1
|
Pan Y, Zhou H, Sun Z, Zhu Y, Zhang Z, Han J, Liu Y, Wang Q. Regulatory T cells in solid tumor immunotherapy: effect, mechanism and clinical application. Cell Death Dis 2025; 16:277. [PMID: 40216744 PMCID: PMC11992189 DOI: 10.1038/s41419-025-07544-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 01/12/2025] [Accepted: 03/17/2025] [Indexed: 04/14/2025]
Abstract
The tumor-immune response is mobilized to suppress tumorigenesis, while the immune microenvironment and lymph node microenvironment are formed gradually during tumor progression. In fact, tumor surface antigens are not easily recognized by antigen-presenting cells. So it is hard for the immune system to kill the newly formed tumor cells effectively. In a normal immune environment, immune function is always suppressed to maintain the stability of the body, and regulatory T cells play an important role in maintaining immune suppression. However, during tumorigenesis, the suppression of regulatory T cell immune functions is more likely to contribute to tumor cell proliferation and migration leading directly to tumor progression. Therefore, focusing on the role of regulatory T cells in tumor immunity could improve tumor immunotherapy outcomes in the clinic. Regulatory T cells are more mature in hematologic system tumors than in solid tumors. However, there are continuing efforts to apply regulatory T cells for immunotherapy in solid tumors. This review describes the role of regulatory T cells in solid tumor immunotherapy from the perspective of prognosis, immune microenvironment remodeling, and current clinical applications. This summary could help us better understand the mechanisms of regulatory T cells in solid tumor immunotherapy and further expand their clinical application.
Collapse
Affiliation(s)
- Yan Pan
- Department of Internal Medicine, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, 450008, China
- Institute of Cancer Research, Henan Academy of Innovations in Medical Science, Zhengzhou, 451162, China
| | - Hanqiong Zhou
- Department of Internal Medicine, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, 450008, China
- Institute of Cancer Research, Henan Academy of Innovations in Medical Science, Zhengzhou, 451162, China
| | - Zhenqiang Sun
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450001, China
| | - Yichen Zhu
- Department of Internal Medicine, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, 450008, China
- Institute of Cancer Research, Henan Academy of Innovations in Medical Science, Zhengzhou, 451162, China
| | - Zhe Zhang
- Department of Internal Medicine, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, 450008, China
- Institute of Cancer Research, Henan Academy of Innovations in Medical Science, Zhengzhou, 451162, China
| | - Jing Han
- Department of Internal Medicine, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, 450008, China
- Institute of Cancer Research, Henan Academy of Innovations in Medical Science, Zhengzhou, 451162, China
| | - Yang Liu
- Department of Radiation Oncology, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, 450008, China.
| | - Qiming Wang
- Department of Internal Medicine, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, 450008, China.
- Institute of Cancer Research, Henan Academy of Innovations in Medical Science, Zhengzhou, 451162, China.
| |
Collapse
|
2
|
Gao Y, Zhang M, Wang G, Lai W, Liao S, Chen Y, Ning Q, Tang S. Metabolic cross-talk between glioblastoma and glioblastoma-associated microglia/macrophages: From basic insights to therapeutic strategies. Crit Rev Oncol Hematol 2025; 208:104649. [PMID: 39922398 DOI: 10.1016/j.critrevonc.2025.104649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Revised: 01/26/2025] [Accepted: 02/02/2025] [Indexed: 02/10/2025] Open
Abstract
Glioblastoma (GBM), a highly malignant "cold" tumor of the central nervous system, is characterized by its ability to remodel the GBM immune microenvironment (GME), leading to significant resistance to immunotherapy. GBM-associated microglia/macrophages (GAMs) are essential components of the GME. Targeting GAMs has emerged as a promising strategy against GBM. However, their highly immunosuppressive nature contributes to GBM progression and drug resistance, significantly impeding anti-GBM immunotherapy. Accumulating evidence suggests that metabolic reprogramming accompanies GBM progression and GAM polarization, which are in turn driven by specific metabolic abnormalities and altered cellular signaling pathways. Importantly, metabolic crosstalk between GBM and GAMs further promotes tumor progression. Clarifying and disrupting this metabolic crosstalk is expected to enhance the antitumor phenotype of GAMs and inhibit GBM malignant progression. This review explores metabolism-based interregulation between GBM and GAMs and summarizes recent therapeutic strategies targeting this crosstalk, offering new insights into GBM immunotherapy.
Collapse
Affiliation(s)
- Yuan Gao
- Department of Pharmacology, Ningxia Medical University, Yinchuan 750004, China; Hunan Province Key Laboratory for Antibody-Based Drug and Intelligent Delivery System, School of Pharmaceutical Sciences, Hunan University of Medicine, Huaihua 418000, China
| | - Mengxia Zhang
- Department of Histology and Embryology, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Guihua Wang
- Hunan Province Key Laboratory for Antibody-Based Drug and Intelligent Delivery System, School of Pharmaceutical Sciences, Hunan University of Medicine, Huaihua 418000, China
| | - Weiwei Lai
- Hunan Province Key Laboratory for Antibody-Based Drug and Intelligent Delivery System, School of Pharmaceutical Sciences, Hunan University of Medicine, Huaihua 418000, China
| | - Shuxian Liao
- Hunan Province Key Laboratory for Antibody-Based Drug and Intelligent Delivery System, School of Pharmaceutical Sciences, Hunan University of Medicine, Huaihua 418000, China
| | - Yao Chen
- Hunan Province Key Laboratory for Antibody-Based Drug and Intelligent Delivery System, School of Pharmaceutical Sciences, Hunan University of Medicine, Huaihua 418000, China
| | - Qian Ning
- Hunan Province Key Laboratory for Antibody-Based Drug and Intelligent Delivery System, School of Pharmaceutical Sciences, Hunan University of Medicine, Huaihua 418000, China; College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China.
| | - Shengsong Tang
- Department of Pharmacology, Ningxia Medical University, Yinchuan 750004, China; Hunan Province Key Laboratory for Antibody-Based Drug and Intelligent Delivery System, School of Pharmaceutical Sciences, Hunan University of Medicine, Huaihua 418000, China; College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China.
| |
Collapse
|
3
|
Ramachandran R, Jeans AF. Breaking Down Glioma-Microenvironment Crosstalk. Neuroscientist 2025; 31:177-194. [PMID: 39066464 PMCID: PMC11909767 DOI: 10.1177/10738584241259773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/28/2024]
Abstract
High-grade gliomas (HGGs) are the commonest primary brain cancers. They are characterized by a pattern of aggressive growth and diffuse infiltration of the host brain that severely limits the efficacy of conventional treatments and patient outcomes, which remain generally poor. Recent work has described a suite of mechanisms via which HGGs interact, predominantly bidirectionally, with various cell types in the host brain including neurons, glial cells, immune cells, and vascular elements to drive tumor growth and invasion. These insights have the potential to inspire novel approaches to HGG therapy that are critically needed. This review explores HGG-host brain interactions and considers whether and how they might be exploited for therapeutic gain.
Collapse
|
4
|
Lin Y, Song Y, Zhang Y, Li X, Kan L, Han S. New insights on anti-tumor immunity of CD8 + T cells: cancer stem cells, tumor immune microenvironment and immunotherapy. J Transl Med 2025; 23:341. [PMID: 40097979 PMCID: PMC11912710 DOI: 10.1186/s12967-025-06291-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Accepted: 02/23/2025] [Indexed: 03/19/2025] Open
Abstract
Recent breakthroughs in tumor immunotherapy have confirmed the capacity of the immune system to fight several cancers. The effective means of treating cancer involves accelerating the death of tumor cells and improving patient immunity. Dynamic changes in the tumor immune microenvironment alter the actual effects of anti-tumor drug production and may trigger favorable or unfavorable immune responses by modulating tumor-infiltrating lymphocytes. Notably, CD8+ T cells are one of the primary tumor-infiltrating immune cells that provide anti-tumor response. Tumor cells and tumor stem cells will resist or evade destruction through various mechanisms as CD8+ T cells exert their anti-tumor function. This paper reviews the research on the regulation of tumor development and prognosis by cancer stem cells that directly or indirectly alter the role of tumor-infiltrating CD8+ T cells. We also discuss related immunotherapy strategies.
Collapse
Affiliation(s)
- Yibin Lin
- Department of Neurosurgery, The First Hospital of China Medical University, Shenyang, 110001, China
| | - Yifu Song
- Department of Neurosurgery, The First Hospital of China Medical University, Shenyang, 110001, China
| | - Yaochuan Zhang
- Department of Neurosurgery, The First Hospital of China Medical University, Shenyang, 110001, China
| | - Xiaodong Li
- Department of Neurosurgery, Siping Central People's Hospital, Siping, Jilin, 136000, China
| | - Liang Kan
- Department of Geriatrics, Shengjing Hospital of China Medical University, Shenyang, 110004, China.
| | - Sheng Han
- Department of Neurosurgery, The First Hospital of China Medical University, Shenyang, 110001, China.
| |
Collapse
|
5
|
Pancholi S, Shah R, Bose U, Yadav A, Murukan K, Pillai P. Hypoxic Secretome and Exosomes Derived From Human Glioblastoma Cells (U87MG) Promote Protumorigenic Phenotype of Microglia in Vitro. J Cell Biochem 2025; 126:e70002. [PMID: 39905831 DOI: 10.1002/jcb.70002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 01/08/2025] [Accepted: 01/25/2025] [Indexed: 02/06/2025]
Abstract
Glioblastoma multiforme (GBM), a highly heterogeneous CNS tumor known for its highest incidence rates and poor prognosis has shown limited success in the therapies due to hypoxia-driving immune-suppression in the tumor microenvironment (TME). Emerging evidence highlights the involvement of tumor cell-derived exosomes in tumor-associated microglia polarization via transfer of exosomal onco-proteins and miRNAs. Although the regulatory role of long noncoding RNAs (lncRNAs) in immune signaling are known, its mechanism in microglial polarization via exosomes in GBM still remains poorly understood. In our study, we found that in comparison to the normoxic GBM-derived exosomes lncRNA H19 was significantly upregulated in hypoxic GBM-derived exosomes. Hypoxic GBM-derived exosomes and secretome (conditioned media) caused the reduction in the % phagocytosis of microglia as compared with the control group. Moreover, GBM secretome caused increase in the M2-specific genes (IL10, STAT-3, CD163, CD206) in microglia indicating its polarization to the protumorigenic (M2) phenotype. LncRNA H19 knocked down GBM-secretome treatment in microglia further reduced the STAT-3 expression indicating H19 mediated signaling. Overall, our results suggest the involvement of hypoxic exosomes and lncRNA H19 in microglial polarization and H19 as a potential target.
Collapse
Affiliation(s)
- Sangati Pancholi
- Department of Zoology, Division of Neurobiology, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, Gujarat, India
| | - Ritvi Shah
- Department of Zoology, Division of Neurobiology, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, Gujarat, India
| | - Utsav Bose
- Department of Zoology, Division of Neurobiology, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, Gujarat, India
| | - Ankit Yadav
- Department of Zoology, Division of Neurobiology, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, Gujarat, India
| | - Karthik Murukan
- Department of Zoology, Division of Neurobiology, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, Gujarat, India
| | - Prakash Pillai
- Department of Zoology, Division of Neurobiology, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, Gujarat, India
| |
Collapse
|
6
|
Abdo E, Ismail MA, Al Hadidi S, Al-Mrahleh M, Saleh T, Zihlif M, Ababneh NA. Effect of cytotoxic CD8+ T-cells secretory proteins on hypoxic pancreatic cancer cells. PLoS One 2025; 20:e0311615. [PMID: 39883638 PMCID: PMC11781647 DOI: 10.1371/journal.pone.0311615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 08/29/2024] [Indexed: 02/01/2025] Open
Abstract
BACKGROUND Hypoxia in tumor cells is linked to increased drug resistance and more aggressive behavior. In pancreatic cancer, the tumor microenvironment is notably hypoxic and exhibits strong immunosuppressive properties. Given that immunotherapy is now approved for pancreatic cancer treatment, further understanding of how pancreatic tumor cell hypoxia influences T-cell cytotoxicityis essential. OBJECTIVE This study examined how hypoxia affects the interaction between pancreatic tumor cells (PANC-1) and cytotoxic CD8+ T-cells. METHODS Pancreatic tumor cells (PANC-1) were exposed to 20 cycles of chronic hypoxic conditions, each for 72 hours, followed by a re-oxygenation period for 24 hours. On cycles 10 and 20, PANC-1 conditioned media (CM) was harvested, and the hypoxic PANC-1 cells were co-cultured with either the activated cytotoxic CD8+ T-cells or with CD8+ T-cells CM. CD8+ T-cells CM was collected after five days of cell activation using anti-CD3/CD28 antibodies and interleukin-2 (IL-2). CD8+ T-cells were activated for 72 hours and then cultured with the hypoxic PANC-1 CM. RESULTS Hypoxic PANC-1 cells showed significant resistance to the lytic effect of either CD8+ T-cells co-culture or CD8+ T-cells CM treatment compared to normoxic PANC-1 cells. A significant decrease in TNF-α and IFN-γ levels was also detected. Additionally, a significant increase in IL-6, p53 and TNF-α gene expression levels was observed in PANC-1 cells treated with CD8+ T-cells CM. Moreover, IL-6 gene expression level showed a significant difference between hypoxic and normoxic PANC-1 cells. CD8+ T-cell proliferation and cytokines production were significantly higher in cells co-cultured with PANC-1 CM. However, no significant differences were observed after treatment with either hypoxic or normoxic PANC-1 CM. CONCLUSION Hypoxia decreases PANC-1 cells' sensitivity to cytotoxic CD8+ T-cells. Reduced tumor cell susceptibility to CD8+ T-cells was associated with increased IL-6 expression and reduced TNF-α and IFN-γ levels. Thus, cytokine dysregulation might contribute to the hypoxia-mediated resistance of pancreatic tumor cells to CD8+ T-cells.
Collapse
Affiliation(s)
- Eiman Abdo
- Department of Pharmacology, School of Medicine, University of Jordan, Amman, Jordan
- Cell Therapy Center, The University of Jordan, Amman, Jordan
| | | | - Sabal Al Hadidi
- Cell Therapy Center, The University of Jordan, Amman, Jordan
| | | | - Tareq Saleh
- Faculty of Medicine, Department of Pharmacology and Public Health, The Hashemite University, Zarqa, Jordan
| | - Malik Zihlif
- Department of Pharmacology, School of Medicine, University of Jordan, Amman, Jordan
| | | |
Collapse
|
7
|
Koppers MJA, Monnikhof M, Meeldijk J, Koorman T, Bovenschen N. Chimeric antigen receptor-macrophages: Emerging next-generation cell therapy for brain cancer. Neurooncol Adv 2025; 7:vdaf059. [PMID: 40376682 PMCID: PMC12080554 DOI: 10.1093/noajnl/vdaf059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2025] Open
Abstract
Adoptive cell-based therapy utilizing chimeric antigen receptor (CAR)-T technology holds promise in the field of neuro-oncology. Significant progress has been made in enhancing both the efficacy and safety of CAR-T-cell therapies. However, challenges such as the multifaceted immunosuppressive impact of the tumor microenvironment and insufficient CAR-T-cell infiltration into brain tumor sites remain a major hurdles. Emerging novel approaches utilizing CAR-macrophages (CAR-MACs) show potent results for brain tumor immunotherapy. CAR-MACs localize to tumor sites more readily, increase immune cell infiltrates, and demonstrate high antitumor efficacy by effectively eliminating tumor cells through mechanisms such as phagocytosis or efferocytosis. This review discusses the current advancements in CAR-MAC cell therapies for brain cancer, followed by an overview of research on manufacturing CAR-MACs for clinical application. We further highlight the potential future applications of CAR-MACs in combinatory therapies in the treatment of brain tumors.
Collapse
Affiliation(s)
- Myrthe J A Koppers
- Department of Pathology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Matthijs Monnikhof
- Department of Pathology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Jan Meeldijk
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht, The Netherlands
- Department of Pathology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Thijs Koorman
- Department of Pathology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Niels Bovenschen
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht, The Netherlands
- Department of Pathology, University Medical Center Utrecht, Utrecht, The Netherlands
| |
Collapse
|
8
|
You H, Geng S, Li S, Imani M, Brambilla D, Sun T, Jiang C. Recent advances in biomimetic strategies for the immunotherapy of glioblastoma. Biomaterials 2024; 311:122694. [PMID: 38959533 DOI: 10.1016/j.biomaterials.2024.122694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 06/22/2024] [Accepted: 06/26/2024] [Indexed: 07/05/2024]
Abstract
Immunotherapy is regarded as one of the most promising approaches for treating tumors, with a multitude of immunotherapeutic thoughts currently under consideration for the lethal glioblastoma (GBM). However, issues with immunotherapeutic agents, such as limited in vivo stability, poor blood-brain barrier (BBB) penetration, insufficient GBM targeting, and represented monotherapy, have hindered the success of immunotherapeutic interventions. Moreover, even with the aid of conventional drug delivery systems, outcomes remain suboptimal. Biomimetic strategies seek to overcome these formidable drug delivery challenges by emulating nature's intelligent structures and functions. Leveraging the variety of biological structures and functions, biomimetic drug delivery systems afford a versatile platform with enhanced biocompatibility for the co-delivery of diverse immunotherapeutic agents. Moreover, their inherent capacity to traverse the BBB and home in on GBM holds promise for augmenting the efficacy of GBM immunotherapy. Thus, this review begins by revisiting the various thoughts and agents on immunotherapy for GBM. Then, the barriers to successful GBM immunotherapy are analyzed, and the corresponding biomimetic strategies are explored from the perspective of function and structure. Finally, the clinical translation's current state and prospects of biomimetic strategy are addressed. This review aspires to provide fresh perspectives on the advancement of immunotherapy for GBM.
Collapse
Affiliation(s)
- Haoyu You
- Key Laboratory of Smart Drug Delivery/Innovative Center for New Drug Development of Immune Inflammatory Diseases (Ministry of Education), Minhang Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Shuo Geng
- Key Laboratory of Smart Drug Delivery/Innovative Center for New Drug Development of Immune Inflammatory Diseases (Ministry of Education), Minhang Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Shangkuo Li
- Key Laboratory of Smart Drug Delivery/Innovative Center for New Drug Development of Immune Inflammatory Diseases (Ministry of Education), Minhang Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Mohammad Imani
- Department of Science, Iran Polymer and Petrochemical Institute, Tehran 14977-13115, Iran; Center for Nanoscience and Nanotechnology, Institute for Convergence Science & Technology, Tehran 14588-89694, Iran
| | - Davide Brambilla
- Faculty of Pharmacy, University of Montreal, Montreal Quebec H3T 1J4, Canada
| | - Tao Sun
- Key Laboratory of Smart Drug Delivery/Innovative Center for New Drug Development of Immune Inflammatory Diseases (Ministry of Education), Minhang Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai 201203, China.
| | - Chen Jiang
- Key Laboratory of Smart Drug Delivery/Innovative Center for New Drug Development of Immune Inflammatory Diseases (Ministry of Education), Minhang Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai 201203, China
| |
Collapse
|
9
|
Wang S, Huang T, Wu Q, Yuan H, Wu X, Yuan F, Duan T, Taori S, Zhao Y, Snyder NW, Placantonakis DG, Rich JN. Lactate reprograms glioblastoma immunity through CBX3-regulated histone lactylation. J Clin Invest 2024; 134:e176851. [PMID: 39545414 PMCID: PMC11563687 DOI: 10.1172/jci176851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 09/25/2024] [Indexed: 11/17/2024] Open
Abstract
Glioblastoma (GBM), an aggressive brain malignancy with a cellular hierarchy dominated by GBM stem cells (GSCs), evades antitumor immunity through mechanisms that remain incompletely understood. Like most cancers, GBMs undergo metabolic reprogramming toward glycolysis to generate lactate. Here, we show that lactate production by patient-derived GSCs and microglia/macrophages induces tumor cell epigenetic reprogramming through histone lactylation, an activating modification that leads to immunosuppressive transcriptional programs and suppression of phagocytosis via transcriptional upregulation of CD47, a "don't eat me" signal, in GBM cells. Leveraging these findings, pharmacologic targeting of lactate production augments efficacy of anti-CD47 therapy. Mechanistically, lactylated histone interacts with the heterochromatin component chromobox protein homolog 3 (CBX3). Although CBX3 does not possess direct lactyltransferase activity, CBX3 binds histone acetyltransferase (HAT) EP300 to induce increased EP300 substrate specificity toward lactyl-CoA and a transcriptional shift toward an immunosuppressive cytokine profile. Targeting CBX3 inhibits tumor growth by both tumor cell-intrinsic mechanisms and increased tumor cell phagocytosis. Collectively, these results suggest that lactate mediates metabolism-induced epigenetic reprogramming in GBM that contributes to CD47-dependent immune evasion, which can be leveraged to augment efficacy of immuno-oncology therapies.
Collapse
Affiliation(s)
- Shuai Wang
- Hillman Cancer Center and Department of Neurology, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
- Department of Neurosurgery and Perlmutter Cancer Center, NYU Grossman School of Medicine, New York, New York, USA
| | - Tengfei Huang
- Hillman Cancer Center and Department of Neurology, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Qiulian Wu
- Hillman Cancer Center and Department of Neurology, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Huairui Yuan
- Hillman Cancer Center and Department of Neurology, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Xujia Wu
- Hillman Cancer Center and Department of Neurology, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Fanen Yuan
- Hillman Cancer Center and Department of Neurology, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Tingting Duan
- Hillman Cancer Center and Department of Neurology, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Suchet Taori
- School of Medicine, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Yingming Zhao
- Ben May Department for Cancer Research, The University of Chicago, Chicago, Illinois, USA
| | - Nathaniel W. Snyder
- Department of Cardiovascular Sciences, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania, USA
| | - Dimitris G. Placantonakis
- Department of Neurosurgery and Perlmutter Cancer Center, NYU Grossman School of Medicine, New York, New York, USA
| | - Jeremy N. Rich
- Hillman Cancer Center and Department of Neurology, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
10
|
Mu X, Zhou Y, Yu Y, Zhang M, Liu J. The roles of cancer stem cells and therapeutic implications in melanoma. Front Immunol 2024; 15:1486680. [PMID: 39611156 PMCID: PMC11602477 DOI: 10.3389/fimmu.2024.1486680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 10/28/2024] [Indexed: 11/30/2024] Open
Abstract
Melanoma is a highly malignant skin tumor characterized by high metastasis and poor prognosis. Recent studies have highlighted the pivotal role of melanoma stem cells (MSCs)-a subpopulation of cancer stem cells (CSCs)-in driving tumor growth, metastasis, therapeutic resistance, and recurrence. Similar to CSCs in other cancers, MSCs possess unique characteristics, including specific surface markers, dysregulated signaling pathways, and the ability to thrive within complex tumor microenvironment (TME). This review explored the current landscape of MSC research, discussing the identification of MSC-specific surface markers, the role of key signaling pathways such as Wnt/β-catenin, Notch, and Hedgehog (Hh), and how interactions within the TME, including hypoxia and immune cells, contribute to MSC-mediated drug resistance and metastatic behavior. Furthermore, we also investigated the latest therapeutic strategies targeting MSCs, such as small-molecule inhibitors, immune-based approaches, and novel vaccine developments, with an emphasis on their potential to overcome melanoma progression and improve clinical outcomes. This review aims to provide valuable insights into the complex roles of MSCs in melanoma biology and offers perspectives for future research and therapeutic advances against this challenging disease.
Collapse
Affiliation(s)
- Xiaoli Mu
- The Department of Biotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yixin Zhou
- The Department of Biotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yongxin Yu
- The Department of Plastic and Reconstructive Surgery, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Mingyi Zhang
- The Department of Biotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Jiyan Liu
- The Department of Biotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
11
|
Inocencio JF, Mitrasinovic S, Asad M, Parney IF, Zang X, Himes BT. Immune checkpoint pathways in glioblastoma: a diverse and evolving landscape. Front Immunol 2024; 15:1424396. [PMID: 39346924 PMCID: PMC11427296 DOI: 10.3389/fimmu.2024.1424396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Accepted: 08/27/2024] [Indexed: 10/01/2024] Open
Abstract
Immune checkpoint (IC) inhibition in glioblastoma (GBM) has not shown promising results in the last decade compared to other solid tumors. Several factors contributing to the lack of immunotherapy response include the profound immunosuppressive nature of GBM, highly redundant signaling pathways underlying immune checkpoints, and the negative immunogenic impact of current standard of care on the tumor microenvironment. In this review, we will discuss various ICs in the context of GBM, their interplay with the tumor immune microenvironment, relevant pre-clinical and clinical studies, and the impact of current treatment modalities on GBM IC blockade therapy. Understanding the molecular mechanisms that drive ICs, and how they contribute to an immunosuppressive tumor microenvironment is critical in advancing IC inhibition therapy in GBM. Furthermore, revisiting current treatment modalities and their impact on the immune landscape is instrumental in designing future combinatorial therapies that may overcome treatment resistance.
Collapse
Affiliation(s)
- Julio F Inocencio
- Department of Neurological Surgery, Montefiore Medical Center/Albert Einstein College of Medicine, Bronx, NY, United States
| | - Stefan Mitrasinovic
- Department of Neurological Surgery, Montefiore Medical Center/Albert Einstein College of Medicine, Bronx, NY, United States
| | - Mohammad Asad
- Department of Neurological Surgery, Montefiore Medical Center/Albert Einstein College of Medicine, Bronx, NY, United States
| | - Ian F Parney
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN, United States
- Department of Immunology, Mayo Clinic, Rochester, MN, United States
| | - Xingxing Zang
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, United States
- Department of Oncology, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Benjamin T Himes
- Department of Neurological Surgery, Montefiore Medical Center/Albert Einstein College of Medicine, Bronx, NY, United States
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, United States
| |
Collapse
|
12
|
Zhang TQ, Lv QY, Jin WL. The cellular-centered view of hypoxia tumor microenvironment: Molecular mechanisms and therapeutic interventions. Biochim Biophys Acta Rev Cancer 2024; 1879:189137. [PMID: 38880161 DOI: 10.1016/j.bbcan.2024.189137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 06/01/2024] [Accepted: 06/10/2024] [Indexed: 06/18/2024]
Abstract
Cancer is a profoundly dynamic, heterogeneous and aggressive systemic ailment, with a coordinated evolution of various types of tumor niches. Hypoxia plays an indispensable role in the tumor micro-ecosystem, drastically enhancing the plasticity of cancer cells, fibroblasts and immune cells and orchestrating intercellular communication. Hypoxia-induced signals, particularly hypoxia-inducible factor-1α (HIF-1α), drive the reprogramming of genetic, transcriptional, and proteomic profiles. This leads to a spectrum of interconnected processes, including augmented survival of cancer cells, evasion of immune surveillance, metabolic reprogramming, remodeling of the extracellular matrix, and the development of resistance to conventional therapeutic modalities like radiotherapy and chemotherapy. Here, we summarize the latest research on the multifaceted effects of hypoxia, where a multitude of cellular and non-cellular elements crosstalk with each other and co-evolve in a synergistic manner. Additionally, we investigate therapeutic approaches targeting hypoxic niche, encompassing hypoxia-activated prodrugs, HIF inhibitors, nanomedicines, and combination therapies. Finally, we discuss some of the issues to be addressed and highlight the potential of emerging technologies in the treatment of cancer.
Collapse
Affiliation(s)
- Tian-Qi Zhang
- Institute of Cancer Neuroscience, Medical Frontier Innovation Research Center, The First Hospital of Lanzhou University, The First Clinical Medical College of Lanzhou University, Lanzhou 730000, China; The Second Hospital of Jilin University, Changchun 130041, China
| | - Qian-Yu Lv
- The Second Hospital of Jilin University, Changchun 130041, China
| | - Wei-Lin Jin
- Institute of Cancer Neuroscience, Medical Frontier Innovation Research Center, The First Hospital of Lanzhou University, The First Clinical Medical College of Lanzhou University, Lanzhou 730000, China.
| |
Collapse
|
13
|
VAGELI DIMITRAP, DOUKAS PANAGIOTISG, GOUPOU KERASIA, BENOS ANTONIOSD, ASTARA KYRIAKI, ZACHAROULI KONSTANTINA, SOTIRIOU SOTIRIS, IOANNOU MARIA. Hypoxia-inducible factor 1alpha and vascular endothelial growth factor in Glioblastoma Multiforme: a systematic review going beyond pathologic implications. Oncol Res 2024; 32:1239-1256. [PMID: 39055895 PMCID: PMC11267112 DOI: 10.32604/or.2024.052130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Accepted: 05/23/2024] [Indexed: 07/28/2024] Open
Abstract
Glioblastoma multiforme (GBM) is an aggressive primary brain tumor characterized by extensive heterogeneity and vascular proliferation. Hypoxic conditions in the tissue microenvironment are considered a pivotal player leading tumor progression. Specifically, hypoxia is known to activate inducible factors, such as hypoxia-inducible factor 1alpha (HIF-1α), which in turn can stimulate tumor neo-angiogenesis through activation of various downward mediators, such as the vascular endothelial growth factor (VEGF). Here, we aimed to explore the role of HIF-1α/VEGF immunophenotypes alone and in combination with other prognostic markers or clinical and image analysis data, as potential biomarkers of GBM prognosis and treatment efficacy. We performed a systematic review (Medline/Embase, and Pubmed database search was completed by 16th of April 2024 by two independent teams; PRISMA 2020). We evaluated methods of immunoassays, cell viability, or animal or patient survival methods of the retrieved studies to assess unbiased data. We used inclusion criteria, such as the evaluation of GBM prognosis based on HIF-1α/VEGF expression, other biomarkers or clinical and imaging manifestations in GBM related to HIF-1α/VEGF expression, application of immunoassays for protein expression, and evaluation of the effectiveness of GBM therapeutic strategies based on HIF-1α/VEGF expression. We used exclusion criteria, such as data not reporting both HIF-1α and VEGF or prognosis. We included 50 studies investigating in total 1319 GBM human specimens, 18 different cell lines or GBM-derived stem cells, and 6 different animal models, to identify the association of HIF-1α/VEGF immunophenotypes, and with other prognostic factors, clinical and macroscopic data in GBM prognosis and therapeutic approaches. We found that increased HIF-1α/VEGF expression in GBM correlates with oncogenic factors, such as miR-210-3p, Oct4, AKT, COX-2, PDGF-C, PLDO3, M2 polarization, or ALK, leading to unfavorable survival. Reduced HIF-1α/VEGF expression correlates with FIH-1, ADNP, or STAT1 upregulation, as well as with clinical manifestations, like epileptogenicity, and a favorable prognosis of GBM. Based on our data, HIF-1α or VEGF immunophenotypes may be a useful tool to clarify MRI-PET imaging data distinguishing between GBM tumor progression and pseudoprogression. Finally, HIF-1α/VEGF immunophenotypes can reflect GBM treatment efficacy, including combined first-line treatment with histone deacetylase inhibitors, thimerosal, or an active metabolite of irinotecan, as well as STAT3 inhibitors alone, and resulting in a favorable tumor prognosis and patient survival. These data were supported by a combination of variable methods used to evaluate HIF-1α/VEGF immunophenotypes. Data limitations may include the use of less sensitive detection methods in some cases. Overall, our data support HIF-1α/VEGF's role as biomarkers of GBM prognosis and treatment efficacy.
Collapse
Affiliation(s)
- DIMITRA P. VAGELI
- Department of Surgery, Yale University, New Haven, CT 06510, USA
- Department of Pathology, Faculty of Medicine, School of Health Sciences, University of Thessaly, Larissa, 41500, Greece
| | - PANAGIOTIS G. DOUKAS
- Department of Medicine, Rutgers/Saint Peter’s University Hospital, New Brunswick, NJ08901, USA
| | - KERASIA GOUPOU
- Department of Pathology, Faculty of Medicine, School of Health Sciences, University of Thessaly, Larissa, 41500, Greece
| | - ANTONIOS D. BENOS
- Department of Pathology, Faculty of Medicine, School of Health Sciences, University of Thessaly, Larissa, 41500, Greece
| | - KYRIAKI ASTARA
- Department of Pathology, Faculty of Medicine, School of Health Sciences, University of Thessaly, Larissa, 41500, Greece
- Department of Neurology, Army Share Fund Hospital (NIMTS), Athens, 11521, Greece
| | - KONSTANTINA ZACHAROULI
- Department of Pathology, Faculty of Medicine, School of Health Sciences, University of Thessaly, Larissa, 41500, Greece
| | - SOTIRIS SOTIRIOU
- Laboratory of Embryology, Faculty of Medicine, School of Health Sciences, University of Thessaly, Larissa, 41500, Greece
| | - MARIA IOANNOU
- Department of Pathology, Faculty of Medicine, School of Health Sciences, University of Thessaly, Larissa, 41500, Greece
| |
Collapse
|
14
|
Stergiopoulos GM, Concilio SC, Galanis E. An Update on the Clinical Status, Challenges, and Future Directions of Oncolytic Virotherapy for Malignant Gliomas. Curr Treat Options Oncol 2024; 25:952-991. [PMID: 38896326 PMCID: PMC11878440 DOI: 10.1007/s11864-024-01211-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/24/2024] [Indexed: 06/21/2024]
Abstract
OPINION STATEMENT Malignant gliomas are common central nervous system tumors that pose a significant clinical challenge due to the lack of effective treatments. Glioblastoma (GBM), a grade 4 malignant glioma, is the most prevalent primary malignant brain tumor and is associated with poor prognosis. Current clinical trials are exploring various strategies to combat GBM, with oncolytic viruses (OVs) appearing particularly promising. In addition to ongoing and recently completed clinical trials, one OV (Teserpaturev, Delytact®) received provisional approval for GBM treatment in Japan. OVs are designed to selectively target and eliminate cancer cells while promoting changes in the tumor microenvironment that can trigger and support long-lasting anti-tumor immunity. OVs offer the potential to remodel the tumor microenvironment and reverse systemic immune exhaustion. Additionally, an increasing number of OVs are armed with immunomodulatory payloads or combined with immunotherapy approaches in an effort to promote anti-tumor responses in a tumor-targeted manner. Recently completed oncolytic virotherapy trials can guide the way for future treatment individualization through patient preselection, enhancing the likelihood of achieving the highest possible clinical success. These trials also offer valuable insight into the numerous challenges inherent in malignant glioma treatment, some of which OVs can help overcome.
Collapse
Affiliation(s)
| | | | - Evanthia Galanis
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN, USA.
- Department of Oncology, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
15
|
Yu R, Hang Y, Tsai HI, Wang D, Zhu H. Iron metabolism: backfire of cancer cell stemness and therapeutic modalities. Cancer Cell Int 2024; 24:157. [PMID: 38704599 PMCID: PMC11070091 DOI: 10.1186/s12935-024-03329-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 04/16/2024] [Indexed: 05/06/2024] Open
Abstract
Cancer stem cells (CSCs), with their ability of self-renewal, unlimited proliferation, and multi-directional differentiation, contribute to tumorigenesis, metastasis, recurrence, and resistance to conventional therapy and immunotherapy. Eliminating CSCs has long been thought to prevent tumorigenesis. Although known to negatively impact tumor prognosis, research revealed the unexpected role of iron metabolism as a key regulator of CSCs. This review explores recent advances in iron metabolism in CSCs, conventional cancer therapies targeting iron biochemistry, therapeutic resistance in these cells, and potential treatment options that could overcome them. These findings provide important insights into therapeutic modalities against intractable cancers.
Collapse
Affiliation(s)
- Rong Yu
- Institute of Medical Imaging and Artificial Intelligence, Jiangsu University, Zhenjiang, 212001, China
| | - Yinhui Hang
- Department of Medical Imaging, The Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, China
| | - Hsiang-I Tsai
- Institute of Medical Imaging and Artificial Intelligence, Jiangsu University, Zhenjiang, 212001, China.
- Department of Medical Imaging, The Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, China.
| | - Dongqing Wang
- Institute of Medical Imaging and Artificial Intelligence, Jiangsu University, Zhenjiang, 212001, China.
- Department of Medical Imaging, The Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, China.
| | - Haitao Zhu
- Institute of Medical Imaging and Artificial Intelligence, Jiangsu University, Zhenjiang, 212001, China.
- Department of Medical Imaging, The Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, China.
| |
Collapse
|
16
|
Yang K, Yi T. Tumor cell stemness in gastrointestinal cancer: regulation and targeted therapy. Front Mol Biosci 2024; 10:1297611. [PMID: 38455361 PMCID: PMC10918437 DOI: 10.3389/fmolb.2023.1297611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 11/14/2023] [Indexed: 03/09/2024] Open
Abstract
The cancer stem cells are a rare group of self-renewable cancer cells capable of the initiation, progression, metastasis and recurrence of tumors, and also a key contributor to the therapeutic resistance. Thus, understanding the molecular mechanism of tumor stemness regulation, especially in the gastrointestinal (GI) cancers, is of great importance for targeting CSC and designing novel therapeutic strategies. This review aims to elucidate current advancements in the understanding of CSC regulation, including CSC biomarkers, signaling pathways, and non-coding RNAs. We will also provide a comprehensive view on how the tumor microenvironment (TME) display an overall tumor-promoting effect, including the recruitment and impact of cancer-associated fibroblasts (CAFs), the establishment of an immunosuppressive milieu, and the induction of angiogenesis and hypoxia. Lastly, this review consolidates mainstream novel therapeutic interventions targeting CSC stemness regulation.
Collapse
Affiliation(s)
- Kangqi Yang
- School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Tuo Yi
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
17
|
Jumaniyazova E, Lokhonina A, Dzhalilova D, Kosyreva A, Fatkhudinov T. Role of Microenvironmental Components in Head and Neck Squamous Cell Carcinoma. J Pers Med 2023; 13:1616. [PMID: 38003931 PMCID: PMC10672525 DOI: 10.3390/jpm13111616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 11/04/2023] [Accepted: 11/15/2023] [Indexed: 11/26/2023] Open
Abstract
Head and neck squamous cell cancer (HNSCC) is one of the ten most common malignant neoplasms, characterized by an aggressive course, high recurrence rate, poor response to treatment, and low survival rate. This creates the need for a deeper understanding of the mechanisms of the pathogenesis of this cancer. The tumor microenvironment (TME) of HNSCC consists of stromal and immune cells, blood and lymphatic vessels, and extracellular matrix. It is known that HNSCC is characterized by complex relationships between cancer cells and TME components. TME components and their dynamic interactions with cancer cells enhance tumor adaptation to the environment, which provides the highly aggressive potential of HNSCC and resistance to antitumor therapy. Basic research aimed at studying the role of TME components in HNSCC carcinogenesis may serve as a key to the discovery of both new biomarkers-predictors of prognosis and targets for new antitumor drugs. This review article focuses on the role and interaction with cancer of TME components such as newly formed vessels, cancer-associated fibroblasts, and extracellular matrix.
Collapse
Affiliation(s)
- Enar Jumaniyazova
- Research Institute of Molecular and Cellular Medicine, Peoples’ Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya Street, 117198 Moscow, Russia; (A.L.); (A.K.); (T.F.)
| | - Anastasiya Lokhonina
- Research Institute of Molecular and Cellular Medicine, Peoples’ Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya Street, 117198 Moscow, Russia; (A.L.); (A.K.); (T.F.)
- Avtsyn Research Institute of Human Morphology of FSBSI Petrovsky National Research Centre of Surgery, 3 Tsyurupy Street, 117418 Moscow, Russia
- National Medical Research Center for Obstetrics, Gynecology and Perinatology Named after Academician V.I. Kulakov of Ministry of Healthcare of Russian Federation, 4 Oparina Street, 117997 Moscow, Russia
| | - Dzhuliia Dzhalilova
- Research Institute of Molecular and Cellular Medicine, Peoples’ Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya Street, 117198 Moscow, Russia; (A.L.); (A.K.); (T.F.)
- Avtsyn Research Institute of Human Morphology of FSBSI Petrovsky National Research Centre of Surgery, 3 Tsyurupy Street, 117418 Moscow, Russia
| | - Anna Kosyreva
- Research Institute of Molecular and Cellular Medicine, Peoples’ Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya Street, 117198 Moscow, Russia; (A.L.); (A.K.); (T.F.)
- Avtsyn Research Institute of Human Morphology of FSBSI Petrovsky National Research Centre of Surgery, 3 Tsyurupy Street, 117418 Moscow, Russia
| | - Timur Fatkhudinov
- Research Institute of Molecular and Cellular Medicine, Peoples’ Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya Street, 117198 Moscow, Russia; (A.L.); (A.K.); (T.F.)
- Avtsyn Research Institute of Human Morphology of FSBSI Petrovsky National Research Centre of Surgery, 3 Tsyurupy Street, 117418 Moscow, Russia
| |
Collapse
|
18
|
Lu Y, Chen Q, Zhu S, Gong X. Hypoxia promotes immune escape of pancreatic cancer cells by lncRNA NNT-AS1/METTL3-HuR-mediated ITGB1 m 6A modification. Exp Cell Res 2023; 432:113764. [PMID: 37659467 DOI: 10.1016/j.yexcr.2023.113764] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 08/28/2023] [Accepted: 08/30/2023] [Indexed: 09/04/2023]
Abstract
Pancreatic cancer (PC) cell immune escape is a crucial element in PC malignant development. Some previous studies have reported that LncRNA NNT-AS1 played a carcinogenic role in various tumors. However, the effect of lncRNA NNT-AS1 in PC cell immune escape remains unclear. To evaluate PC cell immune escape, PC cells were co-cultured with CD8+ T cells under a hypoxic condition. PC cell proliferation and migration were evaluated using the colony formation assay and transwell assay. CD8+ T cell proliferation and aoptosis were measured using the carboxy fluorescein diacetate succinimidyl ester (CFSE) assay and flow cytometry. The secretion of antitumor cytokines was assessed using enzyme-linked immunosorbent assay (ELISA). The molecular interactions were analyzed using chromatin immunoprecipitation (ChIP), RNA immunoprecipitation (RIP), or dual-luciferase reporter gene assays. A tumor xenograft model was established to evaluate the effects of lncRNA NNT-AS1 on PC in vivo. It was found that lncRNA NNT-AS1 was highly expressed in PC, and its silencing inhibited hypoxia-induced PC cell growth and immune escape in vivo and in vitro. Mechanically, HIF-1α transcriptionally activated NNT-AS1 expression and NNT-AS1 increased ITGB1 stability and expression in a METTL3-HuR dependent manner. ITGB1 overexpression reversed the inhibitory effects of NNT-AS1 knockdown on hypoxia-induced PC cell immune escape. In conclusion, Hypoxia promoted PC cell immune escape through lncRNA NNT-AS1/METTL3-HuR-mediated m6A modification to increase ITGB1 expression, which provided a theoretical foundation and a potential therapeutic target for PC.
Collapse
Affiliation(s)
- Yebin Lu
- Pancreas Surgery, Xiangya Hospital, Central South University, Changsha, 410008, Hunan Province, China
| | - Qizhen Chen
- Pancreas Surgery, Xiangya Hospital, Central South University, Changsha, 410008, Hunan Province, China
| | - Shuai Zhu
- Pancreas Surgery, Xiangya Hospital, Central South University, Changsha, 410008, Hunan Province, China
| | - Xuejun Gong
- Pancreas Surgery, Xiangya Hospital, Central South University, Changsha, 410008, Hunan Province, China.
| |
Collapse
|
19
|
Tang OY, Binder ZA, O'Rourke DM, Bagley SJ. Optimizing CAR-T Therapy for Glioblastoma. Mol Diagn Ther 2023; 27:643-660. [PMID: 37700186 DOI: 10.1007/s40291-023-00671-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/14/2023] [Indexed: 09/14/2023]
Abstract
Chimeric antigen receptor T-cell therapies have transformed the management of hematologic malignancies but have not yet demonstrated consistent efficacy in solid tumors. Glioblastoma is the most common primary malignant brain tumor in adults and remains a major unmet medical need. Attempts at harnessing the potential of chimeric antigen receptor T-cell therapy for glioblastoma have resulted in glimpses of promise but have been met with substantial challenges. In this focused review, we discuss current and future strategies being developed to optimize chimeric antigen receptor T cells for efficacy in patients with glioblastoma, including the identification and characterization of new target antigens, reversal of T-cell dysfunction with novel chimeric antigen receptor constructs, regulatable platforms, and gene knockout strategies, and the use of combination therapies to overcome the immune-hostile microenvironment.
Collapse
Affiliation(s)
- Oliver Y Tang
- Warren Alpert Medical School, Brown University, Providence, RI, 02903, USA
| | - Zev A Binder
- Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Donald M O'Rourke
- Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Stephen J Bagley
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, 3400 Civic Center Blvd, Philadelphia, PA, 19104, USA.
| |
Collapse
|
20
|
Chakraborty S, Mukherjee S, Basak U, Pati S, Dutta A, Dutta S, Dhar S, Sarkar T, Guin A, Sa G, Das T. Immune evasion by cancer stem cells ensures tumor initiation and failure of immunotherapy. EXPLORATION OF IMMUNOLOGY 2023:384-405. [DOI: 10.37349/ei.2023.00108] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 06/12/2023] [Indexed: 01/04/2025]
Abstract
Cancer stem cells (CSCs) are a small subpopulation of cells that drive the formation and progression of tumors. However, during tumor initiation, how CSCs communicate with neighbouring immune cells to overcome the powerful immune surveillance barrier in order to form, spread, and maintain the tumor, remains poorly understood. It is, therefore, absolutely necessary to understand how a small number of tumor-initiating cells (TICs) survive immune attack during (a) the “elimination phase” of “tumor immune-editing”, (b) the establishment of regional or distant tumor after metastasis, and (c) recurrence after therapy. Mounting evidence suggests that CSCs suppress the immune system through a variety of distinct mechanisms that ensure the survival of not only CSCs but also non-stem cancer cells (NSCCs), which eventually form the tumor mass. In this review article, the mechanisms via which CSCs change the immune landscape of the tissue of origin, which contains macrophages, dendritic cells (DCs), myeloid-derived suppressor cells (MDSCs), natural killer (NK) cells, and tumor-infiltrating lymphocytes, in favour of tumorigenesis were discussed. The failure of cancer immunotherapy might also be explained by such interaction between CSCs and immune cells. This review will shed light on the critical role of CSCs in tumor immune evasion and emphasize the importance of CSC-targeted immunotherapy as a cutting-edge technique for battling cancer by restricting communication between immune cells and CSCs.
Collapse
Affiliation(s)
- Sourio Chakraborty
- Division of Molecular Medicine, Bose Institute, P-1/12, Calcutta Improvement Trust Scheme VII M, Kolkata 700054, India
| | - Sumon Mukherjee
- Division of Molecular Medicine, Bose Institute, P-1/12, Calcutta Improvement Trust Scheme VII M, Kolkata 700054, India
| | - Udit Basak
- Division of Molecular Medicine, Bose Institute, P-1/12, Calcutta Improvement Trust Scheme VII M, Kolkata 700054, India
| | - Subhadip Pati
- Division of Molecular Medicine, Bose Institute, P-1/12, Calcutta Improvement Trust Scheme VII M, Kolkata 700054, India
| | - Apratim Dutta
- Division of Molecular Medicine, Bose Institute, P-1/12, Calcutta Improvement Trust Scheme VII M, Kolkata 700054, India
| | - Saikat Dutta
- Division of Molecular Medicine, Bose Institute, P-1/12, Calcutta Improvement Trust Scheme VII M, Kolkata 700054, India
| | - Subhanki Dhar
- Division of Molecular Medicine, Bose Institute, P-1/12, Calcutta Improvement Trust Scheme VII M, Kolkata 700054, India
| | - Tania Sarkar
- Division of Molecular Medicine, Bose Institute, P-1/12, Calcutta Improvement Trust Scheme VII M, Kolkata 700054, India
| | - Aharna Guin
- Division of Molecular Medicine, Bose Institute, P-1/12, Calcutta Improvement Trust Scheme VII M, Kolkata 700054, India
| | - Gaurisankar Sa
- Division of Molecular Medicine, Bose Institute, P-1/12, Calcutta Improvement Trust Scheme VII M, Kolkata 700054, India
| | - Tanya Das
- Division of Molecular Medicine, Bose Institute, P-1/12, Calcutta Improvement Trust Scheme VII M, Kolkata 700054, India
| |
Collapse
|
21
|
Sun H, Zhang H, Jing L, Zhao H, Chen B, Song W. FBP1 is a potential prognostic biomarker and correlated with tumor immunosuppressive microenvironment in glioblastoma. Neurosurg Rev 2023; 46:187. [PMID: 37507483 DOI: 10.1007/s10143-023-02097-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 07/10/2023] [Accepted: 07/22/2023] [Indexed: 07/30/2023]
Abstract
Hypoxia has been shown to contribute to tumor immunosuppressive microenvironment and is an effective prognostic indicator. This study aimed to screen prognostic hypoxia-related genes (HRGs) in glioblastoma and investigate the association between HRGs and tumor immunosuppressive microenvironment. The glioblastoma-related mRNA data were collected from TCGA, GEO, and CGGA databases. Totally 200 HRGs were obtained from the GSEA website. The prognostic HRGs were screened by univariate Cox regression analysis. Somatic mutation data of glioblastoma from TCGA was visualized using the "maftools" of R package. Immune cell infiltration proportions were calculated by CIBERSORT. The TISIDB online tool was applied to analyze the relationship between HRGs and immunoinhibitors as well as the HRG expression in different glioblastoma immune and molecular subtypes. Hub gene's mRNA and protein levels in cell lines were determined by qRT-PCR and western blot, respectively. The effects of hub gene knockdown on cell viability and migration ability were evaluated employing CCK8 and wound healing assays. The univariate Cox regression showed that high level of FBP1 (fructose-1,6-bisphosphatase 1) was a poor prognostic biomarker, and FBP1 was mainly expressed in lymphocyte depleted immune subtype of glioblastoma. High FBP1 mRNA and protein levels have been successfully validated in vitro. The somatic mutation analysis suggested that TP53 mutation rate was the highest in the high FBP1 glioblastoma group, while EGFR mutation rate was the highest in the low FBP1 glioblastoma group. In the high FBP1 group, the infiltration proportions and types of immune cells were less, dominated by macrophages M2, and the expression of CTLA4, LAG3, TIGIT, PDL1, and PDL2 was significantly upregulated. The expression of FBP1 was positively correlated with several immunoinhibitors, such as IL-10 and TGFβ-1. In conclusion, we demonstrated that FBP1 could serve as a prognostic biomarker for glioblastoma. The immune microenvironment in the high FBP1 group might be suppressed by up-regulating immune checkpoints and immunoinhibitors.
Collapse
Affiliation(s)
- Hu Sun
- Department of Neurosurgery, Zibo Central Hospital, 255000 Zibo, Shandong, China
| | - Hui Zhang
- Department of Cardiology, Zibo Central Hospital, 255000 Zibo, Shandong, China
| | - Lijie Jing
- Department of Neurosurgery, Zibo Central Hospital, 255000 Zibo, Shandong, China
| | - Hao Zhao
- Department of Neurosurgery, Zibo Central Hospital, 255000 Zibo, Shandong, China
| | - Bing Chen
- Department of Neurosurgery, The Affiliated Hospital of Qingdao University, No. 1677 Wutaishan Road, Huangdao District, Qingdao, 266000, Shandong, China.
| | - Wei Song
- Department of Breast and Thyroid Surgery, Zibo Central Hospital, No. 54 Gongqingtuan West Road, 255000 Zibo, Qingdao, Shandong, China.
| |
Collapse
|
22
|
Rafii S, Kandoussi S, Ghouzlani A, Naji O, Reddy KP, Ullah Sadiqi R, Badou A. Deciphering immune microenvironment and cell evasion mechanisms in human gliomas. Front Oncol 2023; 13:1135430. [PMID: 37274252 PMCID: PMC10235598 DOI: 10.3389/fonc.2023.1135430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 05/04/2023] [Indexed: 06/06/2023] Open
Abstract
Gliomas are considered one of the most malignant cancers in the body. Despite current therapies, including surgery, chemotherapy, and radiotherapy, these tumors usually recur with more aggressive and resistant phenotypes. Indeed, the survival following these conventional therapies is very poor, which makes immunotherapy the subject of active research at present. The anti-tumor immune response could also be considered a prognostic factor since each stage of cancer development is regulated by immune cells. However, glioma microenvironment contains malignant cells that secrete numerous chemokines, cytokines and growth factors, promoting the infiltration of immunosuppressive cells into the tumor, which limit the functioning of the immune system against glioma cells. Recently, researchers have been able to reverse the immune resistance of cancer cells and thus activate the anti-tumor immune response through different immunotherapy strategies. Here, we review the general concept of glioma's immune microenvironment and report the impact of its distinct components on the anti-tumor immune response. We also discuss the mechanisms of glioma cell evasion from the immune response and pinpoint some potential therapeutic pathways, which could alleviate such resistance.
Collapse
Affiliation(s)
- Soumaya Rafii
- Immuno-Genetics and Human Pathologies Laboratory, Faculty of Medicine and Pharmacy, Hassan II University, Casablanca, Morocco
| | - Sarah Kandoussi
- Immuno-Genetics and Human Pathologies Laboratory, Faculty of Medicine and Pharmacy, Hassan II University, Casablanca, Morocco
| | - Amina Ghouzlani
- Immuno-Genetics and Human Pathologies Laboratory, Faculty of Medicine and Pharmacy, Hassan II University, Casablanca, Morocco
| | - Oumayma Naji
- Immuno-Genetics and Human Pathologies Laboratory, Faculty of Medicine and Pharmacy, Hassan II University, Casablanca, Morocco
| | | | - Rizwan Ullah Sadiqi
- Faculty of Science and Technology, Middlesex University, London, United Kingdom
| | - Abdallah Badou
- Immuno-Genetics and Human Pathologies Laboratory, Faculty of Medicine and Pharmacy, Hassan II University, Casablanca, Morocco
- Mohammed VI Center for Research and Innovation, Rabat, Morocco and Mohammed VI University of Sciences and Health, Casablanca, Morocco
| |
Collapse
|
23
|
Duerinck J, Tuyaerts S, Movahedi K, Neyns B. Overcoming the immune suppressive nature of glioblastoma by leveraging the surgical intervention - current status and future perspectives. Front Immunol 2023; 14:1183641. [PMID: 37275902 PMCID: PMC10237336 DOI: 10.3389/fimmu.2023.1183641] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 05/08/2023] [Indexed: 06/07/2023] Open
Abstract
Despite relentless efforts to improve outcome, the prognosis of glioblastoma (GBM) remains poor. Standard therapy at first diagnosis consists of maximal safe surgical resection followed by radiochemotherapy, but treatment options at recurrence are scarce and have limited efficacy. Immunotherapy is a broad term that covers several treatment strategies, including immune checkpoint inhibition (ICI). The successes of systemically administered therapeutic monoclonal antibodies that block the Programmed death receptor or ligand (PD-(L)1) and Cytotoxic T-Lymphocyte associated protein (CTLA)-4 immune checkpoints in other cancer types could not be reproduced in glioblastoma. This is considered to be related to the intrinsic low immunogenicity and strong immunosuppressive tumor microenvironment of glioblastoma, in addition to the presence of a blood-glioma and blood-brain barrier that limits many systemically administered therapeutic agents from reaching their target. In this mini-review, we address the specific aspects of immune suppression in glioblastoma and discuss potential strategies that could help to overcome it. The potential advantages of incorporating surgical resection in clinical trials of immunotherapy for glioblastoma, including window-of-opportunity studies, are highlighted. Combination strategies that include surgical resection, as well as local administration of therapeutic agents in the brain are discussed as a potential strategy to achieve an effective immunological response against glioblastoma.
Collapse
Affiliation(s)
- Johnny Duerinck
- Department of Neurosurgery, Universitair Ziekenhuis Brussel (UZ Brussels), Brussels, Belgium
- C4N - Center for Neurosciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Sandra Tuyaerts
- Laboratory for Medical & Molecular Oncology (LMMO), Vrije Universiteit Brussel, Brussels, Belgium
- Department of Medical Oncology, Universitair Ziekenhuis Brussel (UZ Brussels), Brussels, Belgium
| | - Kiavash Movahedi
- Laboratory for Molecular and Cellular Therapy (LMCT), Vrije Universiteit Brussel, Brussels, Belgium
| | - Bart Neyns
- Laboratory for Medical & Molecular Oncology (LMMO), Vrije Universiteit Brussel, Brussels, Belgium
- Department of Medical Oncology, Universitair Ziekenhuis Brussel (UZ Brussels), Brussels, Belgium
| |
Collapse
|
24
|
Thomas JA, Gireesh Moly AG, Xavier H, Suboj P, Ladha A, Gupta G, Singh SK, Palit P, Babykutty S. Enhancement of immune surveillance in breast cancer by targeting hypoxic tumor endothelium: Can it be an immunological switch point? Front Oncol 2023; 13:1063051. [PMID: 37056346 PMCID: PMC10088512 DOI: 10.3389/fonc.2023.1063051] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 02/17/2023] [Indexed: 03/30/2023] Open
Abstract
Breast cancer ranks second among the causes of cancer-related deaths in women. In spite of the recent advances achieved in the diagnosis and treatment of breast cancer, further study is required to overcome the risk of cancer resistance to treatment and thereby improve the prognosis of individuals with advanced-stage breast cancer. The existence of a hypoxic microenvironment is a well-known event in the development of mutagenesis and rapid proliferation of cancer cells. Tumor cells, purposefully cause local hypoxia in order to induce angiogenesis and growth factors that promote tumor growth and metastatic characteristics, while healthy tissue surrounding the tumor suffers damage or mutate. It has been found that these settings with low oxygen levels cause immunosuppression and a lack of immune surveillance by reducing the activation and recruitment of tumor infiltrating leukocytes (TILs). The immune system is further suppressed by hypoxic tumor endothelium through a variety of ways, which creates an immunosuppressive milieu in the tumor microenvironment. Non responsiveness of tumor endothelium to inflammatory signals or endothelial anergy exclude effector T cells from the tumor milieu. Expression of endothelial specific antigens and immunoinhibitory molecules like Programmed death ligand 1,2 (PDL-1, 2) and T cell immunoglobulin and mucin-domain containing-3 (TIM-3) by tumor endothelium adds fuel to the fire by inhibiting T lymphocytes while promoting regulatory T cells. The hypoxic microenvironment in turn recruits Myeloid Derived Suppressor Cells (MDSCs), Tumor Associated Macrophages (TAMs) and T regulatory cells (Treg). The structure and function of newly generated blood vessels within tumors, on the other hand, are aberrant, lacking the specific organization of normal tissue vasculature. Vascular normalisation may work for a variety of tumour types and show to be an advantageous complement to immunotherapy for improving tumour access. By enhancing immune response in the hypoxic tumor microenvironment, via immune-herbal therapeutic and immune-nutraceuticals based approaches that leverage immunological evasion of tumor, will be briefly reviewed in this article. Whether these tactics may be the game changer for emerging immunological switch point to attenuate the breast cancer growth and prevent metastatic cell division, is the key concern of the current study.
Collapse
Affiliation(s)
- Juvin Ann Thomas
- Centre for Tumor Immunology and Microenvironment, Department of Zoology, Mar Ivanios College, Nalanchira, Thiruvananthapuram, Kerala, India
| | - Athira Gireesh Gireesh Moly
- Centre for Tumor Immunology and Microenvironment, Department of Zoology, Mar Ivanios College, Nalanchira, Thiruvananthapuram, Kerala, India
| | - Hima Xavier
- Centre for Tumor Immunology and Microenvironment, Department of Zoology, Mar Ivanios College, Nalanchira, Thiruvananthapuram, Kerala, India
| | - Priya Suboj
- Department of Botany and Biotechnology, St. Xaviers College, Thumba, Thiruvananthapuram, Kerala, India
| | - Amit Ladha
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, West-Midlands, United Kingdom
| | - Gaurav Gupta
- Department of Immunology, University of Manitoba, Winnipeg, MB, Canada
| | - Santosh Kumar Singh
- Centre of Experimental Medicine and Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Partha Palit
- Drug Discovery Research Laboratory, Assam University, Silchar, Department of Pharmaceutical Sciences, Assam, India
| | - Suboj Babykutty
- Centre for Tumor Immunology and Microenvironment, Department of Zoology, Mar Ivanios College, Nalanchira, Thiruvananthapuram, Kerala, India
| |
Collapse
|
25
|
The Tumor Immune Microenvironment in Primary CNS Neoplasms: A Review of Current Knowledge and Therapeutic Approaches. Int J Mol Sci 2023; 24:ijms24032020. [PMID: 36768342 PMCID: PMC9917056 DOI: 10.3390/ijms24032020] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 01/10/2023] [Accepted: 01/17/2023] [Indexed: 01/21/2023] Open
Abstract
Primary CNS neoplasms are responsible for considerable mortality and morbidity, and many therapies directed at primary brain tumors have proven unsuccessful despite their success in preclinical studies. Recently, the tumor immune microenvironment has emerged as a critical aspect of primary CNS neoplasms that may affect their malignancy, prognosis, and response to therapy across patients and tumor grades. This review covers the tumor microenvironment of various primary CNS neoplasms, with a focus on glioblastoma and meningioma. Additionally, current therapeutic strategies based on elements of the tumor microenvironment, including checkpoint inhibitor therapy and immunotherapeutic vaccines, are discussed.
Collapse
|
26
|
Epigenetics and Metabolism Reprogramming Interplay into Glioblastoma: Novel Insights on Immunosuppressive Mechanisms. Antioxidants (Basel) 2023; 12:antiox12020220. [PMID: 36829778 PMCID: PMC9952003 DOI: 10.3390/antiox12020220] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 01/09/2023] [Accepted: 01/16/2023] [Indexed: 01/19/2023] Open
Abstract
The central nervous system represents a complex environment in which glioblastoma adapts skillfully, unleashing a series of mechanisms suitable for its efficient development and diffusion. In particular, changes in gene expression and mutational events that fall within the domain of epigenetics interact complexly with metabolic reprogramming and stress responses enacted in the tumor microenvironment, which in turn fuel genomic instability by providing substrates for DNA modifications. The aim of this review is to analyze this complex interaction that consolidates several conditions that confer a state of immunosuppression and immunoevasion, making glioblastoma capable of escaping attack and elimination by immune cells and therefore invincible against current therapies. The progressive knowledge of the cellular mechanisms that underlie the resistance of the glioblastoma represents, in fact, the only weapon to unmask its weak points to be exploited to plan successful therapeutic strategies.
Collapse
|
27
|
The Role of Cellular Immunity and Adaptive Immunity in Pathophysiology of Brain and Spinal Cord Tumors. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1394:51-72. [PMID: 36587381 DOI: 10.1007/978-3-031-14732-6_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Major advances have been made in our understanding of CNS tumors, especially glioma, however, the survival of patients with malignant glioma remains poor. While radiation and chemotherapy have increased overall survival, glioblastoma multiforme (GBM) still has one of the worst 5-year survival rates of all human cancers. Here, in this chapter, the authors review the abrogation of the immune system in the tumor setting, revealing many plausible targets for therapy and the current immunotherapy treatment strategies employed. Notably, glioma has also been characterized as a subset of primary spinal cord tumor and current treatment recommendations are outlined here.
Collapse
|
28
|
Medina S, Ihrie RA, Irish JM. Learning cell identity in immunology, neuroscience, and cancer. Semin Immunopathol 2023; 45:3-16. [PMID: 36534139 PMCID: PMC9762661 DOI: 10.1007/s00281-022-00976-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 11/19/2022] [Indexed: 12/23/2022]
Abstract
Suspension and imaging cytometry techniques that simultaneously measure hundreds of cellular features are powering a new era of cell biology and transforming our understanding of human tissues and tumors. However, a central challenge remains in learning the identities of unexpected or novel cell types. Cell identification rubrics that could assist trainees, whether human or machine, are not always rigorously defined, vary greatly by field, and differentially rely on cell intrinsic measurements, cell extrinsic tissue measurements, or external contextual information such as clinical outcomes. This challenge is especially acute in the context of tumors, where cells aberrantly express developmental programs that are normally time, location, or cell-type restricted. Well-established fields have contrasting practices for cell identity that have emerged from convention and convenience as much as design. For example, early immunology focused on identifying minimal sets of protein features that mark individual, functionally distinct cells. In neuroscience, features including morphology, development, and anatomical location were typical starting points for defining cell types. Both immunology and neuroscience now aim to link standardized measurements of protein or RNA to informative cell functions such as electrophysiology, connectivity, lineage potential, phospho-protein signaling, cell suppression, and tumor cell killing ability. The expansion of automated, machine-driven methods for learning cell identity has further created an urgent need for a harmonized framework for distinguishing cell identity across fields and technology platforms. Here, we compare practices in the fields of immunology and neuroscience, highlight concepts from each that might work well in the other, and propose ways to implement these ideas to study neural and immune cell interactions in brain tumors and associated model systems.
Collapse
Affiliation(s)
- Stephanie Medina
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN, USA
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Rebecca A Ihrie
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN, USA
- Department of Neurological Surgery, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Jonathan M Irish
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN, USA.
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA.
- Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, USA.
| |
Collapse
|
29
|
Aggarwal P, Luo W, Pehlivan KC, Hoang H, Rajappa P, Cripe TP, Cassady KA, Lee DA, Cairo MS. Pediatric versus adult high grade glioma: Immunotherapeutic and genomic considerations. Front Immunol 2022; 13:1038096. [PMID: 36483545 PMCID: PMC9722734 DOI: 10.3389/fimmu.2022.1038096] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 11/07/2022] [Indexed: 11/23/2022] Open
Abstract
High grade gliomas are identified as malignant central nervous tumors that spread rapidly and have a universally poor prognosis. Historically high grade gliomas in the pediatric population have been treated similarly to adult high grade gliomas. For the first time, the most recent classification of central nervous system tumors by World Health Organization has divided adult from pediatric type diffuse high grade gliomas, underscoring the biologic differences between these tumors in different age groups. The objective of our review is to compare high grade gliomas in the adult versus pediatric patient populations, highlighting similarities and differences in epidemiology, etiology, pathogenesis and therapeutic approaches. High grade gliomas in adults versus children have varying clinical presentations, molecular biology background, and response to chemotherapy, as well as unique molecular targets. However, increasing evidence show that they both respond to recently developed immunotherapies. This review summarizes the distinctions and commonalities between the two in disease pathogenesis and response to therapeutic interventions with a focus on immunotherapy.
Collapse
Affiliation(s)
- Payal Aggarwal
- Department of Pediatrics, New York Medical College, Valhalla, NY, United States
| | - Wen Luo
- Department of Pediatrics, New York Medical College, Valhalla, NY, United States,Department of Pathology, Microbiology and Immunology, New York Medical College, Valhalla, NY, United States
| | | | - Hai Hoang
- Department of Pediatrics, New York Medical College, Valhalla, NY, United States
| | - Prajwal Rajappa
- Center for Childhood Cancer Research, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH, United States
| | - Timothy P. Cripe
- Center for Childhood Cancer Research, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH, United States
| | - Kevin A. Cassady
- Center for Childhood Cancer Research, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH, United States
| | - Dean A. Lee
- Center for Childhood Cancer Research, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH, United States
| | - Mitchell S. Cairo
- Department of Pediatrics, New York Medical College, Valhalla, NY, United States,Department of Pathology, Microbiology and Immunology, New York Medical College, Valhalla, NY, United States,Department of Medicine, New York Medical College, Valhalla, NY, United States,Department of Cell Biology and Anatomy, New York Medical College, Valhalla, NY, United States,*Correspondence: Mitchell S. Cairo,
| |
Collapse
|
30
|
Famta P, Shah S, Jain N, Shahrukh S, Bala Singh S, Srivastava S. Strategic combinatorial delivery of Tranilast and Paclitaxel using differently functionalized PLGA Nanoparticles for Enhanced penetration and Accumulation in Breast Tumor. Med Hypotheses 2022. [DOI: 10.1016/j.mehy.2022.110981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
31
|
Faisal SM, Comba A, Varela ML, Argento AE, Brumley E, Abel C, Castro MG, Lowenstein PR. The complex interactions between the cellular and non-cellular components of the brain tumor microenvironmental landscape and their therapeutic implications. Front Oncol 2022; 12:1005069. [PMID: 36276147 PMCID: PMC9583158 DOI: 10.3389/fonc.2022.1005069] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 09/20/2022] [Indexed: 11/26/2022] Open
Abstract
Glioblastoma (GBM), an aggressive high-grade glial tumor, is resistant to therapy and has a poor prognosis due to its universal recurrence rate. GBM cells interact with the non-cellular components in the tumor microenvironment (TME), facilitating their rapid growth, evolution, and invasion into the normal brain. Herein we discuss the complexity of the interactions between the cellular and non-cellular components of the TME and advances in the field as a whole. While the stroma of non-central nervous system (CNS) tissues is abundant in fibrillary collagens, laminins, and fibronectin, the normal brain extracellular matrix (ECM) predominantly includes proteoglycans, glycoproteins, and glycosaminoglycans, with fibrillary components typically found only in association with the vasculature. However, recent studies have found that in GBMs, the microenvironment evolves into a more complex array of components, with upregulated collagen gene expression and aligned fibrillary ECM networks. The interactions of glioma cells with the ECM and the degradation of matrix barriers are crucial for both single-cell and collective invasion into neighboring brain tissue. ECM-regulated mechanisms also contribute to immune exclusion, resulting in a major challenge to immunotherapy delivery and efficacy. Glioma cells chemically and physically control the function of their environment, co-opting complex signaling networks for their own benefit, resulting in radio- and chemo-resistance, tumor recurrence, and cancer progression. Targeting these interactions is an attractive strategy for overcoming therapy resistance, and we will discuss recent advances in preclinical studies, current clinical trials, and potential future clinical applications. In this review, we also provide a comprehensive discussion of the complexities of the interconnected cellular and non-cellular components of the microenvironmental landscape of brain tumors to guide the development of safe and effective therapeutic strategies against brain cancer.
Collapse
Affiliation(s)
- Syed M. Faisal
- Dept. of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI, United States
- Dept. of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, United States
- Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Andrea Comba
- Dept. of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI, United States
- Dept. of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, United States
- Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Maria L. Varela
- Dept. of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI, United States
- Dept. of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, United States
- Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Anna E. Argento
- Dept. of Biomedical Engineering, University of Michigan, Ann Arbor, MI, United States
| | - Emily Brumley
- Dept. of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI, United States
- Dept. of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, United States
- Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Clifford Abel
- Dept. of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI, United States
- Dept. of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, United States
- Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Maria G. Castro
- Dept. of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI, United States
- Dept. of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, United States
- Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Pedro R. Lowenstein
- Dept. of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI, United States
- Dept. of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, United States
- Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI, United States
- Dept. of Biomedical Engineering, University of Michigan, Ann Arbor, MI, United States
- *Correspondence: Pedro R. Lowenstein,
| |
Collapse
|
32
|
Chatterjee A, Asija S, Yadav S, Purwar R, Goda JS. Clinical utility of CAR T cell therapy in brain tumors: Lessons learned from the past, current evidence and the future stakes. Int Rev Immunol 2022; 41:606-624. [PMID: 36191126 DOI: 10.1080/08830185.2022.2125963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2022]
Abstract
The unprecedented clinical success of Chimeric Antigen Receptor (CAR) T cell therapy in hematological malignancies has led researchers to study its role in solid tumors. Although, its utility in solid tumors especially in neuroblastoma has begun to emerge, preclinical studies of its efficacy in other solid tumors like osteosarcomas or gliomas has caught the attention of oncologist to be tried in clinical trials. Malignant high-grade brain tumors like glioblastomas or midline gliomas in children represent some of the most difficult malignancies to be managed with conventionally available therapeutics, while relapsed gliomas continue to have the most dismal prognosis due to limited therapeutic options. Innovative therapies such as CAR T cells could give an additional leverage to the treating oncologists by potentially improving outcomes and ameliorating the toxicity of the currently available therapies. Moreover, CAR T cell therapy has the potential to be integrated into the therapeutic paradigm for aggressive gliomas in the near future. In this review we discuss the challenges in using CAR T cell therapy in brain tumors, enumerate the completed and ongoing clinical trials of different types of CAR T cell therapy for different brain tumors with special emphasis on glioblastoma and also discuss the future role of CAR T cells in Brain tumors.
Collapse
Affiliation(s)
- Abhishek Chatterjee
- Department of Radiation Oncology, ACTREC, Tata Memorial Centre, Navi Mumbai, India.,Homi Bhabha National Institute, Mumbai, India
| | - Sweety Asija
- Department of Biosciences & Bioengineering, Indian Institute of Technology, Mumbai, India
| | - Sandhya Yadav
- Department of Radiation Oncology, ACTREC, Tata Memorial Centre, Navi Mumbai, India.,Homi Bhabha National Institute, Mumbai, India
| | - Rahul Purwar
- Department of Biosciences & Bioengineering, Indian Institute of Technology, Mumbai, India
| | - Jayant S Goda
- Department of Radiation Oncology, ACTREC, Tata Memorial Centre, Navi Mumbai, India.,Homi Bhabha National Institute, Mumbai, India
| |
Collapse
|
33
|
Sansone G, Vivori N, Vivori C, Di Stefano AL, Picca A. Basic premises: searching for new targets and strategies in diffuse gliomas. Clin Transl Imaging 2022. [DOI: 10.1007/s40336-022-00507-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
34
|
Lee H, Bae K, Baek AR, Kwon EB, Kim YH, Nam SW, Lee GH, Chang Y. Glioblastoma-Derived Exosomes as Nanopharmaceutics for Improved Glioma Treatment. Pharmaceutics 2022; 14:pharmaceutics14051002. [PMID: 35631588 PMCID: PMC9145309 DOI: 10.3390/pharmaceutics14051002] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 04/20/2022] [Accepted: 04/28/2022] [Indexed: 01/27/2023] Open
Abstract
The use of cancer-derived exosomes has been studied in several cancer types, but the cancer-targeting efficacy of glioma-derived exosomes has not been investigated in depth for malignant glioblastoma (GBM) cells. In this study, exosomes were derived from U87MG human glioblastoma cells, and selumetinib, a new anticancer drug, was loaded into the exosomes. We observed the tropism of GBM-derived exosomes in vitro and in vivo. We found that the tropism of GBM-derived exosomes is in contrast to the behavior of non-exosome-enveloped drugs and non-GBM-specific exosomes in vitro and in vivo in an animal GBM model. We found that the tropism exhibited by GBM-derived exosomes can be utilized to shuttle selumetinib, with no specific targeting moiety, to GBM tumor sites. Therefore, our findings indicated that GBM-derived exosomes loaded with selumetinib had a specific antitumor effect on U87MG cells and were non-toxic to normal brain cells. These exosomes offer improved therapeutic prospects for glioblastoma therapy.
Collapse
Affiliation(s)
- Hyeji Lee
- Department of Medical Science, School of Medicine, Kyungpook National University, Daegu 41944, Korea; (H.L.); (K.B.)
| | - Kanghye Bae
- Department of Medical Science, School of Medicine, Kyungpook National University, Daegu 41944, Korea; (H.L.); (K.B.)
| | - Ah-Rum Baek
- Institute of Biomedical Engineering Research, Kyungpook National University, Daegu 41405, Korea;
| | - Eun-Bin Kwon
- Korean Medicine (KM) Application Center, Korea Institute of Oriental Medicine, Daegu 41062, Korea;
| | - Yeoun-Hee Kim
- R&D Center, Etnova Therapeutics Corp., 124, Sagimakgol-ro, Jungwon-gu, Seongnam-si 13207, Korea;
| | - Sung-Wook Nam
- Department of Molecular Medicine, School of Medicine, Kyungpook National University, Daegu 41944, Korea;
| | - Gang Ho Lee
- Department of Chemistry, College of Natural Sciences, Kyungpook National University, Daegu 41566, Korea;
| | - Yongmin Chang
- Department of Medical Science, School of Medicine, Kyungpook National University, Daegu 41944, Korea; (H.L.); (K.B.)
- Department of Molecular Medicine, School of Medicine, Kyungpook National University, Daegu 41944, Korea;
- Correspondence:
| |
Collapse
|
35
|
Gatto L, Di Nunno V, Franceschi E, Tosoni A, Bartolini S, Brandes AA. Pharmacotherapeutic Treatment of Glioblastoma: Where Are We to Date? Drugs 2022; 82:491-510. [PMID: 35397073 DOI: 10.1007/s40265-022-01702-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/08/2022] [Indexed: 12/30/2022]
Abstract
The clinical management of glioblastoma (GBM) is still bereft of treatments able to significantly improve the poor prognosis of the disease. Despite the extreme clinical need for novel therapeutic drugs, only a small percentage of patients with GBM benefit from inclusion in a clinical trial. Moreover, often clinical studies do not lead to final interpretable conclusions. From the mistakes and negative results obtained in the last years, we are now able to plan a novel generation of clinical studies for patients with GBM, allowing the testing of multiple anticancer agents at the same time. This assumes critical importance, considering that, thanks to improved knowledge of altered molecular mechanisms related to the disease, we are now able to propose several potential effective compounds in patients with both newly diagnosed and recurrent GBM. Among the novel compounds assessed, the initially great enthusiasm toward trials employing immune checkpoint inhibitors (ICIs) was disappointing due to the negative results that emerged in three randomized phase III trials. However, novel biological insights into the disease suggest that immunotherapy can be a convincing and effective treatment in GBM even if ICIs failed to prolong the survival of these patients. In this regard, the most promising approach consists of engineered immune cells such as chimeric antigen receptor (CAR) T, CAR M, and CAR NK alone or in combination with other treatments. In this review, we discuss several issues related to systemic treatments in GBM patients. First, we assess critical issues toward the planning of clinical trials and the strategies employed to overcome these obstacles. We then move on to the most relevant interventional studies carried out on patients with previously untreated (newly diagnosed) GBM and those with recurrent and pretreated disease. Finally, we investigate novel immunotherapeutic approaches with special emphasis on preclinical and clinical data related to the administration of engineered immune cells in GBM.
Collapse
Affiliation(s)
- Lidia Gatto
- Department of Oncology, AUSL Bologna, Bologna, Italy
| | | | - Enrico Franceschi
- Nervous System Medical Oncology Department, IRCCS Istituto delle Scienze Neurologiche di Bologna, Via Altura 3, Bologna, Italy.
| | - Alicia Tosoni
- Nervous System Medical Oncology Department, IRCCS Istituto delle Scienze Neurologiche di Bologna, Via Altura 3, Bologna, Italy
| | - Stefania Bartolini
- Nervous System Medical Oncology Department, IRCCS Istituto delle Scienze Neurologiche di Bologna, Via Altura 3, Bologna, Italy
| | - Alba Ariela Brandes
- Nervous System Medical Oncology Department, IRCCS Istituto delle Scienze Neurologiche di Bologna, Via Altura 3, Bologna, Italy
| |
Collapse
|
36
|
Immunotherapeutic Approaches for Glioblastoma Treatment. Biomedicines 2022; 10:biomedicines10020427. [PMID: 35203636 PMCID: PMC8962267 DOI: 10.3390/biomedicines10020427] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Revised: 02/05/2022] [Accepted: 02/08/2022] [Indexed: 11/17/2022] Open
Abstract
Glioblastoma remains a challenging disease to treat, despite well-established standard-of-care treatments, with a median survival consistently of less than 2 years. In this review, we delineate the unique disease-specific challenges for immunotherapies, both brain-related and non-brain-related, which will need to be adequately overcome for the development of effective treatments. We also review current immunotherapy treatments, with a focus on clinical applications, and propose future directions for the field of GBM immunotherapy.
Collapse
|
37
|
Shamshiripour P, Nikoobakht M, Mansourinejad Z, Ahmadvand D, Akbarpour M. A comprehensive update to DC therapy for glioma; a systematic review and meta-analysis. Expert Rev Vaccines 2022; 21:513-531. [DOI: 10.1080/14760584.2022.2027759] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Parisa Shamshiripour
- Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Department of medical imaging technology and molecular imaging, Iran University of Medical Sciences, Tehran, Iran
| | - Mehdi Nikoobakht
- Department of Neurosurgery, Iran University of Medical Sciences, Tehran, Iran
| | - zahra Mansourinejad
- Department of systems biology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Davoud Ahmadvand
- Department of medical imaging technology and molecular imaging, Iran University of Medical Sciences, Tehran, Iran
| | - Mahzad Akbarpour
- Advanced Cellular Therapeutics Facility, David and Etta Jonas Center for Cellular Therapy, Hematopoietic Cellular Therapy Program, The University of Chicago Medical Center, Chicago 60637 IL, USA
- Immunology Board for Transplantation and Cell-Based Therapeutics (Immuno-TACT), Universal Science and Education Research Network (USERN), Chicago, USA
| |
Collapse
|
38
|
Pediatric glioblastoma: mechanisms of immune evasion and potential therapeutic opportunities. Cancer Immunol Immunother 2022; 71:1813-1822. [PMID: 35020009 DOI: 10.1007/s00262-021-03131-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 12/09/2021] [Indexed: 12/13/2022]
Abstract
Pediatric glioblastoma is relatively rare compared with its adult counterpart but is associated with a similarly grim prognosis. Available data indicate that pediatric glioblastomas are molecularly distinct from adult tumors, and relatively little is known about the pediatric glioblastoma tumor microenvironment (TME). Cancer immunotherapy has emerged as a new pillar of cancer treatment and is revolutionizing the care of patients with many advanced solid tumors, including melanoma, non-small cell lung cancer, head and neck cancer, and renal cell carcinoma. Unfortunately, attempts to treat adult glioblastoma with current immunotherapies have had limited success to date. Nevertheless, the immune milieu in pediatric glioblastoma is distinct from that found in adult tumors, and evidence suggests that pediatric tumors are less immunosuppressive. As a result, immunotherapies should be specifically evaluated in the pediatric context. The purpose of this review is to explore known and emerging mechanisms of immune evasion in pediatric glioblastoma and highlight potential opportunities for implementing immunotherapy in the treatment of these devastating pediatric brain tumors.
Collapse
|
39
|
Using chimeric antigen receptor T-cell therapy to fight glioblastoma multiforme: past, present and future developments. J Neurooncol 2021; 156:81-96. [PMID: 34825292 PMCID: PMC8714623 DOI: 10.1007/s11060-021-03902-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Accepted: 11/12/2021] [Indexed: 12/19/2022]
Abstract
Introduction Glioblastoma multiforme (GBM) constitutes one of the deadliest tumors to afflict humans, although it is still considered an orphan disease. Despite testing multiple new and innovative therapies in ongoing clinical trials, the median survival for this type of malignancy is less than two years after initial diagnosis, regardless of therapy. One class of promising new therapies are chimeric antigen receptor T cells or CAR-T which have been shown to be very effective at treating refractory liquid tumors such as B-cell malignancies. However, CAR-T effectivity against solid tumors such as GBM has been limited thus far. Methods A Pubmed, Google Scholar, Directory of Open Access Journals, and Web of Science literature search using the terms chimeric antigen receptor or CAR-T, GBM, solid tumor immunotherapy, immunotherapy, and CAR-T combination was performed for publication dates between January 1987 and November 2021. Results In the current review, we present a comprehensive list of CAR-T cells developed to treat GBM, we describe new possible T-cell engineering strategies against GBM while presenting a short introductory history to the reader regarding the origin(s) of this cutting-edge therapy. We have also compiled a unique list of anti-GBM CAR-Ts with their specific protein sequences and their functions as well as an inventory of clinical trials involving CAR-T and GBM. Conclusions The aim of this review is to introduce the reader to the field of T-cell engineering using CAR-Ts to treat GBM and describe the obstacles that may need to be addressed in order to significantly delay the relentless growth of GBM. Supplementary Information The online version contains supplementary material available at 10.1007/s11060-021-03902-8.
Collapse
|
40
|
Abstract
Glioblastoma has emerged as an immunotherapy-refractory tumor based on negative phase III studies of anti-programmed cell death-1 therapy among newly diagnosed as well as recurrent patients. In addition, although much work on vaccine and cellular approaches is ongoing, therapeutic benefit with these approaches has been underwhelming. Much scientific insight into the multitiered layers of immunosuppression exploited by glioblastoma tumors is emerging that sheds light on the explanation for the disappointing results to date and highlights possible therapeutic avenues that may offer a better likelihood of therapeutic benefit for immune-based therapies.
Collapse
|
41
|
Himes BT, Geiger PA, Ayasoufi K, Bhargav AG, Brown DA, Parney IF. Immunosuppression in Glioblastoma: Current Understanding and Therapeutic Implications. Front Oncol 2021; 11:770561. [PMID: 34778089 PMCID: PMC8581618 DOI: 10.3389/fonc.2021.770561] [Citation(s) in RCA: 99] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Accepted: 09/24/2021] [Indexed: 12/12/2022] Open
Abstract
Glioblastoma (GBM) is the most common primary brain tumor in adults an carries and carries a terrible prognosis. The current regiment of surgical resection, radiation, and chemotherapy has remained largely unchanged in recent years as new therapeutic approaches have struggled to demonstrate benefit. One of the most challenging hurdles to overcome in developing novel treatments is the profound immune suppression found in many GBM patients. This limits the utility of all manner of immunotherapeutic agents, which have revolutionized the treatment of a number of cancers in recent years, but have failed to show similar benefit in GBM therapy. Understanding the mechanisms of tumor-mediated immune suppression in GBM is critical to the development of effective novel therapies, and reversal of this effect may prove key to effective immunotherapy for GBM. In this review, we discuss the current understanding of tumor-mediated immune suppression in GBM in both the local tumor microenvironment and systemically. We also discuss the effects of current GBM therapy on the immune system. We specifically explore some of the downstream effectors of tumor-driven immune suppression, particularly myeloid-derived suppressor cells (MDSCs) and other immunosuppressive monocytes, and the manner by which GBM induces their formation, with particular attention to the role of GBM-derived extracellular vesicles (EVs). Lastly, we briefly review the current state of immunotherapy for GBM and discuss additional hurdles to overcome identification and implementation of effective therapeutic strategies.
Collapse
Affiliation(s)
- Benjamin T Himes
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN, United States
| | - Philipp A Geiger
- Department of Neurosurgery, University Hospital Innsbruck, Tirol, Austria
| | | | - Adip G Bhargav
- Department of Neurosurgery, University of Kansas, Kansas City, KS, United States
| | - Desmond A Brown
- Surgical Neurology Branch, National Institutes of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, United States
| | - Ian F Parney
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN, United States.,Department of Immunology, Mayo Clinic, Rochester, MN, United States
| |
Collapse
|
42
|
Wei J, Gilboa E, Calin GA, Heimberger AB. Immune Modulatory Short Noncoding RNAs Targeting the Glioblastoma Microenvironment. Front Oncol 2021; 11:682129. [PMID: 34532286 PMCID: PMC8438301 DOI: 10.3389/fonc.2021.682129] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 08/11/2021] [Indexed: 12/22/2022] Open
Abstract
Glioblastomas are heterogeneous and have a poor prognosis. Glioblastoma cells interact with their neighbors to form a tumor-permissive and immunosuppressive microenvironment. Short noncoding RNAs are relevant mediators of the dynamic crosstalk among cancer, stromal, and immune cells in establishing the glioblastoma microenvironment. In addition to the ease of combinatorial strategies that are capable of multimodal modulation for both reversing immune suppression and enhancing antitumor immunity, their small size provides an opportunity to overcome the limitations of blood-brain-barrier (BBB) permeability. To enhance glioblastoma delivery, these RNAs have been conjugated with various molecules or packed within delivery vehicles for enhanced tissue-specific delivery and increased payload. Here, we focus on the role of RNA therapeutics by appraising which types of nucleotides are most effective in immune modulation, lead therapeutic candidates, and clarify how to optimize delivery of the therapeutic RNAs and their conjugates specifically to the glioblastoma microenvironment.
Collapse
Affiliation(s)
- Jun Wei
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Eli Gilboa
- Department of Microbiology & Immunology, Dodson Interdisciplinary Immunotherapy Institute, Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL, United States
| | - George A Calin
- Departments of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Amy B Heimberger
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| |
Collapse
|
43
|
Hatlen RR, Rajagopalan P. Environmental interplay: Stromal cells and biomaterial composition influence in the glioblastoma microenvironment. Acta Biomater 2021; 132:421-436. [PMID: 33276155 DOI: 10.1016/j.actbio.2020.11.044] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 11/24/2020] [Accepted: 11/25/2020] [Indexed: 12/12/2022]
Abstract
Glioblastoma multiforme (GBM) is the most deadly form of brain cancer. Recurrence is common, and established therapies have not been able to significantly extend overall patient survival. One platform through which GBM research can progress is to design biomimetic systems for discovery and investigation into the mechanisms of invasion, cellular properties, as well as the efficacy of therapies. In this review, 2D and 3D GBM in vitro cultures will be discussed. We focus on the effects of biomaterial properties, interactions between stromal cells, and vascular influence on cancer cell survival and progression. This review will summarize critical findings in each of these areas and how they have led to a more comprehensive scientific understanding of GBM. STATEMENT OF SIGNIFICANCE: Glioblastoma multiforme (GBM) is the most deadly form of brain cancer. Recurrence is common, and established therapies have not been able to significantly extend overall patient survival. One platform through which GBM research can progress is to design biomimetic systems for discovery and investigation into the mechanisms of invasion, cellular properties, as well as the efficacy of therapies. In this review, 2D and 3D GBM in vitro cultures will be discussed. We focus on the effects of biomaterial properties, interactions between stromal cells and vascular influence on cancer cell survival and progression. This review will summarize critical findings in each of these areas and how they have lead to a more comprehensive scientific understanding of GBM.
Collapse
Affiliation(s)
- Rosalyn R Hatlen
- Department of Chemical Engineering, Virginia Tech, Blacksburg, VA 24061, United States
| | | |
Collapse
|
44
|
Krane GA, O'Dea CA, Malarkey DE, Miller AD, Miller CR, Tokarz DA, Jensen HL, Janardhan KS, Shockley KR, Flagler N, Rainess BA, Mariani CL. Immunohistochemical evaluation of immune cell infiltration in canine gliomas. Vet Pathol 2021; 58:952-963. [PMID: 34196247 PMCID: PMC11404454 DOI: 10.1177/03009858211023946] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Evasion of the immune response is an integral part of the pathogenesis of glioma. In humans, important mechanisms of immune evasion include recruitment of regulatory T cells (Tregs) and polarization of macrophages toward an M2 phenotype. Canine glioma has a robust immune cell infiltrate that has not been extensively characterized. The purpose of this study was to determine the distribution of immune cells infiltrating spontaneous intracranial canine gliomas. Seventy-three formalin-fixed, paraffin-embedded tumor samples were evaluated using immunohistochemistry for CD3, forkhead box 3 (FOXP3), CD20, Iba1, calprotectin (Mac387), CD163, and indoleamine 2,3-dioxygenase (IDO). Immune cell infiltration was present in all tumors. Low-grade and high-grade gliomas significantly differed in the numbers of FoxP3+ cells, Mac387+ cells, and CD163+ cells (P = .006, .01, and .01, respectively). Considering all tumors, there was a significant increase in tumor area fraction of CD163 compared to Mac387 (P < .0001), and this ratio was greater in high-grade tumors than in low-grade tumors (P = .005). These data warrant further exploration into the roles of macrophage repolarization or Treg interference therapy in canine glioma.
Collapse
Affiliation(s)
- Gregory A Krane
- 6857National Institute of Environmental Health Sciences, National Toxicology Program, Cellular and Molecular Pathology Branch, Research Triangle Park, NC, USA
- Department of Clinical Sciences, North Carolina State University, Raleigh, NC, USA
- Comparative Neuroimmunology and Neuro-Oncology Laboratory, North Carolina State University, Raleigh, NC, USA
| | | | - David E Malarkey
- 6857National Institute of Environmental Health Sciences, National Toxicology Program, Cellular and Molecular Pathology Branch, Research Triangle Park, NC, USA
| | | | | | - Debra A Tokarz
- Experimental Pathology Laboratories Inc, Research Triangle Park, NC, USA
| | - Heather L Jensen
- 6857National Institute of Environmental Health Sciences, National Toxicology Program, Cellular and Molecular Pathology Branch, Research Triangle Park, NC, USA
| | | | - Keith R Shockley
- Division of Intramural Research, Biostatistics and Computational Biology Branch, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | - Norris Flagler
- 6857National Institute of Environmental Health Sciences, National Toxicology Program, Cellular and Molecular Pathology Branch, Research Triangle Park, NC, USA
| | - Brittani A Rainess
- Comparative Neuroimmunology and Neuro-Oncology Laboratory, North Carolina State University, Raleigh, NC, USA
| | - Christopher L Mariani
- Comparative Neuroimmunology and Neuro-Oncology Laboratory, North Carolina State University, Raleigh, NC, USA
| |
Collapse
|
45
|
Najem H, Khasraw M, Heimberger AB. Immune Microenvironment Landscape in CNS Tumors and Role in Responses to Immunotherapy. Cells 2021; 10:2032. [PMID: 34440802 PMCID: PMC8393758 DOI: 10.3390/cells10082032] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Revised: 07/30/2021] [Accepted: 08/03/2021] [Indexed: 12/14/2022] Open
Abstract
Despite the important evolution of immunotherapeutic agents, brain tumors remain, in general, refractory to immune therapeutics. Recent discoveries have revealed that the glioma microenvironment includes a wide variety of immune cells in various states that play an important role in the process of tumorigenesis. Anti-tumor immune activity may be occurring or induced in immunogenic hot spots or at the invasive edge of central nervous system (CNS) tumors. Understanding the complex heterogeneity of the immune microenvironment in gliomas will likely be the key to unlocking the full potential of immunotherapeutic strategies. An essential consideration will be the induction of immunological effector responses in the setting of the numerous aspects of immunosuppression and evasion. As such, immune therapeutic combinations are a fundamental objective for clinical studies in gliomas. Through immune profiling conducted on immune competent murine models of glioma and ex vivo human glioma tissue, we will discuss how the frequency, distribution of immune cells within the microenvironment, and immune modulatory processes, may be therapeutically modulated to lead to clinical benefits.
Collapse
Affiliation(s)
- Hinda Najem
- Department of Neurological Surgery and Northwestern Medicine Malnati Brain Tumor Institute of the Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA;
| | - Mustafa Khasraw
- The Preston Robert Tisch Brain Tumor Center, Duke University, Durham, NC 27710, USA;
| | - Amy B. Heimberger
- Department of Neurological Surgery and Northwestern Medicine Malnati Brain Tumor Institute of the Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA;
| |
Collapse
|
46
|
Lv D, Chen L, Du L, Zhou L, Tang H. Emerging Regulatory Mechanisms Involved in Liver Cancer Stem Cell Properties in Hepatocellular Carcinoma. Front Cell Dev Biol 2021; 9:691410. [PMID: 34368140 PMCID: PMC8339910 DOI: 10.3389/fcell.2021.691410] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 07/01/2021] [Indexed: 02/05/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is the predominant form of primary liver cancer and one of the leading causes of cancer-related deaths worldwide. A growing body of evidence supports the hypothesis that HCC is driven by a population of cells called liver cancer stem cells (LCSCs). LCSCs have been proposed to contribute to malignant HCC progression, including promoting tumor occurrence and growth, mediating tumor metastasis, and treatment resistance, but the regulatory mechanism of LCSCs in HCC remains unclear. Understanding the signaling pathways responsible for LCSC maintenance and survival may provide opportunities to improve patient outcomes. Here, we review the current literature about the origin of LCSCs and the niche composition, describe the current evidence of signaling pathways that mediate LCSC stemness, then highlight several mechanisms that modulate LCSC properties in HCC progression, and finally, summarize the new developments in therapeutic strategies targeting LCSCs markers and regulatory pathways.
Collapse
Affiliation(s)
- Duoduo Lv
- Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu, China
| | - Liyu Chen
- Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu, China
| | - Lingyao Du
- Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu, China
| | - Lingyun Zhou
- Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu, China
| | - Hong Tang
- Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu, China.,State Key Laboratory of Biotherapy and Center of Infectious Diseases, Division of Infectious Diseases, West China Hospital of Sichuan University, Chengdu, China
| |
Collapse
|
47
|
Tang X, Zuo C, Fang P, Liu G, Qiu Y, Huang Y, Tang R. Targeting Glioblastoma Stem Cells: A Review on Biomarkers, Signal Pathways and Targeted Therapy. Front Oncol 2021; 11:701291. [PMID: 34307170 PMCID: PMC8297686 DOI: 10.3389/fonc.2021.701291] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Accepted: 06/25/2021] [Indexed: 12/12/2022] Open
Abstract
Glioblastoma (GBM) remains the most lethal and common primary brain tumor, even after treatment with multiple therapies, such as surgical resection, chemotherapy, and radiation. Although great advances in medical development and improvements in therapeutic methods of GBM have led to a certain extension of the median survival time of patients, prognosis remains poor. The primary cause of its dismal outcomes is the high rate of tumor recurrence, which is closely related to its resistance to standard therapies. During the last decade, glioblastoma stem cells (GSCs) have been successfully isolated from GBM, and it has been demonstrated that these cells are likely to play an indispensable role in the formation, maintenance, and recurrence of GBM tumors, indicating that GSCs are a crucial target for treatment. Herein, we summarize the current knowledge regarding GSCs, their related signaling pathways, resistance mechanisms, crosstalk linking mechanisms, and microenvironment or niche. Subsequently, we present a framework of targeted therapy for GSCs based on direct strategies, including blockade of the pathways necessary to overcome resistance or prevent their function, promotion of GSC differentiation, virotherapy, and indirect strategies, including targeting the perivascular, hypoxic, and immune niches of the GSCs. In summary, targeting GSCs provides a tremendous opportunity for revolutionary approaches to improve the prognosis and therapy of GBM, despite a variety of challenges.
Collapse
Affiliation(s)
- Xuejia Tang
- Department of Neurosurgery, University-Town Hospital of Chongqing Medical University, Chongqing, China.,Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Chenghai Zuo
- Department of Neurosurgery and Key Laboratory of Neurotrauma, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Pengchao Fang
- Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Guojing Liu
- Department of Neurosurgery, University-Town Hospital of Chongqing Medical University, Chongqing, China
| | - Yongyi Qiu
- Department of Neurosurgery, University-Town Hospital of Chongqing Medical University, Chongqing, China
| | - Yi Huang
- Department of Neurosurgery, The Ninth People's Hospital of Chongqing, Chongqing, China
| | - Rongrui Tang
- Department of Neurosurgery, University-Town Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
48
|
Garcia JH, Jain S, Aghi MK. Metabolic Drivers of Invasion in Glioblastoma. Front Cell Dev Biol 2021; 9:683276. [PMID: 34277624 PMCID: PMC8281286 DOI: 10.3389/fcell.2021.683276] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Accepted: 05/19/2021] [Indexed: 12/02/2022] Open
Abstract
Glioblastoma is a primary malignant brain tumor with a median survival under 2 years. The poor prognosis glioblastoma caries is largely due to cellular invasion, which enables escape from resection, and drives inevitable recurrence. While most studies to date have focused on pathways that enhance the invasiveness of tumor cells in the brain microenvironment as the primary driving forces behind GBM’s ability to invade adjacent tissues, more recent studies have identified a role for adaptations in cellular metabolism in GBM invasion. Metabolic reprogramming allows invasive cells to generate the energy necessary for colonizing surrounding brain tissue and adapt to new microenvironments with unique nutrient and oxygen availability. Historically, enhanced glycolysis, even in the presence of oxygen (the Warburg effect) has dominated glioblastoma research with respect to tumor metabolism. More recent global profiling experiments, however, have identified roles for lipid, amino acid, and nucleotide metabolism in tumor growth and invasion. A thorough understanding of the metabolic traits that define invasive GBM cells may provide novel therapeutic targets for this devastating disease. In this review, we focus on metabolic alterations that have been characterized in glioblastoma, the dynamic nature of tumor metabolism and how it is shaped by interaction with the brain microenvironment, and how metabolic reprogramming generates vulnerabilities that may be ripe for exploitation.
Collapse
Affiliation(s)
- Joseph H Garcia
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, United States
| | - Saket Jain
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, United States
| | - Manish K Aghi
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, United States
| |
Collapse
|
49
|
Alsafwani N, Alrjoub M, Djuric U, Gao A, Diamandis P. Tumor-Infiltrating Lymphocytes Are Enriched in Nonhypoxic Glioblastoma Niches. J Neuropathol Exp Neurol 2021; 80:202-204. [PMID: 33212506 DOI: 10.1093/jnen/nlaa108] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Affiliation(s)
- Noor Alsafwani
- From the Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada.,Laboratory Medicine Program, University Health Network, Toronto, Ontario, Canada.,Department of Pathology, Collage of Medicine, Imam Abdulrahman Bin Faisal University (IAU), Dammam, Saudi Arabia
| | - Mo'ath Alrjoub
- From the Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada.,Laboratory Medicine Program, University Health Network, Toronto, Ontario, Canada
| | - Ugljesa Djuric
- Princess Margaret Cancer Centre, Toronto, Ontario, Canada
| | - Andrew Gao
- From the Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada.,Laboratory Medicine Program, University Health Network, Toronto, Ontario, Canada
| | - Phedias Diamandis
- From the Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada.,Laboratory Medicine Program, University Health Network, Toronto, Ontario, Canada.,Princess Margaret Cancer Centre, Toronto, Ontario, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
50
|
Lei MML, Lee TKW. Cancer Stem Cells: Emerging Key Players in Immune Evasion of Cancers. Front Cell Dev Biol 2021; 9:692940. [PMID: 34235155 PMCID: PMC8257022 DOI: 10.3389/fcell.2021.692940] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 05/31/2021] [Indexed: 12/12/2022] Open
Abstract
Cancer stem cells (CSCs) are subpopulations of undifferentiated cancer cells within the tumor bulk that are responsible for tumor initiation, recurrence and therapeutic resistance. The enhanced ability of CSCs to give rise to new tumors suggests potential roles of these cells in the evasion of immune surveillance. A growing body of evidence has described the interplay between CSCs and immune cells within the tumor microenvironment (TME). Recent data have shown the pivotal role of some major immune cells in driving the expansion of CSCs, which concurrently elicit evasion of the detection and destruction of various immune cells through a number of distinct mechanisms. Here, we will discuss the role of immune cells in driving the stemness of cancer cells and provide evidence of how CSCs evade immune surveillance by exerting their effects on tumor-associated macrophages (TAMs), dendritic cells (DCs), myeloid-derived suppressor cells (MDSCs), T-regulatory (Treg) cells, natural killer (NK) cells, and tumor-infiltrating lymphocytes (TILs). The knowledge gained from the interaction between CSCs and various immune cells will provide insight into the mechanisms by which tumors evade immune surveillance. In conclusion, CSC-targeted immunotherapy emerges as a novel immunotherapy strategy against cancer by disrupting the interaction between immune cells and CSCs in the TME.
Collapse
Affiliation(s)
- Martina Mang Leng Lei
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Kowloon, Hong Kong
| | - Terence Kin Wah Lee
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Kowloon, Hong Kong.,State Key Laboratory of Chemical Biology and Drug Discovery, The Hong Kong Polytechnic University, Kowloon, Hong Kong
| |
Collapse
|