1
|
Stocksdale JT, Leventhal MJ, Lam S, Xu YX, Wang YO, Wang KQ, Thomas R, Faghihmonzavi Z, Raghav Y, Smith C, Wu J, Miramontes R, Sarda K, Johnston H, Shin MG, Huang T, Foster M, Barch M, Amirani N, Paiz C, Easter L, Duderstadt E, Vaibhav V, Sundararaman N, Felsenfeld DP, Vogt TF, Van Eyk J, Finkbeiner S, Kaye JA, Fraenkel E, Thompson LM. Intersecting impact of CAG repeat and huntingtin knockout in stem cell-derived cortical neurons. Neurobiol Dis 2025; 210:106914. [PMID: 40258535 DOI: 10.1016/j.nbd.2025.106914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2025] [Revised: 04/13/2025] [Accepted: 04/14/2025] [Indexed: 04/23/2025] Open
Abstract
Huntington's Disease (HD) is caused by a CAG repeat expansion in the gene encoding huntingtin (HTT). While normal HTT function appears impacted by the mutation, the specific pathways unique to CAG repeat expansion versus loss of normal function are unclear. To understand the impact of the CAG repeat expansion, we evaluated biological signatures of HTT knockout (HTT KO) versus those that occur from the CAG repeat expansion by applying multi-omics, live cell imaging, survival analysis and a novel feature-based pipeline to study cortical neurons (eCNs) derived from an isogenic human embryonic stem cell series (RUES2). HTT KO and the CAG repeat expansion influence developmental trajectories of eCNs, with opposing effects on growth. Network analyses of differentially expressed genes and proteins associated with enriched epigenetic motifs identified subnetworks common to CAG repeat expansion and HTT KO that include neuronal differentiation, cell cycle regulation, and mechanisms related to transcriptional repression, and may represent gain-of-function mechanisms that cannot be explained by HTT loss of function alone. A combination of dominant and loss-of-function mechanisms are likely involved in the aberrant neurodevelopmental and neurodegenerative features of HD that can help inform therapeutic strategies.
Collapse
Affiliation(s)
| | - Matthew J Leventhal
- MIT PhD Program in Computational and Systems Biology, Cambridge, MA 02139, USA; MIT Department of Biological Engineering, Cambridge, MA 02139, USA; Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Stephanie Lam
- Center for Systems and Therapeutics, Gladstone Institutes, San Francisco, CA 94158, USA
| | - Yu-Xin Xu
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Yang Oliver Wang
- Advanced Clinical Biosystems Research Institute, Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Keona Q Wang
- Department of Neurobiology and Behavior, UC Irvine, Irvine, CA 92677, USA
| | - Reuben Thomas
- Institute of Data Science and Biotechnology, Gladstone Institutes, San Francisco, CA 94158, USA
| | - Zohreh Faghihmonzavi
- Center for Systems and Therapeutics, Gladstone Institutes, San Francisco, CA 94158, USA
| | - Yogindra Raghav
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Charlene Smith
- Department of Psychiatry and Human Behavior, UC Irvine, Irvine, CA 92697, USA
| | - Jie Wu
- Department of Biological Chemistry, UC Irvine, Irvine, CA 92697, USA
| | - Ricardo Miramontes
- Institute for Memory Impairments and Neurological Disorders, UC Irvine, Irvine, CA 92697, USA
| | - Kanchan Sarda
- Center for Systems and Therapeutics, Gladstone Institutes, San Francisco, CA 94158, USA
| | - Heather Johnston
- Center for Systems and Therapeutics, Gladstone Institutes, San Francisco, CA 94158, USA
| | - Min-Gyoung Shin
- Institute of Data Science and Biotechnology, Gladstone Institutes, San Francisco, CA 94158, USA
| | - Terry Huang
- Center for Systems and Therapeutics, Gladstone Institutes, San Francisco, CA 94158, USA
| | - Mikelle Foster
- Center for Systems and Therapeutics, Gladstone Institutes, San Francisco, CA 94158, USA
| | - Mariya Barch
- Center for Systems and Therapeutics, Gladstone Institutes, San Francisco, CA 94158, USA
| | - Naufa Amirani
- Center for Systems and Therapeutics, Gladstone Institutes, San Francisco, CA 94158, USA
| | - Chris Paiz
- Center for Systems and Therapeutics, Gladstone Institutes, San Francisco, CA 94158, USA
| | - Lindsay Easter
- Center for Systems and Therapeutics, Gladstone Institutes, San Francisco, CA 94158, USA
| | - Erse Duderstadt
- Center for Systems and Therapeutics, Gladstone Institutes, San Francisco, CA 94158, USA
| | - Vineet Vaibhav
- Advanced Clinical Biosystems Research Institute, Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Niveda Sundararaman
- Advanced Clinical Biosystems Research Institute, Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | | | | | - Jennifer Van Eyk
- Advanced Clinical Biosystems Research Institute, Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Steve Finkbeiner
- Institute of Data Science and Biotechnology, Gladstone Institutes, San Francisco, CA 94158, USA; Department of Physiology, University of California, San Francisco, San Francisco, CA 94158, USA; Department of Neurology, University of California San Francisco, San Francisco, CA 94158, USA; Taube/Koret Center for Neurodegenerative Disease Research, Gladstone Institutes, San Francisco, CA 94158, USA
| | - Julia A Kaye
- Center for Systems and Therapeutics, Gladstone Institutes, San Francisco, CA 94158, USA; Taube/Koret Center for Neurodegenerative Disease Research, Gladstone Institutes, San Francisco, CA 94158, USA
| | - Ernest Fraenkel
- MIT PhD Program in Computational and Systems Biology, Cambridge, MA 02139, USA; MIT Department of Biological Engineering, Cambridge, MA 02139, USA
| | - Leslie M Thompson
- Department of Neurobiology and Behavior, UC Irvine, Irvine, CA 92677, USA; Department of Psychiatry and Human Behavior, UC Irvine, Irvine, CA 92697, USA; Department of Biological Chemistry, UC Irvine, Irvine, CA 92697, USA; Institute for Memory Impairments and Neurological Disorders, UC Irvine, Irvine, CA 92697, USA.
| |
Collapse
|
2
|
Digman A, Pajarillo E, Kim S, Ajayi I, Son DS, Aschner M, Lee E. Tamoxifen induces protection against manganese toxicity by REST upregulation via the ER-α/Wnt/β-catenin pathway in neuronal cells. J Biol Chem 2025; 301:108529. [PMID: 40280417 DOI: 10.1016/j.jbc.2025.108529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 03/17/2025] [Accepted: 04/06/2025] [Indexed: 04/29/2025] Open
Abstract
Chronic exposure to elevated levels of manganese (Mn) causes a neurological disorder referred to as manganism, with symptoms resembling Parkinson's disease (PD). The repressor element-1 silencing transcription factor (REST) has been shown to be neuroprotective in several neurological disorders, including PD, suggesting that identifying REST upregulation mechanisms is an important avenue for the development of novel therapeutics. 17β-estradiol (E2) activates the Wnt/β-catenin signaling, which is known to increase REST transcription. E2 and tamoxifen (TX), a selective estrogen receptor modulator, exerted protection against Mn toxicity. In this study, we tested if TX upregulates REST potentially via Wnt/β-catenin signaling in Cath.a-differentiated (CAD) neuronal cells using luciferase assay, qPCR, Western blot analysis, immunocytochemistry, mutagenesis, chromatin immunoprecipitation, and electrophoretic mobility shift assay. TX (1 μM) increased REST promoter activities and mRNA/protein levels and attenuated Mn (250 μM)-decreased REST transcription in parallel with TX's protective effects against Mn-induced toxicity, potentially via Wnt. TX activated Wnt/β-catenin signaling by preventing β-catenin degradation via inactivation of glycogen synthase kinase-3 beta, leading to increased β-catenin levels and its nuclear translocation and binding to T-cell factor/lymphoid enhancer binding factor sites on Wnt-responsive elements (WRE) of the REST promoter. Mutation of WRE abolished TX-induced REST promoter activity. TX-induced Wnt signaling activation was primarily via the estrogen receptor (ER)-α, although ER-β and G protein-coupled estrogen receptor 1 also mediated TX's action on REST transcription. These findings underscore the critical role of Wnt/β-catenin signaling in TX-induced REST transcription, affording protection mechanisms against Mn toxicity and neurological disorders associated with REST dysfunction.
Collapse
Affiliation(s)
- Alexis Digman
- Department of Pharmaceutical Sciences, Florida A&M University, Tallahassee, Florida, USA
| | - Edward Pajarillo
- Department of Pharmaceutical Sciences, Florida A&M University, Tallahassee, Florida, USA
| | - Sanghoon Kim
- Department of Pharmaceutical Sciences, Florida A&M University, Tallahassee, Florida, USA
| | - Itunu Ajayi
- Department of Pharmaceutical Sciences, Florida A&M University, Tallahassee, Florida, USA
| | - Deok-Soo Son
- Department of Biochemistry, Cancer Biology, Neuroscience and Pharmacology, Meharry Medical College, Nashville, Tennessee, USA
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Eunsook Lee
- Department of Pharmaceutical Sciences, Florida A&M University, Tallahassee, Florida, USA.
| |
Collapse
|
3
|
Stocksdale JT, Leventhal MJ, Lam S, Xu YX, Wang YO, Wang KQ, Tomas R, Faghihmonzavi Z, Raghav Y, Smith C, Wu J, Miramontes R, Sarda K, Johnson H, Shin MG, Huang T, Foster M, Barch M, Armani N, Paiz C, Easter L, Duderstadt E, Vaibhav V, Sundararaman N, Felsenfeld DP, Vogt TF, Van Eyk J, Finkbeiner S, Kaye JA, Fraenkel E, Thompson LM. Intersecting impact of CAG repeat and Huntingtin knockout in stem cell-derived cortical neurons. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.24.639958. [PMID: 40060574 PMCID: PMC11888261 DOI: 10.1101/2025.02.24.639958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/30/2025]
Abstract
Huntington's Disease (HD) is caused by a CAG repeat expansion in the gene encoding Huntingtin (HTT ) . While normal HTT function appears impacted by the mutation, the specific pathways unique to CAG repeat expansion versus loss of normal function are unclear. To understand the impact of the CAG repeat expansion, we evaluated biological signatures of HTT knockout ( HTT KO) versus those that occur from the CAG repeat expansion by applying multi-omics, live cell imaging, survival analysis and a novel feature-based pipeline to study cortical neurons (eCNs) derived from an isogenic human embryonic stem cell series (RUES2). HTT KO and the CAG repeat expansion influence developmental trajectories of eCNs, with opposing effects on the growth. Network analyses of differentially expressed genes and proteins associated with enriched epigenetic motifs identified subnetworks common to CAG repeat expansion and HTT KO that include neuronal differentiation, cell cycle regulation, and mechanisms related to transcriptional repression and may represent gain-of-function mechanisms that cannot be explained by HTT loss of function alone. A combination of dominant and loss-of-function mechanisms are likely involved in the aberrant neurodevelopmental and neurodegenerative features of HD that can help inform therapeutic strategies.
Collapse
|
4
|
Nassar A, Kodi T, Satarker S, Gurram PC, Fayaz SM, Nampoothiri M. Astrocytic transcription factors REST, YY1, and putative microRNAs in Parkinson's disease and advanced therapeutic strategies. Gene 2024; 892:147898. [PMID: 37832803 DOI: 10.1016/j.gene.2023.147898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 07/10/2023] [Accepted: 10/10/2023] [Indexed: 10/15/2023]
Abstract
Transcription factors (TF) and microRNAs are regulatory factors in astrocytes and are linked to several Parkinson's disease (PD) progression causes, such as disruption of glutamine transporters in astrocytes and concomitant disrupted glutamine uptake and inflammation. REST, a crucial TF, has been documented as an epigenetic repressor that limits the expression of neuronal genes in non-neural cells. REST activity is significantly linked to its corepressors in astrocytes, specifically histone deacetylases (HDACs), CoREST, and MECP2. Another REST-regulating TF, YY1, has been studied in astrocytes, and its interaction with REST has been investigated. In this review, the molecular processes that support the astrocytic control of REST and YY1 in terms of the regulation of glutamate transporter EAAT2 were addressed in a more detailed and comprehensive manner. Both TFs' function in astrocytes and how astrocyte abnormalities cause PD is still a mystery. Moreover, microRNAs (short non-coding RNAs) are key regulators that have been correlated to the expression and regulation of numerous genes linked to PD. The identification of numerous miRs that are engaged in astrocyte dysfunction that triggers PD has been shown. The term "Gut-brain axis" refers to the two systems' mutual communication. Gut microbial dysbiosis, which mediates an imbalance of the gut-brain axis, might contribute to neurodegenerative illnesses through altered astrocytic regulation. New treatment approaches to modify the gut-brain axis and prevent astrocytic repercussions have also been investigated in this review.
Collapse
Affiliation(s)
- Ajmal Nassar
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India.
| | - Triveni Kodi
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India.
| | - Sairaj Satarker
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India.
| | - Prasada Chowdari Gurram
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India.
| | - S M Fayaz
- Department of Biotechnology, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India.
| | - Madhavan Nampoothiri
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India.
| |
Collapse
|
5
|
Ghanbari M, Khosroshahi NS, Alamdar M, Abdi A, Aghazadeh A, Feizi MAH, Haghi M. An Updated Review on the Significance of DNA and Protein Methyltransferases and De-methylases in Human Diseases: From Molecular Mechanism to Novel Therapeutic Approaches. Curr Med Chem 2024; 31:3550-3587. [PMID: 37287285 DOI: 10.2174/0929867330666230607124803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 05/05/2023] [Accepted: 05/09/2023] [Indexed: 06/09/2023]
Abstract
Epigenetic mechanisms are crucial in regulating gene expression. These mechanisms include DNA methylation and histone modifications, like methylation, acetylation, and phosphorylation. DNA methylation is associated with gene expression suppression; however, histone methylation can stimulate or repress gene expression depending on the methylation pattern of lysine or arginine residues on histones. These modifications are key factors in mediating the environmental effect on gene expression regulation. Therefore, their aberrant activity is associated with the development of various diseases. The current study aimed to review the significance of DNA and histone methyltransferases and demethylases in developing various conditions, like cardiovascular diseases, myopathies, diabetes, obesity, osteoporosis, cancer, aging, and central nervous system conditions. A better understanding of the epigenetic roles in developing diseases can pave the way for developing novel therapeutic approaches for affected patients.
Collapse
Affiliation(s)
- Mohammad Ghanbari
- Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Negin Sadi Khosroshahi
- Department of Biology, Faculty of Basic Sciences, Azarbaijan Shahid Madani University, Tabriz, Iran
| | - Maryam Alamdar
- Department of Genetics Sciences, Faculty of Advanced Sciences and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Adel Abdi
- Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Aida Aghazadeh
- Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | | | - Mehdi Haghi
- Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| |
Collapse
|
6
|
Nassar A, Satarker S, Gurram PC, Upadhya D, Fayaz SM, Nampoothiri M. Repressor Element-1 Binding Transcription Factor (REST) as a Possible Epigenetic Regulator of Neurodegeneration and MicroRNA-Based Therapeutic Strategies. Mol Neurobiol 2023; 60:5557-5577. [PMID: 37326903 PMCID: PMC10471693 DOI: 10.1007/s12035-023-03437-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 06/06/2023] [Indexed: 06/17/2023]
Abstract
Neurodegenerative disorders (NDD) have grabbed significant scientific consideration due to their fast increase in prevalence worldwide. The specific pathophysiology of the disease and the amazing changes in the brain that take place as it advances are still the top issues of contemporary research. Transcription factors play a decisive role in integrating various signal transduction pathways to ensure homeostasis. Disruptions in the regulation of transcription can result in various pathologies, including NDD. Numerous microRNAs and epigenetic transcription factors have emerged as candidates for determining the precise etiology of NDD. Consequently, understanding by what means transcription factors are regulated and how the deregulation of transcription factors contributes to neurological dysfunction is important to the therapeutic targeting of pathways that they modulate. RE1-silencing transcription factor (REST) also named neuron-restrictive silencer factor (NRSF) has been studied in the pathophysiology of NDD. REST was realized to be a part of a neuroprotective element with the ability to be tuned and influenced by numerous microRNAs, such as microRNAs 124, 132, and 9 implicated in NDD. This article looks at the role of REST and the influence of various microRNAs in controlling REST function in the progression of Alzheimer's disease (AD), Parkinson's disease (PD), and Huntington's disease (HD) disease. Furthermore, to therapeutically exploit the possibility of targeting various microRNAs, we bring forth an overview of drug-delivery systems to modulate the microRNAs regulating REST in NDD.
Collapse
Affiliation(s)
- Ajmal Nassar
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Sairaj Satarker
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Prasada Chowdari Gurram
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Dinesh Upadhya
- Centre for Molecular Neurosciences, Kasturba Medical College Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - S M Fayaz
- Department of Biotechnology, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Madhavan Nampoothiri
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India.
| |
Collapse
|
7
|
Lam XJ, Maniam S, Cheah PS, Ling KH. REST in the Road Map of Brain Development. Cell Mol Neurobiol 2023; 43:3417-3433. [PMID: 37517069 PMCID: PMC11410019 DOI: 10.1007/s10571-023-01394-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 07/23/2023] [Indexed: 08/01/2023]
Abstract
Repressor element-1 silencing transcription factor (REST) or also known as neuron-restrictive silencing factor (NRSF), is the key initiator of epigenetic neuronal gene-expression modification. Identification of a massive number of REST-targeted genes in the brain signifies its broad involvement in maintaining the functionality of the nervous system. Additionally, REST plays a crucial role in conferring neuroprotection to the neurons against various stressors or insults during injuries. At the cellular level, nuclear localisation of REST is a key determinant for the functional transcriptional regulation of REST towards its target genes. Emerging studies reveal the implication of REST nuclear mislocalisation or dysregulation in several neurological diseases. The expression of REST varies depending on different types of neurological disorders, which has created challenges in the discovery of REST-targeted interventions. Hence, this review presents a comprehensive summary on the physiological roles of REST throughout brain development and its implications in neurodegenerative and neurodevelopmental disorders, brain tumours and cerebrovascular diseases. This review offers valuable insights to the development of potential therapeutic approaches targeting REST to improve pathologies in the brain. The important roles of REST as a key player in the nervous system development, and its implications in several neurological diseases.
Collapse
Affiliation(s)
- Xin-Jieh Lam
- Department of Human Anatomy, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - Sandra Maniam
- Department of Human Anatomy, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - Pike-See Cheah
- Department of Human Anatomy, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia.
- Malaysian Research Institute on Ageing (MyAgeing), Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia.
| | - King-Hwa Ling
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia.
- Malaysian Research Institute on Ageing (MyAgeing), Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia.
| |
Collapse
|
8
|
The NRSF/REST transcription factor in hallmarks of cancer: From molecular mechanisms to clinical relevance. Biochimie 2023; 206:116-134. [PMID: 36283507 DOI: 10.1016/j.biochi.2022.10.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 10/07/2022] [Accepted: 10/17/2022] [Indexed: 11/23/2022]
Abstract
The RE-1 silencing transcription factor (REST), or neuron restrictive silencing factor (NRSF), was first identified as a repressor of neuronal genes in non-neuronal tissue. Interestingly, this transcription factor may act as a tumor suppressor or an oncogenic role in developing neuroendocrine and other tumors in patients. The hallmarks of cancer include six biological processes, including proliferative signaling, evasion of growth suppressors, resistance to cell death, replicative immortality, inducing angiogenesis, and activating invasion and metastasis. In addition to two emerging hallmarks, the reprogramming of energy metabolism and evasion of the immune response are all implicated in the development of human tumors. It is essential to know the role of these processes as they will affect the outcome of alternatives for cancer treatment. Various studies in this review demonstrate that NRSF/REST affects the different hallmarks of cancer that could position NRSF/REST as an essential target in the therapy and diagnosis of certain types of cancer.
Collapse
|
9
|
Neueder A, Kojer K, Hering T, Lavery DJ, Chen J, Birth N, Hallitsch J, Trautmann S, Parker J, Flower M, Sethi H, Haider S, Lee JM, Tabrizi SJ, Orth M. Abnormal molecular signatures of inflammation, energy metabolism, and vesicle biology in human Huntington disease peripheral tissues. Genome Biol 2022; 23:189. [PMID: 36071529 PMCID: PMC9450392 DOI: 10.1186/s13059-022-02752-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 08/18/2022] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND A major challenge in neurodegenerative diseases concerns identifying biological disease signatures that track with disease progression or respond to an intervention. Several clinical trials in Huntington disease (HD), an inherited, progressive neurodegenerative disease, are currently ongoing. Therefore, we examine whether peripheral tissues can serve as a source of readily accessible biological signatures at the RNA and protein level in HD patients. RESULTS We generate large, high-quality human datasets from skeletal muscle, skin and adipose tissue to probe molecular changes in human premanifest and early manifest HD patients-those most likely involved in clinical trials. The analysis of the transcriptomics and proteomics data shows robust, stage-dependent dysregulation. Gene ontology analysis confirms the involvement of inflammation and energy metabolism in peripheral HD pathogenesis. Furthermore, we observe changes in the homeostasis of extracellular vesicles, where we find consistent changes of genes and proteins involved in this process. In-depth single nucleotide polymorphism data across the HTT gene are derived from the generated primary cell lines. CONCLUSIONS Our 'omics data document the involvement of inflammation, energy metabolism, and extracellular vesicle homeostasis. This demonstrates the potential to identify biological signatures from peripheral tissues in HD suitable as biomarkers in clinical trials. The generated data, complemented by the primary cell lines established from peripheral tissues, and a large panel of iPSC lines that can serve as human models of HD are a valuable and unique resource to advance the current understanding of molecular mechanisms driving HD pathogenesis.
Collapse
Affiliation(s)
- Andreas Neueder
- Department of Neurology, Ulm University, 89081, Ulm, Germany
| | - Kerstin Kojer
- Department of Neurology, Ulm University, 89081, Ulm, Germany
| | - Tanja Hering
- Department of Neurology, Ulm University, 89081, Ulm, Germany
| | - Daniel J Lavery
- CHDI Foundation, Princeton, NJ, 08540, USA
- Loulou Foundation, Orphan Disease Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Jian Chen
- CHDI Foundation, Princeton, NJ, 08540, USA
| | - Nathalie Birth
- Department of Neurology, Ulm University, 89081, Ulm, Germany
| | | | - Sonja Trautmann
- Department of Neurology, Ulm University, 89081, Ulm, Germany
| | - Jennifer Parker
- UCL Huntington's Disease Centre, UCL Queen Square Institute of Neurology and National Hospital for Neurology and Neurosurgery, Queen Square, London, WC1N 3BG, UK
| | - Michael Flower
- UCL Huntington's Disease Centre, UCL Queen Square Institute of Neurology and National Hospital for Neurology and Neurosurgery, Queen Square, London, WC1N 3BG, UK
| | - Huma Sethi
- UCL Huntington's Disease Centre, UCL Queen Square Institute of Neurology and National Hospital for Neurology and Neurosurgery, Queen Square, London, WC1N 3BG, UK
| | - Salman Haider
- UCL Huntington's Disease Centre, UCL Queen Square Institute of Neurology and National Hospital for Neurology and Neurosurgery, Queen Square, London, WC1N 3BG, UK
| | - Jong-Min Lee
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, 02114, USA
- Department of Neurology, Harvard Medical School, Boston, MA, 02115, USA
| | - Sarah J Tabrizi
- UCL Huntington's Disease Centre, UCL Queen Square Institute of Neurology and National Hospital for Neurology and Neurosurgery, Queen Square, London, WC1N 3BG, UK
| | - Michael Orth
- Department of Neurology, Ulm University, 89081, Ulm, Germany.
- Swiss Huntington Centre, Neurozentrum, Siloah AG, Worbstr. 312, 3073, Gümligen, Switzerland.
- University Hospital of Old Age Psychiatry and Psychotherapy, Bern University, Bern, Switzerland.
| |
Collapse
|
10
|
Cho IK, Clever F, Hong G, Chan AWS. CAG Repeat Instability in the Peripheral and Central Nervous System of Transgenic Huntington’s Disease Monkeys. Biomedicines 2022; 10:biomedicines10081863. [PMID: 36009409 PMCID: PMC9405741 DOI: 10.3390/biomedicines10081863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 07/16/2022] [Accepted: 07/22/2022] [Indexed: 11/24/2022] Open
Abstract
Huntington’s Disease (HD) is an autosomal dominant disease that results in severe neurodegeneration with no cure. HD is caused by the expanded CAG trinucleotide repeat (TNR) on the Huntingtin gene (HTT). Although the somatic and germline expansion of the CAG repeats has been well-documented, the underlying mechanisms had not been fully delineated. Increased CAG repeat length is associated with a more severe phenotype, greater TNR instability, and earlier age of onset. The direct relationship between CAG repeat length and molecular pathogenesis makes TNR instability a useful measure of symptom severity and tissue susceptibility. Thus, we examined the tissue-specific TNR instability of transgenic nonhuman primate models of Huntington’s disease. Our data show a similar profile of CAG repeat expansion in both rHD1 and rHD7, where high instability was observed in testis, liver, caudate, and putamen. CAG repeat expansion was observed in all tissue samples, and tissue- and CAG repeat size-dependent expansion was observed. Correlation analysis of CAG repeat expansion and the gene expression profile of four genes in different tissues, clusterin (CLU), transferrin (TF), ribosomal protein lateral stalk subunit P1 (RPLP1), and ribosomal protein L13a (RPL13A), showed a strong correlation with CAG repeat instability. Overall, our data, along with previously published studies, can be used for studying the biology of CAG repeat instability and identifying new therapeutic targets.
Collapse
Affiliation(s)
- In K. Cho
- Division of Neuropharmacology and Neurologic Diseases, Yerkes National Primate Research Center, Emory University, Atlanta, GA 30322, USA;
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, USA; (F.C.); (G.H.)
- Correspondence:
| | - Faye Clever
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, USA; (F.C.); (G.H.)
| | - Gordon Hong
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, USA; (F.C.); (G.H.)
| | - Anthony W. S. Chan
- Division of Neuropharmacology and Neurologic Diseases, Yerkes National Primate Research Center, Emory University, Atlanta, GA 30322, USA;
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, USA; (F.C.); (G.H.)
| |
Collapse
|
11
|
Nuclear RIPK1 promotes chromatin remodeling to mediate inflammatory response. Cell Res 2022; 32:621-637. [DOI: 10.1038/s41422-022-00673-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Accepted: 05/10/2022] [Indexed: 12/16/2022] Open
|
12
|
Fear VS, Forbes CA, Anderson D, Rauschert S, Syn G, Shaw N, Jamieson S, Ward M, Baynam G, Lassmann T. CRISPR single base editing, neuronal disease modelling and functional genomics for genetic variant analysis: pipeline validation using Kleefstra syndrome EHMT1 haploinsufficiency. Stem Cell Res Ther 2022; 13:69. [PMID: 35139903 PMCID: PMC8827184 DOI: 10.1186/s13287-022-02740-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 10/28/2021] [Indexed: 11/22/2022] Open
Abstract
Background Over 400 million people worldwide are living with a rare disease. Next Generation Sequencing (NGS) identifies potential disease causative genetic variants. However, many are identified as variants of uncertain significance (VUS) and require functional laboratory validation to determine pathogenicity, and this creates major diagnostic delays. Methods In this study we test a rapid genetic variant assessment pipeline using CRISPR homology directed repair to introduce single nucleotide variants into inducible pluripotent stem cells (iPSCs), followed by neuronal disease modelling, and functional genomics on amplicon and RNA sequencing, to determine cellular changes to support patient diagnosis and identify disease mechanism. Results As proof-of-principle, we investigated an EHMT1 (Euchromatin histone methyltransferase 1; EHMT1 c.3430C > T; p.Gln1144*) genetic variant pathogenic for Kleefstra syndrome and determined changes in gene expression during neuronal progenitor cell differentiation. This pipeline rapidly identified Kleefstra syndrome in genetic variant cells compared to healthy cells, and revealed novel findings potentially implicating the key transcription factors REST and SP1 in disease pathogenesis. Conclusion The study pipeline is a rapid, robust method for genetic variant assessment that will support rare diseases patient diagnosis. The results also provide valuable information on genome wide perturbations key to disease mechanism that can be targeted for drug treatments. Supplementary Information The online version contains supplementary material available at 10.1186/s13287-022-02740-3.
Collapse
Affiliation(s)
- Vanessa S Fear
- Translational Genetics, Precision Health, Telethon Kids Institute, Northern Entrance, Perth Children's Hospital, 15 Hospital Avenue, Nedlands, WA, 6009, Australia.
| | - Catherine A Forbes
- Translational Genetics, Precision Health, Telethon Kids Institute, Northern Entrance, Perth Children's Hospital, 15 Hospital Avenue, Nedlands, WA, 6009, Australia
| | - Denise Anderson
- Computational Biology, Precision Health, Telethon Kids Institute, Perth Children's Hospital, Nedlands, WA, 6009, Australia
| | - Sebastian Rauschert
- Computational Biology, Precision Health, Telethon Kids Institute, Perth Children's Hospital, Nedlands, WA, 6009, Australia
| | - Genevieve Syn
- Computational Biology, Precision Health, Telethon Kids Institute, Perth Children's Hospital, Nedlands, WA, 6009, Australia
| | - Nicole Shaw
- Translational Genetics, Precision Health, Telethon Kids Institute, Northern Entrance, Perth Children's Hospital, 15 Hospital Avenue, Nedlands, WA, 6009, Australia
| | - Sarra Jamieson
- Computational Biology, Precision Health, Telethon Kids Institute, Perth Children's Hospital, Nedlands, WA, 6009, Australia
| | - Michelle Ward
- Undiagnosed Diseases Program, Genetic Services of WA, Subiaco, Australia
| | - Gareth Baynam
- Western Australian Register of Developmental Anomalies, King Edward Memorial Hospital, Subiaco, WA, 6008, Australia.,Undiagnosed Diseases Program, Genetic Services of WA, Subiaco, Australia
| | - Timo Lassmann
- Translational Genetics, Precision Health, Telethon Kids Institute, Northern Entrance, Perth Children's Hospital, 15 Hospital Avenue, Nedlands, WA, 6009, Australia.,Computational Biology, Precision Health, Telethon Kids Institute, Perth Children's Hospital, Nedlands, WA, 6009, Australia
| |
Collapse
|
13
|
Guida N, Sanguigno L, Mascolo L, Calabrese L, Serani A, Molinaro P, Lau CG, Annunziato L, Formisano L. The Transcriptional Complex Sp1/KMT2A by Up-Regulating Restrictive Element 1 Silencing Transcription Factor Accelerates Methylmercury-Induced Cell Death in Motor Neuron-Like NSC34 Cells Overexpressing SOD1-G93A. Front Neurosci 2021; 15:771580. [PMID: 34899171 PMCID: PMC8662822 DOI: 10.3389/fnins.2021.771580] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 11/08/2021] [Indexed: 11/13/2022] Open
Abstract
Methylmercury (MeHg) exposure has been related to amyotrophic lateral sclerosis (ALS) pathogenesis and molecular mechanisms of its neurotoxicity has been associated to an overexpression of the Restrictive Element 1 Silencing Transcription factor (REST). Herein, we evaluated the possibility that MeHg could accelerate neuronal death of the motor neuron-like NSC34 cells transiently overexpressing the human Cu2+/Zn2+superoxide dismutase 1 (SOD1) gene mutated at glycine 93 (SOD1-G93A). Indeed, SOD1-G93A cells exposed to 100 nM MeHg for 24 h showed a reduction in cell viability, as compared to cells transfected with empty vector or with unmutated SOD1 construct. Interestingly, cell survival reduction in SOD1-G93A cells was associated with an increase of REST mRNA and protein levels. Furthermore, MeHg increased the expression of the transcriptional factor Sp1 and promoted its binding to REST gene promoter sequence. Notably, Sp1 knockdown reverted MeHg-induced REST increase. Co-immunoprecipitation experiments demonstrated that Sp1 physically interacted with the epigenetic writer Lysine-Methyltransferase-2A (KMT2A). Moreover, knocking-down of KMT2A reduced MeHg-induced REST mRNA and protein increase in SOD1-G93A cells. Finally, we found that MeHg-induced REST up-regulation triggered necropoptotic cell death, monitored by RIPK1 increased protein expression. Interestingly, REST knockdown or treatment with the necroptosis inhibitor Necrostatin-1 (Nec) decelerated MeH-induced cell death in SOD1-G93A cells. Collectively, this study demonstrated that MeHg hastens necroptotic cell death in SOD1-G93A cells via Sp1/KMT2A complex, that by epigenetic mechanisms increases REST gene expression.
Collapse
Affiliation(s)
| | - Luca Sanguigno
- Division of Pharmacology, Department of Neuroscience, Reproductive and Dentistry Sciences, School of Medicine, "Federico II" University of Naples, Naples, Italy
| | - Luigi Mascolo
- Division of Pharmacology, Department of Neuroscience, Reproductive and Dentistry Sciences, School of Medicine, "Federico II" University of Naples, Naples, Italy
| | - Lucrezia Calabrese
- Division of Pharmacology, Department of Neuroscience, Reproductive and Dentistry Sciences, School of Medicine, "Federico II" University of Naples, Naples, Italy
| | - Angelo Serani
- Division of Pharmacology, Department of Neuroscience, Reproductive and Dentistry Sciences, School of Medicine, "Federico II" University of Naples, Naples, Italy
| | - Pasquale Molinaro
- Division of Pharmacology, Department of Neuroscience, Reproductive and Dentistry Sciences, School of Medicine, "Federico II" University of Naples, Naples, Italy
| | - C Geoffrey Lau
- Department of Neuroscience, City University of Hong Kong, Hong Kong, China
| | | | - Luigi Formisano
- Division of Pharmacology, Department of Neuroscience, Reproductive and Dentistry Sciences, School of Medicine, "Federico II" University of Naples, Naples, Italy
| |
Collapse
|
14
|
Maes M, Plaimas K, Suratanee A, Noto C, Kanchanatawan B. First Episode Psychosis and Schizophrenia Are Systemic Neuro-Immune Disorders Triggered by a Biotic Stimulus in Individuals with Reduced Immune Regulation and Neuroprotection. Cells 2021; 10:cells10112929. [PMID: 34831151 PMCID: PMC8616258 DOI: 10.3390/cells10112929] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 10/20/2021] [Accepted: 10/24/2021] [Indexed: 12/30/2022] Open
Abstract
There is evidence that schizophrenia is characterized by activation of the immune-inflammatory response (IRS) and compensatory immune-regulatory systems (CIRS) and lowered neuroprotection. Studies performed on antipsychotic-naïve first episode psychosis (AN-FEP) and schizophrenia (FES) patients are important as they may disclose the pathogenesis of FES. However, the protein–protein interaction (PPI) network of FEP/FES is not established. The aim of the current study was to delineate a) the characteristics of the PPI network of AN-FEP and its transition to FES; and b) the biological functions, pathways, and molecular patterns, which are over-represented in FEP/FES. Toward this end, we used PPI network, enrichment, and annotation analyses. FEP and FEP/FES are strongly associated with a response to a bacterium, alterations in Toll-Like Receptor-4 and nuclear factor-κB signaling, and the Janus kinases/signal transducer and activator of the transcription proteins pathway. Specific molecular complexes of the peripheral immune response are associated with microglial activation, neuroinflammation, and gliogenesis. FEP/FES is accompanied by lowered protection against inflammation, in part attributable to dysfunctional miRNA maturation, deficits in neurotrophin and Wnt/catenin signaling, and adherens junction organization. Multiple interactions between reduced brain derived neurotrophic factor, E-cadherin, and β-catenin and disrupted schizophrenia-1 (DISC1) expression increase the vulnerability to the neurotoxic effects of immune molecules, including cytokines and complement factors. In summary: FEP and FES are systemic neuro-immune disorders that are probably triggered by a bacterial stimulus which induces neuro-immune toxicity cascades that are overexpressed in people with reduced anti-inflammatory and miRNA protections, cell–cell junction organization, and neurotrophin and Wnt/catenin signaling.
Collapse
Affiliation(s)
- Michael Maes
- Department of Psychiatry, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand;
- Department of Psychiatry, Medical University of Plovdiv, 4000 Plovdiv, Bulgaria
- IMPACT Strategic Research Center, Deakin University, Geelong 3220, Australia
- Correspondence:
| | - Kitiporn Plaimas
- Advanced Virtual and Intelligent Computing (AVIC) Center, Department of Mathematics and Computer Science, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand;
| | - Apichat Suratanee
- Department of Mathematics, Faculty of Applied Science, King Mongkut’s University of Technology North Bangkok, Bangkok 10800, Thailand;
| | - Cristiano Noto
- GAPi (Early Psychosis Group), Universidade Federal de São Paulo (UNIFESP), São Paulo 04021-001, Brazil;
- Schizophrenia Program (PROESQ), Department of Psychiatry, Universidade Federal de São Paulo (UNIFESP), São Paulo 04021-001, Brazil
| | - Buranee Kanchanatawan
- Department of Psychiatry, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand;
| |
Collapse
|
15
|
Pogoda A, Chmielewska N, Maciejak P, Szyndler J. Transcriptional Dysregulation in Huntington's Disease: The Role in Pathogenesis and Potency for Pharmacological Targeting. Curr Med Chem 2021; 28:2783-2806. [PMID: 32628586 DOI: 10.2174/0929867327666200705225821] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 05/15/2020] [Accepted: 06/19/2020] [Indexed: 11/22/2022]
Abstract
Huntington's disease (HD) is an inherited neurodegenerative disorder caused by a mutation in the gene that encodes a critical cell regulatory protein, huntingtin (Htt). The expansion of cytosine-adenine-guanine (CAG) trinucleotide repeats causes improper folding of functional proteins and is an initial trigger of pathological changes in the brain. Recent research has indicated that the functional dysregulation of many transcription factors underlies the neurodegenerative processes that accompany HD. These disturbances are caused not only by the loss of wild-type Htt (WT Htt) function but also by the occurrence of abnormalities that result from the action of mutant Htt (mHtt). In this review, we aim to describe the role of transcription factors that are currently thought to be strongly associated with HD pathogenesis, namely, RE1-silencing transcription factor, also known as neuron-restrictive silencer factor (REST/NRSF), forkhead box proteins (FOXPs), peroxisome proliferator-activated receptor gamma coactivator-1a (PGC1α), heat shock transcription factor 1 (HSF1), and nuclear factor κ light-chain-enhancer of activated B cells (NF- κB). We also take into account the role of these factors in the phenotype of HD as well as potential pharmacological interventions targeting the analyzed proteins. Furthermore, we considered whether molecular manipulation resulting in changes in transcription factor function may have clinical potency for treating HD.
Collapse
Affiliation(s)
- Aleksandra Pogoda
- Faculty of Medicine, Medical University of Warsaw, Zwirki i Wigury Street 61, 02-097 Warsaw, Poland
| | - Natalia Chmielewska
- Department of Neurochemistry, Institute of Psychiatry and Neurology, Sobieskiego Street 9, 02-957 Warsaw, Poland
| | - Piotr Maciejak
- Department of Neurochemistry, Institute of Psychiatry and Neurology, Sobieskiego Street 9, 02-957 Warsaw, Poland
| | - Janusz Szyndler
- Department of Experimental and Clinical Pharmacology, Centre for Preclinical Research and Technology CePT, Medical University of Warsaw, Banacha Street 1B, 02-097 Warsaw, Poland
| |
Collapse
|
16
|
Conforti P, Besusso D, Brocchetti S, Campus I, Cappadona C, Galimberti M, Laporta A, Iennaco R, Rossi RL, Dickinson VB, Cattaneo E. RUES2 hESCs exhibit MGE-biased neuronal differentiation and muHTT-dependent defective specification hinting at SP1. Neurobiol Dis 2020; 146:105140. [PMID: 33065279 DOI: 10.1016/j.nbd.2020.105140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 10/09/2020] [Accepted: 10/11/2020] [Indexed: 10/23/2022] Open
Abstract
RUES2 cell lines represent the first collection of isogenic human embryonic stem cells (hESCs) carrying different pathological CAG lengths in the HTT gene. However, their neuronal differentiation potential has yet to be thoroughly evaluated. Here, we report that RUES2 during ventral telencephalic differentiation is biased towards medial ganglionic eminence (MGE). We also show that HD-RUES2 cells exhibit an altered MGE transcriptional signature in addition to recapitulating known HD phenotypes, with reduced expression of the neurodevelopmental regulators NEUROD1 and BDNF and increased cleavage of synaptically enriched N-cadherin. Finally, we identified the transcription factor SP1 as a common potential detrimental co-partner of muHTT by de novo motif discovery analysis on the LGE, MGE, and cortical genes differentially expressed in HD human pluripotent stem cells in our and additional datasets. Taken together, these observations suggest a broad deleterious effect of muHTT in the early phases of neuronal development that may unfold through its altered interaction with SP1.
Collapse
Affiliation(s)
- Paola Conforti
- Laboratory of Stem Cell Biology and Pharmacology of Neurodegenerative Diseases, Department of Biosciences, University of Milan, 20122 Milan, Italy; Istituto Nazionale Genetica Molecolare, Romeo ed Enrica Invernizzi, Milan 20122, Italy
| | - Dario Besusso
- Laboratory of Stem Cell Biology and Pharmacology of Neurodegenerative Diseases, Department of Biosciences, University of Milan, 20122 Milan, Italy; Istituto Nazionale Genetica Molecolare, Romeo ed Enrica Invernizzi, Milan 20122, Italy
| | - Silvia Brocchetti
- Laboratory of Stem Cell Biology and Pharmacology of Neurodegenerative Diseases, Department of Biosciences, University of Milan, 20122 Milan, Italy; Istituto Nazionale Genetica Molecolare, Romeo ed Enrica Invernizzi, Milan 20122, Italy
| | - Ilaria Campus
- Laboratory of Stem Cell Biology and Pharmacology of Neurodegenerative Diseases, Department of Biosciences, University of Milan, 20122 Milan, Italy; Istituto Nazionale Genetica Molecolare, Romeo ed Enrica Invernizzi, Milan 20122, Italy
| | - Claudio Cappadona
- Laboratory of Stem Cell Biology and Pharmacology of Neurodegenerative Diseases, Department of Biosciences, University of Milan, 20122 Milan, Italy; Istituto Nazionale Genetica Molecolare, Romeo ed Enrica Invernizzi, Milan 20122, Italy
| | - Maura Galimberti
- Laboratory of Stem Cell Biology and Pharmacology of Neurodegenerative Diseases, Department of Biosciences, University of Milan, 20122 Milan, Italy; Istituto Nazionale Genetica Molecolare, Romeo ed Enrica Invernizzi, Milan 20122, Italy
| | - Angela Laporta
- Laboratory of Stem Cell Biology and Pharmacology of Neurodegenerative Diseases, Department of Biosciences, University of Milan, 20122 Milan, Italy
| | - Raffaele Iennaco
- Laboratory of Stem Cell Biology and Pharmacology of Neurodegenerative Diseases, Department of Biosciences, University of Milan, 20122 Milan, Italy; Istituto Nazionale Genetica Molecolare, Romeo ed Enrica Invernizzi, Milan 20122, Italy
| | - Riccardo L Rossi
- Istituto Nazionale Genetica Molecolare, Romeo ed Enrica Invernizzi, Milan 20122, Italy
| | - Vittoria Bocchi Dickinson
- Laboratory of Stem Cell Biology and Pharmacology of Neurodegenerative Diseases, Department of Biosciences, University of Milan, 20122 Milan, Italy; Istituto Nazionale Genetica Molecolare, Romeo ed Enrica Invernizzi, Milan 20122, Italy
| | - Elena Cattaneo
- Laboratory of Stem Cell Biology and Pharmacology of Neurodegenerative Diseases, Department of Biosciences, University of Milan, 20122 Milan, Italy; Istituto Nazionale Genetica Molecolare, Romeo ed Enrica Invernizzi, Milan 20122, Italy.
| |
Collapse
|
17
|
Disruption of zinc transporter ZnT3 transcriptional activity and synaptic vesicular zinc in the brain of Huntington's disease transgenic mouse. Cell Biosci 2020; 10:106. [PMID: 32944220 PMCID: PMC7488477 DOI: 10.1186/s13578-020-00459-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 08/05/2020] [Indexed: 12/27/2022] Open
Abstract
Background Huntington’s disease (HD) is a neurodegenerative disease that involves a complex combination of psychiatric, cognitive and motor impairments. Synaptic dysfunction has been implicated in HD pathogenesis. However, the mechanisms have not been clearly delineated. Synaptic vesicular zinc is closely linked to modulating synaptic transmission and maintaining cognitive ability. It is significant to assess zinc homeostasis for further revealing the pathogenesis of synaptic dysfunction and cognitive impairment in HD. Results Histochemical staining by autometallography indicated that synaptic vesicular zinc was decreased in the hippocampus, cortex and striatum of N171-82Q HD transgenic mice. Analyses by immunohistochemistry, Western blot and RT-PCR found that the expression of zinc transporter 3 (ZnT3) required for transport of zinc into synaptic vesicles was obviously reduced in these three brain regions of the HD mice aged from 14 to 20 weeks and BHK cells expressing mutant huntingtin. Significantly, dual-luciferase reporter gene and chromatin immunoprecipitation assays demonstrated that transcription factor Sp1 could activate ZnT3 transcription via its binding to the GC boxes in ZnT3 promoter. Moreover, mutant huntingtin was found to inhibit the binding of Sp1 to the promoter of ZnT3 and down-regulate ZnT3 expression, and the decline in ZnT3 expression could be ameliorated through overexpression of Sp1. Conclusions This is first study to reveal a significant loss of synaptic vesicular zinc and a decline in ZnT3 transcriptional activity in the HD transgenic mice. Our work sheds a novel mechanistic insight into pathogenesis of HD that mutant huntingtin down-regulates expression of ZnT3 through inhibiting binding of Sp1 to the promoter of ZnT3 gene, causing disruption of synaptic vesicular zinc homeostasis. Disrupted vesicular zinc ultimately leads to early synaptic dysfunction and cognitive deficits in HD. It is also suggested that maintaining normal synaptic vesicular zinc concentration is a potential therapeutic strategy for HD.
Collapse
|
18
|
The interaction between RE1-silencing transcription factor (REST) and heat shock protein 90 as new therapeutic target against Huntington's disease. PLoS One 2019; 14:e0220393. [PMID: 31361762 PMCID: PMC6667143 DOI: 10.1371/journal.pone.0220393] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2019] [Accepted: 07/14/2019] [Indexed: 12/18/2022] Open
Abstract
The wild type huntingtin protein (Htt), supports the production of brain-derived neurotrophic factor (BDNF), a survival factor for striatal neurons, through cytoplasmic sequestering of RE-1silencing transcription factor (REST). In Huntington´s Disease an inherited degenerative disease, caused by a CAG expansion in the 5´coding region of the gene, the mutant huntingtin protein (mHtt), causes that REST enters pathologically into the nucleus of cells, resulting in the repression of neuronal genes including BDNF, resulting in the progressive neuronal death. It has been reported that Htt associates with Hsp90 and this interaction is involved in regulation of huntingtin aggregation. Discovering mechanisms to reduce the cellular levels of mutant huntingtin and REST provide promising strategies for treating Huntington disease. Here, we use the yeast two-hybrid system to show that N-terminus or REST interacts with the heat shock protein 90 (Hsp90) and identifies REST as an Hsp90 Client Protein. To assess the effects of Hsp90 we used antisense oligonucleotide, and evaluated the levels mHtt and REST levels. Our results show that direct knockdown of endogenous Hsp90 significantly reduces the levels of REST and mutant Huntingtin, decreased the percentage of cells with mHtt in nucleus and rescued cells from mHtt-induced cellular cytotoxicity. Additionally Hsp90–specific inhibitors geldanamicyn and PUH71 dramatically reduced mHtt and REST levels, thereby providing neuroprotective activity. Our data show that Hsp90 is necessary to maintain the levels of REST and mHtt, which suggests that the interactions between Hsp90-REST and Hsp90-Huntingtin could be potential therapeutic targets in Huntington's disease.
Collapse
|
19
|
Guida N, Valsecchi V, Laudati G, Serani A, Mascolo L, Molinaro P, Montuori P, Di Renzo G, Canzoniero LM, Formisano L. The miR206-JunD Circuit Mediates the Neurotoxic Effect of Methylmercury in Cortical Neurons. Toxicol Sci 2019. [PMID: 29522201 DOI: 10.1093/toxsci/kfy051] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Methylmercury (MeHg) causes neuronal death through different pathways. Particularly, we found that in cortical neurons it increased the expression of Repressor Element-1 Silencing Transcription Factor (REST), histone deacetylase (HDAC)4, Specificity Protein (Sp)1, Sp4, and reduced the levels of brain-derived neurotrophic factor (BDNF). Herein, in rat cortical neurons we investigated whether microRNA (miR)206 can modulate MeHg-induced cell death by regulating REST/HDAC4/Sp1/Sp4/BDNF axis. MeHg (1 µM) reduced miR206 expression after both 12 and 24 h and miR206 transfection prevented MeHg-induced neuronal death. Furthermore, miR206 reverted MeHg-induced REST and Sp4 increase and BDNF reduction at gene and protein level, and reverted HDAC4 protein increase, but not HDAC4 mRNA upregulation. Moreover, since no miR206 seed sequences were identified in the 3'-untranslated regions (3'-UTRs) of REST and SP4, we investigated the role of JunD, that presents a consensus motif on REST, Sp4, and BDNF promoters. Indeed, MeHg increased JunD mRNA and protein levels, and JunD knockdown counteracted MeHg-induced REST, Sp4 increase, but not BDNF reduction. Furthermore, we identified a miR206 binding site in the 3'-UTR of JunD mRNA (miR206/JunD) and mutagenesis of miR206/JunD site reverted JunD luciferase activity reduction induced by miR206. Finally, miR206 prevented MeHg-increased JunD binding to REST and Sp4 promoters, and MeHg-reduced BDNF expression was determined by the increase of HDAC4 binding on BDNF promoter IV. Collectively, these results suggest that miR206 downregulation induced by MeHg exposure determines an upregulation of HDAC4, that in turn downregulated BDNF, and the activation of JunD that, by binding REST and Sp4 gene promoters, increased their expression.
Collapse
Affiliation(s)
| | - Valeria Valsecchi
- Division of Pharmacology, Department of Neuroscience, Reproductive and Dentistry Sciences, School of Medicine, "Federico II" University of Naples, 80131 Naples, Italy
| | - Giusy Laudati
- Division of Pharmacology, Department of Neuroscience, Reproductive and Dentistry Sciences, School of Medicine, "Federico II" University of Naples, 80131 Naples, Italy.,Division of Pharmacology, Department of Science and Technology, University of Sannio, 82100 Benevento, Italy
| | - Angelo Serani
- Division of Pharmacology, Department of Neuroscience, Reproductive and Dentistry Sciences, School of Medicine, "Federico II" University of Naples, 80131 Naples, Italy
| | - Luigi Mascolo
- Division of Pharmacology, Department of Neuroscience, Reproductive and Dentistry Sciences, School of Medicine, "Federico II" University of Naples, 80131 Naples, Italy
| | - Pasquale Molinaro
- Division of Pharmacology, Department of Neuroscience, Reproductive and Dentistry Sciences, School of Medicine, "Federico II" University of Naples, 80131 Naples, Italy
| | - Paolo Montuori
- Department of Preventive Medical Sciences, University Federico II, 80131 Naples, Italy
| | - Gianfranco Di Renzo
- Division of Pharmacology, Department of Neuroscience, Reproductive and Dentistry Sciences, School of Medicine, "Federico II" University of Naples, 80131 Naples, Italy
| | - Lorella M Canzoniero
- Division of Pharmacology, Department of Neuroscience, Reproductive and Dentistry Sciences, School of Medicine, "Federico II" University of Naples, 80131 Naples, Italy.,Division of Pharmacology, Department of Science and Technology, University of Sannio, 82100 Benevento, Italy
| | - Luigi Formisano
- Division of Pharmacology, Department of Neuroscience, Reproductive and Dentistry Sciences, School of Medicine, "Federico II" University of Naples, 80131 Naples, Italy.,Division of Pharmacology, Department of Science and Technology, University of Sannio, 82100 Benevento, Italy
| |
Collapse
|
20
|
Mampay M, Sheridan GK. REST: An epigenetic regulator of neuronal stress responses in the young and ageing brain. Front Neuroendocrinol 2019; 53:100744. [PMID: 31004616 DOI: 10.1016/j.yfrne.2019.04.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 04/03/2019] [Accepted: 04/11/2019] [Indexed: 12/27/2022]
Abstract
The transcriptional repressor REST (Repressor Element-1 Silencing Transcription factor) is a key modulator of the neuronal epigenome and targets genes involved in neuronal differentiation, axonal growth, vesicular transport, ion channel conductance and synaptic plasticity. Whilst its gene expression-modifying properties have been examined extensively in neuronal development, REST's response towards stress-induced neuronal insults has only recently been explored. Overall, REST appears to be an ideal candidate to fine-tune neuronal gene expression following different forms of cellular, neuropathological, psychological and physical stressors. Upregulation of REST is reportedly protective against premature neural stem cell depletion, neuronal hyperexcitability, oxidative stress, neuroendocrine system dysfunction and neuropathology. In contrast, neuronal REST activation has also been linked to neuronal dysfunction and neurodegeneration. Here, we highlight key findings and discrepancies surrounding our current understanding of REST's function in neuronal adaptation to stress and explore its potential role in neuronal stress resilience in the young and ageing brain.
Collapse
Affiliation(s)
- Myrthe Mampay
- Neuroimmunology & Neurotherapeutics Laboratory, School of Pharmacy and Biomolecular Sciences, University of Brighton, Brighton BN2 4GJ, UK
| | - Graham K Sheridan
- Neuroimmunology & Neurotherapeutics Laboratory, School of Pharmacy and Biomolecular Sciences, University of Brighton, Brighton BN2 4GJ, UK.
| |
Collapse
|
21
|
Prevention of Huntington's Disease-Like Behavioral Deficits in R6/1 Mouse by Tolfenamic Acid Is Associated with Decreases in Mutant Huntingtin and Oxidative Stress. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:4032428. [PMID: 31049134 PMCID: PMC6458866 DOI: 10.1155/2019/4032428] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 01/07/2019] [Accepted: 01/17/2019] [Indexed: 02/08/2023]
Abstract
Tolfenamic acid is a nonsteroidal anti-inflammatory drug with neuroprotective properties, and it alleviates learning and memory deficits in the APP transgenic mouse model of Alzheimer's disease. However, whether tolfenamic acid can prevent motor and memory dysfunction in transgenic animal models of Huntington's disease (HD) remains unclear. To this end, tolfenamic acid was orally administered to transgenic R6/1 mice from 10 to 20 weeks of age, followed by several behavioral tests to evaluate motor and memory function. Tolfenamic acid improved motor coordination in R6/1 mice as tested by rotarod, grip strength, and locomotor behavior tests and attenuated memory dysfunction as analyzed using the novel object recognition test and passive avoidance test. Tolfenamic acid decreased the expression of mutant huntingtin in the striatum of 20-week-old R6/1 mice by inhibiting specificity protein 1 expression and enhancing autophagic function. Furthermore, tolfenamic acid exhibited antioxidant effects in both R6/1 mice and PC12 cell models. Collectively, these results suggest that tolfenamic acid has a good therapeutic effect on R6/1 mice, and may be a potentially useful agent in the treatment of HD.
Collapse
|
22
|
Huang P, Chen CS, Yang YH, Chou MC, Chang YH, Lai CL, Chen HY, Liu CK. REST rs3796529 Genotype and Rate of Functional Deterioration in Alzheimer's Disease. Aging Dis 2019; 10:94-101. [PMID: 30705771 PMCID: PMC6345341 DOI: 10.14336/ad.2018.0116] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Accepted: 01/16/2018] [Indexed: 01/22/2023] Open
Abstract
Recently, REST (RE1-silencing transcription factor) gene has been shown to be lost in Alzheimer’s disease (AD), and a missense minor REST allele rs3796529-T has been shown to reduce the rate of hippocampal volume loss. However, whether the REST rs3796529 genotype is associated with the rate of functional deterioration in AD is unknown. A total of 584 blood samples from Taiwanese patients with AD were collected from January 2002 to December 2013. The diagnosis of AD was based on the National Institute of Neurological and Communicative Disorders and Stroke and the Alzheimer’s Disease and Related Disorders Association criteria. The allele frequency of rs3796529-T was compared between the AD cohort and 993 individuals from the general population in Taiwan. Kaplan-Meier analysis, the log rank test and a multivariate Cox model were then used to evaluate the association between rs3796529-T and functional deterioration in the AD cohort. The allele frequency of rs3796529-T was significantly lower in the AD cohort compared to the general population cohort (36.82% vs. 40.73%, p=0.029). Kaplan-Meier analysis and the log rank test showed that the AD patients carrying the rs3796529 T/T genotype had a longer progression-free survival than those with the C/C genotype (p=0.012). In multivariate analysis, the rs3796529 T/T genotype (adjusted HR=0.593, 95% CI: 0.401-0.877, p=0.009) was an independent protective factor for functional deterioration. The rs3796529 T/T genotype was associated with slower functional deterioration in patients with AD. This finding may lead to a to better understanding of the molecular pathways involved, and prompt further development of novel biomarkers to monitor AD.
Collapse
Affiliation(s)
- Poyin Huang
- 1Department of Neurology, Kaohsiung Municipal Hsiao-Kang Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan.,2Department of Neurology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan.,3Ph.D. Program in Translational Medicine, Kaohsiung Medical University and Academia Sinica, Taiwan.,4Department of Neurology, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Cheng-Sheng Chen
- 5Department of Psychiatry, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Yuan-Han Yang
- 6Department of Neurology, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung, Taiwan
| | - Mei-Chuan Chou
- 6Department of Neurology, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung, Taiwan
| | - Ya-Hsuan Chang
- 7Institute of Statistical Science, Academia Sinica, Taipei, Taiwan
| | - Chiou-Lian Lai
- 1Department of Neurology, Kaohsiung Municipal Hsiao-Kang Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Hsuan-Yu Chen
- 3Ph.D. Program in Translational Medicine, Kaohsiung Medical University and Academia Sinica, Taiwan.,7Institute of Statistical Science, Academia Sinica, Taipei, Taiwan.,8Graduate institute of medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Ching-Kuan Liu
- 2Department of Neurology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| |
Collapse
|
23
|
Kreouzis V, Chen GL, Miller GM. Perturbations of Neuron-Restrictive Silencing Factor Modulate Corticotropin-Releasing Hormone Gene Expression in the Human Cell Line BeWo. MOLECULAR NEUROPSYCHIATRY 2018; 4:100-110. [PMID: 30397598 DOI: 10.1159/000492635] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Accepted: 08/02/2018] [Indexed: 01/04/2023]
Abstract
Stress exacerbates disease, and understanding its molecular mechanisms is crucial to the development of novel therapeutic interventions to combat stress-related disorders. The driver of the stress response in the hypothalamic-pituitary-adrenal axis (HPA) is corticotropin-releasing hormone (CRH), a neuropeptide synthesized in the paraventricular nucleus of the hypothalamus. Evidence supports that CRH expression is epigenetically modified at the molecular level by environmental stimuli, causing changes in the stress response. This effect is mediated by a concert of factors that translate environmental change into alterations in gene expression. An important regulator and epigenetic modulator of CRH expression is neuron-restrictive silencing factor (NRSF). Previously, our lab identified numerous splice variants of NRSF that are specific to humans and predictive of differential regulatory effects of NRSF variants on targeted gene expression. The human cell line BeWo has endogenous CRH and NRSF expression providing an in vitro model system. Here, we show that manipulation of NRSF expression through siRNA technology, overexpression by plasmid vectors, and direct cAMP induction that CRH expression is linked to changes in NRSF expression. Accordingly, this epigenetic regulatory pathway in humans might be a critical mechanism involved in the regulation of the stress response.
Collapse
Affiliation(s)
- Vasileios Kreouzis
- Department of Psychology, College of Science, Northeastern University, Boston, Massachusetts, USA
| | - Guo-Lin Chen
- Department of Pharmaceutical Sciences, Bouve College of Health Sciences, Boston, Massachusetts, USA
| | - Gregory M Miller
- Department of Pharmaceutical Sciences, Bouve College of Health Sciences, Boston, Massachusetts, USA.,Department of Chemical Engineering, College of Engineering, Boston, Massachusetts, USA.,Center for Drug Discovery, Northeastern University, Boston, Massachusetts, USA
| |
Collapse
|
24
|
Xiang C, Zhang S, Dong X, Ma S, Cong S. Transcriptional Dysregulation and Post-translational Modifications in Polyglutamine Diseases: From Pathogenesis to Potential Therapeutic Strategies. Front Mol Neurosci 2018; 11:153. [PMID: 29867345 PMCID: PMC5962650 DOI: 10.3389/fnmol.2018.00153] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Accepted: 04/20/2018] [Indexed: 02/06/2023] Open
Abstract
Polyglutamine (polyQ) diseases are hereditary neurodegenerative disorders caused by an abnormal expansion of a trinucleotide CAG repeat in the coding region of their respective associated genes. PolyQ diseases mainly display progressive degeneration of the brain and spinal cord. Nine polyQ diseases are known, including Huntington's disease (HD), spinal and bulbar muscular atrophy (SBMA), dentatorubral-pallidoluysian atrophy (DRPLA), and six forms of spinocerebellar ataxia (SCA). HD is the best characterized polyQ disease. Many studies have reported that transcriptional dysregulation and post-translational disruptions, which may interact with each other, are central features of polyQ diseases. Post-translational modifications, such as the acetylation of histones, are closely associated with the regulation of the transcriptional activity. A number of groups have studied the interactions between the polyQ proteins and transcription factors. Pharmacological drugs or genetic manipulations aimed at correcting the dysregulation have been confirmed to be effective in the treatment of polyQ diseases in many animal and cellular models. For example, histone deaceylase inhibitors have been demonstrated to have beneficial effects in cases of HD, SBMA, DRPLA, and SCA3. In this review, we describe the transcriptional and post-translational dysregulation in polyQ diseases with special focus on HD, and we summarize and comment on potential treatment approaches targeting disruption of transcription and post-translation processes in these diseases.
Collapse
Affiliation(s)
| | | | | | | | - Shuyan Cong
- Department of Neurology, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
25
|
Identifying therapeutic targets by combining transcriptional data with ordinal clinical measurements. Nat Commun 2017; 8:623. [PMID: 28931805 PMCID: PMC5606996 DOI: 10.1038/s41467-017-00353-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2016] [Accepted: 06/23/2017] [Indexed: 01/05/2023] Open
Abstract
The immense and growing repositories of transcriptional data may contain critical insights for developing new therapies. Current approaches to mining these data largely rely on binary classifications of disease vs. control, and are not able to incorporate measures of disease severity. We report an analytical approach to integrate ordinal clinical information with transcriptomics. We apply this method to public data for a large cohort of Huntington’s disease patients and controls, identifying and prioritizing phenotype-associated genes. We verify the role of a high-ranked gene in dysregulation of sphingolipid metabolism in the disease and demonstrate that inhibiting the enzyme, sphingosine-1-phosphate lyase 1 (SPL), has neuroprotective effects in Huntington’s disease models. Finally, we show that one consequence of inhibiting SPL is intracellular inhibition of histone deacetylases, thus linking our observations in sphingolipid metabolism to a well-characterized Huntington’s disease pathway. Our approach is easily applied to any data with ordinal clinical measurements, and may deepen our understanding of disease processes. Identifying gene subsets affecting disease phenotypes from transcriptome data is challenge. Here, the authors develop a method that combines transcriptional data with disease ordinal clinical measurements to discover a sphingolipid metabolism regulator involving in Huntington’s disease progression.
Collapse
|
26
|
Huang X, Luo YL, Mao YS, Ji JL. The link between long noncoding RNAs and depression. Prog Neuropsychopharmacol Biol Psychiatry 2017; 73:73-78. [PMID: 27318257 DOI: 10.1016/j.pnpbp.2016.06.004] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2015] [Revised: 06/07/2016] [Accepted: 06/13/2016] [Indexed: 12/28/2022]
Abstract
The major depressive disorder (MDD) is a relatively common mental disorder from which that hundreds of million people have suffered, leading to displeasing life quality, which is characterized by health damage and even suicidal thoughts. The complicated development and functioning of MDD is still under exploration. Long noncoding RNA (lncRNAs) are highly expressed in the brain, could affect neural stem cell maintenance, neurogenesis and gliogenesis, brain patterning, synaptic and stress responses, and neural plasticity. The dysregulation of certain lncRNAs induces in neurodevelopmental, neurodegenerative and neuroimmunological disorders, primary brain tumors, and psychiatric diseases. Although advances have been made, no fully satisfactory treatments for major depression are available, further investigation is requested. And recently data showed that the expression level of the majority of lncRNAs demonstrated a clear tendency of upregulation, and the certain dysregulated miRNAs and lncRNAs in the MDD have been proved to have a co-synergism mechanism, that is why we speculate lncRNA might get the capability to regulate MDD. Few identified lncRNAs have been deeply studied in detailed experiments up until now, little predictions of their function have been raised, and further researches is calling for discover their signal pathway and related regulatory networks.
Collapse
Affiliation(s)
- Xiao Huang
- Department of Psychological Medicine, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Yan-Li Luo
- Department of Psychiatry, Tongji Hospital of Tongji University, Shanghai 200065, China
| | - Yue-Shi Mao
- Department of Neurology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Jian-Lin Ji
- Department of Psychological Medicine, Zhongshan Hospital, Fudan University, Shanghai 200032, China.
| |
Collapse
|
27
|
Francelle L, Lotz C, Outeiro T, Brouillet E, Merienne K. Contribution of Neuroepigenetics to Huntington's Disease. Front Hum Neurosci 2017; 11:17. [PMID: 28194101 PMCID: PMC5276857 DOI: 10.3389/fnhum.2017.00017] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Accepted: 01/10/2017] [Indexed: 12/29/2022] Open
Abstract
Unbalanced epigenetic regulation is thought to contribute to the progression of several neurodegenerative diseases, including Huntington’s disease (HD), a genetic disorder considered as a paradigm of epigenetic dysregulation. In this review, we attempt to address open questions regarding the role of epigenetic changes in HD, in the light of recent advances in neuroepigenetics. We particularly discuss studies using genome-wide scale approaches that provide insights into the relationship between epigenetic regulations, gene expression and neuronal activity in normal and diseased neurons, including HD neurons. We propose that cell-type specific techniques and 3D-based methods will advance knowledge of epigenome in the context of brain region vulnerability in neurodegenerative diseases. A better understanding of the mechanisms underlying epigenetic changes and of their consequences in neurodegenerative diseases is required to design therapeutic strategies more effective than current strategies based on histone deacetylase (HDAC) inhibitors. Researches in HD may play a driving role in this process.
Collapse
Affiliation(s)
- Laetitia Francelle
- Department of NeuroDegeneration and Restorative Research, University Medical Center Goettingen Goettingen, Germany
| | - Caroline Lotz
- CNRS UMR 7364, Laboratory of Cognitive and Adaptive Neurosciences, University of Strasbourg Strasbourg, France
| | - Tiago Outeiro
- Department of NeuroDegeneration and Restorative Research, University Medical Center Goettingen Goettingen, Germany
| | - Emmanuel Brouillet
- Commissariat à l'Energie Atomique et aux Energies Alternatives, Département de Recherche Fondamentale, Institut d'Imagerie Biomédicale, Molecular Imaging Center, Neurodegenerative diseases Laboratory, UMR 9199, CNRS Université Paris-Sud, Université Paris-Saclay Fontenay-aux-Roses, France
| | - Karine Merienne
- CNRS UMR 7364, Laboratory of Cognitive and Adaptive Neurosciences, University of Strasbourg Strasbourg, France
| |
Collapse
|
28
|
Dong X, Tsuji J, Labadorf A, Roussos P, Chen JF, Myers RH, Akbarian S, Weng Z. The Role of H3K4me3 in Transcriptional Regulation Is Altered in Huntington's Disease. PLoS One 2015; 10:e0144398. [PMID: 26636336 PMCID: PMC4670094 DOI: 10.1371/journal.pone.0144398] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Accepted: 11/17/2015] [Indexed: 01/22/2023] Open
Abstract
Huntington's disease (HD) is an autosomal-dominant neurodegenerative disorder resulting from expansion of CAG repeats in the Huntingtin (HTT) gene. Previous studies have shown mutant HTT can alter expression of genes associated with dysregulated epigenetic modifications. One of the most widely studied chromatin modifications is trimethylated lysine 4 of histone 3 (H3K4me3). Here, we conducted the first comprehensive study of H3K4me3 ChIP-sequencing in neuronal chromatin from the prefrontal cortex of six HD cases and six non-neurologic controls, and its association with gene expression measured by RNA-sequencing. We detected 2,830 differentially enriched H3K4me3 peaks between HD and controls, with 55% of them down-regulated in HD. Although H3K4me3 signals are expected to be associated with mRNA levels, we found an unexpected discordance between altered H3K4me3 peaks and mRNA levels. Gene ontology (GO) term enrichment analysis of the genes with differential H3K4me3 peaks, revealed statistically significantly enriched GO terms only in the genes with down-regulated signals in HD. The most frequently implicated biological process terms are organ morphogenesis and positive regulation of gene expression. More than 9,000 H3K4me3 peaks were located not near any recognized transcription start sites and approximately 36% of these "distal" peaks co-localized to known enhancer sites. Six transcription factors and chromatin remodelers are differentially enriched in HD H3K4me3 distal peaks, including EZH2 and SUZ12, two core subunits of the polycomb repressive complex 2 (PRC2). Moreover, PRC2 repressive state was significantly depleted in HD-enriched peaks, suggesting the epigenetic role of PRC2 inhibition associated with up-regulated H3K4me3 in Huntington's disease. In summary, our study provides new insights into transcriptional dysregulation of Huntington's disease by analyzing the differentiation of H3K4me3 enrichment.
Collapse
Affiliation(s)
- Xianjun Dong
- Program in Bioinformatics and Integrative Biology, University of Massachusetts Medical School, Worcester, MA, United States of America
| | - Junko Tsuji
- Program in Bioinformatics and Integrative Biology, University of Massachusetts Medical School, Worcester, MA, United States of America
| | - Adam Labadorf
- Department of Neurology, Boston University School of Medicine, Boston, MA, United States of America
- Bioinformatics Program, Boston University, Boston, MA, United States of America
| | - Panos Roussos
- Friedman Brain Institute, Department of Psychiatry, Mount Sinai School of Medicine, New York, NY, United States of America
- Department of Genetics and Genomic Sciences, Mount Sinai School of Medicine, New York, NY, United States of America
| | - Jiang-Fan Chen
- Department of Neurology, Boston University School of Medicine, Boston, MA, United States of America
| | - Richard H Myers
- Department of Neurology, Boston University School of Medicine, Boston, MA, United States of America
- Bioinformatics Program, Boston University, Boston, MA, United States of America
- Genome Science Institute, Boston University School of Medicine, Boston, MA, United States of America
| | - Schahram Akbarian
- Friedman Brain Institute, Department of Psychiatry, Mount Sinai School of Medicine, New York, NY, United States of America
| | - Zhiping Weng
- Program in Bioinformatics and Integrative Biology, University of Massachusetts Medical School, Worcester, MA, United States of America
| |
Collapse
|
29
|
Guida N, Laudati G, Anzilotti S, Secondo A, Montuori P, Di Renzo G, Canzoniero LMT, Formisano L. Resveratrol via sirtuin-1 downregulates RE1-silencing transcription factor (REST) expression preventing PCB-95-induced neuronal cell death. Toxicol Appl Pharmacol 2015; 288:387-98. [PMID: 26307266 DOI: 10.1016/j.taap.2015.08.010] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Revised: 08/12/2015] [Accepted: 08/14/2015] [Indexed: 11/16/2022]
Abstract
Resveratrol (3,5,4'-trihydroxystilbene) (RSV), a polyphenol widely present in plants, exerts a neuroprotective function in several neurological conditions; it is an activator of class III histone deacetylase sirtuin1 (SIRT1), a crucial regulator in the pathophysiology of neurodegenerative diseases. By contrast, the RE1-silencing transcription factor (REST) is involved in the neurotoxic effects following exposure to polychlorinated biphenyl (PCB) mixture A1254. The present study investigated the effects of RSV-induced activation of SIRT1 on REST expression in SH-SY5Y cells. Further, we investigated the possible relationship between the non-dioxin-like (NDL) PCB-95 and REST through SIRT1 to regulate neuronal death in rat cortical neurons. Our results revealed that RSV significantly decreased REST gene and protein levels in a dose- and time-dependent manner. Interestingly, overexpression of SIRT1 reduced REST expression, whereas EX-527, an inhibitor of SIRT1, increased REST expression and blocked RSV-induced REST downregulation. These results suggest that RSV downregulates REST through SIRT1. In addition, RSV enhanced activator protein 1 (AP-1) transcription factor c-Jun expression and its binding to the REST promoter gene. Indeed, c-Jun knockdown reverted RSV-induced REST downregulation. Intriguingly, in SH-SY5Y cells and rat cortical neurons the NDL PCB-95 induced necrotic cell death in a concentration-dependent manner by increasing REST mRNA and protein expression. In addition, SIRT1 knockdown blocked RSV-induced neuroprotection in rat cortical neurons treated with PCB-95. Collectively, these results indicate that RSV via SIRT1 activates c-Jun, thereby reducing REST expression in SH-SY5Y cells under physiological conditions and blocks PCB-95-induced neuronal cell death by activating the same SIRT1/c-Jun/REST pathway.
Collapse
Affiliation(s)
| | - Giusy Laudati
- Division of Pharmacology, Department of Neuroscience, Reproductive and Dentistry Sciences, School of Medicine, "Federico II" University of Naples, Via Pansini, 5, 80131 Naples, Italy
| | | | - Agnese Secondo
- Division of Pharmacology, Department of Neuroscience, Reproductive and Dentistry Sciences, School of Medicine, "Federico II" University of Naples, Via Pansini, 5, 80131 Naples, Italy
| | - Paolo Montuori
- Department of Public Health, 'Federico II' University of Naples, Naples, Italy
| | - Gianfranco Di Renzo
- Division of Pharmacology, Department of Neuroscience, Reproductive and Dentistry Sciences, School of Medicine, "Federico II" University of Naples, Via Pansini, 5, 80131 Naples, Italy
| | - Lorella M T Canzoniero
- Division of Pharmacology, Department of Neuroscience, Reproductive and Dentistry Sciences, School of Medicine, "Federico II" University of Naples, Via Pansini, 5, 80131 Naples, Italy; Division of Pharmacology, Department of Science and Technology, University of Sannio, Via Port'Arsa 11, 82100 Benevento, Italy
| | - Luigi Formisano
- Division of Pharmacology, Department of Neuroscience, Reproductive and Dentistry Sciences, School of Medicine, "Federico II" University of Naples, Via Pansini, 5, 80131 Naples, Italy; Division of Pharmacology, Department of Science and Technology, University of Sannio, Via Port'Arsa 11, 82100 Benevento, Italy.
| |
Collapse
|
30
|
Sharma S, Taliyan R. Transcriptional dysregulation in Huntington's disease: The role of histone deacetylases. Pharmacol Res 2015; 100:157-69. [PMID: 26254871 DOI: 10.1016/j.phrs.2015.08.002] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Revised: 08/03/2015] [Accepted: 08/03/2015] [Indexed: 12/16/2022]
Abstract
Huntington's disease (HD) is a progressive neurological disorder for which there are no disease-modifying treatments. Although, the exact underlying mechanism(s) leading to the neural cell death in HD still remains elusive, the transcriptional dysregulation is a major molecular feature. Recently, the transcriptional activation and repression regulated by chromatin acetylation has been found to be impaired in HD pathology. The acetylation and deacetylation of histone proteins is carried out by opposing actions of histone acetyl-transferases and histone deacetylases (HDACs), respectively. Studies carried out in cell culture, yeast, Drosophila and rodent model(s) have indicated that HDAC inhibitors (HDACIs) might provide useful class of therapeutic agents for HD. Clinical trials have also reported the beneficial effects of HDACIs in patients suffering from HD. Therefore, the development of HDACIs as therapeutics for HD has been vigorously pursued. In this review, we highlight and summarize the putative role of HDACs in HD like pathology and further discuss the potential of HDACIs as new therapeutic avenues for the treatment of HD.
Collapse
Affiliation(s)
- Sorabh Sharma
- Neuropharmacology Division, Department of Pharmacy Birla Institute of Technology and Science, Pilani 333031, Rajasthan, India.
| | - Rajeev Taliyan
- Neuropharmacology Division, Department of Pharmacy Birla Institute of Technology and Science, Pilani 333031, Rajasthan, India
| |
Collapse
|
31
|
Sp3/REST/HDAC1/HDAC2 Complex Represses and Sp1/HIF-1/p300 Complex Activates ncx1 Gene Transcription, in Brain Ischemia and in Ischemic Brain Preconditioning, by Epigenetic Mechanism. J Neurosci 2015; 35:7332-48. [PMID: 25972164 DOI: 10.1523/jneurosci.2174-14.2015] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The Na(+)-Ca(2+) exchanger 1 (NCX1) is reduced in stroke by the RE1-silencing transcription factor (REST), whereas it is increased in ischemic brain preconditioning (PC) by hypoxia-inducible factor 1 (HIF-1). Because ncx1 brain promoter (ncx1-Br) has five putative consensus sequences, named Sp1A-E, for the specificity protein (Sp) family of transcription factors (Sp1-4), we investigated the role of this family in regulating ncx1 transcription in rat cortical neurons. Here we found that Sp1 is a transcriptional activator, whereas Sp3 is a transcriptional repressor of ncx1, and that both bind ncx1-Br in a sequence-specific manner, modulating ncx1 transcription through the Sp1 sites C-E. Furthermore, by transient middle cerebral artery occlusion (tMCAO) in rats, the transcriptional repressors Sp3 and REST colocalized with the two histone-deacetylases (HDACs) HDAC1 and HDAC2 on the ncx1-Br, with a consequent hypoacetylation. Contrarily, in PC+tMCAO the transcriptional activators Sp1 and HIF-1 colocalized with histone acetyltransferase p300 on ncx1-Br with a consequent hyperacetylation. In addition, in neurons silenced with siRNA of NCX1 and subjected to oxygen and glucose deprivation (OGD) (3 h) plus reoxygenation (RX) (24 h), the neuroprotection of Class I HDAC inhibitor MS-275 was counteracted, whereas in neurons overexpressing NCX1 and subjected to ischemic preconditioning (PC+OGD/RX), the neurotoxic effect of p300 inhibitor C646 was prevented. Collectively, these results demonstrate that NCX1 expression is regulated by the Sp3/REST/HDAC1/HDAC2 complex in tMCAO and by the Sp1/HIF-1/p300 complex in PC+tMCAO and that epigenetic intervention, by modulating the acetylation of ncx1-Br, may be a strategy for the development of innovative therapeutic intervention in stroke.
Collapse
|
32
|
The Transcription Repressor REST in Adult Neurons: Physiology, Pathology, and Diseases. eNeuro 2015; 2:eN-REV-0010-15. [PMID: 26465007 PMCID: PMC4596026 DOI: 10.1523/eneuro.0010-15.2015] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Revised: 06/11/2015] [Accepted: 06/18/2015] [Indexed: 12/21/2022] Open
Abstract
REST [RE1-silencing transcription factor (also called neuron-restrictive silencer factor)] is known to repress thousands of possible target genes, many of which are neuron specific. To date, REST repression has been investigated mostly in stem cells and differentiating neurons. Current evidence demonstrates its importance in adult neurons as well. Low levels of REST, which are acquired during differentiation, govern the expression of specific neuronal phenotypes. REST-dependent genes encode important targets, including transcription factors, transmitter release proteins, voltage-dependent and receptor channels, and signaling proteins. Additional neuronal properties depend on miRNAs expressed reciprocally to REST and on specific splicing factors. In adult neurons, REST levels are not always low. Increases occur during aging in healthy humans. Moreover, extensive evidence demonstrates that prolonged stimulation with various agents induces REST increases, which are associated with the repression of neuron-specific genes with appropriate, intermediate REST binding affinity. Whether neuronal increases in REST are protective or detrimental remains a subject of debate. Examples of CA1 hippocampal neuron protection upon depolarization, and of neurodegeneration upon glutamate treatment and hypoxia have been reported. REST participation in psychiatric and neurological diseases has been shown, especially in Alzheimer’s disease and Huntington’s disease, as well as epilepsy. Distinct, complex roles of the repressor in these different diseases have emerged. In conclusion, REST is certainly very important in a large number of conditions. We suggest that the conflicting results reported for the role of REST in physiology, pathology, and disease depend on its complex, direct, and indirect actions on many gene targets and on the diverse approaches used during the investigations.
Collapse
|
33
|
Gupta V, Khan AA, Sasi BK, Mahapatra NR. Molecular mechanism of monoamine oxidase A gene regulation under inflammation and ischemia-like conditions: key roles of the transcription factors GATA2, Sp1 and TBP. J Neurochem 2015; 134:21-38. [PMID: 25810277 DOI: 10.1111/jnc.13099] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Accepted: 03/16/2015] [Indexed: 10/23/2022]
Abstract
Monoamine oxidase A (MAOA) plays important roles in the pathogenesis of several neurological and cardiovascular disorders. The mechanism of transcriptional regulation of MAOA under basal and pathological conditions, however, remains incompletely understood. Here, we report systematic identification and characterization of cis elements and transcription factors that govern the expression of MAOA gene. Extensive computational analysis of MAOA promoter, followed by 5'-promoter deletion/reporter assays, revealed that the -71/-40 bp domain was sufficient for its basal transcription. Gel-shift and chromatin immunoprecipitation assays provided evidence of interactions of the transcription factors GATA-binding protein 2 (GATA2), Sp1 and TATA-binding protein (TBP) with this proximal promoter region. Consistently, over-expression of GATA2, Sp1 and TBP augmented MAOA promoter activity in a coordinated manner. In corroboration, siRNA-mediated down-regulation of GATA2/Sp1/TBP repressed the endogenous MAOA expression as well as transfected MAOA promoter activity. Tumor necrosis factor-α and forskolin activated MAOA transcription that was reversed by Sp1 siRNA; in support, tumor necrosis factor-α- and forskolin-induced activities were enhanced by ectopic over-expression of Sp1. On the other hand, MAOA transcription was diminished upon exposure of neuroblasts or cardiac myoblasts to ischemia-like conditions because of reduced binding of GATA2/Sp1/TBP with MAOA promoter. In conclusion, this study revealed previously unknown roles of GATA2, Sp1 and TBP in modulating MAOA expression under basal as well as pathophysiological conditions such as inflammation and ischemia, thus providing new insights into the molecular basis of aberrant MAOA expression in neuronal/cardiovascular disease states. Dysregulation of monoamine oxidase A (MAOA) have been implicated in several behavioral and neuronal disease states. Here, we identified three crucial transcription factors (GATA2, Sp1 and TBP) that regulate MAOA gene expression in a coordinated manner. Aberrant MAOA expression under pathophysiological conditions including inflammation and ischemia is mediated by altered binding of GATA2/Sp1/TBP with MAOA proximal promoter. Thus, these findings provide new insights into pathogenesis of several common diseases. GATA2, GATA-binding protein 2; Sp1, specificity protein 1; TBP, TATA-binding protein.
Collapse
Affiliation(s)
- Vinayak Gupta
- Cardiovascular Genetics Laboratory, Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, India
| | - Abrar A Khan
- Cardiovascular Genetics Laboratory, Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, India
| | - Binu K Sasi
- Cardiovascular Genetics Laboratory, Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, India
| | - Nitish R Mahapatra
- Cardiovascular Genetics Laboratory, Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, India
| |
Collapse
|
34
|
NRSF: an Angel or a Devil in Neurogenesis and Neurological Diseases. J Mol Neurosci 2014; 56:131-44. [DOI: 10.1007/s12031-014-0474-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Accepted: 11/18/2014] [Indexed: 12/12/2022]
|
35
|
Histone deacetylase 4 promotes ubiquitin-dependent proteasomal degradation of Sp3 in SH-SY5Y cells treated with di(2-ethylhexyl)phthalate (DEHP), determining neuronal death. Toxicol Appl Pharmacol 2014; 280:190-8. [DOI: 10.1016/j.taap.2014.07.014] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Revised: 07/02/2014] [Accepted: 07/16/2014] [Indexed: 11/24/2022]
|
36
|
Formisano L, Guida N, Laudati G, Boscia F, Esposito A, Secondo A, Di Renzo G, Canzoniero LMT. Extracellular signal-related kinase 2/specificity protein 1/specificity protein 3/repressor element-1 silencing transcription factor pathway is involved in Aroclor 1254-induced toxicity in SH-SY5Y neuronal cells. J Neurosci Res 2014; 93:167-77. [PMID: 25093670 DOI: 10.1002/jnr.23464] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Revised: 07/04/2014] [Accepted: 07/08/2014] [Indexed: 12/16/2022]
Abstract
Polychlorinated biphenyls (PCBs) cause a wide spectrum of toxic effects in the brain through undefined mechanisms. Exposure to the PCB mixture Aroclor-1254 (A1254) increases the repressor element-1 silencing transcription factor (REST) expression, leading to neuronal death. This study sought to understand the sequence of some molecular mechanisms to determine whether A1254 could increase REST expression and the cytoprotective effect of the phorbol ester tetradecanoylphorbol acetate (TPA) on A1254-induced toxicity in SH-SY5Y cells. As shown by Western blot analysis, A1254 (10 µg/ml) downregulates extracellular signal-related kinase 2 (ERK2) phosphorylation in a time-dependent manner, thereby triggering the binding of specificity protein 1 (Sp1) and Sp3 to the REST gene promoter as revealed by chromatin immunoprecipitation analysis. This chain of events results in an increase in REST mRNA and cell death, as assessed by quantitative real-time polymerase chain reaction and dimethylthiazolyl-2-5-diphenyltetrazolium-bromide assay, respectively. Accordingly, TPA prevented both the A1254-induced decrease in ERK2 phosphorylation and the A1254-induced increase in Sp1, Sp3, and REST protein expression. After 48 hr, TPA prevented A1254-induced cell death. ERK2 overexpression counteracted the A1254-induced increase in Sp1 and Sp3 protein expression and prevented A1254-induced Sp1 and Sp3 binding to the REST gene promoter, thus counteracting the increase in REST mRNA expression induced by the toxicant. In neuroblastoma SH-SY5Y cells, ERK2/Sp1/SP3/REST is a new pathway underlying the neurotoxic effect of PCB. The ERK2/Sp1/Sp3/REST pathway, which underlies A1254-induced neuronal death, might represent a new drug signaling cascade in PCB-induced neuronal toxicity.
Collapse
Affiliation(s)
- Luigi Formisano
- Division of Pharmacology, Department of Neuroscience, Reproductive and Dentistry Sciences, School of Medicine, University of Naples Federico II, Naples, Italy; Division of Pharmacology, Department of Science and Technology, University of Sannio, Benevento, Italy
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Charbord J, Poydenot P, Bonnefond C, Feyeux M, Casagrande F, Brinon B, Francelle L, Aurégan G, Guillermier M, Cailleret M, Viegas P, Nicoleau C, Martinat C, Brouillet E, Cattaneo E, Peschanski M, Lechuga M, Perrier AL. High throughput screening for inhibitors of REST in neural derivatives of human embryonic stem cells reveals a chemical compound that promotes expression of neuronal genes. Stem Cells 2014; 31:1816-28. [PMID: 23712629 DOI: 10.1002/stem.1430] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2012] [Revised: 04/05/2013] [Accepted: 04/09/2013] [Indexed: 01/12/2023]
Abstract
Decreased expression of neuronal genes such as brain-derived neurotrophic factor (BDNF) is associated with several neurological disorders. One molecular mechanism associated with Huntington disease (HD) is a discrete increase in the nuclear activity of the transcriptional repressor REST/NRSF binding to repressor element-1 (RE1) sequences. High-throughput screening of a library of 6,984 compounds with luciferase-assay measuring REST activity in neural derivatives of human embryonic stem cells led to identify two benzoimidazole-5-carboxamide derivatives that inhibited REST silencing in a RE1-dependent manner. The most potent compound, X5050, targeted REST degradation, but neither REST expression, RNA splicing nor binding to RE1 sequence. Differential transcriptomic analysis revealed the upregulation of neuronal genes targeted by REST in wild-type neural cells treated with X5050. This activity was confirmed in neural cells produced from human induced pluripotent stem cells derived from a HD patient. Acute intraventricular delivery of X5050 increased the expressions of BDNF and several other REST-regulated genes in the prefrontal cortex of mice with quinolinate-induced striatal lesions. This study demonstrates that the use of pluripotent stem cell derivatives can represent a crucial step toward the identification of pharmacological compounds with therapeutic potential in neurological affections involving decreased expression of neuronal genes associated to increased REST activity, such as Huntington disease.
Collapse
Affiliation(s)
- Jérémie Charbord
- Inserm U861, AFM Evry Cedex, France; UEVE U861, AFM Evry Cedex, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
The cytokine and endocannabinoid systems are co-regulated by NF-κB p65/RelA in cell culture and transgenic mouse models of Huntington's disease and in striatal tissue from Huntington's disease patients. J Neuroimmunol 2013; 267:61-72. [PMID: 24360910 DOI: 10.1016/j.jneuroim.2013.12.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2013] [Revised: 11/02/2013] [Accepted: 12/05/2013] [Indexed: 12/27/2022]
Abstract
Transcriptional dysregulation is a major pathological feature of Huntington's disease (HD). The goal of this study was to understand how p65/RelA co-regulated genes, specifically those of the cytokine and endocannabinoid systems, were affected in HD. p65/RelA levels were lower in human HD tissue and R6/2 HD mice, as were the levels of the type 1 cannabinoid receptor (CB1), IL-1β, IL-8, CCL5, GM-CSF, MIP-1β, and TNFα, all of which may be regulated by p65/RelA. Activation of p65/RelA restored CB1 and CCL5 expression in STHdh cell models of HD. Therefore, p65/RelA activation may normalize the expression of some genes in HD.
Collapse
|
39
|
Fusté M, Pinacho R, Meléndez-Pérez I, Villalmanzo N, Villalta-Gil V, Haro JM, Ramos B. Reduced expression of SP1 and SP4 transcription factors in peripheral blood mononuclear cells in first-episode psychosis. J Psychiatr Res 2013; 47:1608-14. [PMID: 23941741 DOI: 10.1016/j.jpsychires.2013.07.019] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2013] [Revised: 07/12/2013] [Accepted: 07/16/2013] [Indexed: 12/22/2022]
Abstract
Alterations of transcription factor specificity protein 4 (SP4) and 1 (SP1) have been linked to different neuropsychiatric diseases. Reduced SP4 and SP1 protein levels in the prefrontal cortex have been associated with bipolar disorder and schizophrenia, respectively, suggesting that both factors could be involved in the pathogenesis of disorders with psychotic features. The aim of this study was to investigate whether the reduction of SP1, SP4 and SP3 protein and mRNA expression in peripheral blood mononuclear cells in the early stages of psychosis may act as a potential biomarker of these disorders. A cross-sectional study of first-episode psychosis patients (n = 14) compared to gender- and age-matched healthy controls (n = 14) was designed. Patients were recruited through the adult mental health services of Parc Sanitari Sant Joan de Déu. Protein and gene expression levels of SP1, SP4 and SP3 were assessed in peripheral blood mononuclear cells of patients with first-episode psychosis and healthy control subjects. We report that protein levels of SP1 and SP4, but not SP3, are significantly reduced in patients compared to controls. In contrast, we did not observe any differences in expression levels for SP1, SP4 or SP3 genes between patient and control groups. In patients, SP4 protein levels were significantly associated with SP1 protein levels. No association was found, however, between protein and gene expression levels for each factor. Our study shows reduced SP1 and SP4 protein levels in first-episode psychosis in lymphocytes, suggesting that these transcription factors are potential peripheral biomarkers of psychotic spectrum disorders in the early stages.
Collapse
Affiliation(s)
- Montserrat Fusté
- Unitat de recerca, Parc Sanitari Sant Joan de Déu, Fundació Sant Joan de Déu, Universitat de Barcelona, Centro de Investigación Biomédica en Red de Salud Mental, CIBERSAM, Dr. Antoni Pujadas, 42, 08830 Sant Boi de Llobregat, Barcelona, Spain
| | | | | | | | | | | | | |
Collapse
|
40
|
Lopez-Atalaya JP, Ito S, Valor LM, Benito E, Barco A. Genomic targets, and histone acetylation and gene expression profiling of neural HDAC inhibition. Nucleic Acids Res 2013; 41:8072-84. [PMID: 23821663 PMCID: PMC3783173 DOI: 10.1093/nar/gkt590] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Histone deacetylase inhibitors (HDACis) have been shown to potentiate hippocampal-dependent memory and synaptic plasticity and to ameliorate cognitive deficits and degeneration in animal models for different neuropsychiatric conditions. However, the impact of these drugs on hippocampal histone acetylation and gene expression profiles at the genomic level, and the molecular mechanisms that underlie their specificity and beneficial effects in neural tissue, remains obscure. Here, we mapped four relevant histone marks (H3K4me3, AcH3K9,14, AcH4K12 and pan-AcH2B) in hippocampal chromatin and investigated at the whole-genome level the impact of HDAC inhibition on acetylation profiles and basal and activity-driven gene expression. HDAC inhibition caused a dramatic histone hyperacetylation that was largely restricted to active loci pre-marked with H3K4me3 and AcH3K9,14. In addition, the comparison of Chromatin immunoprecipitation sequencing and gene expression profiles indicated that Trichostatin A-induced histone hyperacetylation, like histone hypoacetylation induced by histone acetyltransferase deficiency, had a modest impact on hippocampal gene expression and did not affect the transient transcriptional response to novelty exposure. However, HDAC inhibition caused the rapid induction of a homeostatic gene program related to chromatin deacetylation. These results illuminate both the relationship between hippocampal gene expression and histone acetylation and the mechanism of action of these important neuropsychiatric drugs.
Collapse
Affiliation(s)
- Jose P Lopez-Atalaya
- Instituto de Neurociencias de Alicante (Universidad Miguel Hernández - Consejo Superior de Investigaciones Científicas), Campus de Sant Joan. Apt. 18. Sant Joan d'Alacant, 03550 Alicante, Spain
| | | | | | | | | |
Collapse
|
41
|
Valor LM, Guiretti D, Lopez-Atalaya JP, Barco A. Genomic landscape of transcriptional and epigenetic dysregulation in early onset polyglutamine disease. J Neurosci 2013; 33:10471-82. [PMID: 23785159 PMCID: PMC6618595 DOI: 10.1523/jneurosci.0670-13.2013] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2013] [Revised: 05/08/2013] [Accepted: 05/20/2013] [Indexed: 01/09/2023] Open
Abstract
Transcriptional dysregulation is an important early feature of polyglutamine diseases. One of its proposed causes is defective neuronal histone acetylation, but important aspects of this hypothesis, such as the precise genomic topography of acetylation deficits and the relationship between transcriptional and acetylation alterations at the whole-genome level, remain unknown. The new techniques for the mapping of histone post-translational modifications at genomic scale enable such global analyses and are challenging some assumptions about the role of specific histone modifications in gene expression. We examined here the genome-wide correlation of histone acetylation and gene expression defects in a mouse model of early onset Huntington's disease. Our analyses identified hundreds of loci that were hypoacetylated for H3K9,14 and H4K12 in the chromatin of these mice. Surprisingly, few genes with altered transcript levels in mutant mice showed significant changes in these acetylation marks and vice versa. Our screen, however, identified a subset of genes in which H3K9,14 deacetylation and transcriptional dysregulation concur. Genes in this group were consistently affected in different brain areas, mouse models, and tissue from patients, which suggests a role in the etiology of this pathology. Overall, the combination of histone acetylation and gene expression screenings demonstrates that histone deacetylation and transcriptional dysregulation are two early, largely independent, manifestations of polyglutamine disease and suggests that additional epigenetic marks or mechanisms are required for explaining the full range of transcriptional alterations associated with this disorder.
Collapse
Affiliation(s)
- Luis M. Valor
- Instituto de Neurociencias de Alicante (Universidad Miguel Hernández-Consejo Superior de Investigaciones Científicas), Sant Joan d'Alacant, 03550, Alicante, Spain
| | - Deisy Guiretti
- Instituto de Neurociencias de Alicante (Universidad Miguel Hernández-Consejo Superior de Investigaciones Científicas), Sant Joan d'Alacant, 03550, Alicante, Spain
| | - Jose P. Lopez-Atalaya
- Instituto de Neurociencias de Alicante (Universidad Miguel Hernández-Consejo Superior de Investigaciones Científicas), Sant Joan d'Alacant, 03550, Alicante, Spain
| | - Angel Barco
- Instituto de Neurociencias de Alicante (Universidad Miguel Hernández-Consejo Superior de Investigaciones Científicas), Sant Joan d'Alacant, 03550, Alicante, Spain
| |
Collapse
|
42
|
Schlachetzki JC, Saliba SW, Oliveira ACPD. Studying neurodegenerative diseases in culture models. BRAZILIAN JOURNAL OF PSYCHIATRY 2013; 35 Suppl 2:S92-100. [DOI: 10.1590/1516-4446-2013-1159] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
43
|
Delzor A, Dufour N, Petit F, Guillermier M, Houitte D, Auregan G, Brouillet E, Hantraye P, Déglon N. Restricted transgene expression in the brain with cell-type specific neuronal promoters. Hum Gene Ther Methods 2012. [DOI: 10.1089/hum.2012.073] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
44
|
Delzor A, Dufour N, Petit F, Guillermier M, Houitte D, Auregan G, Brouillet E, Hantraye P, Déglon N. Restricted transgene expression in the brain with cell-type specific neuronal promoters. Hum Gene Ther Methods 2012; 23:242-54. [PMID: 22934828 DOI: 10.1089/hgtb.2012.073] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Tissue-targeted expression is of major interest for studying the contribution of cellular subpopulations to neurodegenerative diseases. However, in vivo methods to investigate this issue are limited. Here, we report an analysis of the cell specificity of expression of fluorescent reporter genes driven by six neuronal promoters, with the ubiquitous phosphoglycerate kinase 1 (PGK) promoter used as a reference. Quantitative analysis of AcGFPnuc expression in the striatum and hippocampus of rodents showed that all lentiviral vectors (LV) exhibited a neuronal tropism; however, there was substantial diversity of transcriptional activity and cell-type specificity of expression. The promoters with the highest activity were those of the 67 kDa glutamic acid decarboxylase (GAD67), homeobox Dlx5/6, glutamate receptor 1 (GluR1), and preprotachykinin 1 (Tac1) genes. Neuron-specific enolase (NSE) and dopaminergic receptor 1 (Drd1a) promoters showed weak activity, but the integration of an amplification system into the LV overcame this limitation. In the striatum, the expression profiles of Tac1 and Drd1a were not limited to the striatonigral pathway, whereas in the hippocampus, Drd1a and Dlx5/6 showed the expected restricted pattern of expression. Regulation of the Dlx5/6 promoter was observed in a disease condition, whereas Tac1 activity was unaffected. These vectors provide safe tools that are more selective than others available, for the administration of therapeutic molecules in the central nervous system (CNS). Nevertheless, additional characterization of regulatory elements in neuronal promoters is still required.
Collapse
Affiliation(s)
- Aurélie Delzor
- Atomic Energy Commission (CEA), Institute of Biomedical Imaging (I2BM) and Molecular Imaging Research Center (MIRCen), 92265 Fontenay-aux-Roses, France
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Khoshnan A, Patterson PH. Elevated IKKα accelerates the differentiation of human neuronal progenitor cells and induces MeCP2-dependent BDNF expression. PLoS One 2012; 7:e41794. [PMID: 22848609 PMCID: PMC3407048 DOI: 10.1371/journal.pone.0041794] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2012] [Accepted: 06/25/2012] [Indexed: 12/11/2022] Open
Abstract
The IκB kinase α (IKKα) is implicated in the differentiation of epithelial and immune cells. We examined whether IKKα also plays a role in the differentiation and maturation of embryonic human neuronal progenitor cells (NPCs). We find that expression of an extra copy of IKKα (IKKα+) blocks self-renewal and accelerates the differentiation of NPCs. This coincides with reduced expression of the Repressor Element Silencing Transcription Factor/Neuron-Restrictive Silencing Factor (REST/NRSF), which is a prominent inhibitor of neurogenesis, and subsequent induction of the pro-differentiation non-coding RNA, miR-124a. However, the effects of IKKα on REST/NRSF and miR-124a expression are likely to be indirect. IKKα+ neurons display extensive neurite outgrowth and accumulate protein markers of neuronal maturation such as SCG10/stathmin-2, postsynaptic density 95 (PSD95), syntaxin, and methyl-CpG binding protein 2 (MeCP2). Interestingly, IKKα associates with MeCP2 in the nuclei of human neurons and can phosphorylate MeCP2 in vitro. Using chromatin immunoprecipitation assays, we find that IKKα is recruited to the exon-IV brain-derived neurotrophic factor (BDNF) promoter, which is a well-characterized target of MeCP2 activity. Moreover, IKKα induces the transcription of BDNF and knockdown expression of MeCP2 interferes with this event. These studies highlight a role for IKKα in accelerating the differentiation of human NPCs and identify IKKα as a potential regulator of MeCP2 function and BDNF expression.
Collapse
Affiliation(s)
- Ali Khoshnan
- Biology Division 216-76, California Institute of Technology, Pasadena, California, United States of America.
| | | |
Collapse
|
46
|
Wittkop T, Berman AE, Fleisch KM, Mooney SD. DEFOG: discrete enrichment of functionally organized genes. Integr Biol (Camb) 2012; 4:795-804. [PMID: 22706384 DOI: 10.1039/c2ib00136e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
High-throughput biological experiments commonly result in a list of genes or proteins of interest. In order to understand the observed changes of the genes and to generate new hypotheses, one needs to understand the functions and roles of the genes and how those functions relate to the experimental conditions. Typically, statistical tests are performed in order to detect enriched Gene Ontology categories or pathways, i.e. the categories are observed in the genes of interest more often than is expected by chance. Depending on the number of genes and the complexity and quantity of functions in which they are involved, such an analysis can easily result in hundreds of enriched terms. To this end we developed DEFOG, a web-based application that facilitates the functional analysis of gene sets by hierarchically organizing the genes into functionally related modules. Our computational pipeline utilizes three powerful tools to achieve this goal: (1) GeneMANIA creates a functional consensus network of the genes of interest based on gene-list-specific data fusion of hundreds of genomic networks from publicly available sources; (2) Transitivity Clustering organizes those genes into a clear hierarchy of functionally related groups, and (3) Ontologizer performs a Gene Ontology enrichment analysis on the resulting gene clusters. DEFOG integrates this computational pipeline within an easy-to-use web interface, thus allowing for a novel visual analysis of gene sets that aids in the discovery of potentially important biological mechanisms and facilitates the creation of new hypotheses. DEFOG is available at http://www.mooneygroup.org/defog.
Collapse
Affiliation(s)
- Tobias Wittkop
- Buck Institute for Research on Aging, 8001 Redwood Blvd., Novato, CA 94945, USA.
| | | | | | | |
Collapse
|
47
|
Bowles KR, Brooks SP, Dunnett SB, Jones L. Gene expression and behaviour in mouse models of HD. Brain Res Bull 2012; 88:276-84. [PMID: 21854837 DOI: 10.1016/j.brainresbull.2011.07.021] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2011] [Revised: 07/27/2011] [Accepted: 07/31/2011] [Indexed: 01/09/2023]
Abstract
Huntington's disease (HD) is an autosomal dominant neurodegenerative disease, resulting in expansion of the CAG repeat in exon 1 of the HTT gene. The resulting mutant huntingtin protein has been implicated in the disruption of a variety of cellular functions, including transcription. Mouse models of HD have been central to the development of our understanding of gene expression changes in this disease, and are now beginning to elucidate the relationship between gene expression and behaviour. Here, we review current mouse models of HD and their characterisation in terms of gene expression. In addition, we look at how this can inform behaviours observed in mouse models of disease. The relationship between gene expression and behaviour in mouse models of HD is important, as this will further our knowledge of disease progression and its underlying molecular events, highlight new treatment targets, and potentially provide new biomarkers for therapeutic trials.
Collapse
Affiliation(s)
- K R Bowles
- Department of Psychological Medicine, MRC centre for Neuropsychiatric Genetics and Genomics, School of Medicine, Cardiff University, Wales, UK
| | | | | | | |
Collapse
|
48
|
Seredenina T, Luthi-Carter R. What have we learned from gene expression profiles in Huntington's disease? Neurobiol Dis 2012; 45:83-98. [DOI: 10.1016/j.nbd.2011.07.001] [Citation(s) in RCA: 107] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2011] [Revised: 06/24/2011] [Accepted: 07/01/2011] [Indexed: 12/22/2022] Open
|
49
|
Johnson R. Long non-coding RNAs in Huntington's disease neurodegeneration. Neurobiol Dis 2011; 46:245-54. [PMID: 22202438 DOI: 10.1016/j.nbd.2011.12.006] [Citation(s) in RCA: 321] [Impact Index Per Article: 22.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2011] [Accepted: 12/04/2011] [Indexed: 01/04/2023] Open
Abstract
Neurodegeneration in the brains of Huntington's disease patients is accompanied by widespread changes in gene regulatory networks. Recent studies have found that these changes are not restricted to protein-coding genes, but also include non-coding RNAs (ncRNAs). One particularly abundant but poorly understood class of ncRNAs is the long non-coding RNAs (lncRNAs), of which at least ten thousand have been identified in the human genome. Although we presently know little about their function, lncRNAs are widely expressed in the mammalian nervous system, and many are likely to play critical roles in neuronal development and activity. LncRNAs are now being implicated in neurodegenerative processes, including Alzheimer's (AD) and Huntington's disease (HD). In the present study, I discuss the potential significance of lncRNAs in HD. To support this, I have mined existing microarray data to discover seven new lncRNAs that are dysregulated in HD brains. Interestingly, several of these contain genomic binding sites for the transcriptional repressor REST, a key mediator of transcriptional changes in HD, including the known REST target lncRNA, DGCR5. Previously described lncRNAs TUG1 (necessary for retinal development) and NEAT1 (a structural component of nuclear paraspeckles) are upregulated in HD caudate, while the brain-specific tumour-suppressor MEG3 is downregulated. Three other lncRNAs of unknown function are also significantly changed in HD brains. Many lncRNAs regulate gene expression through formation of epigenetic ribonucleoprotein complexes, including TUG1 and MEG3. These findings lead me to propose that lncRNA expression changes in HD are widespread, that many of these result in altered epigenetic gene regulation in diseased neurons, and that contributes to neurodegeneration. Therefore, elucidating lncRNA network changes in HD may be important in understanding and treating this and other neurodegenerative processes.
Collapse
Affiliation(s)
- Rory Johnson
- Bioinformatics and Genomics Group, Centre for Genomic Regulation and UPF, C Dr Aiguader, 88 Barcelona 08003, Catalonia, Spain.
| |
Collapse
|
50
|
Sittig LJ, Herzing LBK, Xie H, Batra KK, Shukla PK, Redei EE. Excess folate during adolescence suppresses thyroid function with permanent deficits in motivation and spatial memory. GENES BRAIN AND BEHAVIOR 2011; 11:193-200. [PMID: 22050771 DOI: 10.1111/j.1601-183x.2011.00749.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Cognitive and memory deficits can be caused or exacerbated by dietary folate deficiency, which has been combatted by the addition of folate to grains and dietary supplements. The recommended dose of the B9 vitamin folate is 400 µg/day for adolescents and non-pregnant adults, and consumption above the recommended daily allowance is not considered to be detrimental. However, the effects of excess folate have not been tested in adolescence when neuro and endocrine development suggest possible vulnerability to long-term cognitive effects. We administered folate-supplemented (8.0 mg folic acid/kg diet) or control lab chow (2.7 mg folic acid/kg diet) to rats ad libitum from 30 to 60 days of age, and subsequently tested their motivation and learning and memory in the Morris water maze. We found that folate-supplemented animals had deficits in motivation and spatial memory, but they showed no changes of the learning- and memory-related molecules growth-associated protein-43 or Gs-α subunit protein in the hippocampus. They had decreased levels of thyroxine (T4) and triiodothyronine (T3) in the periphery and decreased protein levels of thyroid receptor-α1 and -α2 (TRα1 and TRα2) in the hippocampus. The latter may have been due to an observed increase of cytosine-phosphate-guanosine island methylation within the putative thyroid hormone receptor-α promoter, which we have mapped for the first time in the rat. Overall, folate supplementation in adolescence led to motivational and spatial memory deficits that may have been mediated by suppressed thyroid hormone function in the periphery and hippocampus.
Collapse
Affiliation(s)
- L J Sittig
- Department of Psychiatry and Behavioral Sciences, The Asher Center, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | | | | | | | | | | |
Collapse
|