1
|
Henriques P, Rosa A, Caldeira-Araújo H, Vigário AM. Mouse models as a tool to study asymptomatic DENV infections. Front Cell Infect Microbiol 2025; 15:1554090. [PMID: 40207056 PMCID: PMC11979173 DOI: 10.3389/fcimb.2025.1554090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Accepted: 02/21/2025] [Indexed: 04/11/2025] Open
Abstract
Asymptomatic outcome accounts for most dengue virus infections and is likely to play an important role in maintaining virus circulation, contributing to its dissemination and shortening inter-epidemic periods. While dengue immunopathogenesis, investigation of potential therapeutics, and vaccine efficacy have been widely studied, only recently have inapparent infections begun to be comprehensively addressed as an integral and important part of the puzzle that is dengue infection. Animal models are one of the tools utilized to study dengue and, among these, mouse models have played an important role in understanding both dengue pathogenesis and the hosts' initial immune response. However, these models have mostly focused on untangling the drivers of disease severity ignoring asymptomatic dengue virus infections. In this mini-review, the authors propose to provide a concise overview of the current state-of-the-art of existing mouse models with potential use for studying asymptomatic dengue virus infections, elaborating on the pros and cons of the several models. Variations in experimental conditions, such as altering the viral load of the inoculum or employing different virus entry routes, especially in mice with partial or transient blockade of the type I interferon response, might be sufficient to obtain both symptomatic and asymptomatic viremic mice. This would enable the study of factors involved in asymptomatic dengue virus infections.
Collapse
Affiliation(s)
- Paulo Henriques
- Projecto Medicina, Faculdade de Ciências da Vida, Universidade da Madeira, Funchal, Portugal
| | - Alexandra Rosa
- Projecto Medicina, Faculdade de Ciências da Vida, Universidade da Madeira, Funchal, Portugal
| | - Helena Caldeira-Araújo
- Projecto Medicina, Faculdade de Ciências da Vida, Universidade da Madeira, Funchal, Portugal
- Centro de Química da Madeira (CQM), Universidade da Madeira, Funchal, Portugal
| | - Ana Margarida Vigário
- Projecto Medicina, Faculdade de Ciências da Vida, Universidade da Madeira, Funchal, Portugal
- Gulbenkian Institute for Molecular Medicine, Lisbon, Portugal
| |
Collapse
|
2
|
Chen J, Bai Y, He X, Xiao W, Chen L, Wong YK, Wang C, Gao P, Cheng G, Xu L, Yang C, Liao F, Han G, Sun J, Xu C, Wang J. The spatiotemporal transcriptional profiling of murine brain during cerebral malaria progression and after artemisinin treatment. Nat Commun 2025; 16:1540. [PMID: 39934099 DOI: 10.1038/s41467-024-52223-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 08/28/2024] [Indexed: 02/13/2025] Open
Abstract
Cerebral malaria (CM) is a severe encephalopathy caused by Plasmodium parasite infection, resulting in thousands of annual deaths and neuro-cognitive sequelae even after anti-malarial drugs treatment. Despite efforts to dissect the mechanism, the cellular transcriptomic reprogramming within the spatial context remains elusive. Here, we constructed single-cell and spatial transcriptome atlases of experimental CM (ECM) male murine brain tissues with or without artesunate (ART) treatment. We identified activated inflammatory endothelial cells during ECM, characterized by a disrupted blood-brain barrier, increased antigen presentation, and leukocyte adhesion. We also observed that inflammatory microglia enhance antigen presentation pathway such as MHC-I to CD8+ cytotoxic T cells. The latter underwent an inflammatory state transition with up-regulated cytokine expression and cytotoxic activity. Multi-omics analysis revealed that the activated interferon-gamma response of injured neurons during ECM and persisted after ART treatment. Overall, our research provides valuable resources for understanding malaria parasite-host interaction mechanisms and adjuvant therapy development.
Collapse
Affiliation(s)
- Jiayun Chen
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
- Department of Critical Care Medicine, Guangdong Provincial Clinical Research Center for Geriatrics, Shenzhen Clinical Research Center for Geriatric, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, 518020, Guangdong, China
- Center for Drug Research and Development, Guangdong Provincial Key Laboratory for Research and Evaluation of Pharmaceutical Preparations, Guangdong Pharmaceutical University, Guangzhou, 510006, Guangdong, China
| | - Yunmeng Bai
- Department of Critical Care Medicine, Guangdong Provincial Clinical Research Center for Geriatrics, Shenzhen Clinical Research Center for Geriatric, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, 518020, Guangdong, China
| | - Xueling He
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Wei Xiao
- Center for Drug Research and Development, Guangdong Provincial Key Laboratory for Research and Evaluation of Pharmaceutical Preparations, Guangdong Pharmaceutical University, Guangzhou, 510006, Guangdong, China
- Department of Traditional Chinese Medicine and School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Lina Chen
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Yin Kwan Wong
- Department of Critical Care Medicine, Guangdong Provincial Clinical Research Center for Geriatrics, Shenzhen Clinical Research Center for Geriatric, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, 518020, Guangdong, China
| | - Chen Wang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Peng Gao
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
- State Key Laboratory of Antiviral Drugs, School of Pharmacy, Henan University, Kaifeng, 475004, Henan, China
| | - Guangqing Cheng
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Liting Xu
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Chuanbin Yang
- Department of Critical Care Medicine, Guangdong Provincial Clinical Research Center for Geriatrics, Shenzhen Clinical Research Center for Geriatric, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, 518020, Guangdong, China
| | - Fulong Liao
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Guang Han
- State Key Laboratory of Antiviral Drugs, School of Pharmacy, Henan University, Kaifeng, 475004, Henan, China
| | - Jichao Sun
- Department of Critical Care Medicine, Guangdong Provincial Clinical Research Center for Geriatrics, Shenzhen Clinical Research Center for Geriatric, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, 518020, Guangdong, China.
| | - Chengchao Xu
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
- Department of Critical Care Medicine, Guangdong Provincial Clinical Research Center for Geriatrics, Shenzhen Clinical Research Center for Geriatric, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, 518020, Guangdong, China.
| | - Jigang Wang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
- Department of Critical Care Medicine, Guangdong Provincial Clinical Research Center for Geriatrics, Shenzhen Clinical Research Center for Geriatric, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, 518020, Guangdong, China.
- Center for Drug Research and Development, Guangdong Provincial Key Laboratory for Research and Evaluation of Pharmaceutical Preparations, Guangdong Pharmaceutical University, Guangzhou, 510006, Guangdong, China.
- Department of Traditional Chinese Medicine and School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, Guangdong, China.
- State Key Laboratory of Antiviral Drugs, School of Pharmacy, Henan University, Kaifeng, 475004, Henan, China.
| |
Collapse
|
3
|
Ghose SL, Eisen JA. Skin microbiomes of frogs vary among individuals and body regions, revealing differences that reflect known patterns of chytrid infection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.05.636728. [PMID: 39975414 PMCID: PMC11839087 DOI: 10.1101/2025.02.05.636728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
The amphibian skin microbiome is an important line of defense against pathogens including the deadly chytrid fungus, Batrachochytrium dendrobatidis (Bd). Intra-species variation in disease susceptibility and intra-individual variation in infection distribution across the skin, therefore, may relate to differences in skin microbiomes. However, characterization of microbiome variation within and among amphibian individuals is needed. We utilized 16S rRNA gene amplicon sequencing to compare microbiomes of ten body regions from nine captive R. sierrae individuals and their tank environments. While frogs harbored distinct microbial communities compared to their tank environments, tank identity was associated with more variation in frog microbiomes than individual frog identity. Within individuals, we detected differences between microbiomes of body regions where Bd infection would be expected compared to regions that infrequently experience infection. Notably, the bacterial families Burkholderiaceae (phylum Proteobacteria) and Rubritaleaceae (phylum Verrucomicrobia) were dominant on frog skin, and the relative abundances of undescribed members of these families were important to describing differences among and within individuals. Two undescribed Burkholderiaceae taxa were found to be putatively Bd-inhibitory, and both showed higher relative abundance on body regions where Bd infection is often localized. These findings highlight the importance of considering intrapopulation and intraindividual heterogeneities, which could provide insights relevant to predicting localized interactions with pathogens.
Collapse
Affiliation(s)
- Sonia L. Ghose
- Genome Center, University of California, Davis, CA, USA
- Department of Evolution and Ecology, University of California, Davis, CA, USA
| | - Jonathan A. Eisen
- Genome Center, University of California, Davis, CA, USA
- Department of Evolution and Ecology, University of California, Davis, CA, USA
- Department of Medical Microbiology and Immunology, University of California, Davis, CA, USA
| |
Collapse
|
4
|
Sandoval H, Ibáñez B, Contreras M, Troncoso F, Castro FO, Caamaño D, Mendez L, Escudero-Guevara E, Nualart F, Mistry HD, Kurlak LO, Vatish M, Acurio J, Escudero C. Extracellular Vesicles From Preeclampsia Disrupt the Blood-Brain Barrier by Reducing CLDN5. Arterioscler Thromb Vasc Biol 2025; 45:298-311. [PMID: 39665142 DOI: 10.1161/atvbaha.124.321077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 11/25/2024] [Indexed: 12/13/2024]
Abstract
BACKGROUND The physiopathology of life-threatening cerebrovascular complications in preeclampsia is unknown. We investigated whether disruption of the blood-brain barrier, generated using circulating small extracellular vesicles (sEVs) from women with preeclampsia or placentae cultured under hypoxic conditions, impairs the expression of tight junction proteins, such as CLDN5 (claudin-5), mediated by VEGF (vascular endothelial growth factor), and activation of KDR (VEGFR2 [VEGF receptor 2]). METHODS We perform a preclinical mechanistic study using sEVs isolated from plasma of pregnant women with normal pregnancy (sEVs-NP; n=9), sEVs isolated from plasma of women with preeclampsia (sEVs-PE; n=9), or sEVs isolated from placentas cultured in normoxia (sEVs-Nor; n=10) or sEVs isolated from placentas cultured in hypoxia (sEVs-Hyp; n=10). The integrity of the blood-brain barrier was evaluated using in vitro (human [hCMEC/D3] and mouse [BEND/3 (brain endothelial cell 3)] brain endothelial cell lines) and in vivo (nonpregnant C57BL/6J mice [4-5 months old; n=13] injected with sEVs-Hyp) models. RESULTS sEVs-PE and sEVs-Hyp reduced total and membrane-associated protein CLDN5 levels (P<0.05). These results were negated with sEVs-PE sonication. sEVs-Hyp injected into nonpregnant mice generated neurological deficits and blood-brain barrier disruption, specifically in the posterior area of the brain, associated with brain endothelial cell uptake of sEVs, sEVs-Hyp high extravasation, and reduction in CLDN5 levels in the brain cortex. Furthermore, sEVs-PE and sEVs-sHyp had higher VEGF levels than sEVs-NP and sEVs-Nor. Human brain endothelial cells exposed to sEVs-PE exhibited a reduction in the activation of KDR. Reduction in CLDN5 observed in cells treated with sEVs-Hyp was further enhanced in cells treated with KDR selective inhibitor. CONCLUSIONS sEVs-PE disrupts the blood-brain barrier, an effect replicated with sEVs-Hyp, and involves reduced CLDN5 and elevated VEGF contained within these vesicles. However, our results do not support the participation of KDR activation in the downregulation of CLDN5 observed with sEVs-Hyp. These findings will improve our understanding of the pathophysiology of cerebrovascular alterations in women with preeclampsia.
Collapse
Affiliation(s)
- Hermes Sandoval
- Vascular Physiology Laboratory, Department of Basic Sciences, Universidad del Bío-Bío, Chillán, Chile (H.S., B.I., M.C., F.T., E.E.-G., J.A., C.E.)
| | - Belén Ibáñez
- Vascular Physiology Laboratory, Department of Basic Sciences, Universidad del Bío-Bío, Chillán, Chile (H.S., B.I., M.C., F.T., E.E.-G., J.A., C.E.)
| | - Moisés Contreras
- Vascular Physiology Laboratory, Department of Basic Sciences, Universidad del Bío-Bío, Chillán, Chile (H.S., B.I., M.C., F.T., E.E.-G., J.A., C.E.)
| | - Felipe Troncoso
- Vascular Physiology Laboratory, Department of Basic Sciences, Universidad del Bío-Bío, Chillán, Chile (H.S., B.I., M.C., F.T., E.E.-G., J.A., C.E.)
| | - Fidel O Castro
- Department of Animal Science, Faculty of Veterinary Sciences, Universidad de Concepción, Chillan, Chile (F.O.C., D.C., L.M.)
| | - Diego Caamaño
- Department of Animal Science, Faculty of Veterinary Sciences, Universidad de Concepción, Chillan, Chile (F.O.C., D.C., L.M.)
| | - Lidice Mendez
- Department of Animal Science, Faculty of Veterinary Sciences, Universidad de Concepción, Chillan, Chile (F.O.C., D.C., L.M.)
| | - Estefanny Escudero-Guevara
- Vascular Physiology Laboratory, Department of Basic Sciences, Universidad del Bío-Bío, Chillán, Chile (H.S., B.I., M.C., F.T., E.E.-G., J.A., C.E.)
- PhD Program in Biomedical Sciences, Universidad de Talca, Chile (E.E.-G.)
| | - Francisco Nualart
- Departamento de Biología Celular, Facultad de Ciencias Biológicas, Universidad de Concepción, Chile (F.N.)
- Laboratory of Neurobiology and Stem Cells NeuroCellT, Department of Cellular Biology, Center for Advanced Microscopy CMA Bio-Bio, Faculty of Biological Sciences, University of Concepción, Chile (F.N.)
| | - Hiten D Mistry
- Division of Women and Children's Health, School of Life Course and Population Sciences, King's College London, United Kingdom (H.D.M.)
| | - Lesia O Kurlak
- Stroke Trials Unit, School of Medicine, Faculty of Medicine & Health Sciences, University of Nottingham, United Kingdom (L.O.K.)
| | - Manu Vatish
- Nuffield Department of Women's & Reproductive Health, University of Oxford, Women's Centre, John Radcliffe Hospital, United Kingdom (M.V., C.E.)
| | - Jesenia Acurio
- Vascular Physiology Laboratory, Department of Basic Sciences, Universidad del Bío-Bío, Chillán, Chile (H.S., B.I., M.C., F.T., E.E.-G., J.A., C.E.)
| | - Carlos Escudero
- Vascular Physiology Laboratory, Department of Basic Sciences, Universidad del Bío-Bío, Chillán, Chile (H.S., B.I., M.C., F.T., E.E.-G., J.A., C.E.)
- Nuffield Department of Women's & Reproductive Health, University of Oxford, Women's Centre, John Radcliffe Hospital, United Kingdom (M.V., C.E.)
- Group of Research and Innovation in Vascular Health, Chillan, Chile (C.E.)
| |
Collapse
|
5
|
Rasmussen CLM, Frederiksen SF, Heegaard CW, Thomsen MS, Hede E, Laczek B, Körbelin J, Wüstner D, Thomsen LB, Schwaninger M, Jensen ON, Moos T, Burkhart A. Endothelial and neuronal engagement by AAV-BR1 gene therapy alleviates neurological symptoms and lipid deposition in a mouse model of Niemann-Pick type C2. Fluids Barriers CNS 2025; 22:13. [PMID: 39891227 PMCID: PMC11786545 DOI: 10.1186/s12987-025-00621-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Accepted: 01/15/2025] [Indexed: 02/03/2025] Open
Abstract
BACKGROUND Patients with the genetic disorder Niemann-Pick type C2 disease (NP-C2) suffer from lysosomal accumulation of cholesterol causing both systemic and severe neurological symptoms. In a murine NP-C2 model, otherwise successful intravenous Niemann-Pick C2 protein (NPC2) replacement therapy fails to alleviate progressive neurodegeneration as infused NPC2 cannot cross the blood-brain barrier (BBB). Genetic modification of brain endothelial cells (BECs) is thought to enable secretion of recombinant proteins thereby overcoming the restrictions of the BBB. We hypothesized that an adeno-associated virus (AAV-BR1) encoding the Npc2 gene could cure neurological symptoms in Npc2-/- mice through transduction of BECs, and possibly neurons via viral passage across the BBB. METHODS Six weeks old Npc2-/- mice were intravenously injected with the AAV-BR1-NPC2 vector. Composite phenotype scores and behavioral tests were assessed for the following 6 weeks and visually documented. Post-mortem analyses included gene expression analyses, verification of neurodegeneration in Purkinje cells, determination of NPC2 transduction in the CNS, assessment of gliosis, quantification of gangliosides, and co-detection of cholesterol with NPC2 in degenerating neurons. RESULTS Treatment with the AAV-BR1-NPC2 vector improved motor functions, reduced neocortical inflammation, and preserved Purkinje cells in most of the mice, referred to as high responders. The vector exerted tropism for BECs and neurons resulting in a widespread NPC2 distribution in the brain with a concomitant reduction of cholesterol in adjacent neurons, presumably not transduced by the vector. Mass spectrometry imaging revealed distinct lipid alterations in the brains of Npc2-/- mice, with increased GM2 and GM3 ganglioside accumulation in the cerebellum and hippocampus. AAV-BR1-NPC2 treatment partially normalized these ganglioside distributions in high responders, including restoration of lipid profiles towards those of Npc2+/+ controls. CONCLUSION The data suggests cross-correcting gene therapy to the brain via delivery of NPC2 from BECs and neurons.
Collapse
Affiliation(s)
- Charlotte Laurfelt Munch Rasmussen
- Neurobiology Research and Drug Delivery, Department of Health Science and Technology, Aalborg University, Selma Lagerlöfts Vej 249, 9260, Gistrup, Denmark
| | - Signe Frost Frederiksen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, 5230, Odense, Denmark
| | - Christian Würtz Heegaard
- Department of Molecular Biology and Genetics, Aarhus University, Universitetsbyen 81, 8000, Aarhus C, Denmark
| | - Maj Schneider Thomsen
- Neurobiology Research and Drug Delivery, Department of Health Science and Technology, Aalborg University, Selma Lagerlöfts Vej 249, 9260, Gistrup, Denmark
| | - Eva Hede
- Neurobiology Research and Drug Delivery, Department of Health Science and Technology, Aalborg University, Selma Lagerlöfts Vej 249, 9260, Gistrup, Denmark
| | - Bartosz Laczek
- Neurobiology Research and Drug Delivery, Department of Health Science and Technology, Aalborg University, Selma Lagerlöfts Vej 249, 9260, Gistrup, Denmark
| | - Jakob Körbelin
- Department of Oncology, Hematology, and Bone Marrow Transplantation, University of Medical Center Hamburg-Eppendorf, Martinisstr. 52, 20246, Hamburg, Germany
| | - Daniel Wüstner
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, 5230, Odense, Denmark
| | - Louiza Bohn Thomsen
- Neurobiology Research and Drug Delivery, Department of Health Science and Technology, Aalborg University, Selma Lagerlöfts Vej 249, 9260, Gistrup, Denmark
| | - Markus Schwaninger
- Institute of Experimental and Clinical Pharmacology and Toxicology, University of Lübeck, Ratzeburger Allee 160, 23562, Lübeck, Germany
| | - Ole N Jensen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, 5230, Odense, Denmark
| | - Torben Moos
- Neurobiology Research and Drug Delivery, Department of Health Science and Technology, Aalborg University, Selma Lagerlöfts Vej 249, 9260, Gistrup, Denmark.
| | - Annette Burkhart
- Neurobiology Research and Drug Delivery, Department of Health Science and Technology, Aalborg University, Selma Lagerlöfts Vej 249, 9260, Gistrup, Denmark.
| |
Collapse
|
6
|
Shen A, Ektefaie Y, Jain L, Farhat M, Zitnik M. Phyla: Towards a foundation model for phylogenetic inference. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.17.633626. [PMID: 39896621 PMCID: PMC11785049 DOI: 10.1101/2025.01.17.633626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
Deep learning has made strides in modeling protein sequences but often struggles to generalize beyond its training distribution. Current models focus on learning individual sequences through masked language modeling, but effective protein sequence analysis demands the ability to reason across sequences, a critical step in phylogenetic analysis. Training biological foundation models explicitly for intersequence reasoning could enhance their generalizability and performance for phylogenetic inference and other tasks in computational biology. Here, we report an ongoing development of Phyla, an architecture that operates on an explicit, higher-level semantic representation of phylogenetic trees. Phyla employs a hybrid state-space transformer architecture and a novel tree loss function to achieve state-of-the-art performance on sequence reasoning benchmarks and phylogenetic tree reconstruction. To validate Phyla's capabilities, we applied it to reconstruct the tree of life, where Phyla accurately reclassified archaeal organisms, such as Lokiarchaeota, as more closely related to bacteria-aligning with recent phylogenetic insights. Phyla represents a step toward molecular sequence reasoning, emphasizing structured reasoning over memorization and advancing protein sequence analysis and phylogenetic inference.
Collapse
Affiliation(s)
- Andrew Shen
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
- Department of Computer Science, Northwestern University, Evanston, IL, USA
| | - Yasha Ektefaie
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
| | | | - Maha Farhat
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
- Division of Pulmonary and Critical Care, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Marinka Zitnik
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
- Kempner Institute for the Study of Natural and Artificial Intelligence, Harvard University, Allston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Harvard Data Science Initiative, Cambridge, MA, USA
| |
Collapse
|
7
|
Ohno T, Iwatake N, Miyasaka Y. Mouse NOD/Shi and NSY/Hos strains infected with Plasmodium berghei ANKA are models for experimental cerebral malaria. Exp Anim 2025; 74:31-38. [PMID: 39069480 PMCID: PMC11742482 DOI: 10.1538/expanim.24-0023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Accepted: 07/21/2024] [Indexed: 07/30/2024] Open
Abstract
In humans, cerebral malaria is the most common cause of malaria-related mortality. Mouse C57BL/6 (B6) sub-strains are the major model system for experimental cerebral malaria (ECM) as they show similar pathophysiology to human cerebral malaria after infection with the rodent malaria parasite Plasmodium berghei ANKA. This model system has been used to analyze the molecular mechanisms of cerebral malaria. To develop new mouse models, we analyzed the ECM susceptibility of NOD/Shi (NOD) and NSY/Hos (NSY) strains established from the non-inbred ICR strain. Both NOD and NSY strains exhibited clinical symptoms and pathologies similar to ECM in C57BL/6J (B6J) mice and died within 11 days of infection. Thus, the NOD and NSY strains are susceptible to ECM and may be useful as new ECM models. The ECM susceptibility of both strains is suggested to be due to homozygosity for the cerebral malaria susceptibility allele of the ECM susceptible ICR strain. Although analyses using B6 sub-strains have proposed that complement component 5 (C5) plays an important role in ECM pathogenesis, we found that C5 was not essential as the ECM susceptible NOD strain is C5 deficient. Thus, results obtained from B6 sub-strains may not reflect the full picture of ECM in mice. Comparative analyses of multiple ECM models will contribute to a more accurate identification of the factors essential for ECM.
Collapse
Affiliation(s)
- Tamio Ohno
- Division of Experimental Animals, Graduate School of Medicine, Nagoya University, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi 466-8550, Japan
| | - Nozomi Iwatake
- Division of Experimental Animals, Graduate School of Medicine, Nagoya University, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi 466-8550, Japan
| | - Yuki Miyasaka
- Division of Experimental Animals, Graduate School of Medicine, Nagoya University, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi 466-8550, Japan
| |
Collapse
|
8
|
Arimura Y, Konishi HA, Funabiki H. MagIC-Cryo-EM: Structural determination on magnetic beads for scarce macromolecules in heterogeneous samples. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.01.21.576499. [PMID: 38328033 PMCID: PMC10849486 DOI: 10.1101/2024.01.21.576499] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
Cryo-EM single-particle analyses typically require target macromolecule concentration at 0.05~5.0 mg/ml, which is often difficult to achieve. Here, we devise Magnetic Isolation and Concentration (MagIC)-cryo-EM, a technique enabling direct structural analysis of targets captured on magnetic beads, thereby reducing the targets' concentration requirement to < 0.0005 mg/ml. Adapting MagIC-cryo-EM to a Chromatin Immunoprecipitation protocol, we characterized structural variations of the linker histone H1.8-associated nucleosomes that were isolated from interphase and metaphase chromosomes in Xenopus egg extract. Combining Duplicated Selection To Exclude Rubbish particles (DuSTER), a particle curation method that excludes low signal-to-noise ratio particles, we also resolved the 3D cryo-EM structures of nucleoplasmin NPM2 co-isolated with the linker histone H1.8 and revealed distinct open and closed structural variants. Our study demonstrates the utility of MagIC-cryo-EM for structural analysis of scarce macromolecules in heterogeneous samples and provides structural insights into the cell cycle-regulation of H1.8 association to nucleosomes.
Collapse
Affiliation(s)
- Yasuhiro Arimura
- Laboratory of Chromosome and Cell Biology, The Rockefeller University, New York, NY 10065
- Current address: Basic Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, USA, 98109-1024
| | - Hide A. Konishi
- Laboratory of Chromosome and Cell Biology, The Rockefeller University, New York, NY 10065
| | - Hironori Funabiki
- Laboratory of Chromosome and Cell Biology, The Rockefeller University, New York, NY 10065
| |
Collapse
|
9
|
Kong Y, Zhang Y, Mead EA, Chen H, Loo CE, Fan Y, Ni M, Zhang XS, Kohli RM, Fang G. Critical assessment of nanopore sequencing for the detection of multiple forms of DNA modifications. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.19.624260. [PMID: 39605700 PMCID: PMC11601653 DOI: 10.1101/2024.11.19.624260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
While nanopore sequencing is increasingly used for mapping DNA modifications, it is important to recognize false positive calls as they can mislead biological interpretations. To assist biologists and methods developers, we describe a framework for rigorous evaluation that highlights the use of false discovery rate with rationally designed negative controls capturing both general background and confounding modifications. Our critical assessment across multiple forms of DNA modifications highlights that while nanopore sequencing performs reliably for high-abundance modifications, including 5-methylcytosine (5mC) at CpG sites in mammalian cells and 5-hydroxymethylcytosine (5hmC) in mammalian brain cells, it makes a significant proportion of false positive detections for low-abundance modifications, such as 5mC at CpH sites, 5hmC and N6-methyldeoxyadenine (6mA) in most mammal cell types. This study highlights the urgent need to incorporate this framework in future methods development and biological studies, and advocates prioritizing nanopore sequencing for mapping abundant over rare modifications in biomedical applications.
Collapse
Affiliation(s)
- Yimeng Kong
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Center of Clinical Laboratory Medicine, Zhongda Hospital, School of Medicine, Advanced Institute for Life and Health, Southeast University, Nanjing, China
| | - Yanchun Zhang
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Edward A. Mead
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Hao Chen
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Christian E. Loo
- Department of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Yu Fan
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Mi Ni
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Xue-Song Zhang
- Center for Advanced Biotechnology and Medicine, Rutgers University, New Brunswick, NJ, USA
| | - Rahul M. Kohli
- Department of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Gang Fang
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
10
|
Herstel LJ, Wierenga CJ. Distinct Modulation of I h by Synaptic Potentiation in Excitatory and Inhibitory Neurons. eNeuro 2024; 11:ENEURO.0185-24.2024. [PMID: 39406481 PMCID: PMC11574699 DOI: 10.1523/eneuro.0185-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 09/24/2024] [Accepted: 10/02/2024] [Indexed: 11/15/2024] Open
Abstract
Selective modifications in the expression or function of dendritic ion channels regulate the propagation of synaptic inputs and determine the intrinsic excitability of a neuron. Hyperpolarization-activated cyclic nucleotide-gated (HCN) channels open upon membrane hyperpolarization and conduct a depolarizing inward current (I h). HCN channels are enriched in the dendrites of hippocampal pyramidal neurons where they regulate the integration of synaptic inputs. Synaptic plasticity can bidirectionally modify dendritic HCN channels in excitatory neurons depending on the strength of synaptic potentiation. In inhibitory neurons, however, the dendritic expression and modulation of HCN channels are largely unknown. In this study, we systematically compared the modulation of I h by synaptic potentiation in hippocampal CA1 pyramidal neurons and stratum radiatum (sRad) interneurons in mouse organotypic cultures. I h properties were similar in inhibitory and excitatory neurons and contributed to resting membrane potential and action potential firing. We found that in sRad interneurons, HCN channels were downregulated after synaptic plasticity, irrespective of the strength of synaptic potentiation. This suggests differential regulation of I h in excitatory and inhibitory neurons, possibly signifying their distinct role in network activity.
Collapse
Affiliation(s)
- Lotte J Herstel
- Biology Department, Faculty of Science, Utrecht University, Utrecht 3584 CH, the Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen 6525 AJ, the Netherlands
| | - Corette J Wierenga
- Biology Department, Faculty of Science, Utrecht University, Utrecht 3584 CH, the Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen 6525 AJ, the Netherlands
| |
Collapse
|
11
|
Samantsidis GR, Smith RC. Exploring new dimensions of immune cell biology in Anopheles gambiae through genetic immunophenotyping. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.22.619690. [PMID: 39484609 PMCID: PMC11526922 DOI: 10.1101/2024.10.22.619690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Mosquito immune cells, or hemocytes, are integral components of the innate immune responses that define vector competence. However, the lack of genetic resources has limited their characterization and our understanding of their functional roles in immune signaling. To overcome these challenges, we engineered transgenic Anopheles gambiae that express fluorescent proteins under the control of candidate hemocyte promoters. Following the characterization of five transgenic constructs through gene expression and microscopy-based approaches, we examine mosquito immune cell populations by leveraging advanced spectral imaging flow cytometry. Our results comprehensively map the composition of mosquito hemocytes, classifying them into twelve distinct populations based on size, granularity, ploidy, phagocytic capacity, and the expression of PPO6, SPARC, and LRIM15 genetic markers. Together, our novel use of morphological properties and genetic markers provides increased resolution into our understanding of mosquito hemocytes, highlighting the complexity and plasticity of these immune cell populations, while providing the foundation for deeper investigations into their roles in immunity and pathogen transmission.
Collapse
Affiliation(s)
| | - Ryan C Smith
- Department of Plant Pathology, Entomology and Microbiology, Iowa State University, Ames, Iowa, USA
| |
Collapse
|
12
|
David-Vieira C, Carpinter BA, Bezerra-Bellei J, Machado L, Raimundo FO, Rodolphi CM, Renhe DC, Guedes IR, Gonçalves FMM, Pereira LPC, Ferreira MV, Nascimento HLDS, Neto AF, Gomes FR, Rocha VN, Castro JMA, Scopel KKG. Lung Damage Induced by Plasmodium berghei ANKA in Murine Model of Malarial Infection is Mitigated by Dietary Supplementation with DHA-Rich Omega-3. ACS Infect Dis 2024; 10:3607-3617. [PMID: 39303151 PMCID: PMC11474944 DOI: 10.1021/acsinfecdis.4c00482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 08/30/2024] [Accepted: 09/11/2024] [Indexed: 09/22/2024]
Abstract
Acute lung injury (ALI) and acute respiratory distress syndrome (ARDS) are severe complications that can occur in infections caused by any Plasmodium species. Due to the high lethality rate and the lack of specific treatment for ALI/ARDS, studies aimed at understanding and searching for treatment strategies for such complications have been fundamental. Here, we investigated the protective role of dietary supplementation with DHA-rich fish oil against lung damage induced by Plasmodium berghei ANKA in a murine model. Our results demonstrated that alveolar vascular damage, lung edema, and histopathological alterations were significantly reduced in mice that received dietary supplementation compared to those that did not receive the supplementation. Furthermore, a significant reduction in the number of CD8+ T lymphocytes, in addition to reduced infiltration of inflammatory cells in the bronchoalveolar lavage fluid was also observed. High levels of IL-10, but not of TNF-α and IFN-γ, were also observed in infected mice that received the supplementation, along with a reduction in local oxidative stress. Together, the data suggest that dietary supplementation with DHA-rich fish oil in malarial endemic areas may help reduce lung damage resulting from the infection, thus preventing worsening of the condition.
Collapse
Affiliation(s)
- Carolina David-Vieira
- Research
Centre of Parasitology, Department of Parasitology, Microbiology and
Immunology and Post-Graduate Program in Biological Science, Federal University of Juiz de Fora, Juiz de Fora 36036-900, Brazil
| | - Barbara Albuquerque Carpinter
- Research
Centre of Parasitology, Department of Parasitology, Microbiology and
Immunology and Post-Graduate Program in Biological Science, Federal University of Juiz de Fora, Juiz de Fora 36036-900, Brazil
| | - Jéssica
Correia Bezerra-Bellei
- Research
Centre of Parasitology, Department of Parasitology, Microbiology and
Immunology and Post-Graduate Program in Biological Science, Federal University of Juiz de Fora, Juiz de Fora 36036-900, Brazil
| | - Letícia
Ferreira Machado
- Research
Centre of Parasitology, Department of Parasitology, Microbiology and
Immunology and Post-Graduate Program in Biological Science, Federal University of Juiz de Fora, Juiz de Fora 36036-900, Brazil
| | - Felipe Oliveira Raimundo
- Research
Centre of Parasitology, Department of Parasitology, Microbiology and
Immunology and Post-Graduate Program in Biological Science, Federal University of Juiz de Fora, Juiz de Fora 36036-900, Brazil
| | - Cinthia Magalhães Rodolphi
- Research
Centre of Parasitology, Department of Parasitology, Microbiology and
Immunology and Post-Graduate Program in Biological Science, Federal University of Juiz de Fora, Juiz de Fora 36036-900, Brazil
| | - Daniela Chaves Renhe
- Research
Centre of Parasitology, Department of Parasitology, Microbiology and
Immunology and Post-Graduate Program in Biological Science, Federal University of Juiz de Fora, Juiz de Fora 36036-900, Brazil
| | - Isabella Rodrigues
Nogueira Guedes
- Research
Centre of Parasitology, Department of Parasitology, Microbiology and
Immunology and Post-Graduate Program in Biological Science, Federal University of Juiz de Fora, Juiz de Fora 36036-900, Brazil
| | - Fernanda Mikaela Moreira Gonçalves
- Research
Centre of Parasitology, Department of Parasitology, Microbiology and
Immunology and Post-Graduate Program in Biological Science, Federal University of Juiz de Fora, Juiz de Fora 36036-900, Brazil
| | - Ludmila Ponce
Monken Custódio Pereira
- Research
Centre of Parasitology, Department of Parasitology, Microbiology and
Immunology and Post-Graduate Program in Biological Science, Federal University of Juiz de Fora, Juiz de Fora 36036-900, Brazil
| | | | - Haroldo Lobo dos Santos Nascimento
- Research
Centre of Pathology and Veterinary Histology, Department of Veterinary
Medicine, Federal University of Juiz de
Fora, Juiz de
Fora 36036-900, Brazil
| | - Adolfo Firmino Neto
- Research
Centre of Pathology and Veterinary Histology, Department of Veterinary
Medicine, Federal University of Juiz de
Fora, Juiz de
Fora 36036-900, Brazil
| | | | - Vinicius Novaes Rocha
- Research
Centre of Pathology and Veterinary Histology, Department of Veterinary
Medicine, Federal University of Juiz de
Fora, Juiz de
Fora 36036-900, Brazil
| | - Juciane Maria
de Andrade Castro
- Research
Centre of Parasitology, Department of Parasitology, Microbiology and
Immunology and Post-Graduate Program in Biological Science, Federal University of Juiz de Fora, Juiz de Fora 36036-900, Brazil
| | - Kézia Katiani Gorza Scopel
- Research
Centre of Parasitology, Department of Parasitology, Microbiology and
Immunology and Post-Graduate Program in Biological Science, Federal University of Juiz de Fora, Juiz de Fora 36036-900, Brazil
| |
Collapse
|
13
|
Chase BA, Frigerio R, Yucus CJ, Patel S, Maraganore D, Sanders AR, Duan J, Markopoulou K. Lipid Trajectories Improve Risk Models for Alzheimer's Disease and Mild Cognitive Impairment. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.09.27.24314494. [PMID: 39399044 PMCID: PMC11469357 DOI: 10.1101/2024.09.27.24314494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
To assess the relationship between lipids and cognitive dysfunction, we retrospectively analyzed blood-lipid levels in clinically well-characterized individuals with stable mild cognitive impairment (MCI) or Alzheimer's disease (AD) over the decade prior to first cognitive symptoms. In this case/control cohort study, AD and MCI cases were diagnosed using DSM-IV criteria; MCI cases had not progressed to dementia for ≥5 years; and controls were propensity matched to cases at age of symptom onset (MCI: 116 cases, 435 controls; AD: 215 cases, 483 controls). Participants were grouped based on longitudinal trajectories and quintile of variability independent of the mean (VIM) for total cholesterol, HDL-C, LDL-C, non-HDL-C and ln(triglycerides). Models for the risk of cognitive dysfunction evaluated trajectory and VIM groups, APOE genotype, polygenic risk scores (PRS) for AD and lipid levels, age, comorbidities, and longitudinal correlates of blood-lipid concentrations. Lower HDL-C trajectories (OR = 3.8, 95% CI = 1.3-11.3) and the lowest VIM quintile of non-HDL-C (OR = 2.2, 95% CI = 1.3-3.0) were associated with higher MCI risk. Lower HDL-C trajectories (OR = 3.0, 95% CI = 1.6-5.7) and the lowest VIM quintile of total cholesterol (OR = 2.4, 95% CI = 1.5-3.9) were associated with higher AD risk. The inclusion of lipid-trajectory and VIM groups improved risk-model predictive performance independent of APOE genotype or PRS for AD and lipid levels. These results provide an important real-world perspective on the influence of lipid metabolism and blood-lipid levels on the development of stable MCI and AD.
Collapse
Affiliation(s)
- Bruce A. Chase
- Information Technology, Endeavor Health, Skokie, IL USA
- Pritzker School of Medicine, Chicago, USA
| | - Roberta Frigerio
- Pritzker School of Medicine, Chicago, USA
- Research Institute, Endeavor Health, Evanston, IL USA
| | - Chad J. Yucus
- Department of Neurology, Endeavor Health, Evanston, IL USA
| | - Smita Patel
- Department of Neurology, Endeavor Health, Evanston, IL USA
| | - Demetrius Maraganore
- Department of Neurology, Tulane University School of Medicine, New Orleans, LA USA
| | - Alan R. Sanders
- Center for Psychiatric Genetics, Endeavor Health Research Institute, Evanston, IL USA
- Department of Psychiatry and Behavioral Neuroscience, University of Chicago, Chicago, IL USA
| | - Jubao Duan
- Center for Psychiatric Genetics, Endeavor Health Research Institute, Evanston, IL USA
- Department of Psychiatry and Behavioral Neuroscience, University of Chicago, Chicago, IL USA
| | - Katerina Markopoulou
- Department of Neurology, Endeavor Health, Evanston, IL USA
- Department of Neurology, Pritzker School of Medicine, University of Chicago, Chicago, IL USA
| |
Collapse
|
14
|
Su M, Hoang KL, Penley M, Davis MH, Gresham JD, Morran LT, Read TD. Host and antibiotic jointly select for greater virulence in Staphylococcus aureus. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.31.610628. [PMID: 39257827 PMCID: PMC11383984 DOI: 10.1101/2024.08.31.610628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
Widespread antibiotic usage has resulted in the rapid evolution of drug-resistant bacterial pathogens and poses significant threats to public health. Resolving how pathogens respond to antibiotics under different contexts is critical for understanding disease emergence and evolution going forward. The impact of antibiotics has been demonstrated most directly through in vitro pathogen passaging experiments. Independent from antibiotic selection, interactions with hosts have also altered the evolutionary trajectories and fitness landscapes of pathogens, shaping infectious disease outcomes. However, it is unclear how interactions between hosts and antibiotics impact the evolution of pathogen virulence. Here, we evolved and re-sequenced Staphylococcus aureus, a major bacterial pathogen, varying exposure to host and antibiotics to tease apart the contributions of these selective pressures on pathogen adaptation. After 12 passages, S. aureus evolving in Caenorhabditis elegans nematodes exposed to a sub-minimum inhibitory concentration of antibiotic (oxacillin) became highly virulent, regardless of whether the ancestral pathogen was methicillin-resistant (MRSA) or methicillin-sensitive (MSSA). Host and antibiotic exposure selected for reduced drug susceptibility in MSSA lineages while increasing MRSA total growth outside hosts. We identified mutations in genes involved in complex regulatory networks linking virulence and metabolism, including codY , agr , and gdpP , suggesting that rapid adaptation to infect hosts may have pleiotropic effects. In particular, MSSA populations under selection from host and antibiotic accumulated mutations in the global regulator gene codY , which controls biofilm formation in S. aureus. These populations had indeed evolved more robust biofilms-a trait linked to both virulence and antibiotic resistance-suggesting evolution of one trait can confer multiple adaptive benefits. Despite evolving in similar environments, MRSA and MSSA populations proceeded on divergent evolutionary paths, with MSSA populations exhibiting more similarities across replicate populations. Our results underscore the importance of considering multiple and concurrent selective pressures as drivers of pervasive pathogen traits.
Collapse
|
15
|
Zhao W, Larschan E, Sandstede B, Singh R. Optimal transport reveals dynamic gene regulatory networks via gene velocity estimation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.12.612590. [PMID: 39345416 PMCID: PMC11429941 DOI: 10.1101/2024.09.12.612590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Inferring gene regulatory networks from gene expression data is an important and challenging problem in the biology community. We propose OTVelo, a methodology that takes time-stamped single-cell gene expression data as input and predicts gene regulation across two time points. It is known that the rate of change of gene expression, which we will refer to as gene velocity, provides crucial information that enhances such inference; however, this information is not always available due to the limitations in sequencing depth. Our algorithm overcomes this limitation by estimating gene velocities using optimal transport. We then infer gene regulation using time-lagged correlation and Granger causality via regularized linear regression. Instead of providing an aggregated network across all time points, our method uncovers the underlying dynamical mechanism across time points. We validate our algorithm on 13 simulated datasets with both synthetic and curated networks and demonstrate its efficacy on 4 experimental data sets.
Collapse
Affiliation(s)
- Wenjun Zhao
- Division of Applied Mathematics, Brown University, Providence, RI 02912, USA
| | - Erica Larschan
- Department of Molecular Biology, Cell Biology and Biochemistry, Center for Computational Molecular Biology, Brown University, Providence, RI 02912, USA
| | - Björn Sandstede
- Division of Applied Mathematics , Brown University, Providence, RI 02912, USA
| | - Ritambhara Singh
- Department of Computer Science, Center for Computational Molecular Biology, Brown University, Providence, RI 02912, USA
| |
Collapse
|
16
|
Warder BN, Nelson KA, Sui J, Anllo L, DiNardo S. An actomyosin network organizes niche morphology and responds to feedback from recruited stem cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.09.08.556877. [PMID: 38746236 PMCID: PMC11092431 DOI: 10.1101/2023.09.08.556877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Stem cells often rely on signals from a niche, which in many tissues adopts a precise morphology. What remains elusive is how niches are formed, and how morphology impacts function. To address this, we leverage the Drosophila gonadal niche, which affords genetic tractability and live-imaging. We have previously shown mechanisms dictating niche cell migration to their appropriate position within the gonad, and the resultant consequences on niche function. Here, we show that once positioned, niche cells robustly polarize filamentous actin (F-actin) and Non-muscle Myosin II (MyoII) towards neighboring germ cells. Actomyosin tension along the niche periphery generates a highly reproducible smoothened contour. Without contractility, niches are misshapen and exhibit defects in their ability to regulate germline stem cell behavior. We additionally show that germ cells aid in polarizing MyoII within niche cells, and that extrinsic input is required for niche morphogenesis and function. Our work reveals a feedback mechanism where stem cells shape the niche that guides their behavior.
Collapse
Affiliation(s)
- Bailey N. Warder
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Kara A. Nelson
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Justin Sui
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Lauren Anllo
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Stephen DiNardo
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
17
|
Quezada-Romegialli C, Quiroga-Carmona M, D’Elía G, Harrod C, Storz JF. Diet of Andean leaf-eared mice ( Phyllotis) living at extreme elevations on Atacama volcanoes: insights from metagenomics, DNA metabarcoding, and stable isotopes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.23.604871. [PMID: 39091768 PMCID: PMC11291156 DOI: 10.1101/2024.07.23.604871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
On the flanks of >6000 m Andean volcanoes that tower over the Atacama Desert, leaf-eared mice (Phyllotis vaccarum) live at extreme elevations that surpass known vegetation limits. What the mice eat in these barren, hyperarid environments has been the subject of much speculation. According to the arthropod fallout hypothesis, sustenance is provided by windblown insects that accumulate in snowdrifts ('aolian deposits'). It is also possible that mice feed on saxicolous lichen or forms of cryptic vegetation that have yet to be discovered at such high elevations. We tested hypotheses about the diet of mice living at extreme elevations on Atacama volcanoes by combining metagenomic and DNA metabarcoding analyses of gut contents with stable-isotope analyses of mouse tissues. Genomic analyses of contents of the gastrointestinal tract of a live-captured mouse from the 6739 m summit of Volcán Llullaillaco revealed evidence for an opportunistic but purely herbivorous diet, including lichens. Although we found no evidence of animal DNA in gut contents of the summit mouse, stable isotope data indicate that mice native to elevations at or near vegetation limits (~5100 m) include a larger fraction of animal prey in their diet than mice from lower elevations. Some plant species detected in the gut contents of the summit mouse are known to exist at lower elevations at the base of the volcano and in the surrounding Altiplano, suggesting that such plants may occur at higher elevations beneath the snowpack or in other cryptic microhabitats.
Collapse
Affiliation(s)
- Claudio Quezada-Romegialli
- Plataforma de Monitoreo Genómico y Ambiental, Departamento de Química, Facultad de Ciencias, Universidad de Tarapacá, Arica, Chile
| | - Marcial Quiroga-Carmona
- Instituto de Ciencias Ambientales y Evolutivas, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile
- Colección de Mamíferos, Facultad de Ciencias, Universidad Austral de Chile, Campus Isla Teja, Valdivia, Chile
- School of Biological Sciences, University of Nebraska, Lincoln, Nebraska, USA
| | - Guillermo D’Elía
- Instituto de Ciencias Ambientales y Evolutivas, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile
- Colección de Mamíferos, Facultad de Ciencias, Universidad Austral de Chile, Campus Isla Teja, Valdivia, Chile
| | - Chris Harrod
- Instituto de Ciencias Naturales Alexander von Humboldt, Universidad de Antofagasta, Antofagasta, Chile
- Núcleo Milenio de Salmónidos Invasores Australes, INVASAL, Concepción, Chile
- Scottish Centre for Ecology and the Natural Environment, School of Biodiversity, One Health and Veterinary Medicine, University of Glasgow
| | - Jay F. Storz
- School of Biological Sciences, University of Nebraska, Lincoln, Nebraska, USA
| |
Collapse
|
18
|
Underwood JFG, Madley-Dowd P, Dardani C, Hull L, Kwong ASF, Pearson RM, Hall J, Rai D. Childhood trauma as a mediator between autistic traits and depression: evidence from the ALSPAC birth cohort. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.07.12.24310340. [PMID: 39040168 PMCID: PMC11261931 DOI: 10.1101/2024.07.12.24310340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 07/24/2024]
Abstract
Background Autism and autistic traits have been associated with greater risk of childhood trauma and adulthood psychopathology. However, the role that childhood trauma plays in the association between autism, autistic traits and depression in adulthood is poorly understood. Methods We used a UK-based birth cohort with phenotype and genotype data on autism, autistic traits, childhood trauma and depression in up to 9,659 individuals prospectively followed up from birth until age 28 years. Using mixed-effects growth-curve models, we assessed trajectories of depression symptoms over time according to the presence or absence of autism/ autistic traits and explored whether these differed by trauma exposure. We further investigated the association between autism/ autistic traits and depression in adulthood using confounder-adjusted logistic regression models and undertook mediation analyses to investigate the relationship with childhood trauma. Results All autism variables demonstrated increased depressive symptom trajectories between ages 10-28 years. Social communication difficulties (SCDs) were the most strongly associated with a depression diagnosis in adulthood (age 24 OR= 2.15; 95%CIs: 1.22-3.76). Trauma and autistic traits combined to further increase depression symptom scores. Mediation analyses provided evidence for direct pathways between autistic traits and increased risk of depression alongside indirect pathways through increased risk of trauma. Conclusions Autism/ autistic traits increase the odds of experiencing childhood trauma and of being diagnosed with depression at age 18 and 24. Depressive symptom trajectories emergent in childhood persist into adulthood. The combined effect of SCDs and childhood trauma is greater than the individual exposures, suggesting worse depression symptomatology following trauma in individuals with SCDs.
Collapse
Affiliation(s)
- Jack F G Underwood
- Neuroscience and Mental Health Innovation Institute, Cardiff University, United Kingdom
- Population Health Sciences, Bristol Medical School, University of Bristol, United Kingdom
| | - Paul Madley-Dowd
- Population Health Sciences, Bristol Medical School, University of Bristol, United Kingdom
- MRC Integrative Epidemiology Unit (IEU), Bristol, United Kingdom
- National Institute of Health Research Biomedical Research Centre, University of Bristol, United Kingdom
| | - Christina Dardani
- Population Health Sciences, Bristol Medical School, University of Bristol, United Kingdom
- MRC Integrative Epidemiology Unit (IEU), Bristol, United Kingdom
| | - Laura Hull
- Population Health Sciences, Bristol Medical School, University of Bristol, United Kingdom
| | - Alex S F Kwong
- Population Health Sciences, Bristol Medical School, University of Bristol, United Kingdom
- MRC Integrative Epidemiology Unit (IEU), Bristol, United Kingdom
- Division of Psychiatry, Centre for Clinical Brain Sciences, University of Edinburgh, United Kingdom
| | - Rebecca M Pearson
- Population Health Sciences, Bristol Medical School, University of Bristol, United Kingdom
- MRC Integrative Epidemiology Unit (IEU), Bristol, United Kingdom
- National Institute of Health Research Biomedical Research Centre, University of Bristol, United Kingdom
- Department of Psychology, Manchester Metropolitan University, Manchester, United Kingdom
| | - Jeremy Hall
- Neuroscience and Mental Health Innovation Institute, Cardiff University, United Kingdom
| | - Dheeraj Rai
- Population Health Sciences, Bristol Medical School, University of Bristol, United Kingdom
- MRC Integrative Epidemiology Unit (IEU), Bristol, United Kingdom
- National Institute of Health Research Biomedical Research Centre, University of Bristol, United Kingdom
- Avon and Wiltshire Partnership NHS Mental Health Trust, Bristol, United Kingdom
| |
Collapse
|
19
|
Jackeline Pérez-Vega M, Manuel Corral-Ruiz G, Galán-Salinas A, Silva-García R, Mancilla-Herrera I, Barrios-Payán J, Fabila-Castillo L, Hernández-Pando R, Enid Sánchez-Torres L. Acute lung injury is prevented by monocyte locomotion inhibitory factor in an experimental severe malaria mouse model. Immunobiology 2024; 229:152823. [PMID: 38861873 DOI: 10.1016/j.imbio.2024.152823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 06/01/2024] [Accepted: 06/05/2024] [Indexed: 06/13/2024]
Abstract
Acute lung injury caused by severe malaria (SM) is triggered by a dysregulated immune response towards the infection with Plasmodium parasites. Postmortem analysis of human lungs shows diffuse alveolar damage (DAD), the presence of CD8 lymphocytes, neutrophils, and increased expression of Intercellular Adhesion Molecule 1 (ICAM-1). P. berghei ANKA (PbA) infection in C57BL/6 mice reproduces many SM features, including acute lung injury characterized by DAD, CD8+ T lymphocytes and neutrophils in the lung parenchyma, and tissular expression of proinflammatory cytokines and adhesion molecules, such as IFNγ, TNFα, ICAM, and VCAM. Since this is related to a dysregulated immune response, immunomodulatory agents are proposed to reduce the complications of SM. The monocyte locomotion inhibitory factor (MLIF) is an immunomodulatory pentapeptide isolated from axenic cultures of Entamoeba hystolitica. Thus, we evaluated if the MLIF intraperitoneal (i.p.) treatment prevented SM-induced acute lung injury. The peptide prevented SM without a parasiticidal effect, indicating that its protective effect was related to modifications in the immune response. Furthermore, peripheral CD8+ leukocytes and neutrophil proportions were higher in infected treated mice. However, the treatment prevented DAD, CD8+ cell infiltration into the pulmonary tissue and downregulated IFNγ. Moreover, VCAM-1 expression was abrogated. These results indicate that the MLIF treatment downregulated adhesion molecule expression, impeding cell migration and proinflammatory cytokine tissular production, preventing acute lung injury induced by SM. Our findings represent a potential novel strategy to avoid this complication in various events where a dysregulated immune response triggers lung injury.
Collapse
Affiliation(s)
- Martha Jackeline Pérez-Vega
- Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México, Mexico; Posgrado en Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México, Mexico
| | - Gerardo Manuel Corral-Ruiz
- Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México, Mexico; Posgrado en Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México, Mexico
| | - Adrian Galán-Salinas
- Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México, Mexico
| | - Raúl Silva-García
- Unidad de Investigación Médica en Inmunología, Hospital de Pediatría, CMN-Siglo XXI, IMSS, Ciudad de México, Mexico
| | - Ismael Mancilla-Herrera
- Departamento de Infectología e Inmunología, Instituto Nacional de Perinatología, Ciudad de México, Mexico
| | - Jorge Barrios-Payán
- Sección de Patología Experimental, Departamento de Patología, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Ciudad de México, Mexico
| | | | - Rogelio Hernández-Pando
- Sección de Patología Experimental, Departamento de Patología, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Ciudad de México, Mexico.
| | - Luvia Enid Sánchez-Torres
- Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México, Mexico.
| |
Collapse
|
20
|
Borges SDL, de Macedo EDS, da Silva FAV, Ataíde BJDA, Mendes NDSF, Passos ADCF, de Moraes SAS, Herculano AM, Oliveira KRHM, Bahia CP, Dolabella SS, Batista EDJO. Experimental Granulomatous Amebic Encephalitis Caused by Acanthamoeba castellanii. Trop Med Infect Dis 2024; 9:145. [PMID: 39058187 PMCID: PMC11281140 DOI: 10.3390/tropicalmed9070145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 06/12/2024] [Accepted: 06/20/2024] [Indexed: 07/28/2024] Open
Abstract
Acanthamoeba genus can affect humans with diseases such as granulomatous amebic encephalitis (GAE), a highly lethal neuroinfection. Several aspects of the disease still need to be elucidated. Animal models of GAE have advanced our knowledge of the disease. This work tested Wistar rats (Rattus norvegicus albinus) as an animal model of GAE. For this, 32 animals were infected with 1 × 106A. castellanii trophozoites of the T4 genotype. Ameba recovery tests were carried out using agar plates, vascular extravasation assays, behavioral tests, and histopathological technique with H/E staining. Data were subjected to linear regression analysis, one-way ANOVA, and Tukey's test, performed in the GraphPad Prism® 8.0 program, with a significance level of p < 0.05. The results revealed the efficiency of the model. Amebae were recovered from the liver, lungs, and brain of infected animals, and there were significant encephalic vascular extravasations and behavioral changes in these animals, but not in the control animals. However, not all infected animals showed positive histopathology for the analyzed organs. Nervous tissues were the least affected, demonstrating the role of the BBB in the defense of the CNS. Supported by the demonstrated evidence, we confirm the difficulties and the feasibilities of using rats as an animal model of GAE.
Collapse
Affiliation(s)
- Samuel da Luz Borges
- Laboratório de Protozoologia, Núcleo de Medicina Tropical, Universidade Federal do Pará, Belém 66055-240, Brazil; (E.d.S.d.M.); (F.A.V.d.S.); (E.d.J.O.B.)
- Laboratório de Biologia, Campus Castanhal, Instituto Federal de Educação, Ciência e Tecnologia do Pará, Castanhal 68740-970, Brazil
| | - Eberson da Silva de Macedo
- Laboratório de Protozoologia, Núcleo de Medicina Tropical, Universidade Federal do Pará, Belém 66055-240, Brazil; (E.d.S.d.M.); (F.A.V.d.S.); (E.d.J.O.B.)
| | - Felipe Alexandre Vinagre da Silva
- Laboratório de Protozoologia, Núcleo de Medicina Tropical, Universidade Federal do Pará, Belém 66055-240, Brazil; (E.d.S.d.M.); (F.A.V.d.S.); (E.d.J.O.B.)
| | - Brenda Jaqueline de Azevedo Ataíde
- Laboratório de Neurofarmacologia Experimental, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém 66075-110, Brazil; (B.J.d.A.A.); (N.d.S.F.M.); (A.d.C.F.P.); (S.A.S.d.M.); (A.M.H.); (K.R.H.M.O.)
| | - Nívia de Souza Franco Mendes
- Laboratório de Neurofarmacologia Experimental, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém 66075-110, Brazil; (B.J.d.A.A.); (N.d.S.F.M.); (A.d.C.F.P.); (S.A.S.d.M.); (A.M.H.); (K.R.H.M.O.)
| | - Adelaide da Conceição Fonseca Passos
- Laboratório de Neurofarmacologia Experimental, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém 66075-110, Brazil; (B.J.d.A.A.); (N.d.S.F.M.); (A.d.C.F.P.); (S.A.S.d.M.); (A.M.H.); (K.R.H.M.O.)
| | - Suellen Alessandra Soares de Moraes
- Laboratório de Neurofarmacologia Experimental, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém 66075-110, Brazil; (B.J.d.A.A.); (N.d.S.F.M.); (A.d.C.F.P.); (S.A.S.d.M.); (A.M.H.); (K.R.H.M.O.)
| | - Anderson Manoel Herculano
- Laboratório de Neurofarmacologia Experimental, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém 66075-110, Brazil; (B.J.d.A.A.); (N.d.S.F.M.); (A.d.C.F.P.); (S.A.S.d.M.); (A.M.H.); (K.R.H.M.O.)
| | - Karen Renata Herculano Matos Oliveira
- Laboratório de Neurofarmacologia Experimental, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém 66075-110, Brazil; (B.J.d.A.A.); (N.d.S.F.M.); (A.d.C.F.P.); (S.A.S.d.M.); (A.M.H.); (K.R.H.M.O.)
| | - Carlomagno Pacheco Bahia
- Laboratório de Neuroplasticidade, Instituto de Ciências da Saúde, Universidade Federal do Pará, Belém 66055-240, Brazil;
| | - Silvio Santana Dolabella
- Laboratório de Entomologia e Parasitologia Tropical, Universidade Federal de Sergipe, Aracajú 49060-108, Brazil;
| | - Evander de Jesus Oliveira Batista
- Laboratório de Protozoologia, Núcleo de Medicina Tropical, Universidade Federal do Pará, Belém 66055-240, Brazil; (E.d.S.d.M.); (F.A.V.d.S.); (E.d.J.O.B.)
| |
Collapse
|
21
|
Haley MJ, Barroso R, Jasim DA, Haigh M, Green J, Dickie B, Craig AG, Brough D, Couper KN. Lymphatic network drainage resolves cerebral edema and facilitates recovery from experimental cerebral malaria. Cell Rep 2024; 43:114217. [PMID: 38728141 DOI: 10.1016/j.celrep.2024.114217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 11/29/2023] [Accepted: 04/25/2024] [Indexed: 05/12/2024] Open
Abstract
While brain swelling, associated with fluid accumulation, is a known feature of pediatric cerebral malaria (CM), how fluid and macromolecules are drained from the brain during recovery from CM is unknown. Using the experimental CM (ECM) model, we show that fluid accumulation in the brain during CM is driven by vasogenic edema and not by perivascular cerebrospinal fluid (CSF) influx. We identify that fluid and molecules are removed from the brain extremely quickly in mice with ECM to the deep cervical lymph nodes (dcLNs), predominantly through basal routes and across the cribriform plate and the nasal lymphatics. In agreement, we demonstrate that ligation of the afferent lymphatic vessels draining to the dcLNs significantly impairs fluid drainage from the brain and lowers anti-malarial drug recovery from the ECM syndrome. Collectively, our results provide insight into the pathways that coordinate recovery from CM.
Collapse
Affiliation(s)
- Michael J Haley
- Division of Immunology, Immunity to Infection & Respiratory Medicine, Faculty of Biology, Medicine & Health, The University of Manchester, Manchester M13 9PT, UK; Geoffrey Jefferson Brain Research Centre, The Manchester Academic Health Science Centre, Northern Care Alliance NHS Group, University of Manchester, Manchester, UK; The Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester, UK
| | - Ruben Barroso
- Division of Immunology, Immunity to Infection & Respiratory Medicine, Faculty of Biology, Medicine & Health, The University of Manchester, Manchester M13 9PT, UK; Geoffrey Jefferson Brain Research Centre, The Manchester Academic Health Science Centre, Northern Care Alliance NHS Group, University of Manchester, Manchester, UK; The Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester, UK
| | - Dhifaf A Jasim
- Nanomedicine Lab, National Graphene Institute and Faculty of Biology, Medicine & Health, The University of Manchester, AV Hill Building, Manchester M13 9PT, UK; Medicines Discovery Catapult (MDC), Alderley Park, Macclesfield SK10 4TG, UK
| | - Megan Haigh
- Division of Immunology, Immunity to Infection & Respiratory Medicine, Faculty of Biology, Medicine & Health, The University of Manchester, Manchester M13 9PT, UK
| | - Jack Green
- Geoffrey Jefferson Brain Research Centre, The Manchester Academic Health Science Centre, Northern Care Alliance NHS Group, University of Manchester, Manchester, UK; The Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester, UK; Division of Neuroscience, Faculty of Biology, Medicine & Health, The University of Manchester, Manchester M13 9PT, UK
| | - Ben Dickie
- Geoffrey Jefferson Brain Research Centre, The Manchester Academic Health Science Centre, Northern Care Alliance NHS Group, University of Manchester, Manchester, UK; Division of Informatics, Imaging & Data Sciences, Faculty of Biology, Medicine & Health, The University of Manchester, Manchester M13 9PT, UK
| | - Alister G Craig
- Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Liverpool L3 5QA, UK
| | - David Brough
- Geoffrey Jefferson Brain Research Centre, The Manchester Academic Health Science Centre, Northern Care Alliance NHS Group, University of Manchester, Manchester, UK; The Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester, UK; Division of Neuroscience, Faculty of Biology, Medicine & Health, The University of Manchester, Manchester M13 9PT, UK
| | - Kevin N Couper
- Division of Immunology, Immunity to Infection & Respiratory Medicine, Faculty of Biology, Medicine & Health, The University of Manchester, Manchester M13 9PT, UK; Geoffrey Jefferson Brain Research Centre, The Manchester Academic Health Science Centre, Northern Care Alliance NHS Group, University of Manchester, Manchester, UK; The Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester, UK.
| |
Collapse
|
22
|
Carvalho Cabral P, Weinerman J, Olivier M, Cermakian N. Time of day and circadian disruption influence host response and parasite growth in a mouse model of cerebral malaria. iScience 2024; 27:109684. [PMID: 38680656 PMCID: PMC11053314 DOI: 10.1016/j.isci.2024.109684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 12/20/2023] [Accepted: 04/04/2024] [Indexed: 05/01/2024] Open
Abstract
Malaria is a disease caused by infection with parasite Plasmodium spp. We studied the circadian regulation of host responses to the parasite, in a mouse model of cerebral malaria. The course of the disease was markedly affected by time of infection, with decreased parasitemia and increased inflammation upon infection in the middle of the night. At this time, there were fewer reticulocytes, which are target cells of the parasites. We next investigated the effects of desynchronization of host clocks on the infection: after 10 weeks of recurrent jet lags, mice showed decreased parasite growth and lack of parasite load rhythmicity, paralleled by a loss of glucose rhythm. Accordingly, disrupting host metabolic rhythms impacted parasite load rhythmicity. In summary, our findings of a circadian modulation of malaria parasite growth and infection shed light on aspects of the disease relevant to human malaria and could contribute to new therapeutic or prophylactic measures.
Collapse
Affiliation(s)
- Priscilla Carvalho Cabral
- Douglas Research Centre, McGill University, Montréal, QC H4H 1R3, Canada
- Department of Microbiology and Immunology, McGill University, Montréal, QC H3A 2B4, Canada
| | - Joelle Weinerman
- Douglas Research Centre, McGill University, Montréal, QC H4H 1R3, Canada
| | - Martin Olivier
- Department of Microbiology and Immunology, McGill University, Montréal, QC H3A 2B4, Canada
- Research Institute of the McGill University Health Centre, Montréal, QC H4A 3J1, Canada
| | - Nicolas Cermakian
- Douglas Research Centre, McGill University, Montréal, QC H4H 1R3, Canada
| |
Collapse
|
23
|
Simião GM, Parreira KS, Klein SG, Ferreira FB, Freitas FDS, Silva EFD, Silva NM, Silva MVD, Lima WR. Involvement of Inflammatory Cytokines, Renal NaPi-IIa Cotransporter, and TRAIL Induced-Apoptosis in Experimental Malaria-Associated Acute Kidney Injury. Pathogens 2024; 13:376. [PMID: 38787228 DOI: 10.3390/pathogens13050376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 04/24/2024] [Accepted: 04/26/2024] [Indexed: 05/25/2024] Open
Abstract
The murine model of experimental cerebral malaria (ECM) induced by Plasmodium berghei ANKA was used to investigate the relationship among pro-inflammatory cytokines, alterations in renal function biomarkers, and the induction of the TRAIL apoptosis pathway during malaria-associated acute kidney injury (AKI). Renal function was evaluated through the measurement of plasma creatinine and blood urea nitrogen (BUN). The mRNA expression of several cytokines and NaPi-IIa was quantified. Kidney sections were examined and cytokine levels were assessed using cytometric bead array (CBA) assays. The presence of glomerular IgG deposits and apoptosis-related proteins were investigated using in situ immunofluorescence assays and quantitative real-time PCR, respectively. NaPi-IIa downregulation in the kidneys provided novel insights into the pathogenesis of hypophosphatemia during CM. Histopathological analysis revealed characteristic features of severe malaria-associated nephritis, including glomerular collapse and tubular alterations. Pro-inflammatory cytokines, such as TNF-α, IL-1β, and IL-6, were upregulated. The TRAIL apoptosis pathway was significantly activated, implicating its role in renal apoptosis. The observed alterations in renal biomarkers and the downregulation of NaPi-IIa shed light on potential mechanisms contributing to renal dysfunction in ECM. The intricate balance between pro- and anti-inflammatory cytokines, along with the activation of the TRAIL apoptosis pathway, highlights the complexity of malaria-associated AKI and provides new therapeutic targets.
Collapse
Affiliation(s)
- Gustavo Martins Simião
- Faculty of Health Sciences, Federal University of Rondonopolis, Rondonópolis 78736-900, MT, Brazil
| | | | - Sandra Gabriela Klein
- Laboratory of Biotechnology in Experimental Models, Federal University of Uberlandia, Uberlândia 38410-337, MG, Brazil
| | - Flávia Batista Ferreira
- Laboratory of Biotechnology in Experimental Models, Federal University of Uberlandia, Uberlândia 38410-337, MG, Brazil
- Institute of Biomedical Sciences, Federal University of Uberlandia, Uberlândia 38405-318, MG, Brazil
| | | | | | - Neide Maria Silva
- Institute of Biomedical Sciences, Federal University of Uberlandia, Uberlândia 38405-318, MG, Brazil
| | - Murilo Vieira da Silva
- Laboratory of Biotechnology in Experimental Models, Federal University of Uberlandia, Uberlândia 38410-337, MG, Brazil
| | - Wânia Rezende Lima
- Faculty of Health Sciences, Federal University of Rondonopolis, Rondonópolis 78736-900, MT, Brazil
- Institute of Biotechnology, Federal University of Catalao, Catalão 75706-881, GO, Brazil
- Laboratory of Biotechnology in Experimental Models, Federal University of Uberlandia, Uberlândia 38410-337, MG, Brazil
| |
Collapse
|
24
|
Oelschlegel AM, Bhattacharjee R, Wenk P, Harit K, Rothkötter HJ, Koch SP, Boehm-Sturm P, Matuschewski K, Budinger E, Schlüter D, Goldschmidt J, Nishanth G. Beyond the microcirculation: sequestration of infected red blood cells and reduced flow in large draining veins in experimental cerebral malaria. Nat Commun 2024; 15:2396. [PMID: 38493187 PMCID: PMC10944460 DOI: 10.1038/s41467-024-46617-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 02/29/2024] [Indexed: 03/18/2024] Open
Abstract
Sequestration of infected red blood cells (iRBCs) in the microcirculation is a hallmark of cerebral malaria (CM) in post-mortem human brains. It remains controversial how this might be linked to the different disease manifestations, in particular brain swelling leading to brain herniation and death. The main hypotheses focus on iRBC-triggered inflammation and mechanical obstruction of blood flow. Here, we test these hypotheses using murine models of experimental CM (ECM), SPECT-imaging of radiolabeled iRBCs and cerebral perfusion, MR-angiography, q-PCR, and immunohistochemistry. We show that iRBC accumulation and reduced flow precede inflammation. Unexpectedly, we find that iRBCs accumulate not only in the microcirculation but also in large draining veins and sinuses, particularly at the rostral confluence. We identify two parallel venous streams from the superior sagittal sinus that open into the rostral rhinal veins and are partially connected to infected skull bone marrow. The flow in these vessels is reduced early, and the spatial patterns of pathology correspond to venous drainage territories. Our data suggest that venous efflux reductions downstream of the microcirculation are causally linked to ECM pathology, and that the different spatiotemporal patterns of edema development in mice and humans could be related to anatomical differences in venous anatomy.
Collapse
Affiliation(s)
- A M Oelschlegel
- Combinatorial NeuroImaging Core Facility, Leibniz Institute for Neurobiology, 39118, Magdeburg, Germany
- Research group Neuroplasticity, Leibniz Institute for Neurobiology, 39118, Magdeburg, Germany
| | - R Bhattacharjee
- Combinatorial NeuroImaging Core Facility, Leibniz Institute for Neurobiology, 39118, Magdeburg, Germany
- Institute of Medical Microbiology and Hospital Epidemiology, Hannover Medical School, 30625, Hannover, Germany
| | - P Wenk
- Combinatorial NeuroImaging Core Facility, Leibniz Institute for Neurobiology, 39118, Magdeburg, Germany
| | - K Harit
- Institute of Medical Microbiology and Hospital Epidemiology, Hannover Medical School, 30625, Hannover, Germany
| | - H-J Rothkötter
- Institute of Anatomy, Medical Faculty, Otto-von-Guericke-University Magdeburg, Leipziger Strasse 44, 39120, Magdeburg, Germany
| | - S P Koch
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Experimental Neurology and Center for Stroke Research, Charitéplatz 1, 10117, Berlin, Germany
- Charité-Universitätsmedizin Berlin, NeuroCure Cluster of Excellence and Charité Core Facility 7T Experimental MRIs, 10117, Berlin, Germany
- Charité-Universitätsmedizin Berlin, Charité 3R | Replace, Reduce, Refine, Charitéplatz 1, 10117, Berlin, Germany
| | - P Boehm-Sturm
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Experimental Neurology and Center for Stroke Research, Charitéplatz 1, 10117, Berlin, Germany
- Charité-Universitätsmedizin Berlin, NeuroCure Cluster of Excellence and Charité Core Facility 7T Experimental MRIs, 10117, Berlin, Germany
- Charité-Universitätsmedizin Berlin, Charité 3R | Replace, Reduce, Refine, Charitéplatz 1, 10117, Berlin, Germany
| | - K Matuschewski
- Department of Molecular Parasitology, Institute of Biology, Humboldt University, 10115, Berlin, Germany
| | - E Budinger
- Combinatorial NeuroImaging Core Facility, Leibniz Institute for Neurobiology, 39118, Magdeburg, Germany
- Center of Behavioural Brain Sciences, Universitätsplatz 2, 39106, Magdeburg, Germany
| | - D Schlüter
- Institute of Medical Microbiology and Hospital Epidemiology, Hannover Medical School, 30625, Hannover, Germany
| | - J Goldschmidt
- Combinatorial NeuroImaging Core Facility, Leibniz Institute for Neurobiology, 39118, Magdeburg, Germany.
- Center of Behavioural Brain Sciences, Universitätsplatz 2, 39106, Magdeburg, Germany.
| | - G Nishanth
- Institute of Medical Microbiology and Hospital Epidemiology, Hannover Medical School, 30625, Hannover, Germany.
| |
Collapse
|
25
|
Kipchumba B, Gitonga F, Jepchirchir C, Gitau GW, Okanya PW, Amwayi PW, Isaac AO, Nyabuga NJ. Alcohol spiked with zolpidem and midazolam potentiates inflammation, oxidative stress and organ damage in a mouse model. Forensic Toxicol 2024; 42:45-59. [PMID: 37814103 DOI: 10.1007/s11419-023-00674-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 09/25/2023] [Indexed: 10/11/2023]
Abstract
PURPOSE Crime-related spiking of alcoholic drinks with prescription drugs is quite common and has been happening for centuries. This study, therefore, evaluated the effects of oral administration of alcohol spiked with the zolpidem and midazolam potent sedatives on inflammation, oxidative stress and various organ damage in male Swiss albino mice. METHODS Mice were randomly assigned into six treatment groups; the first group constituted the normal control, the second group received 50 mg/kg body weight of zolpidem only, the third group received 50 mg/kg body weight zolpidem dissolved in 5 g/kg alcohol, the fourth group received 50 mg/kg midazolam only, the fifth group received midazolam (50 mg/kg) dissolved in 5 g/kg alcohol and the sixth group received 5 g/kg alcohol. RESULTS Alcohol-induced significant reduction in neurological function and altered blood hematological indicators. Such neurological impairment and negative effects on blood were exacerbated in mice administered with spiked alcohol. Additionally, midazolam and zolpidem enhanced alcohol-driven elevation of liver function markers; the serum aspartate aminotransferase (AST), alanine aminotransferase (ALT) gamma glutamyltransferase (GGT), total bilirubin and alkaline phosphatase. Exposure to alcohol and/or spiked alcohol led to significant augmentation of nitric oxide and malonaldehyde, with concomitant depletion of liver glutathione (GSH) levels. Similarly, serum levels of pro-inflammatory cytokines tumor necrosis factor alpha and interferon-gamma were increased by co-exposure with midazolam or zolpidem. Alcohol-induced hepatotoxicity and nephrotoxicity were amplified by exposure to alcohol spiked with midazolam/zolpidem. CONCLUSION Exposure to alcohol spiked with midazolam or zolpidem appears to exacerbate neurological deficits, inflammation, oxidative stress, and organ damage.
Collapse
Affiliation(s)
- Biwott Kipchumba
- Department of Biochemistry and Biotechnology, Technical University of Kenya, 52428, Nairobi, 00200, Kenya
| | - Francis Gitonga
- Department of Biochemistry and Biotechnology, Technical University of Kenya, 52428, Nairobi, 00200, Kenya
| | - Careen Jepchirchir
- Department of Biochemistry and Biotechnology, Technical University of Kenya, 52428, Nairobi, 00200, Kenya
| | - Grace Wairimu Gitau
- Department of Biochemistry and Biotechnology, Technical University of Kenya, 52428, Nairobi, 00200, Kenya
| | - Patrick W Okanya
- Department of Biochemistry and Biotechnology, Technical University of Kenya, 52428, Nairobi, 00200, Kenya
| | - Peris Wanza Amwayi
- Department of Biochemistry and Biotechnology, Technical University of Kenya, 52428, Nairobi, 00200, Kenya
| | - Alfred Orina Isaac
- Department of Pharmaceutical Technology, School of Health Sciences and Technology, Technical University of Kenya, 52428, Nairobi, 00200, Kenya
| | - Nyariki James Nyabuga
- Department of Biochemistry and Biotechnology, Technical University of Kenya, 52428, Nairobi, 00200, Kenya.
| |
Collapse
|
26
|
Carpinter BA, Renhe DC, Bellei JCB, Vieira CD, Rodolphi CM, Ferreira MVR, de Freitas CS, Neto AFDS, Coelho EAF, Mietto BDS, Gomes FLR, Rocha VN, Scopel KKG. DHA-rich fish oil plays a protective role against experimental cerebral malaria by controlling inflammatory and mechanical events from infection. J Nutr Biochem 2024; 123:109492. [PMID: 37866427 DOI: 10.1016/j.jnutbio.2023.109492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 05/17/2023] [Accepted: 10/17/2023] [Indexed: 10/24/2023]
Abstract
Every year, thousands of children, particularly those under 5 years old, die because of cerebral malaria (CM). Following conventional treatment, approximately 25% of surviving individuals have lifelong severe neurocognitive sequelae. Therefore, improved conventional therapies or effective alternative therapies that prevent the severe infection are crucial. Omega-3 (Ω-3) polyunsaturated fatty acids (PUFAs) are known to have antioxidative and anti-inflammatory effects and protect against diverse neurological disorders, including Alzheimer's and Parkinson's diseases. However, little is known regarding the effects of Ω-3 PUFAs against parasitic infections. In this study, C57BL/6 mice received supplemental treatment of a fish oil rich in the Ω-3 PUFA, docosahexaenoic acid (DHA), which was started 15 days prior to infection with Plasmodium berghei ANKA and was maintained until the end of the study. Animals treated with the highest doses of DHA, 3.0 and 6.0 g/kg body weight, had 60 and 80% chance of survival, respectively, while all nontreated mice died by the 7th day postinfection due to CM. Furthermore, the parasite load during the critical period for CM development (5th to 11th day postinfection) was controlled in treated mice. However, after this period all animals developed high levels of parasitemia until the 20th day of infection. DHA treatment also effectively reduced blood-brain barrier (BBB) damage and brain edema and completely prevented brain hemorrhage and vascular occlusion. A strong anti-inflammatory profile was observed in the brains of DHA-treated mice, as well as, an increased number of neutrophil and reduced number of CD8+ T leukocytes in the spleen. Thus, this is the first study to demonstrate that the prophylactic use of DHA-rich fish oil exerts protective effects against experimental CM, reducing the mechanical and immunological events caused by the P. berghei ANKA infection.
Collapse
Affiliation(s)
- Bárbara Albuquerque Carpinter
- Department of Parasitology, Microbiology and Immunology and Post-Graduation Program in Biological Science, Research Centre of Parasitology, Federal University of Juiz de Fora, Juiz de Fora, Brazil
| | - Daniela Chaves Renhe
- Department of Parasitology, Microbiology and Immunology and Post-Graduation Program in Biological Science, Research Centre of Parasitology, Federal University of Juiz de Fora, Juiz de Fora, Brazil
| | - Jéssica Correa Bezerra Bellei
- Department of Parasitology, Microbiology and Immunology and Post-Graduation Program in Biological Science, Research Centre of Parasitology, Federal University of Juiz de Fora, Juiz de Fora, Brazil
| | - Carolina David Vieira
- Department of Parasitology, Microbiology and Immunology and Post-Graduation Program in Biological Science, Research Centre of Parasitology, Federal University of Juiz de Fora, Juiz de Fora, Brazil
| | - Cinthia Magalhães Rodolphi
- Department of Parasitology, Microbiology and Immunology and Post-Graduation Program in Biological Science, Research Centre of Parasitology, Federal University of Juiz de Fora, Juiz de Fora, Brazil
| | | | - Camila Simões de Freitas
- Post-graduation Program in Health Sciences, Infectology and Tropical Medicine, Faculty of Medicine, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Adolfo Firmino da Silva Neto
- Department of Biology, Research Centre of Cellular Biology, Federal University of Juiz de Fora, Juiz de Fora, Brazil
| | - Eduardo Antônio Ferraz Coelho
- Post-graduation Program in Health Sciences, Infectology and Tropical Medicine, Faculty of Medicine, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Bruno de Siqueira Mietto
- Department of Biology, Research Centre of Cellular Biology, Federal University of Juiz de Fora, Juiz de Fora, Brazil
| | | | - Vinicius Novaes Rocha
- Department of Veterinary Medicine, Research Centre of Pathology and Veterinary Histology, Federal University of Juiz de Fora, Juiz de Fora, Brazil
| | - Kézia Katiani Gorza Scopel
- Department of Parasitology, Microbiology and Immunology and Post-Graduation Program in Biological Science, Research Centre of Parasitology, Federal University of Juiz de Fora, Juiz de Fora, Brazil.
| |
Collapse
|
27
|
Gaio P, Cramer A, de Melo Oliveira NF, Porto S, Kramer L, Nonato Rabelo RA, Pereira RDD, de Oliveira Santos LL, Nascimento Barbosa CL, Silva Oliveira FM, Martins Teixeira M, Castro Russo R, Matos MJ, Simão Machado F. N-(coumarin-3-yl)cinnamamide Promotes Immunomodulatory, Neuroprotective, and Lung Function-Preserving Effects during Severe Malaria. Pharmaceuticals (Basel) 2023; 17:46. [PMID: 38256880 PMCID: PMC10821074 DOI: 10.3390/ph17010046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 12/21/2023] [Accepted: 12/22/2023] [Indexed: 01/24/2024] Open
Abstract
Plasmodium berghei ANKA (PbA) infection in mice resembles several aspects of severe malaria in humans, such as cerebral malaria and acute respiratory distress syndrome. Herein, the effects of N-(coumarin-3-yl)cinnamamide (M220) against severe experimental malaria have been investigated. Treatment with M220 proved to protect cognitive abilities and lung function in PbA-infected mice, observed by an object recognition test and spirometry, respectively. In addition, treated mice demonstrated decreased levels of brain and lung inflammation. The production and accumulation of microglia, and immune cells that produce the inflammatory cytokines TNF and IFN-γ, decreased, while the production of the anti-inflammatory cytokine IL-10 by innate and adaptive immune cells was enhanced. Treatment with M220 promotes immunomodulatory, neuroprotective, and lung function-preserving effects during experimental severe malaria. Therefore, it may be an interesting therapeutic candidate to treat severe malaria effects.
Collapse
Affiliation(s)
- Paulo Gaio
- Department of Biochemistry and Immunology, Institute of Biological Science, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil; (P.G.); (A.C.); (N.F.d.M.O.); (S.P.); (L.K.); (R.A.N.R.); (R.d.D.P.); (L.L.d.O.S.); (M.M.T.)
| | - Allysson Cramer
- Department of Biochemistry and Immunology, Institute of Biological Science, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil; (P.G.); (A.C.); (N.F.d.M.O.); (S.P.); (L.K.); (R.A.N.R.); (R.d.D.P.); (L.L.d.O.S.); (M.M.T.)
| | - Natália Fernanda de Melo Oliveira
- Department of Biochemistry and Immunology, Institute of Biological Science, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil; (P.G.); (A.C.); (N.F.d.M.O.); (S.P.); (L.K.); (R.A.N.R.); (R.d.D.P.); (L.L.d.O.S.); (M.M.T.)
| | - Samuel Porto
- Department of Biochemistry and Immunology, Institute of Biological Science, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil; (P.G.); (A.C.); (N.F.d.M.O.); (S.P.); (L.K.); (R.A.N.R.); (R.d.D.P.); (L.L.d.O.S.); (M.M.T.)
| | - Lucas Kramer
- Department of Biochemistry and Immunology, Institute of Biological Science, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil; (P.G.); (A.C.); (N.F.d.M.O.); (S.P.); (L.K.); (R.A.N.R.); (R.d.D.P.); (L.L.d.O.S.); (M.M.T.)
| | - Rayane Aparecida Nonato Rabelo
- Department of Biochemistry and Immunology, Institute of Biological Science, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil; (P.G.); (A.C.); (N.F.d.M.O.); (S.P.); (L.K.); (R.A.N.R.); (R.d.D.P.); (L.L.d.O.S.); (M.M.T.)
| | - Rafaela das Dores Pereira
- Department of Biochemistry and Immunology, Institute of Biological Science, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil; (P.G.); (A.C.); (N.F.d.M.O.); (S.P.); (L.K.); (R.A.N.R.); (R.d.D.P.); (L.L.d.O.S.); (M.M.T.)
| | - Laura Lis de Oliveira Santos
- Department of Biochemistry and Immunology, Institute of Biological Science, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil; (P.G.); (A.C.); (N.F.d.M.O.); (S.P.); (L.K.); (R.A.N.R.); (R.d.D.P.); (L.L.d.O.S.); (M.M.T.)
| | - César Luís Nascimento Barbosa
- Program in Health Sciences, Infectious Diseases and Tropical Medicine/Interdisciplinary Laboratory of Medical Investigation, Faculty of Medicine, Universidade Federal de Minas Gerais, Belo Horizonte 30130-100, MG, Brazil;
| | - Fabrício Marcus Silva Oliveira
- Cellular and Molecular Immunology Group, René Rachou Institute, Oswald o Cruz Foundation—FIOCRUZ, Belo Horizonte 30190-002, MG, Brazil;
| | - Mauro Martins Teixeira
- Department of Biochemistry and Immunology, Institute of Biological Science, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil; (P.G.); (A.C.); (N.F.d.M.O.); (S.P.); (L.K.); (R.A.N.R.); (R.d.D.P.); (L.L.d.O.S.); (M.M.T.)
- Program in Health Sciences, Infectious Diseases and Tropical Medicine/Interdisciplinary Laboratory of Medical Investigation, Faculty of Medicine, Universidade Federal de Minas Gerais, Belo Horizonte 30130-100, MG, Brazil;
| | - Remo Castro Russo
- Laboratory of Pulmonary Immunology and Mechanics, Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte 31270-901, MG, Brazil;
| | - Maria João Matos
- Departamento de Química Orgánica, Facultad de Farmacia, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Fabiana Simão Machado
- Department of Biochemistry and Immunology, Institute of Biological Science, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil; (P.G.); (A.C.); (N.F.d.M.O.); (S.P.); (L.K.); (R.A.N.R.); (R.d.D.P.); (L.L.d.O.S.); (M.M.T.)
- Program in Health Sciences, Infectious Diseases and Tropical Medicine/Interdisciplinary Laboratory of Medical Investigation, Faculty of Medicine, Universidade Federal de Minas Gerais, Belo Horizonte 30130-100, MG, Brazil;
| |
Collapse
|
28
|
Fraga A, Mósca AF, Moita D, Simas JP, Nunes-Cabaço H, Prudêncio M. SARS-CoV-2 decreases malaria severity in co-infected rodent models. Front Cell Infect Microbiol 2023; 13:1307553. [PMID: 38156320 PMCID: PMC10753813 DOI: 10.3389/fcimb.2023.1307553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 11/27/2023] [Indexed: 12/30/2023] Open
Abstract
Coronavirus disease 2019 (COVID-19) and malaria, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and Plasmodium parasites, respectively, share geographical distribution in regions where the latter disease is endemic, leading to the emergence of co-infections between the two pathogens. Thus far, epidemiologic studies and case reports have yielded insufficient data on the reciprocal impact of the two pathogens on either infection and related diseases. We established novel co-infection models to address this issue experimentally, employing either human angiotensin-converting enzyme 2 (hACE2)-expressing or wild-type mice, in combination with human- or mouse-infective variants of SARS-CoV-2, and the P. berghei rodent malaria parasite. We now show that a primary infection by a viral variant that causes a severe disease phenotype partially impairs a subsequent liver infection by the malaria parasite. Additionally, exposure to an attenuated viral variant modulates subsequent immune responses and provides protection from severe malaria-associated outcomes when a blood stage P. berghei infection was established. Our findings unveil a hitherto unknown host-mediated virus-parasite interaction that could have relevant implications for disease management and control in malaria-endemic regions. This work may contribute to the development of other models of concomitant infection between Plasmodium and respiratory viruses, expediting further research on co-infections that lead to complex disease presentations.
Collapse
Affiliation(s)
- Ana Fraga
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina da Universidade de Lisboa, Lisboa, Portugal
| | - Andreia F. Mósca
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina da Universidade de Lisboa, Lisboa, Portugal
| | - Diana Moita
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina da Universidade de Lisboa, Lisboa, Portugal
| | - J. Pedro Simas
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina da Universidade de Lisboa, Lisboa, Portugal
- Católica Biomedical Research, Católica Medical School, Universidade Católica Portuguesa, Lisboa, Portugal
| | - Helena Nunes-Cabaço
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina da Universidade de Lisboa, Lisboa, Portugal
| | - Miguel Prudêncio
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina da Universidade de Lisboa, Lisboa, Portugal
| |
Collapse
|
29
|
Aguolu OG, Kiti MC, Nelson K, Liu CY, Sundaram M, Gramacho S, Jenness S, Melegaro A, Sacoor C, Bardaji A, Macicame I, Jose A, Cavele N, Amosse F, Uamba M, Jamisse E, Tchavana C, Briones HGM, Jarquín C, Ajsivinac M, Pischel L, Ahmed N, Mohan VR, Srinivasan R, Samuel P, John G, Ellington K, Joaquim OA, Zelaya A, Kim S, Chen H, Kazi M, Malik F, Yildirim I, Lopman B, Omer SB. Comprehensive profiling of social mixing patterns in resource poor countries: a mixed methods research protocol. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.12.05.23299472. [PMID: 38105989 PMCID: PMC10723497 DOI: 10.1101/2023.12.05.23299472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Background Low-and-middle-income countries (LMICs) bear a disproportionate burden of communicable diseases. Social interaction data inform infectious disease models and disease prevention strategies. The variations in demographics and contact patterns across ages, cultures, and locations significantly impact infectious disease dynamics and pathogen transmission. LMICs lack sufficient social interaction data for infectious disease modeling. Methods To address this gap, we will collect qualitative and quantitative data from eight study sites (encompassing both rural and urban settings) across Guatemala, India, Pakistan, and Mozambique. We will conduct focus group discussions and cognitive interviews to assess the feasibility and acceptability of our data collection tools at each site. Thematic and rapid analyses will help to identify key themes and categories through coding, guiding the design of quantitative data collection tools (enrollment survey, contact diaries, exit survey, and wearable proximity sensors) and the implementation of study procedures.We will create three age-specific contact matrices (physical, nonphysical, and both) at each study site using data from standardized contact diaries to characterize the patterns of social mixing. Regression analysis will be conducted to identify key drivers of contacts. We will comprehensively profile the frequency, duration, and intensity of infants' interactions with household members using high resolution data from the proximity sensors and calculating infants' proximity score (fraction of time spent by each household member in proximity with the infant, over the total infant contact time) for each household member. Discussion Our qualitative data yielded insights into the perceptions and acceptability of contact diaries and wearable proximity sensors for collecting social mixing data in LMICs. The quantitative data will allow a more accurate representation of human interactions that lead to the transmission of pathogens through close contact in LMICs. Our findings will provide more appropriate social mixing data for parameterizing mathematical models of LMIC populations. Our study tools could be adapted for other studies.
Collapse
Affiliation(s)
| | | | - Kristin Nelson
- Rollins School of Public Health, Emory University, Georgia, USA
| | - Carol Y. Liu
- Rollins School of Public Health, Emory University, Georgia, USA
| | - Maria Sundaram
- Center for Clinical Epidemiology and Population Health, Marshfield Clinic Research Institute, Marshfield, Wisconsin, USA
| | - Sergio Gramacho
- Rollins School of Public Health, Emory University, Georgia, USA
| | - Samuel Jenness
- Rollins School of Public Health, Emory University, Georgia, USA
| | - Alessia Melegaro
- DONDENA Centre for Research in Social Dynamics and Public Policy, Bocconi University, Italy
| | | | - Azucena Bardaji
- Manhiça Health Research Centre, Manhica, Mozambique
- ISGlobal, Hospital Clinic – Universitat de Barcelona, Barcelona, Spain
- Consorcio de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Ivalda Macicame
- Polana Caniço Health Research and Training Centre, CISPOC, Mozambique
| | - Americo Jose
- Polana Caniço Health Research and Training Centre, CISPOC, Mozambique
| | - Nilzio Cavele
- Polana Caniço Health Research and Training Centre, CISPOC, Mozambique
| | | | - Migdalia Uamba
- Polana Caniço Health Research and Training Centre, CISPOC, Mozambique
| | | | | | | | - Claudia Jarquín
- Centro de Estudios en Salud (CES), Universidad del Valle de Guatemala
| | - María Ajsivinac
- Centro de Estudios en Salud (CES), Universidad del Valle de Guatemala
| | - Lauren Pischel
- Yale School of Medicine, Yale University, Connecticut, USA
| | - Noureen Ahmed
- Peter O’Donnell Jr. School of Public Health at UT Southwestern Medical Center, Dallas, Texas
| | | | | | | | - Gifta John
- Christian Medical College Vellore, India
| | - Kye Ellington
- Rollins School of Public Health, Emory University, Georgia, USA
| | | | - Alana Zelaya
- Rollins School of Public Health, Emory University, Georgia, USA
| | - Sara Kim
- Rollins School of Public Health, Emory University, Georgia, USA
| | - Holin Chen
- Rollins School of Public Health, Emory University, Georgia, USA
| | - Momin Kazi
- The Aga Khan University, Karachi, Pakistán
| | - Fauzia Malik
- Peter O’Donnell Jr. School of Public Health at UT Southwestern Medical Center, Dallas, Texas
| | - Inci Yildirim
- Yale School of Medicine, Yale University, Connecticut, USA
| | - Benjamin Lopman
- Rollins School of Public Health, Emory University, Georgia, USA
| | - Saad B. Omer
- Peter O’Donnell Jr. School of Public Health at UT Southwestern Medical Center, Dallas, Texas
| |
Collapse
|
30
|
Ma K, Thairu MW, Sankaran K. MolPad: An R-Shiny Package for Cluster Co-Expression Analysis in Longitudinal Microbiomics. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.29.569321. [PMID: 38077024 PMCID: PMC10705384 DOI: 10.1101/2023.11.29.569321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/19/2024]
Abstract
The R-Shiny package MolPad provides an interactive dashboard for understanding the dynamics of longitudinal molecular co-expression in microbiomics. The main idea for addressing the issue is first to use a network to overview major patterns among their predictive relationships and then zoom into specific clusters of interest. It is designed with a focus-plus-context analysis strategy and automatically generates links to online curated annotations. The dashboard consists of a cluster-level network, a bar plot of taxonomic composition, a line plot of data modalities, and a table for each pathway. Further, the package includes functions that handle the data processing for creating the dashboard. This makes it beginner-friendly for users with less R programming experience. We illustrate these methods with a case study on a longitudinal metagenomics analysis of the cheese microbiome.
Collapse
|
31
|
Moita D, Rôla C, Nunes-Cabaço H, Nogueira G, Maia TG, Othman AS, Franke-Fayard B, Janse CJ, Mendes AM, Prudêncio M. The effect of dosage on the protective efficacy of whole-sporozoite formulations for immunization against malaria. NPJ Vaccines 2023; 8:182. [PMID: 37996533 PMCID: PMC10667361 DOI: 10.1038/s41541-023-00778-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 11/09/2023] [Indexed: 11/25/2023] Open
Abstract
Immunization with Plasmodium sporozoites, either attenuated or administered under the cover of an antimalarial drug, can induce strong protection against malaria in pre-clinical murine models, as well as in human trials. Previous studies have suggested that whole-sporozoite (WSpz) formulations based on parasites with longer liver stage development induce higher protection, but a comparative analysis of four different WSpz formulations has not been reported. We employed a rodent model of malaria to analyze the effect of immunization dosage on the protective efficacy of WSpz formulations consisting of (i) early liver arresting genetically attenuated parasites (EA-GAP) or (ii) radiation-attenuated sporozoites (RAS), (iii) late arresting GAP (LA-GAP), and (iv) sporozoites administered under chemoprophylaxis, that are eliminated upon release into the bloodstream (CPS). Our results show that, unlike all other WSpz formulations, EA-GAP fails to confer complete protection against an infectious challenge at any immunization dosage employed, suggesting that a minimum threshold of liver development is required to elicit fully effective immune responses. Moreover, while immunization with RAS, LA-GAP and CPS WSpz yields comparable, dosage-dependent protection, protection by EA-GAP WSpz peaks at an intermediate dosage and markedly decreases thereafter. In-depth immunological analyses suggest that effector CD8+ T cells elicited by EA-GAP WSpz immunization have limited developmental plasticity, with a potential negative impact on the functional versatility of memory cells and, thus, on protective immunity. Our findings point towards dismissing EA-GAP from prioritization for WSpz malaria vaccination and enhance our understanding of the complexity of the protection elicited by these WSpz vaccine candidates, guiding their future optimization.
Collapse
Affiliation(s)
- Diana Moita
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina da Universidade de Lisboa, Lisboa, Portugal
| | - Catarina Rôla
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina da Universidade de Lisboa, Lisboa, Portugal
| | - Helena Nunes-Cabaço
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina da Universidade de Lisboa, Lisboa, Portugal
| | - Gonçalo Nogueira
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina da Universidade de Lisboa, Lisboa, Portugal
| | - Teresa G Maia
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina da Universidade de Lisboa, Lisboa, Portugal
| | - Ahmad Syibli Othman
- Faculty of Health Sciences, Universiti Sultan Zainal Abidin, 21300, Terengganu, Malaysia
| | | | - Chris J Janse
- Department of Parasitology, Leiden University Medical Center, Leiden, Netherlands
| | - António M Mendes
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina da Universidade de Lisboa, Lisboa, Portugal.
| | - Miguel Prudêncio
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina da Universidade de Lisboa, Lisboa, Portugal.
| |
Collapse
|
32
|
Mitalo NS, Waiganjo NN, Mokua Mose J, Bosire DO, Oula JO, Orina Isaac A, Nyabuga Nyariki J. Coinfection with Schistosoma mansoni Enhances Disease Severity in Human African Trypanosomiasis. J Trop Med 2023; 2023:1063169. [PMID: 37954132 PMCID: PMC10637842 DOI: 10.1155/2023/1063169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 09/29/2023] [Accepted: 10/24/2023] [Indexed: 11/14/2023] Open
Abstract
Introduction Human African trypanosomiasis (HAT) and schistosomiasis are neglected parasitic diseases found in the African continent. This study was conducted to determine how primary infection with Schistosoma mansoni affects HAT disease progression with a secondary infection with Trypanosoma brucei rhodesiense (T.b.r) in a mouse model. Methods Female BALB-c mice (6-8 weeks old) were randomly divided into four groups of 12 mice each. The different groups were infected with Schistosoma mansoni (100 cercariae) and Trypanosoma brucei rhodesiense (5.0 × 104) separately or together. Twenty-one days after infection with T.b.r, mice were sacrificed and samples were collected for analysis. Results The primary infection with S. mansoni significantly enhanced successive infection by the T.b.r; consequently, promoting HAT disease severity and curtailing host survival time. T.b.r-induced impairment of the neurological integrity and breach of the blood-brain barrier were markedly pronounced on coinfection with S. mansoni. Coinfection with S. mansoni and T.b.r resulted in microcytic hypochromic anemia characterized by the suppression of RBCs, hematocrit, hemoglobin, and red cell indices. Moreover, coinfection of the mice with the two parasites resulted in leukocytosis which was accompanied by the elevation of basophils, neutrophils, lymphocytes, monocytes, and eosinophils. More importantly, coinfection resulted in a significant elevation of alanine aminotransferase (ALT), aspartate aminotransferase (AST), alkaline phosphatase (ALP), total bilirubin, creatinine, urea, and uric acid, which are the markers of liver and kidney damage. Meanwhile, S. mansoni-driven dyslipidemia was significantly enhanced by the coinfection of mice with T.b.r. Moreover, coinfection with S. mansoni and T.b.r led to a strong immune response characterized by a significant increase in serum TNF-α and IFN-γ. T.b.r infection enhanced S. mansoni-induced depletion of cellular-reduced glutathione (GSH) in the brain and liver tissues, indicative of lethal oxidative damage. Similarly, coinfection resulted in a significant rise in nitric oxide (NO) and malondialdehyde (MDA) levels. Conclusion Primary infection with S. mansoni exacerbates disease severity of secondary infection with T.b.r in a mouse model that is associated with harmful inflammatory response, oxidative stress, and organ injury.
Collapse
Affiliation(s)
- Nancy S. Mitalo
- Department of Biomedical Science & Technology, Technical University of Kenya, P.O. Box 52428, Nairobi 00200, Kenya
| | - Naomi N. Waiganjo
- Department of Biomedical Science & Technology, Technical University of Kenya, P.O. Box 52428, Nairobi 00200, Kenya
| | - John Mokua Mose
- Department of Biomedical Science & Technology, Technical University of Kenya, P.O. Box 52428, Nairobi 00200, Kenya
| | - David O. Bosire
- Department of Biochemistry and Biotechnology, Technical University of Kenya, P.O. Box 52428, Nairobi 00200, Kenya
| | - James O. Oula
- Department of Biomedical Science & Technology, Technical University of Kenya, P.O. Box 52428, Nairobi 00200, Kenya
| | - Alfred Orina Isaac
- Department of Pharmaceutical Sciences and Technology, Technical University of Kenya, P.O. Box 52428, Nairobi 00200, Kenya
| | - James Nyabuga Nyariki
- Department of Biochemistry and Biotechnology, Technical University of Kenya, P.O. Box 52428, Nairobi 00200, Kenya
| |
Collapse
|
33
|
Ndunge OBA, Shikani HJ, Dai M, Freeman BD, Desruisseaux MS. Effects of anti-tau immunotherapy on reactive microgliosis, cerebral endotheliopathy, and cognitive function in an experimental model of cerebral malaria. J Neurochem 2023; 167:441-460. [PMID: 37814468 PMCID: PMC10596299 DOI: 10.1111/jnc.15972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 09/08/2023] [Accepted: 09/12/2023] [Indexed: 10/11/2023]
Abstract
Cerebral malaria (CM), a potentially fatal encephalopathy caused primarily by infection with Plasmodium falciparum, results in long-term adverse neuro-psychiatric sequelae. Neural cell injury contributes to the neurological deficits observed in CM. Abnormal regulation of tau, an axonal protein pathologically associated with the formation of neurofibrillary lesions in neurodegenerative diseases, has been linked to inflammation and cerebral microvascular compromise and has been reported in human and experimental CM (ECM). Immunotherapy with a monoclonal antibody to pathological tau (PHF-1 mAB) in experimental models of neurodegenerative diseases has been reported to mitigate cognitive decline. We investigated whether immunotherapy with PHF-1 mAB prevented cerebral endotheliopathy, neural cell injury, and neuroinflammation during ECM. Using C57BL/6 mice infected with either Plasmodium berghei ANKA (PbA), which causes ECM, Plasmodium berghei NK65 (PbN), which causes severe malaria, but not ECM, or uninfected mice (Un), we demonstrated that when compared to PbN infection or uninfected mice, PbA infection resulted in significant memory impairment at 6 days post-infection, in association with abnormal tau phosphorylation at Ser202 /Thr205 (pSer202 /Thr205 ) and Ser396-404 (pSer396-404 ) in mouse brains. ECM also resulted in significantly higher expression of inflammatory markers, in microvascular congestion, and glial cell activation. Treatment with PHF-1 mAB prevented PbA-induced cognitive impairment and was associated with significantly less vascular congestion, neuroinflammation, and neural cell activation in mice with ECM. These findings suggest that abnormal regulation of tau protein contributes to cerebral vasculopathy and is critical in the pathogenesis of neural cell injury during CM. Tau-targeted therapies may ameliorate the neural cell damage and subsequent neurocognitive impairment that occur during disease.
Collapse
Affiliation(s)
| | - Henry J. Shikani
- Albert Einstein College of Medicine, Department of Pathology, Bronx, NY, USA
| | - Minxian Dai
- Albert Einstein College of Medicine, Department of Pathology, Bronx, NY, USA
| | - Brandi D. Freeman
- Albert Einstein College of Medicine, Department of Pathology, Bronx, NY, USA
| | - Mahalia S. Desruisseaux
- Correspondence and reprint requests: Mahalia S. Desruisseaux, MD, Associate Professor of Internal Medicine, Section of Infectious Diseases, Yale School of Medicine, PO Box 208022, TAC S169B, New Haven, CT 06520-8022,
| |
Collapse
|
34
|
Abberger H, Hose M, Ninnemann A, Menne C, Eilbrecht M, Lang KS, Matuschewski K, Geffers R, Herz J, Buer J, Westendorf AM, Hansen W. Neuropilin-1 identifies a subset of highly activated CD8+ T cells during parasitic and viral infections. PLoS Pathog 2023; 19:e1011837. [PMID: 38019895 PMCID: PMC10718454 DOI: 10.1371/journal.ppat.1011837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 12/13/2023] [Accepted: 11/17/2023] [Indexed: 12/01/2023] Open
Abstract
Neuropilin-1 (Nrp-1) expression on CD8+ T cells has been identified in tumor-infiltrating lymphocytes and in persistent murine gamma-herpes virus infections, where it interferes with the development of long-lived memory T cell responses. In parasitic and acute viral infections, the role of Nrp-1 expression on CD8+ T cells remains unclear. Here, we demonstrate a strong induction of Nrp-1 expression on CD8+ T cells in Plasmodium berghei ANKA (PbA)-infected mice that correlated with neurological deficits of experimental cerebral malaria (ECM). Likewise, the frequency of Nrp-1+CD8+ T cells was significantly elevated and correlated with liver damage in the acute phase of lymphocytic choriomeningitis virus (LCMV) infection. Transcriptomic and flow cytometric analyses revealed a highly activated phenotype of Nrp-1+CD8+ T cells from infected mice. Correspondingly, in vitro experiments showed rapid induction of Nrp-1 expression on CD8+ T cells after stimulation in conjunction with increased expression of activation-associated molecules. Strikingly, T cell-specific Nrp-1 ablation resulted in reduced numbers of activated T cells in the brain of PbA-infected mice as well as in spleen and liver of LCMV-infected mice and alleviated the severity of ECM and LCMV-induced liver pathology. Mechanistically, we identified reduced blood-brain barrier leakage associated with reduced parasite sequestration in the brain of PbA-infected mice with T cell-specific Nrp-1 deficiency. In conclusion, Nrp-1 expression on CD8+ T cells represents a very early activation marker that exacerbates deleterious CD8+ T cell responses during both, parasitic PbA and acute LCMV infections.
Collapse
Affiliation(s)
- Hanna Abberger
- Institute of Medical Microbiology, University Hospital Essen, University Duisburg-Essen, Germany
- Division of Immunology, Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Victoria, Australia
| | - Matthias Hose
- Institute of Medical Microbiology, University Hospital Essen, University Duisburg-Essen, Germany
| | - Anne Ninnemann
- Institute of Medical Microbiology, University Hospital Essen, University Duisburg-Essen, Germany
| | - Christopher Menne
- Institute of Virology, University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Germany
- Murdoch Children’s Research Institute, Parkville, Victoria, Australia
| | - Mareike Eilbrecht
- Institute of Immunology, University Hospital Essen, University Duisburg-Essen, Germany
| | - Karl S. Lang
- Institute of Immunology, University Hospital Essen, University Duisburg-Essen, Germany
| | - Kai Matuschewski
- Department of Molecular Parasitology, Institute of Biology, Humboldt University Berlin, Germany
| | - Robert Geffers
- Genome Analytics, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Josephine Herz
- Department of Pediatrics 1, Neonatology & Experimental perinatal Neurosciences, University Hospital Essen, University Duisburg-Essen, Germany
- Centre for Translational Neuro- and Behavioral Sciences, C-TNBS, Faculty of Medicine, University Duisburg-Essen, Germany
| | - Jan Buer
- Institute of Medical Microbiology, University Hospital Essen, University Duisburg-Essen, Germany
| | - Astrid M. Westendorf
- Institute of Medical Microbiology, University Hospital Essen, University Duisburg-Essen, Germany
| | - Wiebke Hansen
- Institute of Medical Microbiology, University Hospital Essen, University Duisburg-Essen, Germany
| |
Collapse
|
35
|
Gustison ML, Muñoz-Castañeda R, Osten P, Phelps SM. Sexual coordination in a whole-brain map of prairie vole pair bonding. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.26.550685. [PMID: 37546974 PMCID: PMC10402037 DOI: 10.1101/2023.07.26.550685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
Sexual bonds are central to the social lives of many species, including humans, and monogamous prairie voles have become the predominant model for investigating such attachments. We developed an automated whole-brain mapping pipeline to identify brain circuits underlying pair-bonding behavior. We identified bonding-related c-Fos induction in 68 brain regions clustered in seven major brain-wide neuronal circuits. These circuits include known regulators of bonding, such as the bed nucleus of the stria terminalis, paraventricular hypothalamus, ventral pallidum, and prefrontal cortex. They also include brain regions previously unknown to shape bonding, such as ventromedial hypothalamus, medial preoptic area and the medial amygdala, but that play essential roles in bonding-relevant processes, such as sexual behavior, social reward and territorial aggression. Contrary to some hypotheses, we found that circuits active during mating and bonding were largely sexually monomorphic. Moreover, c-Fos induction across regions was strikingly consistent between members of a pair, with activity best predicted by rates of ejaculation. A novel cluster of regions centered in the amygdala remained coordinated after bonds had formed, suggesting novel substrates for bond maintenance. Our tools and results provide an unprecedented resource for elucidating the networks that translate sexual experience into an enduring bond.
Collapse
Affiliation(s)
- Morgan L. Gustison
- Department of Integrative Biology, The University of Texas at Austin; Austin, TX, USA
- Department of Psychology, Western University, ON, Canada
| | - Rodrigo Muñoz-Castañeda
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
- Appel Alzheimer's Disease Research Institute, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY
| | - Pavel Osten
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | - Steven M. Phelps
- Department of Integrative Biology, The University of Texas at Austin; Austin, TX, USA
- Institute for Neuroscience, The University of Texas at Austin; Austin, TX, USA
| |
Collapse
|
36
|
Plirat W, Chaniad P, Phuwajaroanpong A, Konyanee A, Viriyavejakul P, Septama AW, Punsawad C. Efficacy of artesunate combined with Atractylodes lancea or Prabchompoothaweep remedy extracts as adjunctive therapy for the treatment of cerebral malaria. BMC Complement Med Ther 2023; 23:332. [PMID: 37730604 PMCID: PMC10510250 DOI: 10.1186/s12906-023-04150-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 09/04/2023] [Indexed: 09/22/2023] Open
Abstract
BACKGROUND Cerebral malaria is one of the most serious complications of Plasmodium infection and causes behavioral changes. However, current antimalarial drugs have shown poor outcomes. Therefore, new antimalarials with neuroprotective effects are urgently needed. This study aimed to evaluate the effects of selected extracts as monotherapy or adjunctive therapy with artesunate on antimalarial, anti-inflammatory, antioxidant, and neuroprotective properties in experimental cerebral malaria (ECM). METHODS ECM was induced in male C57BL/6 mice by infection with Plasmodium berghei ANKA (PbA). Ethanolic extracts of Atractylodes lancea (a dose of 400 mg/kg) and Prabchompoothaweep remedy (a dose of 600 mg/kg) were evaluated as monotherapy and adjunctive therapy combined with artesunate at the onset of signs of cerebral malaria and continued for 7 consecutive days. Parasitemia, clinical scores, and body weight were recorded throughout the study. At day 13 post-infection, mouse brains were dissected and processed for the study of the inflammatory response, oxidative stress, blood-brain barrier (BBB) integrity, histopathological changes, and neurocognitive impairments. RESULTS Ethanolic extracts of A. lancea and Prabchompoothaweep remedy alone improved cerebral malaria outcome in ECM, whereas artesunate combined with extracts of A. lancea or Prabchompoothaweep remedy significantly improved the outcome of artesunate and crude extracts alone. Using real-time PCR, PbA-infected mice that had received the combination treatment showed significantly reduced gene expression of inflammatory cytokines (TNF-α, IL-1β, IL-6, and IL-10), chemokines (CXCL4 and CXCL10), and adhesion molecules (ICAM-1, VCAM1, and CD36). The PbA-infected mice that received the combination treatment showed a significantly decreased malondialdehyde level compared to the untreated group. Similarly, the Evans blue dye assay revealed significantly less dye extravasation in the brains of infected mice administered the combination treatment, indicating improved BBB integrity. Combination treatment improved survival and reduced pathology in the PbA-infected group. Additionally, combination treatment resulted in a significantly reduced level of cognitive impairment, which was analyzed using a novel object recognition test. CONCLUSIONS This study demonstrated that artesunate combined with A. lancea or Prabchompoothaweep remedy extracts as adjunctive therapy reduced mortality, neuroinflammation, oxidative stress, BBB integrity protection, and neurocognitive impairment in the ECM.
Collapse
Affiliation(s)
- Walaiporn Plirat
- Department of Medical Sciences, School of Medicine, Walailak University, Nakhon Si Thammarat, Thailand
- Research Center in Tropical Pathobiology, Walailak University, Nakhon Si Thammarat, 80160, Thailand
| | - Prapaporn Chaniad
- Department of Medical Sciences, School of Medicine, Walailak University, Nakhon Si Thammarat, Thailand
- Research Center in Tropical Pathobiology, Walailak University, Nakhon Si Thammarat, 80160, Thailand
| | - Arisara Phuwajaroanpong
- Department of Medical Sciences, School of Medicine, Walailak University, Nakhon Si Thammarat, Thailand
- Research Center in Tropical Pathobiology, Walailak University, Nakhon Si Thammarat, 80160, Thailand
| | - Atthaphon Konyanee
- Department of Medical Sciences, School of Medicine, Walailak University, Nakhon Si Thammarat, Thailand
- Research Center in Tropical Pathobiology, Walailak University, Nakhon Si Thammarat, 80160, Thailand
| | | | - Abdi Wira Septama
- Research Center for Pharmaceutical Ingredient and Traditional Medicine, National Research and Innovation Agency (BRIN), Cibinong Science Center, Cibinong, West Java, 16915, Indonesia
| | - Chuchard Punsawad
- Department of Medical Sciences, School of Medicine, Walailak University, Nakhon Si Thammarat, Thailand.
- Research Center in Tropical Pathobiology, Walailak University, Nakhon Si Thammarat, 80160, Thailand.
| |
Collapse
|
37
|
Nyariki JN, Kimani NM, Kibet PS, Kinuthia GK, Isaac AO. Coenzyme Q10 exhibits anti-inflammatory and immune-modulatory thereby decelerating the occurrence of experimental cerebral malaria. Mol Biochem Parasitol 2023; 255:111579. [PMID: 37385350 DOI: 10.1016/j.molbiopara.2023.111579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 06/26/2023] [Accepted: 06/26/2023] [Indexed: 07/01/2023]
Abstract
Cerebral Malaria (CM) is associated with the complex neurological syndrome, whose pathology is mediated by severe inflammatory processes following infection with Plasmodium falciparum. Coenzyme-Q10 (Co-Q10) is a potent anti-inflammatory, anti-oxidant, and anti-apoptotic agent with numerous clinical applications. The aim of this study was to elucidate the role of oral administration of Co-Q10 on the initiation or regulation of inflammatory immune response during experimental cerebral malaria (ECM). For this purpose, the pre-clinical effect of Co-Q10 was evaluated in C57BL/6 J mice infected with Plasmodium berghei ANKA (PbA). Treatment with Co-Q10 resulted in the reduction of infiltrating parasite load, greatly improved the survival rate of PbA-infected mice that occurred independent of parasitaemia and prevented PbA-induced disruption of the blood-brain barrier (BBB) integrity. Exposure to Co-Q10 resulted in the reduction of infiltration of effector CD8 + T cells in the brain and secretion of cytolytic Granzyme B molecules. Notably, Co-Q10-treated mice had reduced levels of CD8 +T cell chemokines CXCR3, CCR2, and CCR5 in the brain following PbA-infection. Brain tissue analysis showed a reduction in the levels of inflammatory mediators TNF- α, CCL3, and RANTES in Co-Q10 administered mice. In addition, Co-Q10 modulated the differentiation and maturation of both splenic and brain dendritic cells and cross-presentation (CD8α+DCs) during ECM. Remarkably, Co-Q10 was very effective in decreasing levels of CD86, MHC-II, and CD40 in macrophages associated with ECM pathology. Exposure to Co-Q10 resulted in increased expression levels of Arginase-1 and Ym1/chitinase 3-like 3, which is linked to ECM protection. Furthermore, Co-Q10 supplementation prevented PbA-induced depletion of Arginase and CD206 mannose receptor levels. Co-Q10 abrogated PbA-driven elevation in pro-inflammatory cytokines IL-1β, IL-18, and IL-6 levels. In conclusion, the oral supplementation with Co-Q10 decelerates the occurrence of ECM by preventing lethal inflammatory immune responses and dampening genes associated with inflammation and immune-pathology during ECM, and offers an inimitable opening for developing an anti-inflammatory agent against cerebral malaria.
Collapse
Affiliation(s)
- James Nyabuga Nyariki
- Department of Biochemistry and Biotechnology, Technical of University of Kenya, P.O Box 52428-00200 Nairobi, Kenya.
| | - Njogu M Kimani
- Department of Physical Sciences, University of Embu, P.O Box 6-60100 Embu, Kenya
| | - Peter Shikuku Kibet
- Department of Pathology, Hematology and Blood Transfusion thematic unit, University of Nairobi, PO Box 30197-00100, Nairobi, Kenya
| | - Geoffrey K Kinuthia
- Department of Science & Public Health, Daystar University, PO Box 44400-00100, Nairobi, Kenya
| | - Alfred Orina Isaac
- Department of Pharmaceutical Sciences and Technology, School Health Sciences and Biomedical Sciences, Technical University of Kenya, P.O Box 52428-00200 Nairobi, Kenya
| |
Collapse
|
38
|
Harit K, Bhattacharjee R, Matuschewski K, Becker J, Kalinke U, Schlüter D, Nishanth G. The deubiquitinating enzyme OTUD7b protects dendritic cells from TNF-induced apoptosis by stabilizing the E3 ligase TRAF2. Cell Death Dis 2023; 14:480. [PMID: 37516734 PMCID: PMC10387084 DOI: 10.1038/s41419-023-06014-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 05/19/2023] [Accepted: 07/19/2023] [Indexed: 07/31/2023]
Abstract
The cytokine tumor necrosis factor (TNF) critically regulates the intertwined cell death and pro-inflammatory signaling pathways of dendritic cells (DCs) via ubiquitin modification of central effector molecules, but the intrinsic molecular switches deciding on either pathway are incompletely defined. Here, we uncover that the ovarian tumor deubiquitinating enzyme 7b (OTUD7b) prevents TNF-induced apoptosis of DCs in infection, resulting in efficient priming of pathogen-specific CD8+ T cells. Mechanistically, OTUD7b stabilizes the E3 ligase TNF-receptor-associated factor 2 (TRAF2) in human and murine DCs by counteracting its K48-ubiquitination and proteasomal degradation. TRAF2 in turn facilitates K63-linked polyubiquitination of RIPK1, which mediates activation of NF-κB and MAP kinases, IL-12 production, and expression of anti-apoptotic cFLIP and Bcl-xL. We show that mice with DC-specific OTUD7b-deficiency displayed DC apoptosis and a failure to induce CD8+ T cell-mediated brain pathology, experimental cerebral malaria, in a murine malaria infection model. Together, our data identify the deubiquitinating enzyme OTUD7b as a central molecular switch deciding on survival of human and murine DCs and provides a rationale to manipulate DC responses by targeting their ubiquitin network downstream of the TNF receptor pathway.
Collapse
Affiliation(s)
- Kunjan Harit
- Institute of Medical Microbiology and Hospital Epidemiology, Hannover Medical School, 30625, Hannover, Germany
| | - Rituparna Bhattacharjee
- Institute of Medical Microbiology and Hospital Epidemiology, Hannover Medical School, 30625, Hannover, Germany
| | - Kai Matuschewski
- Department of Molecular Parasitology, Institute of Biology, Humboldt University, 10115, Berlin, Germany
| | - Jennifer Becker
- Institute for Experimental Infection Research, TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Helmholtz Centre for Infection Research and the Hannover Medical School, Hannover, Germany
| | - Ulrich Kalinke
- Institute for Experimental Infection Research, TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Helmholtz Centre for Infection Research and the Hannover Medical School, Hannover, Germany
| | - Dirk Schlüter
- Institute of Medical Microbiology and Hospital Epidemiology, Hannover Medical School, 30625, Hannover, Germany
| | - Gopala Nishanth
- Institute of Medical Microbiology and Hospital Epidemiology, Hannover Medical School, 30625, Hannover, Germany.
| |
Collapse
|
39
|
Zafar I, Taniguchi T, Baghdadi HB, Kondoh D, Rizk MA, Galon EM, Ji S, El-Sayed SAES, Do T, Li H, Amer MM, Zhuowei M, Yihong M, Zhou J, Inoue N, Xuan X. Babesia microti alleviates disease manifestations caused by Plasmodium berghei ANKA in murine co-infection model of complicated malaria. Front Cell Infect Microbiol 2023; 13:1226088. [PMID: 37492527 PMCID: PMC10364126 DOI: 10.3389/fcimb.2023.1226088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Accepted: 06/20/2023] [Indexed: 07/27/2023] Open
Abstract
Malaria remains one of the most significant health issues worldwide, accounting for 2.6% of the total global disease burden, and efforts to eliminate this threat continue. The key focus is to develop an efficient and long-term immunity to this disease via vaccination or therapeutic approach, and innovative strategies would enable us to achieve this target. Previously, using a mouse co-infection disease model, cross-protection was illustrated between Babesia microti and Plasmodium chabaudi. Hence, this study was planned to elucidate the impact of acute B. microti Peabody mjr and Plasmodium berghei ANKA co-infection on the consequence of complicated malaria in the C57BL/6J mouse model of malaria. Furthermore, immune response and pathological features were analyzed, and the course of the disease was compared among experimental groups. Our study established that acute B. microti infection activated immunity which was otherwise suppressed by P. berghei. The immunosuppressive tissue microenvironment was counteracted as evidenced by the enhanced immune cell population in co-infected mice, in contrast to P. berghei-infected control mice. Parasite sequestration in the brain, liver, lung, and spleen of co-infected mice was significantly decreased and tissue injury was ameliorated. Meanwhile, the serum levels of IFN-γ, TNF-α, and IL-12p70 were reduced while the secretion of IL-10 was promoted in co-infected mice. Eventually, co-infected mice showed an extended rate of survival. Hereby, the principal cytokines associated with the severity of malaria by P. berghei infection were TNF-α, IFN-γ, and IL-12p70. Moreover, it was evident from our flow cytometry results that innate immunity is crucial and macrophages are at the frontline of immunity against P. berghei infection. Our study recommended further investigations to shed light on the effects of babesiosis in suppressing malaria with the goal of developing Babesia-based therapy against malaria.
Collapse
Affiliation(s)
- Iqra Zafar
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Japan
- Livestock and Dairy Development Department, Veterinary Research Institute, Lahore, Punjab, Pakistan
| | - Tomoyo Taniguchi
- Department of Immunology and Parasitology, Graduate School of Medicine University of the Ryukyus, Nishihara Cho, Japan
| | - Hanadi B. Baghdadi
- Biology Department, College of Science, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
- Basic and Applied Scientific Research Center (BASRC), Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Daisuke Kondoh
- Department of Veterinary Medicine, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Japan
| | - Mohamed Abdo Rizk
- Department of Internal Medicine and Infectious Diseases, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt
| | - Eloiza May Galon
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Japan
- College of Veterinary Medicine and Biomedical Sciences, Cavite State University, Indang, Cavite, Philippines
| | - Shengwei Ji
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Japan
| | - Shimaa Abd El-Salam El-Sayed
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Japan
- Department of Biochemistry and Chemistry of Nutrition, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt
| | - Thom Do
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Japan
| | - Hang Li
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Japan
| | - Moaz M. Amer
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Japan
| | - Ma Zhuowei
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Japan
| | - Ma Yihong
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Japan
| | - Jinlin Zhou
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Noboru Inoue
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Japan
| | - Xuenan Xuan
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Japan
| |
Collapse
|
40
|
Oula JO, Mose JM, Waiganjo NN, Chepukosi KW, Mitalo NS, Isaac AO, Nyariki JN. Vitamin B12 blocked Trypanosoma brucei rhodesiense-driven disruption of the blood brain barrier, and normalized nitric oxide and malondialdehyde levels in a mouse model. Parasitol Int 2023; 96:102775. [PMID: 37390918 DOI: 10.1016/j.parint.2023.102775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 06/20/2023] [Accepted: 06/27/2023] [Indexed: 07/02/2023]
Abstract
Infection with Trypanosoma brucei rhodesiense (T.b.r) causes acute Human African Trypanosomiasis (HAT) in Africa. This study determined the effect of vitamin B12 on T.b.r -driven pathological events in a mouse model. Mice were randomly assigned into four groups; group one was the control. Group two was infected with T.b.r; group three was supplemented with 8 mg/kg vitamin B12 for two weeks; before infection with T.b.r. For group four, administration of vitamin B12 was started from the 4th days post-infection with T.b.r. At 40 days post-infection, the mice were sacrificed to obtain blood, tissues, and organs for various analyses. The results showed that vitamin B12 administration enhanced the survival rate of T.b.r infected mice, and prevented T.b.r-induced disruption of the blood-brain barrier and decline in neurological performance. Notably, T.b.r-induced hematological alteration leading to anaemia, leukocytosis and dyslipidemia was alleviated by vitamin B12. T.b.r-induced elevation of the liver alanine aminotransferase, aspartate aminotransferase, alkaline phosphatase and total bilirubin as well as the kidney damage markers urea, uric acid and creatinine were attenuated by vitamin B12. Vitamin B12 blocked T.b.r-driven rise in TNF-α and IFN-γ, nitric oxide and malondialdehyde. T.b.r-induced depletion of GSH levels were attenuated in the presence of vitamin B12 in the brain, spleen and liver tissues; a clear indication of the antioxidant activity of vitamin B12. In conclusion, treatment with vitamin B12 potentially protects against various pathological events associated with severe late-stage HAT and presents a great opportunity for further scrutiny to develop an adjunct therapy for severe late-stage HAT.
Collapse
Affiliation(s)
- James O Oula
- Department of Biomedical Science & Technology, Technical University of Kenya, P. O. Box 52428, 00200 Nairobi, Kenya
| | - John Mokua Mose
- Department of Biomedical Science & Technology, Technical University of Kenya, P. O. Box 52428, 00200 Nairobi, Kenya
| | - Naomi N Waiganjo
- Department of Biomedical Science & Technology, Technical University of Kenya, P. O. Box 52428, 00200 Nairobi, Kenya
| | - Kennedy W Chepukosi
- Department of Biochemistry and Biotechnology, Technical University of Kenya, P. O. Box 52428, 00200 Nairobi, Kenya
| | - Nancy S Mitalo
- Department of Biomedical Science & Technology, Technical University of Kenya, P. O. Box 52428, 00200 Nairobi, Kenya
| | - Alfred Orina Isaac
- Department of Pharmaceutical Sciences and Technology, Technical University of Kenya, P. O. Box 52428, 00200 Nairobi, Kenya
| | - James Nyabuga Nyariki
- Department of Biochemistry and Biotechnology, Technical University of Kenya, P. O. Box 52428, 00200 Nairobi, Kenya.
| |
Collapse
|
41
|
Han S, Wang Q, Song Y, Pang M, Ren C, Wang J, Guan D, Xu W, Li F, Wang F, Zhou X, Fernández-Hernando C, Zhang H, Wu D, Ye Z. Lithium ameliorates Niemann-Pick C1 disease phenotypes by impeding STING/SREBP2 activation. iScience 2023; 26:106613. [PMID: 37128603 PMCID: PMC10148154 DOI: 10.1016/j.isci.2023.106613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 11/18/2022] [Accepted: 03/31/2023] [Indexed: 05/03/2023] Open
Abstract
Niemann-Pick disease type C (NP-C) is a genetic lysosomal disorder associated with progressive neurodegenerative phenotypes. Its therapeutic options are very limited. Here, we show that lithium treatment improves ataxia and feeding phenotypes, attenuates cerebellar inflammation and degeneration, and extends survival in Npc1 mouse models. In addition, lithium suppresses STING activation, SREBP2 processing to its mature form and the expression of the target genes in the Npc1 mice and in Npc1-deficient fibroblasts. Lithium impedes STING/SREBP2 transport from the ER to the Golgi, a step required for STING activation and SREBP2 processing, probably by lowering cytosolic calcium concentrations. This effect of lithium on STING/SREBP2 transport provides a mechanistic explanation for lithium's effects on Npc1 mice. Thus, this study reveals a potential therapeutic option for NP-C patients as well as a strategy to reduce active STING/SREBP2 pathway.
Collapse
Affiliation(s)
- Shiqian Han
- Department of Tropical Medicine, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Qijun Wang
- Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT06520, USA
- Departments of Pharmacology, Yale University School of Medicine, New Haven, CT06520, USA
- Shanghai Institute of Immunology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Yongfeng Song
- Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT06520, USA
- Departments of Pharmacology, Yale University School of Medicine, New Haven, CT06520, USA
| | - Mao Pang
- Laboratory Animal Research Center, Chongqing University School of Medicine, Chongqing 400044, China
| | - Chunguang Ren
- Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT06520, USA
- Departments of Pharmacology, Yale University School of Medicine, New Haven, CT06520, USA
| | - Jing Wang
- Department of Tropical Medicine, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Dongwei Guan
- Laboratory Animal Research Center, Chongqing University School of Medicine, Chongqing 400044, China
| | - Wei Xu
- Biostatistics, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Fangyong Li
- Biostatistics, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Fengchao Wang
- Institute of Combined Injury, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Xinyuan Zhou
- Department of Immunology, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Carlos Fernández-Hernando
- Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT06520, USA
- Comparative Medicine and Pathology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Huiwen Zhang
- Department of Pediatric Endocrinology and Genetics, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Dianqing Wu
- Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT06520, USA
- Departments of Pharmacology, Yale University School of Medicine, New Haven, CT06520, USA
| | - Zhijia Ye
- Laboratory Animal Research Center, Chongqing University School of Medicine, Chongqing 400044, China
| |
Collapse
|
42
|
Anand A, Chandana M, Ghosh S, Das R, Singh N, Vaishalli PM, Gantasala NP, Padmanaban G, Nagaraj VA. Significance of Plasmodium berghei Amino Acid Transporter 1 in Food Vacuole Functionality and Its Association with Cerebral Pathogenesis. Microbiol Spectr 2023; 11:e0494322. [PMID: 36976018 PMCID: PMC10101031 DOI: 10.1128/spectrum.04943-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 03/07/2023] [Indexed: 03/29/2023] Open
Abstract
The food vacuole plays a central role in the blood stage of parasite development by digesting host hemoglobin acquired from red blood cells and detoxifying the host heme released during hemoglobin digestion into hemozoin. Blood-stage parasites undergo periodic schizont bursts, releasing food vacuoles containing hemozoin. Clinical studies in malaria-infected patients and in vivo animal studies have shown the association of hemozoin with disease pathogenesis and abnormal host immune responses in malaria. Here, we perform a detailed in vivo characterization of putative Plasmodium berghei amino acid transporter 1 localized in the food vacuole to understand its significance in the malaria parasite. We show that the targeted deletion of amino acid transporter 1 in Plasmodium berghei leads to a swollen food vacuole phenotype with the accumulation of host hemoglobin-derived peptides. Plasmodium berghei amino acid transporter 1-knockout parasites produce less hemozoin, and the hemozoin crystals display a thin morphology compared with wild-type parasites. The knockout parasites show reduced sensitivity to chloroquine and amodiaquine by showing recrudescence. More importantly, mice infected with the knockout parasites are protected from cerebral malaria and display reduced neuronal inflammation and cerebral complications. Genetic complementation of the knockout parasites restores the food vacuole morphology with hemozoin levels similar to that of wild-type parasites, causing cerebral malaria in the infected mice. The knockout parasites also show a significant delay in male gametocyte exflagellation. Our findings highlight the significance of amino acid transporter 1 in food vacuole functionality and its association with malaria pathogenesis and gametocyte development. IMPORTANCE Food vacuoles of the malaria parasite are involved in the degradation of red blood cell hemoglobin. The amino acids derived from hemoglobin degradation support parasite growth, and the heme released is detoxified into hemozoin. Antimalarials such as quinolines target hemozoin formation in the food vacuole. Food vacuole transporters transport hemoglobin-derived amino acids and peptides from the food vacuole to the parasite cytosol. Such transporters are also associated with drug resistance. Here, we show that the deletion of amino acid transporter 1 in Plasmodium berghei leads to swollen food vacuoles with the accumulation of hemoglobin-derived peptides. The transporter-deleted parasites generate less hemozoin with thin crystal morphology and show reduced sensitivity to quinolines. Mice infected with transporter-deleted parasites are protected from cerebral malaria. There is also a delay in male gametocyte exflagellation, affecting transmission. Our findings uncover the functional significance of amino acid transporter 1 in the life cycle of the malaria parasite.
Collapse
Affiliation(s)
- Aditya Anand
- Infectious Disease Biology, Institute of Life Sciences, Bhubaneswar, Odisha, India
- Regional Centre for Biotechnology, Faridabad, Haryana, India
| | - Manjunatha Chandana
- Infectious Disease Biology, Institute of Life Sciences, Bhubaneswar, Odisha, India
- School of Biotechnology, Kalinga Institute of Industrial Technology, Bhubaneswar, Odisha, India
| | - Sourav Ghosh
- Infectious Disease Biology, Institute of Life Sciences, Bhubaneswar, Odisha, India
- Regional Centre for Biotechnology, Faridabad, Haryana, India
| | - Rahul Das
- Infectious Disease Biology, Institute of Life Sciences, Bhubaneswar, Odisha, India
- Regional Centre for Biotechnology, Faridabad, Haryana, India
| | - Nalini Singh
- Infectious Disease Biology, Institute of Life Sciences, Bhubaneswar, Odisha, India
| | - Pradeep Mini Vaishalli
- Infectious Disease Biology, Institute of Life Sciences, Bhubaneswar, Odisha, India
- Regional Centre for Biotechnology, Faridabad, Haryana, India
| | | | | | | |
Collapse
|
43
|
Song X, Cheng W, Zhu H, Li Y, Li J. Additive Therapy of Plasmodium berghei-Induced Experimental Cerebral Malaria via Dihydroartemisinin Combined with Rapamycin and Atorvastatin. Microbiol Spectr 2023:e0231722. [PMID: 36946739 PMCID: PMC10101104 DOI: 10.1128/spectrum.02317-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2023] Open
Abstract
Cerebral malaria (CM), caused by Plasmodium falciparum, is the primary cause of death from severe malaria. Even after immediate parenteral therapy with antimalarial drugs, the mortality rate remains 15 to 25%. Currently, no effective therapeutic agents are available for the radical treatment of CM. Thus, further in-depth explorations of adjuvant therapies in combination with antimalarial drugs are urgently needed. The experimental cerebral malaria (ECM) model was established by infecting C57BL/6 mice with Plasmodium berghei ANKA. Subsequently, infected mice were continuously treated with dihydroartemisinin (DHA) in combination with rapamycin (RAP) and atorvastatin (AVA) for 5 days at different time points, including day 0, day 3, and day 6 postinfection (p.i.). Treatment efficacy was evaluated by comparing behavioral scores, body weight, parasitemia, survival rate, blood-brain barrier (BBB) integrity, and histopathology. The optimal combination therapy of DHA, RAP, and AVA on day 3 p.i. was selected for ECM. This strategy significantly improved survival rate, reduced parasitemia, improved the rapid murine coma and behavioral scale scores and permeability of the BBB, attenuated cerebrovascular and hepatic central venous obstruction and hemozoin deposition in the liver, and decreased the red pulp area of the spleen, which effectively ameliorated neurological damage in ECM. It also improved histopathology and neurological damage caused by ECM. In this study, the optimal therapeutic strategy for ECM was selected, which is expected to be a potential therapy for human CM. IMPORTANCE Although artemisinin-based combination therapies (ACTs) have greatly improved the clinical outcome of cerebral malaria (CM) as a fatal disease that can permanently disable a significant proportion of children even if they survive, new treatment options are needed as Plasmodium falciparum develops resistance to antimalarial drugs. Recent reports suggest that basal treatment with artemisinin derivatives often fails to protect against cell death, neurological damage, and cognitive deficits. In this study, the combination of dihydroartemisinin with rapamycin and atorvastatin improved the current antimalarial outcomes by overcoming the limitations of current antimalarials for CM morbidity and neurological sequelae. This combination offers a new adjunctive treatment for the clinical treatment of human CM in susceptible populations, including children under 5 years old and pregnant women.
Collapse
Affiliation(s)
- Xiaonan Song
- School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, China
| | - Weijia Cheng
- School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, China
| | - Huiyin Zhu
- School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, China
| | - Yuting Li
- School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, China
| | - Jian Li
- School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, China
| |
Collapse
|
44
|
Rai S, Girdhar M, Siraj F, Sharma S, Kumar M, Katyal A. Mechanistic insights into immunopathogenesis of murine cerebral malaria: Cues from "young" C57BL/6J and BALB/c mice. Immunol Lett 2023; 256-257:9-19. [PMID: 36931472 DOI: 10.1016/j.imlet.2023.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 03/04/2023] [Accepted: 03/13/2023] [Indexed: 03/17/2023]
Abstract
Cerebral malaria (CM), a major cause of mortality in children <5 years, presents disparity in pathophysiological features and poor prognosis compared to adults. Adult C57BL/6J mice infected with Plasmodium berghei ANKA (PbA) are widely used to understand CM pathogenesis compared to relatively less prone BALB/c mice; however, age and immune status of the host also influence disease sequelae and cerebral manifestations. Murine models of CM known so far do not project complete disease spectrum of pediatric CM. The present study was designed to dissect and differentiate CM immunopathogenesis in "young" BALB/c and C57BL/6J mice infected with PbA, in search of a competent mouse model mimicking pediatric CM. Multipronged approach including the analysis of blood-brain barrier (BBB) permeability and parasite infiltration, histopathology, nitric oxide levels, and pro/anti-inflammatory (TNF-α, IFN-γ, IL-4, and IL-10) cytokine expression were compared in the cortices of both young BALB/c and C57BL/6J mice. The results illustrate severe course of infection and typical CM like histopathological alterations including monocytic plugging in PbA-infected "young" BALB/c compared to C57BL/6J mice. The decreased expression of tight junction proteins (ZO-1 and Claudin-3) and Evan's blue extravasation was also more evident in BALB/c mice indicating a more permeable BBB. The increased cortical expression of TNF-α, IFN-γ, IL-4, IL-10, iNOS, eNOS, nNOS, and associated activation of brain resident cells in cortices of BALB/c with progressive parasitaemia depicts the cumulative involvement of host immune responses and parasite accumulation in progression of CM. Thus, the incongruity of cytokine balance resulted in worsening of disease manifestation in "young" BALB/c similar to pediatric CM.
Collapse
Affiliation(s)
- Shweta Rai
- Dr. B.R. Ambedkar Center for Biomedical Research, University of Delhi, North campus, New Delhi 110007, India
| | - Meetali Girdhar
- Dr. B.R. Ambedkar Center for Biomedical Research, University of Delhi, North campus, New Delhi 110007, India
| | - Fouzia Siraj
- Department of Pathology, National Institute of Pathology, ICMR, Safdarjung Hospital, New Delhi, India
| | - Sheetal Sharma
- Dr. B.R. Ambedkar Center for Biomedical Research, University of Delhi, North campus, New Delhi 110007, India
| | - Mukesh Kumar
- Dr. B.R. Ambedkar Center for Biomedical Research, University of Delhi, North campus, New Delhi 110007, India
| | - Anju Katyal
- Dr. B.R. Ambedkar Center for Biomedical Research, University of Delhi, North campus, New Delhi 110007, India.
| |
Collapse
|
45
|
Kitwan L, Makobe C, Mdachi R, Maranga DN, Isaac AO, Nyariki JN. Coenzyme Q 10 prevented Trypanosoma brucei rhodesiense-mediated breach of the blood brain barrier, inflammation and organ damage in late stage of Human African Trypanosomiasis. J Parasit Dis 2023; 47:167-184. [PMID: 36910316 PMCID: PMC9998817 DOI: 10.1007/s12639-022-01553-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 11/21/2022] [Indexed: 12/05/2022] Open
Abstract
During the late stage of Human African Trypanosomiasis (HAT), there is severe cytokine-driven inflammation, oxidative stress and organ damage. Controlling inflammation and oxidative damage presents unique therapeutic opportunities to improve treatment outcome. The current study sought to determine the putative impact of Coenzyme-Q10 (Co-Q10), a potent antioxidant and anti-inflammatory, on adverse inflammatory and oxidative events during Trypanosoma brucei rhodesiense (T.b.r) infection. Group one constituted the control; the second group was infected with T.b.r; the third group was orally administered with 200 mg/kg Co-Q10 for two weeks; thereafter, Co-Q10 administration continued after infection with T.b.r. Co-Q10 improved the survival rate of infected mice and prevented full blown parasite driven splenomegaly and hepatomegaly. Co-Q10 prevented characteristic T.b.r-driven breach of the blood brain barrier and improved neurological integrity among T.b.r infected mice. Co-Q10 protected from T.b.r-induced microcytic hypochromic anaemia and thrombocytopenia. T.b.r-induced oxidative stress in the vital organs was assuaged following exposure to Co-Q10. Co-Q10 blocked T.b.r-induced derangement of high density lipoprotein and triglyceride levels. Co-Q10 significantly abrogated T.b.r-driven elevation of serum TNF-α and IFN-γ levels. Moreover, T.b.r-induced kidney and liver damage was assuaged by Co-Q10 administration. Co-Q10 administration downregulated T.b.r-induced elevation of uric acid and C-reactive protein. Likewise, T.b.r infected mice receiving Co-Q10 exhibited normal brain architecture. In conclusion, treatment with Co-Q10 may be useful in protecting against T.b.r-mediated organ injury, lethal inflammation and oxidative stress commonly present in severe late stage HAT; and presents unique opportunities for an adjunct therapy for late stage HAT.
Collapse
Affiliation(s)
- Lynn Kitwan
- Department of Medical Microbiology Department, Jomo Kenyatta University of Agriculture and Technology (JKUAT), Nairobi, Kenya
| | - Celestine Makobe
- Department of Medical Microbiology Department, Jomo Kenyatta University of Agriculture and Technology (JKUAT), Nairobi, Kenya
| | - Raymond Mdachi
- Biotechnology Research Institute, Kenya Agricultural and Livestock Research Organization, Kikuyu, Kenya
| | | | - Alfred Orina Isaac
- Department of Pharmaceutical Sciences and Technology, Technical University of Kenya, Nairobi, Kenya
| | - James Nyabuga Nyariki
- Department of Biochemistry and Biotechnology, Technical University of Kenya, Nairobi, Kenya
| |
Collapse
|
46
|
Tjärnberg A, Beheler-Amass M, Jackson CA, Christiaen LA, Gresham D, Bonneau R. Structure primed embedding on the transcription factor manifold enables transparent model architectures for gene regulatory network and latent activity inference. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.02.526909. [PMID: 36778259 PMCID: PMC9915715 DOI: 10.1101/2023.02.02.526909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The modeling of gene regulatory networks (GRNs) is limited due to a lack of direct measurements of regulatory features in genome-wide screens. Most GRN inference methods are therefore forced to model relationships between regulatory genes and their targets with expression as a proxy for the upstream independent features, complicating validation and predictions produced by modeling frameworks. Separating covariance and regulatory influence requires aggregation of independent and complementary sets of evidence, such as transcription factor (TF) binding and target gene expression. However, the complete regulatory state of the system, e.g. TF activity (TFA) is unknown due to a lack of experimental feasibility, making regulatory relations difficult to infer. Some methods attempt to account for this by modeling TFA as a latent feature, but these models often use linear frameworks that are unable to account for non-linearities such as saturation, TF-TF interactions, and other higher order features. Deep learning frameworks may offer a solution, as they are capable of modeling complex interactions and capturing higher-order latent features. However, these methods often discard central concepts in biological systems modeling, such as sparsity and latent feature interpretability, in favor of increased model complexity. We propose a novel deep learning autoencoder-based framework, StrUcture Primed Inference of Regulation using latent Factor ACTivity (SupirFactor), that scales to single cell genomic data and maintains interpretability to perform GRN inference and estimate TFA as a latent feature. We demonstrate that SupirFactor outperforms current leading GRN inference methods, predicts biologically relevant TFA and elucidates functional regulatory pathways through aggregation of TFs.
Collapse
Affiliation(s)
- Andreas Tjärnberg
- Center for Developmental Genetics, New York University, New York 10003 NY, USA
- Center For Genomics and Systems Biology, NYU, New York, NY 10008, USA
- Department of Biology, NYU, New York, NY 10008, USA
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, 10010, USA
| | - Maggie Beheler-Amass
- Center For Genomics and Systems Biology, NYU, New York, NY 10008, USA
- Department of Biology, NYU, New York, NY 10008, USA
| | - Christopher A Jackson
- Center For Genomics and Systems Biology, NYU, New York, NY 10008, USA
- Department of Biology, NYU, New York, NY 10008, USA
| | - Lionel A Christiaen
- Center for Developmental Genetics, New York University, New York 10003 NY, USA
- Department of Biology, NYU, New York, NY 10008, USA
- Sars International Centre for Marine Molecular Biology, University of Bergen, Bergen, Norway
- Department of Heart Disease, Haukeland University Hospital, Bergen, Norway
| | - David Gresham
- Center For Genomics and Systems Biology, NYU, New York, NY 10008, USA
- Department of Biology, NYU, New York, NY 10008, USA
| | - Richard Bonneau
- Center For Genomics and Systems Biology, NYU, New York, NY 10008, USA
- Department of Biology, NYU, New York, NY 10008, USA
- Flatiron Institute, Center for Computational Biology, Simons Foundation, New York, NY 10010, USA
- Courant Institute of Mathematical Sciences, Computer Science Department, New York University, New York, NY 10003, USA
- Center For Data Science, NYU, New York, NY 10008, USA
- Prescient Design, a Genentech accelerator, New York, NY, 10010, USA
| |
Collapse
|
47
|
Saavedra JM, Brellenthin AG, Song BK, Lee DC, Sui X, Blair SN. Associations of cardiorespiratory fitness and body mass index with incident restrictive spirometry pattern. Br J Sports Med 2023:bjsports-2022-106136. [PMID: 36609350 PMCID: PMC10323034 DOI: 10.1136/bjsports-2022-106136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/23/2022] [Indexed: 01/09/2023]
Abstract
OBJECTIVES Restrictive spirometry pattern (RSP) suggests an impairment of lung function associated with a significantly increased risk of premature mortality. We evaluated the independent and joint associations of cardiorespiratory fitness (CRF) and body mass index with incident RSP. METHODS Data from the Aerobics Centre Longitudinal Study included 12 360 participants (18-82 years). CRF was assessed by maximal treadmill test and categorised into five groups. Body mass index was categorised into normal weight (<25.0 kg/m2), overweight (25.0-29.9 kg/m2) or obesity (≥30.0 kg/m2). RSP was defined as the simultaneous occurrence of forced expiratory volume in 1 s/force vital capacity ≥lower limit of normal and forced vital capacity <lower limit of normal. RESULTS There were 900 (7.3%) cases of RSP (mean follow-up: 6.9 years). Compared with category 1 ('least fit'), HRs (95% CIs) of RSP were 0.78 (0.63 to 0.96), 0.68 (0.54 to 0.86), 0.70 (0.55 to 0.88) and 0.59 (0.45 to 0.77) in categories 2, 3, 4 and 5 (most fit), respectively, after adjusting for confounders including body mass index. Compared with normal weight, HRs (95% CIs) of RSP were 1.06 (0.91 to 1.23) and 1.30 (1.03 to 1.64) in overweight and obese, respectively. However, the association between obesity and RSP was attenuated when additionally adjusting for CRF (HR 1.08, 95% CI 0.84 to 1.39). Compared with the 'unfit and overweight/obese' group, HRs (95% CIs) for RSP were 1.35 (0.98 to 1.85), 0.77 (0.63 to 0.96) and 0.70 (0.56 to 0.87) in the 'unfit and normal weight,' 'fit and overweight/obese' and 'fit and normal weight' groups, respectively. CONCLUSIONS Low CRF was associated with a greater incidence of RSP, irrespective of body mass index. Future studies are needed to explore potential underlying mechanisms of this association and to prospectively evaluate if improving CRF reduces the risk of developing RSP.
Collapse
Affiliation(s)
- Joey M Saavedra
- Department of Kinesiology, Iowa State University, Ames, Iowa, USA
| | | | - Bong Kil Song
- Department of Kinesiology, Iowa State University, Ames, Iowa, USA
| | - Duck-Chul Lee
- Department of Kinesiology, Iowa State University, Ames, Iowa, USA
| | - Xuemei Sui
- Department of Exercise Science, University of South Carolina, Columbia, South Carolina, USA
| | - Steven N Blair
- Departments of Exercise Science and Epidemiology & Biostatistics, University of South Carolina, Columbia, South Carolina, USA
| |
Collapse
|
48
|
Xu J, Goughenour K, Underwood WR, Olszewski MA. Immunological Analysis of Cryptococcal Meningoencephalitis in a Murine Model. Methods Mol Biol 2023; 2667:71-86. [PMID: 37145276 PMCID: PMC10588511 DOI: 10.1007/978-1-0716-3199-7_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Cryptococcal meningoencephalitis (CM), caused by the fungal pathogen Cryptococcus neoformans species complex, can lead to high mortality or severe neurological sequelae in survivors that are associated with excessive inflammation in the central nervous system (CNS), especially in those who develop immune reconstitution inflammatory syndrome (IRIS) or postinfectious immune response syndrome (PIIRS). While the means to establish a cause-and-effect relationship of a specific pathogenic immune pathway during CM by human studies are limited, mouse models allow dissection of the potential mechanistic links within the CNS immunological network. In particular, these models are useful for separating pathways contributing predominantly to immunopathology from those important for fungal clearance. In this protocol, we described methods to induce a robust, physiologically relevant murine model of C. neoformans CNS infection that reproduces multiple aspects of human cryptococcal disease immunopathology and subsequent detailed immunological analysis. Combined with tools including gene knockout mice, antibody blockade, cell adoptive transfer, as well as high throughput techniques such as single-cell RNA sequencing, studies using this model will provide new insights regarding the cellular and molecular processes that elucidate the pathogenesis of cryptococcal CNS diseases in order to develop more effective therapeutic strategies.
Collapse
Affiliation(s)
- Jintao Xu
- Department of Veterans Affairs Health System, Research Service, Ann Arbor VA Healthcare System, Ann Arbor, MI, USA
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Health System, Ann Arbor, MI, USA
| | - Kristie Goughenour
- Department of Veterans Affairs Health System, Research Service, Ann Arbor VA Healthcare System, Ann Arbor, MI, USA
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Health System, Ann Arbor, MI, USA
| | - W Rex Underwood
- Department of Veterans Affairs Health System, Research Service, Ann Arbor VA Healthcare System, Ann Arbor, MI, USA
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Health System, Ann Arbor, MI, USA
| | - Michal A Olszewski
- Department of Veterans Affairs Health System, Research Service, Ann Arbor VA Healthcare System, Ann Arbor, MI, USA.
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Health System, Ann Arbor, MI, USA.
| |
Collapse
|
49
|
Kiti MC, Aguolu OG, Zelaya A, Chen HY, Ahmed N, Battross J, Liu CY, Nelson KN, Jenness SM, Melegaro A, Ahmed F, Malik F, Omer SB, Lopman BA. Changing social contact patterns among US workers during the COVID-19 pandemic: April 2020 to December 2021. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2022:2022.12.19.22283700. [PMID: 36597545 PMCID: PMC9810228 DOI: 10.1101/2022.12.19.22283700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Non-pharmaceutical interventions minimize social contacts, hence the spread of SARS-CoV-2. We quantified two-day contact patterns among USA employees from 2020-2021 during the COVID-19 pandemic. Contacts were defined as face-to-face conversations, involving physical touch or proximity to another individual and were collected using electronic diaries. Mean (standard deviation) contacts reported by 1,456 participants were 2.5 (2.5), 8.2 (7.1), 9.2 (7.1) and 10.1 (9.5) across round 1 (April-June 2020), 2 (November 2020-January 2021), 3 (June-August 2021), and 4 (November-December 2021), respectively. Between round 1 and 2, we report a 3-fold increase in the mean number of contacts reported per participant with no major increases from round 2-4. We modeled SARS-CoV-2 transmission at home, work, and community. The model revealed reduced relative transmission in all settings in round 1. Subsequently, transmission increased at home and in the community but remained very low in work settings. Contact data are important to parameterize models of infection transmission and control. Teaser Changes in social contact patterns shape disease dynamics at workplaces in the USA.
Collapse
Affiliation(s)
- Moses C. Kiti
- Rollins School of Public Health, Emory University, Georgia, USA
| | - Obianuju G. Aguolu
- Yale Institute for Global Health, Yale University, Connecticut, USA
- Yale School of Medicine, Yale University, Connecticut, USA
| | - Alana Zelaya
- Rollins School of Public Health, Emory University, Georgia, USA
| | - Holin Y. Chen
- Rollins School of Public Health, Emory University, Georgia, USA
| | - Noureen Ahmed
- Yale Institute for Global Health, Yale University, Connecticut, USA
| | | | - Carol Y. Liu
- Rollins School of Public Health, Emory University, Georgia, USA
| | | | | | - Alessia Melegaro
- DONDENA Centre for Research in Social Dynamics and Public Policy, Bocconi University, Italy
| | - Faruque Ahmed
- Division of Global Migration and Quarantine, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Fauzia Malik
- Yale Institute for Global Health, Yale University, Connecticut, USA
| | - Saad B. Omer
- Yale Institute for Global Health, Yale University, Connecticut, USA
- Yale School of Medicine, Yale University, Connecticut, USA
| | - Ben A. Lopman
- Rollins School of Public Health, Emory University, Georgia, USA
| |
Collapse
|
50
|
Alves FDM, Bellei JCB, Barbosa CDS, Duarte CL, da Fonseca AL, Pinto ACDS, Raimundo FO, Carpinter BA, Lemos ASDO, Coimbra ES, Taranto AG, Rocha VN, de Pilla Varotti F, Ribeiro Viana GH, Scopel KKG. Rational-Based Discovery of Novel β-Carboline Derivatives as Potential Antimalarials: From In Silico Identification of Novel Targets to Inhibition of Experimental Cerebral Malaria. Pathogens 2022; 11:pathogens11121529. [PMID: 36558863 PMCID: PMC9781199 DOI: 10.3390/pathogens11121529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/08/2022] [Accepted: 12/11/2022] [Indexed: 12/15/2022] Open
Abstract
Malaria is an infectious disease widespread in underdeveloped tropical regions. The most severe form of infection is caused by Plasmodium falciparum, which can lead to development of cerebral malaria (CM) and is responsible for deaths and significant neurocognitive sequelae throughout life. In this context and considering the emergence and spread of drug-resistant P. falciparum isolates, the search for new antimalarial candidates becomes urgent. β-carbolines alkaloids are good candidates since a wide range of biological activity for these compounds has been reported. Herein, we designed 20 chemical entities and performed an in silico virtual screening against a pool of P. falciparum molecular targets, the Brazilian Malaria Molecular Targets (BRAMMT). Seven structures showed potential to interact with PfFNR, PfPK7, PfGrx1, and PfATP6, being synthesized and evaluated for in vitro antiplasmodial activity. Among them, compounds 3−6 and 10 inhibited the growth of the W2 strain at µM concentrations, with low cytotoxicity against the human cell line. In silico physicochemical and pharmacokinetic properties were found to be favorable for oral administration. The compound 10 provided the best results against CM, with important values of parasite growth inhibition on the 5th day post-infection for both curative (67.9%) and suppressive (82%) assays. Furthermore, this compound was able to elongate mice survival and protect them against the development of the experimental model of CM (>65%). Compound 10 also induced reduction of the NO level, possibly by interaction with iNOS. Therefore, this alkaloid showed promising activity for the treatment of malaria and was able to prevent the development of experimental cerebral malaria (ECM), probably by reducing NO synthesis.
Collapse
Affiliation(s)
- Fernanda de Moura Alves
- Research Center on Biological Chemistry (NQBio), Federal University of São João Del Rei, Divinópolis 35501-296, Brazil
| | - Jessica Correa Bezerra Bellei
- Research Center Parasitology, Departament of Parasitology, Microbiology and Immunology, Federal University of Juiz de Fora, Juiz de Fora 36036-900, Brazil
| | - Camila de Souza Barbosa
- Research Center on Biological Chemistry (NQBio), Federal University of São João Del Rei, Divinópolis 35501-296, Brazil
| | - Caíque Lopes Duarte
- Research Center on Biological Chemistry (NQBio), Federal University of São João Del Rei, Divinópolis 35501-296, Brazil
| | - Amanda Luisa da Fonseca
- Research Center on Biological Chemistry (NQBio), Federal University of São João Del Rei, Divinópolis 35501-296, Brazil
| | - Ana Claudia de Souza Pinto
- Research Center on Biological Chemistry (NQBio), Federal University of São João Del Rei, Divinópolis 35501-296, Brazil
| | - Felipe Oliveira Raimundo
- Research Center Parasitology, Departament of Parasitology, Microbiology and Immunology, Federal University of Juiz de Fora, Juiz de Fora 36036-900, Brazil
| | - Bárbara Albuquerque Carpinter
- Research Center Parasitology, Departament of Parasitology, Microbiology and Immunology, Federal University of Juiz de Fora, Juiz de Fora 36036-900, Brazil
| | - Ari Sérgio de Oliveira Lemos
- Research Center Parasitology, Departament of Parasitology, Microbiology and Immunology, Federal University of Juiz de Fora, Juiz de Fora 36036-900, Brazil
| | - Elaine Soares Coimbra
- Research Center Parasitology, Departament of Parasitology, Microbiology and Immunology, Federal University of Juiz de Fora, Juiz de Fora 36036-900, Brazil
| | - Alex Gutterres Taranto
- Research Center on Biological Chemistry (NQBio), Federal University of São João Del Rei, Divinópolis 35501-296, Brazil
| | - Vinícius Novaes Rocha
- Research Center of Pathology and Veterinary Histology, Departament of Veterinary Medicine, Federal University of Juiz de Fora, Juiz de Fora 36036-900, Brazil
| | - Fernando de Pilla Varotti
- Research Center on Biological Chemistry (NQBio), Federal University of São João Del Rei, Divinópolis 35501-296, Brazil
- Correspondence: (F.d.P.V.); (K.K.G.S.)
| | | | - Kézia K. G. Scopel
- Research Center Parasitology, Departament of Parasitology, Microbiology and Immunology, Federal University of Juiz de Fora, Juiz de Fora 36036-900, Brazil
- Correspondence: (F.d.P.V.); (K.K.G.S.)
| |
Collapse
|