1
|
Bhatnagar K, Raju S, Patki N, Motiani RK, Chaudhary S. Targeting mineral metabolism in cancer: Insights into signaling pathways and therapeutic strategies. Semin Cancer Biol 2025:S1044-579X(25)00039-2. [PMID: 40024314 DOI: 10.1016/j.semcancer.2025.02.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 01/29/2025] [Accepted: 02/21/2025] [Indexed: 03/04/2025]
Abstract
Cancer remains the second leading cause of death worldwide, emphasizing the critical need for effective treatment and control strategies. Essential minerals such as copper, iron, zinc, selenium, phosphorous, calcium, and magnesium are integral to various biological processes and significantly influence cancer progression through altered metabolic pathways. For example, dysregulated copper levels promote tumor growth, while cancer cells exhibit an increased dependency on iron for signaling and redox reactions. Zinc influences tumor development through pathways such as Akt-p21. Selenium, primarily through its role in selenoproteins, exhibits anticancer potential but may also contribute to tumor progression. Similarly, dietary phosphate exacerbates tumorigenesis, metastasis, and angiogenesis through signaling pathway activation. Calcium, the most abundant mineral in the body, is tightly regulated within cells, and its dysregulation is a hallmark of various cancers. Magnesium deficiency, on the other hand, promotes cancer progression by fostering inflammation and free radical-induced DNA mutations. Interestingly, magnesium also plays a dual role, with low levels enhancing epithelial-mesenchymal transition (EMT), a critical process in cancer metastasis. This complex interplay of essential minerals underscores their potential as therapeutic targets. Dysregulation of these minerals and their pathways could be exploited to selectively target cancer cells, offering novel therapeutic strategies. This review summarizes current research on the abnormal accumulation or depletion of these microelements in tumor biology, drawing evidence from animal models, cell lines, and clinical samples. We also highlight the potential of these minerals as biomarkers for cancer diagnosis and prognosis, as well as therapeutic approaches involving metal chelators, pharmacological agents, and nanotechnology. By highlighting the intricate roles of these minerals in cancer biology, we aim to inspire further research in this critical yet underexplored area of oncology.
Collapse
Affiliation(s)
- Kartik Bhatnagar
- Department of Biotechnology, School of Engineering and Applied Sciences, Bennett University, Plot Nos. 8-11, Tech Zone 2, Greater Noida, Uttar Pradesh, 201310, India.
| | - Sharon Raju
- Laboratory of Calciomics and Systemic Pathophysiology, Regional Centre for Biotechnology (RCB), Faridabad-Gurugram Expressway, Faridabad, Haryana, 121001, India.
| | - Ninad Patki
- Department of Biotechnology, School of Engineering and Applied Sciences, Bennett University, Plot Nos. 8-11, Tech Zone 2, Greater Noida, Uttar Pradesh, 201310, India.
| | - Rajender K Motiani
- Laboratory of Calciomics and Systemic Pathophysiology, Regional Centre for Biotechnology (RCB), Faridabad-Gurugram Expressway, Faridabad, Haryana, 121001, India.
| | - Sarika Chaudhary
- Department of Biotechnology, School of Engineering and Applied Sciences, Bennett University, Plot Nos. 8-11, Tech Zone 2, Greater Noida, Uttar Pradesh, 201310, India.
| |
Collapse
|
2
|
Qin W, Nie P, Hui X, Chen F, Hu X, Shi W, Luo M, Li B. Research progress of hypoxia-inducible factor-1α and zinc in the mechanism of diabetic kidney disease. Front Pharmacol 2025; 16:1537749. [PMID: 39995420 PMCID: PMC11847805 DOI: 10.3389/fphar.2025.1537749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Accepted: 01/16/2025] [Indexed: 02/26/2025] Open
Abstract
Diabetic kidney disease is one of the common complications in diabetic patients and has gradually become an important pathogenic factor in chronic kidney disease. Therefore, studying the mechanisms of its occurrence and development is of great significance for the prevention and treatment of diabetic kidney disease. Some researchers have pointed out that there is a phenomenon of hypoxia in diabetic kidney tissue and believe that hypoxia-inducible factor-1α is closely related to the occurrence and progression of diabetic kidney disease. Additionally, the homeostasis of zinc plays a key role in the body's adaptation to hypoxic environments. However, the specific relationship among these three factors remains unclear. This article provides a detailed review of the multiple roles of hypoxia-inducible factor-1α in the pathogenesis of diabetic kidney disease, including: regulating angiogenesis, increasing the expression of erythropoietin, modulating oxidative stress through the PI3K/AKT and HIF-1α/HO-1 pathways, promoting inflammatory cell infiltration and the release of inflammatory factors to induce inflammatory responses, facilitating epithelial-mesenchymal transition, pathological angiogenesis, and promoting the release of fibrotic factors, ultimately leading to renal fibrosis. Furthermore, HIF-1α also participates in the occurrence and development of diabetic kidney disease through mechanisms such as regulating apoptosis, inducing mitochondrial autophagy, and vascular calcification. At the same time, this article clarifies the regulatory role of the trace element zinc on hypoxia-inducible factor-1α in diabetic kidney disease. This article provides references and insights for further research on the pathogenesis and progression of diabetic kidney disease.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Manyu Luo
- Department of Nephropathy, The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Bing Li
- Department of Nephropathy, The Second Hospital of Jilin University, Changchun, Jilin, China
| |
Collapse
|
3
|
Hu J, Yang B, Tao Z, Chen J, Zhang X, Wang S, Xing G, Ngeng NA, Malik A, Appiah-Kubi K, Farina M, Skalny AV, Tinkov AA, Aschner M, Lu R. The role of HIF-1α/BNIP3/mitophagy in acrylonitrile-induced neuronal death in HT22 cells and mice: A potential neuroprotection target. Chem Biol Interact 2025; 406:111327. [PMID: 39615733 DOI: 10.1016/j.cbi.2024.111327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 05/07/2024] [Accepted: 11/28/2024] [Indexed: 12/13/2024]
Abstract
Acrylonitrile (AN) is a widely utilized organic compound in the production of diverse industrial synthetic materials. While acute exposure to AN can cause neurotoxicity, the precise mechanism remains unclear. Hypoxia-inducible factor 1 alpha (HIF-1α) is a pivotal transcription factor that coordinates and orchestrates multiple physiological processes to adapt to hypoxic conditions, ensuring cellular survival and homeostasis. In this study, we used in vitro (cultured mouse hippocampal neuronal cell line, HT22) and in vivo (AN exposed mice) approaches to investigate the potential modulator effects of HIF-1α in AN-induced neurotoxicity. In vitro, AN exposure caused concentration-dependent toxicity in HT22 cells, which was paralleled by increased Bax levels while decreasing Bcl-2. Exposure to AN resulted in reduced protein levels of HIF-1α, Bcl-2 19-kDa interacting protein 3 (BNIP3), microtubule-associated protein 1 light chain 3 beta (LC3B) and Beclin1, while increased the protein levels of the translocase of outer mitochondrial membrane 20 (TOM20). Furthermore, mitochondrial morphology and function were compromised, suggesting that AN impaired HIF-1α/BNIP3-mediated mitochondrial autophagy and promoted apoptosis. Treatment with a HIF-1α activator, cobalt chloride (CoCl2), reversed these effects, while pretreatment with a HIF-1α inhibitor, 2-methoxyestradiol (2-MeOE2), augmented them. In BNIP3 overexpressing HT22 cells, enhanced cell viability and reduced apoptosis rates were observed. Furthermore, the HIF-1α/BNIP3 pathway was activated by the prolyl hydroxylase (PHD2) inhibitor, deferoxamine (DFO), which increased HT22 cell viability. Similarly, the activation of HIF-1α by administering 20 mg/kg of CoCl2 was found to alleviate neurotoxicity in mice. This treatment enhanced elevations of autophagy protein expression and co-localization of BNIP3 and LC3B. In summary, under normoxia, AN induced neurotoxicity by promoting PHD2-mediated HIF-1α degradation, disrupted the BNIP3-mediated mitophagy pathway, and enhanced apoptosis. Our findings underscore the effect of the HIF-1α/BNIP3-mediated mitochondrial autophagy in AN-induced neurotoxicity and suggest potential therapeutic strategies involving HIF-1α activation or BNIP3 overexpression for AN poisoning treatment.
Collapse
Affiliation(s)
- Jing Hu
- Department of Preventive Medicine and Public Health Laboratory Sciences, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| | - Bobo Yang
- Department of Preventive Medicine and Public Health Laboratory Sciences, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| | - Zehua Tao
- Department of Preventive Medicine and Public Health Laboratory Sciences, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| | - Jian Chen
- Department of Preventive Medicine and Public Health Laboratory Sciences, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| | - Xinyu Zhang
- Department of Preventive Medicine and Public Health Laboratory Sciences, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| | - Suhua Wang
- Department of Preventive Medicine and Public Health Laboratory Sciences, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| | - Guangwei Xing
- Department of Preventive Medicine and Public Health Laboratory Sciences, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| | - Ngwa Adeline Ngeng
- Department of Preventive Medicine and Public Health Laboratory Sciences, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| | - Abdul Malik
- Department of Preventive Medicine and Public Health Laboratory Sciences, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, 212013, China; Department of General Surgery, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu Province, 212001, China
| | - Kwaku Appiah-Kubi
- Department of Applied Biology, C. K. Tedam University of Technology and Applied Sciences, Navrongo, UK-0215-5321, Ghana
| | - Marcelo Farina
- Department of Biochemistry, Federal University of Santa Catarina, Florianópolis, Santa Catarina, 88040-900, Brazil
| | - Anatoly V Skalny
- Laboratory of Molecular Dietetics, IM Sechenov First Moscow State Medical University (Sechenov University), Bolshaya Pirogovskaya St., 2-4, Moscow, 119146, Russia; Orenburg State University, Pobedy Ave.13, Orenburg, 460018, Russia
| | - Alexey A Tinkov
- Laboratory of Molecular Dietetics, IM Sechenov First Moscow State Medical University (Sechenov University), Bolshaya Pirogovskaya St., 2-4, Moscow, 119146, Russia; Orenburg State University, Pobedy Ave.13, Orenburg, 460018, Russia; Laboratory of Ecobiomonitoring and Quality Control, Yaroslavl State University, Yaroslavl, 150000, Russia
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Rongzhu Lu
- Department of Preventive Medicine and Public Health Laboratory Sciences, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, 212013, China; Experimental Research Center, Affiliated Kunshan Hospital, Jiangsu University, Kunshan, Jiangsu, 215300, China.
| |
Collapse
|
4
|
Joshi A, Mandal R. Review Article on Molecular Basis of Zinc and Copper Interactions in Cancer Physiology. Biol Trace Elem Res 2024:10.1007/s12011-024-04356-5. [PMID: 39215955 DOI: 10.1007/s12011-024-04356-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 08/23/2024] [Indexed: 09/04/2024]
Abstract
Various clinical manifestations associated with measurable abnormalities of Zn and Cu in serum and tissue were determined in Cancer-Patients (CP), and therefore, these two metals are drawing more and more attention presently than ever before. Cancer is a disease of uncontrolled-abnormal-cell-division with invasion-potential which was exhibited to occur due to dys-regulation/dys-homeostasis of fundamental-biological-pathways (FBP) including antioxidant-enzyme-defense-system, anti-inflammatory and immune-systems, and DNA-damage-repair-system in the human-body resulting in generation of chronic-oxidative-stress induced DNA-damage and gene-mutations, inflammation and compromised immune-system, tumor-induced increased angiogenesis, and inhibition of apoptosis processes. Zn and Cu were recognized to be the most crucial components of FBP and imbalance in Zn/Cu ratios in CP asserted to generate chronic toxicity in human body through various mechanisms including increased chronic oxidative stress linked compromised DNA integrity and gene mutations due to malfunctioning of DNA damage repair enzymes; increased angiogenesis process due to Zn- and Cu-binding proteins metallothionein and ceruloplasmin-induced enhanced expression of tumor growth factors; and elevation in inflammatory response which was further shown to down/upregulate gene expression of multiple Zn transporter proteins leading to dys-homeostasis of intracellular Zn concentrations, and it was determined to disturb the equilibrium between cell growth and division, proliferation, differentiation, and apoptosis processes which lead to cancer progression. Moreover, Zn was reported to affect matrix metalloproteinase activity and influence immune system cells to respond differently to different cytokines and enhance immune-suppressive effects accelerating the angiogenesis, invasion, and metastasis potential in cancer. Further, the most significant use of serum Cu/Zn ratio was recommended in clinical diagnosis, prognosis, tumor stage, patient survival, and cancer follow-up studies which need further investigations to elucidate and explore their roles in cancer physiology for clinical perspective.
Collapse
Affiliation(s)
- Amit Joshi
- PG Department of Biotechnology and Microbial Biotechnology, Sri Guru Gobind Singh College, Chandigarh, UT, India
| | - Reshu Mandal
- PG Department of Zoology, Sri Guru Gobind Singh College, Chandigarh, UT, India.
| |
Collapse
|
5
|
Verdina A, Garufi A, D’Orazi V, D’Orazi G. HIPK2 in Colon Cancer: A Potential Biomarker for Tumor Progression and Response to Therapies. Int J Mol Sci 2024; 25:7678. [PMID: 39062921 PMCID: PMC11277226 DOI: 10.3390/ijms25147678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 07/10/2024] [Accepted: 07/11/2024] [Indexed: 07/28/2024] Open
Abstract
Colon cancer, one of the most common and fatal cancers worldwide, is characterized by stepwise accumulation of specific genetic alterations in tumor suppressor genes or oncogenes, leading to tumor growth and metastasis. HIPK2 (homeodomain-interacting protein kinase 2) is a serine/threonine protein kinase and a "bona fide" oncosuppressor protein. Its activation inhibits tumor growth mainly by promoting apoptosis, while its inactivation increases tumorigenicity and resistance to therapies of many different cancer types, including colon cancer. HIPK2 interacts with many molecular pathways by means of its kinase activity or transcriptional co-repressor function modulating cell growth and apoptosis, invasion, angiogenesis, inflammation and hypoxia. HIPK2 has been shown to participate in several molecular pathways involved in colon cancer including p53, Wnt/β-catenin and the newly identified nuclear factor erythroid 2 (NF-E2) p45-related factor 2 (NRF2). HIPK2 also plays a role in tumor-host interaction in the tumor microenvironment (TME) by inducing angiogenesis and cancer-associated fibroblast (CAF) differentiation. The aim of this review is to assess the role of HIPK2 in colon cancer and the underlying molecular pathways for a better understanding of its involvement in colon cancer carcinogenesis and response to therapies, which will likely pave the way for novel colon cancer therapies.
Collapse
Affiliation(s)
- Alessandra Verdina
- Unit of Cellular Networks and Molecular Therapeutic Targets, IRCCS Regina Elena National Cancer Institute, 00144 Rome, Italy; (A.V.); (A.G.)
| | - Alessia Garufi
- Unit of Cellular Networks and Molecular Therapeutic Targets, IRCCS Regina Elena National Cancer Institute, 00144 Rome, Italy; (A.V.); (A.G.)
| | - Valerio D’Orazi
- Department of Surgery, Sapienza University, 00185 Rome, Italy;
| | - Gabriella D’Orazi
- Unit of Cellular Networks and Molecular Therapeutic Targets, IRCCS Regina Elena National Cancer Institute, 00144 Rome, Italy; (A.V.); (A.G.)
- Department of Neurosciences, Imaging and Clinical Sciences, University “G. D’Annunzio”, 66013 Chieti, Italy
| |
Collapse
|
6
|
Begagić E, Bečulić H, Džidić-Krivić A, Kadić Vukas S, Hadžić S, Mekić-Abazović A, Šegalo S, Papić E, Muchai Echengi E, Pugonja R, Kasapović T, Kavgić D, Nuhović A, Juković-Bihorac F, Đuričić S, Pojskić M. Understanding the Significance of Hypoxia-Inducible Factors (HIFs) in Glioblastoma: A Systematic Review. Cancers (Basel) 2024; 16:2089. [PMID: 38893207 PMCID: PMC11171068 DOI: 10.3390/cancers16112089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/25/2024] [Accepted: 05/28/2024] [Indexed: 06/21/2024] Open
Abstract
BACKGROUND The study aims to investigate the role of hypoxia-inducible factors (HIFs) in the development, progression, and therapeutic potential of glioblastomas. METHODOLOGY The study, following PRISMA guidelines, systematically examined hypoxia and HIFs in glioblastoma using MEDLINE (PubMed), Web of Science, and Scopus. A total of 104 relevant studies underwent data extraction. RESULTS Among the 104 studies, global contributions were diverse, with China leading at 23.1%. The most productive year was 2019, accounting for 11.5%. Hypoxia-inducible factor 1 alpha (HIF1α) was frequently studied, followed by hypoxia-inducible factor 2 alpha (HIF2α), osteopontin, and cavolin-1. Commonly associated factors and pathways include glucose transporter 1 (GLUT1) and glucose transporter 3 (GLUT3) receptors, vascular endothelial growth factor (VEGF), phosphoinositide 3-kinase (PI3K)-Akt-mechanistic target of rapamycin (mTOR) pathway, and reactive oxygen species (ROS). HIF expression correlates with various glioblastoma hallmarks, including progression, survival, neovascularization, glucose metabolism, migration, and invasion. CONCLUSION Overcoming challenges such as treatment resistance and the absence of biomarkers is critical for the effective integration of HIF-related therapies into the treatment of glioblastoma with the aim of optimizing patient outcomes.
Collapse
Affiliation(s)
- Emir Begagić
- Department of General Medicine, School of Medicine, University of Zenica, 72000 Zenica, Bosnia and Herzegovina
| | - Hakija Bečulić
- Department of Neurosurgery, Cantonal Hospital Zenica, 72000 Zenica, Bosnia and Herzegovina;
- Department of Anatomy, School of Medicine, University of Zenica, 72000 Zenica, Bosnia and Herzegovina
| | - Amina Džidić-Krivić
- Department of Neurology, Cantonal Hospital Zenica, 72000 Zenica, Bosnia and Herzegovina (S.K.V.)
| | - Samra Kadić Vukas
- Department of Neurology, Cantonal Hospital Zenica, 72000 Zenica, Bosnia and Herzegovina (S.K.V.)
| | - Semir Hadžić
- Department of Physiology, Faculty of Medicine, University of Tuzla, 75000 Tuzla, Bosnia and Herzegovina
| | - Alma Mekić-Abazović
- Department of Oncology, Cantonal Hospital Zenica, 72000 Zenica, Bosnia and Herzegovina
| | - Sabina Šegalo
- Department of Laboratory Technologies, Faculty of Health Studies, University of Sarajevo, 71000 Sarajevo, Bosnia and Herzegovina; (S.Š.); (E.P.)
| | - Emsel Papić
- Department of Laboratory Technologies, Faculty of Health Studies, University of Sarajevo, 71000 Sarajevo, Bosnia and Herzegovina; (S.Š.); (E.P.)
| | - Emmanuel Muchai Echengi
- College of Health Sciences, School of Medicine, Kenyatta University, Nairobi 43844-00100, Kenya
| | - Ragib Pugonja
- Department of Anatomy, School of Medicine, University of Zenica, 72000 Zenica, Bosnia and Herzegovina
| | - Tarik Kasapović
- Department of Physiology, Faculty of Medicine, University of Tuzla, 75000 Tuzla, Bosnia and Herzegovina
| | - Dalila Kavgić
- Department of Physiology, Faculty of Medicine, University of Tuzla, 75000 Tuzla, Bosnia and Herzegovina
| | - Adem Nuhović
- Department of General Medicine, School of Medicine, University of Sarajevo, 71000 Sarajevo, Bosnia and Herzegovina;
| | - Fatima Juković-Bihorac
- Department of Pathology, Cantonal Hospital Zenica, 72000 Zenica, Bosnia and Herzegovina
- Department of Pathology, School of Medicine, University of Zenica, 72000 Zenica, Bosnia and Herzegovina;
| | - Slaviša Đuričić
- Department of Pathology, School of Medicine, University of Zenica, 72000 Zenica, Bosnia and Herzegovina;
| | - Mirza Pojskić
- Department of Neurosurgery, University Hospital Marburg, 35033 Marburg, Germany
| |
Collapse
|
7
|
Li P, Dai J, Li Y, Alexander D, Čapek J, Geis-Gerstorfer J, Wan G, Han J, Yu Z, Li A. Zinc based biodegradable metals for bone repair and regeneration: Bioactivity and molecular mechanisms. Mater Today Bio 2024; 25:100932. [PMID: 38298560 PMCID: PMC10826336 DOI: 10.1016/j.mtbio.2023.100932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 12/12/2023] [Accepted: 12/25/2023] [Indexed: 02/02/2024] Open
Abstract
Bone fractures and critical-size bone defects are significant public health issues, and clinical treatment outcomes are closely related to the intrinsic properties of the utilized implant materials. Zinc (Zn)-based biodegradable metals (BMs) have emerged as promising bioactive materials because of their exceptional biocompatibility, appropriate mechanical properties, and controllable biodegradation. This review summarizes the state of the art in terms of Zn-based metals for bone repair and regeneration, focusing on bridging the gap between biological mechanism and required bioactivity. The molecular mechanism underlying the release of Zn ions from Zn-based BMs in the improvement of bone repair and regeneration is elucidated. By integrating clinical considerations and the specific bioactivity required for implant materials, this review summarizes the current research status of Zn-based internal fixation materials for promoting fracture healing, Zn-based scaffolds for regenerating critical-size bone defects, and Zn-based barrier membranes for reconstituting alveolar bone defects. Considering the significant progress made in the research on Zn-based BMs for potential clinical applications, the challenges and promising research directions are proposed and discussed.
Collapse
Affiliation(s)
- Ping Li
- Center of Oral Implantology, Stomatological Hospital, School of Stomatology, Southern Medical University, South Jiangnan Road No. 366, Guangzhou 510280, China
- School and Hospital of Stomatology, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Medical University, Guangzhou, Guangdong, 510182, China
- Department of Prosthodontics, School and Hospital of Stomatology, Guangzhou Medical University, Guangzhou, Guangdong, 510182, China
| | - Jingtao Dai
- Department of Orthodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, South Jiangnan Road No. 366, Guangzhou 510280, China
| | - Yageng Li
- Beijing Advanced Innovation Center for Materials Genome Engineering, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Dorothea Alexander
- Department of Oral and Maxillofacial Surgery, University Hospital Tübingen, Osianderstrasse 2-8, Tübingen 72076, Germany
| | - Jaroslav Čapek
- FZU – the Institute of Physics, Czech Academy of Sciences, Na Slovance 1999/2, Prague 8, 18200, Czech Republic
| | - Jürgen Geis-Gerstorfer
- Section Medical Materials Science and Technology, University Hospital Tübingen, Osianderstrasse 2-8, Tübingen 72076, Germany
| | - Guojiang Wan
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Jianmin Han
- National Engineering Laboratory for Digital and Material Technology of Stomatology, Department of Dental Materials, Peking University School and Hospital of Stomatology, Beijing 100081, China
| | - Zhentao Yu
- Institute of Advanced Wear & Corrosion Resistant and Functional Materials, Jinan University, Guangzhou 510632, China
| | - An Li
- Department of Periodontology, Stomatological Hospital, School of Stomatology, Southern Medical University, South Jiangnan Road 366, Guangzhou 510280, China
| |
Collapse
|
8
|
Takahashi A. Zinc Supplementation Enhances the Hematopoietic Activity of Erythropoiesis-Stimulating Agents but Not Hypoxia-Inducible Factor-Prolyl Hydroxylase Inhibitors. Nutrients 2024; 16:520. [PMID: 38398842 PMCID: PMC10893400 DOI: 10.3390/nu16040520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 02/07/2024] [Accepted: 02/12/2024] [Indexed: 02/25/2024] Open
Abstract
Since zinc is involved in many aspects of the hematopoietic process, zinc supplementation can reduce erythropoiesis-stimulating agents (ESAs) in patients undergoing hemodialysis. However, it remains unclear whether hypoxia-inducible factor-prolyl hydroxylase inhibitors (HIF-PHIs) have similar reduction effects. HIF-PHI stabilizes HIF, which promotes hematopoiesis, although HIF-1α levels are downregulated by zinc. This study aimed to investigate the effect of zinc supplementation on the hematopoietic effect of HIF-PHI in patients undergoing hemodialysis. Thirty patients undergoing maintenance hemodialysis who underwent periods of treatment with roxadustat or darbepoetin alfa during the past 3 years were retrospectively observed. Participants who underwent periods with and without zinc supplementation were selected, with nine treated with darbepoetin alfa and nine treated with roxadustat. Similarly to the ESA responsiveness index (ERI), the hematopoietic effect of zinc supplementation was determined by the HIF-PHI responsiveness index (HRI), which was calculated by dividing the HIF-PHI dose (mg/week) by the patient's dry weight (kg) and hemoglobin level (g/L). Zinc supplementation significantly increased ERI (p < 0.05), but no significant change was observed (p = 0.931) in HRI. Although zinc supplementation did not significantly affect HRI, adequate zinc supplementation is required to alleviate concerns such as vascular calcification and increased serum copper during the use of HIF-PHI.
Collapse
Affiliation(s)
- Akira Takahashi
- Dialysis Center, Tesseikai Neurosurgical Hospital, Shijonawate 575-8511, Japan
| |
Collapse
|
9
|
Himoto T, Masaki T. Current Trends on the Involvement of Zinc, Copper, and Selenium in the Process of Hepatocarcinogenesis. Nutrients 2024; 16:472. [PMID: 38398797 PMCID: PMC10892613 DOI: 10.3390/nu16040472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/31/2024] [Accepted: 02/02/2024] [Indexed: 02/25/2024] Open
Abstract
Numerous nutritional factors increase the risk of hepatocellular carcinoma (HCC) development. The dysregulation of zinc, copper, and selenium homeostasis is associated with the occurrence of HCC. The impairment of the homeostasis of these essential trace elements results in oxidative stress, DNA damage, cell cycle progression, and angiogenesis, finally leading to hepatocarcinogenesis. These essential trace elements can affect the microenvironment in HCC. The carrier proteins for zinc and copper and selenium-containing enzymes play important roles in the prevention or progression of HCC. These trace elements enhance or alleviate the chemosensitivity of anticancer agents in patients with HCC. The zinc, copper, or selenium may affect the homeostasis of other trace elements with each other. Novel types of cell death including ferropotosis and cupropotosis are also associated with hepatocarcinogenesis. Therapeutic strategies for HCC that target these carrier proteins for zinc and copper or selenium-containing enzymes have been developed in in vitro and in vivo studies. The use of zinc-, copper- or selenium-nanoparticles has been considered as novel therapeutic agents for HCC. These results indicate that zinc, copper, and selenium may become promising therapeutic targets in patients with HCC. The clinical application of these agents is an urgent unmet requirement. This review article highlights the correlation between the dysregulation of the homeostasis of these essential trace elements and the development of HCC and summarizes the current trends on the roles of these essential trace elements in the pathogenesis of hepatocarcinogenesis.
Collapse
Affiliation(s)
- Takashi Himoto
- Department of Medical Technology, Kagawa Prefectural University of Health Sciences, 281-1, Hara, Mure-cho, Takamatsu 761-0123, Kagawa, Japan
| | - Tsutomu Masaki
- Department of Gastroenterology and Neurology, Faculty of Medicine, Kagawa University, 1750-1, Ikenobe, Miki-cho 761-0793, Kagawa, Japan
| |
Collapse
|
10
|
Chen B, Yu P, Chan WN, Xie F, Zhang Y, Liang L, Leung KT, Lo KW, Yu J, Tse GMK, Kang W, To KF. Cellular zinc metabolism and zinc signaling: from biological functions to diseases and therapeutic targets. Signal Transduct Target Ther 2024; 9:6. [PMID: 38169461 PMCID: PMC10761908 DOI: 10.1038/s41392-023-01679-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 09/15/2023] [Accepted: 10/10/2023] [Indexed: 01/05/2024] Open
Abstract
Zinc metabolism at the cellular level is critical for many biological processes in the body. A key observation is the disruption of cellular homeostasis, often coinciding with disease progression. As an essential factor in maintaining cellular equilibrium, cellular zinc has been increasingly spotlighted in the context of disease development. Extensive research suggests zinc's involvement in promoting malignancy and invasion in cancer cells, despite its low tissue concentration. This has led to a growing body of literature investigating zinc's cellular metabolism, particularly the functions of zinc transporters and storage mechanisms during cancer progression. Zinc transportation is under the control of two major transporter families: SLC30 (ZnT) for the excretion of zinc and SLC39 (ZIP) for the zinc intake. Additionally, the storage of this essential element is predominantly mediated by metallothioneins (MTs). This review consolidates knowledge on the critical functions of cellular zinc signaling and underscores potential molecular pathways linking zinc metabolism to disease progression, with a special focus on cancer. We also compile a summary of clinical trials involving zinc ions. Given the main localization of zinc transporters at the cell membrane, the potential for targeted therapies, including small molecules and monoclonal antibodies, offers promising avenues for future exploration.
Collapse
Affiliation(s)
- Bonan Chen
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
- State Key Laboratory of Digestive Disease, Institute of Digestive Disease, The Chinese University of Hong Kong, Hong Kong, China
- CUHK-Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, China
| | - Peiyao Yu
- Department of Pathology, Nanfang Hospital and Basic Medical College, Southern Medical University, Guangdong Province Key Laboratory of Molecular Tumor Pathology, Guangzhou, China
| | - Wai Nok Chan
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
- State Key Laboratory of Digestive Disease, Institute of Digestive Disease, The Chinese University of Hong Kong, Hong Kong, China
- CUHK-Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, China
| | - Fuda Xie
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
- State Key Laboratory of Digestive Disease, Institute of Digestive Disease, The Chinese University of Hong Kong, Hong Kong, China
- CUHK-Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, China
| | - Yigan Zhang
- Institute of Biomedical Research, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Li Liang
- Department of Pathology, Nanfang Hospital and Basic Medical College, Southern Medical University, Guangdong Province Key Laboratory of Molecular Tumor Pathology, Guangzhou, China
| | - Kam Tong Leung
- Department of Pediatrics, The Chinese University of Hong Kong, Hong Kong, China
| | - Kwok Wai Lo
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
| | - Jun Yu
- State Key Laboratory of Digestive Disease, Institute of Digestive Disease, The Chinese University of Hong Kong, Hong Kong, China
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, China
| | - Gary M K Tse
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
| | - Wei Kang
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China.
- State Key Laboratory of Digestive Disease, Institute of Digestive Disease, The Chinese University of Hong Kong, Hong Kong, China.
- CUHK-Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, China.
| | - Ka Fai To
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China.
- State Key Laboratory of Digestive Disease, Institute of Digestive Disease, The Chinese University of Hong Kong, Hong Kong, China.
| |
Collapse
|
11
|
Hopkins CD, Wessel C, Chen O, El-Kersh K, Cathey D, Cave MC, Cai L, Huang J. A hypothesis: Potential contributions of metals to the pathogenesis of pulmonary artery hypertension. Life Sci 2024; 336:122289. [PMID: 38007143 PMCID: PMC10872724 DOI: 10.1016/j.lfs.2023.122289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 11/09/2023] [Accepted: 11/20/2023] [Indexed: 11/27/2023]
Abstract
Pulmonary artery hypertension (PAH) is characterized by vasoconstriction and vascular remodeling resulting in both increased pulmonary vascular resistance (PVR) and pulmonary artery pressure (PAP). The chronic and high-pressure stress experienced by endothelial cells can give rise to inflammation, oxidative stress, and infiltration by immune cells. However, there is no clearly defined mechanism for PAH and available treatment options only provide limited symptomatic relief. Due to the far-reaching effects of metal exposures, the interaction between metals and the pulmonary vasculature is of particular interest. This review will briefly introduce the pathophysiology of PAH and then focus on the potential roles of metals, including essential and non-essential metals in the pathogenic process in the pulmonary arteries and right heart, which may be linked to PAH. Based on available data from human studies of occupational or environmental metal exposure, including lead, antimony, iron, and copper, the hypothesis of metals contributing to the pathogenesis of PAH is proposed as potential risk factors and underlying mechanisms for PAH. We propose that metals may initiate or exacerbate the pathogenesis of PAH, by providing potential mechanism by which metals interact with hypoxia-inducible factor and tumor suppressor p53 to modulate their downstream cellular proliferation pathways. These need further investigation. Additionally, we present future research directions on roles of metals in PAH.
Collapse
Affiliation(s)
- C Danielle Hopkins
- Department of Anesthesiology and Perioperative Medicine, University of Louisville School of Medicine, Louisville, KY, USA
| | - Caitlin Wessel
- Department of Anesthesiology and Perioperative Medicine, University of Louisville School of Medicine, Louisville, KY, USA
| | - Oscar Chen
- Department of Anesthesiology and Perioperative Medicine, University of Louisville School of Medicine, Louisville, KY, USA
| | - Karim El-Kersh
- Department of Internal Medicine, Division of Pulmonary Critical Care and Sleep Medicine, University of Arizona College of Medicine, Phoenix, AZ, USA
| | - Dakotah Cathey
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY, USA; Pediatric Research Institute, Department of Pediatrics, University of Louisville School of Medicine, Louisville, KY, USA
| | - Matthew C Cave
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY, USA; Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, University of Louisville School of Medicine, Louisville, KY, USA; The Center for Integrative Environmental Health Sciences, University of Louisville, Louisville, KY 40202, USA; Department of Biochemistry and Molecular Genetics, University of Louisville School of Medicine, Louisville, KY, USA; The Transplant Program at University of Louisville Health - Jewish Hospital Trager Transplant Center, Louisville, KY, USA
| | - Lu Cai
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY, USA; The Center for Integrative Environmental Health Sciences, University of Louisville, Louisville, KY 40202, USA; Pediatric Research Institute, Department of Pediatrics, University of Louisville School of Medicine, Louisville, KY, USA; Department of Radiation Oncology, University of Louisville School of Medicine, Louisville, KY, USA.
| | - Jiapeng Huang
- Department of Anesthesiology and Perioperative Medicine, University of Louisville School of Medicine, Louisville, KY, USA; Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY, USA; The Center for Integrative Environmental Health Sciences, University of Louisville, Louisville, KY 40202, USA; The Transplant Program at University of Louisville Health - Jewish Hospital Trager Transplant Center, Louisville, KY, USA; Cardiovascular Innovation Institute, Department of Cardiovascular and Thoracic Surgery, University of Louisville School of Medicine, Louisville, KY, USA.
| |
Collapse
|
12
|
Genoud V, Kinnersley B, Brown NF, Ottaviani D, Mulholland P. Therapeutic Targeting of Glioblastoma and the Interactions with Its Microenvironment. Cancers (Basel) 2023; 15:5790. [PMID: 38136335 PMCID: PMC10741850 DOI: 10.3390/cancers15245790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 12/01/2023] [Accepted: 12/07/2023] [Indexed: 12/24/2023] Open
Abstract
Glioblastoma (GBM) is the most common primary malignant brain tumour, and it confers a dismal prognosis despite intensive multimodal treatments. Whilst historically, research has focussed on the evolution of GBM tumour cells themselves, there is growing recognition of the importance of studying the tumour microenvironment (TME). Improved characterisation of the interaction between GBM cells and the TME has led to a better understanding of therapeutic resistance and the identification of potential targets to block these escape mechanisms. This review describes the network of cells within the TME and proposes treatment strategies for simultaneously targeting GBM cells, the surrounding immune cells, and the crosstalk between them.
Collapse
Affiliation(s)
- Vassilis Genoud
- Glioblastoma Research Group, University College London, London WC1E 6DD, UK (B.K.)
- Department of Oncology, University College London Hospitals, London NW1 2PB, UK
- Department of Oncology, University Hospitals of Geneva, 1205 Geneva, Switzerland
- Centre for Translational Research in Onco-Haematology, University of Geneva, 1205 Geneva, Switzerland
| | - Ben Kinnersley
- Glioblastoma Research Group, University College London, London WC1E 6DD, UK (B.K.)
- Department of Oncology, University College London Hospitals, London NW1 2PB, UK
| | - Nicholas F. Brown
- Glioblastoma Research Group, University College London, London WC1E 6DD, UK (B.K.)
- Guy’s Cancer, Guy’s & St Thomas’ NHS Foundation Trust, London SE1 3SS, UK
| | - Diego Ottaviani
- Glioblastoma Research Group, University College London, London WC1E 6DD, UK (B.K.)
- Department of Oncology, University College London Hospitals, London NW1 2PB, UK
| | - Paul Mulholland
- Glioblastoma Research Group, University College London, London WC1E 6DD, UK (B.K.)
- Department of Oncology, University College London Hospitals, London NW1 2PB, UK
| |
Collapse
|
13
|
Dürig J, Calcagni M, Buschmann J. Transition metals in angiogenesis - A narrative review. Mater Today Bio 2023; 22:100757. [PMID: 37593220 PMCID: PMC10430620 DOI: 10.1016/j.mtbio.2023.100757] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 07/14/2023] [Accepted: 07/31/2023] [Indexed: 08/19/2023] Open
Abstract
The aim of this paper is to offer a narrative review of the literature regarding the influence of transition metals on angiogenesis, excluding lanthanides and actinides. To our knowledge there are not any reviews up to date offering such a summary, which inclined us to write this paper. Angiogenesis describes the process of blood vessel formation, which is an essential requirement for human growth and development. When the complex interplay between pro- and antiangiogenic mediators falls out of balance, angiogenesis can quickly become harmful. As it is so fundamental, both its inhibition and enhancement take part in various diseases, making it a target for therapeutic treatments. Current methods come with limitations, therefore, novel agents are constantly being researched, with metal agents offering promising results. Various transition metals have already been investigated in-depth, with studies indicating both pro- and antiangiogenic properties, respectively. The transition metals are being applied in various formulations, such as nanoparticles, complexes, or scaffold materials. Albeit the increasing attention this field is receiving, there remain many unanswered questions, mostly regarding the molecular mechanisms behind the observed effects. Notably, approximately half of all the transition metals have not yet been investigated regarding potential angiogenic effects. Considering the promising results which have already been established, it should be of great interest to begin investigating the remaining elements whilst also further analyzing the established effects.
Collapse
Affiliation(s)
- Johannes Dürig
- University of Zürich, Faculty of Medicine, Pestalozzistrasse 3, 8032, Zurich, Switzerland
- University Hospital of Zürich, Department of Plastic Surgery and Hand Surgery, Rämistrasse 100, 8091, Zürich, Switzerland
| | - Maurizio Calcagni
- University Hospital of Zürich, Department of Plastic Surgery and Hand Surgery, Rämistrasse 100, 8091, Zürich, Switzerland
| | - Johanna Buschmann
- University Hospital of Zürich, Department of Plastic Surgery and Hand Surgery, Rämistrasse 100, 8091, Zürich, Switzerland
| |
Collapse
|
14
|
Sahibdad I, Khalid S, Chaudhry GR, Salim A, Begum S, Khan I. Zinc enhances the cell adhesion, migration, and self-renewal potential of human umbilical cord derived mesenchymal stem cells. World J Stem Cells 2023; 15:751-767. [PMID: 37545753 PMCID: PMC10401417 DOI: 10.4252/wjsc.v15.i7.751] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 05/15/2023] [Accepted: 06/06/2023] [Indexed: 07/25/2023] Open
Abstract
BACKGROUND Zinc (Zn) is the second most abundant trace element after Fe, present in the human body. It is frequently reported in association with cell growth and proliferation, and its deficiency is considered to be a major disease contributing factor. AIM To determine the effect of Zn on in vitro growth and proliferation of human umbilical cord (hUC)-derived mesenchymal stem cells (MSCs). METHODS hUC-MSCs were isolated from human umbilical cord tissue and characterized based on immunocytochemistry, immunophenotyping, and tri-lineage differentiation. The impact of Zn on cytotoxicity and proliferation was determined by MTT and Alamar blue assay. To determine the effect of Zn on population doubling time (PDT), hUC-MSCs were cultured in media with and without Zn for several passages. An in vitro scratch assay was performed to analyze the effect of Zn on the wound healing and migration capability of hUC-MSCs. A cell adhesion assay was used to test the surface adhesiveness of hUC-MSCs. Transcriptional analysis of genes involved in the cell cycle, proliferation, migration, and self-renewal of hUC-MSCs was performed by quantitative real-time polymerase chain reaction. The protein expression of Lin28, a pluripotency marker, was analyzed by immunocytochemistry. RESULTS Zn at lower concentrations enhanced the rate of proliferation but at higher concentrations (> 100 µM), showed concentration dependent cytotoxicity in hUC-MSCs. hUC-MSCs treated with Zn exhibited a significantly greater healing and migration rate compared to untreated cells. Zn also increased the cell adhesion rate, and colony forming efficiency (CFE). In addition, Zn upregulated the expression of genes involved in the cell cycle (CDC20, CDK1, CCNA2, CDCA2), proliferation (transforming growth factor β1, GDF5, hypoxia-inducible factor 1α), migration (CXCR4, VCAM1, VEGF-A), and self-renewal (OCT4, SOX2, NANOG) of hUC-MSCs. Expression of Lin28 protein was significantly increased in cells treated with Zn. CONCLUSION Our findings suggest that zinc enhances the proliferation rate of hUC-MSCs decreasing the PDT, and maintaining the CFE. Zn also enhances the cell adhesion, migration, and self-renewal of hUC-MSCs. These results highlight the essential role of Zn in cell growth and development.
Collapse
Affiliation(s)
- Iqra Sahibdad
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Sindh, Pakistan
| | - Shumaila Khalid
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Sindh, Pakistan
| | - G Rasul Chaudhry
- Department of Biological Sciences, Oakland University, Rochester, MI 48309, United States
| | - Asmat Salim
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Sindh, Pakistan
| | - Sumreen Begum
- Stem Cell Research Laboratory (SCRL), Sindh Institute of Urology and Transplantation (SIUT), Karachi 74200, Sindh, Pakistan
| | - Irfan Khan
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Sindh, Pakistan.
| |
Collapse
|
15
|
Garufi A, D’Orazi V, Pistritto G, Cirone M, D’Orazi G. The Sweet Side of HIPK2. Cancers (Basel) 2023; 15:2678. [PMID: 37345014 PMCID: PMC10216817 DOI: 10.3390/cancers15102678] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 05/04/2023] [Accepted: 05/08/2023] [Indexed: 06/23/2023] Open
Abstract
HIPK2 is an evolutionary conserved protein kinase which modulates many molecular pathways involved in cellular functions such as apoptosis, DNA damage response, protein stability, and protein transcription. HIPK2 plays a key role in the cancer cell response to cytotoxic drugs as its deregulation impairs drug-induced cancer cell death. HIPK2 has also been involved in regulating fibrosis, angiogenesis, and neurological diseases. Recently, hyperglycemia was found to positively and/or negatively regulate HIPK2 activity, affecting not only cancer cell response to chemotherapy but also the progression of some diabetes complications. The present review will discuss how HIPK2 may be influenced by the high glucose (HG) metabolic condition and the consequences of such regulation in medical conditions.
Collapse
Affiliation(s)
- Alessia Garufi
- Unit of Cellular Networks, Department of Research and Advanced Technologies, IRCCS Regina Elena National Cancer Institute, 00144 Rome, Italy;
| | - Valerio D’Orazi
- Department of Surgery, Sapienza University, 00185 Rome, Italy;
| | - Giuseppa Pistritto
- Centralized Procedures Office, Italian Medicines Agency (AIFA), 00187 Rome, Italy;
| | - Mara Cirone
- Laboratory Affiliated to Pasteur Institute Italy Foundation Cenci Bolognetti, Department of Experimental Medicine, Sapienza University of Rome, 00161 Rome, Italy;
| | - Gabriella D’Orazi
- Unit of Cellular Networks, Department of Research and Advanced Technologies, IRCCS Regina Elena National Cancer Institute, 00144 Rome, Italy;
- Department of Neurosciences, Imaging and Clinical Sciences, University “G. D’Annunzio”, 66013 Chieti, Italy
| |
Collapse
|
16
|
Liu H, Guan H, He F, Song Y, Li F, Sun-Waterhouse D, Li D. Therapeutic actions of tea phenolic compounds against oxidative stress and inflammation as central mediators in the development and progression of health problems: A review focusing on microRNA regulation. Crit Rev Food Sci Nutr 2023; 64:8414-8444. [PMID: 37074177 DOI: 10.1080/10408398.2023.2202762] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2023]
Abstract
Many health problems including chronic diseases are closely associated with oxidative stress and inflammation. Tea has abundant phenolic compounds with various health benefits including antioxidant and anti-inflammatory properties. This review focuses on the present understanding of the impact of tea phenolic compounds on the expression of miRNAs, and elucidates the biochemical and molecular mechanisms underlying the transcriptional and post-transcriptional protective actions of tea phenolic compounds against oxidative stress- and/or inflammation-mediated diseases. Clinical studies showed that drinking tea or taking catechin supplement on a daily basis promoted the endogenous antioxidant defense system of the body while inhibiting inflammatory factors. The regulation of chronic diseases based on epigenetic mechanisms, and the epigenetic-based therapies involving different tea phenolic compounds, have been insufficiently studied. The molecular mechanisms and application strategies of miR-27 and miR-34 involved in oxidative stress response and miR-126 and miR-146 involved in inflammation process were preliminarily investigated. Some emerging evidence suggests that tea phenolic compounds may promote epigenetic changes, involving non-coding RNA regulation, DNA methylation, histone modification, ubiquitin and SUMO modifications. However, epigenetic mechanisms and epigenetic-based disease therapies involving phenolic compounds from different teas, and the potential cross-talks among the epigenetic events, remain understudied.
Collapse
Affiliation(s)
- Hui Liu
- College of Food Science and Engineering, Shandong Agricultural University, Key Laboratory of Food Nutrition and Human Health in Universities of Shandong, Taian, P.R. China
| | - Hui Guan
- College of Food Science and Engineering, Shandong Agricultural University, Key Laboratory of Food Nutrition and Human Health in Universities of Shandong, Taian, P.R. China
| | - Fatao He
- All-China Federation of Supply & Marketing Co-operatives, Jinan Fruit Research Institute, Jinan, P.R. China
| | - Ye Song
- All-China Federation of Supply & Marketing Co-operatives, Jinan Fruit Research Institute, Jinan, P.R. China
| | - Feng Li
- College of Food Science and Engineering, Shandong Agricultural University, Key Laboratory of Food Nutrition and Human Health in Universities of Shandong, Taian, P.R. China
| | - Dongxiao Sun-Waterhouse
- College of Food Science and Engineering, Shandong Agricultural University, Key Laboratory of Food Nutrition and Human Health in Universities of Shandong, Taian, P.R. China
- School of Chemical Sciences, The University of Auckland, Auckland, New Zealand
| | - Dapeng Li
- College of Food Science and Engineering, Shandong Agricultural University, Key Laboratory of Food Nutrition and Human Health in Universities of Shandong, Taian, P.R. China
| |
Collapse
|
17
|
Aschner M, Skalny AV, Lu R, Santamaria A, Zhou JC, Ke T, Karganov MY, Tsatsakis A, Golokhvast KS, Bowman AB, Tinkov AA. The role of hypoxia-inducible factor 1 alpha (HIF-1α) modulation in heavy metal toxicity. Arch Toxicol 2023; 97:1299-1318. [PMID: 36933023 DOI: 10.1007/s00204-023-03483-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Accepted: 03/02/2023] [Indexed: 03/19/2023]
Abstract
Hypoxia-inducible factor 1 (HIF-1) is an oxygen-sensing transcriptional regulator orchestrating a complex of adaptive cellular responses to hypoxia. Several studies have demonstrated that toxic metal exposure may also modulate HIF-1α signal transduction pathway, although the existing data are scarce. Therefore, the present review aims to summarize the existing data on the effects of toxic metals on HIF-1 signaling and the potential underlying mechanisms with a special focus on prooxidant effect of the metals. The particular effect of metals was shown to be dependent on cell type, varying from down- to up-regulation of HIF-1 pathway. Inhibition of HIF-1 signaling may contribute to impaired hypoxic tolerance and adaptation, thus promoting hypoxic damage in the cells. In contrast, its metal-induced activation may result in increased tolerance to hypoxia through increased angiogenesis, thus promoting tumor growth and contributing to carcinogenic effect of heavy metals. Up-regulation of HIF-1 signaling is mainly observed upon Cr, As, and Ni exposure, whereas Cd and Hg may both stimulate and inhibit HIF-1 pathway. The mechanisms underlying the influence of toxic metal exposure on HIF-1 signaling involve modulation of prolyl hydroxylases (PHD2) activity, as well as interference with other tightly related pathways including Nrf2, PI3K/Akt, NF-κB, and MAPK signaling. These effects are at least partially mediated by metal-induced ROS generation. Hypothetically, maintenance of adequate HIF-1 signaling upon toxic metal exposure through direct (PHD2 modulation) or indirect (antioxidant) mechanisms may provide an additional strategy for prevention of adverse effects of metal toxicity.
Collapse
Affiliation(s)
- Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Anatoly V Skalny
- IM Sechenov First Moscow State Medical University (Sechenov University), 119435, Moscow, Russia
| | - Rongzhu Lu
- Department of Preventive Medicine and Public Health Laboratory Science, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Abel Santamaria
- Laboratorio de Aminoácidos Excitadores/Laboratorio de Neurofarmacología Molecular y Nanotecnología, Instituto Nacional de Neurología y Neurocirugía, 14269, Mexico City, Mexico
| | - Ji-Chang Zhou
- School of Public Health (Shenzhen), Sun Yat-Sen University, Shenzhen, 518100, China
| | - Tao Ke
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | | | - Aristides Tsatsakis
- IM Sechenov First Moscow State Medical University (Sechenov University), 119435, Moscow, Russia.,Laboratory of Toxicology, Medical School, University of Crete, Voutes, 700 13, Heraklion, Crete, Greece
| | - Kirill S Golokhvast
- Siberian Federal Scientific Centre of Agrobiotechnologies of the Russian Academy of Sciences, Krasnoobsk, Russia
| | - Aaron B Bowman
- School of Health Sciences, Purdue University, West Lafayette, USA
| | - Alexey A Tinkov
- IM Sechenov First Moscow State Medical University (Sechenov University), 119435, Moscow, Russia. .,Laboratory of Ecobiomonitoring and Quality Control, Yaroslavl State University, 150003, Yaroslavl, Russia.
| |
Collapse
|
18
|
Garufi A, D’Orazi V, Pistritto G, Cirone M, D’Orazi G. HIPK2 in Angiogenesis: A Promising Biomarker in Cancer Progression and in Angiogenic Diseases. Cancers (Basel) 2023; 15:1566. [PMID: 36900356 PMCID: PMC10000595 DOI: 10.3390/cancers15051566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 02/28/2023] [Accepted: 03/01/2023] [Indexed: 03/06/2023] Open
Abstract
Angiogenesis is the formation of new blood capillaries taking place from preexisting functional vessels, a process that allows cells to cope with shortage of nutrients and low oxygen availability. Angiogenesis may be activated in several pathological diseases, from tumor growth and metastases formation to ischemic and inflammatory diseases. New insights into the mechanisms that regulate angiogenesis have been discovered in the last years, leading to the discovery of new therapeutic opportunities. However, in the case of cancer, their success may be limited by the occurrence of drug resistance, meaning that the road to optimize such treatments is still long. Homeodomain-interacting protein kinase 2 (HIPK2), a multifaceted protein that regulates different molecular pathways, is involved in the negative regulation of cancer growth, and may be considered a "bona fide" oncosuppressor molecule. In this review, we will discuss the emerging link between HIPK2 and angiogenesis and how the control of angiogenesis by HIPK2 impinges in the pathogenesis of several diseases, including cancer.
Collapse
Affiliation(s)
- Alessia Garufi
- Unit of Cellular Networks, Department of Research and Advanced Technologies, IRCCS Regina Elena National Cancer Institute, 00144 Rome, Italy
| | - Valerio D’Orazi
- Department of Surgery, Sapienza University, 00185 Rome, Italy
| | - Giuseppa Pistritto
- Centralized Procedures Office, Italian Medicines Agency (AIFA), 00187 Rome, Italy
| | - Mara Cirone
- Laboratory Affiliated to Pasteur Institute Italy Foundation Cenci Bolognetti, Department of Experimental Medicine, Sapienza University of Rome, 00161 Rome, Italy
| | - Gabriella D’Orazi
- Unit of Cellular Networks, Department of Research and Advanced Technologies, IRCCS Regina Elena National Cancer Institute, 00144 Rome, Italy
- Department of Neurosciences, Imaging and Clinical Sciences, University “G. D’Annunzio”, 66013 Chieti, Italy
| |
Collapse
|
19
|
Yuan Y, Liu Z, Li B, Gong Z, Piao C, Liu Z, Zhang Z, Dong X. FBXO30 functions as a tumor suppressor and an E3 ubiquitin ligase for hZIP1‑mediated HIF‑1α degradation in renal cell carcinoma. Int J Oncol 2023; 62:40. [PMID: 36799168 PMCID: PMC9946804 DOI: 10.3892/ijo.2023.5488] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Accepted: 01/20/2023] [Indexed: 02/17/2023] Open
Abstract
Studies on clear cell renal cell carcinoma (ccRCC) are gaining momentum due to its high malignancy and potential to metastasize. F‑box protein 30 (FBXO30) is a member of the F‑box protein family; however, its role and mechanism in cancer remains to be fully elucidated. Western blotting, reverse transcription‑quantitative PCR and immunohistochemsitry were performed to detect the expression levels of FBXO30 in ccRCC tissues and adjacent normal tissues. Tumor biological function assays and animal experiments were conducted to clarify the inhibitory effect of FBXO30 on the progression and metastasis of ccRCC. Protein half‑life assay, MG132 inhibition assay, immunofluorescence assay and co‑immunoprecipitation assay were performed to explore the ubiquitination mechanism of FBXO30 and HIF‑1α. Zinc supplementation assay was used to verify the regulatory relationship between human ZRT, IRT‑like protein 1 (hZIP1), FBXO30 and HIF‑1α. The present study revealed that the expression levels of FBXO30 were lower in ccRCC tissues compared with those in normal adjacent tissues. In addition, FBXO30 inhibited the tumorigenesis and metastatic capacity of ccRCC cells in vivo and in vitro. FBXO30 mediated the ubiquitination and degradation of hypoxia‑inducible factor‑1α (HIF‑1α) in ccRCC cells under normoxia, thereby inhibiting the oncogenic effect of HIF‑1α. Notably, hZIP1 served as an upstream regulator of FBXO30, regulating the expression of FBXO30 and HIF‑1α by recruiting Zn2+. In conclusion, the present data suggested that FBXO30 is a novel E3 ubiquitination ligase that can function as a tumor suppressor in ccRCC, and the hZIP1/Zn2+/FBXO30/HIF‑1α axis may provide potential biomarkers or therapeutic targets for ccRCC.
Collapse
Affiliation(s)
- Yulin Yuan
- Department of Urology, The First Hospital of China Medical University, Shenyang, Liaoning 110002, P.R. China
| | - Zimeng Liu
- Department of Anesthesiology, The First Hospital of China Medical University, Shenyang, Liaoning 110002, P.R. China
| | - Bohan Li
- Department of Urology, The First Hospital of China Medical University, Shenyang, Liaoning 110002, P.R. China
| | - Zheng Gong
- Department of Urology, The First Hospital of China Medical University, Shenyang, Liaoning 110002, P.R. China
| | - Chiyuan Piao
- Department of Urology, The First Hospital of China Medical University, Shenyang, Liaoning 110002, P.R. China
| | - Zhuonan Liu
- Department of Urology, The First Hospital of China Medical University, Shenyang, Liaoning 110002, P.R. China
| | - Zhe Zhang
- Department of Urology, The First Hospital of China Medical University, Shenyang, Liaoning 110002, P.R. China
| | - Xiao Dong
- Department of Urology, The First Hospital of China Medical University, Shenyang, Liaoning 110002, P.R. China,Correspondence to: Professor Xiao Dong, Department of Urology, The First Hospital of China Medical University, 155 Nanjing North Street, Shenyang, Liaoning 110002, P.R. China, E-mail:
| |
Collapse
|
20
|
Wang S, Fan X, Gao Y, Zuo L, Hong M, Xu Y. The Relationship Between Zinc Deficiency and Hepatocellular Carcinoma Associated with Hepatitis B Liver Cirrhosis: A 10-year Follow-up Study. Biol Trace Elem Res 2023; 201:114-120. [PMID: 35247138 DOI: 10.1007/s12011-022-03156-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Accepted: 02/10/2022] [Indexed: 01/11/2023]
Abstract
Our aim is to evaluate the serum zinc levels in Hepatitis B liver cirrhosis patients and clarify the relationship between the serum zinc levels and the development of hepatocellular carcinoma (HCC). From January 2009 to December 2019, 295 included patients diagnosed with Hepatitis B liver cirrhosis received nucleos(t)ide analogues (NUCs) therapy at China-Japan Union Hospital of Jilin University. Their comprehensive medical records were retrospectively analyzed, and to analyze the relationship between hypozincemia and hepatitis B-related HCC. Twenty-eight of 295 patients (9.49%) developed HCC during an observation period of the median follow-up time was 42 months. Compared with the non-zinc deficiency group, the zinc deficiency group is older, has a higher proportion of hepatic encephalopathy, higher levels of aspartate aminotransferase(AST), international normalized ratio(INR) and TB, and lower levels of cholinesterase (CHE), creatinine, and platelet counts (P< 0.05). Multivariate analysis showed that zine (HR=0.854, 95%CI 0.725-1.007; P=0.061), zinc is not significant for reducing the incidence of HCC, as liver disease progresses, the proportion of zinc deficiency is getting higher and higher, Child-Pugh C. The proportion of grade zinc deficiency accounted for 64.86%. Child-Pugh grade C was more than Child-Pugh grade B and A, p<0.001. Zinc deficiency is associated with hepatic encephalopathy, and other complications related to hepatitis B and liver cirrhosis. But the relationship with hepatocellular carcinoma still needs further study.
Collapse
Affiliation(s)
- Shuai Wang
- Department of Gastroenterology, China-Japan Union Hospital of Jilin University, Changchun, 130033, Jilin, China
| | - Xuemei Fan
- Department of Neurology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yang Gao
- Department of Gastroenterology, China-Japan Union Hospital of Jilin University, Changchun, 130033, Jilin, China
| | - Lijuan Zuo
- Department of Gastroenterology, China-Japan Union Hospital of Jilin University, Changchun, 130033, Jilin, China
| | - Mingqi Hong
- Department of Gastroenterology, China-Japan Union Hospital of Jilin University, Changchun, 130033, Jilin, China
| | - Yan Xu
- Department of Gastroenterology, China-Japan Union Hospital of Jilin University, Changchun, 130033, Jilin, China.
| |
Collapse
|
21
|
McGourty K, Vijayakumar R, Wu T, Gagnon A, Kelleher SL. ZnT2 Is Critical for TLR4-Mediated Cytokine Expression in Colonocytes and Modulates Mucosal Inflammation in Mice. Int J Mol Sci 2022; 23:ijms231911467. [PMID: 36232769 PMCID: PMC9570081 DOI: 10.3390/ijms231911467] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 09/20/2022] [Accepted: 09/22/2022] [Indexed: 11/25/2022] Open
Abstract
A wide range of microbial pathogens can enter the gastrointestinal tract, causing mucosal inflammation and infectious colitis and accounting for most cases of acute diarrhea. Severe cases of infectious colitis can persist for weeks, and if untreated, may lead to major complications and death. While the molecular pathogenesis of microbial infections is often well-characterized, host-associated epithelial factors that affect risk and severity of infectious colitis are less well-understood. The current study characterized functions of the zinc (Zn) transporter ZnT2 (SLC30A2) in cultured HT29 colonocytes and determined consequences of ZnT2 deletion in mice on the colonic response to enteric infection with Citrobacter rodentium. ZnT2 in colonocytes transported Zn into vesicles buffering cytoplasmic Zn pools, which was important for Toll-like receptor 4 (TLR4) expression, activation of pathogen-stimulated NF-κβ translocation and cytokine expression. Additionally, ZnT2 was critical for lysosome biogenesis and bacterial-induced autophagy, both promoting robust host defense and resolution mechanisms in response to enteric pathogens. These findings reveal that ZnT2 is a novel regulator of mucosal inflammation in colonocytes and is critical to the response to infectious colitis, suggesting that manipulating the function of ZnT2 may offer new therapeutic strategies to treat specific intestinal infections.
Collapse
|
22
|
Hashimoto R, Himoto T, Yamada M, Mimura S, Fujita K, Tani J, Morishita A, Masaki T. Antitumor Effect of Zinc Acetate in Hepatocellular Carcinoma Cell Lines via the Induction of Apoptosis. J Nutr Sci Vitaminol (Tokyo) 2022; 68:303-311. [PMID: 36047102 DOI: 10.3177/jnsv.68.303] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
We aimed to verify antitumor effects of zinc acetate on hepatocellular carcinoma (HCC) in vitro. Five HCC cell lines (HepG2, Hep3B, Huh7, HLE and Alex) were used to evaluate the antitumor effects of zinc acetate. Cell viability was determined by the Cell Counting Kit-8 assay. The cell-cycle alteration was evaluated by a flow cytometric analysis and the detection of cell cycle-related proteins. Apoptosis was determined based on the caspase-cleaved cytokeratin 18 (cCK18) levels. The microRNAs (miRNAs) related to an antitumor effect of zinc acetate were identified using microarrays. Zinc acetate significantly inhibited the proliferation of HCC cells in a dose-dependent manner. The treatment with zinc acetate resulted in significantly increased cCK18 levels in the supernatant and enhanced the expression of heme oxygenase-1 (HO-1) in HCC cells. The flow cytometric analysis revealed an increase of HCC cells in the S and G2/M phases by the administration of zinc acetate, and the expressions of Cdk2 and cyclin E were increased. The miRNA expression profile of the HCC cells treated with zinc acetate was extremely different from that of the untreated HCC cells. These results suggest that the zinc acetate supplementation induces the apoptosis of HCC cells, but does not affect the cell cycle progression. Upregulation of HO-1 and the alteration of miRNAs' profile may be involved in antitumor effects of zinc acetate in HCC cells.
Collapse
Affiliation(s)
- Rie Hashimoto
- Department of Clinical Nutrition and Dietetics, Konan Women's University.,Department of Gastroenterology and Neurology, Kagawa University School of Medicine
| | - Takashi Himoto
- Department of Medical Technology, Kagawa Prefectural University of Health Sciences
| | - Mari Yamada
- Department of Gastroenterology and Neurology, Kagawa University School of Medicine
| | - Shima Mimura
- Department of Gastroenterology and Neurology, Kagawa University School of Medicine
| | - Koji Fujita
- Department of Gastroenterology and Neurology, Kagawa University School of Medicine
| | - Joji Tani
- Department of Gastroenterology and Neurology, Kagawa University School of Medicine
| | - Asahiro Morishita
- Department of Gastroenterology and Neurology, Kagawa University School of Medicine
| | - Tsutomu Masaki
- Department of Gastroenterology and Neurology, Kagawa University School of Medicine
| |
Collapse
|
23
|
Sreenivasamurthy SA, Akhter FF, Akhter A, Su Y, Zhu D. Cellular mechanisms of biodegradable zinc and magnesium materials on promoting angiogenesis. BIOMATERIALS ADVANCES 2022; 139:213023. [PMID: 35882117 DOI: 10.1016/j.bioadv.2022.213023] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 06/15/2022] [Accepted: 07/05/2022] [Indexed: 06/15/2023]
Abstract
Biodegradable metals, zinc and magnesium, have been regarded as next-generation, biomedical implant materials to promote tissue repair and regeneration. These implants might also promote the vascularization of surrounding neotissue. Released metallic ions, Zn2+ and Mg2+, show promise in vitro to implement vessel growth by stimulating the expression of pro-angiogenic cytokines, yet there is little known regarding how cellular responses transcend to influence the tissue environment. This study serves to optimize angiogenic behavior using EA.hy926 endothelial cultures exposed to Zn2+ and Mg2+ gradients and observe the translation of these effects on blood vessel development via the in ovo chorioallantoic membrane (CAM) assay. Findings indicate that Zn2+ 10 μM and Mg2+ 10 mM instigate the most prominent effects using endothelial cultures via scratch wound and tube formation assays, yet higher concentrations at Zn2+ 50 μM and Mg2+ 50 mM encourage significant angiogenesis along the CAM. Immunoblotting results also conclude the presence and upregulation of cytokines involved in vessel growth. Optimizing the angiogenic potential of Zn2+ and Mg2+ separately sheds light to design future engineering constructs for promoting blood vessel development and successful assimilation between host and implant tissue.
Collapse
Affiliation(s)
- Sai A Sreenivasamurthy
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY 11790, United States
| | - Fnu Firoz Akhter
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY 11790, United States
| | - Asma Akhter
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY 11790, United States
| | - Yingchao Su
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY 11790, United States
| | - Donghui Zhu
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY 11790, United States.
| |
Collapse
|
24
|
Qiao H, Mei J, Yuan K, Zhang K, Zhou F, Tang T, Zhao J. Immune-regulating strategy against rheumatoid arthritis by inducing tolerogenic dendritic cells with modified zinc peroxide nanoparticles. J Nanobiotechnology 2022; 20:323. [PMID: 35836178 PMCID: PMC9281050 DOI: 10.1186/s12951-022-01536-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 06/28/2022] [Indexed: 11/10/2022] Open
Abstract
In hypoxic dendritic cells (DCs), a low level of Zn2+ can induce the activation of immunogenic DCs (igDCs), thereby triggering an active T-cell response to propel the immune progression of rheumatoid arthritis (RA). This finding indicates the crucial roles of zinc and oxygen homeostasis in DCs during the pathogenesis of RA. However, very few studies have focused on the modulation of zinc and oxygen homeostasis in DCs during RA treatment. Proposed herein is a DC-targeting immune-regulating strategy to induce igDCs into tolerogenic DCs (tDCs) and inhibit subsequent T-cell activation, referred to as ZnO2/Catalase@liposome-Mannose nanoparticles (ZnCM NPs). ZnCM NPs displayed targeted intracellular delivery of Zn2+ and O2 towards igDCs in a pH-responsive manner. After inactivating OTUB1 deubiquitination, the ZnCM NPs promoted CCL5 degradation via NF-κB signalling, thereby inducing the igDC-tDC transition to further inhibit CD4+ T-cell homeostasis. In collagen-induced arthritis (CIA) mice, this nanoimmunoplatform showed significant accumulation in the spleen, where immature DCs (imDCs) differentiated into igDCs. Splenic tDCs were induced to alleviate ankle swelling, improve walking posture and safely inhibit ankle/spleen inflammation. Our work pioneers the combination of DC-targeting nanoplatforms with RA treatments and highlights the significance of zinc and oxygen homeostasis for the immunoregulation of RA by inducing tDCs with modified ZnO2 NPs, which provides novel insight into ion homeostasis regulation for the treatment of immune diseases with a larger variety of distinct metal or nonmetal ions. The DC-targeting immune-regulating nanostrategy was firstly employed to treat RA. The complex immune regulating effects was realized through a portable, convenient and green nanomaterial. Highlighting the significance of zinc and oxygen homeostasis for the immunoregulation of RA by inducing tDCs with modified ZnO2 NPs. Expanding the notion of ion homeostasis regulation with a larger variety of distinct metal or nonmetal ions.
Collapse
Affiliation(s)
- Han Qiao
- Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai, 200011, People's Republic of China.,Shanghai Key Laboratory of Orthopaedic Implants, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Jingtian Mei
- Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai, 200011, People's Republic of China.,Shanghai Key Laboratory of Orthopaedic Implants, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Kai Yuan
- Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai, 200011, People's Republic of China.,Shanghai Key Laboratory of Orthopaedic Implants, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Kai Zhang
- Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai, 200011, People's Republic of China.,Shanghai Key Laboratory of Orthopaedic Implants, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Feng Zhou
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, People's Republic of China
| | - Tingting Tang
- Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai, 200011, People's Republic of China. .,Shanghai Key Laboratory of Orthopaedic Implants, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China.
| | - Jie Zhao
- Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai, 200011, People's Republic of China. .,Shanghai Key Laboratory of Orthopaedic Implants, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China.
| |
Collapse
|
25
|
Yergeshov AA, Zoughaib M, Ishkaeva RA, Savina IN, Abdullin TI. Regenerative Activities of ROS-Modulating Trace Metals in Subcutaneously Implanted Biodegradable Cryogel. Gels 2022; 8:118. [PMID: 35200498 PMCID: PMC8872170 DOI: 10.3390/gels8020118] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 02/08/2022] [Accepted: 02/10/2022] [Indexed: 01/27/2023] Open
Abstract
Divalent trace metals (TM), especially copper (Cu), cobalt (Co) and zinc (Zn), are recognized as essential microelements for tissue homeostasis and regeneration. To achieve a balance between therapeutic activity and safety of administered TMs, effective gel formulations of TMs with elucidated regenerative mechanisms are required. We studied in vitro and in vivo effects of biodegradable macroporous cryogels doped with Cu, Co or Zn in a controllable manner. The extracellular ROS generation by metal dopants was assessed and compared with the intracellular effect of soluble TMs. The stimulating ability of TMs in the cryogels for cell proliferation, differentiation and cytokine/growth factor biosynthesis was characterized using HSF and HUVEC primary human cells. Multiple responses of host tissues to the TM-doped cryogels upon subcutaneous implantation were characterized taking into account the rate of biodegradation, production of HIF-1α/matrix metalloproteinases and the appearance of immune cells. Cu and Zn dopants did not disturb the intact skin organization while inducing specific stimulating effects on different skin structures, including vasculature, whereas Co dopant caused a significant reorganization of skin layers, the appearance of multinucleated giant cells, along with intense angiogenesis in the dermis. The results specify and compare the prooxidant and regenerative potential of Cu, Co and Zn-doped biodegradable cryogels and are of particular interest for the development of advanced bioinductive hydrogel materials for controlling angiogenesis and soft tissue growth.
Collapse
Affiliation(s)
- Abdulla A. Yergeshov
- Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, 18 Kremlyovskaya St., 420008 Kazan, Russia; (A.A.Y.); (M.Z.); (R.A.I.)
| | - Mohamed Zoughaib
- Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, 18 Kremlyovskaya St., 420008 Kazan, Russia; (A.A.Y.); (M.Z.); (R.A.I.)
| | - Rezeda A. Ishkaeva
- Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, 18 Kremlyovskaya St., 420008 Kazan, Russia; (A.A.Y.); (M.Z.); (R.A.I.)
| | - Irina N. Savina
- School of Applied Sciences, University of Brighton, Huxley Building, Lewes Road, Brighton BN2 4GJ, UK;
| | - Timur I. Abdullin
- Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, 18 Kremlyovskaya St., 420008 Kazan, Russia; (A.A.Y.); (M.Z.); (R.A.I.)
| |
Collapse
|
26
|
Zhu T, Wang X, Zheng Z, Quan J, Liu Y, Wang Y, Liu T, Liu X, Wang M, Zhang Z. ZIP12 Contributes to Hypoxic Pulmonary Hypertension by Driving Phenotypic Switching of Pulmonary Artery Smooth Muscle Cells. J Cardiovasc Pharmacol 2022; 79:235-243. [PMID: 34694243 DOI: 10.1097/fjc.0000000000001156] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 09/27/2021] [Indexed: 11/26/2022]
Abstract
ABSTRACT ZIP12, a plasmalemmal zinc transporter, reportedly promotes pulmonary vascular remodeling (PVR) by enhancing proliferation of pulmonary artery smooth muscle cells (PASMCs). However, the mechanisms of ZIP12 facilitating PASMCs proliferation remain incompletely appreciated. It has been acknowledged that proliferation-predisposing phenotypic switching of PASMCs can lead to PVR. Given that hypoxia triggers phenotypic switching of PASMCs and ZIP12 mediates PVR, this study aims to explore whether ZIP12-mediated phenotypic switching of PASMCs contributes to hypoxia-induced PVR. Rats were exposed to hypoxia (10% O2) for 3 weeks to induce PVR, and primary rat PASMCs were cultured under hypoxic condition (3% O2) for 48 hours to induce proliferation. Immunofluorescence, quantitative reverse transcription-polymerase chain reaction, and Western blot analysis were performed to detect the expression of target mRNAs and proteins. EdU incorporation and 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium assay were conducted to measure the proliferation of PASMCs. Hypoxia upregulated ZIP12 expression (both mRNA and protein) in pulmonary arteries and PASMCs. Knockdown of ZIP12 inhibited phenotypic switching of PASMCs induced by hypoxia. We propose that HIF-1α/ZIP12/pERK pathway could represent a novel mechanism underlying hypoxia-induced phenotypic switching of PASMCs. Therapeutic targeting of ZIP12 could be exploited to treat PVR.
Collapse
Affiliation(s)
- Tiantian Zhu
- Department of Clinical Pharmacy, College of Pharmacy, Xinxiang Medical University, Xinxiang, Henan, China
| | - Xuan Wang
- Department of Pharmacology, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan 410078, China ; and
| | - Zijie Zheng
- Department of Pharmacology, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan 410078, China ; and
| | - Jinping Quan
- Department of Clinical Pharmacy, College of Pharmacy, Xinxiang Medical University, Xinxiang, Henan, China
| | - Yuhao Liu
- Department of Clinical Pharmacy, College of Pharmacy, Xinxiang Medical University, Xinxiang, Henan, China
| | - Yuting Wang
- Department of Clinical Pharmacy, College of Pharmacy, Xinxiang Medical University, Xinxiang, Henan, China
| | - Tianheng Liu
- Department of Clinical Pharmacy, College of Pharmacy, Xinxiang Medical University, Xinxiang, Henan, China
| | - Xu Liu
- Department of Clinical Pharmacy, College of Pharmacy, Xinxiang Medical University, Xinxiang, Henan, China
| | - Mi Wang
- The Department of Cardiology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zheng Zhang
- Department of Clinical Pharmacy, College of Pharmacy, Xinxiang Medical University, Xinxiang, Henan, China
- Department of Pharmacology, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan 410078, China ; and
| |
Collapse
|
27
|
Zhan B, Dong X, Yuan Y, Gong Z, Li B. hZIP1 Inhibits Progression of Clear Cell Renal Cell Carcinoma by Suppressing NF-kB/HIF-1α Pathway. Front Oncol 2021; 11:759818. [PMID: 34926261 PMCID: PMC8674186 DOI: 10.3389/fonc.2021.759818] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 11/12/2021] [Indexed: 11/24/2022] Open
Abstract
Purpose Accumulating literature has suggested that hZIP1 and HIF-1α play vital roles in the tumor process of clear cell renal cell carcinoma (ccRCC). However, the functional roles of hZIP1 and HIF-1α in ccRCC remain largely unknown. Methods HIF-1α protein level was evaluated by a western blot in ccRCC tissues and cell lines. ccRCC cell lines were transfected with HIF-1α-siRNA to downregulate the expression level of HIF-1α. Then the proliferative, migratory and invasive abilities of ccRCC cells in vitro were detected by real-time cell analysis (RTCA) assay, wound healing assay and transwell assay, respectively. The role of HIF-1α in vivo was explored by tumor implantation in nude mice. Then the effect on glycolysis‐related proteins was performed by western blot after hZIP1 knockdown (overexpression) or HIF-1α knockdown. The effect on NF‐kB pathway was detected after hZIP1 overexpression. Results HIF-1α was markedly downregulated in ccRCC tissues compared with normal areas. But HIF-1α presented almost no expression in HK-2 and ACHN cells. Immunofluorescence indicated HIF-1α and PDK1 expression in both the cytoplasm and nucleus in ccRCC cells. Downregulation of HIF-1α suppressed ccRCC cell proliferation, migration, and invasion and resulted in smaller implanted tumors in nude mice. Furthermore, hZIP1 knockdown elevated HIF-1α protein levels and PDK1 protein levels in ccRCC cells. Interestingly, a sharp downregulated expression of HIF-1α was observed after hZIP1 overexpression in OSRC-2 and 786-O cells, which resulted from a downtrend of NF-kB1 moving into the cell nucleus. Conclusion Our work has vital implications that hZIP1 suppresses ccRCC progression by inhibiting NF-kB/HIF-1α pathway.
Collapse
Affiliation(s)
- Bo Zhan
- Department of Urology, The First Hospital of China Medical University, Shenyang, China
| | - Xiao Dong
- Department of Urology, The First Hospital of China Medical University, Shenyang, China
| | - Yulin Yuan
- Department of Urology, The First Hospital of China Medical University, Shenyang, China
| | - Zheng Gong
- Department of Urology, The First Hospital of China Medical University, Shenyang, China
| | - Bohan Li
- Department of Urology, The First Hospital of China Medical University, Shenyang, China
| |
Collapse
|
28
|
Comparison of Osteosarcoma Aggregated Tumour Models with Human Tissue by Multimodal Mass Spectrometry Imaging. Metabolites 2021; 11:metabo11080506. [PMID: 34436447 PMCID: PMC8401535 DOI: 10.3390/metabo11080506] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 07/29/2021] [Accepted: 07/30/2021] [Indexed: 12/24/2022] Open
Abstract
Osteosarcoma (OS) is the most common primary bone malignancy and largely effects adolescents and young adults, with 60% of patients under the age of 25. There are multiple cell models of OS described in vitro that express the specific genetic alterations of the sarcoma. In the work reported here, multiple mass spectrometry imaging (MSI) modalities were employed to characterise two aggregated cellular models of OS models formed using the MG63 and SAOS-2 cell lines. Phenotyping of the metabolite activity within the two OS aggregoid models was achieved and a comparison of the metabolite data with OS human tissue samples revealed relevant fatty acid and phospholipid markers. Although, annotations of these species require MS/MS analysis for confident identification of the metabolites. From the putative assignments however, it was suggested that the MG63 aggregoids are an aggressive tumour model that exhibited metastatic-like potential. Alternatively, the SAOS-2 aggregoids are more mature osteoblast-like phenotype that expressed characteristics of cellular differentiation and bone development. It was determined the two OS aggregoid models shared similarities of metabolic behaviour with different regions of OS human tissues, specifically of the higher metastatic grade.
Collapse
|
29
|
Donia T, Khamis A. Management of oxidative stress and inflammation in cardiovascular diseases: mechanisms and challenges. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:34121-34153. [PMID: 33963999 DOI: 10.1007/s11356-021-14109-9] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 04/21/2021] [Indexed: 06/12/2023]
Abstract
Cardiovascular diseases (CVDs) have diverse physiopathological mechanisms with interconnected oxidative stress and inflammation as one of the common etiologies which result in the onset and development of atherosclerotic plaques. In this review, we illustrate this strong crosstalk between oxidative stress, inflammation, and CVD. Also, mitochondrial functions underlying this crosstalk, and various approaches for the prevention of redox/inflammatory biological impacts will be illustrated. In part, we focus on the laboratory biomarkers and physiological tests for the evaluation of oxidative stress status and inflammatory processes. The impact of a healthy lifestyle on CVD onset and development is displayed as well. Furthermore, the differences in oxidative stress and inflammation are related to genetic susceptibility to cardiovascular diseases and the variability in the assessment of CVDs risk between individuals; Omics technologies for measuring oxidative stress and inflammation will be explored. Finally, we display the oxidative stress-related microRNA and the functions of the redox basis of epigenetic modifications.
Collapse
Affiliation(s)
- Thoria Donia
- Biochemistry Division, Chemistry Department, Faculty of Science, Tanta University, Tanta, Egypt
| | - Abeer Khamis
- Biochemistry Division, Chemistry Department, Faculty of Science, Tanta University, Tanta, Egypt.
| |
Collapse
|
30
|
Singh CK, Chhabra G, Patel A, Chang H, Ahmad N. Dietary Phytochemicals in Zinc Homeostasis: A Strategy for Prostate Cancer Management. Nutrients 2021; 13:nu13061867. [PMID: 34070833 PMCID: PMC8226978 DOI: 10.3390/nu13061867] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 05/21/2021] [Accepted: 05/26/2021] [Indexed: 01/30/2023] Open
Abstract
Studies have suggested an important role of the trace element zinc (Zn) in prostate biology and functions. Zn has been shown to exist in very high concentrations in the healthy prostate and is important for several prostatic functions. In prostate cancer (PCa), Zn levels are significantly decreased and inversely correlated with disease progression. Ideally, restoration of adequate Zn levels in premalignant/malignant prostate cells could abort prostate malignancy. However, studies have shown that Zn supplementation is not an efficient way to significantly increase Zn concentrations in PCa. Based on a limited number of investigations, the reason for the lower levels of Zn in PCa is believed to be the dysregulation of Zn transporters (especially ZIP and ZnT family of proteins), metallothioneins (for storing and releasing Zn), and their regulators (e.g., Zn finger transcription factor RREB1). Interestingly, the level of Zn in cells has been shown to be modulated by naturally occurring dietary phytochemicals. In this review, we discussed the effect of selected phytochemicals (quercetin, resveratrol, epigallocatechin-3-gallate and curcumin) on Zn functioning and proposes that Zn in combination with specific dietary phytochemicals may lead to enhanced Zn bioaccumulation in the prostate, and therefore, may inhibit PCa.
Collapse
Affiliation(s)
- Chandra K. Singh
- Department of Dermatology, University of Wisconsin, Madison, WI 53705, USA; (C.K.S.); (G.C.); (A.P.); (H.C.)
| | - Gagan Chhabra
- Department of Dermatology, University of Wisconsin, Madison, WI 53705, USA; (C.K.S.); (G.C.); (A.P.); (H.C.)
| | - Arth Patel
- Department of Dermatology, University of Wisconsin, Madison, WI 53705, USA; (C.K.S.); (G.C.); (A.P.); (H.C.)
| | - Hao Chang
- Department of Dermatology, University of Wisconsin, Madison, WI 53705, USA; (C.K.S.); (G.C.); (A.P.); (H.C.)
| | - Nihal Ahmad
- Department of Dermatology, University of Wisconsin, Madison, WI 53705, USA; (C.K.S.); (G.C.); (A.P.); (H.C.)
- William S. Middleton VA Medical Center, Madison, WI 53705, USA
- Correspondence: ; Tel.: +1-(608)-263-5359
| |
Collapse
|
31
|
Liu L, Hou Y, Hu J, Zhou L, Chen K, Yang X, Song Z. SLC39A8/Zinc Suppresses the Progression of Clear Cell Renal Cell Carcinoma. Front Oncol 2021; 11:651921. [PMID: 33869056 PMCID: PMC8045709 DOI: 10.3389/fonc.2021.651921] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 03/05/2021] [Indexed: 12/19/2022] Open
Abstract
Clear cell renal cell carcinoma (ccRCC) is the most frequent and lethal subtype, which has high risk of metastasis or recurrence, accounting for 75–83% of renal cell carcinoma (RCC). Zrt‐ and Irt‐like proteins (ZIP) family members (SLC39A1-14) function to pass zinc into the cytoplasm for many critical biological processes when cellular zinc is depleted. However, the functional analysis of individual ZIP family genes in ccRCC is not clarified. This study aimed to investigate whether ZIP family genes are related to the clinicopathological features and survival of ccRCC patients, and to identify the function of key gene of ZIP family in ccRCC in vitro. Through bioinformatics analysis of tumor databases, SLC39A8 was identified as a key gene of ZIP family in ccRCC, which could be used as an effective indicator for diagnosing ccRCC and judging its prognosis. With the progression of tumor, the expression of SLC39A8 decreased progressively. The prognosis of patients with low expression of SLC39A8 is significantly worse. Furthermore, we found that overexpression of SLC39A8 or treatment with low concentration of zinc chloride could effectively inhibit the proliferation, migration and invasion of ccRCC cells. Moreover, the inhibition effect of SLC39A8 overexpression could be enhanced by low concentration zinc supplement. Therefore, this study provides a novel understanding for the role of SLC39A8/zinc in the regulation of ccRCC progression. These findings provide a new direction and target for progressive ccRCC drug development and combination therapy strategies.
Collapse
Affiliation(s)
- Lilong Liu
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yaxin Hou
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Junyi Hu
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lijie Zhou
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ke Chen
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiong Yang
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhengshuai Song
- Department of Urology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
32
|
Story MJ. Zinc, ω-3 polyunsaturated fatty acids and vitamin D: An essential combination for prevention and treatment of cancers. Biochimie 2020; 181:100-122. [PMID: 33307154 DOI: 10.1016/j.biochi.2020.11.019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Revised: 11/14/2020] [Accepted: 11/25/2020] [Indexed: 02/07/2023]
Abstract
Zinc, ω-3 polyunsaturated fatty acids (PUFAs) and vitamin D are essential nutrients for health, maturation and general wellbeing. Extensive literature searches have revealed the widespread similarity in molecular biological properties of zinc, ω-3 PUFAs and vitamin D, and their similar anti-cancer properties, even though they have different modes of action. These three nutrients are separately essential for good health, especially in the aged. Zinc, ω-3 PUFAs and vitamin D are inexpensive and safe as they are fundamentally natural and have the properties of correcting and inhibiting undesirable actions without disturbing the normal functions of cells or their extracellular environment. This review of the anticancer properties of zinc, ω-3 PUFAs and vitamin D is made in the context of the hallmarks of cancer. The anticancer properties of zinc, ω-3 PUFAs and vitamin D can therefore be used beneficially through combined treatment or supplementation. It is proposed that sufficiency of zinc, ω-3 PUFAs and vitamin D is a necessary requirement during chemotherapy treatment and that clinical trials can have questionable integrity if this sufficiency is not checked and maintained during efficacy trials.
Collapse
Affiliation(s)
- Michael J Story
- Story Pharmaceutics Pty Ltd, PO Box 6086, Linden Park, South Australia, 5065, Australia.
| |
Collapse
|
33
|
Razi M, Tavalaee M, Sarrafzadeh-Rezaei F, Moazamian A, Gharagozloo P, Drevet JR, Nasr-Eshafani MH. Varicocoele and oxidative stress: New perspectives from animal and human studies. Andrology 2020; 9:546-558. [PMID: 33145958 DOI: 10.1111/andr.12940] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 10/31/2020] [Accepted: 11/01/2020] [Indexed: 12/11/2022]
Abstract
BACKGROUND Varicocoele (VCL), one of the main causes of male subfertility, negatively affects testicular function. Due to limited access to human testicular tissue, animal model studies have been used to evaluate molecular and, recently, epigenetic changes attributed to pathophysiology induced by VCL. OBJECTIVES This review aims to provide an update on the latest findings regarding the link between VCL-induced biochemical stress and molecular changes in germ cells and spermatozoa. Endocrine and antioxidant status, testicular chaperone-specific hemostasis failure, altered testicular ion balance, metabolic disorders, and altered carbon cycling during spermatogenesis are among the many features that will be presented. DISCUSSION Literature review coupled with our own findings suggests that ionic imbalance, hypoxia, hyperthermia, and altered blood flow could lead to severe chronic oxidative and nitrosative stress in patients with VCL leading to defective spermatogenesis and impairment of the integrity of all sperm cell components and compartments down to the epigenetic information they carry. CONCLUSION Since oxidative stress is an important feature of the reproductive pathology of VCL, therapeutic strategies such as the administration of appropriate antioxidants could be undertaken as a complementary non-invasive treatment line.
Collapse
Affiliation(s)
- Mazdak Razi
- Department of Basic Sciences, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran
| | - Marziyeh Tavalaee
- Department of Animal Biotechnology, Reproductive Biomedicine Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Farshid Sarrafzadeh-Rezaei
- Department of Surgery and Diagnostic Imaging, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran
| | | | | | - Joël R Drevet
- Faculty of Medicine, GReD Institute, INSERM U1103, CNRS UMR6293, Université Clermont Auvergne, Clermont-Ferrand, France
| | - Mohammad-Hossein Nasr-Eshafani
- Department of Animal Biotechnology, Reproductive Biomedicine Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| |
Collapse
|
34
|
He G, Pan X, Liu X, Zhu Y, Ma Y, Du C, Liu X, Mao C. HIF-1α-Mediated Mitophagy Determines ZnO Nanoparticle-Induced Human Osteosarcoma Cell Death both In Vitro and In Vivo. ACS APPLIED MATERIALS & INTERFACES 2020; 12:48296-48309. [PMID: 33054172 DOI: 10.1021/acsami.0c12139] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Although ZnO nanoparticles (NPs) can kill human osteosarcoma cells, the underlying upstream regulatory mechanisms remain unclear. Since hypoxia inducible factor-1α (HIF-1α) regulates the tumor microenvironment, here we explored the interplay between HIF-1α regulation and mitophagy in ZnO NP-induced osteosarcoma inhibition both in vivo and in vitro. We found that ZnO NPs upregulated HIF-1α protein levels when they killed four common human osteosarcoma cell lines. This finding was consistent with our observations that additional HIF-1α upregulation by a hypoxia inducer CoCl2 or under a 1% hypoxia environment enhanced NP-induced cell death, but concurrent HIF-1α suppression by a hypoxia inhibitor YC-1 or HIF-1α siRNA inhibited NP-induced cell death. We discovered an interplay between HIF-1α and the autophagy-Zn2+-reactive oxygen species (ROS)-autophagy cycle axis and revealed that NP-induced cancer cell killing followed a HIF-1α-BNIP3-LC3B-mediated mitophagy pathway. We confirmed that NP-upregulated HIF-1α protein expression was attributed to prolyl hydroxylase inhibition by both ROS and Zn2+. In addition, the in vivo assay confirmed the therapeutic effectiveness and safety of ZnO NPs on a nude mice osteosarcoma model. Collectively, our findings clarified the upstream regulatory mechanism of autophagy induced by the NPs and further demonstrated their antitumor ability in vivo. This work provides new targets and strategies for enhancing NP-based osteosarcoma treatment.
Collapse
Affiliation(s)
- Guanping He
- Department of Orthopedics, Peking University Third Hospital, No. 49, North Garden Street, Haidian District, Beijing 100191, China
| | - Xiaoyu Pan
- Department of Orthopedics, Peking University Third Hospital, No. 49, North Garden Street, Haidian District, Beijing 100191, China
| | - Xiao Liu
- Department of Orthopedics, Peking University Third Hospital, No. 49, North Garden Street, Haidian District, Beijing 100191, China
| | - Ye Zhu
- Department of Chemistry and Biochemistry, Stephenson Life Sciences Research Center, University of Oklahoma, Norman, Oklahoma 73019, United States
| | - Yunlong Ma
- The Center for Pain Medicine, Peking University Third Hospital, No. 49, North Garden Street, Haidian District, Beijing 100191, China
| | - Chuanchao Du
- Department of Orthopedics, Peking University Third Hospital, No. 49, North Garden Street, Haidian District, Beijing 100191, China
| | - Xiaoguang Liu
- Department of Orthopedics, Peking University Third Hospital, No. 49, North Garden Street, Haidian District, Beijing 100191, China
| | - Chuanbin Mao
- Department of Chemistry and Biochemistry, Stephenson Life Sciences Research Center, University of Oklahoma, Norman, Oklahoma 73019, United States
| |
Collapse
|
35
|
Morsy S, Abd-Ellatif RN, Soliman NA, Ibrahim WM. Bioenergetic signature as a target of zinc oxide nanoparticles in Ehrlich ascitic carcinoma-bearing mice. J Biochem Mol Toxicol 2020; 35:e22647. [PMID: 33049097 DOI: 10.1002/jbt.22647] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 08/18/2020] [Accepted: 09/22/2020] [Indexed: 11/06/2022]
Abstract
The current study aims to evaluate the modulatory effect of zinc oxide nanoparticles (ZnO NPs) on the bioenergetic signature biomarkers in the Ehrlich ascitic carcinoma (EAC) model. To achieve this goal, 90 female albino mice were included in this study and were divided into six equal groups (n =15 per group): saline-treated group, ZnO NP-treated, EACs-bearing mice, and three groups of EACs-bearing mice treated with ZnO NPs at a dose of 20 mg/kg every other day, 10 mg/kg every other day, 10 mg/kg every day, respectively, for 14 days. The tissues from treated groups and control groups were homogenized and used for the assay of glyceraldehyde 3-phosphate dehydrogenase (GAPDH) and F1 beta subunit of adenosine triphosphate (ATP) synthase levels, as well as the determination of lactate level. The survival time of mice was improved in all ZnO NP-treated groups, especially in EACs-bearing mice treated with ZnO NPs at a dose of 10 mg/kg every other day. This improvement was associated with an increased F1 beta subunit of ATP synthase level and a decreased GAPDH level. Also, the lactate level was significantly decreased in all treated groups when compared with the untreated group. The overall effect was the increased bioenergetic signature as compared with EC.These results implied that ZnO NPs have a significant efficacy against cancer cells and they significantly increased the bioenergetic signature.
Collapse
Affiliation(s)
- Sara Morsy
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Rania N Abd-Ellatif
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Nema A Soliman
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Wafaa M Ibrahim
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Tanta University, Tanta, Egypt
| |
Collapse
|
36
|
Kargozar S, Baino F, Hamzehlou S, Hamblin MR, Mozafari M. Nanotechnology for angiogenesis: opportunities and challenges. Chem Soc Rev 2020; 49:5008-5057. [PMID: 32538379 PMCID: PMC7418030 DOI: 10.1039/c8cs01021h] [Citation(s) in RCA: 130] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Angiogenesis plays a critical role within the human body, from the early stages of life (i.e., embryonic development) to life-threatening diseases (e.g., cancer, heart attack, stroke, wound healing). Many pharmaceutical companies have expended huge efforts on both stimulation and inhibition of angiogenesis. During the last decade, the nanotechnology revolution has made a great impact in medicine, and regulatory approvals are starting to be achieved for nanomedicines to treat a wide range of diseases. Angiogenesis therapies involve the inhibition of angiogenesis in oncology and ophthalmology, and stimulation of angiogenesis in wound healing and tissue engineering. This review aims to summarize nanotechnology-based strategies that have been explored in the broad area of angiogenesis. Lipid-based, carbon-based and polymeric nanoparticles, and a wide range of inorganic and metallic nanoparticles are covered in detail. Theranostic and imaging approaches can be facilitated by nanoparticles. Many preparations have been reported to have a bimodal effect where they stimulate angiogenesis at low dose and inhibit it at higher doses.
Collapse
Affiliation(s)
- Saeid Kargozar
- Tissue Engineering Research Group (TERG), Department of Anatomy and Cell Biology, School of Medicine, Mashhad University of Medical Sciences, 917794-8564 Mashhad, Iran
| | - Francesco Baino
- Institute of Materials Physics and Engineering, Applied Science and Technology Department, Politecnico di Torino, Corso Duca degli Abruzzi 24, 101 29 Torino, Italy
| | - Sepideh Hamzehlou
- Hematology/Oncology and Stem Cell Transplantation Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Michael R. Hamblin
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA 02114, USA
- Department of Dermatology, Harvard Medical School, Boston, MA 02115, USA
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein 2028, South Africa
| | - Masoud Mozafari
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
37
|
Akbari G. Role of Zinc Supplementation on Ischemia/Reperfusion Injury in Various Organs. Biol Trace Elem Res 2020; 196:1-9. [PMID: 31828721 DOI: 10.1007/s12011-019-01892-3] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 09/04/2019] [Indexed: 12/13/2022]
Abstract
Ischemia-reperfusion (I/R) injury is a serious condition which is associated with myocardial infarction, stroke, acute kidney injury, trauma, circulatory arrest, sickle cell disease, and sleep apnea and can lead to high morbidity and mortality. Salts of zinc (Zn) are commonly used by humans and have protective effects against gastric, renal, hepatic, muscle, myocardial, or neuronal ischemic injury. The present review evaluates molecular mechanisms underlying the protective effects of Zn supplement against I/R injury. Data of this review have been collected from the scientific articles published in databases such as Science Direct, Scopus, PubMed, and Scientific Information Database from 1991 to 2019. Zn supplementation increased the decreased parameters including superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPX), glutathione (GSH), metallothionein (MT), protein sulfhydryl (P-SH), and nuclear factor-erythroid 2-related factor-2 (Nrf2) expression and decreased the increased elements such as endoplasmic reticulum (ER) stress, mitochondrial permeability transition pore (mPTP) opening, malondialdehyde (MDA), serum level of aspartate aminotransferase (AST), alanine aminotransferase (ALT), alkaline phosphatase (ALP), lactate dehydrogenase (LDH), and microRNAs-(122 and 34a), apoptotic factors, and histopathological changes. Zn also increases phosphatidylinositol 3-kinase (PI3K)/Akt and glycogen synthase kinase-3β (GSK-3β) phosphorylation and preserves protein kinase C isoforms. It is suggested that Zn can be administered before elective surgeries for prevention of side effects of I/R injury.
Collapse
Affiliation(s)
- Ghaidafeh Akbari
- Medicinal Plants Research Center, Yasuj University of Medical Sciences, Yasuj, Iran.
| |
Collapse
|
38
|
Deng X, Pi Y, Li Z, Xiong R, Liu J, Zhao J, Xie Z, Lei X, Tang G. FB-15 inhibits MGC-803 cells growth by regulating energy metabolism. Chem Biol Interact 2020; 327:109186. [PMID: 32590071 DOI: 10.1016/j.cbi.2020.109186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 05/06/2020] [Accepted: 06/17/2020] [Indexed: 11/17/2022]
Abstract
In this study, we scrutinized the anticancer effects of FB-15 on human gastric carcinoma MGC-803 cells in vitro and vivo, and its preliminary effect on tubulin and HIF-1α. We confirmed that FB-15 not only inhibited the proliferation of a large number of cells in a concentration and time-dependent manner but also inhibited proliferation of a single cell to form clones. FB-15 manifested little cytotoxicity for normal stomach cells GES-1. The flow cytometry analysis displayed that FB-15 induced apoptosis MGC-803 cells and mainly arrested cells in the S phase in a concentration-dependent manner. The results of the wound healing assay indicated that FB-15 suppressed cell migration. Furthermore, the western blotting showed that FB-15 down-regulated the expression of β3-tubulin and HIF-1α, consistent with Immunohistochemical assay. The binding modes of FB-15 with tubulin were clarified by molecular docking. FB-15 significantly suppressed the growth of MGC-803 gastric cancer tumors. The inhibitory effect of FB-15 on tumor growth was superior to 5-Fu. Taken together, these results provided evidence for FB-15 to be used as an effective anticancer drug candidate for gastric cancer.
Collapse
Affiliation(s)
- Xiangping Deng
- Institute of Pharmacy and Pharmacology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang City, Hunan Province, PR China; Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hengyang City, Hunan Province, PR China
| | - Yiyuan Pi
- Institute of Pharmacy and Pharmacology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang City, Hunan Province, PR China; Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hengyang City, Hunan Province, PR China; Xiangnan University, Chenzhou City, Hunan Province, PR China
| | - Zhongli Li
- Institute of Pharmacy and Pharmacology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang City, Hunan Province, PR China
| | - Runde Xiong
- Institute of Pharmacy and Pharmacology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang City, Hunan Province, PR China
| | - Juan Liu
- Institute of Pharmacy and Pharmacology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang City, Hunan Province, PR China
| | - Jingduo Zhao
- Institute of Pharmacy and Pharmacology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang City, Hunan Province, PR China; Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hengyang City, Hunan Province, PR China
| | - Zhizhong Xie
- Institute of Pharmacy and Pharmacology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang City, Hunan Province, PR China; Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hengyang City, Hunan Province, PR China
| | - Xiaoyong Lei
- Institute of Pharmacy and Pharmacology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang City, Hunan Province, PR China; Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hengyang City, Hunan Province, PR China.
| | - Guotao Tang
- Institute of Pharmacy and Pharmacology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang City, Hunan Province, PR China; Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hengyang City, Hunan Province, PR China.
| |
Collapse
|
39
|
Mortada WI, Awadalla A, Khater S, Ahmed A, Hamam ET, El-Zayat M, Shokeir AA. Copper and zinc levels in plasma and cancerous tissues and their relation with expression of VEGF and HIF-1 in the pathogenesis of muscle invasive urothelial bladder cancer: a case-controlled clinical study. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:15835-15841. [PMID: 32095963 DOI: 10.1007/s11356-020-08113-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 02/14/2020] [Indexed: 06/10/2023]
Abstract
To evaluate Cu and Zn levels in bladder cancer (BC) patients and their relationship with expression of vascular endothelial growth factor (VEGF) and hypoxia-inducible factor 1 (HIF-1). Plasma levels of Cu and Zn were determined in 66 transitional bladder cell carcinoma patients (BC group) and 60 matched controls. The concentration of Cu and Zn as well as the expressions of both VEGF and HIF-1 were also estimated in cancerous and non-cancerous bladder tissues in the BC group. The results showed that plasma Cu and Cu/Zn ratio were significantly higher in BC group when compared with the control group. In contrast, the plasma Zn in BC group was significantly lower than in the controls. Comparing levels of Cu and Zn in cancerous and non-cancerous bladder tissues among the BC group indicated a significantly higher Cu levels in the cancerous tissues, while Zn levels was significantly lower. There were higher expressions of both VEGF and HIF-1 in the cancerous samples. Moreover, the Cu concentration in cancerous tissues was significantly correlated with expressions of VEGF and HIF-1. Logistic regression analysis revealed that the increase in plasma Cu/Zn ratio and plasma Cu and the decrease in plasma Zn may be risk factors for development of bladder cancer. We concluded that alteration of plasma and bladder tissue levels of both Cu and Zn is correlated with pathogenesis of bladder cancer. The increase in Cu level in cancerous tissues of BC group has an important role in angiogenesis in bladder cancer cells.
Collapse
Affiliation(s)
- Wael I Mortada
- Clinical Chemistry Laboratory, Urology and Nephrology Center, Mansoura University, Mansoura, 35516, Egypt.
| | - Amira Awadalla
- Center of Excellence for Genome and Cancer Research, Urology and Nephrology Center, Mansoura University, Mansoura, 35516, Egypt
| | - Sherry Khater
- Pathology Laboratory, Urology and Nephrology Center, Mansoura University, Mansoura, 35516, Egypt
| | - Asmaa Ahmed
- Center of Excellence for Genome and Cancer Research, Urology and Nephrology Center, Mansoura University, Mansoura, 35516, Egypt
| | - Eman T Hamam
- Center of Excellence for Genome and Cancer Research, Urology and Nephrology Center, Mansoura University, Mansoura, 35516, Egypt
| | - Mustafa El-Zayat
- Unit of Genetic Engineering and Biotechnology, Faculty of Science, Mansoura University, Mansoura, 35516, Egypt
| | - Ahmed A Shokeir
- Center of Excellence for Genome and Cancer Research, Urology and Nephrology Center, Mansoura University, Mansoura, 35516, Egypt
| |
Collapse
|
40
|
Growth Modulatory Role of Zinc in Prostate Cancer and Application to Cancer Therapeutics. Int J Mol Sci 2020; 21:ijms21082991. [PMID: 32340289 PMCID: PMC7216164 DOI: 10.3390/ijms21082991] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 04/16/2020] [Accepted: 04/18/2020] [Indexed: 02/06/2023] Open
Abstract
Zinc is a group IIB heavy metal. It is an important regulator of major cell signaling pathways in most mammalian cells, functions as an antioxidant and plays a role in maintaining genomic stability. Zinc deficiency leads to severe diseases in the brain, pancreas, liver, kidneys and reproductive organs. Zinc loss occurs during tumor development in a variety of cancers. The prostate normally contains abundant intracellular zinc and zinc loss is a hallmark of the development of prostate cancer development. The underlying mechanism of this loss is not clearly understood. The knowledge that excess zinc prevents the growth of prostate cancers suggests that zinc-mediated therapeutics could be an effective approach for cancer prevention and treatment, although challenges remain. This review summarizes the specific roles of zinc in several cancer types focusing on prostate cancer. The relationship between prostate cancer and the dysregulation of zinc homeostasis is examined in detail in an effort to understand the role of zinc in prostate cancer.
Collapse
|
41
|
Advances of Zinc Signaling Studies in Prostate Cancer. Int J Mol Sci 2020; 21:ijms21020667. [PMID: 31963946 PMCID: PMC7014440 DOI: 10.3390/ijms21020667] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 01/16/2020] [Accepted: 01/17/2020] [Indexed: 12/16/2022] Open
Abstract
Prostate cancer (PCa) is one of the most common cancers and the second leading cause of cancer-related death among men worldwide. Despite progresses in early diagnosis and therapeutic strategies, prognosis for patients with advanced PCa remains poor. Noteworthily, a unique feature of healthy prostate is its highest level of zinc content among all soft tissues in the human body, which dramatically decreases during prostate tumorigenesis. To date, several reviews have suggested antitumor activities of zinc and its potential as a therapeutic strategy of PCa. However, an overview about the role of zinc and its signaling in PCa is needed. Here, we review literature related to the content, biological function, compounds and clinical application of zinc in PCa. We first summarize zinc content in prostate tissue and sera of PCa patients with their clinical relevance. We then elaborate biological functions of zinc signaling in PCa on three main aspects, including cell proliferation, death and tumor metastasis. Finally, we discuss clinical applications of zinc-containing compounds and proteins involved in PCa signaling pathways. Based on currently available studies, we conclude that zinc plays a tumor suppressive role and can serve as a biomarker in PCa diagnosis and therapies.
Collapse
|
42
|
Wang J, Zhao H, Xu Z, Cheng X. Zinc dysregulation in cancers and its potential as a therapeutic target. Cancer Biol Med 2020; 17:612-625. [PMID: 32944394 PMCID: PMC7476080 DOI: 10.20892/j.issn.2095-3941.2020.0106] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 06/08/2020] [Indexed: 12/12/2022] Open
Abstract
Zinc is an essential element and serves as a structural or catalytic component in many proteins. Two families of transporters are involved in maintaining cellular zinc homeostasis: the ZIP (SLC39A) family that facilitates zinc influx into the cytoplasm, and the ZnT (SLC30A) family that facilitates zinc efflux from the cytoplasm. Zinc dyshomeostasis caused by the dysfunction of zinc transporters can contribute to the initiation or progression of various cancers, including prostate cancer, breast cancer, and pancreatic cancer. In addition, intracellular zinc fluctuations lead to the disturbance of certain signaling pathways involved in the malignant properties of cancer cells. This review briefly summarizes our current understanding of zinc dyshomeostasis in cancer, and discusses the potential roles of zinc or zinc transporters in cancer therapy.
Collapse
Affiliation(s)
- Jie Wang
- Department of Physiology and Pathophysiology, Tianjin Medical University, Tianjin 300070, China
| | - Huanhuan Zhao
- Department of Physiology and Pathophysiology, Tianjin Medical University, Tianjin 300070, China
| | - Zhelong Xu
- Department of Physiology and Pathophysiology, Tianjin Medical University, Tianjin 300070, China
| | - Xinxin Cheng
- Department of Physiology and Pathophysiology, Tianjin Medical University, Tianjin 300070, China
| |
Collapse
|
43
|
Poropatich K, Paunesku T, Zander A, Wray B, Schipma M, Dalal P, Agulnik M, Chen S, Lai B, Antipova O, Maxey E, Brown K, Wanzer MB, Gursel D, Fan H, Rademaker A, Woloschak GE, Mittal BB. Elemental Zn and its Binding Protein Zinc-α2-Glycoprotein are Elevated in HPV-Positive Oropharyngeal Squamous Cell Carcinoma. Sci Rep 2019; 9:16965. [PMID: 31740720 PMCID: PMC6861298 DOI: 10.1038/s41598-019-53268-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2019] [Accepted: 10/27/2019] [Indexed: 12/20/2022] Open
Abstract
Human papillomavirus (HPV)-positive head and neck squamous cell carcinoma (HNSCC) is biologically distinct from HPV-negative HNSCC. Outside of HPV-status, few tumor-intrinsic variables have been identified that correlate to improved survival. As part of exploratory analysis into the trace elemental composition of oropharyngeal squamous cell carcinoma (OPSCC), we performed elemental quanitification by X-ray fluorescence microscopy (XFM) on a small cohort (n = 32) of patients with HPV-positive and -negative OPSCC and identified in HPV-positive cases increased zinc (Zn) concentrations in tumor tissue relative to normal tissue. Subsequent immunohistochemistry of six Zn-binding proteins—zinc-α2-glycoprotein (AZGP1), Lipocalin-1, Albumin, S100A7, S100A8 and S100A9—revealed that only AZGP1 expression significantly correlated to HPV-status (p < 0.001) and was also increased in tumor relative to normal tissue from HPV-positive OPSCC tumor samples. AZGP1 protein expression in our cohort significantly correlated to a prolonged recurrence-free survival (p = 0.029), similar to HNSCC cases from the TCGA (n = 499), where highest AZGP1 mRNA levels correlated to improved overall survival (p = 0.023). By showing for the first time that HPV-positive OPSCC patients have increased intratumoral Zn levels and AZGP1 expression, we identify possible positive prognostic biomarkers in HNSCC as well as possible mechanisms of increased sensitivity to chemoradiation in HPV-positive OPSCC.
Collapse
Affiliation(s)
- Kate Poropatich
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA. .,Robert H Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL, USA. .,Department of Radiation Oncology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.
| | - Tatjana Paunesku
- Department of Radiation Oncology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Alia Zander
- Department of Radiation Oncology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Brian Wray
- Center for Genetic Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Matthew Schipma
- Center for Genetic Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Prarthana Dalal
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Mark Agulnik
- Robert H Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.,Division of Hematology and Oncology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Si Chen
- X-ray Science Division, Advanced Photon Source, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL, 60439, USA
| | - Barry Lai
- X-ray Science Division, Advanced Photon Source, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL, 60439, USA
| | - Olga Antipova
- X-ray Science Division, Advanced Photon Source, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL, 60439, USA
| | - Evan Maxey
- X-ray Science Division, Advanced Photon Source, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL, 60439, USA
| | - Koshonna Brown
- Department of Radiation Oncology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Michael Beau Wanzer
- Department of Radiation Oncology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Demirkan Gursel
- Northwestern University Pathology Core Facility, Robert H Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Hanli Fan
- Northwestern University Pathology Core Facility, Robert H Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Alfred Rademaker
- Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Gayle E Woloschak
- Robert H Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.,Department of Radiation Oncology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Bharat B Mittal
- Robert H Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.,Department of Radiation Oncology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| |
Collapse
|
44
|
Long T, Wang R, Wang J, Wang F, Xu Y, Wei Y, Zhou L, Zhang X, Yuan J, Yao P, Wei S, Guo H, Yang H, Wu T, He M. Plasma metals and cardiovascular disease in patients with type 2 diabetes. ENVIRONMENT INTERNATIONAL 2019; 129:497-506. [PMID: 31158596 DOI: 10.1016/j.envint.2019.05.038] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 05/08/2019] [Accepted: 05/14/2019] [Indexed: 06/09/2023]
Abstract
BACKGROUND Metals exposure from natural environment and pollution have been linked to cardiovascular disease (CVD). However, whether associations existing between plasma multiple metals and incident cardiovascular disease in patients with type 2 diabetes (T2D) is unknown. OBJECTIVES We conducted a prospective cohort study to investigate whether plasma levels of metals are associated with incident CVD risk in patients with T2D. METHODS In a prospective study of 3897 type 2 diabetes embedded in the Dongfeng-Tongji cohort, fasting blood samples were collected in 2008 at baseline and in 2013 in the first follow-up period. Plasma concentrations of 23 metals were measured by inductively coupled plasma mass spectrometry (ICP-MS). The associations between plasma metal concentrations and CVD risk in patients with T2D were investigated with Cox proportional hazards models. RESULTS During an average of 6.2 years follow-up, 1114 participants developed CVD. In the single-metal models adjusting for established cardiovascular risk factors, plasma zinc and selenium levels were negatively and strontium was positively associated with incident CVD risk in patients with T2D. Similar results were obtained in the multiple-metal model, the HRs (95% CIs) for zinc, selenium, and strontium comparing extreme quartiles were 0.78 (95% CI: 0.65-0.93; P trend = 0.011), 0.76 (95% CI: 0.64-0.91; P trend = 0.001), and 1.51 (95% CI: 1.26-1.81; P trend <0.001), respectively. In the joint association analyses of two metals, individuals with high plasma levels of zinc and selenium had significantly lower risk of incident CVD in patients with T2D than those with low levels (HR = 0.77, 95% CI: 0.65-0.91). CONCLUSIONS The present study suggested that plasma levels of zinc and selenium had an inverse association with incident CVD risk in patients with T2D, while strontium had a positive correlation. Plasma zinc and selenium combinedly decreased incident CVD risk in patients with T2D. Further research is still needed to verify these findings in other populations.
Collapse
Affiliation(s)
- Tengfei Long
- Department of Occupational and Environmental Health and State Key Laboratory of Environmental Health for Incubating, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Ruixin Wang
- Department of Occupational and Environmental Health and State Key Laboratory of Environmental Health for Incubating, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jing Wang
- Department of Occupational and Environmental Health and State Key Laboratory of Environmental Health for Incubating, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Department of Preventive Medicine in School of Public Health and Management and Center for Environment and Health in Water Source Area of South to North Water Diversion, Hubei University of Medicine, Shiyan, Hubei, China
| | - Fei Wang
- Department of Occupational and Environmental Health and State Key Laboratory of Environmental Health for Incubating, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yali Xu
- Department of Occupational and Environmental Health and State Key Laboratory of Environmental Health for Incubating, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yue Wei
- Department of Occupational and Environmental Health and State Key Laboratory of Environmental Health for Incubating, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Lue Zhou
- Department of Occupational and Environmental Health and State Key Laboratory of Environmental Health for Incubating, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xiaomin Zhang
- Department of Occupational and Environmental Health and State Key Laboratory of Environmental Health for Incubating, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jing Yuan
- Department of Occupational and Environmental Health and State Key Laboratory of Environmental Health for Incubating, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Ping Yao
- Department of Occupational and Environmental Health and State Key Laboratory of Environmental Health for Incubating, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Sheng Wei
- Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Huan Guo
- Department of Occupational and Environmental Health and State Key Laboratory of Environmental Health for Incubating, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Handong Yang
- Department of Cardiovascular Medicine, Dongfeng Central Hospital, Dongfeng Motor Corporation and Hubei University of Medicine, Shiyan, Hubei, China
| | - Tangchun Wu
- Department of Occupational and Environmental Health and State Key Laboratory of Environmental Health for Incubating, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Meian He
- Department of Occupational and Environmental Health and State Key Laboratory of Environmental Health for Incubating, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| |
Collapse
|
45
|
Morand J, Briançon-Marjollet A, Lemarie E, Gonthier B, Arnaud J, Korichneva I, Godin-Ribuot D. Zinc deficiency promotes endothelin secretion and endothelial cell migration through nuclear hypoxia-inducible factor-1 translocation. Am J Physiol Cell Physiol 2019; 317:C270-C276. [PMID: 31116583 DOI: 10.1152/ajpcell.00460.2018] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Zinc is involved in the expression and function of various transcription factors, including the hypoxia-inducible factor-1 (HIF-1). HIF-1 and its target gene endothelin-1 (ET-1) are activated by intermittent hypoxia (IH), one of the main consequences of obstructive sleep apnea (OSA), and both play a key role in the cardiovascular consequences of IH. Because OSA and IH are associated with zinc deficiency, we investigated the effect of zinc deficiency caused by chelation on the HIF-1/ET-1 pathway and its functional consequences in endothelial cells. Primary human microvascular endothelial cells (HMVEC) were incubated with submicromolar doses of the zinc-specific membrane-permeable chelator N,N,N',N'-tetrakis(2-pyridylmethyl)-ethylene diamine (TPEN, 0.5 µM) or ET-1 (0.01 µM) with or without bosentan, a dual ET-1-receptor antagonist. HIF-1α expression was silenced by transfection with specific siRNA. Nuclear HIF-1 content was assessed by immunofluorescence microscopy and Western blot. Migratory capacity of HMVEC was evaluated with a wound-healing scratch assay. Zinc chelation by TPEN exposure induced the translocation of the cytosolic HIF-1α subunit of HIF-1 to the nucleus as well as an HIF-1-mediated ET-1 secretion by HMVEC. Incubation with either TPEN or ET-1 increased endothelial wound-healing capacity. Both HIF-1α silencing or bosentan abolished this effect. Altogether, these results suggest that zinc deficiency upregulates ET-1 signaling through HIF-1 activation and stimulates endothelial cell migration, suggesting an important role of zinc in the vascular consequences of IH and OSA mediated by HIF-1-ET- signaling.
Collapse
Affiliation(s)
- Jessica Morand
- Université Grenoble Alpes, INSERM, CHU Grenoble Alpes, Laboratoire HP2, Grenoble, France
| | | | - Emeline Lemarie
- Université Grenoble Alpes, INSERM, CHU Grenoble Alpes, Laboratoire HP2, Grenoble, France
| | - Brigitte Gonthier
- Université Grenoble Alpes, INSERM, CHU Grenoble Alpes, Laboratoire HP2, Grenoble, France
| | - Josiane Arnaud
- CHUGA, Biochimie Hormonale et nutritionnelle, Grenoble, France.,Université Grenoble Alpes, INSERM, Grenoble, France
| | - Irina Korichneva
- Université Grenoble Alpes, INSERM, CHU Grenoble Alpes, Laboratoire HP2, Grenoble, France.,Faculty of Pharmacology and Medicine, University of Picardie Jules Verne, Amiens, France
| | - Diane Godin-Ribuot
- Université Grenoble Alpes, INSERM, CHU Grenoble Alpes, Laboratoire HP2, Grenoble, France
| |
Collapse
|
46
|
Burián Z, Ladányi A, Barbai T, Piurkó V, Garay T, Rásó E, Tímár J. Selective Inhibition of HIF1α Expression by ZnSO 4 Has Antitumoral Effects in Human Melanoma. Pathol Oncol Res 2019; 26:673-679. [PMID: 30613921 DOI: 10.1007/s12253-018-00573-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Accepted: 12/21/2018] [Indexed: 10/27/2022]
Abstract
Zinc as an essential trace metal is a ubiquitous component of various molecules of the cell. Studies indicated that it may modulate functions of various cancer cell types, and can even inhibit metastasis formation in experimental models. In melanoma, zinc was shown to affect melanin production and to induce apoptosis. Using human melanoma cell lines, we have tested the effects of ZnSO4 on cell proliferation, survival, migration as well as in vivo on experimental liver colony formation. We have found that ZnSO4 has antiproliferative and proapoptotic effects in vitro. In SCID mice intraperitoneal administration of ZnSO4 specifically inhibited liver colony formation without affecting primary tumor growth. To reveal the molecular mechanisms of action of zinc in human melanoma, we have tested mRNA expression of zinc finger transcription factors and found a strong inhibitory effect on HIF1α, as compared to WT1 whereas HIF2α and MTF1 expression was unaffected. Immunohistochemical detection of HIF1α protein in liver metastases confirmed its decreased nuclear expression after in vivo ZnSO4 treatment. These data indicate that in human melanoma zinc administration may have an antimetastatic effect due to a selective downregulation of HIF1α.
Collapse
Affiliation(s)
- Z Burián
- National Institute of Oncology, Budapest, Hungary
| | - A Ladányi
- National Institute of Oncology, Budapest, Hungary
| | - T Barbai
- 2nd Department of Pathology, Semmelweis University, Üllői út 93., Budapest, H-1091, Hungary
| | - V Piurkó
- 2nd Department of Pathology, Semmelweis University, Üllői út 93., Budapest, H-1091, Hungary
| | - T Garay
- 2nd Department of Pathology, Semmelweis University, Üllői út 93., Budapest, H-1091, Hungary
| | - E Rásó
- 2nd Department of Pathology, Semmelweis University, Üllői út 93., Budapest, H-1091, Hungary
| | - József Tímár
- 2nd Department of Pathology, Semmelweis University, Üllői út 93., Budapest, H-1091, Hungary.
| |
Collapse
|
47
|
Khan M, Siddiqui S, Akram M, Alam M. Can zinc supplementation widen the gap between control and complications in head and neck cancer patients treated with concurrent chemo-radiotherapy. JOURNAL OF MEDICAL SCIENCES 2019. [DOI: 10.4103/jmedsci.jmedsci_20_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
48
|
Guan X, Luo L, Begum G, Kohanbash G, Song Q, Rao A, Amankulor N, Sun B, Sun D, Jia W. Elevated Na/H exchanger 1 (SLC9A1) emerges as a marker for tumorigenesis and prognosis in gliomas. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2018; 37:255. [PMID: 30333031 PMCID: PMC6192309 DOI: 10.1186/s13046-018-0923-z] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Accepted: 10/02/2018] [Indexed: 12/11/2022]
Abstract
Background Sodium/hydrogen exchanger 1 (NHE1), encoded by the SLC9A1 gene (SoLute Carrier family 9A1) in humans, is the main H+ efflux mechanism in maintaining alkaline intracellular pH (pHi) and Warburg effects in glioma. However, to date, there are no clinical studies exploring pharmacological inhibition of NHE1 protein in cancer treatment. In this study, we investigated NHE1 expression in gliomas and its relationship with glioma clinical outcome. Methods The Chinese Glioma Genome Atlas (CGGA) dataset containing transcriptome sequencing data of 325 glioma samples and the Cancer Genome Atlas (TCGA) with 698 glioma mRNAseq data were analyzed in this study. Mouse SB28 and GL26 intracranial syngeneic glioma models in C57BL/6 J mice were established to investigate NHE1 expression and impact of NHE1 protein inhibition with its inhibitor HOE642 on tumorigenesis and anti-PD1 therapy. Tumor angiogenesis, immunogenicity, and progression were assessed by immunofluorescence staining and flow cytometric profiling. Results Analysis of SLC9A1 mRNA expression in two data sets, CGGA and TCGA, reveals significantly higher SLC9A1 mRNA levels in higher grade gliomas. The SLC9A1 mRNA expression was especially enriched in isocitrate dehydrogenase (IDH)1/2 wild-type glioblastoma (GBM) and in mesenchymal glioma subtypes. Worsened survival probabilities were correlated with the elevated SLC9A1 mRNA levels in gliomas. The underlying mechanisms include promoting angiogenesis, and extracellular matrix remodeling. Increased SLC9A1 mRNA expression was also associated with tumor-associated macrophage accumulation. NHE1 inhibitor HOE642 reduced glioma volume, invasion, and prolonged overall survival in mouse glioma models. Blockade of NHE1 protein also stimulated immunogenic tumor microenvironment via activating CD8 T-cell accumulation, increasing expression of interferon-gamma (Ifng), and sensitized animals to anti-PD-1 therapy. Conclusion Our findings strongly suggest that NHE1 protein emerges as a marker for tumorigenesis and prognosis in glioma. Blocking NHE1 protein is a novel strategy for adjuvant anti-cancer therapies. Electronic supplementary material The online version of this article (10.1186/s13046-018-0923-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Xiudong Guan
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, No. 6 Tiantan Xili, Dongcheng District, Beijing, 100050, China.,Chinese National Clinical Research Center for Neurological Diseases, Beijing, China.,Beijing Neurosurgical Institute, Beijing, China.,Chinese Glioma Genome Atlas Network, Beijing, 100050, China.,Department of Neurology, University of Pittsburgh, 7016 Biomedical Science Tower 3 3501 Fifth Ave., Pittsburgh, PA, 15260, USA
| | - Lanxin Luo
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, China.,Department of Neurology, University of Pittsburgh, 7016 Biomedical Science Tower 3 3501 Fifth Ave., Pittsburgh, PA, 15260, USA
| | - Gulnaz Begum
- Department of Neurology, University of Pittsburgh, 7016 Biomedical Science Tower 3 3501 Fifth Ave., Pittsburgh, PA, 15260, USA.,Pittsburgh Institute for Neurodegenerative Disorders, University of Pittsburgh, Pittsburgh, PA, USA
| | - Gary Kohanbash
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA, USA
| | - Qingkun Song
- Department of Science and Technology, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Aparna Rao
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA, USA
| | - Nduka Amankulor
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA, USA
| | - Baoshan Sun
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, China.,Pólo Dois Portos, Instituto National de Investigação Agrária e Veterinária, I.P., Quinta da Almoinha, Dois Portos, Portugal
| | - Dandan Sun
- Department of Neurology, University of Pittsburgh, 7016 Biomedical Science Tower 3 3501 Fifth Ave., Pittsburgh, PA, 15260, USA. .,Pittsburgh Institute for Neurodegenerative Disorders, University of Pittsburgh, Pittsburgh, PA, USA.
| | - Wang Jia
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, No. 6 Tiantan Xili, Dongcheng District, Beijing, 100050, China. .,Chinese National Clinical Research Center for Neurological Diseases, Beijing, China. .,Beijing Neurosurgical Institute, Beijing, China. .,Chinese Glioma Genome Atlas Network, Beijing, 100050, China.
| |
Collapse
|
49
|
Da Ros M, De Gregorio V, Iorio AL, Giunti L, Guidi M, de Martino M, Genitori L, Sardi I. Glioblastoma Chemoresistance: The Double Play by Microenvironment and Blood-Brain Barrier. Int J Mol Sci 2018; 19:ijms19102879. [PMID: 30248992 PMCID: PMC6213072 DOI: 10.3390/ijms19102879] [Citation(s) in RCA: 147] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 09/19/2018] [Accepted: 09/20/2018] [Indexed: 12/27/2022] Open
Abstract
For glioblastoma, the tumor microenvironment (TME) is pivotal to support tumor progression and therapeutic resistance. TME consists of several types of stromal, endothelial and immune cells, which are recruited by cancer stem cells (CSCs) to influence CSC phenotype and behavior. TME also promotes the establishment of specific conditions such as hypoxia and acidosis, which play a critical role in glioblastoma chemoresistance, interfering with angiogenesis, apoptosis, DNA repair, oxidative stress, immune escape, expression and activity of multi-drug resistance (MDR)-related genes. Finally, the blood brain barrier (BBB), which insulates the brain microenvironment from the blood, is strongly linked to the drug-resistant phenotype of glioblastoma, being a major physical and physiological hurdle for the delivery of chemotherapy agents into the brain. Here, we review the features of the glioblastoma microenvironment, focusing on their involvement in the phenomenon of chemoresistance; we also summarize recent advances in generating systems to modulate or bypass the BBB for drug delivery into the brain. Genetic aspects associated with glioblastoma chemoresistance and current immune-based strategies, such as checkpoint inhibitor therapy, are described too.
Collapse
Affiliation(s)
- Martina Da Ros
- Neuro-oncology Unit, Department of Pediatric Oncology, Meyer Children's Hospital, Florence, 50139, Italy.
| | - Veronica De Gregorio
- Neuro-oncology Unit, Department of Pediatric Oncology, Meyer Children's Hospital, Florence, 50139, Italy.
| | - Anna Lisa Iorio
- Neuro-oncology Unit, Department of Pediatric Oncology, Meyer Children's Hospital, Florence, 50139, Italy.
| | - Laura Giunti
- Medical Genetics Unit, Meyer Children's University Hospital, 50139 Florence, Italy.
| | - Milena Guidi
- Neuro-oncology Unit, Department of Pediatric Oncology, Meyer Children's Hospital, Florence, 50139, Italy.
| | - Maurizio de Martino
- Director Post Graduate Pediatric School University of Florence, Director Meyer Health Campus, Florence, 50139, Italy.
| | - Lorenzo Genitori
- Neurosurgery Unit, Department of Neurosciences, Meyer Children's Hospital, Florence, 50139, Italy.
| | - Iacopo Sardi
- Neuro-oncology Unit, Department of Pediatric Oncology, Meyer Children's Hospital, Florence, 50139, Italy.
| |
Collapse
|
50
|
Choi S, Liu X, Pan Z. Zinc deficiency and cellular oxidative stress: prognostic implications in cardiovascular diseases. Acta Pharmacol Sin 2018; 39:1120-1132. [PMID: 29926844 PMCID: PMC6289396 DOI: 10.1038/aps.2018.25] [Citation(s) in RCA: 246] [Impact Index Per Article: 35.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Accepted: 02/28/2018] [Indexed: 12/11/2022]
Abstract
Zinc is an essential nutrient for human health and has anti-oxidative stress and anti-inflammatory functions. The association between zinc deficiency and the development of cardiovascular diseases (CVDs) has been supported by numerous studies. Supplementing zinc can reduce the risk of atherosclerosis and protect against myocardial infarction and ischemia/reperfusion injury. In this review we summarize the evidence in the literature, to consolidate the current knowledge on the dysregulation of zinc homeostasis in CVDs, and to explore the significant roles of the zinc homeostasis-regulatory proteins in cardiac physiology and pathophysiology. Moreover, this review also deliberates on the potential diagnostic and prognostic implications of zinc/zinc homeostasis-associated molecules (ZIP, ZnT, and MTs) in CVDs.
Collapse
|