] [Accepted: 07/17/2019] [Indexed: 12/24/2022] Open
Abstract
Aberrant expression of transcription factor AP-2α has been functionally associated with various cancers, but its clinical significance and molecular mechanisms in human glioma are largely elusive. Methods: AP-2α expression was analyzed in human glioma tissues by immunohistochemistry (IHC) and in glioma cell lines by Western blot. The effects of AP-2α on glioma cell proliferation, migration, invasion and tumor formation were evaluated by the 3-(4,5-dimethyNCthiazol-2-yl)-25-diphenyltetrazolium bromide (MTT) and transwell assays in vitro and in nude mouse models in vivo. The influence of AP-2α on glioma cell stemness was analyzed by sphere-formation, self-renewal and limiting dilution assays in vitro and in intracranial mouse models in vivo. The effects of AP-2α on temozolomide (TMZ) resistance were detected by the MTT assay, cell apoptosis, real-time PCR analysis, western blotting and mouse experiments. The correlation between AP-2α expression and the expression of miR-26a, Nanog was determined by luciferase reporter assays, electrophoretic mobility shift assay (EMSA) and expression analysis. Results: AP-2α expression was downregulated in 58.5% of glioma tissues and in 4 glioma cell lines. AP-2α overexpression not only reduced the proliferation, migration and invasion of glioma cell lines but also suppressed the sphere-formation and self-renewal abilities of glioma stem cells in vitro. Moreover, AP-2α overexpression inhibited subcutaneous and intracranial xenograft tumor growth in vivo. Furthermore, AP-2α enhanced the sensitivity of glioma cells to TMZ. Finally, AP-2α directly bound to the regulatory region of the Nanog gene, reduced Nanog, Sox2 and CD133 expression. Meanwhile, AP-2α indirectly downregulated Nanog expression by inhibiting the interleukin 6/janus kinase 2/signal transducer and activator of transcription 3 (IL6/JAK2/STAT3) signaling pathway, consequently decreasing O6-methylguanine methyltransferase (MGMT) and programmed death-ligand 1 (PD-L1) expression. In addition, miR-26a decreased AP-2α expression by binding to the 3' untranslated region (UTR) of AP-2α and reversed the tumor suppressive role of AP-2α in glioma, which was rescued by a miR-26a inhibitor. TMZ and the miR-26a inhibitor synergistically suppressed intracranial GSC growth. Conclusion: These results suggest that AP-2α reduces the stemness and TMZ resistance of glioma by inhibiting the Nanog/Sox2/CD133 axis and IL6/STAT3 signaling pathways. Therefore, AP-2α and miR-26a inhibition might represent a new target for developing new therapeutic strategies in TMZ resistance and recurrent glioma patients.
Collapse
|
18
|
Jin X, Di X, Wang R, Ma H, Tian C, Zhao M, Cong S, Liu J, Li R, Wang K. RBM10 inhibits cell proliferation of lung adenocarcinoma via RAP1/AKT/CREB signalling pathway. J Cell Mol Med 2019; 23:3897-3904. [PMID: 30955253 PMCID: PMC6533519 DOI: 10.1111/jcmm.14263] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 01/26/2019] [Accepted: 02/12/2019] [Indexed: 02/06/2023] Open
Abstract
Initial functional studies have demonstrated that RNA‐binding motif protein 10 (RBM10) can promote apoptosis and suppress cell proliferation; however, the results of several studies suggest a tumour‐promoting role for RBM10. Herein, we assessed the involvement of RBM10 in lung adenocarcinoma cell proliferation and explored the potential molecular mechanism. We found that, both in vitro and in vivo, RBM10 overexpression suppresses lung adenocarcinoma cell proliferation, while its knockdown enhances cell proliferation. Using complementary DNA microarray analysis, we previously found that RBM10 overexpression induces significant down‐regulation of RAP1A expression. In this study, we have confirmed that RBM10 decreases the activation of RAP1 and found that EPAC stimulation and inhibition can abolish the effects of RBM10 knockdown and overexpression, respectively, and regulate cell growth. This effect of RBM10 on proliferation was independent of the MAPK/ERK and P38/MAPK signalling pathways. We found that RBM10 reduces the phosphorylation of CREB via the AKT signalling pathway, suggesting that RBM10 exhibits its effect on lung adenocarcinoma cell proliferation via the RAP1/AKT/CREB signalling pathway.
Collapse
Affiliation(s)
- Xin Jin
- Department of Respiratory Medicine, The Second Hospital of Jilin University, Changchun, Jilin, China.,Department of Oncology and Hematology, The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Xin Di
- Department of Respiratory Medicine, The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Ruimin Wang
- Department of Operation room, The Second Hospital of Jilin University, Changchun, Jilin, China
| | - He Ma
- Department of Anesthesiology, The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Chang Tian
- Department of Respiratory Medicine, The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Min Zhao
- Department of Respiratory Medicine, The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Shan Cong
- Department of Respiratory Medicine, The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Jiaying Liu
- Department of Respiratory Medicine, The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Ranwei Li
- Department of Urinary Surgery, The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Ke Wang
- Department of Respiratory Medicine, The Second Hospital of Jilin University, Changchun, Jilin, China
| |
Collapse
|
19
|
Zhang ZX, Zhang WN, Sun YY, Li YH, Xu ZM, Fu WN. CREB promotes laryngeal cancer cell migration via MYCT1/NAT10 axis. Onco Targets Ther 2018; 11:1323-1331. [PMID: 29563811 PMCID: PMC5848665 DOI: 10.2147/ott.s156582] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Purpose CREB, MYCY1 and NAT10 are involved in cancer cell migration. However, the relationship between these three proteins and their role in laryngeal cancer cell migration remains unknown. Methods Transient gene transfection was performed in laryngeal cancer cells. Bioinformatics analysis was used to predict the binding of CREB to MYCT1 promoter. Binding of CREB to the promoter of MYCT1 was monitored by luciferase reporter assay and chromatin immuno-precipitation method in vitro and in vivo, respectively. Real-time RT-PCR and Western bolt were applied to detect gene transcription and translation levels, respectively. Laryngeal cancer cell migration was assayed by transwell chamber experiment. Results CREB protein expression was significantly up-regulated in laryngeal cancer tissues and associated with cancer differentiation, tumor stage, and lymphatic metastasis. CREB inhibits MYCT1 expression by direct binding to its promoter. Meanwhile, MYCT1 has a negative impact on the NAT10 gene expression. Furthermore, CREB promotes NAT10 expression via down-regulating the MYCT1 gene expression. In addition, contrary to MYCT1, CREB and NAT10 enhanced laryngeal cancer cell migration. MYCT1 and NAT10 significantly rescued the effects of CREB and MYCT1 on Hep2 cell migration, respectively. Conclusion CREB promotes laryngeal cancer cell migration via MYCT1/NAT10 axis, suggesting that CREB might be a potential prognostic marker in laryngeal cancer.
Collapse
Affiliation(s)
- Zhao-Xiong Zhang
- Department of Medical Genetics, China Medical University, Shenyang, People's Republic of China
| | - Wan-Ni Zhang
- Department of Medical Genetics, China Medical University, Shenyang, People's Republic of China
| | - Yuan-Yuan Sun
- Department of Medical Genetics, China Medical University, Shenyang, People's Republic of China
| | - Yun-Hui Li
- Department of Laboratory Medicine, No 202 Hospital of PLA, Shenyang, People's Republic of China
| | - Zhen-Ming Xu
- Department of Otolaryngology, No 463 Hospital of PLA, Shenyang, People's Republic of China
| | - Wei-Neng Fu
- Department of Medical Genetics, China Medical University, Shenyang, People's Republic of China
| |
Collapse
|
20
|
Velazquez-Torres G, Shoshan E, Ivan C, Huang L, Fuentes-Mattei E, Paret H, Kim SJ, Rodriguez-Aguayo C, Xie V, Brooks D, Jones SJM, Robertson AG, Calin G, Lopez-Berenstein G, Sood A, Bar-Eli M. A-to-I miR-378a-3p editing can prevent melanoma progression via regulation of PARVA expression. Nat Commun 2018; 9:461. [PMID: 29386624 PMCID: PMC5792646 DOI: 10.1038/s41467-018-02851-7] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Accepted: 01/04/2018] [Indexed: 01/15/2023] Open
Abstract
Previously we have reported that metastatic melanoma cell lines and tumor specimens have reduced expression of ADAR1 and consequently are impaired in their ability to perform A-to-I microRNA (miRNA) editing. The effects of A-to-I miRNAs editing on melanoma growth and metastasis are yet to be determined. Here we report that miR-378a–3p is undergoing A-to-I editing only in the non-metastatic but not in metastatic melanoma cells. The function of the edited form is different from its wild-type counterpart. The edited form of miR-378a-3p preferentially binds to the 3′-UTR of the PARVA oncogene and inhibits its expression, thus preventing the progression of melanoma towards the malignant phenotype. Indeed, edited miR-378a-3p but not its WT form inhibits melanoma metastasis in vivo. These results further emphasize the role of RNA editing in melanoma progression. In melanoma, reduced ADAR1 impairs A-to-I microRNA editing. Here, the authors show that miR-378a-3p undergoes this editing in non-metastatic cells and the edited form of miR-378a-3p binds to the PARVA oncogene, inhibiting its expression and preventing melanoma progression and metastasis.
Collapse
Affiliation(s)
- Guermarie Velazquez-Torres
- Department of Cancer Biology, Unit 1906, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX, 77030, USA
| | - Einav Shoshan
- Department of Cancer Biology, Unit 1906, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX, 77030, USA
| | - Cristina Ivan
- Department of Gynecologic Oncology, Unit 1362, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX, 77030, USA
| | - Li Huang
- Department of Cancer Biology, Unit 1906, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX, 77030, USA
| | - Enrique Fuentes-Mattei
- Department of Experimental Therapeutics, Unit 1950, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX, 77030, USA
| | - Harrison Paret
- Department of Cancer Biology, Unit 1906, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX, 77030, USA
| | - Sun Jin Kim
- Department of Cancer Biology, Unit 1906, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX, 77030, USA
| | - Cristian Rodriguez-Aguayo
- Department of Experimental Therapeutics, Unit 1950, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX, 77030, USA
| | - Victoria Xie
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX, 77030, USA
| | - Denise Brooks
- Canada's Michael Smith Cancer Agency, Vancouver, BC, V5Z4S6, Canada
| | - Steven J M Jones
- Canada's Michael Smith Cancer Agency, Vancouver, BC, V5Z4S6, Canada
| | | | - George Calin
- Department of Experimental Therapeutics, Unit 1950, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX, 77030, USA
| | - Gabriel Lopez-Berenstein
- Department of Experimental Therapeutics, Unit 1950, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX, 77030, USA
| | - Anil Sood
- Department of Gynecologic Oncology, Unit 1362, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX, 77030, USA
| | - Menashe Bar-Eli
- Department of Cancer Biology, Unit 1906, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX, 77030, USA.
| |
Collapse
|
21
|
Steven A, Seliger B. Control of CREB expression in tumors: from molecular mechanisms and signal transduction pathways to therapeutic target. Oncotarget 2018; 7:35454-65. [PMID: 26934558 PMCID: PMC5085243 DOI: 10.18632/oncotarget.7721] [Citation(s) in RCA: 100] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Accepted: 01/26/2016] [Indexed: 12/11/2022] Open
Abstract
The cyclic AMP response element binding (CREB) protein has pleiotropic activities in physiologic processes. Due to its central position downstream of many growth signaling pathways CREB has the ability to influence cell survival, growth and differentiation of normal, but also of tumor cells suggesting an oncogenic potential of CREB. Indeed, increased CREB expression and activation is associated with tumor progression, chemotherapy resistance and reduced patients' survival. We summarize here the different cellular functions of CREB in tumors of distinct histology as well as its use as potential prognostic marker. In addition, the underlying molecular mechanisms to achieve constitutive activation of CREB including structural alterations, such as gene amplification and chromosomal translocation, and deregulation, which could occur at the transcriptional, post-transcriptional and post-translational level, will be described. Since downregulation of CREB by different strategies resulted in inhibition of cell proliferation, invasion and induction of apoptosis, the role of CREB as a promising target for cancer therapy will be also discussed.
Collapse
Affiliation(s)
- André Steven
- Institute of Medical Immunology, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Barbara Seliger
- Institute of Medical Immunology, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| |
Collapse
|
22
|
Rodríguez CI, Castro-Pérez E, Prabhakar K, Block L, Longley BJ, Wisinski JA, Kimple ME, Setaluri V. EPAC-RAP1 Axis-Mediated Switch in the Response of Primary and Metastatic Melanoma to Cyclic AMP. Mol Cancer Res 2017; 15:1792-1802. [PMID: 28851815 PMCID: PMC6309370 DOI: 10.1158/1541-7786.mcr-17-0067] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Revised: 06/30/2017] [Accepted: 08/23/2017] [Indexed: 11/16/2022]
Abstract
Cyclic AMP (cAMP) is an important second messenger that regulates a wide range of physiologic processes. In mammalian cutaneous melanocytes, cAMP-mediated signaling pathways activated by G-protein-coupled receptors (GPCR), like melanocortin 1 receptor (MC1R), play critical roles in melanocyte homeostasis including cell survival, proliferation, and pigment synthesis. Impaired cAMP signaling is associated with increased risk of cutaneous melanoma. Although mutations in MAPK pathway components are the most frequent oncogenic drivers of melanoma, the role of cAMP in melanoma is not well understood. Here, using the Braf(V600E)/Pten-null mouse model of melanoma, topical application of an adenylate cyclase agonist, forskolin (a cAMP inducer), accelerated melanoma tumor development in vivo and stimulated the proliferation of mouse and human primary melanoma cells, but not human metastatic melanoma cells in vitro The differential response of primary and metastatic melanoma cells was also evident upon pharmacologic inhibition of the cAMP effector protein kinase A. Pharmacologic inhibition and siRNA-mediated knockdown of other cAMP signaling pathway components showed that EPAC-RAP1 axis, an alternative cAMP signaling pathway, mediates the switch in response of primary and metastatic melanoma cells to cAMP. Evaluation of pERK levels revealed that this phenotypic switch was not correlated with changes in MAPK pathway activity. Although cAMP elevation did not alter the sensitivity of metastatic melanoma cells to BRAF(V600E) and MEK inhibitors, the EPAC-RAP1 axis appears to contribute to resistance to MAPK pathway inhibition. These data reveal a MAPK pathway-independent switch in response to cAMP signaling during melanoma progression.Implications: The prosurvival mechanism involving the cAMP-EPAC-RAP1 signaling pathway suggest the potential for new targeted therapies in melanoma. Mol Cancer Res; 15(12); 1792-802. ©2017 AACR.
Collapse
Affiliation(s)
- Carlos I Rodríguez
- Molecular and Environmental Toxicology Center, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin
- Department of Dermatology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - Edgardo Castro-Pérez
- Department of Dermatology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
- William S. Middleton Memorial Veterans Hospital, Madison, Wisconsin
| | - Kirthana Prabhakar
- Department of Dermatology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - Laura Block
- Department of Dermatology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - B Jack Longley
- Department of Dermatology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
- William S. Middleton Memorial Veterans Hospital, Madison, Wisconsin
| | - Jaclyn A Wisinski
- Interdisciplinary Graduate Program in Nutritional Sciences, College of Agriculture and Life Sciences, University of Wisconsin-Madison, Madison, Wisconsin
| | - Michelle E Kimple
- William S. Middleton Memorial Veterans Hospital, Madison, Wisconsin
- Interdisciplinary Graduate Program in Nutritional Sciences, College of Agriculture and Life Sciences, University of Wisconsin-Madison, Madison, Wisconsin
- Department of Medicine, Division of Endocrinology, School of Medicine and Public Health, University of Wisconsin-Madison School of Medicine and Public Health, Madison, Wisconsin
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison School of Medicine and Public Health, Madison, Wisconsin
| | - Vijayasaradhi Setaluri
- Molecular and Environmental Toxicology Center, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin.
- Department of Dermatology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
- William S. Middleton Memorial Veterans Hospital, Madison, Wisconsin
| |
Collapse
|
23
|
Rodríguez CI, Castro-Pérez E, Longley BJ, Setaluri V. Elevated cyclic AMP levels promote BRAF CA/Pten -/- mouse melanoma growth but pCREB is negatively correlated with human melanoma progression. Cancer Lett 2017; 414:268-277. [PMID: 29179997 DOI: 10.1016/j.canlet.2017.11.027] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Revised: 11/21/2017] [Accepted: 11/22/2017] [Indexed: 12/20/2022]
Abstract
Melanocyte development and differentiation are regulated by cAMP, which is produced by the adenylate cyclase (AC) enzyme upon activation of the melanocortin-1-receptor (MC1R). Individuals carrying single amino acid substitution variants of MC1R have impaired cAMP signaling and higher risk of melanoma. However, the contribution of AC to this risk is not clear. Downstream of AC, the phosphorylated transcription factor, cyclic AMP Responsive Element Binding Protein (pCREB), which is activated by protein kinase A, regulates the expression of several genes including the melanocyte master regulator MITF. The roles of AC and CREB in melanoma development and growth are not well understood. Here, we investigated the effect of topical application of AC inhibitor on BrafCA/Pten-/- mouse melanoma development. We show that AC inhibitor delays melanoma growth independent of MAPK pathway activity and melanin content. Next, employing a primary melanoma tissue microarray and quantitative immunohistochemistry, we show that pCREB levels are positively correlated with the proliferative status of melanoma, but low pCREB expression is associated with tumor aggressiveness and metastatic recurrence. These data suggest that low cAMP signaling inhibits tumor growth but is a predictor of melanoma aggressiveness.
Collapse
Affiliation(s)
- Carlos I Rodríguez
- Molecular and Environmental Toxicology Center, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53706, USA; Department of Dermatology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53706, USA.
| | - Edgardo Castro-Pérez
- Department of Dermatology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53706, USA; William S. Middleton Memorial Veterans Hospital, Madison, WI 53705, USA
| | - B Jack Longley
- Department of Dermatology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53706, USA; William S. Middleton Memorial Veterans Hospital, Madison, WI 53705, USA
| | - Vijayasaradhi Setaluri
- Molecular and Environmental Toxicology Center, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53706, USA; Department of Dermatology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53706, USA; William S. Middleton Memorial Veterans Hospital, Madison, WI 53705, USA.
| |
Collapse
|
24
|
Steven A, Leisz S, Wickenhauser C, Schulz K, Mougiakakos D, Kiessling R, Denkert C, Seliger B. Linking CREB function with altered metabolism in murine fibroblast-based model cell lines. Oncotarget 2017; 8:97439-97463. [PMID: 29228623 PMCID: PMC5722575 DOI: 10.18632/oncotarget.22135] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Accepted: 08/26/2017] [Indexed: 01/31/2023] Open
Abstract
The cAMP-responsive element binding protein CREB is frequently overexpressed and activated in tumors of distinct histology, leading to enhanced proliferation, migration, invasion and angiogenesis as well as reduced apoptosis. The de-regulated expression of CREB might be linked with transcriptional as well as post-transcriptional regulation mechanisms. We show here that altered CREB expression levels and function are associated with changes in the cellular metabolism. Using comparative proteome-based analysis an altered expression pattern of proteins involved in the cellular metabolism in particular in glycolysis was found upon CREB down-regulation in HER-2/neu-transfected cell lines. This was associated with diminished expression levels of the glucose transporter 1, reduced glucose uptake and reduced glycolytic activity in HER-2/neu-transfected cells with down-regulated CREB when compared to HER-2/neu+ cells. Furthermore, hypoxia-induced CREB activity resulted in changes of the metabolism in HER-2/neu transfected cells. Low pH values in the supernatant of HER-2/neu transformants were restored by CREB down-regulation, but further decreased by hypoxia. The altered intracellular pH values were associated with a distinct expression of lactate dehydrogenase, and its substrate lactate. Moreover, enhanced phosphorylation of CREB on residue Ser133 was accompanied by a down-regulation of pERK and an up-regulation of pAKT. CREB promotes the detoxification of ROS by catalase, therefore protecting the mitochondrial activity under oxidative stress. These data suggest that there might exists a link between CREB function and the altered metabolism in HER-2/neu-transformed cells. Thus, targeting these altered metabolic pathways might represent an attractive therapeutic approach at least for the treatment of patients with HER-2/neu overexpressing tumors.
Collapse
Affiliation(s)
- André Steven
- Institute of Medical Immunology, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Sandra Leisz
- Institute of Medical Immunology, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Claudia Wickenhauser
- Institute of Pathology, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Kristin Schulz
- Institute of Medical Immunology, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Dimitrios Mougiakakos
- Department of Internal Medicine 5, Hematology and Oncology, University of Erlangen-Nuremberg, Erlangen, Germany
| | | | | | - Barbara Seliger
- Institute of Medical Immunology, Martin Luther University Halle-Wittenberg, Halle, Germany
| |
Collapse
|
25
|
Tripathi SC, Fahrmann JF, Celiktas M, Aguilar M, Marini KD, Jolly MK, Katayama H, Wang H, Murage EN, Dennison JB, Watkins DN, Levine H, Ostrin EJ, Taguchi A, Hanash SM. MCAM Mediates Chemoresistance in Small-Cell Lung Cancer via the PI3K/AKT/SOX2 Signaling Pathway. Cancer Res 2017. [PMID: 28646020 DOI: 10.1158/0008-5472.can-16-2874] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Despite favorable responses to initial therapy, small-cell lung cancer (SCLC) relapse occurs within a year and exhibits resistance to multiple drugs. Because of limited accessibility of patient tissues for research purposes, SCLC patient-derived xenografts (PDX) have provided the best opportunity to address this limitation. Here, we sought to identify novel mechanisms involved in SCLC chemoresistance. Through in-depth proteomic profiling, we identified MCAM as a markedly upregulated surface receptor in chemoresistant SCLC cell lines and in chemoresistant PDX compared with matched treatment-naïve tumors. MCAM depletion in chemoresistant cells reduced cell proliferation and reduced the IC50 inhibitory concentration of chemotherapeutic drugs in vitro This MCAM-mediated sensitization to chemotherapy occurred via SOX2-dependent upregulation of mitochondrial 37S ribosomal protein 1/ATP-binding cassette subfamily C member 1 (MRP1/ABCC1) and the PI3/AKT pathway. Metabolomic profiling revealed that MCAM modulated lactate production in chemoresistant cells that exhibit a distinct metabolic phenotype characterized by low oxidative phosphorylation. Our results suggest that MCAM may serve as a novel therapeutic target to overcome chemoresistance in SCLC. Cancer Res; 77(16); 4414-25. ©2017 AACR.
Collapse
Affiliation(s)
- Satyendra C Tripathi
- Department of Clinical Cancer Prevention, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Johannes F Fahrmann
- Department of Clinical Cancer Prevention, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Muge Celiktas
- Department of Clinical Cancer Prevention, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Mitzi Aguilar
- Department of Clinical Cancer Prevention, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Kieren D Marini
- Centre for Cancer Research, Hudson Institute of Medical Research, Clayton, Victoria, Australia
| | - Mohit K Jolly
- Center for Theoretical Biological Physics, Rice University, Houston, Texas
| | - Hiroyuki Katayama
- Department of Clinical Cancer Prevention, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Hong Wang
- Department of Clinical Cancer Prevention, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Eunice N Murage
- Department of Clinical Cancer Prevention, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Jennifer B Dennison
- Department of Clinical Cancer Prevention, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - D Neil Watkins
- Centre for Cancer Research, Hudson Institute of Medical Research, Clayton, Victoria, Australia
| | - Herbert Levine
- Center for Theoretical Biological Physics, Rice University, Houston, Texas
| | - Edwin J Ostrin
- Department of Pulmonary Medicine, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Ayumu Taguchi
- Department of Translational Molecular Pathology, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Samir M Hanash
- Department of Clinical Cancer Prevention, University of Texas MD Anderson Cancer Center, Houston, Texas.
| |
Collapse
|
26
|
Lu F, Zheng Y, Donkor PO, Zou P, Mu P. Downregulation of CREB Promotes Cell Proliferation by Mediating G1/S Phase Transition in Hodgkin Lymphoma. Oncol Res 2017; 24:171-9. [PMID: 27458098 PMCID: PMC7838744 DOI: 10.3727/096504016x14634208142987] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
The cyclic-AMP response element-binding protein (CREB), a well-known nuclear transcription factor, has been shown to play an essential role in many cellular processes, including differentiation, cell survival, and cell proliferation, by regulating the expression of downstream genes. Recently, increased expression of CREB was frequently found in various tumors, indicating that CREB is implicated in the process of tumorigenesis. However, the effects of CREB on Hodgkin lymphoma (HL) remain unknown. To clarify the role of CREB in HL, we performed knockdown experiments in HL. We found that downregulation of CREB by short hairpin RNA (shRNA) resulted in enhancement of cell proliferation and promotion of G1/S phase transition, and these effects can be rescued by expression of shRNA-resistant CREB. Meanwhile, the expression level of cell cycle-related proteins, such as cyclin D1, cyclin E1, cyclin-dependent kinase 2 (CDK2), and CDK4, was elevated in response to depletion of CREB. Furthermore, we performed chromatin immunoprecipitation (ChIP) assay and confirmed that CREB directly bound to the promoter regions of these genes, which consequently contributed to the regulation of cell cycle. Consistent with our results, a clinical database showed that high expression of CREB correlates with favorable prognosis in B-cell lymphoma patients, which is totally different from the function of CREB in other cancers such as colorectal cancer, acute myeloid leukemia, and some endocrine cancers. Taken together, all of these features of CREB in HL strongly support its role as a tumor suppressor gene that can decelerate cell proliferation by inhibiting the expression of several cell cycle-related genes. Our results provide new evidence for prognosis prediction of HL and a promising therapeutic strategy for HL patients.
Collapse
Affiliation(s)
- Fangjin Lu
- Tianjin State Key Laboratory of Modern Chinese Medicine, School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | | | | | | | | |
Collapse
|
27
|
Berzaghi R, Maia VSC, Pereira FV, Melo FM, Guedes MS, Origassa CST, Scutti JB, Matsuo AL, Câmara NOS, Rodrigues EG, Travassos LR. SOCS1 favors the epithelial-mesenchymal transition in melanoma, promotes tumor progression and prevents antitumor immunity by PD-L1 expression. Sci Rep 2017; 7:40585. [PMID: 28079159 PMCID: PMC5227698 DOI: 10.1038/srep40585] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Accepted: 12/02/2016] [Indexed: 01/05/2023] Open
Abstract
Silencing of SOCS1 protein with shRNAi lentivirus (shR-SOCS1) led to partial reversion of the tumorigenic phenotype of B16F10-Nex2 melanoma cells. SOCS1 silencing inhibited cell migration and invasion as well as in vitro growth by cell cycle arrest at S phase with increased cell size and nuclei. Down-regulation of SOCS1 decreased the expression of epidermal growth factor receptor, Ins-Rα, and fibroblast growth factor receptors. The present work aimed at analyzing the SOCS1 cell signaling and expression of proteins relevant to tumor development. An RNA microarray analysis of B16F10-Nex2 melanoma cells with SOCS1 silenced by shRNAi-SOCS1 was undertaken in comparison with cells transduced with the empty vector. Among 609 differentially expressed genes, c-Kit, Met and EphA3 cytokine/tyrosine-kinase (TK) receptors were down regulated. A significant decrease in the expression of TK receptors, the phosphorylation of mediators of ERK1/2 and p38 pathways and STAT3 (S727) were observed. Subcutaneous immunization with shR-SOCS1-transduced viable tumor cells rendered protection against melanoma in a syngeneic model, with decreased expression of PD-L1 and of matrix metallo-proteinases (MMPs) and CD-10 in those cells. The present work shows the role of SOCS1 in murine melanoma development and the potential of SOCS1-silenced tumor cells in raising an effective anti-melanoma immune response.
Collapse
Affiliation(s)
- R. Berzaghi
- Experimental Oncology Unit, Department of Microbiology, Immunology and Parasitology, University of São Paulo, São Paulo, Brazil
| | | | - F. V. Pereira
- Laboratory of Cancer Immunobiology, University of São Paulo, São Paulo, Brazil
| | - F. M. Melo
- Immunology Department, Federal University of São Paulo, São Paulo, Brazil
| | - M. S. Guedes
- Experimental Oncology Unit, Department of Microbiology, Immunology and Parasitology, University of São Paulo, São Paulo, Brazil
| | - C. S. T. Origassa
- Laboratory of Cancer Immunobiology, University of São Paulo, São Paulo, Brazil
| | - J. B. Scutti
- Immunotherapy Platform, Department of Immunology, MD Anderson Cancer Center, Houston Texas, USA
| | - A. L. Matsuo
- Interdepartmental Group of Health Economics (Grides), Federal University of São Paulo, SP, Brazil
| | - N. O. S. Câmara
- Immunology Department, Biomedical Sciences Institute IV, University of São Paulo, São Paulo, Brazil
| | - E. G. Rodrigues
- Laboratory of Cancer Immunobiology, University of São Paulo, São Paulo, Brazil
| | - L. R. Travassos
- Experimental Oncology Unit, Department of Microbiology, Immunology and Parasitology, University of São Paulo, São Paulo, Brazil
- Recepta Biopharma São Paulo, Brazil
| |
Collapse
|
28
|
Politano G, Orso F, Raimo M, Benso A, Savino A, Taverna D, Di Carlo S. CyTRANSFINDER: a Cytoscape 3.3 plugin for three-component (TF, gene, miRNA) signal transduction pathway construction. BMC Bioinformatics 2016; 17:157. [PMID: 27059647 PMCID: PMC4826505 DOI: 10.1186/s12859-016-0964-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Accepted: 02/19/2016] [Indexed: 12/02/2022] Open
Abstract
Background Biological research increasingly relies on network models to study complex phenomena. Signal Transduction Pathways are molecular circuits that model how cells receive, process, and respond to information from the environment providing snapshots of the overall cell dynamics. Most of the attempts to reconstruct signal transduction pathways are limited to single regulator networks including only genes/proteins. However, networks involving a single type of regulator and neglecting transcriptional and post-transcriptional regulations mediated by transcription factors and microRNAs, respectively, may not fully reveal the complex regulatory mechanisms of a cell. We observed a lack of computational instruments supporting explorative analysis on this type of three-component signal transduction pathways. Results We have developed CyTRANSFINDER, a new Cytoscape plugin able to infer three-component signal transduction pathways based on user defined regulatory patterns and including miRNAs, TFs and genes. Since CyTRANSFINDER has been designed to support exploratory analysis, it does not rely on expression data. To show the potential of the plugin we have applied it in a study of two miRNAs that are particularly relevant in human melanoma progression, miR-146a and miR-214. Conclusions CyTRANSFINDER supports the reconstruction of small signal transduction pathways among groups of genes. Results obtained from its use in a real case study have been analyzed and validated through both literature data and preliminary wet-lab experiments, showing the potential of this tool when performing exploratory analysis. Electronic supplementary material The online version of this article (doi:10.1186/s12859-016-0964-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Gianfranco Politano
- Department of Control and Computer Engineering, Politecnico di Torino, Corso Duca degli Abruzzi 24, Torino, 10129, Italy
| | - Francesca Orso
- Molecular Biotechnology Center (MBC), Via Nizza, 52, Torino, 10126, Italy.,Dept. Molecular Biotechnology and Health Sciences, University of Torino, Via Nizza, 52, Torino, 10126, Italy.,Center for Complex Systems in Molecular Biology and Medicine, Via Accademia Albertina, 13, Torino, 10123, Italy
| | - Monica Raimo
- Molecular Biotechnology Center (MBC), Via Nizza, 52, Torino, 10126, Italy.,Dept. Molecular Biotechnology and Health Sciences, University of Torino, Via Nizza, 52, Torino, 10126, Italy
| | - Alfredo Benso
- Department of Control and Computer Engineering, Politecnico di Torino, Corso Duca degli Abruzzi 24, Torino, 10129, Italy
| | - Alessandro Savino
- Department of Control and Computer Engineering, Politecnico di Torino, Corso Duca degli Abruzzi 24, Torino, 10129, Italy
| | - Daniela Taverna
- Molecular Biotechnology Center (MBC), Via Nizza, 52, Torino, 10126, Italy.,Dept. Molecular Biotechnology and Health Sciences, University of Torino, Via Nizza, 52, Torino, 10126, Italy.,Center for Complex Systems in Molecular Biology and Medicine, Via Accademia Albertina, 13, Torino, 10123, Italy
| | - Stefano Di Carlo
- Department of Control and Computer Engineering, Politecnico di Torino, Corso Duca degli Abruzzi 24, Torino, 10129, Italy.
| |
Collapse
|
29
|
Brenig B, Duan Y, Xing Y, Ding N, Huang L, Schütz E. Porcine SOX9 Gene Expression Is Influenced by an 18 bp Indel in the 5'-Untranslated Region. PLoS One 2015; 10:e0139583. [PMID: 26430891 PMCID: PMC4592210 DOI: 10.1371/journal.pone.0139583] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Accepted: 09/15/2015] [Indexed: 12/03/2022] Open
Abstract
Sex determining region Y-box 9 (SOX9) is an important regulator of sex and skeletal development and is expressed in a variety of embryonal and adult tissues. Loss or gain of function resulting from mutations within the coding region or chromosomal aberrations of the SOX9 locus lead to a plethora of detrimental phenotypes in humans and animals. One of these phenotypes is the so-called male-to-female or female-to-male sex-reversal which has been observed in several mammals including pig, dog, cat, goat, horse, and deer. In 38,XX sex-reversal French Large White pigs, a genome-wide association study suggested SOX9 as the causal gene, although no functional mutations were identified in affected animals. However, besides others an 18bp indel had been detected in the 5′-untranslated region of the SOX9 gene by comparing affected animals and controls. We have identified the same indel (Δ18) between position +247bp and +266bp downstream the transcription start site of the porcine SOX9 gene in four other pig breeds; i.e., German Large White, Laiwu Black, Bamei, and Erhualian. These animals have been genotyped in an attempt to identify candidate genes for porcine inguinal and/or scrotal hernia. Because the 18bp segment in the wild type 5′-UTR harbours a highly conserved cAMP-response element (CRE) half-site, we analysed its role in SOX9 expression in vitro. Competition and immunodepletion electromobility shift assays demonstrate that the CRE half-site is specifically recognized by CREB. Both binding of CREB to the wild type as well as the absence of the CRE half-site in Δ18 reduced expression efficiency in HEK293T, PK–15, and ATDC5 cells significantly. Transfection experiments of wild type and Δ18 SOX9 promoter luciferase constructs show a significant reduction of RNA and protein levels depending on the presence or absence of the 18bp segment. Hence, the data presented here demonstrate that the 18bp indel in the porcine SOX9 5′-UTR is of functional importance and may therefore indeed be a causative variation in SOX9 associated traits.
Collapse
Affiliation(s)
- Bertram Brenig
- Institute of Veterinary Medicine, Georg-August-University, Burckhardtweg 2, D-37077, Göttingen, Germany
- * E-mail:
| | - Yanyu Duan
- Key Laboratory for Animal Biotechnology of Jiangxi Province and the Ministry of Agriculture of China, Jiangxi Agricultural University, 330045, Nanchang, China
| | - Yuyun Xing
- Key Laboratory for Animal Biotechnology of Jiangxi Province and the Ministry of Agriculture of China, Jiangxi Agricultural University, 330045, Nanchang, China
| | - Nengshui Ding
- Key Laboratory for Animal Biotechnology of Jiangxi Province and the Ministry of Agriculture of China, Jiangxi Agricultural University, 330045, Nanchang, China
| | - Lusheng Huang
- Key Laboratory for Animal Biotechnology of Jiangxi Province and the Ministry of Agriculture of China, Jiangxi Agricultural University, 330045, Nanchang, China
| | - Ekkehard Schütz
- Institute of Veterinary Medicine, Georg-August-University, Burckhardtweg 2, D-37077, Göttingen, Germany
| |
Collapse
|
30
|
Steven A, Heiduk M, Recktenwald CV, Hiebl B, Wickenhauser C, Massa C, Seliger B. Colorectal Carcinogenesis: Connecting K-RAS-Induced Transformation and CREB Activity In Vitro and In Vivo. Mol Cancer Res 2015; 13:1248-62. [PMID: 25934695 DOI: 10.1158/1541-7786.mcr-14-0590] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Accepted: 04/01/2015] [Indexed: 11/16/2022]
Abstract
UNLABELLED Oncogenic transformation is often associated with an increased expression of the cAMP response element binding (CREB) transcription factor controlling the expression of genes involved in cell proliferation, cell cycle, apoptosis, and tumor development, but a link between K-RAS(V12)-induced transformation and CREB has not yet been determined. Therefore, the constitutive and/or inhibitor-regulated mRNA and protein expression of CREB and signal transduction components and growth properties of parental fibroblasts, K-RAS(V12)-transformed counterparts, shCREB K-RAS(V12) transfectants and human colon carcinoma cells were determined. Increased CREB transcript and protein levels accompanied by an enhanced CREB activity was detected in K-RAS(V12)-transformed murine fibroblasts and K-RAS(V12)-mutated human tumor cells, which is dependent on the MAPK/MEK, PI3K, and/or PKC signal transduction. Immunohistochemical (IHC) staining of colorectal carcinoma lesions and murine tumors, with known KRAS gene mutation status, using antibodies specific for CREB and phospho-CREB, revealed a mechanistic link between CREB expression and K-RAS(V12)-mutated colorectal carcinoma lesions when compared with control tissues. Silencing of CREB by shRNA and/or treatment with a CREB inhibitor (KG-501) reverted the neoplastic phenotype of K-RAS(V12) transformants as demonstrated by a more fibroblast-like morphology, enhanced apoptosis sensitivity, increased doubling time, decreased migration, invasion and anchorage-independent growth, reduced tumorigenesis, and enhanced immunogenicity in vivo. The impaired shCREB-mediated invasion of K-RAS(V12) transformants was accompanied by a transcriptional downregulation of different matrix metalloproteinases (MMP) coupled with their reduced enzymatic activity. IMPLICATIONS CREB plays a key role in the K-RAS(V12)-mediated neoplastic phenotype and represents a suitable therapeutic target for murine and human K-RAS(V12)-induced tumors.
Collapse
Affiliation(s)
- André Steven
- Institute of Medical Immunology, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Max Heiduk
- Institute of Medical Immunology, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Christian V Recktenwald
- Institute of Medical Immunology, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Bernhard Hiebl
- Center for Medical Research, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Claudia Wickenhauser
- Institute of Pathology, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Chiara Massa
- Institute of Medical Immunology, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Barbara Seliger
- Institute of Medical Immunology, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany.
| |
Collapse
|
31
|
Hallberg AR, Vorrink SU, Hudachek DR, Cramer-Morales K, Milhem MM, Cornell RA, Domann FE. Aberrant CpG methylation of the TFAP2A gene constitutes a mechanism for loss of TFAP2A expression in human metastatic melanoma. Epigenetics 2015; 9:1641-7. [PMID: 25625848 DOI: 10.4161/15592294.2014.988062] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Metastatic melanoma is a deadly treatment-resistant form of skin cancer whose global incidence is on the rise. During melanocyte transformation and melanoma progression the expression profile of many genes changes. Among these, a gene implicated in several steps of melanocyte development, TFAP2A, is frequently silenced; however, the molecular mechanism of TFAP2A silencing in human melanoma remains unknown. In this study, we measured TFAP2A mRNA expression in primary human melanocytes compared to 11 human melanoma samples by quantitative real-time RT-PCR. In addition, we assessed CpG DNA methylation of the TFAP2A promoter in these samples using bisulfite sequencing. Compared to primary melanocytes, which showed high TFAP2A mRNA expression and no promoter methylation, human melanoma samples showed decreased TFAP2A mRNA expression and increased promoter methylation. We further show that increased CpG methylation correlates with decreased TFAP2A mRNA expression. Using The Cancer Genome Atlas, we further identified TFAP2A as a gene displaying among the most decreased expression in stage 4 melanomas vs. non-stage 4 melanomas, and whose CpG methylation was frequently associated with lack of mRNA expression. Based on our data, we conclude that TFAP2A expression in human melanomas can be silenced by aberrant CpG methylation of the TFAP2A promoter. We have identified aberrant CpG DNA methylation as an epigenetic mark associated with TFAP2A silencing in human melanoma that could have significant implications for the therapy of human melanoma using epigenetic modifying drugs.
Collapse
Affiliation(s)
- Andrea R Hallberg
- a Interdisciplinary Graduate Program in Molecular and Cellular Biology; Graduate College ; The University of Iowa ; Iowa City , IA USA
| | | | | | | | | | | | | |
Collapse
|
32
|
Shoshan E, Mobley AK, Braeuer RR, Kamiya T, Huang L, Vasquez ME, Salameh A, Lee HJ, Kim SJ, Ivan C, Velazquez-Torres G, Nip KM, Zhu K, Brooks D, Jones SJM, Birol I, Mosqueda M, Wen YY, Eterovic AK, Sood AK, Hwu P, Gershenwald JE, Robertson AG, Calin GA, Markel G, Fidler IJ, Bar-Eli M. Reduced adenosine-to-inosine miR-455-5p editing promotes melanoma growth and metastasis. Nat Cell Biol 2015; 17:311-21. [PMID: 25686251 PMCID: PMC4344852 DOI: 10.1038/ncb3110] [Citation(s) in RCA: 196] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Accepted: 01/13/2015] [Indexed: 12/15/2022]
Abstract
Although recent studies have shown that adenosine-to-inosine (A-to-I) RNA editing occurs in microRNAs, its effects on tumor growth and metastasis are not well understood. We present evidence of CREB-mediated low expression of ADAR1 in metastatic melanoma cell lines and tumor specimens. Re-expression of ADAR1 resulted in the suppression of melanoma growth and metastasis in vivo. Consequently, we identified 3 miRs undergoing A-to-I editing in the low-metastatic melanoma but not in highly metastatic cell lines. One of these miRs, miR-455-5p has two A-to-I RNA editing sites. The biological function of edited miR-455-5p is different from the unedited form as it recognizes different set of genes. Indeed, w.t. miR-455-5p promotes melanoma metastasis via inhibition of the tumor suppressor gene CPEB1. Moreover, w.t. miR-455 enhances melanoma growth and metastasis in vivo while the edited form inhibits these features. These results demonstrate a previously unrecognized role of RNA editing in melanoma progression.
Collapse
Affiliation(s)
- Einav Shoshan
- Department of Cancer Biology, Unit 0173, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, Texas 77030, USA
| | - Aaron K Mobley
- Department of Cancer Biology, Unit 0173, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, Texas 77030, USA
| | - Russell R Braeuer
- Department of Cancer Biology, Unit 0173, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, Texas 77030, USA
| | - Takafumi Kamiya
- Department of Cancer Biology, Unit 0173, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, Texas 77030, USA
| | - Li Huang
- Department of Cancer Biology, Unit 0173, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, Texas 77030, USA
| | - Mayra E Vasquez
- Department of Cancer Biology, Unit 0173, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, Texas 77030, USA
| | - Ahmad Salameh
- The University of Texas Health Science Center at Houston, 1825 Pressler Street, Houston, Texas 77030, USA
| | - Ho Jeong Lee
- Department of Cancer Biology, Unit 0173, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, Texas 77030, USA
| | - Sun Jin Kim
- Department of Cancer Biology, Unit 0173, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, Texas 77030, USA
| | - Cristina Ivan
- Department of Gynecologic Oncology, Unit 1362, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, Texas 77030, USA
| | - Guermarie Velazquez-Torres
- Department of Cancer Biology, Unit 0173, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, Texas 77030, USA
| | - Ka Ming Nip
- Canada's Michael Smith Cancer Agency, Vancouver, British Columbia V5Z 4S6, Canada
| | - Kelsey Zhu
- Canada's Michael Smith Cancer Agency, Vancouver, British Columbia V5Z 4S6, Canada
| | - Denise Brooks
- Canada's Michael Smith Cancer Agency, Vancouver, British Columbia V5Z 4S6, Canada
| | - Steven J M Jones
- Canada's Michael Smith Cancer Agency, Vancouver, British Columbia V5Z 4S6, Canada
| | - Inanc Birol
- Canada's Michael Smith Cancer Agency, Vancouver, British Columbia V5Z 4S6, Canada
| | - Maribel Mosqueda
- Institute of Personalized Cancer Therapy, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, Texas 77030, USA
| | - Yu-ye Wen
- Institute of Personalized Cancer Therapy, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, Texas 77030, USA
| | - Agda Karina Eterovic
- Institute of Personalized Cancer Therapy, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, Texas 77030, USA
| | - Anil K Sood
- 1] Department of Cancer Biology, Unit 0173, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, Texas 77030, USA [2] Department of Gynecologic Oncology, Unit 1362, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, Texas 77030, USA
| | - Patrick Hwu
- Department of Melanoma Medical Oncology, Unit 0430, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, Texas 77030, USA
| | - Jeffrey E Gershenwald
- Department of Surgical Oncology, Unit 1484, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, Texas 77030, USA
| | - A Gordon Robertson
- Canada's Michael Smith Cancer Agency, Vancouver, British Columbia V5Z 4S6, Canada
| | - George A Calin
- Department of Experimental Therapeutics, Unit 1950, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, Texas 77030, USA
| | - Gal Markel
- 1] Ella Institute of Melanoma, Sheba Medical Center, Ramat-Gan 52621, Israel [2] Clinical Microbiology and Immunology, Sackler Faculty of Medicine, Tel Aviv University, Ramat Aviv 69978, Israel
| | - Isaiah J Fidler
- Department of Cancer Biology, Unit 0173, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, Texas 77030, USA
| | - Menashe Bar-Eli
- Department of Cancer Biology, Unit 0173, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, Texas 77030, USA
| |
Collapse
|
33
|
XIONG JIANJUN, ZHOU XIAOOU, GONG ZHEN, WANG TING, ZHANG CHAO, XU XIAOYUAN, LIU JIANYUN, LI WEIDONG. PKA/CREB regulates the constitutive promoter activity of the USP22 gene. Oncol Rep 2015; 33:1505-11. [DOI: 10.3892/or.2015.3740] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Accepted: 11/14/2014] [Indexed: 11/06/2022] Open
|
34
|
Shin S, Le Lay J, Everett LJ, Gupta R, Rafiq K, Kaestner KH. CREB mediates the insulinotropic and anti-apoptotic effects of GLP-1 signaling in adult mouse β-cells. Mol Metab 2014; 3:803-12. [PMID: 25379405 PMCID: PMC4216406 DOI: 10.1016/j.molmet.2014.08.001] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Revised: 08/12/2014] [Accepted: 08/15/2014] [Indexed: 12/27/2022] Open
Abstract
Objective Glucagon-like peptide-1 (GLP-1) plays a major role in pancreatic β-cell function and survival by increasing cytoplasmic cAMP levels, which are thought to affect transcription through activation of the basic leucine zipper (bZIP) transcription factor CREB. Here, we test CREB function in the adult β-cell through inducible gene deletion. Methods We employed cell type-specific and inducible gene ablation to determine CREB function in pancreatic β-cells in mice. Results By ablating CREB acutely in mature β-cells in tamoxifen-treated CrebloxP/loxP;Pdx1-CreERT2 mice, we show that CREB has little impact on β-cell turnover, in contrast to what had been postulated previously. Rather, CREB is required for GLP-1 to elicit its full effects on stimulating glucose-induced insulin secretion and protection from cytokine-induced apoptosis. Mechanistically, we find that CREB regulates expression of the pro-apoptotic gene p21 (Cdkn1a) in β-cells, thus demonstrating that CREB is essential to mediating this critical aspect of GLP-1 receptor signaling. Conclusions In sum, our studies using conditional gene deletion put into question current notions about the importance of CREB in regulating β-cell function and mass. However, we reveal an important role for CREB in the β-cell response to GLP-1 receptor signaling, further validating CREB as a therapeutic target for diabetes.
Collapse
Affiliation(s)
- Soona Shin
- Department of Genetics and Institute for Diabetes, Obesity, and Metabolism, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| | - John Le Lay
- Department of Genetics and Institute for Diabetes, Obesity, and Metabolism, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| | - Logan J Everett
- Department of Genetics and Institute for Diabetes, Obesity, and Metabolism, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| | - Rana Gupta
- Department of Genetics and Institute for Diabetes, Obesity, and Metabolism, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| | - Kiran Rafiq
- Department of Genetics and Institute for Diabetes, Obesity, and Metabolism, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| | - Klaus H Kaestner
- Department of Genetics and Institute for Diabetes, Obesity, and Metabolism, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| |
Collapse
|
35
|
Rodríguez CI, Setaluri V. Cyclic AMP (cAMP) signaling in melanocytes and melanoma. Arch Biochem Biophys 2014; 563:22-7. [PMID: 25017568 DOI: 10.1016/j.abb.2014.07.003] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Revised: 06/30/2014] [Accepted: 07/01/2014] [Indexed: 02/02/2023]
Abstract
G-protein coupled receptors (GPCRs), which include melanocortin-1 receptor (MC1R), play a crucial role in melanocytes development, proliferation and differentiation. Activation of the MC1R by the α-melanocyte stimulating hormone (α-MSH) leads to the activation of the cAMP signaling pathway that is mainly associated with differentiation and pigment production. Some MC1R polymorphisms produce cAMP signaling impairment and pigmentary phenotypes such as the red head color and fair skin phenotype (RHC) that is usually associated with higher risk for melanoma development. Despite its importance in melanocyte biology, the role of cAMP signaling cutaneous melanoma is not well understood. Melanoma is primarily driven by mutations in the components of mitogen-activated protein kinases (MAPK) pathway. Increasing evidence, however, now suggests that cAMP signaling also plays an important role in melanoma even though genetic alterations in components of this pathway are note commonly found in melanoma. Here we review these new roles for cAMP in melanoma including its contribution to the notorious treatment resistance of melanoma.
Collapse
Affiliation(s)
- Carlos Iván Rodríguez
- Department of Dermatology and Molecular and Environmental Toxicology Graduate Program, University of Wisconsin, School of Medicine and Public Health, Madison, WI 53706, United States
| | - Vijayasaradhi Setaluri
- Department of Dermatology and Molecular and Environmental Toxicology Graduate Program, University of Wisconsin, School of Medicine and Public Health, Madison, WI 53706, United States.
| |
Collapse
|
36
|
Singh R, Shankar BS, Sainis KB. TGF-β1-ROS-ATM-CREB signaling axis in macrophage mediated migration of human breast cancer MCF7 cells. Cell Signal 2014; 26:1604-15. [PMID: 24705025 DOI: 10.1016/j.cellsig.2014.03.028] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Revised: 03/28/2014] [Accepted: 03/30/2014] [Indexed: 12/22/2022]
Abstract
Macrophages in the tumor microenvironment play an important role in tumor cell survival. They influence the tumor cell to proliferate, invade into surrounding normal tissues and metastasize to local and distant sites. In this study, we evaluated the effect of conditioned medium from monocytes and macrophages on growth and migration of breast cancer cells. Macrophage conditioned medium (MϕCM) containing elevated levels of cytokines TNF-α, IL-1β and IL-6 had a differential effect on non-invasive (MCF7) and highly invasive (MDA-MB-231) breast cancer cell lines. MϕCM induced the secretion of TGF-β1 in MCF7 cells. This was associated with apoptosis in a fraction of cells and generation of reactive oxygen and nitrogen species (ROS and RNS) and DNA damage in the remaining cells. This, in turn, increased expression of cAMP response element binding protein (CREB) and vimentin resulting in migration of cells. These effects were inhibited by neutralization of TNF-α, IL-1β and IL-6, inhibition of ROS and RNS, DNA damage and siRNA mediated knockdown of ATM. In contrast, MDA-MB-231 cells which had higher basal levels of pCREB were not affected by MϕCM. In summary, we have found that pro-inflammatory cytokines secreted by macrophages induce TGF-β1 in tumor cells, which activate pCREB signaling, epithelial-mesenchymal-transition (EMT) responses and enhanced migration.
Collapse
Affiliation(s)
- Rajshri Singh
- Radiation Biology & Health Sciences Division, Bio-Science Group, Bhabha Atomic Research Centre, Mumbai 400 085, India
| | - Bhavani S Shankar
- Radiation Biology & Health Sciences Division, Bio-Science Group, Bhabha Atomic Research Centre, Mumbai 400 085, India.
| | - Krishna B Sainis
- Radiation Biology & Health Sciences Division, Bio-Science Group, Bhabha Atomic Research Centre, Mumbai 400 085, India
| |
Collapse
|
37
|
Saleiban A, Faxälv L, Claesson K, Jönsson JI, Osman A. miR-20b regulates expression of proteinase-activated receptor-1 (PAR-1) thrombin receptor in melanoma cells. Pigment Cell Melanoma Res 2014; 27:431-41. [PMID: 24405508 DOI: 10.1111/pcmr.12217] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2013] [Accepted: 01/07/2014] [Indexed: 01/07/2023]
Abstract
The proteinase-activated receptor 1 (PAR-1) plays a central role in melanoma progression and its expression level is believed to correlate with the degree of cancer invasiveness. Here, we show that PAR-1 is post-transcriptionally regulated by miR-20b microRNA in human melanoma cells. PAR-1 was found to be expressed in metastatic melanoma cells but was barely detectable in primary melanoma. By transducing primary melanoma cells with a lentivirus containing a 3'-UTR construct of PAR-1 mRNA, we could show that endogenous melanoma microRNAs interacted with PAR-1 3'-UTR and silenced a fused luciferase reporter. Transfection of an inhibitor against miR-20b into primary melanoma cells reversed this process. Finally, transfection of miR-20b mimic into metastatic melanoma cells caused downregulation of the luciferase reporter. We conclude that miR-20b regulates expression of melanoma PAR-1 receptor, which may explain the differential expression of PAR-1 observed in human melanoma.
Collapse
Affiliation(s)
- Amina Saleiban
- Division of Microbiology and Molecular Medicine, Faculty of Health Sciences, Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | | | | | | | | |
Collapse
|
38
|
Braeuer RR, Watson IR, Wu CJ, Mobley AK, Kamiya T, Shoshan E, Bar-Eli M. Why is melanoma so metastatic? Pigment Cell Melanoma Res 2014; 27:19-36. [PMID: 24106873 DOI: 10.1111/pcmr.12172] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2013] [Accepted: 09/19/2013] [Indexed: 02/03/2023]
Abstract
Malignant melanoma is one of the most aggressive cancers and can disseminate from a relatively small primary tumor and metastasize to multiple sites, including the lung, liver, brain, bone, and lymph nodes. Elucidating the molecular and genetic changes that take place during the metastatic process has led to a better understanding of why melanoma is so metastatic. Herein, we describe the unique features that distinguish melanoma from other solid tumors and contribute to the malignant phenotype of melanoma cells. For example, although melanoma cells are highly antigenic, they are extremely efficient at evading host immune response. Melanoma cells share numerous cell surface molecules with vascular cells, are highly angiogenic, are mesenchymal in nature, and possess a higher degree of 'stemness' than do other solid tumors. Finally, analysis of melanoma mutations has revealed that the gene expression profile of malignant melanoma is different from that of other cancers. Elucidating these molecular and genetic processes in highly metastatic melanoma can lead to the development of improved treatment and individualized therapy options.
Collapse
Affiliation(s)
- Russell R Braeuer
- Department of Cancer Biology, The University of Texas at MD Anderson Cancer Center, Houston, TX, USA
| | | | | | | | | | | | | |
Collapse
|
39
|
Hahn SS, Tang Q, Zheng F, Zhao S, Wu J, Chen J. Repression of integrin-linked kinase by antidiabetes drugs through cross-talk of PPARγ- and AMPKα-dependent signaling: role of AP-2α and Sp1. Cell Signal 2013; 26:639-47. [PMID: 24361375 DOI: 10.1016/j.cellsig.2013.12.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2013] [Accepted: 12/14/2013] [Indexed: 01/18/2023]
Abstract
Nasopharyngeal carcinoma (NPC) is one of the most common cancers of the head and neck, particularly in Southern China and Southeast Asia with high treatment failure due to the development of local recurrence and distant metastasis. The molecular mechanisms related to the progression of NPC have not been fully understood. In this study, we showed that antidiabetes drugs rosiglitazone and metformin inhibit NPC cell growth through reducing the expression of integrin-linked kinase (ILK). Blockade of PPARγ and AMPKα overcame the effects of rosiglitazone and metformin on ILK protein. Importantly, overexpression of ILK abrogated the effect of rosiglitazone and metformin on NPC cell growth. Furthermore, these agents reduced ILK promoter activity, which was not observed in AP-2α, but not Sp1 site mutation in ILK gene promoter. In addition, silencing of AP-2α or overexpression of Sp1 reversed the effect of these agents on ILK protein expression and cell growth. Chromatin immunoprecipitation (ChIP) assay showed that rosiglitazone induced AP-2α, while metformin reduced Sp1 protein binding to the DNA sequences in the ILK gene promoter. Intriguingly, overexpression of Sp1 abolished the effect of rosiglitazone on AP-2α protein expression. Collectively, we show that rosiglitazone and metformin inhibit ILK gene expression through PPARγ- and AMPKα-dependent signaling pathways that are involved in the regulation of AP-2α and Sp1 protein expressions. The effect of combination of rosiglitazone and metformin demonstrates greater extent than single agent alone. The cross-talk of PPARγ and AMPKα signaling enhances the synergistic effects of rosiglitazone and metformin. This study unveils novel mechanisms by which oral antidiabetes drugs inhibit the growth of human NPC cells.
Collapse
Affiliation(s)
- Swei Sunny Hahn
- Laboratory of Tumor Molecular Biology and Targeted Therapies, University of Guangzhou Traditional Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, Guangdong Province 510120, China.
| | - Qing Tang
- Laboratory of Tumor Molecular Biology and Targeted Therapies, University of Guangzhou Traditional Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, Guangdong Province 510120, China
| | - Fang Zheng
- Laboratory of Tumor Molecular Biology and Targeted Therapies, University of Guangzhou Traditional Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, Guangdong Province 510120, China
| | - Shunyu Zhao
- Laboratory of Tumor Molecular Biology and Targeted Therapies, University of Guangzhou Traditional Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, Guangdong Province 510120, China
| | - Jingjing Wu
- Laboratory of Tumor Molecular Biology and Targeted Therapies, University of Guangzhou Traditional Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, Guangdong Province 510120, China
| | - Jianping Chen
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, University of Hong Kong, 10 Sassoon Road, 00852, Hong Kong, China
| |
Collapse
|
40
|
Laresgoiti U, Apraiz A, Olea M, Mitxelena J, Osinalde N, Rodriguez JA, Fullaondo A, Zubiaga AM. E2F2 and CREB cooperatively regulate transcriptional activity of cell cycle genes. Nucleic Acids Res 2013; 41:10185-98. [PMID: 24038359 PMCID: PMC3905855 DOI: 10.1093/nar/gkt821] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
E2F2 is essential for the maintenance of T lymphocyte quiescence. To identify the full set of E2F2 target genes, and to gain further understanding of the role of E2F2 in transcriptional regulation, we have performed ChIP-chip analyses across the genome of lymph node–derived T lymphocytes. Here we show that during quiescence, E2F2 binds the promoters of a large number of genes involved in DNA metabolism and cell cycle regulation, concomitant with their transcriptional silencing. A comparison of ChIP-chip data with expression profiling data on resting E2f2−/− T lymphocytes identified a subset of 51 E2F2-specific target genes, most of which are upregulated on E2F2 loss. Luciferase reporter assays showed a retinoblastoma-independent role for E2F2 in the negative regulation of these target genes. Importantly, we show that the DNA binding activity of the transcription factor CREB contributes to E2F2-mediated repression of Mcm5 and Chk1 promoters. siRNA-mediated CREB knockdown, expression of a dominant negative KCREB mutant or disruption of CREB binding by mutating a CRE motif on Mcm5 promoter, relieved E2F2-mediated transcriptional repression. Taken together, our data uncover a new regulatory mechanism for E2F-mediated transcriptional control, whereby E2F2 and CREB cooperate in the transcriptional repression of a subset of E2F2 target genes.
Collapse
Affiliation(s)
- Usua Laresgoiti
- Department of Genetics, Physical Anthropology and Animal Physiology, University of the Basque Country, UPV/EHU, Bilbao 48940, Spain and Department of Biochemistry and Molecular Biology, University of the Basque Country, UPV/EHU, Bilbao 48940, Spain
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Steven A, Leisz S, Massa C, Iezzi M, Lattanzio R, Lamolinara A, Bukur J, Müller A, Hiebl B, Holzhausen HJ, Seliger B. HER-2/neu mediates oncogenic transformation via altered CREB expression and function. Mol Cancer Res 2013; 11:1462-77. [PMID: 24025972 DOI: 10.1158/1541-7786.mcr-13-0125] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
UNLABELLED The cyclic (c)AMP responsive element binding protein (CREB) plays a key role in many cellular processes, including differentiation, proliferation, and signal transduction. Furthermore, CREB overexpression was found in tumors of distinct origin and evidence suggests an association with tumorigenicity. To establish a mechanistic link between HER-2/neu-mediated transformation and CREB protein expression and function, in vitro models of HER-2/neu-overexpressing and HER-2/neu-negative/silenced counterparts as well as human mammary carcinoma lesions with defined HER-2/neu status were used. HER-2/neu overexpression resulted in the induction and activation of CREB protein in vitro and in vivo, whereas short hairpin RNA (shRNA)-mediated inhibition of HER-2/neu correlated with downregulated CREB activity. CREB activation in HER-2/neu-transformed cells enhanced distinct signal transduction pathways, whereas their inhibition negatively interfered with CREB expression and/or activation. CREB downregulation in HER-2/neu-transformed cells by shRNA and by the inhibitors KG-501 and lapatinib caused morphologic changes, reduced cell proliferation with G0-G1 cell-cycle arrest, which was rescued by CREB expression. This was accompanied by reduced cell migration, wound healing, an increased fibronectin adherence, invasion, and matrix metalloproteinase expression. In vivo shCREB-HER-2/neu(+) cells, but not control cells, exerted a significantly decreased tumorgenicity that was associated with decreased proliferative capacity, enhanced apoptosis, and increased frequency of T lymphocytes in peripheral blood mononuclear cells. Thus, CREB plays an important role in the HER-2/neu-mediated transformation by altering in vitro and in vivo growth characteristics. IMPLICATIONS These data suggest that CREB affects tumor immunogenicity and is a potential target for cancer therapy.
Collapse
Affiliation(s)
- André Steven
- Institute of Medical Immunology, Martin Luther University Halle-Wittenberg, Magdeburger Str. 2, 06112 Halle, Germany.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Qu J, Li J, Chen K, Qin D, Li K, Sheng Y, Zou C, Wang S, Huang A, Tang H. Hepatitis B virus regulation of Raf1 promoter activity through activation of transcription factor AP-2α. Arch Virol 2012; 158:887-94. [PMID: 23224762 DOI: 10.1007/s00705-012-1561-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2012] [Accepted: 10/18/2012] [Indexed: 01/08/2023]
Abstract
The X protein of hepatitis B virus (HBx) is one of the important factors in the development of hepatocellular carcinoma. Raf1 kinase is a central component of many signaling pathways that are involved in normal cell growth and oncogenic transformation. We previously demonstrated that hepatitis B virus regulates Raf1 expression in HepG2.2.15 cells by enhancing its promoter activity and that HBx and HBs might play an important role in this process. However, the underlying molecular mechanisms remain unclear. In this study, we show that nucleotides -209 to -133 of the Raf1 promoter sequence constitute the core region where hepatitis B virus is regulated. This regulation was found to require the involvement of cis-regulatory element AP-2α. We further demonstrated that AP-2α expression was higher in HepG2.2.15 cells (HBV-expressing cells) than in HepG2 cells in vitro. Silencing AP-2α expression by siRNA significantly inhibited the Raf1 promoter activity in HepG2.2.15 cells. These findings indicated that HBV regulates Raf1 promoter activity, possibly through AP-2α.
Collapse
Affiliation(s)
- Jialin Qu
- Key Laboratory of Molecular Biology on Infectious Diseases, Ministry of Education, Second Affiliated Hospital, Chongqing Medical University, Chongqing, 400016, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Synergistic silencing by promoter methylation and reduced AP-2α transactivation of the proapoptotic HRK gene confers apoptosis resistance and enhanced tumor growth. THE AMERICAN JOURNAL OF PATHOLOGY 2012; 182:84-95. [PMID: 23159945 DOI: 10.1016/j.ajpath.2012.09.018] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2012] [Revised: 09/06/2012] [Accepted: 09/18/2012] [Indexed: 02/05/2023]
Abstract
The Harakiri (HRK) gene encodes an important proapoptotic mitochondrial protein of the Bcl-2 family. HRK is expressed in normal tissues but is decreased in many cancers such as melanoma, the mechanisms of which have not been fully elucidated. Here, we demonstrate that HRK is silenced by hypermethylation of a major proximal CpG island in the HRK promoter. Furthermore, we show that HRK is a novel target gene regulated by the transcription factor AP-2α, which interacts with an AP-2α binding site in the HRK promoter. Hypermethylation of the major proximal CpG island (which contains the AP-2α binding site within the most densely methylated -218- to -194-bp region) inhibited AP-2α binding and transcriptional activity. Artificial overexpression of AP-2α in melanoma cells up-regulated HRK transcription, which was further restored by treatment with DNA methyltransferase inhibitor 5-azacytidine. Artificial overexpression of HRK by recombinant adenovirus induced caspase-dependent apoptosis, inhibited melanoma cell growth in vitro, and markedly reduced in vivo melanoma growth in a nude mouse xenograft model. RNA interference by siHRK or siAP-2α reversed the above effects. We conclude that the synergistic effects of HRK promoter hypermethylation and loss of AP-2α transactivation lead to HRK gene silencing and confer resistance to apoptosis and enhanced tumor growth. These novel molecular lesions may provide the basis for new therapeutic approaches to treating AP-2α- and HRK-deficient cancers.
Collapse
|
44
|
|
45
|
Wu GJ. Dual Roles of METCAM in the Progression of Different Cancers. JOURNAL OF ONCOLOGY 2012; 2012:853797. [PMID: 22545053 PMCID: PMC3321465 DOI: 10.1155/2012/853797] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/16/2011] [Revised: 12/31/2011] [Accepted: 01/12/2012] [Indexed: 12/15/2022]
Abstract
METCAM, an integral membrane cell adhesion molecule (CAM) in the Ig-like gene superfamily, is capable of performing typical functions of CAMs, such as mediating cell-cell and cell-extracellular interactions, crosstalk with intracellular signaling pathways, and modulating social behaviors of cells. METCAM is expressed in about nine normal cells/tissues. Aberrant expression of METCAM has been associated with the progression of several epithelial tumors. Further in vitro and in vivo studies show that METCAM plays a dual role in the progression of different tumors. It can promote the malignant progression of several tumors. On the other hand, it can suppress the malignant progression of other tumors. We suggest that the role of METCAM in the progression of different cancer types may be modulated by different intrinsic factors present in different cancer cells and also in different stromal microenvironment. Many possible mechanisms mediated by this CAM during early tumor development and metastasis are suggested.
Collapse
Affiliation(s)
- Guang-Jer Wu
- Department of Microbiology and Immunology, Emory University, School of Medicine, Atlanta, GA 30322, USA
- Department of Bioscience Technology, Chung Yuan Christian University, Chung-Li 32023, Taiwan
| |
Collapse
|
46
|
Mantamadiotis T, Papalexis N, Dworkin S. CREB signalling in neural stem/progenitor cells: recent developments and the implications for brain tumour biology. Bioessays 2012; 34:293-300. [PMID: 22331586 DOI: 10.1002/bies.201100133] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
This paper discusses the evidence for the role of CREB in neural stem/progenitor cell (NSPC) function and oncogenesis and how these functions may be important for the development and growth of brain tumours. The cyclic-AMP response element binding (CREB) protein has many roles in neurons, ranging from neuronal survival to higher order brain functions such as memory and drug addiction behaviours. Recent studies have revealed that CREB also has a role in NSPC survival, differentiation and proliferation. Recent work has shown that over-expression of CREB in transgenic animals can impart oncogenic properties on cells in various tissues and that aberrant CREB expression is associated with tumours in patients. It is the central position of CREB, downstream of key developmental and growth signalling pathways, which give CREB the ability to influence a spectrum of cell activities, such as cell survival, growth and differentiation in both normal and cancer cells.
Collapse
Affiliation(s)
- Theo Mantamadiotis
- Department of Pathology, The University of Melbourne, Parkville, Australia.
| | | | | |
Collapse
|
47
|
Garrido C, Paco L, Romero I, Berruguilla E, Stefansky J, Collado A, Algarra I, Garrido F, Garcia-Lora AM. MHC class I molecules act as tumor suppressor genes regulating the cell cycle gene expression, invasion and intrinsic tumorigenicity of melanoma cells. Carcinogenesis 2012; 33:687-93. [PMID: 22219178 DOI: 10.1093/carcin/bgr318] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
The alteration of MHC class I (MHC-I) expression is a frequent event during cancer progression, allowing tumor cells to evade the immune system. We report that the loss of one major histocompatibility complex haplotype in human melanoma cells not only allowed them to evade immunosurveillance but also increased their intrinsic oncogenic potential. A second successive defect in MHC-I expression, MHC-I total downregulation, gave rise to melanoma cells that were more oncogenic per se in vivo and showed a higher proliferation rate and greater migratory and invasive potential in vitro. All these processes were reversed by restoring MHC-I expression via human leukocite antigen-A2 gene transfection. MHC-I cell surface expression was inversely correlated with intrinsic oncogenic potential. Modifications in the expression of various cell cycle genes were correlated with changes in MHC-I expression; the most important differences among the melanoma cell lines were in the transcriptional level of AP2-alpha, cyclin A1 and p21WAF1/CIP1. According to these results, altered MHC-I expression in malignant cells can directly increase their intrinsic oncogenic and invasive potential and modulate the expression of cell cycle genes. These findings suggest that human leukocite antigen class I molecules may act directly as tumor suppressor genes in melanoma.
Collapse
Affiliation(s)
- Cristina Garrido
- Departamento de Bioquímica, Biología Molecular e Inmunología III, Universidad de Granada, 18012 Granada, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Hsieh MC, Hu WP, Yu HS, Wu WC, Chang LS, Kao YH, Wang JJ. A DC-81-indole conjugate agent suppresses melanoma A375 cell migration partially via interrupting VEGF production and stromal cell-derived factor-1α-mediated signaling. Toxicol Appl Pharmacol 2011; 255:150-9. [DOI: 10.1016/j.taap.2011.06.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2011] [Revised: 05/31/2011] [Accepted: 06/10/2011] [Indexed: 02/06/2023]
|
49
|
Zeng GF, Cai SX, Wu GJ. Up-regulation of METCAM/MUC18 promotes motility, invasion, and tumorigenesis of human breast cancer cells. BMC Cancer 2011; 11:113. [PMID: 21450088 PMCID: PMC3079690 DOI: 10.1186/1471-2407-11-113] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2010] [Accepted: 03/30/2011] [Indexed: 12/12/2022] Open
Abstract
Background Conflicting research has identified METCAM/MUC18, an integral membrane cell adhesion molecule (CAM) in the Ig-like gene super-family, as both a tumor promoter and a tumor suppressor in the development of breast cancer. To resolve this, we have re-investigated the role of this CAM in the progression of human breast cancer cells. Methods Three breast cancer cell lines were used for the tests: one luminal-like breast cancer cell line, MCF7, which did not express any METCAM/MUC18, and two basal-like breast cancer cell lines, MDA-MB-231 and MDA-MB-468, which expressed moderate levels of the protein. MCF7 cells were transfected with the human METCAM/MUC18 cDNA to obtain G418-resistant clones which expressed the protein and were used for testing effects of human METCAM/MUC18 expression on in vitro motility and invasiveness, and in vitro and in vivo tumorigenesis. Both MDA-MB-231 and MDA-MB-468 cells already expressed METCAM/MUC18. They were directly used for in vitro tests in the presence and absence of an anti-METCAM/MUC18 antibody. Results In MCF7 cells, enforced METCAM/MUC18 expression increased in vitro motility, invasiveness, anchorage-independent colony formation (in vitro tumorigenesis), and in vivo tumorigenesis. In both MDA-MB-231 and MDA-MB-468 cells, the anti-METCAM/MUC18 antibody inhibited both motility and invasiveness. Though both MDA-MB-231 and MDA-MB-468 cells established a disorganized growth in 3D basement membrane culture assay, the introduction of the anti-METCAM/MUC18 antibody completely destroyed their growth in the 3D culture. Conclusion These findings support the notion that human METCAM/MUC18 expression promotes the progression of human breast cancer cells by increasing their motility, invasiveness and tumorigenesis.
Collapse
Affiliation(s)
- Guo-Fang Zeng
- Bioengineering College, Chongqing University, Chongqing 400044, China
| | | | | |
Collapse
|
50
|
Members of the CREB/ATF and AP1 family of transcription factors are involved in the regulation of SOX18 gene expression. ARCH BIOL SCI 2011. [DOI: 10.2298/abs1103517p] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
The SOX18 transcription factor plays an important role in endothelial cell
specification, angiogenesis and atherogenesis. By profiling transcription
factor interactions (TranSignal TM TF Protein Array) we identified several
transcription factors implicated in angiogenesis that have the ability to
bind to the SOX18 optimal promoter region in vitro. In this report we
focused our attention on distinct transcription factors identified by the
array as belonging to AP-1 and CREB/ATF protein families. In particular, we
analyzed the effects of CREB, JunB, c-Jun and ATF3 on SOX18 gene expression.
Functional analysis revealed that CREB acts as a repressor, while JunB,
c-Jun and ATF3 act as activators of SOX18 promoter activity. Our findings
indicate that a transcriptional network that includes CREB, JunB, c-Jun and
ATF3 could be involved in angiogenesis-related transcriptional regulation of
the SOX18 gene.
Collapse
|