1
|
Naully PG, Tan MI, Nugrahapraja H, Artarini AA, Aditama R, Giri-Rachman EA. Design of multi-epitope-based therapeutic vaccine candidates from HBc and HBx proteins of hepatitis B virus using reverse vaccinology and immunoinformatics approaches. PLoS One 2024; 19:e0313269. [PMID: 39642099 PMCID: PMC11623480 DOI: 10.1371/journal.pone.0313269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Accepted: 10/21/2024] [Indexed: 12/08/2024] Open
Abstract
The major problem in cases of chronic hepatitis B (CHB) is the failure of the patient's immune response to eliminate the covalently closed circular DNA (cccDNA) minichromosome of hepatitis B virus (HBV). Epigenetic regulation involving the HBV core protein (HBc) and HBV X protein (HBx) influences the transcription and stability of the cccDNA minichromosome. The HBc and/or HBx-based therapeutic vaccines that have been developed cannot accommodate differences between HBV genotypes. This research aims to design a therapeutic vaccine candidate based on the multi-epitope of HBc and HBx using reverse vaccinology (RV) and immunoinformatics approach. HBc and HBx sequences from 10 HBV genotypes were obtained from the NCBI Entrez Protein database. Epitopes were predicted from consensus sequences, which consisted of 13,610 HBc sequences and 12,333 HBx sequences. The study identified four cytotoxic T lymphocyte epitopes, two helper T lymphocyte epitopes, and five linear B lymphocyte that met the inclusion criteria. The vaccine candidate designed using cholera toxin subunit B and pan HLA DR-binding epitope adjuvants was predicted to be safe, antigenic, stable, and has a global population coverage of 99.43%. Molecular docking and molecular dynamics simulations demonstrated that the vaccine candidate could stably bind to B cell receptor, cytotoxic T cell receptor, and TLR4 for 100 ns. Immune response simulation indicated that it can induce antibody production and the proliferation of B and T cells. It can be concluded that RV and immunoinformatics successfully facilitated the design of a multi-epitope therapeutic vaccine candidate for CHB.
Collapse
Affiliation(s)
- Patricia Gita Naully
- School of Life Science and Technology, Institut Teknologi Bandung, Bandung, West Java, Indonesia
- Faculty of Health Sciences and Technology, Jenderal Achmad Yani University, Cimahi, West Java, Indonesia
| | - Marselina Irasonia Tan
- School of Life Science and Technology, Institut Teknologi Bandung, Bandung, West Java, Indonesia
| | - Husna Nugrahapraja
- School of Life Science and Technology, Institut Teknologi Bandung, Bandung, West Java, Indonesia
| | | | - Reza Aditama
- Biochemistry and Biomolecular Engineering Research Division, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Bandung, West Java, Indonesia
| | | |
Collapse
|
2
|
Naully PG, Tan MI, Agustiningsih A, Sukowati C, Giri-Rachman EA. cccDNA epigenetic regulator as target for therapeutical vaccine development against hepatitis B. Ann Hepatol 2024; 30:101533. [PMID: 39147134 DOI: 10.1016/j.aohep.2024.101533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 07/21/2024] [Accepted: 08/01/2024] [Indexed: 08/17/2024]
Abstract
Chronic hepatitis B virus infection (CHB) remains a global health concern, with currently available antiviral therapies demonstrating limited effectiveness in preventing hepatocellular carcinoma (HCC) development. Two primary challenges in CHB treatment include the persistence of the minichromosome, covalently closed circular DNA (cccDNA) of the hepatitis B virus (HBV), and the failure of the host immune response to eliminate cccDNA. Recent findings indicate several host and HBV proteins involved in the epigenetic regulation of cccDNA, including HBV core protein (HBc) and HBV x protein (HBx). Both proteins might contribute to the stability of the cccDNA minichromosome and interact with viral and host proteins to support transcription. One potential avenue for CHB treatment involves the utilization of therapeutic vaccines. This paper explores HBV antigens suitable for epigenetic manipulation of cccDNA, elucidates their mechanisms of action, and evaluates their potential as key components of epigenetically-driven vaccines for CHB therapy. Molecular targeted agents with therapeutic vaccines offer a promising strategy for addressing CHB by targeting the virus and enhancing the host's immunological response. Despite challenges, the development of these vaccines provides new hope for CHB patients by emphasizing the need for HBV antigens that induce effective immune responses without causing T cell exhaustion.
Collapse
Affiliation(s)
- Patricia Gita Naully
- School of Life Science and Technology, Institut Teknologi Bandung, Bandung 40132, Indonesia; Faculty of Health Sciences and Technology, Jenderal Achmad Yani University, Cimahi 40525, Indonesia
| | - Marselina Irasonia Tan
- School of Life Science and Technology, Institut Teknologi Bandung, Bandung 40132, Indonesia
| | - Agustiningsih Agustiningsih
- Eijkman Research Center for Molecular Biology, Research Organization for Health, National Research and Innovation Agency of Indonesia (BRIN), Jakarta Pusat 10340, Indonesia
| | - Caecilia Sukowati
- Eijkman Research Center for Molecular Biology, Research Organization for Health, National Research and Innovation Agency of Indonesia (BRIN), Jakarta Pusat 10340, Indonesia; Liver Cancer Unit, Fondazione Italiana Fegato ONLUS, AREA Science Park, Basovizza 34049, Trieste, Italy
| | | |
Collapse
|
3
|
Delphin M, Mohammed KS, Downs LO, Lumley SF, Waddilove E, Okanda D, Aliyan N, Van Schalkwyk M, Anderson M, Ocama P, Maponga T, Torimiro J, Iwuji C, Ndung'u T, Matthews PC, Taljaard J. Under-representation of the WHO African region in clinical trials of interventions against hepatitis B virus infection. Lancet Gastroenterol Hepatol 2024; 9:383-392. [PMID: 38367632 PMCID: PMC7616036 DOI: 10.1016/s2468-1253(23)00315-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/31/2023] [Accepted: 09/11/2023] [Indexed: 02/19/2024]
Abstract
The WHO African region bears a disproportionate burden of morbidity and mortality related to chronic hepatitis B virus (HBV) infection and accounts for an estimated 70% of new HBV infections worldwide. We investigated the extent to which HBV clinical trials represented populations in this region by searching the WHO International Clinical Trials Registry Platform and ClinicalTrials.gov for interventional clinical trials published in English between database inception and May 29, 2023, using the search term "Hepatitis B". We identified 1804 unique clinical trials, of which 18 (1·0%) recorded involvement of the WHO African region. There is no evidence that the number of HBV clinical trials in this region has improved over time. The diversity of new interventions and industry sponsorship in the WHO African region were low, with trials of HBV comparing poorly with those of other endemic infectious diseases (eg, malaria, HIV, and SARS-CoV-2). HBV research and clinical trial investigations have neglected the WHO African region, leading to profound health inequities. HBV clinical trials are urgently needed to evaluate the efficacy of newly discovered therapeutics and to ensure that interventions can be equitably distributed and deployed as they become available.
Collapse
Affiliation(s)
| | - Khadija Said Mohammed
- The Francis Crick Institute, London, UK; Division of Biosciences, Faculty of Life Sciences, University College London, London, UK
| | - Louise O Downs
- Nuffield Department of Medicine, University of Oxford, Oxford, UK; Department of Infectious Diseases and Microbiology, John Radcliffe Hospital, Oxford, UK; Kenya Medical Research Institute-Wellcome Trust Research Programme, Kilifi, Kenya
| | - Sheila F Lumley
- Nuffield Department of Medicine, University of Oxford, Oxford, UK; Department of Infectious Diseases and Microbiology, John Radcliffe Hospital, Oxford, UK
| | | | - Dorcas Okanda
- Kenya Medical Research Institute-Wellcome Trust Research Programme, Kilifi, Kenya
| | | | - Marije Van Schalkwyk
- Division of Infectious Diseases, Department of Medicine, Stellenbosch University-Tygerberg Academic Hospital, Cape Town, South Africa
| | - Motswedi Anderson
- The Francis Crick Institute, London, UK; Botswana Harvard AIDS Institute Partnership, Princess Marina Hospital, Gaborone, Botswana; Africa Health Research Institute, Durban, South Africa
| | - Ponsiano Ocama
- College of Health Sciences, Makerere University, Kampala, Uganda
| | - Tongai Maponga
- Division of Medical Virology, Stellenbosch University-National Health Laboratory Service Tygerberg Business Unit, Cape Town, South Africa
| | - Judith Torimiro
- Molecular Biology Laboratory, Chantal Biya International Reference Centre for AIDS Research, Yaounde, Cameroon
| | - Collins Iwuji
- Africa Health Research Institute, Durban, South Africa; Department of Global Health and Infection, Brighton and Sussex Medical School, University of Sussex, Brighton, UK
| | - Thumbi Ndung'u
- Division of Infection and Immunity, University College London, London, UK; Africa Health Research Institute, Durban, South Africa
| | - Philippa C Matthews
- The Francis Crick Institute, London, UK; Division of Infection and Immunity, University College London, London, UK; Nuffield Department of Medicine, University of Oxford, Oxford, UK; Department of Infectious Diseases, University College London Hospital, London, London, UK.
| | - Jantjie Taljaard
- Division of Infectious Diseases, Department of Medicine, Stellenbosch University-Tygerberg Academic Hospital, Cape Town, South Africa
| |
Collapse
|
4
|
Lang-Meli J, Neumann-Haefelin C, Thimme R. Targeting virus-specific CD8+ T cells for treatment of chronic viral hepatitis: from bench to bedside. Expert Opin Biol Ther 2024; 24:77-89. [PMID: 38290716 DOI: 10.1080/14712598.2024.2313112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 01/29/2024] [Indexed: 02/01/2024]
Abstract
INTRODUCTION More than 350 million people worldwide live with chronic viral hepatitis and are thus at risk for severe complications like liver cirrhosis and hepatocellular carcinoma (HCC). To meet the goals of the World Health Organization (WHO) global hepatitis strategy, there is an urgent need for new immunotherapeutic approaches. These are particularly required for chronic hepatitis B virus infection and - B/D coinfection. AREAS COVERED This review summarizes data on mechanisms of CD8+ T cells failure in chronic hepatitis B, D, C and E virus infection. The relative contribution of the different concepts (viral escape, CD8+ T cell exhaustion, defective priming) will be discussed. On this basis, examples for future therapeutic approaches targeting virus-specific CD8+ T cells for the individual hepatitis viruses will be discussed. EXPERT OPINION Immunotherapeutic approaches targeting virus-specific CD8+ T cells have the potential to change clinical practice, especially in chronic hepatitis B virus infection. Further clinical development, however, requires a more detailed understanding of T cell immunology in chronic viral hepatitis. Some important conceptual questions remain to be addressed, e.g. regarding heterogeneity of exhausted virus-specific CD8+ T cells.
Collapse
Affiliation(s)
- Julia Lang-Meli
- Department of Medicine II, Medical Center - University of Freiburg and Faculty of Medicine, University Hospital Freiburg, Freiburg, Germany
- IMM-PACT Programm, Faculty of Medicine, University Hospital Freiburg, Freiburg, Germany
| | - Christoph Neumann-Haefelin
- Department of Medicine II, Medical Center - University of Freiburg and Faculty of Medicine, University Hospital Freiburg, Freiburg, Germany
| | - Robert Thimme
- Department of Medicine II, Medical Center - University of Freiburg and Faculty of Medicine, University Hospital Freiburg, Freiburg, Germany
| |
Collapse
|
5
|
Saeed Y. Title: Immunotherapy; a ground-breaking remedy for spinal cord injury with stumbling blocks: An overview. Front Pharmacol 2023; 14:1110008. [PMID: 36778022 PMCID: PMC9909832 DOI: 10.3389/fphar.2023.1110008] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 01/11/2023] [Indexed: 01/26/2023] Open
Abstract
Spinal cord injury (SCI) is a debilitating disorder with no known standard and effective treatment. Despite its ability to exacerbate SCI sequel by accelerating auto-reactive immune cells, an immune response is also considered essential to the healing process. Therefore, immunotherapeutic strategies targeting spinal cord injuries may benefit from the dual nature of immune responses. An increasing body of research suggests that immunization against myelin inhibitors can promote axon remyelination after SCI. However, despite advancements in our understanding of neuroimmune responses, immunoregulation-based therapeutic strategies have yet to receive widespread acceptance. Therefore, it is a prerequisite to enhance the understanding of immune regulation to ensure the safety and efficacy of immunotherapeutic treatments. The objective of the present study was to provide an overview of previous studies regarding the advantages and limitations of immunotherapeutic strategies for functional recovery after spinal cord injury, especially in light of limiting factors related to DNA and cell-based vaccination strategies by providing a novel prospect to lay the foundation for future studies that will help devise a safe and effective treatment for spinal cord injury.
Collapse
Affiliation(s)
- Yasmeen Saeed
- Provincial Key Laboratory for Utilization and Conservation of Food and Medicinal Resources in Northern Guangdong, 288 University Ave. Zhenjiang District, Shaoguan City, Guangdong Province, China
| |
Collapse
|
6
|
Hudu SA, Jimoh AO, Ibrahim KG, Alshrari AS. Hepatitis B Therapeutic Vaccine: A Patent Review. Pharmaceuticals (Basel) 2022; 15:1542. [PMID: 36558991 PMCID: PMC9783911 DOI: 10.3390/ph15121542] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 12/04/2022] [Accepted: 12/05/2022] [Indexed: 12/15/2022] Open
Abstract
Viral hepatitis has long been underrated as a danger to global health. The UN only recently called for worldwide action to tackle viral hepatitis and lessen the disease burden in its "2030 Agenda for Sustainable Development". Hepatitis B virus (HBV), which causes liver cirrhosis and malignancy, is a main cause of death globally. This review analyses innovative HBV therapeutic vaccine candidates for which a patent was filed between January 2010 and March 2022 and presents future improvement techniques for vaccine efficacy. Although there is a preventative vaccine for HBV infection, over 3% of people worldwide have the disease on a long-term basis and can no longer benefit from it. Most people will have chronic HBV infection for the rest of their lives once it has been diagnosed. Moreover, only a small percentage of treated patients experience a functional cure with persistent hepatitis B surface antigen reduction. A significant proportion of deaths are caused by liver cirrhosis and hepatocellular cancer, which are both caused by chronic hepatitis B infection. Hence, there is an urgent need for novel medications due to the inadequacies of the current therapies.
Collapse
Affiliation(s)
- Shuaibu Abdullahi Hudu
- Department of Basic Medical and Dental Sciences, Faculty of Dentistry, Zarqa University, Zarqa 13110, Jordan
| | - Abdulgafar Olayiwola Jimoh
- Department of Pharmacology and Therapeutics, Faculty of Basic Clinical Sciences, College of Health Sciences, Usmanu Danfodiyo University, Sokoto 840001, Nigeria
| | - Kasimu Ghandi Ibrahim
- Department of Basic Medical and Dental Sciences, Faculty of Dentistry, Zarqa University, Zarqa 13110, Jordan
| | - Ahmed Subeh Alshrari
- Department of Basic Health Sciences, Faculty of Pharmacy, Northern Border University, Rafha 91911, Saudi Arabia
| |
Collapse
|
7
|
Chiozzini C, Ridolfi B, Federico M. Extracellular Vesicles and Their Use as Vehicles of Immunogens. Methods Mol Biol 2022; 2504:177-198. [PMID: 35467287 DOI: 10.1007/978-1-0716-2341-1_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Healthy cells constitutively release lipid bilayered vesicles of different sizes and recognizing different biogenesis, collectively referred to as extracellular vesicles (EVs). EVs can be distinguished in exosomes and microvesicles. Biological and biomedical research on EVs is an emerging field that is rapidly growing. Many EV features including biogenesis, cell uptake, and functions still require unambiguous elucidation. Nevertheless, it has been well established that EVs are involved in communication among cells, tissues, and organs under both healthy and disease conditions by virtue of their ability to deliver macromolecules to target cells. Here, we summarize most recent findings regarding biogenesis, structure, and functions of both exosomes and microvesicles. In addition, the use of EVs as delivery tools to induce CD8+ T cell immunity is addressed compared to current designs exploiting enveloped viral vectors and virus-like particles. Finally, we describe a both safe and original approach conceived for the induction of strong CTL immunity against antigens uploaded in EVs constitutively released by muscle cells.
Collapse
Affiliation(s)
- Chiara Chiozzini
- National Center for Global Health, Istituto Superiore di Sanità (ISS), Rome, Italy.
| | - Barbara Ridolfi
- National Center for Global Health, Istituto Superiore di Sanità (ISS), Rome, Italy
| | - Maurizio Federico
- National Center for Global Health, Istituto Superiore di Sanità (ISS), Rome, Italy
| |
Collapse
|
8
|
Lang-Meli J, Neumann-Haefelin C, Thimme R. Immunotherapy and therapeutic vaccines for chronic HBV infection. Curr Opin Virol 2021; 51:149-157. [PMID: 34710645 DOI: 10.1016/j.coviro.2021.10.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 09/08/2021] [Accepted: 10/07/2021] [Indexed: 12/17/2022]
Abstract
Chronic hepatitis B virus (HBV) infection is a major global health burden causing severe complications like liver cirrhosis or hepatocellular carcinoma. Curative treatment options are lacking. Therefore, there is an urgent need for new therapeutic options. Immunotherapy with the goal to restore dysfunctional HBV-specific T cell immunity is an interesting new therapeutic strategy. Based on current evidence on dysfunction of the HBV-specific CD8+ T cell response in chronic HBV infection, we will review the growing field of immunotherapeutic approaches for treatment of chronic HBV infection. The review will focus on therapies targeting T cells and will cover checkpoint inhibitors, T cell engineering, Toll-like receptor agonists and therapeutic vaccination.
Collapse
Affiliation(s)
- Julia Lang-Meli
- Dept. of Medicine II, Medical Center - University of Freiburg and Faculty of Medicine, University Hospital Freiburg, Freiburg, Germany; IMM-PACT Programm, Faculty of Medicine, University Hospital Freiburg, Freiburg, Germany
| | - Christoph Neumann-Haefelin
- Dept. of Medicine II, Medical Center - University of Freiburg and Faculty of Medicine, University Hospital Freiburg, Freiburg, Germany
| | - Robert Thimme
- Dept. of Medicine II, Medical Center - University of Freiburg and Faculty of Medicine, University Hospital Freiburg, Freiburg, Germany.
| |
Collapse
|
9
|
Cargill T, Barnes E. Therapeutic vaccination for treatment of chronic hepatitis B. Clin Exp Immunol 2021; 205:106-118. [PMID: 33969474 PMCID: PMC8274149 DOI: 10.1111/cei.13614] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 04/28/2021] [Accepted: 04/29/2021] [Indexed: 12/12/2022] Open
Abstract
Chronic hepatitis B infection remains a serious global health threat, contributing to a large number of deaths through liver cirrhosis and hepatocellular carcinoma. Current treatment does not eradicate disease, and therefore new treatments are urgently needed. In acute hepatitis B virus (HBV) a strong immune response is necessary to clear the virus, but in chronic infection the immune response is weakened and dysfunctional. Therapeutic vaccination describes the process of inoculating individuals with a non‐infective form of viral antigen with the aim of inducing or boosting existing HBV‐specific immune responses, resulting in sustained control of HBV infection. In this review we outline the rationale for therapeutic vaccination in chronic HBV infection, discuss previous and ongoing trials of novel HBV therapeutic vaccine candidates and outline strategies to improve vaccine efficacy going forward.
Collapse
Affiliation(s)
- Tamsin Cargill
- Peter Medawar Building for Pathogen Research, Oxford University, Oxford, United Kingdom.,Translational Gastroenterology Unit, Oxford University, Oxford, United Kingdom
| | - Eleanor Barnes
- Peter Medawar Building for Pathogen Research, Oxford University, Oxford, United Kingdom.,Translational Gastroenterology Unit, Oxford University, Oxford, United Kingdom.,Oxford NIHR Biomedical Research Centre and Nuffield Department of Medicine, Oxford University, Oxford, United Kingdom
| |
Collapse
|
10
|
Jansen DT, Dou Y, de Wilde JW, Woltman AM, Buschow SI. Designing the next-generation therapeutic vaccines to cure chronic hepatitis B: focus on antigen presentation, vaccine properties and effect measures. Clin Transl Immunology 2021; 10:e1232. [PMID: 33489122 PMCID: PMC7809700 DOI: 10.1002/cti2.1232] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 12/09/2020] [Accepted: 12/09/2020] [Indexed: 12/14/2022] Open
Abstract
In the mid‐90s, hepatitis B virus (HBV)‐directed immune responses were for the first time investigated in detail and revealed suboptimal T‐cell responses in chronic HBV patients. Based on these studies, therapeutic vaccination exploiting the antigen presentation capacity of dendritic cells to prime and/or boost HBV‐specific T‐cell responses was considered highly promising. Now, 25 years later, it has not yet delivered this promise. In this review, we summarise what has been clinically tested in terms of antigen targets and vaccine forms, how the immunological and therapeutic effects of these vaccines were assessed and what major clinical and immunological findings were reported. We combine the lessons learned from these trials with the most recent insights on HBV antigen presentation, T‐cell responses, vaccine composition, antiviral and immune‐modulatory drugs and disease biomarkers to derive novel opportunities for the next generation of therapeutic vaccines designed to cure chronic HBV either alone or in combination therapy.
Collapse
Affiliation(s)
- Diahann Tsl Jansen
- Department of Gastroenterology and Hepatology Erasmus MC University Medical Center Rotterdam Rotterdam The Netherlands
| | - Yingying Dou
- Department of Gastroenterology and Hepatology Erasmus MC University Medical Center Rotterdam Rotterdam The Netherlands
| | - Janet W de Wilde
- Department of Gastroenterology and Hepatology Erasmus MC University Medical Center Rotterdam Rotterdam The Netherlands.,Present address: Department of Viroscience Erasmus MC University Medical Center Rotterdam Rotterdam The Netherlands
| | - Andrea M Woltman
- Department of Gastroenterology and Hepatology Erasmus MC University Medical Center Rotterdam Rotterdam The Netherlands.,Present address: Institute of Medical Research Education Rotterdam Erasmus MC University Medical Center Rotterdam Rotterdam The Netherlands
| | - Sonja I Buschow
- Department of Gastroenterology and Hepatology Erasmus MC University Medical Center Rotterdam Rotterdam The Netherlands
| |
Collapse
|
11
|
Recent developments in vaccines strategies against human viral pathogens. RECENT DEVELOPMENTS IN APPLIED MICROBIOLOGY AND BIOCHEMISTRY 2021. [PMCID: PMC7564847 DOI: 10.1016/b978-0-12-821406-0.00001-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Recently, several viruses have emerged or reemerged from obscurity to become serious global health threats, raising alarm regarding their sustained epidemic transmission. One of the main public health concerns of these emerging viruses is their sustained circulation among populations of immunologically naïve, susceptible hosts. With every new viral emergence or reemergence, comes the call for rapid vaccine development and the induction of protective immunity through vaccination can be a powerful tool to prevent this concern by conferring protection to the population at risk. Vaccines are considered a critical component of disease prevention against emerging viral infections because, in many cases, other medical options are limited or nonexistent. While the classic approaches to vaccine development are still amenable to emerging viruses, the advent of latest technologies in molecular techniques has profoundly influenced our understanding of virus biology, and immune responses and vaccination methods based on replicating, attenuated, and nonreplicating virus vector approaches have become useful vaccine platforms. Together with a growing understanding in the biology of newly emerging virus diseases, a range of new vaccine strategies, vaccines against new and reemerging viruses may become a possibility.
Collapse
|
12
|
Barili V, Boni C, Rossi M, Vecchi A, Zecca A, Penna A, Missale G, Ferrari C, Fisicaro P. Metabolic regulation of the HBV-specific T cell function. Antiviral Res 2020; 185:104989. [PMID: 33248194 DOI: 10.1016/j.antiviral.2020.104989] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 11/16/2020] [Accepted: 11/19/2020] [Indexed: 12/15/2022]
Abstract
Chronically HBV infected subjects are more than 260 million worldwide; cirrhosis and liver cancer represent possible outcomes which affect around 700,000 patients per year. Both innate and adaptive immune responses are necessary for viral control and both have been shown to be defective in chronic patients. Metabolic remodeling is an essential process in T cell biology, particularly for T cell activation, differentiation and survival. Cellular metabolism relies on the conversion of nutrients into energy to support intracellular processes, and to generate fundamental intermediate components for cell proliferation and growth. Adaptive immune responses are the central mechanisms for the resolution of primary human infections leading to the activation of pathogen-specific B and T cell functions. In chronic HBV infection the anti-viral immune response fails to contain the virus and leads to persistent hepatic tissue damage which may finally result in liver cirrhosis and cancer. This T cell failure is associated with metabolic alterations suggesting that control of nutrient uptake and intracellular utilization as well as correct regulation of intracellular metabolic pathways are strategic for T cell differentiation during persistent chronic infections. This review will discuss some of the main features of the T cell metabolic processes which are relevant to the generation of an efficient antiviral response, with specific focus on their clinical relevance in chronic HBV infection in the perspective of possible strategies to correct deregulated metabolic pathways underlying T cell dysfunction of chronic HBV patients.
Collapse
Affiliation(s)
- Valeria Barili
- Department of Medicine and Surgery, University of Parma, Parma, Italy; Laboratory of Viral Immunopathology, Unit of Infectious Diseases and Hepatology, Azienda Ospedaliero-Universitaria di Parma, Parma, Italy
| | - Carolina Boni
- Laboratory of Viral Immunopathology, Unit of Infectious Diseases and Hepatology, Azienda Ospedaliero-Universitaria di Parma, Parma, Italy
| | - Marzia Rossi
- Department of Medicine and Surgery, University of Parma, Parma, Italy; Laboratory of Viral Immunopathology, Unit of Infectious Diseases and Hepatology, Azienda Ospedaliero-Universitaria di Parma, Parma, Italy
| | - Andrea Vecchi
- Laboratory of Viral Immunopathology, Unit of Infectious Diseases and Hepatology, Azienda Ospedaliero-Universitaria di Parma, Parma, Italy
| | - Alessandra Zecca
- Laboratory of Viral Immunopathology, Unit of Infectious Diseases and Hepatology, Azienda Ospedaliero-Universitaria di Parma, Parma, Italy
| | - Amalia Penna
- Laboratory of Viral Immunopathology, Unit of Infectious Diseases and Hepatology, Azienda Ospedaliero-Universitaria di Parma, Parma, Italy
| | - Gabriele Missale
- Department of Medicine and Surgery, University of Parma, Parma, Italy; Laboratory of Viral Immunopathology, Unit of Infectious Diseases and Hepatology, Azienda Ospedaliero-Universitaria di Parma, Parma, Italy
| | - Carlo Ferrari
- Department of Medicine and Surgery, University of Parma, Parma, Italy; Laboratory of Viral Immunopathology, Unit of Infectious Diseases and Hepatology, Azienda Ospedaliero-Universitaria di Parma, Parma, Italy.
| | - Paola Fisicaro
- Department of Medicine and Surgery, University of Parma, Parma, Italy; Laboratory of Viral Immunopathology, Unit of Infectious Diseases and Hepatology, Azienda Ospedaliero-Universitaria di Parma, Parma, Italy
| |
Collapse
|
13
|
Fernandez-Garcia L, Pacios O, González-Bardanca M, Blasco L, Bleriot I, Ambroa A, López M, Bou G, Tomás M. Viral Related Tools against SARS-CoV-2. Viruses 2020; 12:E1172. [PMID: 33081350 PMCID: PMC7589879 DOI: 10.3390/v12101172] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 10/14/2020] [Accepted: 10/15/2020] [Indexed: 12/11/2022] Open
Abstract
At the end of 2019, a new disease appeared and spread all over the world, the COVID-19, produced by the coronavirus SARS-CoV-2. As a consequence of this worldwide health crisis, the scientific community began to redirect their knowledge and resources to fight against it. Here we summarize the recent research on viruses employed as therapy and diagnostic of COVID-19: (i) viral-vector vaccines both in clinical trials and pre-clinical phases; (ii) the use of bacteriophages to find antibodies specific to this virus and some studies of how to use the bacteriophages themselves as a treatment against viral diseases; and finally, (iii) the use of CRISPR-Cas technology both to obtain a fast precise diagnose of the patient and also the possible use of this technology as a cure.
Collapse
Affiliation(s)
- Laura Fernandez-Garcia
- Microbiology Department-Research Institute Biomedical A Coruña (INIBIC), Hospital A Coruña (CHUAC), University of A Coruña (UDC), 15006 A Coruña, Spain; (L.F.-G.); (O.P.); (M.G.-B.); (L.B.); (I.B.); (A.A.); (M.L.); (G.B.)
- Study Group on Mechanisms of Action and Resistance to Antimicrobials (GEMARA) of Spanish Society of Infectious Diseases and Clinical Microbiology (SEIMC), 28003 Madrid, Spain
| | - Olga Pacios
- Microbiology Department-Research Institute Biomedical A Coruña (INIBIC), Hospital A Coruña (CHUAC), University of A Coruña (UDC), 15006 A Coruña, Spain; (L.F.-G.); (O.P.); (M.G.-B.); (L.B.); (I.B.); (A.A.); (M.L.); (G.B.)
- Study Group on Mechanisms of Action and Resistance to Antimicrobials (GEMARA) of Spanish Society of Infectious Diseases and Clinical Microbiology (SEIMC), 28003 Madrid, Spain
| | - Mónica González-Bardanca
- Microbiology Department-Research Institute Biomedical A Coruña (INIBIC), Hospital A Coruña (CHUAC), University of A Coruña (UDC), 15006 A Coruña, Spain; (L.F.-G.); (O.P.); (M.G.-B.); (L.B.); (I.B.); (A.A.); (M.L.); (G.B.)
- Study Group on Mechanisms of Action and Resistance to Antimicrobials (GEMARA) of Spanish Society of Infectious Diseases and Clinical Microbiology (SEIMC), 28003 Madrid, Spain
| | - Lucia Blasco
- Microbiology Department-Research Institute Biomedical A Coruña (INIBIC), Hospital A Coruña (CHUAC), University of A Coruña (UDC), 15006 A Coruña, Spain; (L.F.-G.); (O.P.); (M.G.-B.); (L.B.); (I.B.); (A.A.); (M.L.); (G.B.)
- Study Group on Mechanisms of Action and Resistance to Antimicrobials (GEMARA) of Spanish Society of Infectious Diseases and Clinical Microbiology (SEIMC), 28003 Madrid, Spain
| | - Inés Bleriot
- Microbiology Department-Research Institute Biomedical A Coruña (INIBIC), Hospital A Coruña (CHUAC), University of A Coruña (UDC), 15006 A Coruña, Spain; (L.F.-G.); (O.P.); (M.G.-B.); (L.B.); (I.B.); (A.A.); (M.L.); (G.B.)
- Study Group on Mechanisms of Action and Resistance to Antimicrobials (GEMARA) of Spanish Society of Infectious Diseases and Clinical Microbiology (SEIMC), 28003 Madrid, Spain
| | - Antón Ambroa
- Microbiology Department-Research Institute Biomedical A Coruña (INIBIC), Hospital A Coruña (CHUAC), University of A Coruña (UDC), 15006 A Coruña, Spain; (L.F.-G.); (O.P.); (M.G.-B.); (L.B.); (I.B.); (A.A.); (M.L.); (G.B.)
- Study Group on Mechanisms of Action and Resistance to Antimicrobials (GEMARA) of Spanish Society of Infectious Diseases and Clinical Microbiology (SEIMC), 28003 Madrid, Spain
| | - María López
- Microbiology Department-Research Institute Biomedical A Coruña (INIBIC), Hospital A Coruña (CHUAC), University of A Coruña (UDC), 15006 A Coruña, Spain; (L.F.-G.); (O.P.); (M.G.-B.); (L.B.); (I.B.); (A.A.); (M.L.); (G.B.)
- Study Group on Mechanisms of Action and Resistance to Antimicrobials (GEMARA) of Spanish Society of Infectious Diseases and Clinical Microbiology (SEIMC), 28003 Madrid, Spain
| | - German Bou
- Microbiology Department-Research Institute Biomedical A Coruña (INIBIC), Hospital A Coruña (CHUAC), University of A Coruña (UDC), 15006 A Coruña, Spain; (L.F.-G.); (O.P.); (M.G.-B.); (L.B.); (I.B.); (A.A.); (M.L.); (G.B.)
- Study Group on Mechanisms of Action and Resistance to Antimicrobials (GEMARA) of Spanish Society of Infectious Diseases and Clinical Microbiology (SEIMC), 28003 Madrid, Spain
- Spanish Network for the Research in Infectious Diseases (REIPI), 41071 Sevilla, Spain
| | - Maria Tomás
- Microbiology Department-Research Institute Biomedical A Coruña (INIBIC), Hospital A Coruña (CHUAC), University of A Coruña (UDC), 15006 A Coruña, Spain; (L.F.-G.); (O.P.); (M.G.-B.); (L.B.); (I.B.); (A.A.); (M.L.); (G.B.)
- Study Group on Mechanisms of Action and Resistance to Antimicrobials (GEMARA) of Spanish Society of Infectious Diseases and Clinical Microbiology (SEIMC), 28003 Madrid, Spain
- Spanish Network for the Research in Infectious Diseases (REIPI), 41071 Sevilla, Spain
| |
Collapse
|
14
|
Alexopoulou A, Vasilieva L, Karayiannis P. New Approaches to the Treatment of Chronic Hepatitis B. J Clin Med 2020; 9:jcm9103187. [PMID: 33019573 PMCID: PMC7601587 DOI: 10.3390/jcm9103187] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 09/26/2020] [Accepted: 09/28/2020] [Indexed: 02/07/2023] Open
Abstract
The currently recommended treatment for chronic hepatitis B virus (HBV) infection achieves only viral suppression whilst on therapy, but rarely hepatitis B surface antigen (HBsAg) loss. The ultimate therapeutic endpoint is the combination of HBsAg loss, inhibition of new hepatocyte infection, elimination of the covalently closed circular DNA (cccDNA) pool, and restoration of immune function in order to achieve virus control. This review concentrates on new antiviral drugs that target different stages of the HBV life cycle (direct acting antivirals) and others that enhance both innate and adaptive immunity against HBV (immunotherapy). Drugs that block HBV hepatocyte entry, compounds that silence or deplete the cccDNA pool, others that affect core assembly, agents that degrade RNase-H, interfering RNA molecules, and nucleic acid polymers are likely interventions in the viral life cycle. In the immunotherapy category, molecules that activate the innate immune response such as Toll-like-receptors, Retinoic acid Inducible Gene-1 (RIG-1) and stimulator of interferon genes (STING) agonists or checkpoint inhibitors, and modulation of the adaptive immunity by therapeutic vaccines, vector-based vaccines, or adoptive transfer of genetically-engineered T cells aim towards the restoration of T cell function. Future therapeutic trends would likely be a combination of one or more of the aforementioned drugs that target the viral life cycle and at least one immunomodulator.
Collapse
Affiliation(s)
- Alexandra Alexopoulou
- Department of Medicine, Medical School, National & Kapodistrian University of Athens, Hippokration General Hospital, 11527 Athens, Greece;
- Correspondence: ; Tel.: +30-2132-088-178; Fax: +30-2107-706-871
| | - Larisa Vasilieva
- Department of Medicine, Medical School, National & Kapodistrian University of Athens, Hippokration General Hospital, 11527 Athens, Greece;
| | - Peter Karayiannis
- Department of Basic and Clinical Sciences, Medical School, University of Nicosia, Engomi, CY-1700 Nicosia, Cyprus;
| |
Collapse
|
15
|
A new approach for therapeutic vaccination against chronic HBV infections. Vaccine 2020; 38:3105-3120. [DOI: 10.1016/j.vaccine.2020.02.063] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 02/14/2020] [Accepted: 02/20/2020] [Indexed: 12/11/2022]
|
16
|
Ghozy S, Nam NH, Radwan I, Karimzadeh S, Tieu TM, Hashan MR, Abbas AS, Eid PS, Vuong NL, Khang NV, Elgabalawy E, Sayed AK, Hoa PTL, Huy NT. Therapeutic efficacy of hepatitis B virus vaccine in treatment of chronic HBV infections: A systematic review and meta-analysis. Rev Med Virol 2019; 30:e2089. [PMID: 31811678 DOI: 10.1002/rmv.2089] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Revised: 09/18/2019] [Accepted: 09/19/2019] [Indexed: 12/13/2022]
Abstract
There is a need for improved treatment of patients with chronic hepatitis B (CHB). We reviewed the literature to explore the efficacy of HB vaccines alone or in combination therapy (CT) with antiviral drugs in CHB patients and to meta-analyze data from randomized controlled trials. We conducted a systematic search in ten databases. All studies investigating the efficacy of HBV vaccine in HBV infected patients were included with no restrictions. Among 1359 studies initially identified, 23 studies (n = 1956 patients) were included for the final analysis. CT showed a significant reduction of HBV DNA compared with analogue monotherapy (AM) at the 12-month follow-up period (odds ratio (OR) = 2.835, 95% confidence interval (CI) [1.275, 6.306], p = .011). Additionally, CT also remarkably induce HbsAg loss in comparison with AM (OR = 11.736, 95% CI [1.841, 74.794], p = .009). Our pooled data revealed no difference between treatment and control regarding alanine aminotransferase normalization, HBeAg seroconversion, and HBeAg disappearance. In addition, CT using vaccine and NAs resulted in a statistically significant higher incidence of adverse effects than AM. The therapeutic effects of combination therapy for patients with CHB were encouraging, but future studies need to investigate all possible treatment combinations and assess their cost-effectiveness.
Collapse
Affiliation(s)
- Sherief Ghozy
- Neurosurgery Department, El Sheikh Zayed Specialized Hospital, Giza, Egypt.,Online Research Club (http://www.onlineresearchclub.org), Nagasaki, Japan
| | - Nguyen Hai Nam
- Online Research Club (http://www.onlineresearchclub.org), Nagasaki, Japan.,Department of General Surgery, University of Medicine and Pharmacy at Ho Chi Minh City, Ho Chi Minh City, Vietnam
| | - Ibrahim Radwan
- Online Research Club (http://www.onlineresearchclub.org), Nagasaki, Japan.,Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Sedighe Karimzadeh
- Online Research Club (http://www.onlineresearchclub.org), Nagasaki, Japan.,School of Medicine, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - Thuan Minh Tieu
- Online Research Club (http://www.onlineresearchclub.org), Nagasaki, Japan.,Faculty of Health Sciences, McMaster University, Hamilton, ON, Canada
| | - Mohammad Rashidul Hashan
- Online Research Club (http://www.onlineresearchclub.org), Nagasaki, Japan.,Respiratory and Enteric Infections Department, Infectious Disease Division, International Centre for Diarrheal Disease and Research, Dhaka, Bangladesh
| | - Alzhraa Salah Abbas
- Online Research Club (http://www.onlineresearchclub.org), Nagasaki, Japan.,Department of Anesthesia, Al-Ahrar Teaching Hospital, Zagazig, Egypt
| | - Peter Samuel Eid
- Online Research Club (http://www.onlineresearchclub.org), Nagasaki, Japan.,Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Nguyen Lam Vuong
- Online Research Club (http://www.onlineresearchclub.org), Nagasaki, Japan.,Department of Medical Statistics and Informatics, University of Medicine and Pharmacy at Ho Chi Minh City, Ho Chi Minh City, Vietnam
| | - Nguyen Vinh Khang
- Online Research Club (http://www.onlineresearchclub.org), Nagasaki, Japan.,Department of Neurology, University of Medicine and Pharmacy at Ho Chi Minh City, Ho Chi Minh City, Vietnam
| | - Eman Elgabalawy
- Online Research Club (http://www.onlineresearchclub.org), Nagasaki, Japan.,Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | | | - Pham Thi Le Hoa
- Department of Infectious Diseases, University of Medicine and Pharmacy at Ho Chi Minh City, Ho Chi Minh City, Vietnam
| | - Nguyen Tien Huy
- Evidence Based Medicine Research Group, Ton Duc Thang University, Ho Chi Minh City, Vietnam.,Faculty of Applied Sciences, Ton Duc Thang University, Ho Chi Minh City, Vietnam.,Department of Clinical Product Development, Institute of Tropical Medicine (NEKKEN), School of Tropical Medicine and Global Health, Nagasaki University, Nagasaki, Japan
| |
Collapse
|
17
|
CD69 Targeting Enhances Anti-vaccinia Virus Immunity. J Virol 2019; 93:JVI.00553-19. [PMID: 31315995 DOI: 10.1128/jvi.00553-19] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 07/07/2019] [Indexed: 12/30/2022] Open
Abstract
CD69 is highly expressed on the leukocyte surface upon viral infection, and its regulatory role in the vaccinia virus (VACV) immune response has been recently demonstrated using CD69-/- mice. Here, we show augmented control of VACV infection using the anti-human CD69 monoclonal antibody (MAb) 2.8 as both preventive and therapeutic treatment for mice expressing human CD69. This control was related to increased natural killer (NK) cell reactivity and increased numbers of cytokine-producing T and NK cells in the periphery. Moreover, similarly increased immunity and protection against VACV were reproduced over both long and short periods in anti-mouse CD69 MAb 2.2-treated immunocompetent wild-type (WT) mice and immunodeficient Rag2-/- CD69+/+ mice. This result was not due to synergy between infection and anti-CD69 treatment since, in the absence of infection, anti-human CD69 targeting induced immune activation, which was characterized by mobilization, proliferation, and enhanced survival of immune cells as well as marked production of several innate proinflammatory cytokines by immune cells. Additionally, we showed that the rapid leukocyte effect induced by anti-CD69 MAb treatment was dependent on mTOR signaling. These properties suggest the potential of CD69-targeted therapy as an antiviral adjuvant to prevent derived infections.IMPORTANCE In this study, we demonstrate the influence of human and mouse anti-CD69 therapies on the immune response to VACV infection. We report that targeting CD69 increases the leukocyte numbers in the secondary lymphoid organs during infection and improves the capacity to clear the viral infection. Targeting CD69 increases the numbers of gamma interferon (IFN-γ)- and tumor necrosis factor alpha (TNF-α)-producing NK and T cells. In mice expressing human CD69, treatment with an anti-CD69 MAb produces increases in cytokine production, survival, and proliferation mediated in part by mTOR signaling. These results, together with the fact that we have mainly worked with a human-CD69 transgenic model, reveal CD69 as a treatment target to enhance vaccine protectiveness.
Collapse
|
18
|
Primary Human B Cells at Different Differentiation and Maturation Stages Exhibit Distinct Susceptibilities to Vaccinia Virus Binding and Infection. J Virol 2019; 93:JVI.00973-19. [PMID: 31292245 DOI: 10.1128/jvi.00973-19] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Accepted: 06/24/2019] [Indexed: 01/04/2023] Open
Abstract
Vaccinia virus (VACV), the prototypical member of the poxvirus family, was used as a live-virus vaccine to eradicate smallpox worldwide and has recently received considerable attention because of its potential as a prominent vector for the development of vaccines against infectious diseases and as an oncolytic virus for cancer therapy. Studies have demonstrated that VACV exhibits an extremely strong bias for binding to and infection of primary human antigen-presenting cells (APCs), including monocytes, macrophages, and dendritic cells. However, very few studies have assessed the interactions of VACV with primary human B cells, a main type of professional APCs. In this study, we evaluated the susceptibility of primary human peripheral B cells at various differentiation and maturation stages to VACV binding, infection, and replication. We found that plasmablasts were resistant to VACV binding, while other B subsets, including transitional, mature naive, memory, and plasma cells, were highly susceptible to VACV binding. VACV binding preference was likely associated with differential expression of chemokine receptors, particularly CXCR5. Infection studies showed that plasmablast, plasma, transitional, and mature naive B cells were resistant to VACV infection, while memory B cells were preferentially infected. VACV infection in ex vivo B cells was abortive, which occurred at the stage of late viral gene expression. In contrast, activated B cells were permissive to productive VACV infection. Thus, primary human B cells at different differentiation stages exhibit distinct susceptibilities to VACV binding and infection, and the infections are abortive and productive in ex vivo and activated B cells, respectively.IMPORTANCE Our results provide critical information to the field of poxvirus binding and infection tropism. We demonstrate that VACV preferentially infects memory B cells that play an important role in a rapid and vigorous antibody-mediated immune response upon reinfection by a pathogen. Additionally, this work highlights the potential of B cells as natural cellular models to identify VACV receptors or dissect the molecular mechanisms underlying key steps of the VACV life cycle, such as binding, penetration, entry, and replication in primary human cells. The understanding of VACV biology in human primary cells is essential for the development of a safe and effective live-virus vector for oncolytic virus therapy and vaccines against smallpox, other pathogens, and cancer.
Collapse
|
19
|
HBV Immune-Therapy: From Molecular Mechanisms to Clinical Applications. Int J Mol Sci 2019; 20:ijms20112754. [PMID: 31195619 PMCID: PMC6600394 DOI: 10.3390/ijms20112754] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 06/03/2019] [Accepted: 06/04/2019] [Indexed: 12/12/2022] Open
Abstract
Chronic hepatitis B virus (HBV) infection represents a worldwide public health concern with approximately 250 million people chronically infected and at risk of developing liver cirrhosis and hepatocellular carcinoma. Nucleos(t)ide analogues (NUC) are the most widely used therapies for HBV infection, but they often require long-lasting administration to avoid the risk of HBV reactivation at withdrawal. Therefore, there is an urgent need to develop novel treatments to shorten the duration of NUC therapy by accelerating virus control, and to complement the effect of available anti-viral therapies. In chronic HBV infection, virus-specific T cells are functionally defective, and this exhaustion state is a key determinant of virus persistence. Reconstitution of an efficient anti-viral T cell response may thus represent a rational strategy to treat chronic HBV patients. In this perspective, the enhancement of adaptive immune responses by a checkpoint inhibitor blockade, specific T cell vaccines, lymphocyte metabolism targeting, and autologous T cell engineering, including chimeric antigen receptor (CAR) and TCR-redirected T cells, constitutes a promising immune modulatory approach for a therapeutic restoration of protective immunity. The advances of the emerging immune-based therapies in the setting of the HBV research field will be outlined.
Collapse
|
20
|
Cabo Beltran OR, Rosales Ledezma R. MVA E2 therapeutic vaccine for marked reduction in likelihood of recurrence of respiratory papillomatosis. Head Neck 2019; 41:657-665. [PMID: 30605254 PMCID: PMC6590416 DOI: 10.1002/hed.25477] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Revised: 02/20/2018] [Accepted: 07/06/2018] [Indexed: 12/14/2022] Open
Abstract
Background Recurrent respiratory papillomatosis (RRP) or laryngeal papillomatosis is a disease caused by papillomavirus infection. Methods In this phase I/II clinical trial, we evaluated the efficacy of the modified vaccinia Ankara (MVA) E2 virus in the treatment of RRP. Twenty‐nine patients (18 female and 11 male) underwent injection of MVA E2 directly into the borders of the vocal cords where lesions were seen and were monitored by direct laryngoscopy. The immune response was assessed by the determination of CD3+, CD4+, and CD8+ lymphocytes counts. The presence of papillomavirus was determined by polymerase chain reaction analysis. Results Lesions were completely eliminated in 13 patients (44.8%). In 16 patients (55.2%), lesions recurred between 6 and 18 months after treatment; these patients received a second round of treatment with MVA E2, and they are not seen with new recurrences. Conclusion The MVA E2 vaccine has excellent potential for generating complete regression of RRP lesions.
Collapse
|
21
|
Abstract
With high morbidity and mortality worldwide, there is great interest in effective therapies for chronic hepatitis B (CHB) virus. There are currently several dozen investigational agents being developed for treatment of CHB. They can be broadly divided into two categories: (1) direct-acting antivirals (DAAs) that interfere with a specific step in viral replication; and (2) host-targeting agents that inhibit viral replication by modifying host cell function, with the latter group further divided into the subcategories of immune modulators and agents that target other host functions. Included among the DAAs being developed are RNA interference therapies, covalently closed circular DNA (cccDNA) formation and transcription inhibitors, core/capsid inhibitors, reverse transcriptase inhibitors, hepatitis B surface antigen (HBsAg) release inhibitors, antisense oligonucleotides, and helioxanthin analogues. Included among the host-targeting agents are entry inhibitors, cyclophilin inhibitors, and multiple immunomodulatory agents, including Toll-like receptor agonists, immune checkpoint inhibitors, therapeutic vaccines, engineered T cells, and several cytokine agents, including recombinant human interleukin-7 (CYT107) and SB 9200, a novel therapy that is believed to both have direct antiviral properties and to induce endogenous interferon. In this review we discuss agents that are currently in the clinical stage of development for CHB treatment as well as strategies and agents currently at the evaluation and discovery phase and potential future targets. Effective approaches to CHB may require suppression of viral replication combined with one or more host-targeting agents. Some of the recent research advances have led to the hope that with such a combined approach we may have a functional cure for CHB in the not distant future.
Collapse
Affiliation(s)
- Altaf Dawood
- Department of Internal Medicine, Section of Gastroenterology, University of Nevada School of Medicine, Las Vegas, NV, USA
| | - Syed Abdul Basit
- Department of Internal Medicine, Section of Gastroenterology, University of Nevada School of Medicine, Las Vegas, NV, USA
| | - Mahendran Jayaraj
- Department of Internal Medicine, Section of Gastroenterology, University of Nevada School of Medicine, Las Vegas, NV, USA
| | - Robert G Gish
- Department of Internal Medicine, Section of Gastroenterology, University of Nevada School of Medicine, Las Vegas, NV, USA.
- Division of Gastroenterology and Hepatology, Department of Medicine, Stanford University Medical Center, Stanford, CA, USA.
- Hepatitis B Foundation, Doylestown, PA, USA.
- Asian Pacific Health Foundation, San Diego, CA, USA.
- National Viral Hepatitis Roundtable, Washington, DC, USA.
| |
Collapse
|
22
|
Overcoming immune tolerance in chronic hepatitis B by therapeutic vaccination. Curr Opin Virol 2018; 30:58-67. [PMID: 29751272 DOI: 10.1016/j.coviro.2018.04.003] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Revised: 04/03/2018] [Accepted: 04/18/2018] [Indexed: 12/14/2022]
Abstract
The currently used nucleoside analogs (i.e. entecavir and tenofovir) with high barrier-to-resistance efficiently suppress viral replication, limit inflammation and reduce the sequelae of chronic hepatitis B, but cannot cure the disease and thus have to be applied long-term. Therapeutic vaccination as an approach to cure chronic hepatitis B has shown promising pre-clinical results, nevertheless the proof of its efficacy in clinical trials is still missing. This may be partially due to suboptimal vaccine design. A main obstacle in chronic hepatitis B, however, is the high load of viral antigens expressed and secreted, which has been proposed to cause antigen-specific immune tolerance. Reduction of the viral antigen load is therefore considered a key factor for success of immune-based therapies. Although nucleoside analogs do not reduce viral antigen expression, new antiviral strategies are becoming available. Targeting viral translation by siRNA or targeting release of HBsAg from infected hepatocytes by nucleic acid polymers both reduce the antigen load. They may be considered as pre-treatment for therapeutic vaccination to increase the potential to elicit an HBV-specific immune response able to control and cure chronic HBV infection.
Collapse
|
23
|
Peeridogaheh H, Meshkat Z, Habibzadeh S, Arzanlou M, Shahi JM, Rostami S, Gerayli S, Teimourpour R. Current concepts on immunopathogenesis of hepatitis B virus infection. Virus Res 2017; 245:29-43. [PMID: 29273341 DOI: 10.1016/j.virusres.2017.12.007] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Revised: 10/04/2017] [Accepted: 12/18/2017] [Indexed: 02/07/2023]
Abstract
Hepatitis B virus (HBV) infection is a leading cause of liver damage and hepatic inflammation. Upon infection, effective antiviral responses by CD8+ T cells, CD4+ T cells, Natural killer (NK) cells, and monocytes can lead to partial or complete eradication of the viral infection. To date, many studies have shown that the production of inhibitory cytokines such as Interleukin 10 (IL-10), Transforming growth factor beta (TGF-β), along with dysfunction of the dendritic cells (DCs), and the absence of efficient innate immune responses could lead to T cell exhaustion, development of persistent infection, and inability to eradicate the viral infection from liver. Understanding the immunopathogenesis of the virus could be useful in providing further insights toward novel strategies in the eradication of HBV infection.
Collapse
Affiliation(s)
- Hadi Peeridogaheh
- Department of Microbiology, School of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Zahra Meshkat
- Antimicrobial Resistance Research Center, Bu Ali Research Center, School of Medicine, Mashhad University of Medical Sciences, Mashhad, IR Iran
| | - Shahram Habibzadeh
- Department of Infectious Diseases, School of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Mohsen Arzanlou
- Department of Microbiology, School of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Jafar Mohammad Shahi
- Department of Infectious Diseases, School of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Sina Rostami
- Department of Clinical and Molecular Medicine Faculty of Medicine and Health Science, Norwegian University of Science and Technology, Trondheim, Norway
| | - Sina Gerayli
- Departments of Biology, Western University, London, Ontario, N6A 5B7, Canada
| | - Roghayeh Teimourpour
- Department of Microbiology, School of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran.
| |
Collapse
|
24
|
Okeke MI, Okoli AS, Diaz D, Offor C, Oludotun TG, Tryland M, Bøhn T, Moens U. Hazard Characterization of Modified Vaccinia Virus Ankara Vector: What Are the Knowledge Gaps? Viruses 2017; 9:v9110318. [PMID: 29109380 PMCID: PMC5707525 DOI: 10.3390/v9110318] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Revised: 10/21/2017] [Accepted: 10/26/2017] [Indexed: 12/17/2022] Open
Abstract
Modified vaccinia virus Ankara (MVA) is the vector of choice for human and veterinary applications due to its strong safety profile and immunogenicity in vivo. The use of MVA and MVA-vectored vaccines against human and animal diseases must comply with regulatory requirements as they pertain to environmental risk assessment, particularly the characterization of potential adverse effects to humans, animals and the environment. MVA and recombinant MVA are widely believed to pose low or negligible risk to ecosystem health. However, key aspects of MVA biology require further research in order to provide data needed to evaluate the potential risks that may occur due to the use of MVA and MVA-vectored vaccines. The purpose of this paper is to identify knowledge gaps in the biology of MVA and recombinant MVA that are of relevance to its hazard characterization and discuss ongoing and future experiments aimed at providing data necessary to fill in the knowledge gaps. In addition, we presented arguments for the inclusion of uncertainty analysis and experimental investigation of verifiable worst-case scenarios in the environmental risk assessment of MVA and recombinant MVA. These will contribute to improved risk assessment of MVA and recombinant MVA vaccines.
Collapse
Affiliation(s)
- Malachy I Okeke
- Genome Editing Research Group, GenØk-Center for Biosafety, Siva Innovation Center, N-9294 Tromso, Norway.
| | - Arinze S Okoli
- Genome Editing Research Group, GenØk-Center for Biosafety, Siva Innovation Center, N-9294 Tromso, Norway.
| | - Diana Diaz
- Molecular Inflammation Research Group, Institute of Medical Biology, University i Tromsø (UiT)-The Arctic University of Norway, N-9037 Tromso, Norway.
| | - Collins Offor
- Department of Medical and Pharmaceutical Biotechnology, IMC University of Applied Sciences Piaristengasse 1, A-3500 Krems, Austria.
| | - Taiwo G Oludotun
- Department of Medical and Pharmaceutical Biotechnology, IMC University of Applied Sciences Piaristengasse 1, A-3500 Krems, Austria.
| | - Morten Tryland
- Genome Editing Research Group, GenØk-Center for Biosafety, Siva Innovation Center, N-9294 Tromso, Norway.
- Artic Infection Biology, Department of Artic and Marine Biology, UIT-The Artic University of Norway, N-9037 Tromso, Norway.
| | - Thomas Bøhn
- Genome Editing Research Group, GenØk-Center for Biosafety, Siva Innovation Center, N-9294 Tromso, Norway.
| | - Ugo Moens
- Molecular Inflammation Research Group, Institute of Medical Biology, University i Tromsø (UiT)-The Arctic University of Norway, N-9037 Tromso, Norway.
| |
Collapse
|
25
|
Novel therapies and potential therapeutic targets in the management of chronic hepatitis B. Eur J Gastroenterol Hepatol 2017; 29:987-993. [PMID: 28538269 DOI: 10.1097/meg.0000000000000911] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Chronic hepatitis B is a persistent and progressive inflammatory liver disease caused by infection with the hepatitis B virus (HBV). More than 240 million individuals are infected with HBV worldwide and hepatitis B accounts for an estimated 650 000 deaths annually. Approximately up to 30% of chronically infected patients will develop complications of HBV infection including, but not limited to, liver cirrhosis, end-stage liver disease, and hepatocellular carcinoma. Currently approved therapies have improved clinical outcomes, but have a considerable side-effect profile, elevated cost, and a finite course of treatment. This has led to a growing interest in research for new therapies. As the mechanisms for HBV replication are becoming better understood, new potential targets have been discovered, leading to the development of new therapies. In this article, we describe the promising therapies that are under evaluation, showing their mechanisms of action, effects, and stage of development.
Collapse
|
26
|
In Silico Analysis of Epitope-Based Vaccine Candidates against Hepatitis B Virus Polymerase Protein. Viruses 2017; 9:v9050112. [PMID: 28509875 PMCID: PMC5454424 DOI: 10.3390/v9050112] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2017] [Revised: 05/06/2017] [Accepted: 05/10/2017] [Indexed: 12/16/2022] Open
Abstract
Hepatitis B virus (HBV) infection has persisted as a major public health problem due to the lack of an effective treatment for those chronically infected. Therapeutic vaccination holds promise, and targeting HBV polymerase is pivotal for viral eradication. In this research, a computational approach was employed to predict suitable HBV polymerase targeting multi-peptides for vaccine candidate selection. We then performed in-depth computational analysis to evaluate the predicted epitopes’ immunogenicity, conservation, population coverage, and toxicity. Lastly, molecular docking and MHC-peptide complex stabilization assay were utilized to determine the binding energy and affinity of epitopes to the HLA-A0201 molecule. Criteria-based analysis provided four predicted epitopes, RVTGGVFLV, VSIPWTHKV, YMDDVVLGA and HLYSHPIIL. Assay results indicated the lowest binding energy and high affinity to the HLA-A0201 molecule for epitopes VSIPWTHKV and YMDDVVLGA and epitopes RVTGGVFLV and VSIPWTHKV, respectively. Regions 307 to 320 and 377 to 387 were considered to have the highest probability to be involved in B cell epitopes. The T cell and B cell epitopes identified in this study are promising targets for an epitope-focused, peptide-based HBV vaccine, and provide insight into HBV-induced immune response.
Collapse
|
27
|
Kosinska AD, Bauer T, Protzer U. Therapeutic vaccination for chronic hepatitis B. Curr Opin Virol 2017; 23:75-81. [PMID: 28453967 DOI: 10.1016/j.coviro.2017.03.011] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Revised: 03/06/2017] [Accepted: 03/15/2017] [Indexed: 12/17/2022]
Abstract
A therapeutic vaccine is meant to activate the patient's immune system to fight and finally control or ideally eliminate an already established infectious pathogen. Whereas the success of prophylactic vaccination is based on rapid antibody-mediated neutralization of an invading pathogen, control and elimination of persistent viruses such as hepatitis, herpes or papilloma viruses requires multi-specific and polyfunctional effector T cell responses. These are ideally directed against continuously expressed viral antigens to keep the pathogen in check. Activation of a humoral immune response in order to lower viral antigen load and to limit virus spread, however, confers an additional benefit. Therapeutic vaccines are under development for a number of chronic infections and require an intelligent vaccine design. Hepatitis B virus (HBV) infection may serve as a prime example since a spontaneous, immune-mediated recovery of chronic hepatitis B and an elimination of the virus is possible even if it is observed only in very rare cases. In this review, we summarize the current knowledge and potential improvements of therapeutic vaccines for chronic hepatitis B.
Collapse
Affiliation(s)
- Anna D Kosinska
- Institute of Virology, Technische Universität München/Helmholtz Zentrum München, Munich, Germany; German Center for Infection research (DZIF), Munich Partner Site, Germany
| | - Tanja Bauer
- Institute of Virology, Technische Universität München/Helmholtz Zentrum München, Munich, Germany; German Center for Infection research (DZIF), Munich Partner Site, Germany
| | - Ulrike Protzer
- Institute of Virology, Technische Universität München/Helmholtz Zentrum München, Munich, Germany; German Center for Infection research (DZIF), Munich Partner Site, Germany.
| |
Collapse
|
28
|
Lobaina Y, Michel ML. Chronic hepatitis B: Immunological profile and current therapeutic vaccines in clinical trials. Vaccine 2017; 35:2308-2314. [PMID: 28351734 DOI: 10.1016/j.vaccine.2017.03.049] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Revised: 02/07/2017] [Accepted: 03/14/2017] [Indexed: 12/17/2022]
Abstract
More than 250million people worldwide are chronically infected with hepatitis B virus (CHB), and over half a million die each year due to CHB-associated liver complications such as cirrhosis and hepatocellular carcinoma. The translation of immunological knowledge about CHB into therapeutic strategies aiming to a sustainable hepatitis B virus (HBV) clearance has been challenging. In recent years, however, the understanding on the immune effectors required to overcome chronicity has notably increased thanks to preclinical and clinical research. Therapeutic vaccination may prove to be useful for treating CHB patients when coupled with current antiviral agents and other immunomodulatory strategies. This review summarizes current data and future perspectives on therapeutic vaccination. Other treatment alternatives that could be combined with vaccines for a complete cure from hepatitis B virus infection are also discussed.
Collapse
Affiliation(s)
- Yadira Lobaina
- Vaccine Department, Center for Genetic Engineering and Biotechnology, Havana, Cuba.
| | | |
Collapse
|
29
|
Golsaz-Shirazi F, Shokri F. Hepatitis B immunopathogenesis and immunotherapy. Immunotherapy 2016; 8:461-77. [PMID: 26973127 DOI: 10.2217/imt.16.3] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Worldwide there are over 248 million chronic carriers of HBV of whom about a third eventually develop severe HBV-related complications. Due to the major limitations of current therapeutic approaches, the development of more effective strategies to improve therapeutic outcomes in chronic hepatitis B (CHB) patients seems crucial. Immune activation plays a critical role in spontaneous viral control; therefore, new modalities based on stimulation of the innate and adaptive immune responses could result in the resolution of infection and are promising approaches. Here, we summarize the HBV immunopathogenesis, and discuss the encouraging results obtained from the promising immune-based innovations, such as therapeutic vaccination, cytokine therapy, cell-based therapies and blocking inhibitory receptors, as current and future immunotherapeutic interventions.
Collapse
Affiliation(s)
- Forough Golsaz-Shirazi
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Fazel Shokri
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran.,Monoclonal Antibody Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| |
Collapse
|
30
|
Zaric M, Ibarzo Yus B, Kalcheva PP, Klavinskis LS. Microneedle-mediated delivery of viral vectored vaccines. Expert Opin Drug Deliv 2016; 14:1177-1187. [PMID: 27591122 DOI: 10.1080/17425247.2017.1230096] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
INTRODUCTION Microneedle array platforms are a promising technology for vaccine delivery, due to their ease of administration with no sharp waste generated, small size, possibility of targeted delivery to the specified skin depth and efficacious delivery of different vaccine formulations, including viral vectors. Areas covered: Attributes and challenges of the most promising viral vector candidates that have advanced to the clinic and that have been leveraged for skin delivery by microneedles; The importance of understanding the immunobiology of antigen-presenting cells in the skin, in particular dendritic cells, in order to generate further improved skin vaccination strategies; recent studies where viral vectors expressing various antigens have been coupled with microneedle technology to examine their potential for improved vaccination. Expert opinion: Simple, economic and efficacious vaccine delivery methods are needed to improve health outcomes and manage possible outbreaks of new emerging viruses. Understanding what innate/inflammatory signals are required to induce both immediate and long-term responses remains a major hurdle in the development of the effective vaccines. One approach to meet these needs is microneedle-mediated viral vector vaccination. In order for this technology to fulfil this potential the industry must invest significantly to further develop its design, production, biosafety, delivery and large-scale manufacturing.
Collapse
Affiliation(s)
- Marija Zaric
- a Peter Gorer Department of Immunobiology , King's College London , London , UK
| | - Bárbara Ibarzo Yus
- a Peter Gorer Department of Immunobiology , King's College London , London , UK
| | | | | |
Collapse
|
31
|
Ghasemi F, Rostami S, Ghayour-Mobarhan M, Meshkat Z. Current progress in the development of therapeutic vaccines for chronic hepatitis B virus infection. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2016; 19:692-704. [PMID: 27635192 PMCID: PMC5010840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Accepted: 04/28/2016] [Indexed: 11/11/2022]
Abstract
Chronic hepatitis B is still a major public health issue despite the successful prophylactic vaccination attempts. Chronicity of hepatitis B virus (HBV) is mainly due to its ability to debilitate host's immune system. Therefore, major measures have been taken to stop this process and help patients with chronic hepatitis B infection recover from their illness. While satisfactory results have been achieved using preventive HBV vaccines, a reliable and effective therapeutic treatment is still in need of extensive studies. Current treatments for chronic hepatitis B include direct antiviral agents and nucleoside/nucleotide analogs, which are not always effective and are also costly. In addition, due to the fact that chronic HBV is responsible for debilitation of the immune system, studies have focused on developing therapeutic vaccines to help host's immune system recover and limit the infection. Several approaches including but not restricted to recombinant peptide-based, DNA-based, viral vector-based, and cell-based approaches are currently in use to develop therapeutic vaccines against the chronic form of HBV infection. In the current review, the authors will first discuss the role of the immune system in chronic hepatitis B infection and will then focus on latest advancements in therapeutic vaccination of HBV especially the clinical trials that have been carried out so far.
Collapse
Affiliation(s)
- Faezeh Ghasemi
- Department of New Sciences and Technology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Sina Rostami
- The Influenza Centre, Department of Clinical Science, University of Bergen, N-5021 Bergen, Norway
| | - Majid Ghayour-Mobarhan
- Biochemistry of Nutrition Research Center; School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Zahra Meshkat
- Antimicrobial Resistance Research Center, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
32
|
Backes S, Jäger C, Dembek CJ, Kosinska AD, Bauer T, Stephan AS, Dišlers A, Mutwiri G, Busch DH, Babiuk LA, Gasteiger G, Protzer U. Protein-prime/modified vaccinia virus Ankara vector-boost vaccination overcomes tolerance in high-antigenemic HBV-transgenic mice. Vaccine 2016; 34:923-32. [DOI: 10.1016/j.vaccine.2015.12.060] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Revised: 11/30/2015] [Accepted: 12/24/2015] [Indexed: 12/31/2022]
|
33
|
Graziani GM, Angel JB. Evaluating the efficacy of therapeutic HIV vaccines through analytical treatment interruptions. J Int AIDS Soc 2015; 18:20497. [PMID: 26561337 PMCID: PMC4641978 DOI: 10.7448/ias.18.1.20497] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Revised: 09/16/2015] [Accepted: 10/08/2015] [Indexed: 02/08/2023] Open
Abstract
INTRODUCTION The development of an effective therapeutic HIV vaccine that induces immunologic control of viral replication, thereby eliminating or reducing the need for antiretroviral therapy (ART), would be of great value. Besides the obvious challenges of developing a therapeutic vaccine that would generate effective, sustained anti-HIV immunity in infected individuals is the issue of how to best assess the efficacy of vaccine candidates. DISCUSSION This review discusses the various outcome measures assessed in therapeutic HIV vaccine clinical trials involving individuals receiving suppressive ART, with a particular focus on the role of analytical treatment interruption (ATI) as a way to assess the virologic control induced by an immunotherapy. This strategy is critical given that there are otherwise no readily available measures to determine the ability of a vaccine-induced immune response to effectively control HIV replication. The various outcome measures that have been used to assess vaccine efficacy in published therapeutic HIV vaccine clinical trials will also be discussed. Outcome measures have included the kinetics of viral rebound, the new viral set point and changes in the size of the viral reservoir. Clinically relevant outcomes such as the CD4 decline, the time to resume therapy or the time to meet the criterion to resume therapy, the proportion of participants who resume therapy and/or the development of clinical symptoms such as acute retroviral syndrome are also measures of vaccine efficacy. CONCLUSIONS Given the lack of consistency between therapeutic HIV vaccine trials in how efficacy is assessed, comparing vaccines has been difficult. It would, therefore, be beneficial to determine the most clinically relevant measure for use in future studies. Other recommendations for future clinical trials also include studying compartments in addition to blood and replacing ATIs with single-copy assays in situations in which the use of an ATI is not ideal.
Collapse
Affiliation(s)
| | - Jonathan B Angel
- Ottawa Hospital Research Institute, Ottawa, ON, Canada
- Division of Infectious Disease, The Ottawa Hospital, Ottawa, ON, Canada;
| |
Collapse
|
34
|
Zhang E, Kosinska A, Lu M, Yan H, Roggendorf M. Current status of immunomodulatory therapy in chronic hepatitis B, fifty years after discovery of the virus: Search for the "magic bullet" to kill cccDNA. Antiviral Res 2015; 123:193-203. [PMID: 26476376 DOI: 10.1016/j.antiviral.2015.10.009] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Revised: 10/09/2015] [Accepted: 10/09/2015] [Indexed: 12/12/2022]
Abstract
Chronic hepatitis B (CHB) is currently treated with IFN-α and nucleos(t)ide analogues, which have many clinical benefits, but there is no ultimate cure. The major problem consists in the persistence of cccDNA in infected hepatocytes. Because no antiviral drug has been evaluated which significantly reduces copies of cccDNA, cytolytic and noncytolytic approaches are needed. Effective virus-specific T- and B-cell responses remain crucial in eliminating cccDNA-carrying hepatocytes and for the long-term control of HBV infection. Reduction of viremia by antiviral drugs provides a window for reconstitution of an HBV-specific immune response. Preclinical studies in mice and woodchucks have shown that immunostimulatory strategies, such as prime-boost vaccination and PD-1 blockade, can boost a weak virus-specific T cell response and lead to effective control of HBV infection. Based on data obtained in our preclinical studies, the combination of antiviral drugs and immunomodulators may control HBV viremia during a patient's drug-off period. In this article, we review current immune-modulatory approaches for the treatment of chronic hepatitis B and the elimination of cccDNA in preclinical models. This article forms part of a symposium in Antiviral Research on "An unfinished story: from the discovery of the Australia antigen to the development of new curative therapies for hepatitis".
Collapse
Affiliation(s)
- Ejuan Zhang
- Mucosal Immunity Research Group, State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei, China
| | - Anna Kosinska
- Institute of Virology, Technische Universität München/Helmholtz Zentrum München, Munich, Germany
| | - Mengji Lu
- Institute for Virology, University Hospital of Essen, University of Duisburg-Essen, Essen, Germany
| | - Huimin Yan
- Mucosal Immunity Research Group, State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei, China
| | - Michael Roggendorf
- Institute of Virology, Technische Universität München/Helmholtz Zentrum München, Munich, Germany; Institute for Virology, University Hospital of Essen, University of Duisburg-Essen, Essen, Germany.
| |
Collapse
|
35
|
Sánchez-Sampedro L, Perdiguero B, Mejías-Pérez E, García-Arriaza J, Di Pilato M, Esteban M. The evolution of poxvirus vaccines. Viruses 2015; 7:1726-803. [PMID: 25853483 PMCID: PMC4411676 DOI: 10.3390/v7041726] [Citation(s) in RCA: 133] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Revised: 03/16/2015] [Accepted: 03/27/2015] [Indexed: 02/07/2023] Open
Abstract
After Edward Jenner established human vaccination over 200 years ago, attenuated poxviruses became key players to contain the deadliest virus of its own family: Variola virus (VARV), the causative agent of smallpox. Cowpox virus (CPXV) and horsepox virus (HSPV) were extensively used to this end, passaged in cattle and humans until the appearance of vaccinia virus (VACV), which was used in the final campaigns aimed to eradicate the disease, an endeavor that was accomplished by the World Health Organization (WHO) in 1980. Ever since, naturally evolved strains used for vaccination were introduced into research laboratories where VACV and other poxviruses with improved safety profiles were generated. Recombinant DNA technology along with the DNA genome features of this virus family allowed the generation of vaccines against heterologous diseases, and the specific insertion and deletion of poxvirus genes generated an even broader spectrum of modified viruses with new properties that increase their immunogenicity and safety profile as vaccine vectors. In this review, we highlight the evolution of poxvirus vaccines, from first generation to the current status, pointing out how different vaccines have emerged and approaches that are being followed up in the development of more rational vaccines against a wide range of diseases.
Collapse
MESH Headings
- Animals
- History, 18th Century
- History, 19th Century
- History, 20th Century
- History, 21st Century
- Humans
- Poxviridae/immunology
- Poxviridae/isolation & purification
- Smallpox/prevention & control
- Smallpox Vaccine/history
- Smallpox Vaccine/immunology
- Smallpox Vaccine/isolation & purification
- Vaccines, Attenuated/history
- Vaccines, Attenuated/immunology
- Vaccines, Attenuated/isolation & purification
- Vaccines, Synthetic/history
- Vaccines, Synthetic/immunology
- Vaccines, Synthetic/isolation & purification
Collapse
Affiliation(s)
- Lucas Sánchez-Sampedro
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CSIC), Madrid-28049, Spain.
| | - Beatriz Perdiguero
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CSIC), Madrid-28049, Spain.
| | - Ernesto Mejías-Pérez
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CSIC), Madrid-28049, Spain
| | - Juan García-Arriaza
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CSIC), Madrid-28049, Spain
| | - Mauro Di Pilato
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CSIC), Madrid-28049, Spain.
| | - Mariano Esteban
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CSIC), Madrid-28049, Spain.
| |
Collapse
|
36
|
Therapeutic vaccines in HBV: lessons from HCV. Med Microbiol Immunol 2015; 204:79-86. [PMID: 25573348 PMCID: PMC4305103 DOI: 10.1007/s00430-014-0376-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Accepted: 10/07/2014] [Indexed: 12/15/2022]
Abstract
Currently, millions of people infected with hepatitis B virus (HBV) are committed to decades of treatment with anti-viral therapy to control viral replication. However, new tools for immunotherapy that include both viral vectors and molecular checkpoint inhibitors are now available. This has led to a resurgence of interest in new strategies to develop immunotherapeutic strategies with the aim of inducing HBeAg seroconversion—an end-point that has been associated with a decrease in the rates of disease progression. Ultimately, a true cure will involve the elimination of covalently closed circular DNA which presents a greater challenge for immunotherapy. In this manuscript, I describe the development of immunotherapeutic strategies for HBV that are approaching or currently in clinical studies, and draw on observations of T cell function in natural infection supported by recent animal studies that may lead to additional rational vaccine strategies using checkpoint inhibitors. I also draw on our recent experience in developing potent vaccines for HCV prophylaxis based on simian adenoviral and MVA vectors used in prime–boost strategies in both healthy volunteers and HCV infected patients. I have shown that the induction of T cell immune responses is markedly attenuated when administered to people with persistent HCV viremia. These studies and recently published animal studies using the woodchuck model suggest that potent vaccines based on DNA or adenoviral vectored vaccination represent a rational way forward. However, combining these with drugs to suppress viral replication, alongside checkpoint inhibitors may be required to induce long-term immune control.
Collapse
|
37
|
Fontaine H, Kahi S, Chazallon C, Bourgine M, Varaut A, Buffet C, Godon O, Meritet JF, Saïdi Y, Michel ML, Scott-Algara D, Aboulker JP, Pol S. Anti-HBV DNA vaccination does not prevent relapse after discontinuation of analogues in the treatment of chronic hepatitis B: a randomised trial--ANRS HB02 VAC-ADN. Gut 2015; 64:139-47. [PMID: 24555998 DOI: 10.1136/gutjnl-2013-305707] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
OBJECTIVE The antiviral efficacy of nucleos(t)ide analogues whose main limitation is relapse after discontinuation requires long-term therapy. To overcome the risk of relapse and virological breakthrough during long-term therapy, we performed a phase I/II, open, prospective, multicentre trial using a HBV envelope-expressing DNA vaccine. DESIGN 70 patients treated effectively with nucleos(t)ide analogues for a median of 3 years (HBV DNA <12 IU/mL for at least 12 months) were randomised into two groups: one received five intramuscular injections of vaccine (weeks 0, 8, 16, 40 and 44) and one did not receive the vaccine. Analogues were stopped after an additional 48 weeks of treatment in patients who maintained HBV DNA <12 IU/mL with no clinical progression and monthly HBV DNA for 6 months. The primary endpoint was defined as viral reactivation at week 72 (HBV DNA >120 IU/mL) or impossibility of stopping treatment at week 48. RESULTS Reactivation occurred in 97% of each group after a median 28 days without liver failure but with an HBV DNA <2000 IU/mL in 33%; 99% of adverse reactions were mild to moderate. Immune responses were evaluated by enzyme-linked immunosorbent spot and proliferation assays: there was no difference in the percentage of patients with interferon-γ secreting cells and a specific T-cell proliferation to HBcAg but not to HBsAg after reactivation in each group. CONCLUSIONS Although it is fairly well tolerated, the HBV DNA vaccine does not decrease the risk of relapse in HBV-treated patients or the rate of virological breakthrough, and does not restore the anti-HBV immune response despite effective viral suppression by analogues. TRIAL REGISTRATION NUMBER NCT00536627.
Collapse
Affiliation(s)
- H Fontaine
- Institut Cochin, CNRS (UMR 8104) and INSERM U-1016, Université Paris Descartes, et Assistance Publique-Hôpitaux de Paris, Service d'Hépatologie, Cochin Hospital, Paris, France
| | - S Kahi
- INSERM SC10, Villejuif, France
| | | | - M Bourgine
- Laboratoire de pathogénèse des virus de l'hépatite B and INSERM U845, Institut Pasteur, Paris, France
| | - A Varaut
- Gastroenterology and Hepatology Unit, Pitié-Salpétrière Hospital, Paris, France
| | - C Buffet
- Gastroenterology and Hepatology Unit, Kremlin-Bicêtre Hospital, le Kremlin-Bicêtre, France
| | - O Godon
- Laboratoire de pathogénèse des virus de l'hépatite B and INSERM U845, Institut Pasteur, Paris, France
| | - J F Meritet
- Virology Unit, Cochin Hospital, Paris, France
| | - Y Saïdi
- INSERM SC10, Villejuif, France
| | - M L Michel
- Laboratoire de pathogénèse des virus de l'hépatite B and INSERM U845, Institut Pasteur, Paris, France
| | - D Scott-Algara
- Unité de Régulation des Infections Rétrovirales, Institut Pasteur
| | | | - S Pol
- Institut Cochin, CNRS (UMR 8104) and INSERM U-1016, Université Paris Descartes, et Assistance Publique-Hôpitaux de Paris, Service d'Hépatologie, Cochin Hospital, Paris, France
| | | |
Collapse
|
38
|
Xue M, Fan F, Ding L, Liu J, Su S, Yin P, Cao M, Zhao W, Hu HM, Wang L. An autophagosome-based therapeutic vaccine for HBV infection: a preclinical evaluation. J Transl Med 2014; 12:361. [PMID: 25526800 PMCID: PMC4301925 DOI: 10.1186/s12967-014-0361-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2014] [Accepted: 12/11/2014] [Indexed: 02/11/2023] Open
Abstract
Background For more than 240 million chronic HBV carriers worldwide, effective therapeutic HBV vaccines are urgently needed. Recently, we demonstrated that autophagosomes were efficient antigens carriers and capable to cross-prime robust T-cell responses and mediate regression of multiple established tumors. Here we tested whether autophagosomes derived from HBV expressing cells could also function as a therapeutic vaccine. Methods We generated an autophagosome-based HBV vaccine from HBV-expressing hepatoma cells and examined its ability to induce polyvalent anti-HBV T-cell responses and therapeutic efficacy in mouse models that mimic acute and chronic HBV infection in human. Results When compared to the vaccine based on recombinant HBsAg, autophagosome-based HBV vaccine cross-primed multi-specific anti-HBV T-cell responses and significantly reduced HBV replication and HBcAg expression in livers of both acute and chronic mouse models. Therapeutic effect of this HBV vaccine depended on anti-HBV CD8+ effector T cells and associated with increased HBsAg and HBcAg specific IFN-γ producing T cells in the chronic mouse model. Conclusions These results indicated that autophagosome-based HBV vaccine could effectively suppress the HBV replication, clear the HBV infected hepatocytes, and break the HBV tolerance in mouse model. The potential clinical application of autophagosome-based HBV vaccine is discussed. Electronic supplementary material The online version of this article (doi:10.1186/s12967-014-0361-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Meng Xue
- Department of Microbiology and Immunology, Medical School of Southeast University, Nanjing, Jiangsu, PR China.
| | - Fei Fan
- Department of Microbiology and Immunology, Medical School of Southeast University, Nanjing, Jiangsu, PR China.
| | - Lei Ding
- Department of Microbiology and Immunology, Medical School of Southeast University, Nanjing, Jiangsu, PR China.
| | - Jingyu Liu
- Department of Microbiology and Immunology, Medical School of Southeast University, Nanjing, Jiangsu, PR China.
| | - Shu Su
- Department of Microbiology and Immunology, Medical School of Southeast University, Nanjing, Jiangsu, PR China.
| | - Pengfei Yin
- Department of Microbiology and Immunology, Medical School of Southeast University, Nanjing, Jiangsu, PR China.
| | - Meng Cao
- Department of Microbiology and Immunology, Medical School of Southeast University, Nanjing, Jiangsu, PR China.
| | - Wei Zhao
- Cancer Research and Biotherapy Center, the Second Affiliated Hospital of Southeast University, Nanjing, Jiangsu, PR China.
| | - Hong-ming Hu
- Cancer Research and Biotherapy Center, the Second Affiliated Hospital of Southeast University, Nanjing, Jiangsu, PR China. .,Laboratory of Cancer Immunobiology, Earle A. Chiles Research Institute, Providence Portland Medical Center, Portland, Oregon, USA.
| | - Lixin Wang
- Department of Microbiology and Immunology, Medical School of Southeast University, Nanjing, Jiangsu, PR China. .,Cancer Research and Biotherapy Center, the Second Affiliated Hospital of Southeast University, Nanjing, Jiangsu, PR China.
| |
Collapse
|
39
|
Therapeutic vaccines in treating chronic hepatitis B: the end of the beginning or the beginning of the end? Med Microbiol Immunol 2014; 204:121-9. [DOI: 10.1007/s00430-014-0381-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2014] [Accepted: 09/15/2014] [Indexed: 12/13/2022]
|
40
|
Rosales R, López-Contreras M, Rosales C, Magallanes-Molina JR, Gonzalez-Vergara R, Arroyo-Cazarez JM, Ricardez-Arenas A, del Follo-Valencia A, Padilla-Arriaga S, Guerrero MV, Pirez MA, Arellano-Fiore C, Villarreal F. Regression of human papillomavirus intraepithelial lesions is induced by MVA E2 therapeutic vaccine. Hum Gene Ther 2014; 25:1035-49. [PMID: 25275724 PMCID: PMC4270165 DOI: 10.1089/hum.2014.024] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Accepted: 09/23/2014] [Indexed: 01/07/2023] Open
Abstract
Human papilloma viruses can induce warts, condylomas, and other intraepithelial cervical lesions that can progress to cancer. Cervical cancer is a serious problem in developing countries because early detection is difficult, and thus proper early treatment is many times missing. In this phase III clinical trial, we evaluated the potential use of MVA E2 recombinant vaccinia virus to treat intraepithelial lesions associated with papillomavirus infection. A total of 1176 female and 180 male patients with intraepithelial lesions were studied. They were injected with 10(7) MVA E2 virus particles directly into their uterus, urethra, vulva, or anus. Patients were monitored by colposcopy and cytology. Immune response was determined by measuring the antibody titer against MVA E2 virus and by analyzing the cytotoxic activity against cancer cells bearing papillomavirus DNA. Papillomavirus was determined by the Hybrid Capture method or by polymerase chain reaction analysis. By histology, 1051 (89.3%) female patients showed complete elimination of lesions after treatment with MVA E2. In 28 (2.4%) female patients, the lesion was reduced to CIN 1. Another 97 (8.3%) female patients presented isolated koilocytes after treatment. In men, all lesions were completely eliminated. All MVA E2-treated patients developed antibodies against the MVA E2 vaccine and generated a specific cytotoxic response against papilloma-transformed cells. Papillomavirus DNA was not detected after treatment in 83% of total patients treated. MVA E2 did not generate any apparent side effects. These data suggest that therapeutic vaccination with MVA E2 vaccine is an excellent candidate to stimulate the immune system and generate regression in intraepithelial lesions when applied locally.
Collapse
Affiliation(s)
| | | | - Carlos Rosales
- Instituto de Investigaciones Biomédicas, CP 04510 Universidad Nacional Autónoma de México, Mexico City, Mexico
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Baltayiannis G, Karayiannis P. Treatment options beyond IFNα and NUCs for chronic HBV infection: expectations for tomorrow. J Viral Hepat 2014; 21:753-61. [PMID: 25271858 DOI: 10.1111/jvh.12307] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2014] [Accepted: 07/01/2014] [Indexed: 12/21/2022]
Abstract
Chronic hepatitis B virus (HBV) infection may progress to cirrhosis, hepatocellular carcinoma (HCC) and end-stage liver failure with time. Interruption of this process can only be achieved through effective antiviral treatment. This approach has so far involved the use of immunomodulators such as pegylated interferon alpha (Peg-IFNα) for a finite period of up to a year and nucleos-(t)ide analogues (NUCs) for treatment over much longer periods of time. The latter act by suppressing HBV replication at the level of DNA synthesis by inhibiting the viral reverse transcriptase/DNA polymerase and causing premature termination of DNA synthesis. The ideal treatment end point is loss of HBsAg in both HBeAg+ve and HBeAg-ve patients following monotherapy. This, however, is only achievable in a minority of patients. Secondary outcomes are durable HBeAg loss and seroconversion to anti-HBe, which occur in about 18-30% of HBeAg+ve patients depending on the antiviral used, and sustained suppression of HBV-DNA accompanied by biochemical normalization and histological improvement in non-HBeAg+ve seroconverting and HBeAg-ve patients. There is therefore a need for additional direct-acting antivirals (DAAs) targeting different stages of the life cycle of the virus, as well as immunotherapeutic approaches. Such developments may pave the way for their use either alone or more likely in combination in the fight against chronic HBV infection. Such drugs or approaches, which are currently undergoing preclinical or clinical testing, are the subject of this review.
Collapse
Affiliation(s)
- G Baltayiannis
- Medical School, University of Ioannina, Ioannina, Greece
| | | |
Collapse
|
42
|
Developments in Viral Vector-Based Vaccines. Vaccines (Basel) 2014; 2:624-41. [PMID: 26344749 PMCID: PMC4494222 DOI: 10.3390/vaccines2030624] [Citation(s) in RCA: 288] [Impact Index Per Article: 26.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2014] [Revised: 06/18/2014] [Accepted: 06/30/2014] [Indexed: 12/22/2022] Open
Abstract
Viral vectors are promising tools for gene therapy and vaccines. Viral vector-based vaccines can enhance immunogenicity without an adjuvant and induce a robust cytotoxic T lymphocyte (CTL) response to eliminate virus-infected cells. During the last several decades, many types of viruses have been developed as vaccine vectors. Each has unique features and parental virus-related risks. In addition, genetically altered vectors have been developed to improve efficacy and safety, reduce administration dose, and enable large-scale manufacturing. To date, both successful and unsuccessful results have been reported in clinical trials. These trials provide important information on factors such as toxicity, administration dose tolerated, and optimized vaccination strategy. This review highlights major viral vectors that are the best candidates for clinical use.
Collapse
|
43
|
Quinan BR, Daian DSO, Coelho FM, da Fonseca FG. Modified vaccinia virus Ankara as vaccine vectors in human and veterinary medicine. Future Virol 2014. [DOI: 10.2217/fvl.13.129] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
ABSTRACT: Disease prevention through vaccination is one of the most important achievements of medicine. Today, we have a substantial number of vaccines against a variety of pathogens. In this context, poxviruses and vaccinology are closely related, as the birth of modern vaccinology was marked by the use of poxviruses as immunogens and so was the eradication of smallpox, one of the world's most feared diseases ever. Nowadays, poxviruses continue to notoriously contribute to vaccinology since their use as vaccine vectors has become popular and widespread. One of the most promising vectors is the modified vaccinia ankara. In this review we provide an overview of the contribution of poxvirus to vaccine immunology, particularly focusing on modified vaccinia ankara-based vaccines developed to date.
Collapse
Affiliation(s)
- Bárbara R Quinan
- Laboratory of Basic & Applied Virology, Department of Microbiology, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Danielle SO Daian
- Laboratory of Basic & Applied Virology, Department of Microbiology, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Fabiana M Coelho
- Laboratory of Basic & Applied Virology, Department of Microbiology, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Flávio G da Fonseca
- Laboratory of Basic & Applied Virology, Department of Microbiology, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
- Centro de Pesquisas René Rachou, FIOCRUZ, Belo Horizonte, MG, Brazil
- Av. Antônio Carlos 6627, Universidade Federal de Minas Gerais, Instituto de Ciências Biológicas, Departamento de Microbiologia. Belo Horizonte, MG, Brazil, 31270-901
| |
Collapse
|
44
|
Gómez CE, Perdiguero B, García-Arriaza J, Esteban M. Clinical applications of attenuated MVA poxvirus strain. Expert Rev Vaccines 2013; 12:1395-416. [PMID: 24168097 DOI: 10.1586/14760584.2013.845531] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The highly attenuated poxvirus strain modified vaccinia virus Ankara (MVA) has reached maturity as a vector delivery system and as a vaccine candidate against a broad spectrum of diseases. This has been largely recognized from research on virus-host cell interactions and immunological studies in pre-clinical and clinical trials. This review addresses the studies of MVA vectors used in phase I/II clinical trials, with the aim to provide the main findings obtained on their behavior when tested against relevant human diseases and cancer and also highlights the strategies currently implemented to improve the MVA immunogenicity. The authors assess that MVA vectors are progressing as strong vaccine candidates either alone or when administered in combination with other vectors.
Collapse
Affiliation(s)
- Carmen Elena Gómez
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | | | | | | |
Collapse
|
45
|
Treatment of children with chronic viral hepatitis: what is available and what is in store. World J Pediatr 2013; 9:212-20. [PMID: 23929253 DOI: 10.1007/s12519-013-0426-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2012] [Accepted: 02/07/2013] [Indexed: 12/14/2022]
Abstract
BACKGROUND At present, therapy of children with chronic hepatitis B and C is still based on few drugs, all burdened by a series of side-effects, unsatisfactory serum conversion rates, and/or drug-resistance. Moreover, selection of subjects to treat with conventional therapies is not univocal, especially during the pediatric age when the disease course is often mild with significant spontaneous seroconversion rate. Our review deals with pros and cons points when a physician decides to design a drug therapy for a child with chronic viral hepatitis, and different possible therapeutic opportunities. METHODS A literature search was performed through PubMed. The newest articles, reviews, systematic reviews, and guidelines were included in this review. RESULTS The management of children with viral hepatitis is still controversial over whom and when to treat and the use of drug(s). Novel therapeutic strategies have been evaluated only in clinical and preclinical trials involving, for instance, "therapeutic" vaccines. The data on safety and effectiveness of new drugs are also reviewed. CONCLUSION The results of reported studies confirmed that at least some of the new drugs, with greater efficacy and/or minor side-effects, will be used clinically.
Collapse
|
46
|
Saade F, Buronfosse T, Guerret S, Pradat P, Chevallier M, Zoulim F, Jamard C, Cova L. In vivo infectivity of liver extracts after resolution of hepadnaviral infection following therapy associating DNA vaccine and cytokine genes. J Viral Hepat 2013; 20:e56-65. [PMID: 23490390 DOI: 10.1111/jvh.12023] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2012] [Accepted: 08/24/2012] [Indexed: 12/19/2022]
Abstract
DNA-based vaccination appears of promise for chronic hepatitis B immunotherapy, although there is an urgent need to increase its efficacy. In this preclinical study, we evaluated the therapeutic benefit of cytokine (IL-2, IFN-γ) genes co-delivery with DNA vaccine targeting hepadnaviral proteins in the chronic duck hepatitis B virus (DHBV) infection model. Then, we investigated the persistence of replication-competent virus in the livers of apparently resolved animals. DHBV carriers received four injections of plasmids encoding DHBV envelope and core alone or co-delivered with duck IL-2 (DuIL-2) or duck IFN-γ (DuIFN-γ) plasmids. After long-term (8 months) follow-up, viral covalently closed circular (ccc) DNA was analysed in duck necropsy liver samples. Liver homogenates were also tested for in vivo infectivity in neonatal ducklings. Co-delivery of DuIFN-γ resulted in significantly lower mean viremia starting from week 21. Viral cccDNA was undetectable by conventional methods in the livers of 25% and 57% of animals co-immunized with DuIL-2 and DuIFN-γ, respectively. Interestingly, inoculation of liver homogenates from 7 such apparently resolved animals, exhibiting cccDNA undetectable in Southern blotting and DHBV expression undetectable or restricted to few hepatocytes, revealed that three liver homogenates transmitted high-titre viremia (3-5×10(10) vge/mL) to naïve animals. In conclusion, our results indicate that IFN-γ gene co-delivery considerably enhances immunotherapeutic efficacy of DNA vaccine targeting hepadnaviral proteins. Importantly, we also showed that livers exhibiting only minute amounts of hepadnaviral cccDNA could induce extremely high-titre infection, highlighting the caution that should be taken in occult hepatitis B patients to prevent HBV transmission in liver transplantation context.
Collapse
Affiliation(s)
- F Saade
- Université de Lyon, Lyon, Lyon, France
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Hotez PJ, Dumonteil E, Heffernan MJ, Bottazzi ME. Innovation for the 'bottom 100 million': eliminating neglected tropical diseases in the Americas. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2013; 764:1-12. [PMID: 23654053 DOI: 10.1007/978-1-4614-4726-9_1] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
An estimated 100 million people in the Latin American and Caribbean (LAC) region live on less than US$2 per day, while another 46 million people in the US live below that nation's poverty line. Almost all of the 'bottom 100 million' people suffer from at least one neglected tropical disease (NTD), including one-half of the poorest people in the region infected with hookworms, 10% with Chagas disease, and up to 1-2% with dengue, schistosomiasis, and/or leishmaniasis. In the US, NTDs such as Chagas disease, cysticercosis, toxocariasis, and trichomoniasis are also common among poor populations. These NTDs trap the poorest people in the region in poverty, because of their impact on maternal and child health, and occupational productivity. Through mass drug administration (MDA), several NTDs are on the verge of elimination in the Americas, including lymphatic filariasis, onchocerciasis, trachoma, and possibly leprosy. In addition, schistosomiasis may soon be eliminated in the Caribbean. However, for other NTDs including hookworm infection, Chagas disease, dengue, schistosomiasis, and leishmaniasis, a new generation of 'anti-poverty vaccines' will be required. Several vaccines for dengue are under development by multinational pharmaceutical companies, whereas others are being pursued through non-profit product development partnerships (PDPs), in collaboration with developing country manufacturers in Brazil and Mexico. The Sabin Vaccine Institute PDP is developing a primarily preventive bivalent recombinant human hookworm vaccine, which is about to enter phase 1 clinical testing in Brazil, as well as a new therapeutic Chagas disease vaccine in collaboration with several Mexican institutions. The Chagas disease vaccine would be administered to seropositive patients to delay or prevent the onset of Chagasic cardiomyopathy (secondary prevention). Together, MDA and the development of new anti-poverty vaccines afford an opportunity to implement effective control and elimination strategies for the major NTDs in the Americas.
Collapse
Affiliation(s)
- Peter J Hotez
- Sabin Vaccine Institute, Texas Children's Center for Vaccine Development, Department of Pediatrics, National School of Tropical Medicine, Baylor College of Medicine, Tropical Medicine, Baylor College of Medicine, Houston, USA.
| | | | | | | |
Collapse
|
48
|
Tomchuck SL, Norton EB, Garry RF, Bunnell BA, Morris CA, Freytag LC, Clements JD. Mesenchymal stem cells as a novel vaccine platform. Front Cell Infect Microbiol 2012; 2:140. [PMID: 23162801 PMCID: PMC3499769 DOI: 10.3389/fcimb.2012.00140] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2012] [Accepted: 10/22/2012] [Indexed: 01/14/2023] Open
Abstract
Vaccines are the most efficient and cost-effective means of preventing infectious disease. However, traditional vaccine approaches have thus far failed to provide protection against human immunodeficiency virus (HIV), tuberculosis, malaria, and many other diseases. New approaches to vaccine development are needed to address some of these intractable problems. In this report, we review the literature identifying stimulatory effects of mesenchymal stem cells (MSC) on immune responses and explore the potential for MSC as a novel, universal vaccination platform. MSC are unique bone marrow-derived multipotent progenitor cells that are presently being exploited as gene therapy vectors for a variety of conditions, including cancer and autoimmune diseases. Although MSC are predominantly known for anti-inflammatory properties during allogeneic MSC transplant, there is evidence that MSC can actually promote adaptive immunity under certain settings. MSC have also demonstrated some success in anti-cancer therapeutic vaccines and anti-microbial prophylactic vaccines, as we report, for the first time, the ability of modified MSC to express and secrete a viral antigen that stimulates antigen-specific antibody production in vivo. We hypothesize that the unique properties of modified MSC may enable MSC to serve as an unconventional but innovative, vaccine platform. Such a platform would be capable of expressing hundreds of proteins, thereby generating a broad array of epitopes with correct post-translational processing, mimicking natural infection. By stimulating immunity to a combination of epitopes, it may be possible to develop prophylactic and even therapeutic vaccines to tackle major health problems including those of non-microbial and microbial origin, including cancer, or an infectious disease like HIV, where traditional vaccination approaches have failed.
Collapse
Affiliation(s)
- Suzanne L Tomchuck
- Department of Microbiology and Immunology, Tulane University School of Medicine New Orleans, LA, USA
| | | | | | | | | | | | | |
Collapse
|
49
|
Dumonteil E, Bottazzi ME, Zhan B, Heffernan MJ, Jones K, Valenzuela JG, Kamhawi S, Ortega J, de Leon Rosales SP, Lee BY, Bacon KM, Fleischer B, Slingsby BT, Cravioto MB, Tapia-Conyer R, Hotez PJ. Accelerating the development of a therapeutic vaccine for human Chagas disease: rationale and prospects. Expert Rev Vaccines 2012; 11:1043-55. [PMID: 23151163 PMCID: PMC3819810 DOI: 10.1586/erv.12.85] [Citation(s) in RCA: 98] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Chagas disease is a leading cause of heart disease affecting approximately 10 million people in Latin America and elsewhere worldwide. The two major drugs available for the treatment of Chagas disease have limited efficacy in Trypanosoma cruzi-infected adults with indeterminate (patients who have seroconverted but do not yet show signs or symptoms) and determinate (patients who have both seroconverted and have clinical disease) status; they require prolonged treatment courses and are poorly tolerated and expensive. As an alternative to chemotherapy, an injectable therapeutic Chagas disease vaccine is under development to prevent or delay Chagasic cardiomyopathy in patients with indeterminate or determinate status. The bivalent vaccine will be comprised of two recombinant T. cruzi antigens, Tc24 and TSA-1, formulated on alum together with the Toll-like receptor 4 agonist, E6020. Proof-of-concept for the efficacy of these antigens was obtained in preclinical testing at the Autonomous University of Yucatan. Here the authors discuss the potential for a therapeutic Chagas vaccine as well as the progress made towards such a vaccine, and the authors articulate a roadmap for the development of the vaccine as planned by the nonprofit Sabin Vaccine Institute Product Development Partnership and Texas Children's Hospital Center for Vaccine Development in collaboration with an international consortium of academic and industrial partners in Mexico, Germany, Japan, and the USA.
Collapse
Affiliation(s)
- Eric Dumonteil
- Laboratorio de Parasitología Centro De Investigaciones Regional, “Dr. Hideo Noguchi” Autonomous University of Yucatan (UADY), Merida, Mexico
| | - Maria Elena Bottazzi
- Sabin Vaccine Institute and Texas Children’s Hospital Center for Vaccine Development, Departments of Pediatrics (Section of Pediatric Tropical Medicine) and Molecular Virology & Microbiology, National School of Tropical Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Bin Zhan
- Sabin Vaccine Institute and Texas Children’s Hospital Center for Vaccine Development, Department of Pediatrics (Section of Pediatric Tropical Medicine), National School of Tropical Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Michael J Heffernan
- Sabin Vaccine Institute and Texas Children’s Hospital Center for Vaccine Development, Department of Pediatrics (Section of Pediatric Tropical Medicine), National School of Tropical Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Kathryn Jones
- Sabin Vaccine Institute and Texas Children’s Hospital Center for Vaccine Development, Departments of Pediatrics (Section of Pediatric Tropical Medicine) and Molecular Virology & Microbiology, National School of Tropical Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Jesus G Valenzuela
- Vector Molecular Biology Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, USA
| | - Shaden Kamhawi
- Vector Molecular Biology Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, USA
| | - Jaime Ortega
- Departamento de Biotecnología y Bioingeniería, Centro de Investigacion y de Estudios Avanzados - Instituto Politécnico Nacional (CINVESTAV-IPN), Mexico City, Mexico
| | | | - Bruce Y Lee
- Public Health Computational and Operations Research (PHICOR), University of Pittsburgh, Pittsburgh PA, USA
| | - Kristina M Bacon
- Public Health Computational and Operations Research (PHICOR), University of Pittsburgh, Pittsburgh PA, USA
| | | | | | | | | | - Peter J Hotez
- Sabin Vaccine Institute and Texas Children’s Hospital Center for Vaccine Development, Departments of Pediatrics (Section of Pediatric Tropical Medicine) and Molecular Virology & Microbiology, National School of Tropical Medicine, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
50
|
Khawaja G, Buronfosse T, Jamard C, Abdul F, Guerret S, Zoulim F, Luxembourg A, Hannaman D, Evans CF, Hartmann D, Cova L. In vivo electroporation improves therapeutic potency of a DNA vaccine targeting hepadnaviral proteins. Virology 2012; 433:192-202. [PMID: 22921316 DOI: 10.1016/j.virol.2012.07.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2012] [Revised: 06/01/2012] [Accepted: 07/16/2012] [Indexed: 12/15/2022]
Abstract
This preclinical study investigated the therapeutic efficacy of electroporation (EP)-based delivery of plasmid DNA (pDNA) encoding viral proteins (envelope, core) and IFN-γ in the duck model of chronic hepatitis B virus (DHBV) infection. Importantly, only DNA EP-therapy resulted in a significant decrease in mean viremia titers and in intrahepatic covalently closed circular DNA (cccDNA) levels in chronic DHBV-carrier animals, compared with standard needle pDNA injection (SI). In addition, DNA EP-therapy stimulated in all virus-carriers a humoral response to DHBV preS protein, recognizing a broader range of major antigenic regions, including neutralizing epitopes, compared with SI. DNA EP-therapy led also to significant higher intrahepatic IFN-γ RNA levels in DHBV-carriers compared to other groups, in the absence of adverse effects. We provide the first evidence on DNA EP-therapy benefit in terms of hepadnaviral infection clearance and break of immune tolerance in virus-carriers, supporting its clinical application for chronic hepatitis B.
Collapse
MESH Headings
- Animals
- Antibodies, Viral/biosynthesis
- Antibodies, Viral/immunology
- Chronic Disease
- DNA, Circular/genetics
- DNA, Circular/immunology
- Disease Models, Animal
- Ducks
- Electroporation
- Epitopes
- Hepadnaviridae Infections/immunology
- Hepadnaviridae Infections/prevention & control
- Hepadnaviridae Infections/veterinary
- Hepadnaviridae Infections/virology
- Hepatitis B Vaccines/administration & dosage
- Hepatitis B Vaccines/immunology
- Hepatitis B Virus, Duck/immunology
- Hepatitis, Viral, Animal/immunology
- Hepatitis, Viral, Animal/prevention & control
- Hepatitis, Viral, Animal/virology
- Immune Tolerance
- Immunity, Humoral
- Interferon-gamma/biosynthesis
- Interferon-gamma/immunology
- Plasmids
- Vaccines, DNA/administration & dosage
- Vaccines, DNA/immunology
- Viral Core Proteins/genetics
- Viral Core Proteins/immunology
- Viral Envelope Proteins/genetics
- Viral Envelope Proteins/immunology
- Viremia/immunology
- Viremia/prevention & control
- Viremia/veterinary
- Viremia/virology
Collapse
|