1
|
Puswal SM, Liang W. Acoustic features and morphological parameters of the domestic chickens. Poult Sci 2024; 103:103758. [PMID: 38663204 PMCID: PMC11068626 DOI: 10.1016/j.psj.2024.103758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 04/04/2024] [Accepted: 04/07/2024] [Indexed: 05/07/2024] Open
Abstract
Acoustic characteristics reflect male quality and play a role in female mate choice. Thus, the frequency of vocalizations and temporal characteristics are often related to body size within and across species. However, it is less clear whether acoustic features can reveal information about individual quality in the domestic chicken (Gallus gallus domesticus) populations. Here, we investigated the relationship between morphological parameters and acoustic features in male and female free-ranged domestic chickens in Liuzhi, Guizhou, southwest China, and further examined whether acoustic characteristics correlate with internal organs, including the heart, liver, testis, and spleen in male chickens, and whether the cackling call of females indicates body size and mass. We found that both male and female chickens differ significantly in their morphological parameters; however, based on acoustic parameters, they only differ in high frequency. Morphological parameters displayed no relationship with the frequency and duration of calls in both male and female chickens. Furthermore, none of the frequency or temporal parameters of the calls we studied were related to the internal body parameters of males.
Collapse
Affiliation(s)
- Sabah Mushtaq Puswal
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory of Tropical Animal and Plant Ecology of Hainan Province, College of Life Sciences, Hainan Normal University, Haikou 571158, China
| | - Wei Liang
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory of Tropical Animal and Plant Ecology of Hainan Province, College of Life Sciences, Hainan Normal University, Haikou 571158, China.
| |
Collapse
|
2
|
Degueldre F, Aron S. Sperm competition increases sperm production and quality in Cataglyphis desert ants. Proc Biol Sci 2023; 290:20230216. [PMID: 36987648 PMCID: PMC10050944 DOI: 10.1098/rspb.2023.0216] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 03/10/2023] [Indexed: 03/30/2023] Open
Abstract
Sperm competition is a pervasive evolutionary force that shapes sperm traits to maximize fertilization success. Indeed, it has been shown to increase sperm production in both vertebrates and invertebrates. However, sperm production is energetically costly, which may result in trade-offs among sperm traits. In eusocial hymenopterans, such as ants, mating dynamics impose unique selective pressures on ejaculate. Males are sperm limited: they enter adulthood with a fixed amount of sperm that will not be renewed. We explored whether sperm competition intensity was associated with sperm quantity and quality (i.e. sperm viability and DNA fragmentation) in nine Cataglyphis desert ants. Our results provide phylogenetically robust evidence that sperm competition is positively correlated with sperm production and sperm viability. However, it was unrelated to sperm DNA integrity, indicating the absence of a trade-off involving this trait. These findings underscore that sperm competition may strongly mould sperm traits and drive reproductive performance in eusocial Hymenoptera.
Collapse
Affiliation(s)
- Félicien Degueldre
- Evolutionary Biology and Ecology, Université Libre de Bruxelles, Brussels, Brussels B-1050, Belgium
| | - Serge Aron
- Evolutionary Biology and Ecology, Université Libre de Bruxelles, Brussels, Brussels B-1050, Belgium
| |
Collapse
|
3
|
Browne JH, Gwynne DT. Paternity sharing in insects with female competition for nuptial gifts. Ecol Evol 2022; 12:e9463. [PMID: 36329813 PMCID: PMC9618826 DOI: 10.1002/ece3.9463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 09/20/2022] [Accepted: 10/10/2022] [Indexed: 11/26/2022] Open
Abstract
Male parental investment is expected to be associated with high confidence of paternity. Studies of species with exclusive male parental care have provided support for this hypothesis because mating typically co-occurs with each oviposition, allowing control over paternity and the allocation of care. However, in systems where males invest by feeding mates (typically arthropods), mating (and thus the investment) is separated from egg-laying, resulting in less control over insemination, as male ejaculates compete with rival sperm stored by females, and a greater risk of investing in unrelated offspring (cuckoldry). As strong selection on males to increase paternity would compromise the fitness of all a female's other mates that make costly nutrient contributions, paternity sharing (males not excluded from siring offspring) is an expected outcome of sperm competition. Using wild-caught females in an orthopteran and a dipteran species, in which sexually selected, ornamented females compete for male nuptial food gifts needed for successful reproduction, we examined paternity patterns and compared them with findings in other insects. We used microsatellite analysis of offspring (lifetime reproduction in the orthopteran) and stored sperm from wild-caught females in both study species. As predicted, there was evidence of shared paternity as few males failed to sire offspring. Further support for paternity sharing is the lack of last-male sperm precedence in our study species. Although paternity was not equal among sires, our estimates of paternity bias were similar to other insects with valuable nuptial gifts and contrasted with the finding that males are frequently excluded from siring offspring in species where males supply little more than sperm. This suggests paternity bias may be reduced in nuptial-gift systems and may help facilitate the evolution of these paternal investments.
Collapse
Affiliation(s)
- Jessica H. Browne
- Department of Ecology and Evolutionary BiologyUniversity of Toronto MississaugaMississaugaOntarioCanada
- Department of BiologyMount Allison UniversitySackvilleNew BrunswickCanada
| | - Darryl T. Gwynne
- Department of Ecology and Evolutionary BiologyUniversity of Toronto MississaugaMississaugaOntarioCanada
| |
Collapse
|
4
|
Soulsbury CD, Humphries S. Biophysical Determinants and Constraints on Sperm Swimming Velocity. Cells 2022; 11:3360. [PMID: 36359756 PMCID: PMC9656961 DOI: 10.3390/cells11213360] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 10/14/2022] [Accepted: 10/20/2022] [Indexed: 07/02/2024] Open
Abstract
Over the last 50 years, sperm competition has become increasingly recognised as a potent evolutionary force shaping male ejaculate traits. One such trait is sperm swimming speed, with faster sperm associated with increased fertilisation success in some species. Consequently, sperm are often thought to have evolved to be longer in order to facilitate faster movement. However, despite the intrinsic appeal of this argument, sperm operate in a different biophysical environment than we are used to, and instead increasing length may not necessarily be associated with higher velocity. Here, we test four predictive models (ConstantPower Density, Constant Speed, Constant Power Transfer, Constant Force) of the relationship between sperm length and speed. We collated published data on sperm morphology and velocity from 141 animal species, tested for structural clustering of sperm morphology and then compared the model predictions across all morphologically similar sperm clusters. Within four of five morphological clusters of sperm, we did not find a significant positive relationship between total sperm length and velocity. Instead, in four morphological sperm clusters we found evidence for the Constant Speed model, which predicts that power output is determined by the flagellum and so is proportional to flagellum length. Our results show the relationship between sperm morphology (size, width) and swimming speed is complex and that traditional models do not capture the biophysical interactions involved. Future work therefore needs to incorporate not only a better understanding of how sperm operate in the microfluid environment, but also the importance of fertilising environment, i.e., internal and external fertilisers. The microenvironment in which sperm operate is of critical importance in shaping the relationship between sperm length and form and sperm swimming speed.
Collapse
Affiliation(s)
- Carl D. Soulsbury
- School of Life and Environmental Sciences, Joseph Banks Laboratories, University of Lincoln, Green Lane, Lincoln LN6 7TS, UK
| | | |
Collapse
|
5
|
McDiarmid CS, Hurley LL, Le Mesurier M, Blunsden AC, Griffith SC. The impact of diet quality on sperm velocity, morphology and normality in the zebra finch Taeniopygia guttata. J Exp Biol 2022; 225:275326. [PMID: 35403680 PMCID: PMC9163447 DOI: 10.1242/jeb.243715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 03/24/2022] [Indexed: 11/20/2022]
Abstract
Sperm traits can influence fertilisation success, but there is still much we do not understand about sperm condition dependence, that is, how much sperm traits depend on the male's energy acquisition and allocation. This is especially pronounced in avian taxa, despite extensive observational studies and sampling in wild populations. In this study we collected sperm samples before and after experimentally reducing diet quality of wild-derived captive zebra finches in small mixed-sex groups, which we compared to individuals on a control diet. We measured the length of sperm components (head, midpiece, flagellum and total sperm length), the proportion of sperm with normal morphology, the proportion of sperm that were progressively motile, and swimming velocity (curvilinear velocity; VCL). The only sperm trait we found to be impacted by reduced diet quality was a significant decrease in sperm midpiece length. This is consistent with emerging evidence in other non-model systems, as well the fact that diet can alter mitochondrial density and structure in other tissue types. There was also a significant decrease in sperm velocity and the proportion of motile sperm over the course of the experiment for both experimental groups (i.e. unrelated to diet). That in the control group experienced this decrease in sperm velocity was marked by no change in any sperm morphological measure highlights the existence of other important determinants of sperm velocity in passerine birds, likely including variation in other components of the seminal fluid.
Collapse
Affiliation(s)
- Callum S. McDiarmid
- Department of Biological Sciences, Macquarie University, Sydney, New South Wales, Australia
| | - Laura L. Hurley
- Department of Biological Sciences, Macquarie University, Sydney, New South Wales, Australia
| | - Madiline Le Mesurier
- Department of Biological Sciences, Macquarie University, Sydney, New South Wales, Australia
| | - Andrew C. Blunsden
- Department of Biological Sciences, Macquarie University, Sydney, New South Wales, Australia
| | - Simon C. Griffith
- Department of Biological Sciences, Macquarie University, Sydney, New South Wales, Australia
| |
Collapse
|
6
|
Sperm Numbers as a Paternity Guard in a Wild Bird. Cells 2022; 11:cells11020231. [PMID: 35053349 PMCID: PMC8773506 DOI: 10.3390/cells11020231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/08/2022] [Accepted: 01/09/2022] [Indexed: 12/02/2022] Open
Abstract
Sperm competition is thought to impose strong selection on males to produce competitive ejaculates to outcompete rival males under competitive mating conditions. Our understanding of how different sperm traits influence fertilization success, however, remains limited, especially in wild populations. Recent literature highlights the importance of incorporating multiple ejaculate traits and pre-copulatory sexually selected traits in analyses aimed at understanding how selection acts on sperm traits. However, variation in a male’s ability to gain fertilization success may also depend upon a range of social and ecological factors that determine the opportunity for mating events both within and outside of the social pair-bond. Here, we test for an effect of sperm quantity and sperm size on male reproductive success in the red-back fairy-wren (Malurus melanocephalus) while simultaneously accounting for pre-copulatory sexual selection and potential socio-ecological correlates of male mating success. We found that sperm number (i.e., cloacal protuberance volume), but not sperm morphology, was associated with reproductive success in male red-backed fairy-wrens. Most notably, males with large numbers of sperm available for copulation achieved greater within-pair paternity success. Our results suggest that males use large sperm numbers as a defensive strategy to guard within-pair paternity success in a system where there is a high risk of sperm competition and female control of copulation. Finally, our work highlights the importance of accounting for socio-ecological factors that may influence male mating opportunities when examining the role of sperm traits in determining male reproductive success.
Collapse
|
7
|
Teves ME, Roldan ERS. Sperm bauplan and function and underlying processes of sperm formation and selection. Physiol Rev 2022; 102:7-60. [PMID: 33880962 PMCID: PMC8812575 DOI: 10.1152/physrev.00009.2020] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 04/14/2021] [Accepted: 04/19/2021] [Indexed: 01/03/2023] Open
Abstract
The spermatozoon is a highly differentiated and polarized cell, with two main structures: the head, containing a haploid nucleus and the acrosomal exocytotic granule, and the flagellum, which generates energy and propels the cell; both structures are connected by the neck. The sperm's main aim is to participate in fertilization, thus activating development. Despite this common bauplan and function, there is an enormous diversity in structure and performance of sperm cells. For example, mammalian spermatozoa may exhibit several head patterns and overall sperm lengths ranging from ∼30 to 350 µm. Mechanisms of transport in the female tract, preparation for fertilization, and recognition of and interaction with the oocyte also show considerable variation. There has been much interest in understanding the origin of this diversity, both in evolutionary terms and in relation to mechanisms underlying sperm differentiation in the testis. Here, relationships between sperm bauplan and function are examined at two levels: first, by analyzing the selective forces that drive changes in sperm structure and physiology to understand the adaptive values of this variation and impact on male reproductive success and second, by examining cellular and molecular mechanisms of sperm formation in the testis that may explain how differentiation can give rise to such a wide array of sperm forms and functions.
Collapse
Affiliation(s)
- Maria Eugenia Teves
- Department of Obstetrics and Gynecology, Virginia Commonwealth University, Richmond, Virginia
| | - Eduardo R S Roldan
- Department of Biodiversity and Evolutionary Biology, Museo Nacional de Ciencias Naturales (CSIC), Madrid, Spain
| |
Collapse
|
8
|
Mccarthy E, Mcdiarmid CS, Hurley LL, Rowe M, Griffith SC. Highly variable sperm morphology in the masked finch ( Poephila personata) and other estrildid finches. Biol J Linn Soc Lond 2021. [DOI: 10.1093/biolinnean/blab048] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Abstract
Spermatozoa exhibit remarkable levels of morphological diversification among and within species. Among the passerine birds, the zebra finch (Taeniopygia guttata) has become a model system for studies of sperm biology, yet studies of closely related Estrildidae finches remain scarce. Here, we examine sperm morphology in the masked finch (Poephila personata) and place the data into the broader context of passerine sperm morphology using data for an additional 189 species. The masked finch exhibited high levels of within- and among-male variation in total sperm length and in specific sperm components. Furthermore, among-male variance in sperm length was significantly greater in estrildid (N = 12) compared with non-estrildid species (N = 178). We suggest that the high variation in sperm morphology in the masked finch and other estrildid species is likely to be linked to low levels of sperm competition, hence relaxed or weak selection on sperm length, in the clade. Our findings highlight that the highly variable sperm of the masked finch and widely studied zebra finch are ‘typical’ for estrildid species and stress the relevance of studying groups of closely related species. Finally, we suggest that further studies of Estrildidae will enhance our understanding of sperm diversity and avian diversity more generally.
Collapse
Affiliation(s)
- Elise Mccarthy
- Department of Biological Sciences, Macquarie University, Sydney, NSW, Australia
| | - Callum S Mcdiarmid
- Department of Biological Sciences, Macquarie University, Sydney, NSW, Australia
| | - Laura L Hurley
- Department of Biological Sciences, Macquarie University, Sydney, NSW, Australia
| | - Melissah Rowe
- Department of Animal Ecology, Netherlands Institute of Ecology (NIOO-KNAW), AB, Wageningen, The Netherlands
| | - Simon C Griffith
- Department of Biological Sciences, Macquarie University, Sydney, NSW, Australia
| |
Collapse
|
9
|
Friesen CR, Noble DWA, Olsson M. The role of oxidative stress in postcopulatory selection. Philos Trans R Soc Lond B Biol Sci 2020; 375:20200065. [PMID: 33070735 DOI: 10.1098/rstb.2020.0065] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Two decades ago, von Schantz et al. (von Schantz T, Bensch S, Grahn M, Hasselquist D, Wittzell H. 1999 Good genes, oxidative stress and condition-dependent sexual signals. Proc. R. Soc. B 266, 1-12. (doi:10.1098/rspb.1999.0597)) united oxidative stress (OS) biology with sexual selection and life-history theory. This set the scene for analysis of how evolutionary trade-offs may be mediated by the increase in reactive molecules resulting from metabolic processes at reproduction. Despite 30 years of research on OS effects on infertility in humans, one research area that has been left behind in this integration of evolution and OS biology is postcopulatory sexual selection-this integration is long overdue. We review the basic mechanisms in OS biology, why mitochondria are the primary source of ROS and ATP production during oxidative metabolism, and why sperm, and its performance, is uniquely susceptible to OS. We also review how postcopulatory processes select for antioxidation in seminal fluids to counter OS and the implications of the net outcome of these processes on sperm damage, sperm storage, and female and oocyte manipulation of sperm metabolism and repair of DNA to enhance offspring fitness. This article is part of the theme issue 'Fifty years of sperm competition'.
Collapse
Affiliation(s)
- Christopher R Friesen
- School of Earth, Atmospheric and Life Sciences, University of Wollongong, Wollongong, NSW 2522, New South Wales, Australia
| | - Daniel W A Noble
- Division of Ecology and Evolution, Australian National University, Canberra, Australian Capital Territory, ACT 2600, Australia
| | - Mats Olsson
- School of Earth, Atmospheric and Life Sciences, University of Wollongong, Wollongong, NSW 2522, New South Wales, Australia.,Department of Biological and Environmental Sciences, University of Gothenburg, Box 463, SE 405 30, Gothenburg, Sweden
| |
Collapse
|
10
|
Lüpold S, de Boer RA, Evans JP, Tomkins JL, Fitzpatrick JL. How sperm competition shapes the evolution of testes and sperm: a meta-analysis. Philos Trans R Soc Lond B Biol Sci 2020; 375:20200064. [PMID: 33070733 DOI: 10.1098/rstb.2020.0064] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Females of many species mate with multiple males, thereby inciting competition among ejaculates from rival males for fertilization. In response to increasing sperm competition, males are predicted to enhance their investment in sperm production. This prediction is so widespread that testes size (correcting for body size) is commonly used as a proxy of sperm competition, even in the absence of any other information about a species' reproductive behaviour. By contrast, a debate about whether sperm competition selects for smaller or larger sperm has persisted for nearly three decades, with empirical studies demonstrating every possible response. Here, we synthesize nearly 40 years of sperm competition research in a meta-analytical framework to determine how the evolution of sperm number (i.e. testes size) and sperm size (i.e. sperm head, midpiece, flagellum and total length) is influenced by varying levels of sperm competition across species. Our findings support the long-held assumption that higher levels of sperm competition are associated with relatively larger testes. We also find clear evidence that sperm competition is associated with increases in all components of sperm length. We discuss these results in the context of different theoretical predictions and general patterns in the breeding biology and selective environment of sperm. This article is part of the theme issue 'Fifty years of sperm competition'.
Collapse
Affiliation(s)
- Stefan Lüpold
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Raïssa A de Boer
- Department of Zoology/Ethology, Stockholm University, Svante Arrhenius väg 18B, Stockholm 10691, Sweden
| | - Jonathan P Evans
- Centre for Evolutionary Biology, School of Biological Sciences (M092), University of Western Australia, Crawley, Western Australia 6009, Australia
| | - Joseph L Tomkins
- Centre for Evolutionary Biology, School of Biological Sciences (M092), University of Western Australia, Crawley, Western Australia 6009, Australia
| | - John L Fitzpatrick
- Department of Zoology/Ethology, Stockholm University, Svante Arrhenius väg 18B, Stockholm 10691, Sweden
| |
Collapse
|
11
|
Rowe M, Whittington E, Borziak K, Ravinet M, Eroukhmanoff F, Sætre GP, Dorus S. Molecular Diversification of the Seminal Fluid Proteome in a Recently Diverged Passerine Species Pair. Mol Biol Evol 2020; 37:488-506. [PMID: 31665510 PMCID: PMC6993853 DOI: 10.1093/molbev/msz235] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Seminal fluid proteins (SFPs) mediate an array of postmating reproductive processes that influence fertilization and fertility. As such, it is widely held that SFPs may contribute to postmating, prezygotic reproductive barriers between closely related taxa. We investigated seminal fluid (SF) diversification in a recently diverged passerine species pair (Passer domesticus and Passer hispaniolensis) using a combination of proteomic and comparative evolutionary genomic approaches. First, we characterized and compared the SF proteome of the two species, revealing consistencies with known aspects of SFP biology and function in other taxa, including the presence and diversification of proteins involved in immunity and sperm maturation. Second, using whole-genome resequencing data, we assessed patterns of genomic differentiation between house and Spanish sparrows. These analyses detected divergent selection on immunity-related SF genes and positive selective sweeps in regions containing a number of SF genes that also exhibited protein abundance diversification between species. Finally, we analyzed the molecular evolution of SFPs across 11 passerine species and found a significantly higher rate of positive selection in SFPs compared with the rest of the genome, as well as significant enrichments for functional pathways related to immunity in the set of positively selected SF genes. Our results suggest that selection on immunity pathways is an important determinant of passerine SF composition and evolution. Assessing the role of immunity genes in speciation in other recently diverged taxa should be prioritized given the potential role for immunity-related proteins in reproductive incompatibilities in Passer sparrows.
Collapse
Affiliation(s)
- Melissah Rowe
- Natural History Museum, University of Oslo, Oslo, Norway.,Centre for Ecological and Evolutionary Synthesis, Department of Biosciences, University of Oslo, Oslo, Norway.,Department of Animal Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, The Netherlands
| | - Emma Whittington
- Center for Reproductive Evolution, Department of Biology, Syracuse University, Syracuse, NY
| | - Kirill Borziak
- Center for Reproductive Evolution, Department of Biology, Syracuse University, Syracuse, NY
| | - Mark Ravinet
- Centre for Ecological and Evolutionary Synthesis, Department of Biosciences, University of Oslo, Oslo, Norway
| | - Fabrice Eroukhmanoff
- Centre for Ecological and Evolutionary Synthesis, Department of Biosciences, University of Oslo, Oslo, Norway
| | - Glenn-Peter Sætre
- Centre for Ecological and Evolutionary Synthesis, Department of Biosciences, University of Oslo, Oslo, Norway
| | - Steve Dorus
- Center for Reproductive Evolution, Department of Biology, Syracuse University, Syracuse, NY
| |
Collapse
|
12
|
Durrant KL, Reader T, Symonds MRE. Pre- and post-copulatory traits working in concert: sexual dichromatism in passerines is associated with sperm morphology. Biol Lett 2020; 16:20190568. [PMID: 31937213 DOI: 10.1098/rsbl.2019.0568] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Passerine birds produce costly traits under intense sexual selection, including elaborate sexually dichromatic plumage and sperm morphologies, to compete for fertilizations. Plumage and sperm traits vary markedly among species, but it is unknown if this reflects a trade-off between pre- and post-copulatory investment under strong sexual selection producing negative trait covariance, or variation in the strength of sexual selection among species producing positive covariance. Using phylogenetic regression, we analysed datasets describing plumage and sperm morphological traits for 278 passerine species. We found a significant positive relationship between sperm midpiece length and male plumage elaboration and sexual dichromatism. We did not find a relationship between plumage elaboration and testes mass. Our results do not support a trade-off between plumage and sperm traits, but may be indicative of variance among species in the strength of sexual selection to produce both brightly coloured plumage and costly sperm traits.
Collapse
Affiliation(s)
- Kate L Durrant
- School of Life Sciences, University of Nottingham, University Park, Nottingham NG7 2RD, UK
| | - Tom Reader
- School of Life Sciences, University of Nottingham, University Park, Nottingham NG7 2RD, UK
| | - Matthew R E Symonds
- Centre for Integrative Ecology, School of Life and Environmental Sciences, Deakin University, Burwood, Victoria 3125, Australia
| |
Collapse
|
13
|
Liao WB, Zhong MJ, Lüpold S. Sperm quality and quantity evolve through different selective processes in the Phasianidae. Sci Rep 2019; 9:19278. [PMID: 31848414 PMCID: PMC6917726 DOI: 10.1038/s41598-019-55822-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 12/03/2019] [Indexed: 11/09/2022] Open
Abstract
Sperm competition is often considered the primary selective force underlying the rapid and diversifying evolution of ejaculate traits. Yet, several recent studies have drawn attention to other forms of selection with the potential of exceeding the effects of sperm competition. Since ejaculates are complex, multivariate traits, it seems plausible that different ejaculate components vary in their responses to different selective pressures. Such information, however, is generally lacking as individual ejaculate traits tend to be studied in isolation. Here, we studied the macroevolutionary patterns of ejaculate volume, sperm number, sperm length and the proportion of viable normal sperm in response to varying levels of sperm competition, body size and the duration of female sperm storage in pheasants and allies (Phasianidae). Ejaculate volume, sperm number and sperm viability were all relatively higher in polygamous than in monogamous mating systems. However, whereas ejaculate volume additionally covaried with body size, sperm number instead increased with the female sperm-storage duration, in conjunction with a decrease in sperm length. Overall, our results revealed important details on how different forms of selection can jointly shape ejaculates as complex, composite traits.
Collapse
Affiliation(s)
- Wen Bo Liao
- Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education), China West Normal University, Nanchong, 637009, Sichuan, China. .,Key Laboratory of Artificial Propagation and Utilization in Anurans of Nanchong City, China West Normal University, Nanchong, Sichuan, 637009, China. .,Institute of Eco-adaptation in Amphibians and Reptiles, China West Normal University, Nanchong, 637009, Sichuan, China.
| | - Mao Jun Zhong
- Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education), China West Normal University, Nanchong, 637009, Sichuan, China.,Key Laboratory of Artificial Propagation and Utilization in Anurans of Nanchong City, China West Normal University, Nanchong, Sichuan, 637009, China.,Institute of Eco-adaptation in Amphibians and Reptiles, China West Normal University, Nanchong, 637009, Sichuan, China
| | - Stefan Lüpold
- Department of Evolutionary Biology and Environmental Studies, University of Zurich-Irchel, 8057, Zurich, Switzerland
| |
Collapse
|
14
|
Calhim S, Pruett-Jones S, Webster MS, Rowe M. Asymmetries in reproductive anatomy: insights from promiscuous songbirds. Biol J Linn Soc Lond 2019. [DOI: 10.1093/biolinnean/blz100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Abstract
Directional asymmetry in gonad size is commonly observed in vertebrates and is particularly pronounced in birds, where the left testis is frequently larger than the right. The adaptive significance of directional asymmetry in testis size is poorly understood, and whether it extends beyond the testes (i.e. side-correspondent asymmetry along the reproductive tract) has rarely been considered. Using the Maluridae, a songbird family exhibiting variation in levels of sperm competition and directional testis asymmetry, yet similar in ecology and life history, we investigated the relative roles of side-correspondence and sperm competition on male reproductive tract asymmetry at both inter- and intraspecific levels. We found some evidence for side-correspondent asymmetry. Additionally, sperm competition influenced directional asymmetry at each end of the reproductive tract: species experiencing higher levels of sperm competition had a relatively larger right testis and relatively more sperm in the right seminal glomerus. Within red-backed fairy-wrens (Malurus melanocephalus), auxiliary males had relatively more sperm in the left seminal glomerus, in contrast to a right-bias asymmetry throughout the reproductive tract in breeding males. Given that the number of sperm is important for competitive fertilization success, our results suggest that sperm competition shapes reproductive asymmetries beyond testis size, with likely functional consequences for male reproductive success.
Collapse
Affiliation(s)
- Sara Calhim
- Department of Biological and Environmental Science, University of Jyväskylä, FI, Finland
| | | | - Michael S Webster
- Cornell Laboratory of Ornithology, Cornell University, Ithaca, NY, USA
| | - Melissah Rowe
- Natural History Museum, University of Oslo, Oslo, Norway
- Centre for Ecological and Evolutionary Synthesis, Department of Biosciences, University of Oslo, Oslo, Norway
| |
Collapse
|
15
|
Støstad HN, Rowe M, Johnsen A, Lifjeld JT. Sperm head abnormalities are more frequent in songbirds with more helical sperm: A possible trade-off in sperm evolution. J Evol Biol 2019; 32:666-674. [PMID: 30945783 DOI: 10.1111/jeb.13446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 02/25/2019] [Accepted: 03/17/2019] [Indexed: 11/28/2022]
Abstract
Sperm morphology varies enormously across the animal kingdom. Whilst knowledge of the factors that drive the evolution of interspecific variation in sperm morphology is accumulating, we currently have little understanding of factors that may constrain evolutionary change in sperm traits. We investigated whether susceptibility to sperm abnormalities could represent such a constraint in songbirds, a group characterized by a distinctive helical sperm head shape. Specifically, using 36 songbird species and data from light and scanning electron microscopy, we examined among-species correlations between the occurrence of sperm head abnormalities and sperm morphology, as well as the correlation between sperm head abnormalities and two indicators of sperm competition. We found that species with more helically shaped sperm heads (i.e., a wider helical membrane and more pronounced cell waveform) had a higher percentage of abnormal sperm heads than species with less helical sperm (i.e., relatively straight sperm) and that sperm head traits were better predictors of head abnormalities than total sperm length. In contrast, there was no correlation between sperm abnormalities and the level of sperm competition. Given that songbird species with more pronounced helical sperm have higher average sperm swimming speed, our results suggest an evolutionary trade-off between sperm performance and the structural integrity of the sperm head. As such, susceptibility to morphological abnormalities may constrain the evolution of helical sperm morphology in songbirds.
Collapse
Affiliation(s)
| | - Melissah Rowe
- Natural History Museum, University of Oslo, Oslo, Norway.,Department of Biosciences, Centre for Ecological and Evolutionary Synthesis, University of Oslo, Oslo, Norway
| | - Arild Johnsen
- Natural History Museum, University of Oslo, Oslo, Norway
| | - Jan T Lifjeld
- Natural History Museum, University of Oslo, Oslo, Norway
| |
Collapse
|
16
|
Rowley AG, Daly-Engel TS, Fitzpatrick JL. Testes size increases with sperm competition risk and intensity in bony fish and sharks. Behav Ecol 2018. [DOI: 10.1093/beheco/ary174] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Affiliation(s)
- Amy G Rowley
- School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
- Department of Zoology, Stockholm University, Stockholm, Sweden
| | - Toby S Daly-Engel
- Department of Biological Sciences, Florida Institute of Technology, Melbourne, USA
| | | |
Collapse
|
17
|
Diogo P, Martins G, Eufrásio A, Silva T, Cabrita E, Gavaia P. Selection Criteria of Zebrafish Male Donors for Sperm Cryopreservation. Zebrafish 2018; 16:189-196. [PMID: 30523745 DOI: 10.1089/zeb.2018.1660] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Selection criteria for sperm cryopreservation are highly relevant in zebrafish since sperm quality is particularly variable in this species. Successful cryopreservation depends on high-quality sperm, which can only be ensured by the selection of breeders. Consequently, male selection and management are a priority to improve cryopreservation, and therefore, this study aimed to characterize optimal age and sperm collection frequency in zebrafish. For this purpose, males from wild type (AB) and from a transgenic line [Tg(runx2:eGFP)] were sampled at 6, 8, 12, and 14 months. For each age, sperm were collected at time 0 followed by samplings at 2, 7, and 14 days of rest. Sperm quality was assessed according to motility and membrane viability parameters. Quality assessment showed that Tg(runx2:eGFP) displayed significantly higher motility than AB and younger males showed higher motility in both lines. Sperm collection frequency affected membrane viability. While AB fish recovered sperm viability after 14 days of rest, Tg(runx2:eGFP) could not recover. Consequently, it may be important to study the sperm quality of each zebrafish line before sperm cryopreservation. Taking into consideration the results achieved in both lines, sperm collection should be performed between 6 and 8 months of age with a minimum collection interval of 14 days.
Collapse
Affiliation(s)
- Patrícia Diogo
- 1 Faculty of Sciences and Technology, University of Algarve, Faro, Portugal.,2 Centre of Marine Sciences, University of Algarve, Faro, Portugal
| | - Gil Martins
- 2 Centre of Marine Sciences, University of Algarve, Faro, Portugal
| | - Ana Eufrásio
- 2 Centre of Marine Sciences, University of Algarve, Faro, Portugal
| | | | - Elsa Cabrita
- 1 Faculty of Sciences and Technology, University of Algarve, Faro, Portugal.,2 Centre of Marine Sciences, University of Algarve, Faro, Portugal
| | - Paulo Gavaia
- 2 Centre of Marine Sciences, University of Algarve, Faro, Portugal.,4 Department of Biomedical Sciences and Medicine, University of Algarve, Faro, Portugal
| |
Collapse
|
18
|
Firman RC, Garcia‐Gonzalez F, Simmons LW, André GI. A competitive environment influences sperm production, but not testes tissue composition, in house mice. J Evol Biol 2018; 31:1647-1654. [DOI: 10.1111/jeb.13360] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 07/26/2018] [Accepted: 07/28/2018] [Indexed: 12/30/2022]
Affiliation(s)
- Renée C. Firman
- Centre for Evolutionary Biology School of Biological Sciences (M092) The University of Western Australia Crawley WA Australia
| | - Francisco Garcia‐Gonzalez
- Centre for Evolutionary Biology School of Biological Sciences (M092) The University of Western Australia Crawley WA Australia
- Estacion Biológica de Doñana CSIC Sevilla Spain
| | - Leigh W. Simmons
- Centre for Evolutionary Biology School of Biological Sciences (M092) The University of Western Australia Crawley WA Australia
| | - Gonçalo I. André
- Centre for Evolutionary Biology School of Biological Sciences (M092) The University of Western Australia Crawley WA Australia
| |
Collapse
|
19
|
Johnson AE, Masco C, Pruett-Jones S. Song recognition and heterospecific associations between 2 fairy-wren species (Maluridae). Behav Ecol 2018. [DOI: 10.1093/beheco/ary071] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Allison E Johnson
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Christina Masco
- Department of Ecology and Evolution, University of Chicago, Chicago, IL, USA
| | | |
Collapse
|
20
|
Sætre CLC, Johnsen A, Stensrud E, Cramer ERA. Sperm morphology, sperm motility and paternity success in the bluethroat (Luscinia svecica). PLoS One 2018; 13:e0192644. [PMID: 29509773 PMCID: PMC5839561 DOI: 10.1371/journal.pone.0192644] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Accepted: 01/26/2018] [Indexed: 12/24/2022] Open
Abstract
Postcopulatory sexual selection may select for male primary sexual characteristics like sperm morphology and sperm motility, through sperm competition or cryptic female choice. However, how such characteristics influence male fertilization success remains poorly understood. In this study, we investigate possible correlations between sperm characteristics and paternity success in the socially monogamous bluethroat (Luscinia svecica svecica), predicting that sperm length and sperm swimming speed is positively correlated with paternity success. In total, 25% (15/61) of broods contained extra-pair offspring and 10% (33/315) of the offspring were sired by extra-pair males. Paternity success did not correlate significantly with sperm morphology or any aspects of sperm motility. Furthermore, sperm morphology and sperm motility did not correlate significantly with male morphological characters that previously have been shown to be associated with paternity success. Thus, the sperm characteristics investigated here do not appear to be strong predictors of paternity success in bluethroats.
Collapse
Affiliation(s)
| | - Arild Johnsen
- Natural History Museum, University of Oslo, Oslo, Norway
| | - Even Stensrud
- Natural History Museum, University of Oslo, Oslo, Norway
| | | |
Collapse
|
21
|
Dávila F, Aron S. Protein restriction affects sperm number but not sperm viability in male ants. JOURNAL OF INSECT PHYSIOLOGY 2017; 100:71-76. [PMID: 28559110 DOI: 10.1016/j.jinsphys.2017.05.012] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 05/24/2017] [Accepted: 05/26/2017] [Indexed: 05/09/2023]
Abstract
Sperm cells are costly to produce; diet should therefore affect sperm number and/or viability. In non-social insects and vertebrates, there is compelling evidence that diet influences sperm production. Less is known about this relationship in eusocial hymenopterans (all ants and some bees and wasps), whose mating systems impose unique selective pressures on sperm production. Males face physiological constraints: they acquire all of the resources they will use in future reproductive efforts as larvae and emerge from the pupal stage with a fixed, non-renewable amount of sperm. Furthermore, males die shortly after copulation, but their genetic material persists for years since their spermatozoa are stored in their mates' spermathecae. We examined the effects of protein restriction during larval development on sperm number and viability in the Argentine ant Linepithema humile. We also looked at its impact on male development, adult mass, and adult fluctuating asymmetry. We found that protein restriction during larval development significantly reduced sperm production, but not sperm viability. It did not affect the number of males reared, male mass, or male asymmetry. However, males from protein-restricted nests developed much more slowly than males from protein-supplemented nests. These results suggest investing in sperm quality and in somatic growth, which enhances a male's ability to disperse and find a mate, are critical to successful male reproduction.
Collapse
Affiliation(s)
- Francisco Dávila
- Evolutionary Biology and Ecology, Université Libre de Bruxelles, Avenue F.D. Roosevelt 50, CP160/12, 1050 Brussels, Belgium.
| | - Serge Aron
- Evolutionary Biology and Ecology, Université Libre de Bruxelles, Avenue F.D. Roosevelt 50, CP160/12, 1050 Brussels, Belgium
| |
Collapse
|
22
|
Sasson DA, Brockmann HJ. Geographic variation in sperm and ejaculate quantity and quality of horseshoe crabs. Behav Ecol Sociobiol 2016. [DOI: 10.1007/s00265-016-2177-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
23
|
Kahrl AF, Cox CL, Cox RM. Correlated evolution between targets of pre- and postcopulatory sexual selection across squamate reptiles. Ecol Evol 2016; 6:6452-6459. [PMID: 27777721 PMCID: PMC5058519 DOI: 10.1002/ece3.2344] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Revised: 06/28/2016] [Accepted: 06/30/2016] [Indexed: 11/25/2022] Open
Abstract
Sexual selection reflects the joint contributions of precopulatory selection, which arises from variance in mating success, and postcopulatory selection, which arises from variance in fertilization success. The relative importance of each episode of selection is variable among species, and comparative evidence suggests that traits targeted by precopulatory selection often covary in expression with those targeted by postcopulatory selection when assessed across species, although the strength and direction of this association varies considerably among taxa. We tested for correlated evolution between targets of pre‐ and postcopulatory selection using data on sexual size dimorphism (SSD) and testis size from 151 species of squamate reptiles (120 lizards, 31 snakes). In squamates, male–male competition for mating opportunities often favors large body size, such that the degree of male‐biased SSD is associated with the intensity of precopulatory selection. Likewise, competition for fertilization often favors increased sperm production, such that testis size (relative to body size) is associated with the intensity of postcopulatory selection. Using both conventional and phylogenetically based analyses, we show that testis size consistently decreases as the degree of male‐biased SSD increases across lizards and snakes. This evolutionary pattern suggests that strong precopulatory selection may often constrain the opportunity for postcopulatory selection and that the relative importance of each selective episode may determine the optimal resolution of energy allocation trade‐offs between traits subject to each form of sexual selection.
Collapse
Affiliation(s)
- Ariel F Kahrl
- Department of Biology University of Virginia Charlottesville Virginia 22904
| | - Christian L Cox
- Department of Biology Georgia Southern University Statesboro Georgia 30460
| | - Robert M Cox
- Department of Biology University of Virginia Charlottesville Virginia 22904
| |
Collapse
|
24
|
Giannakara A, Schärer L, Ramm SA. Sperm competition-induced plasticity in the speed of spermatogenesis. BMC Evol Biol 2016; 16:60. [PMID: 26956948 PMCID: PMC4784355 DOI: 10.1186/s12862-016-0629-9] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2015] [Accepted: 03/01/2016] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND Sperm competition between rival ejaculates over the fertilization of ova typically selects for the production of large numbers of sperm. An obvious way to increase sperm production is to increase testis size, and most empirical work has focussed on this parameter. Adaptive plasticity in sperm production rate could also arise due to variation in the speed with which each spermatozoon is produced, but whether animals can respond to relevant environmental conditions by modulating the kinetics of spermatogenesis in this way has not been experimentally investigated. RESULTS Here we demonstrate that the simultaneously hermaphroditic flatworm Macrostomum lignano exhibits substantial plasticity in the speed of spermatogenesis, depending on the social context: worms raised under higher levels of sperm competition produce sperm faster. CONCLUSIONS Our findings overturn the prevailing view that the speed of spermatogenesis is a static property of a genotype, and demonstrate the profound impact that social environmental conditions can exert upon a key developmental process. We thus identify, to our knowledge, a novel mechanism through which sperm production rate is maximised under sperm competition.
Collapse
Affiliation(s)
- Athina Giannakara
- Evolutionary Biology, Bielefeld University, Morgenbreede 45, 33615, Bielefeld, Germany.
| | - Lukas Schärer
- Evolutionary Biology, Zoological Institute, University of Basel, Vesalgasse 1, 4051, Basel, Switzerland.
| | - Steven A Ramm
- Evolutionary Biology, Bielefeld University, Morgenbreede 45, 33615, Bielefeld, Germany.
| |
Collapse
|
25
|
Supriya K, Rowe M, Laskemoen T, Mohan D, Price TD, Lifjeld JT. Early diversification of sperm size in the evolutionary history of the old world leaf warblers (Phylloscopidae). J Evol Biol 2016; 29:777-89. [PMID: 26781541 DOI: 10.1111/jeb.12826] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2015] [Revised: 01/04/2016] [Accepted: 01/06/2016] [Indexed: 01/06/2023]
Abstract
Sperm morphological traits are highly variable among species and are commonly thought to evolve by post-copulatory sexual selection. However, little is known about the evolutionary dynamics of sperm morphology, and whether rates of evolutionary change are variable over time and among taxonomic groups. Here, we examine sperm morphology from 21 species of Old World leaf warblers (Phylloscopidae), a group of generally dull, sexually monochromatic birds, which are known to have high levels of extra-pair paternity. We found that sperm length differs markedly across species, spanning about 40% of the range observed across a larger selection of passerine birds. Furthermore, we found strong support for an 'early-burst' model of trait evolution, implying that the majority of divergence in sperm length has occurred early in the evolutionary history of this clade with subsequent evolutionary stasis. This large early divergence matches the early divergence reported in ecological traits (i.e. body size and feeding behaviour). Our findings demonstrate that rates of evolution in sperm morphology can change over time in passerine taxa, and that evolutionary stasis in sperm traits can occur even in species exhibiting characteristics consistent with moderate-to-high levels of sperm competition. It remains a major challenge to identify the selection mechanisms and possible constraints responsible for these variable rates of sperm evolution.
Collapse
Affiliation(s)
- K Supriya
- Committee on Evolutionary Biology, University of Chicago, Chicago, IL, USA
| | - M Rowe
- Natural History Museum, University of Oslo, Oslo, Norway.,Centre for Ecological and Evolutionary Synthesis, Department of Biosciences, University of Oslo, Oslo, Norway
| | - T Laskemoen
- Natural History Museum, University of Oslo, Oslo, Norway
| | - D Mohan
- Wildlife Institute of India, Dehradun, India
| | - T D Price
- Department of Ecology and Evolution, University of Chicago, Chicago, IL, USA
| | - J T Lifjeld
- Natural History Museum, University of Oslo, Oslo, Norway
| |
Collapse
|
26
|
Bocedi G, Reid JM. Coevolutionary Feedbacks between Female Mating Interval and Male Allocation to Competing Sperm Traits Can Drive Evolution of Costly Polyandry. Am Nat 2016; 187:334-50. [PMID: 26913946 DOI: 10.1086/684746] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Complex coevolutionary feedbacks between female mating interval and male sperm traits have been hypothesized to explain the evolution and persistence of costly polyandry. Such feedbacks could potentially arise because polyandry creates sperm competition and consequent selection on male allocation to sperm traits, while the emerging sperm traits could create female sperm limitation and, hence, impose selection for increased polyandry. However, the hypothesis that costly polyandry could coevolve with male sperm dynamics has not been tested. We built a genetically explicit individual-based model to simulate simultaneous evolution of female mating interval and male allocation to sperm number versus longevity, where these two sperm traits trade off. We show that evolution of competing sperm traits under polyandry can indeed cause female sperm limitation and, hence, promote further evolution and persistence of costly polyandry, particularly when sperm are costly relative to the degree of female sperm limitation. These feedbacks were stronger, and greater polyandry evolved, when postcopulatory competition for paternity followed a loaded rather than fair raffle and when sperm traits had realistically low heritability. We therefore demonstrate that the evolution of allocation to sperm traits driven by sperm competition can prevent males from overcoming female sperm limitation, thereby driving ongoing evolution of costly polyandry.
Collapse
|
27
|
Ros-Santaella JL, Pintus E, Garde JJ. Intramale variation in sperm size: functional significance in a polygynous mammal. PeerJ 2015; 3:e1478. [PMID: 26664807 PMCID: PMC4675104 DOI: 10.7717/peerj.1478] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Accepted: 11/16/2015] [Indexed: 11/23/2022] Open
Abstract
Studies concerning the relationships between sperm size and velocity at the intraspecific level are quite limited and often yielded contradictory results across the animal kingdom. Intramale variation in sperm size may represent a meaningful factor to predict sperm velocity, due to its relationship with the level of sperm competition among related taxa. Because sperm phenotype is under post-copulatory sexual selection, we hypothesized that a reduced intramale variation in sperm size is associated with sperm competitiveness in red deer. Our results show that low variation in sperm size is strongly related to high sperm velocity and normal sperm morphology, which in turn are good predictors of male fertility in this species. Furthermore, it is well known that the red deer show high variability in testicular mass but there is limited knowledge concerning the significance of this phenomenon at intraspecific level, even though it may reveal interesting processes of sexual selection. Thereby, as a preliminary result, we found that absolute testes mass is negatively associated with intramale variation in sperm size. Our findings suggest that sperm size variation in red deer is under a strong selective force leading to increase sperm function efficiency, and reveal new insights into sexual selection mechanisms.
Collapse
Affiliation(s)
- José Luis Ros-Santaella
- SaBio, IREC (CSIC-UCLM-JCCM) , Albacete , Spain ; Department of Animal Science and Food Processing/Faculty of Tropical AgriSciences, Czech University of Life Sciences Prague , Prague , Czech Republic
| | - Eliana Pintus
- Department of Veterinary Sciences/Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague , Prague , Czech Republic
| | | |
Collapse
|
28
|
Pintus E, Ros-Santaella JL, Garde JJ. Beyond Testis Size: Links between Spermatogenesis and Sperm Traits in a Seasonal Breeding Mammal. PLoS One 2015; 10:e0139240. [PMID: 26430740 PMCID: PMC4592251 DOI: 10.1371/journal.pone.0139240] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Accepted: 09/10/2015] [Indexed: 01/21/2023] Open
Abstract
Spermatogenesis is a costly process that is expected to be under selection to maximise sperm quantity and quality. Testis size is often regarded as a proxy measure of sperm investment, implicitly overlooking the quantitative assessment of spermatogenesis. An enhanced understanding of testicular function, beyond testis size, may reveal further sexual traits involved in sperm quantity and quality. Here, we first estimated the inter-male variation in testicular function and sperm traits in red deer across the breeding and non-breeding seasons. Then, we analysed the relationships between the testis mass, eight parameters of spermatogenic function, and seven parameters of sperm quality. Our findings revealed that the Sertoli cell number and function parameters vary greatly between red deer males, and that spermatogenic activity co-varies with testis mass and sperm quality across the breeding and non-breeding seasons. For the first time in a seasonal breeder, we found that not only is the Sertoli cell number important in determining testis mass (r = 0.619, p = 0.007 and r = 0.248, p = 0.047 for the Sertoli cell number assessed by histology and cytology, respectively), but also sperm function (r = 0.703, p = 0.002 and r = 0.328, p = 0.012 for the Sertoli cell number assessed by histology and cytology, respectively). Testicular histology also revealed that a high Sertoli cell number per tubular cross-section is associated with high sperm production (r = 0.600, p = 0.009). Sperm production and function were also positively correlated (r = 0.384, p = 0.004), suggesting that these traits co-vary to maximise sperm fertilisation ability in red deer. In conclusion, our findings contribute to the understanding of the dynamics of spermatogenesis, and reveal new insights into the role of testicular function and the Sertoli cell number on testis size and sperm quality in red deer.
Collapse
Affiliation(s)
- Eliana Pintus
- Department of Veterinary Clinics and Pathology, Faculty of Veterinary Medicine, University of Sassari, Sassari, Italy
- Department of Veterinary Sciences, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences, Prague, Czech Republic
| | - José Luis Ros-Santaella
- Department of Animal Science and Food Processing, Faculty of Tropical AgriSciences, Czech University of Life Sciences, Prague, Czech Republic
| | | |
Collapse
|
29
|
Jones SD, Wallman JF, Byrne PG. Do male secondary sexual characters correlate with testis size and sperm length in the small hairy maggot blowfly? ZOOLOGY 2015; 118:439-45. [PMID: 26297128 DOI: 10.1016/j.zool.2015.07.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Revised: 06/06/2015] [Accepted: 07/22/2015] [Indexed: 11/26/2022]
Abstract
The phenotype-linked fertility hypothesis proposes that secondary sexual characters (SSCs) advertise a male's fertility to prospective mates. However, findings from empirical studies attempting to test this hypothesis are often ambivalent or even contradictory, and few studies have simultaneously evaluated how both morphological and behavioural SSCs relate to ejaculate characteristics. Males of the small hairy maggot blowfly, Chrysomya varipes, possess conspicuous foreleg ornaments and display highly stereotyped courtship behaviour. These traits are favoured by females during pre-copulatory mate choice, but it remains unknown whether they correlate with post-copulatory traits expected to influence male fertility. The aim of this study was to investigate whether male courtship and ornamentation correlate with testis size and sperm length in C. varipes. We found that males investing more in courtship had bigger testes, and males with more extensive foreleg ornamentation released sperm with longer tails. Based on the assumption that larger testes enable males to produce more sperm, and that sperm with longer tails have greater propulsive force, our findings suggest that more vigorous and more ornamented males may be more fertile. These findings lend support to the phenotype-linked fertility hypothesis. However, a complete test of this hypothesis will require evaluating whether testis size and sperm length influence male fertilisation ability, as well as female fecundity and/or fertility.
Collapse
Affiliation(s)
- Stephanie D Jones
- Centre for Sustainable Ecosystem Solutions, School of Biological Sciences, University of Wollongong, Wollongong, New South Wales, 2522, Australia.
| | - James F Wallman
- Centre for Sustainable Ecosystem Solutions, School of Biological Sciences, University of Wollongong, Wollongong, New South Wales, 2522, Australia
| | - Phillip G Byrne
- Centre for Sustainable Ecosystem Solutions, School of Biological Sciences, University of Wollongong, Wollongong, New South Wales, 2522, Australia
| |
Collapse
|
30
|
Firman RC, Garcia-Gonzalez F, Thyer E, Wheeler S, Yamin Z, Yuan M, Simmons LW. Evolutionary change in testes tissue composition among experimental populations of house mice. Evolution 2015; 69:848-55. [DOI: 10.1111/evo.12603] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Accepted: 12/29/2014] [Indexed: 01/11/2023]
Affiliation(s)
- Renée C. Firman
- Centre for Evolutionary Biology, School of Animal Biology (M092); University of Western Australia; Nedlands 6009 Australia
| | - Francisco Garcia-Gonzalez
- Centre for Evolutionary Biology, School of Animal Biology (M092); University of Western Australia; Nedlands 6009 Australia
- Estacion Biologica de Doñana-CSIC; Sevilla 41092 Spain
| | - Evan Thyer
- Centre for Evolutionary Biology, School of Animal Biology (M092); University of Western Australia; Nedlands 6009 Australia
| | - Samantha Wheeler
- Centre for Evolutionary Biology, School of Animal Biology (M092); University of Western Australia; Nedlands 6009 Australia
| | - Zayaputeri Yamin
- Centre for Evolutionary Biology, School of Animal Biology (M092); University of Western Australia; Nedlands 6009 Australia
| | - Michael Yuan
- Centre for Evolutionary Biology, School of Animal Biology (M092); University of Western Australia; Nedlands 6009 Australia
| | - Leigh W. Simmons
- Centre for Evolutionary Biology, School of Animal Biology (M092); University of Western Australia; Nedlands 6009 Australia
| |
Collapse
|
31
|
Cramer ERA, Laskemoen T, Stensrud E, Rowe M, Haas F, Lifjeld JT, Saetre GP, Johnsen A. Morphology-function relationships and repeatability in the sperm of Passer sparrows. J Morphol 2014; 276:370-7. [PMID: 25427840 DOI: 10.1002/jmor.20346] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Revised: 10/14/2014] [Accepted: 11/08/2014] [Indexed: 11/11/2022]
Abstract
Sperm performance is likely to be an important determinant of male reproductive success, especially when females copulate with multiple males. Understanding sperm performance is therefore crucial to fully understand the evolution of male reproductive strategies. In this study, we examined the repeatability of sperm morphology and motility measures over three breeding seasons, and we studied relationships between sperm morphology and function. We conducted this study in wild-derived captive house sparrows (Passer domesticus) and Spanish sparrows (P. hispaniolensis). Results for the two species were similar. As predicted from results in other passerine species, total sperm length was highly repeatable across ejaculates, and repeatability for the length of other components was moderate. The repeatability of sperm swimming speed across ejaculates was lower, but statistically significant, suggesting that sperm velocity may be a relatively dynamic trait. Surprisingly, swimming speed did not correlate with the relative length of the midpiece, and it correlated negatively with the relative length of the flagellum and with total sperm length. This pattern is the opposite of what theory predicts and differs from what has been found in house sparrows before. Also contrary to previous work, we found no evidence that total sperm length correlates with sperm longevity. These results therefore highlight the need for a better understanding of relationships between sperm morphology and function in passerine birds.
Collapse
Affiliation(s)
- Emily R A Cramer
- Natural History Museum, University of Oslo, Blindern, 0318, Oslo, Norway
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Ramm SA, Schärer L, Ehmcke J, Wistuba J. Sperm competition and the evolution of spermatogenesis. Mol Hum Reprod 2014; 20:1169-79. [PMID: 25323971 DOI: 10.1093/molehr/gau070] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Spermatogenesis is a long and complex process that, despite the shared overall goal of producing the male gamete, displays striking amounts of interspecific diversity. In this review, we argue that sperm competition has been an important selection pressure acting on multiple aspects of spermatogenesis, causing variation in the number and morphology of sperm produced, and in the molecular and cellular processes by which this happens. We begin by reviewing the basic biology of spermatogenesis in some of the main animal model systems to illustrate this diversity, and then ask to what extent this variation arises from the evolutionary forces acting on spermatogenesis, most notably sperm competition. We explore five specific aspects of spermatogenesis from an evolutionary perspective, namely: (i) interspecific diversity in the number and morphology of sperm produced; (ii) the testicular organizations and stem cell systems used to produce them; (iii) the large number and high evolutionary rate of genes underpinning spermatogenesis; (iv) the repression of transcription during spermiogenesis and its link to the potential for haploid selection; and (v) the phenomenon of selection acting at the level of the germline. Overall we conclude that adopting an evolutionary perspective can shed light on many otherwise opaque features of spermatogenesis, and help to explain the diversity of ways in which males of different species perform this fundamentally important process.
Collapse
Affiliation(s)
- Steven A Ramm
- Evolutionary Biology, Bielefeld University, Morgenbreede 45, 33615 Bielefeld, Germany
| | - Lukas Schärer
- Evolutionary Biology, Zoological Institute, University of Basel, Vesalgasse 1, 4051 Basel, Switzerland
| | - Jens Ehmcke
- Central Animal Facility of the Faculty of Medicine, University of Münster, Albert-Schweitzer-Campus 1 (A8), 48149 Münster, Germany
| | - Joachim Wistuba
- Institute of Reproductive and Regenerative Biology, Centre of Reproductive Medicine and Andrology, University of Münster, Albert-Schweitzer-Campus 1 (D11), 48149 Münster, Germany
| |
Collapse
|
33
|
Fitzpatrick JL, Lüpold S. Sexual selection and the evolution of sperm quality. ACTA ACUST UNITED AC 2014; 20:1180-9. [DOI: 10.1093/molehr/gau067] [Citation(s) in RCA: 137] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
34
|
Baldassarre DT, White TA, Karubian J, Webster MS. GENOMIC AND MORPHOLOGICAL ANALYSIS OF A SEMIPERMEABLE AVIAN HYBRID ZONE SUGGESTS ASYMMETRICAL INTROGRESSION OF A SEXUAL SIGNAL. Evolution 2014; 68:2644-57. [DOI: 10.1111/evo.12457] [Citation(s) in RCA: 92] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Accepted: 05/22/2014] [Indexed: 12/14/2022]
Affiliation(s)
- Daniel T. Baldassarre
- Department of Neurobiology and Behavior; Cornell University; Ithaca New York 14850
- Macaulay Library; Cornell Lab of Ornithology; Ithaca New York 14853
| | - Thomas A. White
- Department of Ecology and Evolutionary Biology; Cornell University; Ithaca New York 14850
| | - Jordan Karubian
- Department of Ecology and Evolutionary Biology; Tulane University; New Orleans Louisiana 70118
| | - Michael S. Webster
- Department of Neurobiology and Behavior; Cornell University; Ithaca New York 14850
- Macaulay Library; Cornell Lab of Ornithology; Ithaca New York 14853
| |
Collapse
|
35
|
Møller AP, Bonisoli-Alquati A, Mousseau TA, Rudolfsen G. Aspermy, sperm quality and radiation in Chernobyl birds. PLoS One 2014; 9:e100296. [PMID: 24963711 PMCID: PMC4070951 DOI: 10.1371/journal.pone.0100296] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Accepted: 05/22/2014] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND Following the Chernobyl nuclear power plant accident, large amounts of radionuclides were emitted and spread in the environment. Animals living in such contaminated areas are predicted to suffer fitness costs including reductions in the quality and quantity of gametes. METHODOLOGY/PRINCIPAL FINDINGS We studied whether aspermy and sperm quality were affected by radioactive contamination by examining ejaculates from wild caught birds breeding in areas varying in background radiation level by more than three orders of magnitude around Chernobyl, Ukraine. The frequency of males with aspermy increased logarithmically with radiation level. While 18.4% of males from contaminated areas had no sperm that was only the case for 3.0% of males from uncontaminated control areas. Furthermore, there were negative relationships between sperm quality as reflected by reduced sperm velocity and motility, respectively, and radiation. CONCLUSIONS/SIGNIFICANCE Our results suggest that radioactive contamination around Chernobyl affects sperm production and quality. We are the first to report an interspecific difference in sperm quality in relation to radioactive contamination.
Collapse
Affiliation(s)
- Anders Pape Møller
- Laboratoire d’Ecologie, Systématique et Evolution, CNRS Unité Mixte de Recherche 8079, Université Paris-Sud, Bâtiment 362, Orsay Cedex, France
| | - Andrea Bonisoli-Alquati
- University of South Carolina, Department of Biological Sciences, Columbia, South Carolina, United States of America
| | - Timothy A. Mousseau
- University of South Carolina, Department of Biological Sciences, Columbia, South Carolina, United States of America
| | - Geir Rudolfsen
- Department of Arctic and Marine Biology, University of Tromsø, Tromsø, Norway
| |
Collapse
|
36
|
Moatt JP, Dytham C, Thom MDF. Sperm production responds to perceived sperm competition risk in male Drosophila melanogaster. Physiol Behav 2014; 131:111-4. [PMID: 24769021 DOI: 10.1016/j.physbeh.2014.04.027] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2013] [Revised: 04/07/2014] [Accepted: 04/14/2014] [Indexed: 11/19/2022]
Abstract
Postcopulatory sexual selection arising from female multiple mating leads to the evolution of ejaculates that maximize a male's reproductive success under sperm competition. Where the risk of sperm competition is variable, optimal fitness may be achieved by plastically altering ejaculate characteristics in response to the prevailing sperm competition environment. In the model species Drosophila melanogaster, males expecting to encounter sperm competition mate for longer and transfer more accessory proteins and sperm. Here we show that after being housed with a single rival for one week, the seminal vesicles of male D. melanogaster contain a significantly greater proportion of live sperm than those of males maintained alone, indicating adaptive adjustment of sperm quality in response to the perceived risk of sperm competition. This effect is due to an increase in the number of live sperm produced, indicating that males upregulate sperm production in response to the presence of rivals. Our data suggest that males show plasticity in the rate of spermatogenesis that is adaptive in the context of a fluctuating sperm competition environment.
Collapse
Affiliation(s)
- Joshua P Moatt
- Department of Biology, University of York, York YO10 5DD, UK
| | - Calvin Dytham
- Department of Biology, University of York, York YO10 5DD, UK
| | | |
Collapse
|
37
|
Testing a post-copulatory pre-zygotic reproductive barrier in a passerine species pair. Behav Ecol Sociobiol 2014. [DOI: 10.1007/s00265-014-1724-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
38
|
Ramm SA, Schärer L. The evolutionary ecology of testicular function: size isn't everything. Biol Rev Camb Philos Soc 2014; 89:874-88. [DOI: 10.1111/brv.12084] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Revised: 12/23/2013] [Accepted: 01/12/2014] [Indexed: 12/22/2022]
Affiliation(s)
- Steven A. Ramm
- Evolutionary Biology; Bielefeld University; Morgenbreede 45 33615 Bielefeld Germany
| | - Lukas Schärer
- Evolutionary Biology; Zoological Institute, University of Basel; Vesalgasse 1 4051 Basel Switzerland
| |
Collapse
|
39
|
Greig EI, Webster MS. How do novel signals originate? The evolution of fairy-wren songs from predator to display contexts. Anim Behav 2014. [DOI: 10.1016/j.anbehav.2013.11.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
40
|
Carnahan-Craig SJ, Jensen-Seaman MI. Rates of Evolution of Hominoid Seminal Proteins are Correlated with Function and Expression, Rather than Mating System. J Mol Evol 2013; 78:87-99. [DOI: 10.1007/s00239-013-9602-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2013] [Accepted: 11/15/2013] [Indexed: 10/26/2022]
|
41
|
van der Horst G, Maree L. Sperm form and function in the absence of sperm competition. Mol Reprod Dev 2013; 81:204-16. [DOI: 10.1002/mrd.22277] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2013] [Accepted: 10/30/2013] [Indexed: 01/08/2023]
Affiliation(s)
- Gerhard van der Horst
- Department of Medical Bioscience; University of the Western Cape; Bellville South Africa
| | - Liana Maree
- Department of Medical Bioscience; University of the Western Cape; Bellville South Africa
| |
Collapse
|
42
|
Hermosell IG, Laskemoen T, Rowe M, Møller AP, Mousseau TA, Albrecht T, Lifjeld JT. Patterns of sperm damage in Chernobyl passerine birds suggest a trade-off between sperm length and integrity. Biol Lett 2013; 9:20130530. [PMID: 24088561 DOI: 10.1098/rsbl.2013.0530] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Interspecific variation in sperm size is enigmatic, but generally assumed to reflect species-specific trade-offs in selection pressures. Among passerine birds, sperm length varies sevenfold, and sperm competition risk seems to drive the evolution of longer sperm. However, little is known about factors favouring short sperm or constraining the evolution of longer sperm. Here, we report a comparative analysis of sperm head abnormalities among 11 species of passerine bird in Chernobyl, presumably resulting from chronic irradiation following the 1986 accident. Frequencies of sperm abnormalities varied between 15.7 and 77.3% among species, more than fourfold higher than in uncontaminated areas. Nonetheless, species ranked similarly in sperm abnormalities in unpolluted areas as in Chernobyl, pointing to intrinsic factors underlying variation in sperm damage among species. Scanning electron microscopy of abnormal spermatozoa revealed patterns of acrosome damage consistent with premature acrosome reaction. Sperm length, but not sperm competition risk explained variation in sperm damage among species. This suggests that longer spermatozoa are more susceptible to premature acrosome reaction. Therefore, we hypothesize a trade-off between sperm length and sperm integrity affecting sperm evolution in passerine birds.
Collapse
Affiliation(s)
- Ignacio G Hermosell
- Departamento de Anatomía, Biología Celular y Zoología, Universidad de Extremadura, , Avenida de Elvas s/n, 06071 Badajoz, Spain
| | | | | | | | | | | | | |
Collapse
|
43
|
delBarco-Trillo J, Tourmente M, Roldan ERS. Metabolic rate limits the effect of sperm competition on mammalian spermatogenesis. PLoS One 2013; 8:e76510. [PMID: 24069461 PMCID: PMC3777943 DOI: 10.1371/journal.pone.0076510] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2013] [Accepted: 08/29/2013] [Indexed: 11/24/2022] Open
Abstract
Sperm competition leads to increased sperm production in many taxa. This response may result from increases in testes size, changes in testicular architecture or changes in the kinetics of spermatogenesis, but the impact of each one of these processes on sperm production has not been studied in an integrated manner. Furthermore, such response may be limited in species with low mass-specific metabolic rate (MSMR), i.e., large-bodied species, because they cannot process energy and resources efficiently enough both at the organismic and cellular levels. Here we compare 99 mammalian species and show that higher levels of sperm competition correlated with a) higher proportions of seminiferous tubules, b) shorter seminiferous epithelium cycle lengths (SECL) which reduce the time required to produce sperm, and c) higher efficiencies of Sertoli cells (involved in sperm maturation). These responses to sperm competition, in turn, result in higher daily sperm production, more sperm stored in the epididymides, and more sperm in the ejaculate. However, the two processes that require processing resources at faster rates (SECL and efficiency of Sertoli cells) only respond to sperm competition in species with high MSMR. Thus, increases in sperm production with intense sperm competition occur via a complex network of mechanisms, but some are constrained by MSMR.
Collapse
Affiliation(s)
- Javier delBarco-Trillo
- Reproductive Ecology and Biology Group, Museo Nacional de Ciencias Naturales, Consejo Superior de Investigaciones Científicas, Madrid, Spain
- * E-mail:
| | - Maximiliano Tourmente
- Reproductive Ecology and Biology Group, Museo Nacional de Ciencias Naturales, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Eduardo R. S. Roldan
- Reproductive Ecology and Biology Group, Museo Nacional de Ciencias Naturales, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| |
Collapse
|
44
|
Johnson AE, Jordan Price J, Pruett-Jones S. Different modes of evolution in males and females generate dichromatism in fairy-wrens (Maluridae). Ecol Evol 2013; 3:3030-46. [PMID: 24101992 PMCID: PMC3790549 DOI: 10.1002/ece3.686] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2013] [Revised: 06/15/2013] [Accepted: 06/17/2013] [Indexed: 11/11/2022] Open
Abstract
Sexual dichromatism in birds is often attributed to selection for elaboration in males. However, evolutionary changes in either sex can result in plumage differences between them, and such changes can result in either gains or losses of dimorphism. We reconstructed the evolution of plumage colors in both males and females of species in Maluridae, a family comprising the fairy-wrens (Malurus, Clytomias, Sipodotus), emu-wrens (Stipiturus), and grasswrens (Amytornis). Our results show that, across species, males and females differ in their patterns of color evolution. Male plumage has diverged at relatively steady rates, whereas female coloration has changed dramatically in some lineages and little in others. Accordingly, in comparisons against evolutionary models, plumage changes in males best fit a Brownian motion (BM) model, whereas plumage changes in females fit an Ornstein Uhlenbeck (OU) multioptimum model, with different adaptive peaks corresponding to distributions in either Australia or New Guinea. Levels of dichromatism were significantly associated with latitude, with greater dichromatism in more southerly taxa. Our results suggest that current patterns of plumage diversity in fairy-wrens are a product of evolutionary changes in both sexes, driven in part by environmental differences across the distribution of the family.
Collapse
Affiliation(s)
- Allison E Johnson
- Department of Ecology and Evolution, The University of Chicago Chicago, Illinois, 60637-1503
| | | | | |
Collapse
|
45
|
Cramer ERA, Laskemoen T, Kleven O, LaBarbera K, Lovette IJ, Lifjeld JT. No evidence that sperm morphology predicts paternity success in wild house wrens. Behav Ecol Sociobiol 2013. [DOI: 10.1007/s00265-013-1594-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
46
|
Lüpold S. Ejaculate quality and constraints in relation to sperm competition levels among eutherian mammals. Evolution 2013; 67:3052-60. [PMID: 24094354 DOI: 10.1111/evo.12132] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2012] [Accepted: 04/05/2013] [Indexed: 01/21/2023]
Abstract
The outcome of sperm competition is influenced by the relative quantity and quality of sperm among competing ejaculates. Whereas it is well established that individual ejaculate traits evolve rapidly under postcopulatory sexual selection, little is known about other factors that might influence the evolution of ejaculates. For example, the metabolic rate is likely to affect the sperm production rate and the cellular activity or metabolism of sperm, and it has recently been suggested to constrain the evolution of sperm length in large but not small mammals. I thus examined in eutherian mammals how ejaculate quality traits vary with one another and with testis mass, body size, and metabolism. I found all ejaculate traits to covary positively with one another and to increase with relative testis mass. When controlling for testis mass, small-bodied species showed superior sperm quality (but not sperm number). Furthermore, sperm motility and viability were positively associated with the mass-corrected metabolic rate, but the percentage of morphologically normal and acrosome-intact sperm were not. These results indicate that body size and the energy budget may also influence the evolution of ejaculate quality, although these influences appear to vary among traits.
Collapse
Affiliation(s)
- Stefan Lüpold
- Department of Biology, Life Sciences Complex, 107 College Place, Syracuse University, Syracuse, New York, 13244.
| |
Collapse
|
47
|
|
48
|
Mehlis M, Bakker TC. Male reproductive traits of full-sibs of different age classes in three-spined sticklebacks (Gasterosteus aculeatus). SPRINGERPLUS 2013; 2:175. [PMID: 23667819 PMCID: PMC3650239 DOI: 10.1186/2193-1801-2-175] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2013] [Accepted: 04/04/2013] [Indexed: 12/20/2022]
Abstract
The process of ageing is associated with negative effects of mutations acting late in life, which range from those affecting cells to those affecting the whole organism. In many animal taxa, the deterioration of the phenotype with age also affects traits such as males’ primary and secondary sexual characteristics. In three-spined sticklebacks (Gasterosteus aculeatus), males usually reproduce at one or two years of age. To see whether sexual selection has the potential to differ between young and old males, full-sib brothers of different age classes were compared, which were bred and raised under standardised laboratory conditions. During two simulated, successive breeding seasons males were allowed to build their nest in single tanks either in the first (“young males”) or in the second (“old males”) breeding season. A comparison of reproductively active brothers of the first and second breeding season showed that older males produce more but smaller sperm, which might be of lower quality. The fact that older males stored more sperm is size dependent as the results show that larger males possess a greater absolute testis mass, which is inextricably linked to sperm number. However, independent of body size, old males had a lower intensity of red/orange and UV breeding coloration as well as a reduced testis melanisation, which might have consequences in female mate choice and sperm competition.
Collapse
Affiliation(s)
- Marion Mehlis
- Institute for Evolutionary Biology and Ecology, University of Bonn, An der Immenburg 1, D-53121 Bonn, Germany
| | | |
Collapse
|
49
|
Rowe M, Czirják GÁ, Lifjeld JT, Giraudeau M. Lysozyme-associated bactericidal activity in the ejaculate of a wild passerine. Biol J Linn Soc Lond 2013. [DOI: 10.1111/bij.12044] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Melissah Rowe
- Natural History Museum; University of Oslo; NO-0318; Oslo; Norway
| | | | - Jan T. Lifjeld
- Natural History Museum; University of Oslo; NO-0318; Oslo; Norway
| | - Mathieu Giraudeau
- School of Life Sciences; Arizona State University; Tempe; AZ; 85287-4501; USA
| |
Collapse
|
50
|
Tourmente M, Rowe M, González-Barroso MM, Rial E, Gomendio M, Roldan ERS. Postcopulatory sexual selection increases ATP content in rodent spermatozoa. Evolution 2013; 67:1838-46. [PMID: 23730775 DOI: 10.1111/evo.12079] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2012] [Accepted: 01/23/2013] [Indexed: 11/28/2022]
Abstract
Sperm competition often leads to increase in sperm numbers and sperm quality, and its effects on sperm function are now beginning to emerge. Rapid swimming speeds are crucial for mammalian spermatozoa, because they need to overcome physical barriers in the female tract, reach the ovum, and generate force to penetrate its vestments. Faster velocities associate with high sperm competition levels in many taxa and may be due to increases in sperm dimensions, but they may also relate to higher adenosine triphosphate (ATP) content. We examined if variation in sperm ATP levels relates to both sperm competition and sperm swimming speed in rodents. We found that sperm competition associates with variations in sperm ATP content and sperm-size adjusted ATP concentrations, which suggests proportionally higher ATP content in response to sperm competition. Moreover, both measures were associated with sperm swimming velocities. Our findings thus support the idea that sperm competition may select for higher ATP content leading to faster sperm swimming velocity.
Collapse
Affiliation(s)
- Maximiliano Tourmente
- Reproductive Ecology and Biology Group, Museo Nacional de Ciencias Naturales, Madrid, Spain
| | | | | | | | | | | |
Collapse
|