1
|
Gajzer DC, Fromm JR. Flow Cytometry for B-Cell Non-Hodgkin and Hodgkin Lymphomas. Cancers (Basel) 2025; 17:814. [PMID: 40075660 PMCID: PMC11898643 DOI: 10.3390/cancers17050814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 01/14/2025] [Accepted: 01/24/2025] [Indexed: 03/14/2025] Open
Abstract
Multi-parametric flow cytometry is a powerful diagnostic tool that permits rapid assessment of cellular antigen expression to quickly provide immunophenotypic information suitable for disease classification. This chapter describes the classification of B-cell non-Hodgkin lymphoma (B-NHL) by flow cytometry suitable for the clinical and research environment. In addition to describing the immunophenotypic patterns of the most common B-NHL (including examples of common B-NHL), the effect of anti-CD19, -CD20, and -CD38 therapies on the evaluation of flow cytometric data is also discussed. Over the last 15 years, our laboratory has developed flow cytometry combinations that can immunophenotype classic Hodgkin lymphoma (CHL), nodular lymphocyte predominant Hodgkin lymphoma (NLPHL), and T-cell/histocyte-rich large B-cell lymphoma (THRLBCL) and the use of these assays will be presented. The CHL assay combination is also particularly well suited to immunophenotype primary mediastinal large B-cell lymphoma (PMLBCL) and our experience immunophenotyping PMLBCL by flow cytometry will be discussed. Finally, an approach to the evaluation of the reactive infiltrate of CHL, NLPHL, and THRLBCL that can provide diagnostic information will also be provided.
Collapse
Affiliation(s)
| | - Jonathan R. Fromm
- Department of Laboratory Medicine and Pathology, University of Washington, 825 Eastlake Ave E, Seattle, WA 98109, USA;
| |
Collapse
|
2
|
Cornell CE, Chorlay A, Krishnamurthy D, Martin NR, Baldauf L, Fletcher DA. Target cell tension regulates macrophage trogocytosis. RESEARCH SQUARE 2025:rs.3.rs-5806746. [PMID: 39975908 PMCID: PMC11838726 DOI: 10.21203/rs.3.rs-5806746/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Macrophages are known to engulf small membrane fragments, or trogocytose, target cells and pathogens, rather than fully phagocytose them. However, little is known about what causes macrophages to choose trogocytosis versus phagocytosis. Here, we report that cortical tension of target cells is a key regulator of macrophage trogocytosis. At low tension, macrophages will preferentially trogocytose antibody-opsonized cells, while at high tension they tend towards phagocytosis. Using model vesicles, we demonstrate that macrophages will rapidly switch from trogocytosis to phagocytosis when membrane tension is increased. Stiffening the cortex of target cells also biases macrophages to phagocytose them, a trend that can be countered by increasing antibody surface density and is captured in a mechanical model of trogocytosis. This work suggests that the target cell, rather than the macrophage, determines phagocytosis versus trogocytosis, and that macrophages do not require a distinct molecular pathway for trogocytosis.
Collapse
Affiliation(s)
- Caitlin E. Cornell
- Department of Bioengineering, University of California Berkeley; Berkeley, CA USA
| | - Aymeric Chorlay
- Department of Bioengineering, University of California Berkeley; Berkeley, CA USA
| | - Deepak Krishnamurthy
- Department of Bioengineering, University of California Berkeley; Berkeley, CA USA
| | - Nicholas R. Martin
- Cardiovascular Research Institute, University of California San Francisco; San Francisco, CA USA
| | - Lucia Baldauf
- London Centre for Nanotechnology, University College London; London, UK
| | - Daniel A. Fletcher
- Department of Bioengineering, University of California Berkeley; Berkeley, CA USA
- University of California Berkeley/University of California San Francisco Graduate Group in Bioengineering, CA USA
- Division of Biological Systems and Engineering, Lawrence Berkeley National Laboratory; Berkeley CA USA
- Chan Zuckerberg Biohub; San Francisco CA USA
| |
Collapse
|
3
|
Kim J, Park S, Kim J, Kim Y, Yoon HM, Rayhan BR, Jeong J, Bothwell ALM, Shin JH. Trogocytosis-mediated immune evasion in the tumor microenvironment. Exp Mol Med 2025; 57:1-12. [PMID: 39741180 PMCID: PMC11799389 DOI: 10.1038/s12276-024-01364-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 09/24/2024] [Accepted: 09/26/2024] [Indexed: 01/02/2025] Open
Abstract
Trogocytosis is a dynamic cellular process characterized by the exchange of the plasma membrane and associated cytosol during cell-to-cell interactions. Unlike phagocytosis, this transfer maintains the surface localization of transferred membrane molecules. For example, CD4 T cells engaging with antigen-presenting cells undergo trogocytosis, which facilitates the transfer of antigen-loaded major histocompatibility complex (MHC) class II molecules from antigen-presenting cells to CD4 T cells. This transfer results in the formation of antigen-loaded MHC class II molecule-dressed CD4 T cells. These "dressed" CD4 T cells subsequently participate in antigen presentation to other CD4 T cells. Additionally, trogocytosis enables the acquisition of immune-regulatory molecules, such as CTLA-4 and Tim3, in recipient cells, thereby modulating their anti-tumor immunity. Concurrently, donor cells undergo plasma membrane loss, and substantial loss can trigger trogocytosis-mediated cell death, termed trogoptosis. This review aims to explore the trogocytosis-mediated transfer of immune regulatory molecules and their implications within the tumor microenvironment to elucidate the underlying mechanisms of immune evasion in cancers.
Collapse
Affiliation(s)
- Jeonghyun Kim
- Institute of Advanced Bio-Industry Convergence, Yonsei University, Seoul, Korea
| | - Soyeon Park
- Institute of Advanced Bio-Industry Convergence, Yonsei University, Seoul, Korea
| | - Jungseo Kim
- Integrative Science and Engineering Division, Underwood International College, Yonsei University, Incheon, 21983, Korea
| | - Yewon Kim
- Integrative Science and Engineering Division, Underwood International College, Yonsei University, Incheon, 21983, Korea
| | - Hong Min Yoon
- Integrative Science and Engineering Division, Underwood International College, Yonsei University, Incheon, 21983, Korea
| | - Bima Rexa Rayhan
- Integrative Science and Engineering Division, Underwood International College, Yonsei University, Incheon, 21983, Korea
| | - Jaekwang Jeong
- Internal Medicine, Yale University School of Medicine, New Haven, CT, 06520, USA
| | - Alfred L M Bothwell
- Department of Pathology, Microbiology and Immunology, University of Nebraska Medical Center, 505 S. 45th Street, Omaha, NE, 68198, USA.
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, 06520, USA.
| | - Jae Hun Shin
- Institute of Advanced Bio-Industry Convergence, Yonsei University, Seoul, Korea.
- Integrative Science and Engineering Division, Underwood International College, Yonsei University, Incheon, 21983, Korea.
| |
Collapse
|
4
|
Eruslanov E, Nefedova Y, Gabrilovich DI. The heterogeneity of neutrophils in cancer and its implication for therapeutic targeting. Nat Immunol 2025; 26:17-28. [PMID: 39747431 PMCID: PMC12055240 DOI: 10.1038/s41590-024-02029-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 11/05/2024] [Indexed: 01/04/2025]
Abstract
Neutrophils have a pivotal role in safeguarding the host against pathogens and facilitating tissue remodeling. They possess a large array of tools essential for executing these functions. Neutrophils have a critical role in cancer, where they are largely associated with negative clinical outcome and resistance to therapy. However, the specific role of neutrophils in cancer is complex and controversial, owing to their high functional diversity and acute sensitivity to the microenvironment. In this Perspective, we discuss the accumulated evidence that suggests that the functional diversity of neutrophils can be ascribed to two principal functional states, each with distinct characteristics: classically activated neutrophils and pathologically activated immunosuppressive myeloid-derived suppressor cells. We discuss how the antimicrobial factors in neutrophils can contribute to tumor progression and the fundamental mechanisms that govern the pathologically activated myeloid-derived suppressor cells. These functional states play divergent roles in cancer and thus require separate consideration in therapeutic targeting.
Collapse
Affiliation(s)
- Evgeniy Eruslanov
- Department of Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | | | | |
Collapse
|
5
|
Siconolfi G, Vitali F, Sciarrone MA, Ardito M, Guglielmino V, Romano A, Granata G, Silvestri G, Luigetti M. IgM Flare in Anti-MAG Neuropathy Post Rituximab Treatment: A Clinical Case and a Systematic Review of the Literature. Brain Sci 2024; 14:1294. [PMID: 39766493 PMCID: PMC11674938 DOI: 10.3390/brainsci14121294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 12/14/2024] [Accepted: 12/20/2024] [Indexed: 01/11/2025] Open
Abstract
BACKGROUND/OBJECTIVES Anti-MAG polyneuropathy is a demyelinating peripheral neuropathy associated with IgM monoclonal gammopathies, particularly MGUS (monoclonal gammopathy of undetermined significance) and Waldenström macroglobulinemia. It is characterized by a subacute onset of distal sensory symptoms, with distal motor dysfunction typically appearing only in the later stages of the disease. The condition is caused by the presence of autoantibodies directed against myelin-associated glycoprotein, a structural protein of myelin. This leads to abnormalities in electrophysiological studies, such as markedly delayed distal latencies without conduction blocks or temporal dispersion of potentials. While rituximab (RTX) is the primary treatment, its efficacy is limited, with improvement seen in only 30-50% of patients. Recently, acute worsening of symptoms after RTX treatment has been increasingly reported. METHODS This systematic review compiles case reports and series from inception to June 2024 published on Scopus, PubMed or Cochrane, documenting acute exacerbations after RTX treatment in patients with anti-MAG polyneuropathy. Additionally, we present a case report from our institution that highlights this phenomenon. RESULTS We identified 13 clinical cases of acute deterioration in patients with anti-MAG polyneuropathy. Among these, eight patients (62%) achieved full recovery following additional treatment, while five patients (38%) did not return to their previous level of function. Plasmapheresis led to complete recovery in all four patients who received this intervention. Interestingly, many patients also experienced recovery after discontinuation of rituximab (RTX) treatment without the need for further therapeutic intervention. CONCLUSIONS Acute clinical deterioration following RTX treatment in anti-MAG polyneuropathy is a possible occurrence. However, to date, no studies have assessed the true prevalence of this phenomenon. Further research is warranted to identify potential predictors of worsening following RTX treatment in this patient population.
Collapse
Affiliation(s)
- Giovanni Siconolfi
- Dipartimento Di Neuroscienze, Università Cattolica del Sacro Cuore, Sede Di Roma, 00168 Rome, Italy; (G.S.); (F.V.); (M.A.S.); (M.A.); (V.G.); (A.R.); (G.S.)
| | - Francesca Vitali
- Dipartimento Di Neuroscienze, Università Cattolica del Sacro Cuore, Sede Di Roma, 00168 Rome, Italy; (G.S.); (F.V.); (M.A.S.); (M.A.); (V.G.); (A.R.); (G.S.)
| | - Maria Ausilia Sciarrone
- Dipartimento Di Neuroscienze, Università Cattolica del Sacro Cuore, Sede Di Roma, 00168 Rome, Italy; (G.S.); (F.V.); (M.A.S.); (M.A.); (V.G.); (A.R.); (G.S.)
| | - Michelangelo Ardito
- Dipartimento Di Neuroscienze, Università Cattolica del Sacro Cuore, Sede Di Roma, 00168 Rome, Italy; (G.S.); (F.V.); (M.A.S.); (M.A.); (V.G.); (A.R.); (G.S.)
| | - Valeria Guglielmino
- Dipartimento Di Neuroscienze, Università Cattolica del Sacro Cuore, Sede Di Roma, 00168 Rome, Italy; (G.S.); (F.V.); (M.A.S.); (M.A.); (V.G.); (A.R.); (G.S.)
| | - Angela Romano
- Dipartimento Di Neuroscienze, Università Cattolica del Sacro Cuore, Sede Di Roma, 00168 Rome, Italy; (G.S.); (F.V.); (M.A.S.); (M.A.); (V.G.); (A.R.); (G.S.)
| | - Giuseppe Granata
- Fondazione Policlinico Universitario A. Gemelli IRCCS, UOC Neurofisiopatologia, 00168 Rome, Italy;
| | - Gabriella Silvestri
- Dipartimento Di Neuroscienze, Università Cattolica del Sacro Cuore, Sede Di Roma, 00168 Rome, Italy; (G.S.); (F.V.); (M.A.S.); (M.A.); (V.G.); (A.R.); (G.S.)
- Fondazione Policlinico Universitario A. Gemelli IRCCS, UOC Neurologia, 00168 Rome, Italy
| | - Marco Luigetti
- Dipartimento Di Neuroscienze, Università Cattolica del Sacro Cuore, Sede Di Roma, 00168 Rome, Italy; (G.S.); (F.V.); (M.A.S.); (M.A.); (V.G.); (A.R.); (G.S.)
- Fondazione Policlinico Universitario A. Gemelli IRCCS, UOC Neurologia, 00168 Rome, Italy
| |
Collapse
|
6
|
Cornell CE, Chorlay A, Krishnamurthy D, Martin NR, Baldauf L, Fletcher DA. Target cell tension regulates macrophage trogocytosis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.02.626490. [PMID: 39677802 PMCID: PMC11642796 DOI: 10.1101/2024.12.02.626490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
Macrophages are known to engulf small membrane fragments, or trogocytose, target cells and pathogens, rather than fully phagocytose them. However, little is known about what causes macrophages to choose trogocytosis versus phagocytosis. Here, we report that cortical tension of target cells is a key regulator of macrophage trogocytosis. At low tension, macrophages will preferentially trogocytose antibody-opsonized cells, while at high tension they tend towards phagocytosis. Using model vesicles, we demonstrate that macrophages will rapidly switch from trogocytosis to phagocytosis when membrane tension is increased. Stiffening the cortex of target cells also biases macrophages to phagocytose them, a trend that can be countered by increasing antibody surface density and is captured in a mechanical model of trogocytosis. This work suggests that a distinct molecular pathway for trogocytosis is not required to explain differences in trogocytosis among target cell types and points to a mechanism for target cells to modulate trogocytosis.
Collapse
|
7
|
Bond A, Fiaz S, Rollins K, Nario JEQ, Snyder ET, Atkins DJ, Rosen SJ, Granados A, Dey SS, Wilson MZ, Morrissey MA. Prior Fc receptor activation primes macrophages for increased sensitivity to IgG via long-term and short-term mechanisms. Dev Cell 2024; 59:2882-2896.e7. [PMID: 39137774 PMCID: PMC11537821 DOI: 10.1016/j.devcel.2024.07.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 04/17/2024] [Accepted: 07/16/2024] [Indexed: 08/15/2024]
Abstract
Macrophages measure the "eat-me" signal immunoglobulin G (IgG) to identify targets for phagocytosis. We tested whether prior encounters with IgG influence macrophage appetite. IgG is recognized by the Fc receptor. To temporally control Fc receptor activation, we engineered an Fc receptor that is activated by the light-induced oligomerization of Cry2, triggering phagocytosis. Using this tool, we demonstrate that subthreshold Fc receptor activation primes mouse bone-marrow-derived macrophages to be more sensitive to IgG in future encounters. Macrophages that have previously experienced subthreshold Fc receptor activation eat more IgG-bound human cancer cells. Increased phagocytosis occurs by two discrete mechanisms-a short- and long-term priming. Long-term priming requires new protein synthesis and Erk activity. Short-term priming does not require new protein synthesis and correlates with an increase in Fc receptor mobility. Our work demonstrates that IgG primes macrophages for increased phagocytosis, suggesting that therapeutic antibodies may become more effective after initial priming doses.
Collapse
Affiliation(s)
- Annalise Bond
- Molecular Cellular and Developmental Biology Department, University of California, Santa Barbara, Santa Barbara, CA, USA
| | - Sareen Fiaz
- Molecular Cellular and Developmental Biology Department, University of California, Santa Barbara, Santa Barbara, CA, USA
| | - Kirstin Rollins
- Molecular Cellular and Developmental Biology Department, University of California, Santa Barbara, Santa Barbara, CA, USA
| | - Jazz Elaiza Q Nario
- Molecular Cellular and Developmental Biology Department, University of California, Santa Barbara, Santa Barbara, CA, USA
| | - Erika T Snyder
- Biomolecular Science and Engineering, University of California, Santa Barbara, Santa Barbara, CA, USA
| | - Dixon J Atkins
- Biomolecular Science and Engineering, University of California, Santa Barbara, Santa Barbara, CA, USA
| | - Samuel J Rosen
- Biomolecular Science and Engineering, University of California, Santa Barbara, Santa Barbara, CA, USA
| | - Alyssa Granados
- Molecular Cellular and Developmental Biology Department, University of California, Santa Barbara, Santa Barbara, CA, USA
| | - Siddharth S Dey
- Chemical Engineering Department, University of California, Santa Barbara, Santa Barbara, CA, USA; Bioengineering Department, University of California, Santa Barbara, Santa Barbara, CA, USA
| | - Maxwell Z Wilson
- Molecular Cellular and Developmental Biology Department, University of California, Santa Barbara, Santa Barbara, CA, USA
| | - Meghan A Morrissey
- Molecular Cellular and Developmental Biology Department, University of California, Santa Barbara, Santa Barbara, CA, USA.
| |
Collapse
|
8
|
Jo S, Fischer BR, Cronin NM, Nurmalasari NPD, Loyd YM, Kerkvliet JG, Bailey EM, Anderson RB, Scott BL, Hoppe AD. Antibody surface mobility amplifies FcγR signaling via Arp2/3 during phagocytosis. Biophys J 2024; 123:2312-2327. [PMID: 38321740 PMCID: PMC11331046 DOI: 10.1016/j.bpj.2024.01.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 11/07/2023] [Accepted: 01/29/2024] [Indexed: 02/08/2024] Open
Abstract
We report herein that the anti-CD20 therapeutic antibody, rituximab, is rearranged into microclusters within the phagocytic synapse by macrophage Fcγ receptors (FcγR) during antibody-dependent cellular phagocytosis. These microclusters were observed to potently recruit Syk and to undergo rearrangements that were limited by the cytoskeleton of the target cell, with depolymerization of target-cell actin filaments leading to modest increases in phagocytic efficiency. Total internal reflection fluorescence analysis revealed that FcγR total phosphorylation, Syk phosphorylation, and Syk recruitment were enhanced when IgG-FcγR microclustering was enabled on fluid bilayers relative to immobile bilayers in a process that required Arp2/3. We conclude that on fluid surfaces, IgG-FcγR microclustering promotes signaling through Syk that is amplified by Arp2/3-driven actin rearrangements. Thus, the surface mobility of antigens bound by IgG shapes the signaling of FcγR with an unrecognized complexity beyond the zipper and trigger models of phagocytosis.
Collapse
Affiliation(s)
- Seongwan Jo
- Department of Chemistry and Biochemistry, South Dakota State University, Brookings, South Dakota; BioSNTRii, South Dakota State University, Brookings, South Dakota
| | - Brady R Fischer
- Department of Chemistry and Biochemistry, South Dakota State University, Brookings, South Dakota; BioSNTRii, South Dakota State University, Brookings, South Dakota
| | - Nicholas M Cronin
- Department of Chemistry and Biochemistry, South Dakota State University, Brookings, South Dakota; BioSNTRii, South Dakota State University, Brookings, South Dakota
| | - Ni Putu Dewi Nurmalasari
- Department of Nanoscience & Biomedical Engineering, South Dakota School of Mines and Technology, Rapid City, South Dakota; BioSNTRii, South Dakota School of Mines and Technology, Rapid City, South Dakota
| | - Yoseph M Loyd
- Department of Nanoscience & Biomedical Engineering, South Dakota School of Mines and Technology, Rapid City, South Dakota; BioSNTRii, South Dakota School of Mines and Technology, Rapid City, South Dakota
| | - Jason G Kerkvliet
- Department of Chemistry and Biochemistry, South Dakota State University, Brookings, South Dakota; BioSNTRii, South Dakota State University, Brookings, South Dakota
| | - Elizabeth M Bailey
- Department of Chemistry and Biochemistry, South Dakota State University, Brookings, South Dakota; BioSNTRii, South Dakota State University, Brookings, South Dakota
| | - Robert B Anderson
- Department of Nanoscience & Biomedical Engineering, South Dakota School of Mines and Technology, Rapid City, South Dakota; BioSNTRii, South Dakota School of Mines and Technology, Rapid City, South Dakota
| | - Brandon L Scott
- Department of Nanoscience & Biomedical Engineering, South Dakota School of Mines and Technology, Rapid City, South Dakota; BioSNTRii, South Dakota School of Mines and Technology, Rapid City, South Dakota
| | - Adam D Hoppe
- Department of Chemistry and Biochemistry, South Dakota State University, Brookings, South Dakota; BioSNTRii, South Dakota State University, Brookings, South Dakota.
| |
Collapse
|
9
|
Albanese M, Chen HR, Gapp M, Muenchhoff M, Yang HH, Peterhoff D, Hoffmann K, Xiao Q, Ruhle A, Ambiel I, Schneider S, Mejías-Pérez E, Stern M, Wratil PR, Hofmann K, Amann L, Jocham L, Fuchs T, Ulivi AF, Besson-Girard S, Weidlich S, Schneider J, Spinner CD, Sutter K, Dittmer U, Humpe A, Baumeister P, Wieser A, Rothenfusser S, Bogner J, Roider J, Knolle P, Hengel H, Wagner R, Laketa V, Fackler OT, Keppler OT. Receptor transfer between immune cells by autoantibody-enhanced, CD32-driven trogocytosis is hijacked by HIV-1 to infect resting CD4 T cells. Cell Rep Med 2024; 5:101483. [PMID: 38579727 PMCID: PMC11031382 DOI: 10.1016/j.xcrm.2024.101483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 12/23/2023] [Accepted: 03/01/2024] [Indexed: 04/07/2024]
Abstract
Immune cell phenotyping frequently detects lineage-unrelated receptors. Here, we report that surface receptors can be transferred from primary macrophages to CD4 T cells and identify the Fcγ receptor CD32 as driver and cargo of this trogocytotic transfer. Filamentous CD32+ nanoprotrusions deposit distinct plasma membrane patches onto target T cells. Transferred receptors confer cell migration and adhesion properties, and macrophage-derived membrane patches render resting CD4 T cells susceptible to infection by serving as hotspots for HIV-1 binding. Antibodies that recognize T cell epitopes enhance CD32-mediated trogocytosis. Such autoreactive anti-HIV-1 envelope antibodies can be found in the blood of HIV-1 patients and, consistently, the percentage of CD32+ CD4 T cells is increased in their blood. This CD32-mediated, antigen-independent cell communication mode transiently expands the receptor repertoire and functionality of immune cells. HIV-1 hijacks this mechanism by triggering the generation of trogocytosis-promoting autoantibodies to gain access to immune cells critical to its persistence.
Collapse
Affiliation(s)
- Manuel Albanese
- Max von Pettenkofer Institute and Gene Center, Virology, National Reference Center for Retroviruses, Faculty of Medicine, LMU München, Munich, Germany; Department for Clinical Sciences and Community Health (DISCCO), University of Milan, Milan, Italy
| | - Hong-Ru Chen
- Max von Pettenkofer Institute and Gene Center, Virology, National Reference Center for Retroviruses, Faculty of Medicine, LMU München, Munich, Germany.
| | - Madeleine Gapp
- Max von Pettenkofer Institute and Gene Center, Virology, National Reference Center for Retroviruses, Faculty of Medicine, LMU München, Munich, Germany
| | - Maximilian Muenchhoff
- Max von Pettenkofer Institute and Gene Center, Virology, National Reference Center for Retroviruses, Faculty of Medicine, LMU München, Munich, Germany; German Centre for Infection Research (DZIF), Partner Site Munich, Munich, Germany
| | - Hsiu-Hui Yang
- Max von Pettenkofer Institute and Gene Center, Virology, National Reference Center for Retroviruses, Faculty of Medicine, LMU München, Munich, Germany
| | - David Peterhoff
- Institute of Medical Microbiology and Hygiene, Molecular Microbiology (Virology), University of Regensburg, Regensburg, Germany
| | - Katja Hoffmann
- Institute of Virology, University Medical Center, Albert-Ludwigs-University Freiburg, Freiburg, Germany
| | - Qianhao Xiao
- Max von Pettenkofer Institute and Gene Center, Virology, National Reference Center for Retroviruses, Faculty of Medicine, LMU München, Munich, Germany
| | - Adrian Ruhle
- Max von Pettenkofer Institute and Gene Center, Virology, National Reference Center for Retroviruses, Faculty of Medicine, LMU München, Munich, Germany
| | - Ina Ambiel
- Department of Infectious Diseases, Heidelberg University, Medical Faculty Heidelberg, Integrative Virology, Center for Integrative Infectious Disease Research (CIID), Heidelberg, Germany; German Centre for Infection Research (DZIF), Partner Site Heidelberg, Heidelberg, Germany
| | - Stephanie Schneider
- Max von Pettenkofer Institute and Gene Center, Virology, National Reference Center for Retroviruses, Faculty of Medicine, LMU München, Munich, Germany
| | - Ernesto Mejías-Pérez
- Max von Pettenkofer Institute and Gene Center, Virology, National Reference Center for Retroviruses, Faculty of Medicine, LMU München, Munich, Germany
| | - Marcel Stern
- Max von Pettenkofer Institute and Gene Center, Virology, National Reference Center for Retroviruses, Faculty of Medicine, LMU München, Munich, Germany
| | - Paul R Wratil
- Max von Pettenkofer Institute and Gene Center, Virology, National Reference Center for Retroviruses, Faculty of Medicine, LMU München, Munich, Germany
| | - Katharina Hofmann
- Max von Pettenkofer Institute and Gene Center, Virology, National Reference Center for Retroviruses, Faculty of Medicine, LMU München, Munich, Germany
| | - Laura Amann
- Max von Pettenkofer Institute and Gene Center, Virology, National Reference Center for Retroviruses, Faculty of Medicine, LMU München, Munich, Germany
| | - Linda Jocham
- Max von Pettenkofer Institute and Gene Center, Virology, National Reference Center for Retroviruses, Faculty of Medicine, LMU München, Munich, Germany
| | - Thimo Fuchs
- Max von Pettenkofer Institute and Gene Center, Virology, National Reference Center for Retroviruses, Faculty of Medicine, LMU München, Munich, Germany
| | | | - Simon Besson-Girard
- Institute for Stroke and Dementia Research, University Hospital, LMU München, Munich, Germany
| | - Simon Weidlich
- Technical University of Munich, School of Medicine, University Hospital Rechts der Isar, Department of Internal Medicine II, Munich, Germany
| | - Jochen Schneider
- Technical University of Munich, School of Medicine, University Hospital Rechts der Isar, Department of Internal Medicine II, Munich, Germany
| | - Christoph D Spinner
- German Centre for Infection Research (DZIF), Partner Site Munich, Munich, Germany; Technical University of Munich, School of Medicine, University Hospital Rechts der Isar, Department of Internal Medicine II, Munich, Germany
| | - Kathrin Sutter
- University Hospital Essen, University Duisburg-Essen, Institute for Virology and Institute for Translational HIV Research, Essen, Germany
| | - Ulf Dittmer
- University Hospital Essen, University Duisburg-Essen, Institute for Virology and Institute for Translational HIV Research, Essen, Germany
| | - Andreas Humpe
- Department of Transfusion Medicine, Cell Therapeutics, and Hemostaseology, Department of Anesthesiology, University Hospital Munich, Munich, Germany
| | - Philipp Baumeister
- Department of Otorhinolaryngology, Head and Neck Surgery, University Hospital, LMU München, Munich, Germany
| | - Andreas Wieser
- German Centre for Infection Research (DZIF), Partner Site Munich, Munich, Germany; Max von Pettenkofer Institute, Medical Microbiology and Hospital Epidemiology, Faculty of Medicine, LMU München, Munich, Germany; Division of Infectious Diseases and Tropical Medicine, University Hospital, LMU München, Munich, Germany
| | - Simon Rothenfusser
- Division of Clinical Pharmacology, University Hospital, LMU München and Unit Clinical Pharmacology (EKliP), Helmholtz Center for Environmental Health, Munich, Germany
| | - Johannes Bogner
- German Centre for Infection Research (DZIF), Partner Site Munich, Munich, Germany; Division of Infectious Diseases, University Hospital, Medizinische Klinik und Poliklinik IV, LMU München, Munich, Germany
| | - Julia Roider
- German Centre for Infection Research (DZIF), Partner Site Munich, Munich, Germany; Division of Infectious Diseases, University Hospital, Medizinische Klinik und Poliklinik IV, LMU München, Munich, Germany
| | - Percy Knolle
- German Centre for Infection Research (DZIF), Partner Site Munich, Munich, Germany; Institute of Molecular Immunology and Experimental Oncology, School of Medicine, Technical University of Munich (TUM), Munich, Germany
| | - Hartmut Hengel
- Institute of Virology, University Medical Center, Albert-Ludwigs-University Freiburg, Freiburg, Germany
| | - Ralf Wagner
- Institute of Medical Microbiology and Hygiene, Molecular Microbiology (Virology), University of Regensburg, Regensburg, Germany
| | - Vibor Laketa
- German Centre for Infection Research (DZIF), Partner Site Heidelberg, Heidelberg, Germany; Department of Infectious Diseases, Heidelberg University, Medical Faculty Heidelberg, Virology, Center for Integrative Infectious Disease Research (CIID), Heidelberg, Germany
| | - Oliver T Fackler
- Department of Infectious Diseases, Heidelberg University, Medical Faculty Heidelberg, Integrative Virology, Center for Integrative Infectious Disease Research (CIID), Heidelberg, Germany; German Centre for Infection Research (DZIF), Partner Site Heidelberg, Heidelberg, Germany.
| | - Oliver T Keppler
- Max von Pettenkofer Institute and Gene Center, Virology, National Reference Center for Retroviruses, Faculty of Medicine, LMU München, Munich, Germany; German Centre for Infection Research (DZIF), Partner Site Munich, Munich, Germany.
| |
Collapse
|
10
|
Najera J, Berry MM, Ramirez AD, Reyes BR, Angel A, Jellyman JK, Mercer F. Bovine neutrophils kill the sexually-transmitted parasite Tritrichomonas foetus using trogocytosis. Vet Res Commun 2024; 48:865-875. [PMID: 37968413 PMCID: PMC10998815 DOI: 10.1007/s11259-023-10260-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Accepted: 11/08/2023] [Indexed: 11/17/2023]
Abstract
The protozoan parasite Tritrichomonas foetus (T. foetus) is the causative organism of bovine trichomonosis (also referred to as trichomoniasis), a sexually-transmitted infection that reduces fertility in cattle. Efforts to control trichomonosis on cattle farms are hindered by the discouragement of antibiotic use in agriculture, and the incomplete, short-lived protection conferred by the current vaccines. A more complete mechanistic understanding of what effective immunity to T. foetus entails could enable the development of more robust infection control strategies. While neutrophils, the primary responders to infection, are present in infected tissues and have been shown to kill the parasite in vitro, the mechanism they use for parasite killing has not been established. Here, we show that primary bovine neutrophils isolated from peripheral blood rapidly kill T. foetus in vitro in a dose-dependent manner, and that optimal parasite killing is reduced by inhibitors of trogocytosis. We also use imaging to show that bovine neutrophils surround T. foetus and trogocytose its membrane. These findings are consistent with killing via trogocytosis, a recently described novel neutrophil antimicrobial mechanism.
Collapse
Affiliation(s)
- Jonathan Najera
- Department of Biological Sciences, California State Polytechnic University Pomona, Pomona, CA, 91768, USA
| | - Michael M Berry
- Department of Biological Sciences, California State Polytechnic University Pomona, Pomona, CA, 91768, USA
| | - Ashley D Ramirez
- Department of Biological Sciences, California State Polytechnic University Pomona, Pomona, CA, 91768, USA
| | - Bryan Ramirez Reyes
- Department of Biological Sciences, California State Polytechnic University Pomona, Pomona, CA, 91768, USA
| | - Arielle Angel
- Department of Biological Sciences, California State Polytechnic University Pomona, Pomona, CA, 91768, USA
| | - Juanita K Jellyman
- Department of Biological Sciences, California State Polytechnic University Pomona, Pomona, CA, 91768, USA
| | - Frances Mercer
- Department of Biological Sciences, California State Polytechnic University Pomona, Pomona, CA, 91768, USA.
| |
Collapse
|
11
|
DeVries SA, Conner B, Dimovasili C, Moore TL, Medalla M, Mortazavi F, Rosene DL. Immune proteins C1q and CD47 may contribute to aberrant microglia-mediated synapse loss in the aging monkey brain that is associated with cognitive impairment. GeroScience 2024; 46:2503-2519. [PMID: 37989825 PMCID: PMC10828237 DOI: 10.1007/s11357-023-01014-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 11/07/2023] [Indexed: 11/23/2023] Open
Abstract
Cognitive impairment in learning, memory, and executive function occurs in normal aging even in the absence of Alzheimer's disease (AD). While neurons do not degenerate in humans or monkeys free of AD, there are structural changes including synapse loss and dendritic atrophy, especially in the dorsolateral prefrontal cortex (dlPFC), and these correlate with cognitive age-related impairment. Developmental studies revealed activity-dependent neuronal properties that lead to synapse remodeling by microglia. Microglia-mediated phagocytosis that may eliminate synapses is regulated by immune "eat me" and "don't eat me" signaling proteins in an activity-dependent manner, so that less active synapses are eliminated. Whether this process contributes to age-related synapse loss remains unknown. The present study used a rhesus monkey model of normal aging to investigate the balance between the "eat me" signal, complement component C1q, and the "don't eat me" signal, transmembrane glycoprotein CD47, relative to age-related synapse loss in dlPFC Area 46. Results showed an age-related elevation of C1q and reduction of CD47 at PSD95+ synapses that is associated with cognitive impairment. Additionally, reduced neuronal CD47 RNA expression was found, indicating that aged neurons were less able to produce the protective signal CD47. Interestingly, microglia do not show the hypertrophic morphology indicative of phagocytic activity. These findings suggest that in the aging brain, changes in the balance of immunologic proteins give microglia instructions favoring synapse elimination of less active synapses, but this may occur by a process other than classic phagocytosis such as trogocytosis.
Collapse
Affiliation(s)
- Sarah A DeVries
- Laboratory for Cognitive Neurobiology, Department of Anatomy & Neurobiology, Boston University Chobanian & Avedisian School of Medicine, Boston University Medical Campus, Boston, MA, USA.
| | - Bryce Conner
- Laboratory for Cognitive Neurobiology, Department of Anatomy & Neurobiology, Boston University Chobanian & Avedisian School of Medicine, Boston University Medical Campus, Boston, MA, USA
| | - Christina Dimovasili
- Laboratory for Cognitive Neurobiology, Department of Anatomy & Neurobiology, Boston University Chobanian & Avedisian School of Medicine, Boston University Medical Campus, Boston, MA, USA
| | - Tara L Moore
- Laboratory for Cognitive Neurobiology, Department of Anatomy & Neurobiology, Boston University Chobanian & Avedisian School of Medicine, Boston University Medical Campus, Boston, MA, USA
- Center for Systems Neuroscience, Boston University, Boston, MA, USA
| | - Maria Medalla
- Laboratory for Cognitive Neurobiology, Department of Anatomy & Neurobiology, Boston University Chobanian & Avedisian School of Medicine, Boston University Medical Campus, Boston, MA, USA
- Center for Systems Neuroscience, Boston University, Boston, MA, USA
| | - Farzad Mortazavi
- Laboratory for Cognitive Neurobiology, Department of Anatomy & Neurobiology, Boston University Chobanian & Avedisian School of Medicine, Boston University Medical Campus, Boston, MA, USA
| | - Douglas L Rosene
- Laboratory for Cognitive Neurobiology, Department of Anatomy & Neurobiology, Boston University Chobanian & Avedisian School of Medicine, Boston University Medical Campus, Boston, MA, USA
- Center for Systems Neuroscience, Boston University, Boston, MA, USA
| |
Collapse
|
12
|
Singhal S, Rao AS, Stadanlick J, Bruns K, Sullivan NT, Bermudez A, Honig-Frand A, Krouse R, Arambepola S, Guo E, Moon EK, Georgiou G, Valerius T, Albelda SM, Eruslanov EB. Human Tumor-Associated Macrophages and Neutrophils Regulate Antitumor Antibody Efficacy through Lethal and Sublethal Trogocytosis. Cancer Res 2024; 84:1029-1047. [PMID: 38270915 PMCID: PMC10982649 DOI: 10.1158/0008-5472.can-23-2135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 11/29/2023] [Accepted: 01/23/2024] [Indexed: 01/26/2024]
Abstract
The clinical benefits of tumor-targeting antibodies (tAb) are modest in solid human tumors. The efficacy of many tAbs is dependent on Fc receptor (FcR)-expressing leukocytes that bind Fc fragments of tAb. Tumor-associated macrophages (TAM) and neutrophils (TAN) represent the majority of FcR+ effectors in solid tumors. A better understanding of the mechanisms by which TAMs and TANs regulate tAb response could help improve the efficacy of cancer treatments. Here, we found that myeloid effectors interacting with tAb-opsonized lung cancer cells used antibody-dependent trogocytosis (ADT) but not antibody-dependent phagocytosis. During this process, myeloid cells "nibbled off" tumor cell fragments containing tAb/targeted antigen (tAg) complexes. ADT was only tumoricidal when the tumor cells expressed high levels of tAg and the effectors were present at high effector-to-tumor ratios. If either of these conditions were not met, which is typical for solid tumors, ADT was sublethal. Sublethal ADT, mainly mediated by CD32hiCD64hi TAM, led to two outcomes: (i) removal of surface tAg/tAb complexes from the tumor that facilitated tumor cell escape from the tumoricidal effects of tAb; and (ii) acquisition of bystander tAgs by TAM with subsequent cross-presentation and stimulation of tumor-specific T-cell responses. CD89hiCD32loCD64lo peripheral blood neutrophils (PBN) and TAN stimulated tumor cell growth in the presence of the IgG1 anti-EGFR Ab cetuximab; however, IgA anti-EGFR Abs triggered the tumoricidal activity of PBN and negated the stimulatory effect of TAN. Overall, this study provides insights into the mechanisms by which myeloid effectors mediate tumor cell killing or resistance during tAb therapy. SIGNIFICANCE The elucidation of the conditions and mechanisms by which human FcR+ myeloid effectors mediate cancer cell resistance and killing during antibody treatment could help develop improved strategies for treating solid tumors.
Collapse
Affiliation(s)
- Sunil Singhal
- Department of Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Abhishek S. Rao
- Department of Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Jason Stadanlick
- Department of Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Kyle Bruns
- Department of Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Neil T. Sullivan
- Department of Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Andres Bermudez
- Department of Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Adam Honig-Frand
- Department of Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Ryan Krouse
- Department of Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Sachinthani Arambepola
- Department of Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Emily Guo
- Department of Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Edmund K. Moon
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - George Georgiou
- Department of Chemical Engineering, University of Texas at Austin, Austin, Texas
| | - Thomas Valerius
- Department of Medicine II, Christian Albrechts University and University Hospital Schleswig-Holstein, Kiel, Germany
| | - Steven M. Albelda
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Evgeniy B. Eruslanov
- Department of Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
13
|
Bond A, Fiaz S, Rollins KR, Nario JEQ, Rosen SJ, Granados A, Wilson MZ, Morrissey MA. Prior Fc Receptor activation primes macrophages for increased sensitivity to IgG via long term and short term mechanisms. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.14.567059. [PMID: 38014172 PMCID: PMC10680729 DOI: 10.1101/2023.11.14.567059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Macrophages measure the 'eat-me' signal IgG to identify targets for phagocytosis. We wondered if prior encounters with IgG influence macrophage appetite. IgG is recognized by the Fc Receptor. To temporally control Fc Receptor activation, we engineered an Fc Receptor that is activated by light-induced oligomerization of Cry2, triggering phagocytosis. Using this tool, we demonstrate that Fc Receptor activation primes macrophages to be more sensitive to IgG in future encounters. Macrophages that have previously experienced Fc Receptor activation eat more IgG-bound cancer cells. Increased phagocytosis occurs by two discrete mechanisms - a short- and long-term priming. Long term priming requires new protein synthesis and Erk activity. Short term priming does not require new protein synthesis and correlates with an increase in Fc Receptor mobility. Our work demonstrates that IgG primes macrophages for increased phagocytosis, suggesting that therapeutic antibodies may become more effective after initial priming doses.
Collapse
Affiliation(s)
- Annalise Bond
- Molecular Cellular and Developmental Biology Department, University of California, Santa Barbara, Santa Barbara CA
| | - Sareen Fiaz
- Molecular Cellular and Developmental Biology Department, University of California, Santa Barbara, Santa Barbara CA
| | - Kirstin R Rollins
- Molecular Cellular and Developmental Biology Department, University of California, Santa Barbara, Santa Barbara CA
| | - Jazz Elaiza Q Nario
- Molecular Cellular and Developmental Biology Department, University of California, Santa Barbara, Santa Barbara CA
| | - Samuel J Rosen
- Molecular Cellular and Developmental Biology Department, University of California, Santa Barbara, Santa Barbara CA
| | - Alyssa Granados
- Molecular Cellular and Developmental Biology Department, University of California, Santa Barbara, Santa Barbara CA
| | - Maxwell Z Wilson
- Molecular Cellular and Developmental Biology Department, University of California, Santa Barbara, Santa Barbara CA
| | - Meghan A Morrissey
- Molecular Cellular and Developmental Biology Department, University of California, Santa Barbara, Santa Barbara CA
- Lead contact
| |
Collapse
|
14
|
Shen J, Zhao S, Peng M, Li Y, Zhang L, Li X, Hu Y, Wu M, Xiang S, Wu X, Liu J, Zhang B, Chen Z, Lin D, Liu H, Tang W, Chen J, Sun X, Liao Q, Hide G, Zhou Z, Lun ZR, Wu Z. Macrophage-mediated trogocytosis contributes to destroying human schistosomes in a non-susceptible rodent host, Microtus fortis. Cell Discov 2023; 9:101. [PMID: 37794085 PMCID: PMC10550985 DOI: 10.1038/s41421-023-00603-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 09/13/2023] [Indexed: 10/06/2023] Open
Abstract
Schistosoma parasites, causing schistosomiasis, exhibit typical host specificity in host preference. Many mammals, including humans, are susceptible to infection, while the widely distributed rodent, Microtus fortis, exhibits natural anti-schistosome characteristics. The mechanisms of host susceptibility remain poorly understood. Comparison of schistosome infection in M. fortis with the infection in laboratory mice (highly sensitive to infection) offers a good model system to investigate these mechanisms and to gain an insight into host specificity. In this study, we showed that large numbers of leukocytes attach to the surface of human schistosomes in M. fortis but not in mice. Single-cell RNA-sequencing analyses revealed that macrophages might be involved in the cell adhesion, and we further demonstrated that M. fortis macrophages could be mediated to attach and kill schistosomula with dependence on Complement component 3 (C3) and Complement receptor 3 (CR3). Importantly, we provided direct evidence that M. fortis macrophages could destroy schistosomula by trogocytosis, a previously undescribed mode for killing helminths. This process was regulated by Ca2+/NFAT signaling. These findings not only elucidate a novel anti-schistosome mechanism in M. fortis but also provide a better understanding of host parasite interactions, host specificity and the potential generation of novel strategies for schistosomiasis control.
Collapse
Affiliation(s)
- Jia Shen
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong, China.
- Key Laboratory of Tropical Disease Control of the Ministry of Education, Sun Yat-sen University, Guangzhou, Guangdong, China.
- Provincial Engineering Technology Research Center for Biological Vector Control, Guangzhou, Guangdong, China.
| | - Siyu Zhao
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong, China
- Key Laboratory of Tropical Disease Control of the Ministry of Education, Sun Yat-sen University, Guangzhou, Guangdong, China
- Provincial Engineering Technology Research Center for Biological Vector Control, Guangzhou, Guangdong, China
| | - Mei Peng
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong, China
- Key Laboratory of Tropical Disease Control of the Ministry of Education, Sun Yat-sen University, Guangzhou, Guangdong, China
- Provincial Engineering Technology Research Center for Biological Vector Control, Guangzhou, Guangdong, China
| | - Yanguo Li
- Institute of Drug Discovery Technology, School of Public Health, School of Medicine, Ningbo University, Ningbo, Zhejiang, China
| | - Lichao Zhang
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong, China
- Key Laboratory of Tropical Disease Control of the Ministry of Education, Sun Yat-sen University, Guangzhou, Guangdong, China
- Provincial Engineering Technology Research Center for Biological Vector Control, Guangzhou, Guangdong, China
| | - Xiaoping Li
- Department of Hepatic Surgery and Liver Transplantation Center, Organ Transplantation Institute, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yunyi Hu
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong, China
- Key Laboratory of Tropical Disease Control of the Ministry of Education, Sun Yat-sen University, Guangzhou, Guangdong, China
- Provincial Engineering Technology Research Center for Biological Vector Control, Guangzhou, Guangdong, China
| | - Mingrou Wu
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong, China
- Key Laboratory of Tropical Disease Control of the Ministry of Education, Sun Yat-sen University, Guangzhou, Guangdong, China
- Provincial Engineering Technology Research Center for Biological Vector Control, Guangzhou, Guangdong, China
| | - Suoyu Xiang
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong, China
- Key Laboratory of Tropical Disease Control of the Ministry of Education, Sun Yat-sen University, Guangzhou, Guangdong, China
- Provincial Engineering Technology Research Center for Biological Vector Control, Guangzhou, Guangdong, China
| | - Xiaoying Wu
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Jiahua Liu
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong, China
- Key Laboratory of Tropical Disease Control of the Ministry of Education, Sun Yat-sen University, Guangzhou, Guangdong, China
- Provincial Engineering Technology Research Center for Biological Vector Control, Guangzhou, Guangdong, China
| | - Beibei Zhang
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong, China
- Key Laboratory of Tropical Disease Control of the Ministry of Education, Sun Yat-sen University, Guangzhou, Guangdong, China
- Provincial Engineering Technology Research Center for Biological Vector Control, Guangzhou, Guangdong, China
| | - Zebin Chen
- Department of Hepatic Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Datao Lin
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong, China
- Key Laboratory of Tropical Disease Control of the Ministry of Education, Sun Yat-sen University, Guangzhou, Guangdong, China
- Provincial Engineering Technology Research Center for Biological Vector Control, Guangzhou, Guangdong, China
| | - Huanyao Liu
- Key Laboratory of Tropical Disease Control of the Ministry of Education, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Wenyan Tang
- Key Laboratory of Tropical Disease Control of the Ministry of Education, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Jun Chen
- Department of Immunology, Center for Precision Medicine and Engineering & Technology Research Center for Disease-Model Animals, Laboratory Animal Center, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Xi Sun
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong, China
- Key Laboratory of Tropical Disease Control of the Ministry of Education, Sun Yat-sen University, Guangzhou, Guangdong, China
- Provincial Engineering Technology Research Center for Biological Vector Control, Guangzhou, Guangdong, China
| | - Qi Liao
- Institute of Drug Discovery Technology, School of Public Health, School of Medicine, Ningbo University, Ningbo, Zhejiang, China
| | - Geoff Hide
- Biomedical Research and Innovation Centre, School of Science, Engineering and Environment, University of Salford, Salford, UK
| | - Zhijun Zhou
- Department of Laboratory Animals, Hunan Key Laboratory of Animal Models for Human Diseases, Central South University, Changsha, Hunan, China.
| | - Zhao-Rong Lun
- Biomedical Research and Innovation Centre, School of Science, Engineering and Environment, University of Salford, Salford, UK.
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, Guangdong, China.
| | - Zhongdao Wu
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong, China.
- Key Laboratory of Tropical Disease Control of the Ministry of Education, Sun Yat-sen University, Guangzhou, Guangdong, China.
- Provincial Engineering Technology Research Center for Biological Vector Control, Guangzhou, Guangdong, China.
| |
Collapse
|
15
|
Blockade of CD47 enhances the antitumor effect of macrophages in renal cell carcinoma through trogocytosis. Sci Rep 2022; 12:12546. [PMID: 35869130 PMCID: PMC9307775 DOI: 10.1038/s41598-022-16766-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 07/14/2022] [Indexed: 11/15/2022] Open
Abstract
Immune checkpoint inhibitors and vascular endothelial growth factor receptor tyrosine kinase inhibitors (VEGFR TKIs) are mainstream treatments for renal cell carcinoma (RCC). Both T cells and macrophages infiltrate the tumor microenvironment of RCC. CD47, an immune checkpoint of macrophages, transmits the “don’t eat me” signal to macrophages. We propose a novel therapeutic strategy that activates the antitumor effect of macrophages. We found that CD47 was expressed in patients with RCC, and high CD47 expression was indicative of worse overall survival in datasets from The Cancer Genome Atlas. We observed that CD47-blocking antibodies enhanced the antitumor effect of macrophages against human RCC cell lines. Trogocytosis, rather than phagocytosis, occurred and was promoted by increased cell-to-cell contact between macrophages and RCC cells. Trogocytosis induced by CD47 blockade occurred in the presence of CD11b integrin signaling in macrophages and was augmented when RCC cells were exposed to VEGFR TKIs, except for sunitinib. In conclusion, this study presents evidence that anti-CD47 blocking antibodies improve the antitumor effect of macrophages in RCC. In combination with VEGFR TKIs, CD47 blockade is a potential therapeutic strategy for patients with RCC.
Collapse
|
16
|
Behrens LM, van Egmond M, van den Berg TK. Neutrophils as immune effector cells in antibody therapy in cancer. Immunol Rev 2022; 314:280-301. [PMID: 36331258 DOI: 10.1111/imr.13159] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Tumor-targeting monoclonal antibodies are available for a number of cancer cell types (over)expressing the corresponding tumor antigens. Such antibodies can limit tumor progression by different mechanisms, including direct growth inhibition and immune-mediated mechanisms, in particular complement-dependent cytotoxicity, antibody-dependent cellular phagocytosis, and antibody-dependent cellular cytotoxicity (ADCC). ADCC can be mediated by various types of immune cells, including neutrophils, the most abundant leukocyte in circulation. Neutrophils express a number of Fc receptors, including Fcγ- and Fcα-receptors, and can therefore kill tumor cells opsonized with either IgG or IgA antibodies. In recent years, important insights have been obtained with respect to the mechanism(s) by which neutrophils engage and kill antibody-opsonized cancer cells and these findings are reviewed here. In addition, we consider a number of additional ways in which neutrophils may affect cancer progression, in particular by regulating adaptive anti-cancer immunity.
Collapse
Affiliation(s)
- Leonie M. Behrens
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC Vrije Universiteit Amsterdam HV Amsterdam The Netherlands
- Cancer Center Amsterdam, Cancer Biology and Immunology HV Amsterdam The Netherlands
- Amsterdam institute for Infection and Immunity, Cancer Immunology HV Amsterdam The Netherlands
| | - Marjolein van Egmond
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC Vrije Universiteit Amsterdam HV Amsterdam The Netherlands
- Cancer Center Amsterdam, Cancer Biology and Immunology HV Amsterdam The Netherlands
- Amsterdam institute for Infection and Immunity, Cancer Immunology HV Amsterdam The Netherlands
- Department of Surgery, Amsterdam UMC Vrije Universiteit Amsterdam HV Amsterdam The Netherlands
| | | |
Collapse
|
17
|
van Rees DJ, Bouti P, Klein B, Verkuijlen PJH, van Houdt M, Schornagel K, Tool ATJ, Venet D, Sotiriou C, El-Abed S, Izquierdo M, Guillaume S, Saura C, Di Cosimo S, Huober J, Roylance R, Kim SB, Kuijpers TW, van Bruggen R, van den Berg TK, Matlung HL. Cancer cells resist antibody-mediated destruction by neutrophils through activation of the exocyst complex. J Immunother Cancer 2022; 10:e004820. [PMID: 35728876 PMCID: PMC9214435 DOI: 10.1136/jitc-2022-004820] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/23/2022] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Neutrophils kill antibody-opsonized tumor cells using trogocytosis, a unique mechanism of destruction of the target plasma. This previously unknown cytotoxic process of neutrophils is dependent on antibody opsonization, Fcγ receptors and CD11b/CD18 integrins. Here, we demonstrate that tumor cells can escape neutrophil-mediated cytotoxicity by calcium (Ca2+)-dependent and exocyst complex-dependent plasma membrane repair. METHODS We knocked down EXOC7 or EXOC4, two exocyst components, to evaluate their involvement in tumor cell membrane repair after neutrophil-induced trogocytosis. We used live cell microscopy and flow cytometry for visualization of the host and tumor cell interaction and tumor cell membrane repair. Last, we reported the mRNA levels of exocyst in breast cancer tumors in correlation to the response in trastuzumab-treated patients. RESULTS We found that tumor cells can evade neutrophil antibody-dependent cellular cytotoxicity (ADCC) by Ca2+-dependent cell membrane repair, a process induced upon neutrophil trogocytosis. Absence of exocyst components EXOC7 or EXOC4 rendered tumor cells vulnerable to neutrophil-mediated ADCC (but not natural killer cell-mediated killing), while neutrophil trogocytosis remained unaltered. Finally, mRNA levels of exocyst components in trastuzumab-treated patients were inversely correlated to complete response to therapy. CONCLUSIONS Our results support that neutrophil attack towards antibody-opsonized cancer cells by trogocytosis induces an active repair process by the exocyst complex in vitro. Our findings provide insight to the possible contribution of neutrophils in current antibody therapies and the tolerance mechanism of tumor cells and support further studies for potential use of the exocyst components as clinical biomarkers.
Collapse
Affiliation(s)
- Dieke J van Rees
- Department of Molecular Hematology, Sanquin Research, Amsterdam, The Netherlands
| | - Panagiota Bouti
- Department of Molecular Hematology, Sanquin Research, Amsterdam, The Netherlands
| | - Bart Klein
- Department of Molecular Hematology, Sanquin Research, Amsterdam, The Netherlands
| | - Paul J H Verkuijlen
- Department of Molecular Hematology, Sanquin Research, Amsterdam, The Netherlands
| | - Michel van Houdt
- Department of Molecular Hematology, Sanquin Research, Amsterdam, The Netherlands
| | - Karin Schornagel
- Department of Molecular Hematology, Sanquin Research, Amsterdam, The Netherlands
| | - Anton T J Tool
- Department of Molecular Hematology, Sanquin Research, Amsterdam, The Netherlands
| | - David Venet
- Breast Cancer Translational Research Laboratory JC Heuson, Institut Jules Bordet, Bruxelles, Belgium
| | - Christos Sotiriou
- Breast Cancer Translational Research Laboratory JC Heuson, Institut Jules Bordet, Bruxelles, Belgium
| | | | | | - Sébastien Guillaume
- Department of Psychiatric Emergency & Acute Care, Lapeyronie Hospital, Montpellier, France
| | - Cristina Saura
- SOLTI Innovative Breast Cancer Research, Vall d'Hebron Hospital Universitari, Barcelona, Spain
| | | | - Jens Huober
- Breast Center, University of Ulm, Ulm, Germany
| | - Rebecca Roylance
- Department of Oncology, University College London Hospitals NHS Foundation Trust and NIHR University College London Hospitals Biomedical Research Centre, London, UK
| | - Sung-Bae Kim
- Department of Oncology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Taco W Kuijpers
- Department of Molecular Hematology, Sanquin Research, Amsterdam, The Netherlands
- Department of Pediatric Immunology and Infectious Diseases, Emma Children's Hospital, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Robin van Bruggen
- Department of Molecular Hematology, Sanquin Research, Amsterdam, The Netherlands
| | - Timo K van den Berg
- Department of Molecular Hematology, Sanquin Research, Amsterdam, The Netherlands
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Hanke L Matlung
- Department of Molecular Hematology, Sanquin Research, Amsterdam, The Netherlands
| |
Collapse
|
18
|
Zhao S, Zhang L, Xiang S, Hu Y, Wu Z, Shen J. Gnawing Between Cells and Cells in the Immune System: Friend or Foe? A Review of Trogocytosis. Front Immunol 2022; 13:791006. [PMID: 35185886 PMCID: PMC8850298 DOI: 10.3389/fimmu.2022.791006] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 01/14/2022] [Indexed: 12/27/2022] Open
Abstract
Trogocytosis occurs when one cell contacts and quickly nibbles another cell and is characterized by contact between living cells and rapid transfer of membrane fragments with functional integrity. Many immune cells are involved in this process, such as T cells, B cells, NK cells, APCs. The transferred membrane molecules including MHC molecules, costimulatory molecules, receptors, antigens, etc. An increasing number of studies have shown that trogocytosis plays an important role in the immune system and the occurrence of relevant diseases. Thus, whether trogocytosis is a friend or foe of the immune system is puzzling, and the precise mechanism underlying it has not yet been fully elucidated. Here, we provide an integrated view of the acquired findings on the connections between trogocytosis and the immune system.
Collapse
Affiliation(s)
- Siyu Zhao
- Department of Parasitology of Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Key Laboratory of Tropical Disease Control (SYSU), Ministry of Education, Guangzhou, China.,Provincial Engineering Technology Research Center for Biological Vector Control, Guangzhou, China
| | - Lichao Zhang
- Department of Parasitology of Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Key Laboratory of Tropical Disease Control (SYSU), Ministry of Education, Guangzhou, China.,Provincial Engineering Technology Research Center for Biological Vector Control, Guangzhou, China
| | - Suoyu Xiang
- Department of Parasitology of Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Key Laboratory of Tropical Disease Control (SYSU), Ministry of Education, Guangzhou, China.,Provincial Engineering Technology Research Center for Biological Vector Control, Guangzhou, China
| | - Yunyi Hu
- Department of Parasitology of Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Key Laboratory of Tropical Disease Control (SYSU), Ministry of Education, Guangzhou, China.,Provincial Engineering Technology Research Center for Biological Vector Control, Guangzhou, China
| | - Zhongdao Wu
- Department of Parasitology of Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Key Laboratory of Tropical Disease Control (SYSU), Ministry of Education, Guangzhou, China.,Provincial Engineering Technology Research Center for Biological Vector Control, Guangzhou, China
| | - Jia Shen
- Department of Parasitology of Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Key Laboratory of Tropical Disease Control (SYSU), Ministry of Education, Guangzhou, China.,Provincial Engineering Technology Research Center for Biological Vector Control, Guangzhou, China
| |
Collapse
|
19
|
Wu TH, Hsieh SC, Li TH, Lu CH, Liao HT, Shen CY, Li KJ, Wu CH, Kuo YM, Tsai CY, Yu CL. Molecular Basis for Paradoxical Activities of Polymorphonuclear Neutrophils in Inflammation/Anti-Inflammation, Bactericide/Autoimmunity, Pro-Cancer/Anticancer, and Antiviral Infection/SARS-CoV-II-Induced Immunothrombotic Dysregulation. Biomedicines 2022; 10:biomedicines10040773. [PMID: 35453523 PMCID: PMC9032061 DOI: 10.3390/biomedicines10040773] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 03/18/2022] [Accepted: 03/19/2022] [Indexed: 02/06/2023] Open
Abstract
Polymorphonuclear neutrophils (PMNs) are the most abundant white blood cells in the circulation. These cells act as the fast and powerful defenders against environmental pathogenic microbes to protect the body. In addition, these innate inflammatory cells can produce a number of cytokines/chemokines/growth factors for actively participating in the immune network and immune homeostasis. Many novel biological functions including mitogen-induced cell-mediated cytotoxicity (MICC) and antibody-dependent cell-mediated cytotoxicity (ADCC), exocytosis of microvesicles (ectosomes and exosomes), trogocytosis (plasma membrane exchange) and release of neutrophil extracellular traps (NETs) have been successively discovered. Furthermore, recent investigations unveiled that PMNs act as a double-edged sword to exhibit paradoxical activities on pro-inflammation/anti-inflammation, antibacteria/autoimmunity, pro-cancer/anticancer, antiviral infection/COVID-19-induced immunothrombotic dysregulation. The NETs released from PMNs are believed to play a pivotal role in these paradoxical activities, especially in the cytokine storm and immunothrombotic dysregulation in the recent SARS-CoV-2 pandemic. In this review, we would like to discuss in detail the molecular basis for these strange activities of PMNs.
Collapse
Affiliation(s)
- Tsai-Hung Wu
- Division of Nephrology, Taipei Veterans General Hospital, National Yang-Ming Chiao-Tung University, Taipei 11217, Taiwan;
| | - Song-Chou Hsieh
- Department of Internal Medicine, National Taiwan University Hospital, Taipei 10002, Taiwan; (S.-C.H.); (C.-H.L.); (C.-Y.S.); (K.-J.L.); (C.-H.W.); (Y.-M.K.)
| | - Tsu-Hao Li
- Division of Allergy, Immunology and Rheumatology, Shin Kong Wu Ho Shi Hospital, Taipei 11101, Taiwan;
- Institute of Clinical Medicine, National Yang-Ming Chiao-Tung University, Taipei 11217, Taiwan
| | - Cheng-Hsun Lu
- Department of Internal Medicine, National Taiwan University Hospital, Taipei 10002, Taiwan; (S.-C.H.); (C.-H.L.); (C.-Y.S.); (K.-J.L.); (C.-H.W.); (Y.-M.K.)
- Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei 10002, Taiwan
| | - Hsien-Tzung Liao
- Division of Allergy, Immunology and Rheumatology, Taipei Veterans General Hospital, National Yang-Ming Chiao-Tung University, Taipei 11217, Taiwan;
| | - Chieh-Yu Shen
- Department of Internal Medicine, National Taiwan University Hospital, Taipei 10002, Taiwan; (S.-C.H.); (C.-H.L.); (C.-Y.S.); (K.-J.L.); (C.-H.W.); (Y.-M.K.)
- Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei 10002, Taiwan
| | - Ko-Jen Li
- Department of Internal Medicine, National Taiwan University Hospital, Taipei 10002, Taiwan; (S.-C.H.); (C.-H.L.); (C.-Y.S.); (K.-J.L.); (C.-H.W.); (Y.-M.K.)
| | - Cheng-Han Wu
- Department of Internal Medicine, National Taiwan University Hospital, Taipei 10002, Taiwan; (S.-C.H.); (C.-H.L.); (C.-Y.S.); (K.-J.L.); (C.-H.W.); (Y.-M.K.)
- Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei 10002, Taiwan
| | - Yu-Min Kuo
- Department of Internal Medicine, National Taiwan University Hospital, Taipei 10002, Taiwan; (S.-C.H.); (C.-H.L.); (C.-Y.S.); (K.-J.L.); (C.-H.W.); (Y.-M.K.)
- Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei 10002, Taiwan
| | - Chang-Youh Tsai
- Division of Allergy, Immunology and Rheumatology, Taipei Veterans General Hospital, National Yang-Ming Chiao-Tung University, Taipei 11217, Taiwan;
- Correspondence: (C.-Y.T.); (C.-L.Y.)
| | - Chia-Li Yu
- Department of Internal Medicine, National Taiwan University Hospital, Taipei 10002, Taiwan; (S.-C.H.); (C.-H.L.); (C.-Y.S.); (K.-J.L.); (C.-H.W.); (Y.-M.K.)
- Correspondence: (C.-Y.T.); (C.-L.Y.)
| |
Collapse
|
20
|
The Multiple Roles of Trogocytosis in Immunity, the Nervous System, and Development. BIOMED RESEARCH INTERNATIONAL 2021; 2021:1601565. [PMID: 34604381 PMCID: PMC8483919 DOI: 10.1155/2021/1601565] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 09/02/2021] [Accepted: 09/08/2021] [Indexed: 12/24/2022]
Abstract
Trogocytosis is a general biological process that involves one cell physically taking small parts of the membrane and other components from another cell. In trogocytosis, one cell seems to take little “bites” from another cell resulting in multiple outcomes from these cell-cell interactions. Trogocytosis was first described in protozoan parasites, which by taking pieces of host cells, kill them and cause tissue damage. Now, it is known that this process is also performed by cells of the immune system with important consequences such as cell communication and activation, elimination of microbial pathogens, and even control of cancer cells. More recently, trogocytosis has also been reported to occur in cells of the central nervous system and in various cells during development. Some of the molecules involved in phagocytosis also participate in trogocytosis. However, the molecular mechanisms that regulate trogocytosis are still a mystery. Elucidating these mechanisms is becoming a research area of much interest. For example, why neutrophils can engage trogocytosis to kill Trichomonas vaginalis parasites, but neutrophils use phagocytosis to eliminate already death parasites? Thus, trogocytosis is a significant process in normal physiology that multiple cells from different organisms use in various scenarios of health and disease. In this review, we present the basic principles known on the process of trogocytosis and discuss the importance in this process to host-pathogen interactions and to normal functions in the immune and nervous systems.
Collapse
|
21
|
McBride HJ, Jassem S, Chow V, Kanakaraj P, Lebrec H, Kuhns S, Ferbas J, Wong M, Thway TM. Non-clinical similarity of biosimilar ABP 798 with rituximab reference product. Biologicals 2021; 72:42-53. [PMID: 34303595 DOI: 10.1016/j.biologicals.2021.05.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 05/13/2021] [Accepted: 05/20/2021] [Indexed: 01/02/2023] Open
Abstract
ABP 798 is a biosimilar to Rituxan® (rituximab reference product [RP]). Non-clinical assessments relevant to the primary and secondary mechanisms of action (MOA) contribute to the totality of the evidence (TOE) in supporting biosimilarity and are critical in providing scientific evidence for extrapolation of indications. Similarity of ABP 798 with rituximab RP was investigated across a range of biological activities which have potential impact on pharmacokinetics and clinical efficacy with non-clinical assessments relevant to MOA such as CD20 internalization, trogocytosis, binding to primary human natural killer (NK) cells as well as the ability to induce antibody-dependent cellular phagocytosis (ADCP) in peripheral blood mononuclear cells. Additionally, in vitro synergy of ABP 798 or RP with chemotherapeutic agents, in vivo xenograft studies in mice, and toxicological assessments in cynomolgus monkeys (including B cell depletion and toxicokinetics) were also conducted. Results from these non-clinical assessments contribute to the TOE supporting the biosimilarity between ABP 798 and rituximab RP across a range of primary and secondary MOAs and support justification for extrapolation to all indications of use for ABP 798 for which the RP is approved.
Collapse
Affiliation(s)
- Helen J McBride
- Amgen Inc., One Amgen Center Drive, Thousand Oaks, CA, 91320, USA.
| | - Shea Jassem
- Amgen Inc., One Amgen Center Drive, Thousand Oaks, CA, 91320, USA.
| | - Vincent Chow
- Amgen Inc., One Amgen Center Drive, Thousand Oaks, CA, 91320, USA.
| | | | - Herve Lebrec
- Amgen Inc., 1120 Veterans Blvd, South San Francisco, CA, 94080, USA.
| | - Scott Kuhns
- Amgen Inc., One Amgen Center Drive, Thousand Oaks, CA, 91320, USA.
| | - John Ferbas
- Amgen Inc., One Amgen Center Drive, Thousand Oaks, CA, 91320, USA.
| | - Min Wong
- Amgen Inc., One Amgen Center Drive, Thousand Oaks, CA, 91320, USA.
| | - Theingi M Thway
- Amgen Inc., One Amgen Center Drive, Thousand Oaks, CA, 91320, USA.
| |
Collapse
|
22
|
Abstract
Immunotherapy marked a milestone in cancer treatment and has shown unprecedented efficacy in a variety of hematological malignancies. Downregulation or loss of target antigens is commonly seen after immunotherapy, which often causes diagnostic dilemma and represents a key mechanism that tumor escapes from immunotherapy. The awareness of phenotypic changes after targeted immunotherapy is important to avoid misdiagnosis. Further understanding of the mechanisms of antigen loss is paramount for the development of therapeutic approaches that can prevent or overcome antigen escape in future immunotherapy.
Collapse
Affiliation(s)
- Ting Zhou
- Flow Cytometry Unit, Laboratory of Pathology, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA; Hematopathology Section, Laboratory of Pathology, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Hao-Wei Wang
- Flow Cytometry Unit, Laboratory of Pathology, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA; Hematopathology Section, Laboratory of Pathology, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
23
|
Miyake K, Karasuyama H. The Role of Trogocytosis in the Modulation of Immune Cell Functions. Cells 2021; 10:cells10051255. [PMID: 34069602 PMCID: PMC8161413 DOI: 10.3390/cells10051255] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/15/2021] [Accepted: 05/17/2021] [Indexed: 12/16/2022] Open
Abstract
Trogocytosis is an active process, in which one cell extracts the cell fragment from another cell, leading to the transfer of cell surface molecules, together with membrane fragments. Recent reports have revealed that trogocytosis can modulate various biological responses, including adaptive and innate immune responses and homeostatic responses. Trogocytosis is evolutionally conserved from protozoan parasites to eukaryotic cells. In some cases, trogocytosis results in cell death, which is utilized as a mechanism for antibody-dependent cytotoxicity (ADCC). In other cases, trogocytosis-mediated intercellular protein transfer leads to both the acquisition of novel functions in recipient cells and the loss of cellular functions in donor cells. Trogocytosis in immune cells is typically mediated by receptor–ligand interactions, including TCR–MHC interactions and Fcγ receptor-antibody-bound molecule interactions. Additionally, trogocytosis mediates the transfer of MHC molecules to various immune and non-immune cells, which confers antigen-presenting activity on non-professional antigen-presenting cells. In this review, we summarize the recent advances in our understanding of the role of trogocytosis in immune modulation.
Collapse
|
24
|
Biodistribution of surfactant-free poly(lactic-acid) nanoparticles and uptake by endothelial cells and phagocytes in zebrafish: Evidence for endothelium to macrophage transfer. J Control Release 2021; 331:228-245. [PMID: 33444668 DOI: 10.1016/j.jconrel.2021.01.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 11/16/2020] [Accepted: 01/04/2021] [Indexed: 02/07/2023]
Abstract
In the development of therapeutic nanoparticles (NP), there is a large gap between in vitro testing and in vivo experimentation. Despite its prominence as a model, the mouse shows severe limitations for imaging NP and the cells with which they interact. Recently, the transparent zebrafish larva, which is well suited for high-resolution live-imaging, has emerged as a powerful alternative model to investigate the in vivo behavior of NP. Poly(D,L lactic acid) (PLA) is widely accepted as a safe polymer to prepare therapeutic NP. However, to prevent aggregation, many NP require surfactants, which may have undesirable biological effects. Here, we evaluate 'safe-by-design', surfactant-free PLA-NP that were injected intravenously into zebrafish larvae. Interaction of fluorescent NPs with different cell types labelled in reporter animals could be followed in real-time at high resolution; furthermore, by encapsulating colloidal gold into the matrix of PLA-NP we could follow their fate in more detail by electron microscopy, from uptake to degradation. The rapid clearance of fluorescent PLA-NP from the circulation coincided with internalization by endothelial cells lining the whole vasculature and macrophages. After 30 min, when no NP remained in circulation, we observed that macrophages continued to internalize significant amounts of NP. More detailed video-imaging revealed a new mechanism of NP transfer where NP are transmitted along with parts of the cytoplasm from endothelial cells to macrophages.
Collapse
|
25
|
Trogocytosis between Non-Immune Cells for Cell Clearance, and among Immune-Related Cells for Modulating Immune Responses and Autoimmunity. Int J Mol Sci 2021; 22:ijms22052236. [PMID: 33668117 PMCID: PMC7956485 DOI: 10.3390/ijms22052236] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 02/21/2021] [Accepted: 02/21/2021] [Indexed: 12/21/2022] Open
Abstract
The term trogocytosis refers to a rapid bidirectional and active transfer of surface membrane fragment and associated proteins between cells. The trogocytosis requires cell-cell contact, and exhibits fast kinetics and the limited lifetime of the transferred molecules on the surface of the acceptor cells. The biological actions of trogocytosis include information exchange, cell clearance of unwanted tissues in embryonic development, immunoregulation, cancer surveillance/evasion, allogeneic cell survival and infectious pathogen killing or intercellular transmission. In the present review, we will extensively review all these aspects. In addition to its biological significance, aberrant trogocytosis in the immune system leading to autoimmunity and immune-mediated inflammatory diseases will also be discussed. Finally, the prospective investigations for further understanding the molecular basis of trogocytosis and its clinical applications will also be proposed.
Collapse
|
26
|
Vijayaraghavan S, Lipfert L, Chevalier K, Bushey BS, Henley B, Lenhart R, Sendecki J, Beqiri M, Millar HJ, Packman K, Lorenzi MV, Laquerre S, Moores SL. Amivantamab (JNJ-61186372), an Fc Enhanced EGFR/cMet Bispecific Antibody, Induces Receptor Downmodulation and Antitumor Activity by Monocyte/Macrophage Trogocytosis. Mol Cancer Ther 2020; 19:2044-2056. [DOI: 10.1158/1535-7163.mct-20-0071] [Citation(s) in RCA: 121] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 04/06/2020] [Accepted: 07/27/2020] [Indexed: 11/16/2022]
|
27
|
Abstract
Trogocytosis is part of an emerging, exciting theme of cell-cell interactions both within and between species, and it is relevant to host-pathogen interactions in many different contexts. Trogocytosis is a process in which one cell physically extracts and ingests "bites" of cellular material from another cell. It was first described in eukaryotic microbes, where it was uncovered as a mechanism by which amoebae kill cells. Trogocytosis is potentially a fundamental form of eukaryotic cell-cell interaction, since it also occurs in multicellular organisms, where it has functions in the immune system, in the central nervous system, and during development. There are numerous scenarios in which trogocytosis occurs and an ever-evolving list of functions associated with this process. Many aspects of trogocytosis are relevant to microbial pathogenesis. It was recently discovered that immune cells perform trogocytosis to kill Trichomonas vaginalis parasites. Additionally, through trogocytosis, Entamoeba histolytica acquires and displays human cell membrane proteins, enabling immune evasion. Intracellular bacteria seem to exploit host cell trogocytosis, since they can use it to spread from cell to cell. Thus, a picture is emerging in which trogocytosis plays critical roles in normal physiology, infection, and disease.
Collapse
|
28
|
Resolvin D1 promotes the targeting and clearance of necroptotic cells. Cell Death Differ 2019; 27:525-539. [PMID: 31222041 DOI: 10.1038/s41418-019-0370-1] [Citation(s) in RCA: 99] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 04/30/2019] [Accepted: 05/28/2019] [Indexed: 02/07/2023] Open
Abstract
Inflammation-resolution is a protective response that is mediated by specialized pro-resolving mediators (SPMs). The clearance of dead cells or efferocytosis is a critical cellular program of inflammation-resolution. Impaired efferocytosis can lead to tissue damage in prevalent human diseases, like atherosclerosis. Therefore understanding mechanisms associated with swift clearance of dead cells is of utmost clinical importance. Recently, the accumulation of necroptotic cells (NCs) was observed in human plaques and we postulated that this is due to defective clearance programs. Here we present evidence that NCs are inefficiently taken up by macrophages because they have increased surface expression of a well-known "don't eat me" signal called CD47. High levels of CD47 on NCs stimulated RhoA-pMLC signaling in macrophages that promoted "nibbling", rather than whole-cell engulfment of NCs. Anti-CD47 blocking antibodies limited RhoA-p-MLC signaling and promoted whole-cell NC engulfment. Treatment with anti-CD47 blocking antibodies to Ldlr-/- mice with established atherosclerosis decreased necrotic cores, limited the accumulation of plaque NCs and increased lesional SPMs, including Resolvin D1 (RvD1) compared with IgG controls. Mechanistically, RvD1 promoted whole-cell engulfment of NCs by decreasing RhoA signaling and activating CDC42. RvD1 specifically targeted NCs for engulfment by facilitating the release of the well-known "eat me signal" called calreticulin from macrophages in a CDC42 dependent manner. Lastly, RvD1 enhanced the clearance of NCs in advanced murine plaques. Together, these results suggest new molecules and signaling associated with the clearance of NCs, provide a new paradigm for the regulation of inflammation-resolution, and offer a potential treatment strategy for diseases where NCs underpin the pathology.
Collapse
|
29
|
Velmurugan R, Ramakrishnan S, Kim M, Ober RJ, Ward ES. Phagocytosis of antibody-opsonized tumor cells leads to the formation of a discrete vacuolar compartment in macrophages. Traffic 2019; 19:273-284. [PMID: 29437282 PMCID: PMC5869154 DOI: 10.1111/tra.12552] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2017] [Revised: 01/26/2018] [Accepted: 01/26/2018] [Indexed: 12/17/2022]
Abstract
Despite the rapidly expanding use of antibody‐based therapeutics to treat cancer, knowledge of the cellular processes following phagocytosis of antibody‐opsonized tumor cells is limited. Here we report the formation of a phagosome‐associated vacuole that is observed in macrophages as these degradative compartments mature following phagocytosis of HER2‐positive cancer cells in the presence of the HER2‐specific antibody, trastuzumab. We demonstrate that this vacuole is a distinct organelle that is closely apposed to the phagosome. Furthermore, the size of the phagosome‐associated vacuole is increased by inhibition of the mTOR pathway. Collectively, the identification of this vacuolar compartment has implications for understanding the subcellular trafficking processes leading to the destruction of phagocytosed, antibody‐opsonized cancer cells by macrophages.
Collapse
Affiliation(s)
- Ramraj Velmurugan
- Department of Molecular and Cellular Medicine, Texas A&M University Health Science Center, College Station, Texas.,Department of Microbial Pathogenesis and Immunology, Texas A&M University Health Science Center, Bryan, Texas.,Biomedical Engineering Graduate Program, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Sreevidhya Ramakrishnan
- Department of Molecular and Cellular Medicine, Texas A&M University Health Science Center, College Station, Texas.,Department of Biomedical Engineering, Texas A&M University, College Station, Texas
| | - Mingin Kim
- Medical Science Graduate Program, Texas A&M University Health Science Center, College Station, Texas
| | - Raimund J Ober
- Department of Molecular and Cellular Medicine, Texas A&M University Health Science Center, College Station, Texas.,Department of Biomedical Engineering, Texas A&M University, College Station, Texas
| | - E Sally Ward
- Department of Molecular and Cellular Medicine, Texas A&M University Health Science Center, College Station, Texas.,Department of Microbial Pathogenesis and Immunology, Texas A&M University Health Science Center, Bryan, Texas
| |
Collapse
|
30
|
Seegmiller AC, Hsi ED, Craig FE. The current role of clinical flow cytometry in the evaluation of mature B-cell neoplasms. CYTOMETRY PART B-CLINICAL CYTOMETRY 2018; 96:20-29. [PMID: 30549186 DOI: 10.1002/cyto.b.21756] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 10/14/2018] [Accepted: 11/15/2018] [Indexed: 12/18/2022]
Abstract
Flow cytometry (FC) has a well-established role in the diagnostic evaluation of mature B-cell neoplasms. Effective assessment for lineage associated antigens, aberrant antigen expression, and immunoglobulin light chain restriction requires a well-designed, optimized, and controlled FC assay. However, it is important for hematopathologists to know when flow cytometry has a more limited role, and other modalities, such as immunohistochemistry, cytogenetic and molecular testing, are more important. This review will discuss the features of an optimal FC assay for the evaluation of mature B-cell neoplasms, and the current role of FC in the diagnosis and sub-classification, prognostic assessment, identification of therapeutic targets, and assessment for disease response to therapy. © 2018 International Clinical Cytometry Society.
Collapse
|
31
|
Zhang L, Fang Y, Li L, Yang J, Radford DC, Kopeček J. Human Serum Albumin-Based Drug-Free Macromolecular Therapeutics: Apoptosis Induction by Coiled-Coil-Mediated Cross-Linking of CD20 Antigens on Lymphoma B Cell Surface. Macromol Biosci 2018; 18:e1800224. [PMID: 30259654 PMCID: PMC6392022 DOI: 10.1002/mabi.201800224] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 08/10/2018] [Indexed: 01/25/2023]
Abstract
A therapeutic platform-drug-free macromolecular therapeutics (DFMT)-that induces apoptosis in B cells by cross-linking of CD20 receptors, without the need for low molecular weight cytotoxic drug, is developed. In this report, a DFMT system is synthesized and evaluated based on human serum albumin (HSA) and two complementary coiled-coil forming peptides, CCE and CCK. Fab' fragment of anti-CD20 monoclonal antibody rituximab is attached to CCE (Fab'-CCE); multiple grafts of CCK are conjugated to HSA (HSA-(CCK)7 ). The colocalization of both nanoconjugates at the surface of non-Hodgkin's lymphoma (NHL) Raji cells is demonstrated by confocal fluorescence microscopy. The colocalization leads to coiled-coil formation, CD20 cross-linking, and apoptosis induction. The apoptotic levels are evaluated by Annexin V, Caspase 3, and terminal deoxynucleotidyl transferase dUTP nick end labeling assays. Selective surface binding of DFMT to CD20+ cells is validated in experiments on a coculture of CD20+ (Raji) and CD20-(DG-75) cells. It is found that DFMT can trigger calcium influx only in Raji cells, but not in DG-75 cells. A highly specific treatment for NHL and other B cell malignancies with considerable translational potential is presented by HSA-based DFMT system.
Collapse
Affiliation(s)
- Libin Zhang
- Department of Pharmaceutics and Pharmaceutical Chemistry/CCCD, University of Utah, Salt Lake City, UT, 84112, USA
| | - Yixin Fang
- Department of Pharmaceutics and Pharmaceutical Chemistry/CCCD, University of Utah, Salt Lake City, UT, 84112, USA
| | - Lian Li
- Department of Pharmaceutics and Pharmaceutical Chemistry/CCCD, University of Utah, Salt Lake City, UT, 84112, USA
| | - Jiyuan Yang
- Department of Pharmaceutics and Pharmaceutical Chemistry/CCCD, University of Utah, Salt Lake City, UT, 84112, USA
| | | | - Jindřich Kopeček
- Department of Pharmaceutics and Pharmaceutical Chemistry/CCCD, University of Utah, Salt Lake City, UT, 84112, USA
- Department of Bioengineering, University of Utah, Salt Lake City, UT, 84112, USA
| |
Collapse
|
32
|
Measuring the ability of HIV-specific antibodies to mediate trogocytosis. J Immunol Methods 2018; 463:71-83. [PMID: 30240705 DOI: 10.1016/j.jim.2018.09.009] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 09/14/2018] [Accepted: 09/14/2018] [Indexed: 12/20/2022]
Abstract
Antibody Fc effector functions contribute to HIV control and have been implicated in the partial efficacy seen in the RV144 vaccine trial. Fc-mediated trogocytosis has been previously described for anti-cancer antibodies and results in the removal of membrane fragments from target cells. Here we developed a flow cytometry-based assay which measures the transfer of membrane fragments from a gp120-coated CD4+ lymphocytic cell line (CEM.NKR-CCR5 cells stained with a membrane dye PKH26) to monocytic cells (THP-1 cells stained with CFSE). We showed that this transfer occurred rapidly, within 1 h, and was mediated through engagement of the FcγRIIa/b receptors on the THP-1 cells. HIV-specific IgG as well as gp120 and CD4 could be detected on the surface of THP-1 cells in a process that we demonstrated was distinct from phagocytosis. Furthermore, while the THP-1 effector cells remained intact following the receipt of new membrane proteins, the viability of the target CEM.NKR-CCR5 cells decreased over time. Analysis of HIV-specific plasma revealed that antibodies with trogocytic activity were common in acute and chronic HIV infection but were higher in individuals with broadly neutralizing antibody responses We also examined trogocytosis mediated by broadly neutralizing antibodies (bNAbs) targeting multiple epitopes on the BG505.SOSIP.664 trimer and show that levels of binding correlated with the trogocytosis score. Overall, our data describe a new antiviral Fc effector function mediated by HIV-specific antibodies that could be harnessed for vaccination and cure strategies.
Collapse
|
33
|
Hilliard TS. The Impact of Mesothelin in the Ovarian Cancer Tumor Microenvironment. Cancers (Basel) 2018; 10:E277. [PMID: 30134520 PMCID: PMC6162689 DOI: 10.3390/cancers10090277] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 08/17/2018] [Accepted: 08/18/2018] [Indexed: 01/14/2023] Open
Abstract
Ovarian cancer is the deadliest gynecological disease among U.S. women. Poor 5-year survival rates (<30%) are due to presentation of most women at diagnosis with advanced stage disease with widely disseminated intraperitoneal metastasis. However, when diagnosed before metastatic propagation the overall 5-year survival rate is >90%. Metastasizing tumor cells grow rapidly and aggressively attach to the mesothelium of all organs within the peritoneal cavity, including the parietal peritoneum and the omentum, producing secondary lesions. In this review, the involvement of mesothelin (MSLN) in the tumor microenvironment is discussed. MSLN, a 40kDa glycoprotein that is overexpressed in many cancers including ovarian and mesotheliomas is suggested to play a role in cell survival, proliferation, tumor progression, and adherence. However, the biological function of MSLN is not fully understood as MSLN knockout mice do not present with an abnormal phenotype. Conversely, MSLN has been shown to bind to the ovarian cancer antigen, CA-125, and thought to play a role in the peritoneal diffusion of ovarian tumor cells. Although the cancer-specific expression of MSLN makes it a potential therapeutic target, more studies are needed to validate the role of MSLN in tumor metastasis.
Collapse
Affiliation(s)
- Tyvette S Hilliard
- Department of Chemistry and Biochemistry, Harper Cancer Research Institute, University of Notre Dame, Notre Dame, IN 46617, USA.
| |
Collapse
|
34
|
Weinhard L, di Bartolomei G, Bolasco G, Machado P, Schieber NL, Neniskyte U, Exiga M, Vadisiute A, Raggioli A, Schertel A, Schwab Y, Gross CT. Microglia remodel synapses by presynaptic trogocytosis and spine head filopodia induction. Nat Commun 2018; 9:1228. [PMID: 29581545 PMCID: PMC5964317 DOI: 10.1038/s41467-018-03566-5] [Citation(s) in RCA: 565] [Impact Index Per Article: 80.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Accepted: 02/22/2018] [Indexed: 01/09/2023] Open
Abstract
Microglia are highly motile glial cells that are proposed to mediate synaptic pruning during neuronal circuit formation. Disruption of signaling between microglia and neurons leads to an excess of immature synaptic connections, thought to be the result of impaired phagocytosis of synapses by microglia. However, until now the direct phagocytosis of synapses by microglia has not been reported and fundamental questions remain about the precise synaptic structures and phagocytic mechanisms involved. Here we used light sheet fluorescence microscopy to follow microglia–synapse interactions in developing organotypic hippocampal cultures, complemented by a 3D ultrastructural characterization using correlative light and electron microscopy (CLEM). Our findings define a set of dynamic microglia–synapse interactions, including the selective partial phagocytosis, or trogocytosis (trogo-: nibble), of presynaptic structures and the induction of postsynaptic spine head filopodia by microglia. These findings allow us to propose a mechanism for the facilitatory role of microglia in synaptic circuit remodeling and maturation. Direct visualization of microglia-mediated synapse pruning has been lacking. This study shows direct evidence of microglia-synapse interaction where microglia do not necessarily ‘eat’ post-synaptic structure but ‘nibble’ on pre-synaptic terminals, much akin to trogocytosis by lymphocytes.
Collapse
Affiliation(s)
- Laetitia Weinhard
- Epigenetics and Neurobiology Unit, European Molecular Biology Laboratory (EMBL), Via Ramarini 32, 00015, Monterotondo, Italy
| | - Giulia di Bartolomei
- Epigenetics and Neurobiology Unit, European Molecular Biology Laboratory (EMBL), Via Ramarini 32, 00015, Monterotondo, Italy
| | - Giulia Bolasco
- Epigenetics and Neurobiology Unit, European Molecular Biology Laboratory (EMBL), Via Ramarini 32, 00015, Monterotondo, Italy
| | - Pedro Machado
- Electron Microscopy Core Facility, European Molecular Biology Laboratory (EMBL), Meyerhofstrasse 1, 69117, Heidelberg, Germany
| | - Nicole L Schieber
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory (EMBL), Meyerhofstrasse 1, 69117, Heidelberg, Germany
| | - Urte Neniskyte
- Epigenetics and Neurobiology Unit, European Molecular Biology Laboratory (EMBL), Via Ramarini 32, 00015, Monterotondo, Italy.,Department of Neurobiology and Biophysics, Life Science Center, Vilnius University, Sauletekio al. 7, Vilnius, 10257, Lithuania
| | - Melanie Exiga
- Epigenetics and Neurobiology Unit, European Molecular Biology Laboratory (EMBL), Via Ramarini 32, 00015, Monterotondo, Italy
| | - Auguste Vadisiute
- Epigenetics and Neurobiology Unit, European Molecular Biology Laboratory (EMBL), Via Ramarini 32, 00015, Monterotondo, Italy.,Department of Neurobiology and Biophysics, Life Science Center, Vilnius University, Sauletekio al. 7, Vilnius, 10257, Lithuania
| | - Angelo Raggioli
- Epigenetics and Neurobiology Unit, European Molecular Biology Laboratory (EMBL), Via Ramarini 32, 00015, Monterotondo, Italy
| | - Andreas Schertel
- Carl Zeiss Microscopy GmbH, ZEISS Group, Carl-Zeiss-Strasse 22, 73447, Oberkochen, Germany
| | - Yannick Schwab
- Electron Microscopy Core Facility, European Molecular Biology Laboratory (EMBL), Meyerhofstrasse 1, 69117, Heidelberg, Germany.,Cell Biology and Biophysics Unit, European Molecular Biology Laboratory (EMBL), Meyerhofstrasse 1, 69117, Heidelberg, Germany
| | - Cornelius T Gross
- Epigenetics and Neurobiology Unit, European Molecular Biology Laboratory (EMBL), Via Ramarini 32, 00015, Monterotondo, Italy.
| |
Collapse
|
35
|
Krejcik J, Frerichs KA, Nijhof IS, van Kessel B, van Velzen JF, Bloem AC, Broekmans MEC, Zweegman S, van Meerloo J, Musters RJP, Poddighe PJ, Groen RWJ, Chiu C, Plesner T, Lokhorst HM, Sasser AK, Mutis T, van de Donk NWCJ. Monocytes and Granulocytes Reduce CD38 Expression Levels on Myeloma Cells in Patients Treated with Daratumumab. Clin Cancer Res 2017; 23:7498-7511. [PMID: 29025767 PMCID: PMC5732844 DOI: 10.1158/1078-0432.ccr-17-2027] [Citation(s) in RCA: 131] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Revised: 09/01/2017] [Accepted: 09/28/2017] [Indexed: 12/21/2022]
Abstract
Purpose: Daratumumab treatment results in a marked reduction of CD38 expression on multiple myeloma cells. The aim of this study was to investigate the clinical implications and the underlying mechanisms of daratumumab-mediated CD38 reduction.Experimental Design: We evaluated the effect of daratumumab alone or in combination with lenalidomide-dexamethasone, on CD38 levels of multiple myeloma cells and nontumor immune cells in the GEN501 study (daratumumab monotherapy) and the GEN503 study (daratumumab combined with lenalidomide-dexamethasone). In vitro assays were also performed.Results: In both trials, daratumumab reduced CD38 expression on multiple myeloma cells within hours after starting the first infusion, regardless of depth and duration of the response. In addition, CD38 expression on nontumor immune cells, including natural killer cells, T cells, B cells, and monocytes, was also reduced irrespective of alterations in their absolute numbers during therapy. In-depth analyses revealed that CD38 levels of multiple myeloma cells were only reduced in the presence of complement or effector cells, suggesting that the rapid elimination of CD38high multiple myeloma cells can contribute to CD38 reduction. In addition, we discovered that daratumumab-CD38 complexes and accompanying cell membrane were actively transferred from multiple myeloma cells to monocytes and granulocytes. This process of trogocytosis was also associated with reduced surface levels of some other membrane proteins, including CD49d, CD56, and CD138.Conclusions: Daratumumab rapidly reduced CD38 expression levels, at least in part, through trogocytosis. Importantly, all these effects also occurred in patients with deep and durable responses, thus excluding CD38 reduction alone as a mechanism of daratumumab resistance.The trials were registered at www.clinicaltrials.gov as NCT00574288 (GEN501) and NCT1615029 (GEN503). Clin Cancer Res; 23(24); 7498-511. ©2017 AACR.
Collapse
Affiliation(s)
- Jakub Krejcik
- Department of Hematology, VU University Medical Center, Amsterdam, the Netherlands
- Vejle Hospital and University of Southern Denmark, Vejle, Denmark
| | - Kris A Frerichs
- Department of Hematology, VU University Medical Center, Amsterdam, the Netherlands
| | - Inger S Nijhof
- Department of Hematology, VU University Medical Center, Amsterdam, the Netherlands
| | - Berris van Kessel
- Department of Hematology, VU University Medical Center, Amsterdam, the Netherlands
| | - Jeroen F van Velzen
- Laboratory for Translational Immunology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Andries C Bloem
- Laboratory for Translational Immunology, University Medical Center Utrecht, Utrecht, the Netherlands
| | | | - Sonja Zweegman
- Department of Hematology, VU University Medical Center, Amsterdam, the Netherlands
| | - Johan van Meerloo
- Department of Hematology, VU University Medical Center, Amsterdam, the Netherlands
| | - René J P Musters
- Department of Physiology, VU University, Amsterdam, the Netherlands
| | - Pino J Poddighe
- Department of Clinical Genetics, VU University Medical Center, Amsterdam, the Netherlands
| | - Richard W J Groen
- Department of Hematology, VU University Medical Center, Amsterdam, the Netherlands
| | | | - Torben Plesner
- Vejle Hospital and University of Southern Denmark, Vejle, Denmark
| | - Henk M Lokhorst
- Department of Hematology, VU University Medical Center, Amsterdam, the Netherlands
| | - A Kate Sasser
- Janssen Research and Development, Spring House, Pennsylvania
| | - Tuna Mutis
- Department of Hematology, VU University Medical Center, Amsterdam, the Netherlands
| | | |
Collapse
|
36
|
Chadebech P, Loustau V, Janvier D, Languille L, Ripa J, Tamagne M, Bierling P, Djoudi R, Godeau B, Michel M, Pirenne F, Mahévas M. Clinical severity in adult warm autoimmune hemolytic anemia and its relationship to antibody specificity. Haematologica 2017; 103:e35-e38. [PMID: 29025905 DOI: 10.3324/haematol.2017.175976] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Affiliation(s)
- Philippe Chadebech
- Etablissement Français du Sang, Île-de-France, Hôpital Henri-Mondor, Créteil; INSERM U955 équipe 2: Transfusion et Maladies du Globule Rouge; IMRB (Institut Mondor de Recherche Biomédicale), Créteil; laboratoire d'Excellence GR-Ex, F75739 Paris, France
| | - Valentine Loustau
- Etablissement Français du Sang, Île-de-France, Hôpital Henri-Mondor, Créteil; INSERM U955 équipe 2: Transfusion et Maladies du Globule Rouge; IMRB (Institut Mondor de Recherche Biomédicale), Créteil; laboratoire d'Excellence GR-Ex, F75739 Paris, France.,Service de Médecine Interne, Centre de Référence des Cytopénies Auto-Immunes de l'Adulte, GECAI, Hôpital Henri-Mondor, AP-HP, UPEC, Créteil, France
| | - Daniel Janvier
- Etablissement Français du Sang, Île-de-France, Hôpital Saint-Louis, Paris, France
| | - Laetitia Languille
- Service de Médecine Interne, Centre de Référence des Cytopénies Auto-Immunes de l'Adulte, GECAI, Hôpital Henri-Mondor, AP-HP, UPEC, Créteil, France
| | - Julie Ripa
- Service de Médecine Interne, Centre de Référence des Cytopénies Auto-Immunes de l'Adulte, GECAI, Hôpital Henri-Mondor, AP-HP, UPEC, Créteil, France
| | - Marie Tamagne
- Etablissement Français du Sang, Île-de-France, Hôpital Henri-Mondor, Créteil; INSERM U955 équipe 2: Transfusion et Maladies du Globule Rouge; IMRB (Institut Mondor de Recherche Biomédicale), Créteil; laboratoire d'Excellence GR-Ex, F75739 Paris, France
| | - Philippe Bierling
- Etablissement Français du Sang, Île-de-France, Hôpital Henri-Mondor, Créteil; INSERM U955 équipe 2: Transfusion et Maladies du Globule Rouge; IMRB (Institut Mondor de Recherche Biomédicale), Créteil; laboratoire d'Excellence GR-Ex, F75739 Paris, France.,Service de Médecine Interne, Centre de Référence des Cytopénies Auto-Immunes de l'Adulte, GECAI, Hôpital Henri-Mondor, AP-HP, UPEC, Créteil, France
| | - Rachid Djoudi
- Etablissement Français du Sang, Île-de-France, Ivry-sur-Seine, France
| | - Bertrand Godeau
- Service de Médecine Interne, Centre de Référence des Cytopénies Auto-Immunes de l'Adulte, GECAI, Hôpital Henri-Mondor, AP-HP, UPEC, Créteil, France
| | - Marc Michel
- Service de Médecine Interne, Centre de Référence des Cytopénies Auto-Immunes de l'Adulte, GECAI, Hôpital Henri-Mondor, AP-HP, UPEC, Créteil, France
| | - France Pirenne
- Etablissement Français du Sang, Île-de-France, Hôpital Henri-Mondor, Créteil; INSERM U955 équipe 2: Transfusion et Maladies du Globule Rouge; IMRB (Institut Mondor de Recherche Biomédicale), Créteil; laboratoire d'Excellence GR-Ex, F75739 Paris, France .,UPEC, Université Paris-Est-Créteil Val-de-Marne, Créteil, France
| | - Matthieu Mahévas
- Etablissement Français du Sang, Île-de-France, Hôpital Henri-Mondor, Créteil; INSERM U955 équipe 2: Transfusion et Maladies du Globule Rouge; IMRB (Institut Mondor de Recherche Biomédicale), Créteil; laboratoire d'Excellence GR-Ex, F75739 Paris, France.,Service de Médecine Interne, Centre de Référence des Cytopénies Auto-Immunes de l'Adulte, GECAI, Hôpital Henri-Mondor, AP-HP, UPEC, Créteil, France
| |
Collapse
|
37
|
Skopelja-Gardner S, Jones JD, Hamilton BJ, Danilov AV, Rigby WFC. Role for ZAP-70 Signaling in the Differential Effector Functions of Rituximab and Obinutuzumab (GA101) in Chronic Lymphocytic Leukemia B Cells. THE JOURNAL OF IMMUNOLOGY 2017; 199:1275-1282. [DOI: 10.4049/jimmunol.1602105] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Accepted: 06/16/2017] [Indexed: 11/19/2022]
|
38
|
Zhang L, Fang Y, Yang J, Kopeček J. Drug-free macromolecular therapeutics: Impact of structure on induction of apoptosis in Raji B cells. J Control Release 2016; 263:139-150. [PMID: 28024916 DOI: 10.1016/j.jconrel.2016.12.025] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2016] [Revised: 12/21/2016] [Accepted: 12/22/2016] [Indexed: 01/31/2023]
Abstract
Recently, we developed a new paradigm in macromolecular therapeutics that avoids the use of low molecular weight drugs. The activity of the "drug-free macromolecular therapeutics" is based on the biorecognition of complementary motifs at cell surface resulting in receptor crosslinking and apoptosis induction. The system is composed of two nanoconjugates: (1) a single-stranded morpholino oligonucleotide (MORF1) attached to an anti-CD20 Fab' fragment (Fab'-MORF1); (2) multiple copies of complementary oligonucleotide MORF2 grafted to a linear polymer of N-(2-hydroxypropyl)methacrylamide (HPMA) - P-(MORF2)x. The two conjugates crosslink CD20 antigens via MORF1-MORF2 hybridization at the surface of CD20+ malignant B-cells and induce apoptosis. Preclinical studies in a murine model of human non-Hodgkin's lymphoma showed cancer cells eradication and long-term survivors. The aim of this study was to determine the relationship between the detailed structure of the nanoconjugates and apoptosis induction in Raji cells to allow system optimization. The factors studied include the length of the MORF sequence, the valence of P-(MORF2)x (varying x), molecular weight of P-(MORF2)x, incorporation of a miniPEG spacer between Fab' and MORF1 and between polymer backbone and pendant MORF2, and comparison of two Fab' fragments, one from 1F5 antibody (Fab'1F5), the other from Rituximab (Fab'RTX). The results of apoptosis induction in human Burkitt's B-cell non-Hodgkin's lymphoma (NHL) Raji cells as determined using three apoptotic assays (Annexin V, Caspase 3, and TUNEL) indicated that: a) An improvement of apoptotic activity was observed for a 28 base pair MORF sequence when compared to MORFs composed of 20 and 25 base pairs. The differences depended on type of assay, concentration and exposure schedule (consecutive vs. premixed). b) The higher the valence of P-(MORF2)x the higher the levels of apoptosis. c) Higher molecular weight of P-(MORF2)x induced higher levels of apoptosis. d) A miniPEG8 spacer was effective in enhancing apoptotic levels in contrast to a miniPEG2 spacer. e) There was not a statistically significant difference when comparing Fab'1F5-MORF1 with Fab'RTX-MORF1.
Collapse
Affiliation(s)
- Libin Zhang
- Department of Pharmaceutics and Pharmaceutical Chemistry, CCCD, University of Utah, Salt Lake City, UT 84112, USA
| | - Yixin Fang
- Department of Pharmaceutics and Pharmaceutical Chemistry, CCCD, University of Utah, Salt Lake City, UT 84112, USA
| | - Jiyuan Yang
- Department of Pharmaceutics and Pharmaceutical Chemistry, CCCD, University of Utah, Salt Lake City, UT 84112, USA
| | - Jindřich Kopeček
- Department of Pharmaceutics and Pharmaceutical Chemistry, CCCD, University of Utah, Salt Lake City, UT 84112, USA; Department of Bioengineering, University of Utah, Salt Lake City, UT 84112, USA.
| |
Collapse
|
39
|
Chu TW, Kopeček J. Drug-Free Macromolecular Therapeutics--A New Paradigm in Polymeric Nanomedicines. Biomater Sci 2016; 3:908-22. [PMID: 26191406 DOI: 10.1039/c4bm00442f] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
This review highlights a unique research area in polymer-based nanomedicine designs. Drug-free macromolecular therapeutics induce apoptosis of malignant cells by the crosslinking of surface non-internalizing receptors. The receptor crosslinking is mediated by the biorecognition of high-fidelity natural binding motifs (such as antiparallel coiled-coil peptides or complementary oligonucleotides) that are grafted to the side chains of polymers or attached to targeting moieties against cell receptors. This approach features the absence of low-molecular-weight cytotoxic compounds. Here, we summarize the rationales, different designs, and advantages of drug-free macromolecular therapeutics. Recent developments of novel therapeutic systems for B-cell lymphomas are discussed, as well as relevant approaches for other diseases. We conclude by pointing out various potential future directions in this exciting new field.
Collapse
Affiliation(s)
- Te-Wei Chu
- Department of Pharmaceutics and Pharmaceutical Chemistry/Center for Controlled Chemical Delivery, University of Utah, Salt Lake City, UT 84112, USA
| | - Jindřich Kopeček
- Department of Pharmaceutics and Pharmaceutical Chemistry/Center for Controlled Chemical Delivery, University of Utah, Salt Lake City, UT 84112, USA ; Department of Bioengineering, University of Utah, Salt Lake City, UT 84112, USA
| |
Collapse
|
40
|
Velmurugan R, Challa DK, Ram S, Ober RJ, Ward ES. Macrophage-Mediated Trogocytosis Leads to Death of Antibody-Opsonized Tumor Cells. Mol Cancer Ther 2016; 15:1879-89. [PMID: 27226489 DOI: 10.1158/1535-7163.mct-15-0335] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Accepted: 05/17/2016] [Indexed: 12/16/2022]
Abstract
Understanding the complex behavior of effector cells such as monocytes or macrophages in regulating cancerous growth is of central importance for cancer immunotherapy. Earlier studies using CD20-specific antibodies have demonstrated that the Fcγ receptor (FcγR)-mediated transfer of the targeted receptors from tumor cells to these effector cells through trogocytosis can enable escape from antibody therapy, leading to the viewpoint that this process is protumorigenic. In the current study, we demonstrate that persistent trogocytic attack results in the killing of HER2-overexpressing breast cancer cells. Further, antibody engineering to increase FcγR interactions enhances this tumoricidal activity. These studies extend the complex repertoire of activities of macrophages to trogocytic-mediated cell death of HER2-overexpressing target cells and have implications for the development of effective antibody-based therapies. Mol Cancer Ther; 15(8); 1879-89. ©2016 AACR.
Collapse
Affiliation(s)
- Ramraj Velmurugan
- Department of Molecular and Cellular Medicine, College of Medicine, Texas A&M Health Science Center, College Station, Texas. Department of Microbial Pathogenesis and Immunology, Texas A&M Health Science Center, Bryan, Texas. Biomedical Engineering Graduate Program, University of Texas Southwestern Medical Center, Dallas, Texas. Department of Immunology, UT Southwestern Medical Center, Dallas, Texas
| | - Dilip K Challa
- Department of Molecular and Cellular Medicine, College of Medicine, Texas A&M Health Science Center, College Station, Texas. Department of Microbial Pathogenesis and Immunology, Texas A&M Health Science Center, Bryan, Texas. Biomedical Engineering Graduate Program, University of Texas Southwestern Medical Center, Dallas, Texas. Department of Immunology, UT Southwestern Medical Center, Dallas, Texas
| | - Sripad Ram
- Department of Immunology, UT Southwestern Medical Center, Dallas, Texas
| | - Raimund J Ober
- Department of Molecular and Cellular Medicine, College of Medicine, Texas A&M Health Science Center, College Station, Texas. Department of Biomedical Engineering, Texas A&M University, College Station, Texas. Department of Immunology, UT Southwestern Medical Center, Dallas, Texas.
| | - E Sally Ward
- Department of Molecular and Cellular Medicine, College of Medicine, Texas A&M Health Science Center, College Station, Texas. Department of Microbial Pathogenesis and Immunology, Texas A&M Health Science Center, Bryan, Texas. Department of Immunology, UT Southwestern Medical Center, Dallas, Texas.
| |
Collapse
|
41
|
Kloc M, Kubiak JZ, Li XC, Ghobrial RM. Noncanonical intercellular communication in immune response. World J Immunol 2016; 6:67-74. [DOI: 10.5411/wji.v6.i1.67] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Revised: 11/06/2015] [Accepted: 12/18/2015] [Indexed: 02/05/2023] Open
Abstract
The classical view of signaling between cells of immune system includes two major routes of intercellular communication: Through the release of extracellular molecules or a direct interaction between membrane bound receptor and its membrane bound ligand, which initiate a cascade of signaling in target cell. However, recent studies indicate that besides these canonical modes of signaling there are also noncanonical routs of intercellular communications through membrane stripping/membrane exchange/trogocytosis, extracellular traps, exosomes and ectososmes/microparticles. In this review we discuss what are the components of noncanonical pathways of signaling and what role they play in immune cells interactions.
Collapse
|
42
|
Repetto-Llamazares AHV, Larsen RH, Patzke S, Fleten KG, Didierlaurent D, Pichard A, Pouget JP, Dahle J. Targeted Cancer Therapy with a Novel Anti-CD37 Beta-Particle Emitting Radioimmunoconjugate for Treatment of Non-Hodgkin Lymphoma. PLoS One 2015; 10:e0128816. [PMID: 26066655 PMCID: PMC4466226 DOI: 10.1371/journal.pone.0128816] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Accepted: 04/30/2015] [Indexed: 12/31/2022] Open
Abstract
177Lu-DOTA-HH1 (177Lu-HH1) is a novel anti-CD37 radioimmunoconjugate developed to treat non-Hodgkin lymphoma. Mice with subcutaneous Ramos xenografts were treated with different activities of 177Lu-HH1, 177Lu-DOTA-rituximab (177Lu-rituximab) and non-specific 177Lu-DOTA-IgG1 (177Lu-IgG1) and therapeutic effect and toxicity of the treatment were monitored. Significant tumor growth delay and increased survival of mice were observed in mice treated with 530 MBq/kg 177Lu-HH1 as compared with mice treated with similar activities of 177Lu-rituximab or non-specific 177Lu-IgG1, 0.9% NaCl or unlabeled HH1. All mice injected with 530 MBq/kg of 177Lu-HH1 tolerated the treatment well. In contrast, 6 out of 10 mice treated with 530 MBq/kg 177Lu-rituximab experienced severe radiation toxicity. The retention of 177Lu-rituximab in organs of the mononuclear phagocyte system was longer than for 177Lu-HH1, which explains the higher toxicity observed in mice treated with 177Lu-rituximab. In vitro internalization studies showed that 177Lu-HH1 internalizes faster and to a higher extent than 177Lu-rituximab which might be the reason for the better therapeutic effect of 177Lu-HH1.
Collapse
MESH Headings
- Animals
- Antibodies/chemistry
- Antibodies/immunology
- Antigen-Antibody Reactions
- Antigens, Neoplasm/chemistry
- Antigens, Neoplasm/immunology
- Antigens, Neoplasm/metabolism
- Beta Particles
- Cell Line, Tumor
- Disease Models, Animal
- Humans
- Immunoconjugates/chemistry
- Immunoconjugates/pharmacokinetics
- Immunoconjugates/therapeutic use
- Iodine Radioisotopes/chemistry
- Lutetium/chemistry
- Lymphoma, Non-Hodgkin/drug therapy
- Lymphoma, Non-Hodgkin/mortality
- Lymphoma, Non-Hodgkin/pathology
- Mice
- Mice, Nude
- Radioisotopes
- Radiopharmaceuticals/chemistry
- Radiopharmaceuticals/pharmacokinetics
- Radiopharmaceuticals/therapeutic use
- Rituximab/chemistry
- Rituximab/immunology
- Tetraspanins/chemistry
- Tetraspanins/immunology
- Tetraspanins/metabolism
- Tissue Distribution
- Transplantation, Heterologous
Collapse
Affiliation(s)
- Ada H. V. Repetto-Llamazares
- Nordic Nanovector ASA, Kjelsåsveien 168, 0884, Oslo, Norway
- Department of Radiation Biology, Institute for Cancer Research, Oslo University Hospital, Montebello, 0310, Oslo, Norway
- * E-mail:
| | | | - Sebastian Patzke
- Department of Radiation Biology, Institute for Cancer Research, Oslo University Hospital, Montebello, 0310, Oslo, Norway
| | - Karianne G. Fleten
- Department of Tumor Biology, Institute for Cancer Research, Oslo University Hospital, Montebello, 0310, Oslo, Norway
| | - David Didierlaurent
- UMR 1037 INSERM/UPS, Centre de Recherche en Cancérologie de Toulouse, Toulouse, F-31062, France
| | - Alexandre Pichard
- Institut de Recherche en Cancérologie de Montpellier, Institut National de la Santé et de la Recherche Médicale, U896, Université Montpellier, Montpellier, France
| | - Jean Pierre Pouget
- Institut de Recherche en Cancérologie de Montpellier, Institut National de la Santé et de la Recherche Médicale, U896, Université Montpellier, Montpellier, France
| | - Jostein Dahle
- Nordic Nanovector ASA, Kjelsåsveien 168, 0884, Oslo, Norway
| |
Collapse
|
43
|
Chu TW, Zhang R, Yang J, Chao MP, Shami PJ, Kopeček J. A Two-Step Pretargeted Nanotherapy for CD20 Crosslinking May Achieve Superior Anti-Lymphoma Efficacy to Rituximab. Theranostics 2015; 5:834-46. [PMID: 26000056 PMCID: PMC4440441 DOI: 10.7150/thno.12040] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Accepted: 03/25/2015] [Indexed: 11/17/2022] Open
Abstract
The use of rituximab, an anti-CD20 mAb, in combination with chemotherapy is the current standard for the treatment of B-cell lymphomas. However, because of a significant number of treatment failures, there is a demand for new, improved therapeutics. Here, we designed a nanomedicine that crosslinks CD20 and directly induces apoptosis of B-cells without the need for toxins or immune effector functions. The therapeutic system comprises a pretargeting component (anti-CD20 Fab' conjugated with an oligonucleotide1) and a crosslinking component (N-(2-hydroxypropyl)methacrylamide (HPMA) copolymer grafted with multiple complementary oligonucleotide2). Consecutive treatment with the two components resulted in CD20 clustering on the cell surface and effectively killed malignant B-cells in vivo. To enhance therapeutic efficacy, a two-step pretargeting approach was employed. We showed that the time lag between the two doses can be optimized based on pharmacokinetics and biodistribution of the Fab'-oligonucleotide1 conjugate. In a mouse model of human non-Hodgkin lymphoma (NHL), increasing the time lag from 1 h to 5 h resulted in dramatically improved tumor growth inhibition and animal survival. When the 5 h interval was used, the nanotherapy was more efficacious than rituximab and led to complete eradication of lymphoma cells with no signs of metastasis or disease recurrence. We further evaluated the nanomedicine using patient mantle cell lymphoma cells; the treatment demonstrated more potent apoptosis-inducing activity than rituximab hyper-crosslinked with secondary antibodies. In summary, our approach may constitute a novel treatment for NHL and other B-cell malignancies with significant advantages over conventional chemo-immunotherapy.
Collapse
|
44
|
Jones JD, Hamilton BJ, Skopelja S, Rigby WFC. Induction of interleukin-6 production by rituximab in human B cells. Arthritis Rheumatol 2015; 66:2938-46. [PMID: 25080282 DOI: 10.1002/art.38798] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2014] [Accepted: 07/22/2014] [Indexed: 01/31/2023]
Abstract
OBJECTIVE Rituximab (RTX), an anti-CD20 monoclonal antibody, is highly effective in the treatment of several autoimmune diseases. The mechanism by which RTX treatment improves rheumatoid arthritis and antineutrophil cytoplasmic antibody-associated vasculitis is not easily related to B cell depletion alone. Prior studies have shown that RTX mediates a rapid stripping of CD20 and CD19 from the human B cell through a process known as trogocytosis. The aim of the present study was to investigate whether changes in B cell phenotype resulting from trogocytosis would diminish the ability of B cells to promote autoimmune disease. METHODS Human peripheral blood mononuclear cells were cultured with RTX under conditions that permitted trogocytosis. Changes in B cell phenotype and cytokine production were measured in the basal state and under conditions of activation with interleukin-4 (IL-4)/anti-CD40. The effects of RTX were characterized in terms of a requirement for interaction with the Fcγ receptor (FcγR) and other Fc-dependent interactions. RESULTS Trogocytosis induced a marked loss of surface CD19, IgD, CD40, and B cell-activating factor receptor, but did not alter induction of CD86 expression on purified B cells following IL-4/anti-CD40 treatment. Unexpectedly, RTX-dependent trogocytosis of normal human B cells in vitro led to a rapid up-regulation of IL-6 production, with no effect on the production of tumor necrosis factor α, IL-1β, interferon-γ, or IL-10. This effect was Fc-dependent and required the presence of an FcγR-bearing cell. Moreover, this effect involved the release of preformed intracellular IL-6 protein, as well as marked increases in IL-6 messenger RNA levels. CONCLUSION RTX-mediated trogocytosis of B cells in vitro results in acute production and release of IL-6. The nature of this effect and how it is related to the acute infusion reactions seen with RTX administration remain to be determined.
Collapse
|
45
|
Fcγ-receptor-mediated trogocytosis impacts mAb-based therapies: historical precedence and recent developments. Blood 2014; 125:762-6. [PMID: 25498911 DOI: 10.1182/blood-2014-10-569244] [Citation(s) in RCA: 121] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
A specialized form of trogocytosis occurs when Fcγ receptors on acceptor cells take up and internalize donor cell-associated immune complexes composed of specific monoclonal antibodies (mAbs) bound to target antigens on donor cells. This trogocytosis reaction, an example of antigenic modulation, has been described in recent clinical correlative studies and in vitro investigations for several mAbs used in cancer immunotherapy, including rituximab and ofatumumab. We discuss the impact of Fcγ-receptor-mediated trogocytosis on the efficacy of cancer immunotherapy and other mAb-based therapies.
Collapse
|
46
|
Li M, Liu L, Xi N, Wang Y, Xiao X, Zhang W. Nanoscale imaging and mechanical analysis of Fc receptor-mediated macrophage phagocytosis against cancer cells. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2014; 30:1609-1621. [PMID: 24495237 DOI: 10.1021/la4042524] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Fc receptor-mediated macrophage phagocytosis against cancer cells is an important mechanism in the immune therapy of cancers. Traditional research about macrophage phagocytosis was based on optical microscopy, which cannot reveal detailed information because of the 200-nm-resolution limit. Quantitatively investigating the macrophage phagocytosis at micro- and nanoscale levels is still scarce. The advent of atomic force microscopy (AFM) offers an excellent analytical instrument for quantitatively investigating the biological processes at single-cell and single-molecule levels under native conditions. In this work, we combined AFM and fluorescence microscopy to visualize and quantify the detailed changes in cell morphology and mechanical properties during the process of Fc receptor-mediated macrophage phagocytosis against cancer cells. Lymphoma cells were discernible by fluorescence staining. Then, the dynamic process of phagocytosis was observed by time-lapse optical microscopy. Next, AFM was applied to investigate the detailed cellular behaviors during macrophage phagocytosis under the guidance of fluorescence recognition. AFM imaging revealed the distinct features in cellular ultramicrostructures for the different steps of macrophage phagocytosis. AFM cell mechanical property measurements indicated that the binding of cancer cells to macrophages could make macrophages become stiffer. The experimental results provide novel insights in understanding the Fc-receptor-mediated macrophage phagocytosis.
Collapse
Affiliation(s)
- Mi Li
- State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences , Shenyang 110016, China
| | | | | | | | | | | |
Collapse
|
47
|
Possible implication of Fc γ receptor-mediated trogocytosis in susceptibility to systemic autoimmune disease. Clin Dev Immunol 2013; 2013:345745. [PMID: 24093044 PMCID: PMC3777198 DOI: 10.1155/2013/345745] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2013] [Accepted: 08/02/2013] [Indexed: 02/08/2023]
Abstract
Leukocytes can “gnaw away” the plasma membrane of other cells. This phenomenon, called trogocytosis, occurs subsequent to cell-to-cell adhesion. Currently, two mechanisms of trogocytosis, adhesion molecule-mediated trogocytosis and Fcγ receptor-(FcγR-) mediated trogocytosis, have been identified. In our earlier study, we established an in vitro model of FcγR-mediated trogocytosis, namely, CD8 translocation model from T cells to neutrophils. By using this model, we demonstrated that the molecules transferred to neutrophils via FcγR-mediated trogocytosis were taken into the cytoplasm immediately. This result suggests that the chance of molecules transferred via FcγR-mediated trogocytosis to play a role on the cell surface could be time-limited. Thus, we consider the physiological role of FcγR-mediated trogocytosis as a means to remove antibodies (Abs) that bind with self-molecules rather than to extract molecules from other cells. This concept means that FcγR-mediated trogocytosis can be a defense mechanism to Ab-mediated autoimmune response. Moreover, the activity of FcγR-mediated trogocytosis was revealed to be parallel to the endocytotic activity of neutrophils, which was critically related to the susceptibility to systemic autoimmune diseases. The collective findings suggest that FcγR-mediated trogocytosis could physiologically play a role in removal of Abs bound to self-antigens and prevent autoimmune diseases.
Collapse
|
48
|
Li M, Liu L, Xi N, Wang Y, Xiao X, Zhang W. Imaging and measuring the biophysical properties of Fc gamma receptors on single macrophages using atomic force microscopy. Biochem Biophys Res Commun 2013; 438:709-14. [PMID: 23916706 DOI: 10.1016/j.bbrc.2013.07.114] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2013] [Accepted: 07/28/2013] [Indexed: 12/22/2022]
Abstract
Fc gamma receptors (FcγR), widely expressed on effector cells (e.g., NK cells, macrophages), play an important role in clinical cancer immunotherapy. The binding of FcγRs to the Fc portions of antibodies that are attached to the target cells can activate the antibody-dependent cell-mediated cytotoxicity (ADCC) killing mechanism which leads to the lysis of target cells. In this work, we used atomic force microscopy (AFM) to observe the cellular ultra-structures and measure the biophysical properties (affinity and distribution) of FcγRs on single macrophages in aqueous environments. AFM imaging was used to obtain the topographies of macrophages, revealing the nanoscale cellular fine structures. For molecular interaction recognition, antibody molecules were attached onto AFM tips via a heterobifunctional polyethylene glycol (PEG) crosslinker. With AFM single-molecule force spectroscopy, the binding affinities of FcγRs were quantitatively measured on single macrophages. Adhesion force mapping method was used to localize the FcγRs, revealing the nanoscale distribution of FcγRs on local areas of macrophages. The experimental results can improve our understanding of FcγRs on macrophages; the established approach will facilitate further research on physiological activities involved in antibody-based immunotherapy.
Collapse
Affiliation(s)
- Mi Li
- State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110016, China
| | | | | | | | | | | |
Collapse
|
49
|
Pastan I, Zhang Y. Modulating mesothelin shedding to improve therapy. Oncotarget 2012; 3:114-5. [PMID: 22337812 PMCID: PMC3325100 DOI: 10.18632/oncotarget.445] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2012] [Accepted: 02/07/2012] [Indexed: 11/25/2022] Open
|
50
|
Gary R, Voelkl S, Palmisano R, Ullrich E, Bosch JJ, Mackensen A. Antigen-Specific Transfer of Functional Programmed Death Ligand 1 from Human APCs onto CD8+ T Cells via Trogocytosis. THE JOURNAL OF IMMUNOLOGY 2011; 188:744-52. [DOI: 10.4049/jimmunol.1101412] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|