1
|
Li Z, Huang X, Li M, Chen YE, Wang Z, Liu L. A ubiquitination-mediated degradation system to target 14-3-3-binding phosphoproteins. Heliyon 2023; 9:e16318. [PMID: 37251884 PMCID: PMC10213371 DOI: 10.1016/j.heliyon.2023.e16318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 05/08/2023] [Accepted: 05/12/2023] [Indexed: 05/31/2023] Open
Abstract
The phosphorylation of 14-3-3 binding motif is involved in many cellular processes. A strategy that enables targeted degradation of 14-3-3-binding phosphoproteins (14-3-3-BPPs) for studying their functions is highly desirable for basic research. Here, we report a phosphorylation-induced, ubiquitin-proteasome-system-mediated targeted protein degradation (TPD) strategy that allows specific degradation of 14-3-3-BPPs. Specifically, by ligating a modified von Hippel-Lindau E3-ligase with an engineered 14-3-3 bait, we generated a protein chimera referred to as Targeted Degradation of 14-3-3-binding PhosphoProtein (TDPP). TDPP can serve as a universal degrader for 14-3-3-BPPs based on the specific recognition of the phosphorylation in 14-3-3 binding motifs. TDPP shows high efficiency and specificity to a difopein-EGFP reporter, general and specific 14-3-3-BPPs. TDPP can also be applied for the validation of 14-3-3-BPPs. These results strongly support TDPP as a powerful tool for 14-3-3 related research.
Collapse
Affiliation(s)
- Zhaokai Li
- Department of Cardiac Surgery, Cardiovascular Center, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Emergency Medicine, China-Japan Friendship Hospital, Beijing 100029, China
| | - Xiaoqiang Huang
- Center for Advanced Models for Translational Sciences and Therapeutics, Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Mohan Li
- Department of Geriatrics, Chinese Academy of Medical Sciences, Peking Union Medical College Hospital, Beijing 100730, China
| | - Y. Eugene Chen
- Department of Cardiac Surgery, Cardiovascular Center, University of Michigan, Ann Arbor, MI 48109, USA
- Center for Advanced Models for Translational Sciences and Therapeutics, Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Internal Medicine, Cardiovascular Center, University of Michigan, Ann Arbor, MI 48109, USA
| | - Zhong Wang
- Department of Cardiac Surgery, Cardiovascular Center, University of Michigan, Ann Arbor, MI 48109, USA
| | - Liu Liu
- Department of Cardiac Surgery, Cardiovascular Center, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
2
|
Hatayama M, Aruga J. Developmental control of noradrenergic system by SLITRK1 and its implications in the pathophysiology of neuropsychiatric disorders. Front Mol Neurosci 2023; 15:1080739. [PMID: 36683853 PMCID: PMC9846221 DOI: 10.3389/fnmol.2022.1080739] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 12/09/2022] [Indexed: 01/05/2023] Open
Abstract
SLITRK1 is a neuronal transmembrane protein with neurite development-and synaptic formation-controlling abilities. Several rare variants of SLITRK1 have been identified and implicated in the pathogenesis of Tourette's syndrome, trichotillomania, and obsessive-compulsive disorder, which can be collectively referred to as obsessive-compulsive-spectrum disorders. Recent studies have reported a possible association between bipolar disorder and schizophrenia, including a revertant of modern human-specific amino acid residues. Although the mechanisms underlying SLITRK1-associated neuropsychiatric disorders are yet to be fully clarified, rodent studies may provide some noteworthy clues. Slitrk1-deficient mice show neonatal dysregulation of the noradrenergic system, and later, anxiety-like behaviors that can be attenuated by an alpha 2 noradrenergic receptor agonist. The noradrenergic abnormality is characterized by the excessive growth of noradrenergic fibers and increased noradrenaline content in the medial prefrontal cortex, concomitant with enlarged serotonergic varicosities. Slitrk1 has both cell-autonomous and cell-non-autonomous functions in controlling noradrenergic fiber development, and partly alters Sema3a-mediated neurite control. These findings suggest that transiently enhanced noradrenergic signaling during the neonatal stage could cause neuroplasticity associated with neuropsychiatric disorders. Studies adopting noradrenergic signal perturbation via pharmacological or genetic means support this hypothesis. Thus, Slitrk1 is a potential candidate genetic linkage between the neonatal noradrenergic signaling and the pathophysiology of neuropsychiatric disorders involving anxiety-like or depression-like behaviors.
Collapse
|
3
|
Pathways to Parkinson's disease: a spotlight on 14-3-3 proteins. NPJ Parkinsons Dis 2021; 7:85. [PMID: 34548498 PMCID: PMC8455551 DOI: 10.1038/s41531-021-00230-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 07/23/2021] [Indexed: 02/08/2023] Open
Abstract
14-3-3s represent a family of highly conserved 30 kDa acidic proteins. 14-3-3s recognize and bind specific phospho-sequences on client partners and operate as molecular hubs to regulate their activity, localization, folding, degradation, and protein-protein interactions. 14-3-3s are also associated with the pathogenesis of several diseases, among which Parkinson's disease (PD). 14-3-3s are found within Lewy bodies (LBs) in PD patients, and their neuroprotective effects have been demonstrated in several animal models of PD. Notably, 14-3-3s interact with some of the major proteins known to be involved in the pathogenesis of PD. Here we first provide a detailed overview of the molecular composition and structural features of 14-3-3s, laying significant emphasis on their peculiar target-binding mechanisms. We then briefly describe the implication of 14-3-3s in the central nervous system and focus on their interaction with LRRK2, α-Synuclein, and Parkin, three of the major players in PD onset and progression. We finally discuss how different types of small molecules may interfere with 14-3-3s interactome, thus representing a valid strategy in the future of drug discovery.
Collapse
|
4
|
Alizzi RA, Xu D, Tenenbaum CM, Wang W, Gavis ER. The ELAV/Hu protein Found in neurons regulates cytoskeletal and ECM adhesion inputs for space-filling dendrite growth. PLoS Genet 2020; 16:e1009235. [PMID: 33370772 PMCID: PMC7793258 DOI: 10.1371/journal.pgen.1009235] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 01/08/2021] [Accepted: 10/29/2020] [Indexed: 12/17/2022] Open
Abstract
Dendritic arbor morphology influences how neurons receive and integrate extracellular signals. We show that the ELAV/Hu family RNA-binding protein Found in neurons (Fne) is required for space-filling dendrite growth to generate highly branched arbors of Drosophila larval class IV dendritic arborization neurons. Dendrites of fne mutant neurons are shorter and more dynamic than in wild-type, leading to decreased arbor coverage. These defects result from both a decrease in stable microtubules and loss of dendrite-substrate interactions within the arbor. Identification of transcripts encoding cytoskeletal regulators and cell-cell and cell-ECM interacting proteins as Fne targets using TRIBE further supports these results. Analysis of one target, encoding the cell adhesion protein Basigin, indicates that the cytoskeletal defects contributing to branch instability in fne mutant neurons are due in part to decreased Basigin expression. The ability of Fne to coordinately regulate the cytoskeleton and dendrite-substrate interactions in neurons may shed light on the behavior of cancer cells ectopically expressing ELAV/Hu proteins. Different types of neurons have different sizes and shapes that are tailored to their particular functions. In the fruit fly larva, a set of sensory neurons called class IV da neurons have highly branched trees of dendrites that cover the epidermis to sense potentially harmful stimuli. Neurons whose dendrites completely fill the territory they sample are also found in zebrafish, worms, mice and humans. We show that an RNA-binding protein called Fne plays an important role in coordinating different contributions to dendrite branching in class IV da neurons by impacting the organization of the cytoskeleton within the neuron and the ability of the dendrite to contact the substratum outside of it. The identification of mRNAs that code for cytoskeleton regulators and adhesive proteins as targets of Fne using a genome-wide approach further supports these results. While the ability of Fne to exert control over such proteins is crucial to generating the space-filling growth of neurons, it can be deleterious if not properly employed, such as when the homologs of Fne are expressed in cancer cells.
Collapse
Affiliation(s)
- Rebecca A. Alizzi
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, United States of America
| | - Derek Xu
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, United States of America
| | - Conrad M. Tenenbaum
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, United States of America
| | - Wei Wang
- Lewis-Sigler Institute, Princeton University, Princeton, New Jersey, United States of America
| | - Elizabeth R. Gavis
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, United States of America
- * E-mail:
| |
Collapse
|
5
|
Butterfield DA, Boyd-Kimball D. Redox proteomics and amyloid β-peptide: insights into Alzheimer disease. J Neurochem 2019; 151:459-487. [PMID: 30216447 PMCID: PMC6417976 DOI: 10.1111/jnc.14589] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 08/15/2018] [Accepted: 09/07/2018] [Indexed: 12/12/2022]
Abstract
Alzheimer disease (AD) is a progressive neurodegenerative disorder associated with aging and characterized pathologically by the presence of senile plaques, neurofibrillary tangles, and neurite and synapse loss. Amyloid beta-peptide (1-42) [Aβ(1-42)], a major component of senile plaques, is neurotoxic and induces oxidative stress in vitro and in vivo. Redox proteomics has been used to identify proteins oxidatively modified by Aβ(1-42) in vitro and in vivo. In this review, we discuss these proteins in the context of those identified to be oxidatively modified in animal models of AD, and human studies including familial AD, pre-clinical AD (PCAD), mild cognitive impairment (MCI), early AD, late AD, Down syndrome (DS), and DS with AD (DS/AD). These redox proteomics studies indicate that Aβ(1-42)-mediated oxidative stress occurs early in AD pathogenesis and results in altered antioxidant and cellular detoxification defenses, decreased energy yielding metabolism and mitochondrial dysfunction, excitotoxicity, loss of synaptic plasticity and cell structure, neuroinflammation, impaired protein folding and degradation, and altered signal transduction. Improved access to biomarker imaging and the identification of lifestyle interventions or treatments to reduce Aβ production could be beneficial in preventing or delaying the progression of AD. This article is part of the special issue "Proteomics".
Collapse
Affiliation(s)
- D. Allan Butterfield
- Department of Chemistry and Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY 40506
| | - Debra Boyd-Kimball
- Department of Chemistry and Biochemistry, University of Mount Union, Alliance, OH 44601
| |
Collapse
|
6
|
Kotliar D, Veres A, Nagy MA, Tabrizi S, Hodis E, Melton DA, Sabeti PC. Identifying gene expression programs of cell-type identity and cellular activity with single-cell RNA-Seq. eLife 2019; 8:e43803. [PMID: 31282856 PMCID: PMC6639075 DOI: 10.7554/elife.43803] [Citation(s) in RCA: 269] [Impact Index Per Article: 44.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Accepted: 07/07/2019] [Indexed: 12/28/2022] Open
Abstract
Identifying gene expression programs underlying both cell-type identity and cellular activities (e.g. life-cycle processes, responses to environmental cues) is crucial for understanding the organization of cells and tissues. Although single-cell RNA-Seq (scRNA-Seq) can quantify transcripts in individual cells, each cell's expression profile may be a mixture of both types of programs, making them difficult to disentangle. Here, we benchmark and enhance the use of matrix factorization to solve this problem. We show with simulations that a method we call consensus non-negative matrix factorization (cNMF) accurately infers identity and activity programs, including their relative contributions in each cell. To illustrate the insights this approach enables, we apply it to published brain organoid and visual cortex scRNA-Seq datasets; cNMF refines cell types and identifies both expected (e.g. cell cycle and hypoxia) and novel activity programs, including programs that may underlie a neurosecretory phenotype and synaptogenesis.
Collapse
Affiliation(s)
- Dylan Kotliar
- Department of Systems BiologyHarvard Medical SchoolBostonUnited States
- Broad Institute of MIT and HarvardCambridgeUnited States
- Harvard-MIT Division of Health Sciences and TechnologyMassachusetts Institute of TechnologyCambridgeUnited States
| | - Adrian Veres
- Department of Systems BiologyHarvard Medical SchoolBostonUnited States
- Harvard-MIT Division of Health Sciences and TechnologyMassachusetts Institute of TechnologyCambridgeUnited States
- Harvard Stem Cell InstituteHarvard UniversityCambridgeUnited States
| | - M Aurel Nagy
- Harvard-MIT Division of Health Sciences and TechnologyMassachusetts Institute of TechnologyCambridgeUnited States
- Department of NeurobiologyHarvard Medical SchoolBostonUnited States
| | | | - Eran Hodis
- Harvard-MIT Division of Health Sciences and TechnologyMassachusetts Institute of TechnologyCambridgeUnited States
- Biophysics ProgramHarvard UniversityCambridgeUnited States
| | - Douglas A Melton
- Harvard Stem Cell InstituteHarvard UniversityCambridgeUnited States
- Howard Hughes Medical InstituteChevy ChaseUnited States
| | - Pardis C Sabeti
- Department of Systems BiologyHarvard Medical SchoolBostonUnited States
- Broad Institute of MIT and HarvardCambridgeUnited States
- Howard Hughes Medical InstituteChevy ChaseUnited States
| |
Collapse
|
7
|
Lavalley NJ, Slone SR, Ding H, West AB, Yacoubian TA. 14-3-3 Proteins regulate mutant LRRK2 kinase activity and neurite shortening. Hum Mol Genet 2015; 25:109-22. [PMID: 26546614 DOI: 10.1093/hmg/ddv453] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Accepted: 10/26/2015] [Indexed: 12/22/2022] Open
Abstract
Mutations in leucine-rich repeat kinase 2 (LRRK2) are the most common known cause of inherited Parkinson's disease (PD), and LRRK2 is a risk factor for idiopathic PD. How LRRK2 function is regulated is not well understood. Recently, the highly conserved 14-3-3 proteins, which play a key role in many cellular functions including cell death, have been shown to interact with LRRK2. In this study, we investigated whether 14-3-3s can regulate mutant LRRK2-induced neurite shortening and kinase activity. In the presence of 14-3-3θ overexpression, neurite length of primary neurons from BAC transgenic G2019S-LRRK2 mice returned back to wild-type levels. Similarly, 14-3-3θ overexpression reversed neurite shortening in neuronal cultures from BAC transgenic R1441G-LRRK2 mice. Conversely, inhibition of 14-3-3s by the pan-14-3-3 inhibitor difopein or dominant-negative 14-3-3θ further reduced neurite length in G2019S-LRRK2 cultures. Since G2019S-LRRK2 toxicity is likely mediated through increased kinase activity, we examined 14-3-3θ's effects on LRRK2 kinase activity. 14-3-3θ overexpression reduced the kinase activity of G2019S-LRRK2, while difopein promoted the kinase activity of G2019S-LRRK2. The ability of 14-3-3θ to reduce LRRK2 kinase activity required direct binding of 14-3-3θ with LRRK2. The potentiation of neurite shortening by difopein in G2019S-LRRK2 neurons was reversed by LRRK2 kinase inhibitors. Taken together, we conclude that 14-3-3θ can regulate LRRK2 and reduce the toxicity of mutant LRRK2 through a reduction of kinase activity.
Collapse
Affiliation(s)
- Nicholas J Lavalley
- Department of Neurology, Center for Neurodegeneration and Experimental Therapeutics, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Sunny R Slone
- Department of Neurology, Center for Neurodegeneration and Experimental Therapeutics, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Huiping Ding
- Department of Neurology, Center for Neurodegeneration and Experimental Therapeutics, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Andrew B West
- Department of Neurology, Center for Neurodegeneration and Experimental Therapeutics, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Talene A Yacoubian
- Department of Neurology, Center for Neurodegeneration and Experimental Therapeutics, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| |
Collapse
|
8
|
Teixeira FG, Panchalingam KM, Anjo SI, Manadas B, Pereira R, Sousa N, Salgado AJ, Behie LA. Do hypoxia/normoxia culturing conditions change the neuroregulatory profile of Wharton Jelly mesenchymal stem cell secretome? Stem Cell Res Ther 2015. [PMID: 26204925 PMCID: PMC4533943 DOI: 10.1186/s13287-015-0124-z] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Introduction The use of human umbilical cord Wharton Jelly-derived mesenchymal stem cells (hWJ-MSCs) has been considered a new potential source for future safe applications in regenerative medicine. Indeed, the application of hWJ-MSCs into different animal models of disease, including those from the central nervous system, has shown remarkable therapeutic benefits mostly associated with their secretome. Conventionally, hWJ-MSCs are cultured and characterized under normoxic conditions (21 % oxygen tension), although the oxygen levels within tissues are typically much lower (hypoxic) than these standard culture conditions. Therefore, oxygen tension represents an important environmental factor that may affect the performance of mesenchymal stem cells in vivo. However, the impact of hypoxic conditions on distinct mesenchymal stem cell characteristics, such as the secretome, still remains unclear. Methods In the present study, we have examined the effects of normoxic (21 % O2) and hypoxic (5 % O2) conditions on the hWJ-MSC secretome. Subsequently, we address the impact of the distinct secretome in the neuronal cell survival and differentiation of human neural progenitor cells. Results The present data indicate that the hWJ-MSC secretome collected from normoxic and hypoxic conditions displayed similar effects in supporting neuronal differentiation of human neural progenitor cells in vitro. However, proteomic analysis revealed that the use of hypoxic preconditioning led to the upregulation of several proteins within the hWJ-MSC secretome. Conclusions Our results suggest that the optimization of parameters such as hypoxia may lead to the development of strategies that enhance the therapeutic effects of the secretome for future regenerative medicine studies and applications.
Collapse
Affiliation(s)
- Fábio G Teixeira
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Braga, Portugal. .,ICVS/3B's, PT Government Associate Laboratory, Braga/Guimarães, Portugal.
| | - Krishna M Panchalingam
- Pharmaceutical Production Research Facility (PPRF), Schulich School of Engineering, University of Calgary, Calgary, AB, Canada.
| | - Sandra Isabel Anjo
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal. .,Faculty of Sciences and Technology, University of Coimbra, Coimbra, Portugal.
| | - Bruno Manadas
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal. .,Biocant - Biotechnology Innovation Center, Cantanhede, Portugal.
| | - Ricardo Pereira
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Braga, Portugal. .,ICVS/3B's, PT Government Associate Laboratory, Braga/Guimarães, Portugal.
| | - Nuno Sousa
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Braga, Portugal. .,ICVS/3B's, PT Government Associate Laboratory, Braga/Guimarães, Portugal.
| | - António J Salgado
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Braga, Portugal. .,ICVS/3B's, PT Government Associate Laboratory, Braga/Guimarães, Portugal.
| | - Leo A Behie
- Pharmaceutical Production Research Facility (PPRF), Schulich School of Engineering, University of Calgary, Calgary, AB, Canada.
| |
Collapse
|
9
|
Wang Y, Schachner M. The intracellular domain of L1CAM binds to casein kinase 2α and is neuroprotective via inhibition of the tumor suppressors PTEN and p53. J Neurochem 2015; 133:828-43. [PMID: 25727698 DOI: 10.1111/jnc.13083] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Revised: 02/05/2015] [Accepted: 02/24/2015] [Indexed: 02/05/2023]
Abstract
Cell adhesion molecule L1 promotes neuritogenesis and neuronal survival through triggering MAPK pathways. Based on the findings that L1 is associated with casein kinase 2 (CK2), and that deficiency in PTEN promotes neuritogenesis in vitro and regeneration after trauma, we examined the functional relationship between L1 and PTEN. In parallel, we investigated the tumor suppressor p53, which also regulates neuritogenesis. Here, we report that the intracellular domain of L1 binds to the subunit CK2α, and that knockdown of L1 leads to CK2 dephosphorylation and an increase in PTEN and p53 levels. Overexpression of L1, but not the L1 mutants L1 (S1181N, E1184V), which reduced binding between L1 and CK2, reduced expression levels of PTEN and p53 proteins, and enhanced levels of phosphorylated CK2α and mammalian target of rapamycin, which is a downstream effector of PTEN and p53. Treatment of neurons with a CK2 inhibitor or transfection with CK2α siRNA increased levels of PTEN and p53, and inhibited neuritogenesis. The combined observations indicate that L1 downregulates expression of PTEN and p53 via direct binding to CK2α. We suggest that L1 stimulates neuritogenesis by activating CK2α leading to decreased levels of PTEN and p53 via a novel, L1-triggered and CK2α-mediated signal transduction pathway. L1CAM (L1 cell adhesion molecule) is implicated in neural functions through the cognate src/MAP kinase signaling pathway. We now describe a novel signaling platform operating via the alpha subunit of casein kinase 2 which binds to the intracellular domain of L1. Knockdown of L1CAM leads to increased levels of tumor suppressor PTEN (phosphatase and tensin homolog) and p53, known to inhibit neuritogenesis in vitro and recovery from trauma in vivo. By activating this enzyme, L1CAM adds to its beneficial functions by decreasing the levels of PTEN and p53.
Collapse
Affiliation(s)
- Yan Wang
- Center for Neuroscience, Shantou University Medical College, Shantou, Guangdong, China
| | - Melitta Schachner
- Center for Neuroscience, Shantou University Medical College, Shantou, Guangdong, China
| |
Collapse
|
10
|
Yang X, Hou D, Jiang W, Zhang C. Intercellular protein-protein interactions at synapses. Protein Cell 2014; 5:420-44. [PMID: 24756565 PMCID: PMC4026422 DOI: 10.1007/s13238-014-0054-z] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2014] [Accepted: 03/23/2014] [Indexed: 12/11/2022] Open
Abstract
Chemical synapses are asymmetric intercellular junctions through which neurons send nerve impulses to communicate with other neurons or excitable cells. The appropriate formation of synapses, both spatially and temporally, is essential for brain function and depends on the intercellular protein-protein interactions of cell adhesion molecules (CAMs) at synaptic clefts. The CAM proteins link pre- and post-synaptic sites, and play essential roles in promoting synapse formation and maturation, maintaining synapse number and type, accumulating neurotransmitter receptors and ion channels, controlling neuronal differentiation, and even regulating synaptic plasticity directly. Alteration of the interactions of CAMs leads to structural and functional impairments, which results in many neurological disorders, such as autism, Alzheimer's disease and schizophrenia. Therefore, it is crucial to understand the functions of CAMs during development and in the mature neural system, as well as in the pathogenesis of some neurological disorders. Here, we review the function of the major classes of CAMs, and how dysfunction of CAMs relates to several neurological disorders.
Collapse
Affiliation(s)
- Xiaofei Yang
- Key Laboratory of Cognitive Science, Laboratory of Membrane Ion Channels and Medicine, College of Biomedical Engineering, South-Central University for Nationalities, Wuhan, 430074 China
| | - Dongmei Hou
- Key Laboratory of Cognitive Science, Laboratory of Membrane Ion Channels and Medicine, College of Biomedical Engineering, South-Central University for Nationalities, Wuhan, 430074 China
- State Key Laboratory of Biomembrane and Membrane Biotechnology, College of Life Sciences, Peking University, Beijing, 100871 China
- PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing, 100871 China
| | - Wei Jiang
- Key Laboratory of Cognitive Science, Laboratory of Membrane Ion Channels and Medicine, College of Biomedical Engineering, South-Central University for Nationalities, Wuhan, 430074 China
- State Key Laboratory of Biomembrane and Membrane Biotechnology, College of Life Sciences, Peking University, Beijing, 100871 China
- PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing, 100871 China
| | - Chen Zhang
- State Key Laboratory of Biomembrane and Membrane Biotechnology, College of Life Sciences, Peking University, Beijing, 100871 China
- PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing, 100871 China
| |
Collapse
|
11
|
Overexpression of 14-3-3z promotes tau phosphorylation at Ser262 and accelerates proteosomal degradation of synaptophysin in rat primary hippocampal neurons. PLoS One 2013; 8:e84615. [PMID: 24367683 PMCID: PMC3868614 DOI: 10.1371/journal.pone.0084615] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2013] [Accepted: 11/15/2013] [Indexed: 01/09/2023] Open
Abstract
β-amyloid peptide accumulation, tau hyperphosphorylation, and synapse loss are characteristic neuropathological symptoms of Alzheimer’s disease (AD). Tau hyperphosphorylation is suggested to inhibit the association of tau with microtubules, making microtubules unstable and causing neurodegeneration. The mechanism of tau phosphorylation in AD brain, therefore, is of considerable significance. Although PHF-tau is phosphorylated at over 40 Ser/Thr sites, Ser262 phosphorylation was shown to mediate β-amyloid neurotoxicity and formation of toxic tau lesions in the brain. In vitro, PKA is one of the kinases that phosphorylates tau at Ser262, but the mechanism by which it phosphorylates tau in AD brain is not very clear. 14-3-3ζ is associated with neurofibrillary tangles and is upregulated in AD brain. In this study, we show that 14-3-3ζ promotes tau phosphorylation at Ser262 by PKA in differentiating neurons. When overexpressed in rat hippocampal primary neurons, 14-3-3ζ causes an increase in Ser262 phosphorylation, a decrease in the amount of microtubule-bound tau, a reduction in the amount of polymerized microtubules, as well as microtubule instability. More importantly, the level of pre-synaptic protein synaptophysin was significantly reduced. Downregulation of synaptophysin in 14-3-3ζ overexpressing neurons was mitigated by inhibiting the proteosome, indicating that 14-3-3ζ promotes proteosomal degradation of synaptophysin. When 14-3-3ζ overexpressing neurons were treated with the microtubule stabilizing drug taxol, tau Ser262 phosphorylation decreased and synaptophysin level was restored. Our data demonstrate that overexpression of 14-3-3ζ accelerates proteosomal turnover of synaptophysin by promoting the destabilization of microtubules. Synaptophysin is involved in synapse formation and neurotransmitter release. Our results suggest that 14-3-3ζ may cause synaptic pathology by reducing synaptophysin levels in the brains of patients suffering from AD.
Collapse
|
12
|
Kaplan A, Kent CB, Charron F, Fournier AE. Switching responses: spatial and temporal regulators of axon guidance. Mol Neurobiol 2013; 49:1077-86. [PMID: 24271658 DOI: 10.1007/s12035-013-8582-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2013] [Accepted: 10/31/2013] [Indexed: 11/29/2022]
Abstract
The ability of the axonal growth cone to switch between attraction and repulsion in response to guidance cues in the extracellular environment during nervous system development is fundamental to the precise wiring of complex neural circuits. Regulation of cell-surface receptors by means of transcriptional control, local translation, trafficking and proteolytic processing are powerful mechanisms to regulate the response of the growth cone. Important work has also revealed how intracellular signalling pathways, including calcium and cyclic nucleotide signalling, can alter the directional response elicited by a particular cue. Here, we describe how these multiple regulatory mechanisms influence growth cone turning behaviour. We focus on recent evidence that suggests a significant role for 14-3-3 adaptor proteins in modifying growth cone turning behaviour and mediating directional polarity switches during development. Characterizing how 14-3-3 s regulate growth cone signalling will provide invaluable insight into nervous system development and may facilitate the identification of novel targets for promoting nerve regeneration following injury.
Collapse
Affiliation(s)
- Andrew Kaplan
- Department of Neurology and Neurosurgery, Montreal Neurological Institute and Hospital, McGill University, Montreal, Quebec, H3A 2B4, Canada
| | | | | | | |
Collapse
|
13
|
Brennan GP, Jimenez-Mateos EM, McKiernan RC, Engel T, Tzivion G, Henshall DC. Transgenic overexpression of 14-3-3 zeta protects hippocampus against endoplasmic reticulum stress and status epilepticus in vivo. PLoS One 2013; 8:e54491. [PMID: 23359526 PMCID: PMC3554740 DOI: 10.1371/journal.pone.0054491] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2012] [Accepted: 12/12/2012] [Indexed: 01/05/2023] Open
Abstract
14-3-3 proteins are ubiquitous molecular chaperones that are abundantly expressed in the brain where they regulate cell functions including metabolism, the cell cycle and apoptosis. Brain levels of several 14-3-3 isoforms are altered in diseases of the nervous system, including epilepsy. The 14-3-3 zeta (ζ) isoform has been linked to endoplasmic reticulum (ER) function in neurons, with reduced levels provoking ER stress and increasing vulnerability to excitotoxic injury. Here we report that transgenic overexpression of 14-3-3ζ in mice results in selective changes to the unfolded protein response pathway in the hippocampus, including down-regulation of glucose-regulated proteins 78 and 94, activating transcription factors 4 and 6, and Xbp1 splicing. No differences were found between wild-type mice and transgenic mice for levels of other 14-3-3 isoforms or various other 14-3-3 binding proteins. 14-3-3ζ overexpressing mice were potently protected against cell death caused by intracerebroventricular injection of the ER stressor tunicamycin. 14-3-3ζ overexpressing mice were also potently protected against neuronal death caused by prolonged seizures. These studies demonstrate that increased 14-3-3ζ levels protect against ER stress and seizure-damage despite down-regulation of the unfolded protein response. Delivery of 14-3-3ζ may protect against pathologic changes resulting from prolonged or repeated seizures or where injuries provoke ER stress.
Collapse
Affiliation(s)
- Gary P. Brennan
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Eva M. Jimenez-Mateos
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Ross C. McKiernan
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Tobias Engel
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Guri Tzivion
- Department of Biochemistry, University of Mississippi Medical Center, Jackson, Mississippi, United States of America
| | - David C. Henshall
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin, Ireland
- * E-mail:
| |
Collapse
|
14
|
He Y, Han JR, Chang O, Oh M, James SE, Lu Q, Seo YW, Kim H, Kim K. 14-3-3ɛ/ζ Affects the stability of δ-catenin and regulates δ-catenin-induced dendrogenesis. FEBS Open Bio 2012; 3:16-21. [PMID: 23772369 PMCID: PMC3668525 DOI: 10.1016/j.fob.2012.11.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2012] [Revised: 11/20/2012] [Accepted: 11/26/2012] [Indexed: 11/26/2022] Open
Abstract
Accumulated evidence suggests that aberrant regulation of δ-catenin leads to pathological consequences such as mental retardation and cognitive dysfunction. This study revealed that 14-3-3ɛ/ζ stabilizes δ-catenin, with different binding regions involved in the interaction. Furthermore, the specific inhibition of the interaction of 14-3-3 with δ-catenin reduced levels of δ-catenin and significantly impaired the capacity of δ-catenin to induce dendritic branching in both NIH3T3 fibroblasts and primary hippocampal neurons. However, the S1094A δ-catenin mutant, which cannot interact with 14-3-3ζ, still retained the capability of inducing dendrogenesis. Taken together, these results elucidate the underlying events that regulate the stability of δ-catenin and δ-catenin-induced dendrogenesis.
Collapse
Affiliation(s)
- Yongfeng He
- College of Pharmacy and Research Institute of Drug Development, Chonnam National University, Gwangju, Republic of Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Liapis A, Chen FW, Davies JP, Wang R, Ioannou YA. MLN64 transport to the late endosome is regulated by binding to 14-3-3 via a non-canonical binding site. PLoS One 2012; 7:e34424. [PMID: 22514632 PMCID: PMC3326014 DOI: 10.1371/journal.pone.0034424] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2011] [Accepted: 03/02/2012] [Indexed: 12/12/2022] Open
Abstract
MLN64 is an integral membrane protein localized to the late endosome and plasma membrane that is thought to function as a mediator of cholesterol transport from endosomal membranes to the plasma membrane and/or mitochondria. The protein consists of two distinct domains: an N-terminal membrane-spanning domain that shares homology with the MENTHO protein and a C-terminal steroidogenic acute regulatory protein (StAR)-related lipid transfer (START) domain that binds cholesterol. To further characterize the MLN64 protein, full-length and truncated proteins were overexpressed in cells and the effects on MLN64 trafficking and endosomal morphology were observed. To gain insight into MLN64 function, affinity chromatography and mass spectrometric techniques were used to identify potential MLN64 interacting partners. Of the 15 candidate proteins identified, 14-3-3 was chosen for further characterization. We show that MLN64 interacts with 14-3-3 in vitro as well as in vivo and that the strength of the interaction is dependent on the 14-3-3 isoform. Furthermore, blocking the interaction through the use of a 14-3-3 antagonist or MLN64 mutagenesis delays the trafficking of MLN64 to the late endosome and also results in the dispersal of endocytic vesicles to the cell periphery. Taken together, these studies have determined that MLN64 is a novel 14-3-3 binding protein and indicate that 14-3-3 plays a role in the endosomal trafficking of MLN64. Furthermore, these studies suggest that 14-3-3 may be the link by which MLN64 exerts its effects on the actin-mediated endosome dynamics.
Collapse
Affiliation(s)
- Anastasia Liapis
- Department of Genetics & Genomic Sciences, The Mount Sinai School of Medicine, New York, New York, United States of America
| | - Fannie W. Chen
- Department of Genetics & Genomic Sciences, The Mount Sinai School of Medicine, New York, New York, United States of America
| | - Joanna P. Davies
- Department of Genetics & Genomic Sciences, The Mount Sinai School of Medicine, New York, New York, United States of America
| | - Rong Wang
- Department of Genetics & Genomic Sciences, The Mount Sinai School of Medicine, New York, New York, United States of America
| | - Yiannis A. Ioannou
- Department of Genetics & Genomic Sciences, The Mount Sinai School of Medicine, New York, New York, United States of America
- * E-mail:
| |
Collapse
|
16
|
Bukalo O, Dityatev A. Synaptic Cell Adhesion Molecules. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 970:97-128. [DOI: 10.1007/978-3-7091-0932-8_5] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
17
|
Koseki N, Kitaoka Y, Munemasa Y, Kumai T, Kojima K, Ueno S, Ohtani-Kaneko R. 17β-estradiol prevents reduction of retinal phosphorylated 14-3-3 zeta protein levels following a neurotoxic insult. Brain Res 2011; 1433:145-52. [PMID: 22154405 DOI: 10.1016/j.brainres.2011.11.034] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2011] [Revised: 10/17/2011] [Accepted: 11/14/2011] [Indexed: 11/26/2022]
Abstract
Previous studies demonstrated the substantial protective role of 17β-estradiol (E2) in several types of neuron, although its mechanism of action remains to be elucidated. In this study, we found that the levels of 14-3-3 zeta mRNA and phosphorylated and total 14-3-3 zeta proteins were significantly decreased in the rat retina after intravitreal injection of N-methyl-d-aspartate (NMDA). 17β-E2 implantation significantly inhibited NMDA-induced decreases in phosphorylated but not in total 14-3-3 zeta protein levels in the retina. There was a decrease in both phosphorylated and total 14-3-3 protein levels in RGC-5 cells, a retinal ganglion cell line, after glutamate and buthionine sulfoximine (BSO) exposure, and 17β-E2 treatment significantly inhibited only the decrease in phosphorylated but not in total 14-3-3 zeta protein levels. The cell viability assay showed substantial cell death after glutamate and BSO exposure and that 17β-E2 treatment significantly protects against this cell death. 17β-E2 treatment also significantly increased the level of phosphorylated 14-3-3 protein in RGC-5 cells without other treatments. These results suggest that a decrease in 14-3-3 zeta expression may be associated with retinal neurotoxicity induced by NMDA or the combination of glutamate and BSO. The regulation of 14-3-3 zeta phosphorylation is one possible mechanism of the protective effect of 17β-E2 in the retina.
Collapse
Affiliation(s)
- Natsuko Koseki
- Department of Life Sciences, Toyo University, Oura, Gunma, Japan
| | | | | | | | | | | | | |
Collapse
|