1
|
Pereira-Filho JL, Mendes AGG, Campos CDL, Moreira IV, Monteiro CRAV, Soczek SHDS, Fernandes ES, Carvalho RC, Monteiro-Neto V. A Comprehensive Review on the Antibacterial, Antifungal, Antiviral, and Antiparasitic Potential of Silybin. Antibiotics (Basel) 2024; 13:1091. [PMID: 39596784 PMCID: PMC11591437 DOI: 10.3390/antibiotics13111091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 11/13/2024] [Accepted: 11/13/2024] [Indexed: 11/29/2024] Open
Abstract
Silybin, a flavonolignan extracted from the seeds of the plant species Silybum marianum (L.) Gaertn., has a variety of pharmacological activities, including antimicrobial activity against several microorganisms of clinical interest. This review analyzes the existing studies on silybin's antimicrobial activity and possible mechanisms of action. Silybin has been shown to inhibit the growth of Gram-positive and Gram-negative bacteria, as well as some fungi, viruses, and protozoa. In general, possible mechanisms of antimicrobial action include the inhibition of efflux pumps, prevention of biofilm formation, reduction of the expression of virulence factors, induction of apoptosis-like effects, and plasma membrane damage, as well as the inhibition of nucleic acid and protein synthesis. Silybin has been shown to have synergistic effects when combined with conventional antibiotics against both drug-sensitive and drug-resistant microorganisms. However, the low bioavailability observed for this flavonolignan has been a challenge to its clinical use. In this context, nanotechnology has been used to increase silybin's bioavailability while enhancing its antimicrobial activity. Furthermore, certain structural modifications have been able to enhance its antimicrobial activity in comparison to that of the natural molecule. Overall, this review provides insights into the scientific understanding of the mechanism of action of silybin and its desired properties for the effective treatment of infections.
Collapse
Affiliation(s)
- José Lima Pereira-Filho
- Centro de Ciências da Saúde, Universidade Federal do Maranhão—UFMA, São Luís 65080-805, MA, Brazil; (J.L.P.-F.); (A.G.G.M.); (C.D.L.C.); (I.V.M.); (C.R.A.V.M.); (R.C.C.)
| | - Amanda Graziela Gonçalves Mendes
- Centro de Ciências da Saúde, Universidade Federal do Maranhão—UFMA, São Luís 65080-805, MA, Brazil; (J.L.P.-F.); (A.G.G.M.); (C.D.L.C.); (I.V.M.); (C.R.A.V.M.); (R.C.C.)
| | - Carmem Duarte Lima Campos
- Centro de Ciências da Saúde, Universidade Federal do Maranhão—UFMA, São Luís 65080-805, MA, Brazil; (J.L.P.-F.); (A.G.G.M.); (C.D.L.C.); (I.V.M.); (C.R.A.V.M.); (R.C.C.)
| | - Israel Viegas Moreira
- Centro de Ciências da Saúde, Universidade Federal do Maranhão—UFMA, São Luís 65080-805, MA, Brazil; (J.L.P.-F.); (A.G.G.M.); (C.D.L.C.); (I.V.M.); (C.R.A.V.M.); (R.C.C.)
| | - Cinara Regina Aragão Vieira Monteiro
- Centro de Ciências da Saúde, Universidade Federal do Maranhão—UFMA, São Luís 65080-805, MA, Brazil; (J.L.P.-F.); (A.G.G.M.); (C.D.L.C.); (I.V.M.); (C.R.A.V.M.); (R.C.C.)
| | - Suzany Hellen da Silva Soczek
- Instituto de Pesquisa Pelé Pequeno Príncipe, Curitiba 80250-060, PR, Brazil; (S.H.d.S.S.); (E.S.F.)
- Faculdades Pequeno Príncipe, Curitiba 80250-060, PR, Brazil
| | - Elizabeth Soares Fernandes
- Instituto de Pesquisa Pelé Pequeno Príncipe, Curitiba 80250-060, PR, Brazil; (S.H.d.S.S.); (E.S.F.)
- Faculdades Pequeno Príncipe, Curitiba 80250-060, PR, Brazil
| | - Rafael Cardoso Carvalho
- Centro de Ciências da Saúde, Universidade Federal do Maranhão—UFMA, São Luís 65080-805, MA, Brazil; (J.L.P.-F.); (A.G.G.M.); (C.D.L.C.); (I.V.M.); (C.R.A.V.M.); (R.C.C.)
| | - Valério Monteiro-Neto
- Centro de Ciências da Saúde, Universidade Federal do Maranhão—UFMA, São Luís 65080-805, MA, Brazil; (J.L.P.-F.); (A.G.G.M.); (C.D.L.C.); (I.V.M.); (C.R.A.V.M.); (R.C.C.)
| |
Collapse
|
2
|
Mandal A, Hazra B. Medicinal plant molecules against hepatitis C virus: Current status and future prospect. Phytother Res 2023; 37:4353-4374. [PMID: 37439007 DOI: 10.1002/ptr.7936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 06/16/2023] [Accepted: 06/21/2023] [Indexed: 07/14/2023]
Abstract
Hepatitis C virus (HCV), a global malady, causes acute and chronic hepatitis leading to permanent liver damage, hepatocellular carcinoma, and death. Modern anti-HCV therapies are efficient, but mostly inaccessible for residents of underdeveloped regions. To innovate more effective treatments at affordable cost, medicinal plant-based products need to be explored. The aim of this article is to review plant constituents in the light of putative anti-HCV mechanisms of action, and discuss existing problems, challenges, and future directions for their potential application in therapeutic settings. One hundred sixty literatures were collected by using appropriate search strings via scientific search engines: Google Scholar, PubMed, ScienceDirect, and Scopus. Bibliography was prepared using Mendeley desktop software. We found a substantial number of plants that were reported to inhibit different stages of HCV life cycle. Traditional medicinal plants such as Phyllanthus amarus Schumach. and Thonn., Eclipta alba (L.) Hassk., and Acacia nilotica (L.) Delile exhibited strong anti-HCV activities. Again, several phytochemicals such as epigallocatechin-3-gallate, honokilol, punicalagin, and quercetin have shown broad-spectrum anti-HCV effect. We have presented promising phytochemicals like silymarin, curcumin, glycyrrhizin, and camptothecin for nanoparticle-based hepatocyte-targeted drug delivery. Nevertheless, only a few animal studies have been performed to validate the anti-HCV effect of these plant products. Again, insufficient clinical evaluation of the safety and effectiveness of herbal medications remain a problem. Selected plants products could be developed as novel therapeutics for HCV patients only after scrupulous evaluation of their safety and efficacy in a clinical set-up.
Collapse
Affiliation(s)
- Anirban Mandal
- Department of Microbiology, Mrinalini Datta Mahavidyapith, Birati, Kolkata, India
| | - Banasri Hazra
- Department of Pharmaceutical Technology, Jadavpur University, Kolkata, India
| |
Collapse
|
3
|
Mohan S, Elhassan Taha MM, Makeen HA, Alhazmi HA, Al Bratty M, Sultana S, Ahsan W, Najmi A, Khalid A. Bioactive Natural Antivirals: An Updated Review of the Available Plants and Isolated Molecules. Molecules 2020; 25:E4878. [PMID: 33105694 PMCID: PMC7659943 DOI: 10.3390/molecules25214878] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 10/12/2020] [Accepted: 10/14/2020] [Indexed: 12/17/2022] Open
Abstract
Viral infections and associated diseases are responsible for a substantial number of mortality and public health problems around the world. Each year, infectious diseases kill 3.5 million people worldwide. The current pandemic caused by COVID-19 has become the greatest health hazard to people in their lifetime. There are many antiviral drugs and vaccines available against viruses, but they have many disadvantages, too. There are numerous side effects for conventional drugs, and active mutation also creates drug resistance against various viruses. This has led scientists to search herbs as a source for the discovery of more efficient new antivirals. According to the World Health Organization (WHO), 65% of the world population is in the practice of using plants and herbs as part of treatment modality. Additionally, plants have an advantage in drug discovery based on their long-term use by humans, and a reduced toxicity and abundance of bioactive compounds can be expected as a result. In this review, we have highlighted the important viruses, their drug targets, and their replication cycle. We provide in-depth and insightful information about the most favorable plant extracts and their derived phytochemicals against viral targets. Our major conclusion is that plant extracts and their isolated pure compounds are essential sources for the current viral infections and useful for future challenges.
Collapse
MESH Headings
- Antiviral Agents/chemistry
- Antiviral Agents/classification
- Antiviral Agents/isolation & purification
- Antiviral Agents/therapeutic use
- Betacoronavirus/drug effects
- Betacoronavirus/pathogenicity
- Betacoronavirus/physiology
- COVID-19
- Coronavirus Infections/drug therapy
- Coronavirus Infections/pathology
- Coronavirus Infections/virology
- Drug Discovery
- HIV/drug effects
- HIV/pathogenicity
- HIV/physiology
- HIV Infections/drug therapy
- HIV Infections/pathology
- HIV Infections/virology
- Hepacivirus/drug effects
- Hepacivirus/pathogenicity
- Hepacivirus/physiology
- Hepatitis C, Chronic/drug therapy
- Hepatitis C, Chronic/pathology
- Hepatitis C, Chronic/virology
- Herpes Simplex/drug therapy
- Herpes Simplex/pathology
- Herpes Simplex/virology
- Humans
- Influenza, Human/drug therapy
- Influenza, Human/pathology
- Influenza, Human/virology
- Orthomyxoviridae/drug effects
- Orthomyxoviridae/pathogenicity
- Orthomyxoviridae/physiology
- Pandemics
- Phytochemicals/chemistry
- Phytochemicals/classification
- Phytochemicals/isolation & purification
- Phytochemicals/therapeutic use
- Plants, Medicinal
- Pneumonia, Viral/drug therapy
- Pneumonia, Viral/pathology
- Pneumonia, Viral/virology
- SARS-CoV-2
- Simplexvirus/drug effects
- Simplexvirus/pathogenicity
- Simplexvirus/physiology
- Virus Internalization/drug effects
- Virus Replication/drug effects
Collapse
Affiliation(s)
- Syam Mohan
- Substance Abuse and Toxicology Research Centre, Jazan University, Jazan 45142, Saudi Arabia; (M.M.E.T.); (H.A.A.); (A.K.)
| | - Manal Mohamed Elhassan Taha
- Substance Abuse and Toxicology Research Centre, Jazan University, Jazan 45142, Saudi Arabia; (M.M.E.T.); (H.A.A.); (A.K.)
| | - Hafiz A. Makeen
- Department of Clinical Pharmacy, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia;
| | - Hassan A. Alhazmi
- Substance Abuse and Toxicology Research Centre, Jazan University, Jazan 45142, Saudi Arabia; (M.M.E.T.); (H.A.A.); (A.K.)
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia; (M.A.B.); (W.A.); (A.N.)
| | - Mohammed Al Bratty
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia; (M.A.B.); (W.A.); (A.N.)
| | - Shahnaz Sultana
- Department of Pharmacognosy, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia;
| | - Waquar Ahsan
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia; (M.A.B.); (W.A.); (A.N.)
| | - Asim Najmi
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia; (M.A.B.); (W.A.); (A.N.)
| | - Asaad Khalid
- Substance Abuse and Toxicology Research Centre, Jazan University, Jazan 45142, Saudi Arabia; (M.M.E.T.); (H.A.A.); (A.K.)
| |
Collapse
|
4
|
Ping Z, Jun X, Yan W, Jun Z. Anti-cancer properties of specific Chinese herbal medicines for hepatocellular carcinoma treatment. Eur J Integr Med 2020:101215. [PMID: 33042292 PMCID: PMC7532350 DOI: 10.1016/j.eujim.2020.101215] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 09/28/2020] [Indexed: 11/30/2022]
Abstract
AIMS This essay explores the anti-cancer activity of specific Chinese herbal medicines to clarify how effective Chinese herbal medicine is used for handling hepatocellular carcinoma. METHODS Literature form publica domain were studied and an analysis of anti-cancer activity of specific Chinese herbal medicines is presented in this review. RESULTS Hepatocellular carcinoma is one of the most dangerous malignant tumors in the world. The operative diagnosis of liver cancer remains a significant challenge. Although surgery tissue resection is encouraging, a high risk of recurrence and metastasis, illustrating disease-related mortality is desperately required to enhance postoperative preventive and therapeutic clinical procedures. The almost only effective clinical intervention seems to be developing advanced targeted therapies such as sorafenib for hepatocellular carcinoma patients, but there is little research in this field. Because their preventative/therapeutic properties strengthen Chinese herbal medicinal compounds, they are deemed relevant to the treatment of hepatocellular carcinoma. Conclusion: Chinese herbal medicine derivates provide multifaceted, orientated and orchestrated therapy, making it an ideal candidate for inhibiting hepatocellular tumor production and metastasis.
Collapse
Affiliation(s)
- Zang Ping
- Pharmacy, Qingdao Island Central Hospital
| | - Xue Jun
- Department of Pharmacy, Huangdao district Chinese Medicine Hospital, Qingdao
| | - Wang Yan
- Qingdao West Coast New Area Health Comprehensive Administrative Law Enforcement Brigade
| | - Zhang Jun
- Department of Pharmacy, Huangdao district Chinese Medicine Hospital, Qingdao
| |
Collapse
|
5
|
Assessment of α-amanitin toxicity and effects of silibinin and penicillin in different in vitro models. Toxicol In Vitro 2020; 67:104921. [PMID: 32599260 DOI: 10.1016/j.tiv.2020.104921] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 06/15/2020] [Accepted: 06/17/2020] [Indexed: 01/26/2023]
Abstract
Silibinin (Sil) is used as hepatoprotective drug and is approved for therapeutic use in amanitin poisoning. In our study we compared Sil-bis-succinate (SilBS), a water-soluble drug approved for i.v.-administration, with Sil solved in ethanol (SilEtOH), which is normally used in research. We challenged monocultures or 3D-microtissues consisting of HepG2 cells or primary hepatocytes with α-amanitin and treated with SILBS, SILEtOH, penicillin and combinations thereof. Cell viability and the integrity of the microtissues was monitored. Finally, the expression of the transporters OATP1B1 and B3 was analyzed by qRT-PCR. We demonstrated that primary hepatocytes were more sensitive to α-amanitin compared to HepG2. Primary hepatocytes cultures were protected by SilBS and SilEtOH independent of penicillin from the cytotoxic effects of α-amanitin. Subsequent studies of the expression profile of the transporters OATP1B1/B3 revealed that primary hepatocytes do express both whereas in HepG2 cells they were hardly detectable. Our study showed that SilBS has significant advantage over SilEtOH with no additional benefit of penicillin. Moreover, HepG2 cells may not represent an appropriate model to investigate Amanita phalloides poisoning in vitro with focus on OATP transporters since these cells are lacking sensitivity towards α-amanitin probably due to missing cytotoxicity-associated transporters suggesting that primary hepatocytes should be preferred in this context.
Collapse
|
6
|
Abstract
Chronic hepatitis C virus (HCV) infection is a significant public health problem, with a worldwide prevalence of approximately 170 million. Current therapy for HCV infection includes the prolonged administration of a combination of ribavirin and PEGylated interferon-α, for over a decade. This regimen is expensive and often associated with a poor antiviral response and unwanted side effects. A highly effective combination treatment is likely required for the future management of HCV infections and entry inhibitors could play an important role. Currently, no entry inhibitor has been licensed for the prophylactic treatment of hepatitis C. Therefore, additional agents that combat HCV infection are urgently needed and must be developed. Many phytochemical constituents have been identified that display considerable inhibition of HCV at some stage of the life cycle. This review will summarise the current state of knowledge on natural products and their possible activities in the context of HCV infection.
Collapse
Affiliation(s)
| | - Abeer Temraz
- Pharmacognosy Department College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
- Pharmacognosy Department Faculty of Pharmacy For Girls, Al-Azhar University, Nasr City, Cairo, Egypt
| |
Collapse
|
7
|
Bachar SC, Bachar R, Jannat K, Jahan R, Rahmatullah M. Hepatoprotective natural products. ANNUAL REPORTS IN MEDICINAL CHEMISTRY 2020:207-249. [DOI: 10.1016/bs.armc.2020.06.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
8
|
Abd Ellah NH, Tawfeek HM, John J, Hetta HF. Nanomedicine as a future therapeutic approach for Hepatitis C virus. Nanomedicine (Lond) 2019; 14:1471-1491. [PMID: 31166139 DOI: 10.2217/nnm-2018-0348] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Hepatitis C virus (HCV) is not easily cleared from the human body and in most cases turned into chronic infection. This chronicity is a major cause of liver damage, cirrhosis and hepatocellular carcinoma. Therefore, immediate detection and treatment of HCV guarantees eradication of the virus and prevention of chronicity complications. Since discovery of HCV in 1989, several emerging treatments were developed such as polyethylene glycol(PEG)-ylated interferon/ribavirin, direct acting antivirals and host targeting antivirals. Despite the progress in anti-HCV therapy, there is still a pressing need of new approaches for affordable and effective drug delivery systems using nanomedicine. In this review, the contribution of nanoparticles as a promising delivery system for HCV immunizing, diagnostic and therapeutic agents are discussed.
Collapse
Affiliation(s)
- Noura H Abd Ellah
- Division of Pharmaceutical Sciences, James L. Winkle College of Pharmacy, Medical Sciences Building, University of Cincinnati, Cincinnati, OH 45267, USA.,Department of Pharmaceutics, Faculty of Pharmacy, Assiut University, Assiut, 71526, Egypt
| | - Hesham M Tawfeek
- Department of Industrial Pharmacy, Faculty of Pharmacy, Assiut University, Assiut, 71526, Egypt.,Department of Pharmaceutics & Pharmaceutical Technology, Faculty of Pharmacy, Mutah University, Karak, Jordan
| | - James John
- Central Research Facilities, Sri Ramachandra institute of higher education & research, Sri Ramachandra University, Chennai, India
| | - Helal F Hetta
- Department of Medical Microbiology & Immunology, Faculty of Medicine, Assiut University, Assiut, 71526, Egypt.,Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, OH 45267-0595, USA
| |
Collapse
|
9
|
Antiviral Activities of Silymarin and Derivatives. Molecules 2019; 24:molecules24081552. [PMID: 31010179 PMCID: PMC6514695 DOI: 10.3390/molecules24081552] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Revised: 04/16/2019] [Accepted: 04/17/2019] [Indexed: 12/22/2022] Open
Abstract
Silymarin flavonolignans are well-known agents that typically possess antioxidative, anti-inflammatory, and hepatoprotective functions. Recent studies have also documented the antiviral activities of silymarin and its derivatives against several viruses, including the flaviviruses (hepatitis C virus and dengue virus), togaviruses (Chikungunya virus and Mayaro virus), influenza virus, human immunodeficiency virus, and hepatitis B virus. This review will describe some of the latest preclinical and clinical studies detailing the antiviral profiles of silymarin and its derivatives, and discuss their relevance for antiviral drug development.
Collapse
|
10
|
Fukano K, Tsukuda S, Oshima M, Suzuki R, Aizaki H, Ohki M, Park SY, Muramatsu M, Wakita T, Sureau C, Ogasawara Y, Watashi K. Troglitazone Impedes the Oligomerization of Sodium Taurocholate Cotransporting Polypeptide and Entry of Hepatitis B Virus Into Hepatocytes. Front Microbiol 2019; 9:3257. [PMID: 30671048 PMCID: PMC6331526 DOI: 10.3389/fmicb.2018.03257] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Accepted: 12/14/2018] [Indexed: 12/12/2022] Open
Abstract
Current anti-hepatitis B virus (HBV) agents, which include nucleos(t)ide analogs and interferons, can significantly suppress HBV infection. However, there are limitations in the therapeutic efficacy of these agents, indicating the need to develop anti-HBV agents with different modes of action. In this study, through a functional cell-based chemical screening, we found that a thiazolidinedione, troglitazone, inhibits HBV infection independently of the compound's ligand activity for peroxisome proliferator-activated receptor γ (PPARγ). Analog analysis suggested chemical moiety required for the anti-HBV activity and identified ciglitazone as an analog having higher anti-HBV potency. Whereas, most of the reported HBV entry inhibitors target viral attachment to the cell surface, troglitazone blocked a process subsequent to viral attachment, i.e., internalization of HBV preS1 and its receptor, sodium taurocholate cotransporting polypeptide (NTCP). We also found that NTCP was markedly oligomerized in the presence of HBV preS1, but such NTCP oligomerization was abrogated by treatment with troglitazone, but not with pioglitazone, correlating with inhibition activity to viral internalization. Also, competitive peptides that blocked NTCP oligomerization impeded viral internalization and infection. This work represents the first report identifying small molecules and peptides that specifically inhibit the internalization of HBV. This study is also significant in proposing a possible role for NTCP oligomerization in viral entry, which will shed a light on a new aspect of the cellular mechanisms regulating HBV infection.
Collapse
Affiliation(s)
- Kento Fukano
- Department of Virology II, National Institute of Infectious Diseases, Tokyo, Japan.,Department of Analytical Biochemistry, Meiji Pharmaceutical University, Kiyose, Japan
| | - Senko Tsukuda
- Department of Virology II, National Institute of Infectious Diseases, Tokyo, Japan.,Liver Cancer Prevention Research Unit, Center for Integrative Medical Sciences, RIKEN, Wako, Japan
| | - Mizuki Oshima
- Department of Virology II, National Institute of Infectious Diseases, Tokyo, Japan.,Department of Applied Biological Science, Tokyo University of Science, Noda, Japan
| | - Ryosuke Suzuki
- Department of Virology II, National Institute of Infectious Diseases, Tokyo, Japan
| | - Hideki Aizaki
- Department of Virology II, National Institute of Infectious Diseases, Tokyo, Japan
| | - Mio Ohki
- Drug Design Laboratory, Graduate School of Medical Life Science, Yokohama City University, Yokohama, Japan
| | - Sam-Yong Park
- Drug Design Laboratory, Graduate School of Medical Life Science, Yokohama City University, Yokohama, Japan
| | - Masamichi Muramatsu
- Department of Virology II, National Institute of Infectious Diseases, Tokyo, Japan
| | - Takaji Wakita
- Department of Virology II, National Institute of Infectious Diseases, Tokyo, Japan
| | - Camille Sureau
- Laboratoire de Virologie Moléculaire, Institut National de la Transfusion Sanguine, CNRS, INSERM U1134, Paris, France
| | - Yuki Ogasawara
- Department of Analytical Biochemistry, Meiji Pharmaceutical University, Kiyose, Japan
| | - Koichi Watashi
- Department of Virology II, National Institute of Infectious Diseases, Tokyo, Japan.,Department of Applied Biological Science, Tokyo University of Science, Noda, Japan.,JST CREST, Saitama, Japan
| |
Collapse
|
11
|
Pilkington LI, Wagoner J, Kline T, Polyak SJ, Barker D. 1,4-Benzodioxane Lignans: An Efficient, Asymmetric Synthesis of Flavonolignans and Study of Neolignan Cytotoxicity and Antiviral Profiles. JOURNAL OF NATURAL PRODUCTS 2018; 81:2630-2637. [PMID: 30485098 DOI: 10.1021/acs.jnatprod.8b00416] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
1,4-Benzodioxane lignans are a class of bioactive compounds that have received much attention through the years. Herein research pertaining to both 1,4-benzodioxane flavonolignans and 1,4-benzodioxane neolignans is presented. A novel synthesis of both traditional 1,4-benzodioxane flavonolignans and 3-deoxyflavonolignans is described. The antiviral and cytotoxic activities of 1,4-benzodioxane neolignans were then investigated; eusiderins A, B, G, and M, deallyl eusiderin A, and nitidanin, which contain the 1,4-benzodioxane motif but lack the chromanone motif found in the known antiviral flavonolignans, were tested. Notably, it was found that all eusiderin 1,4-benzodioxane neolignans exhibited greater antiviral activity than the potent and well-known silybin flavonolignans. While most modifications of the C-1' side chain did not significantly alter the cytotoxicity or antiviral activity, eusiderin M and nitidanin, which contain an allylic alcohol side chain, had lower cytotoxicity. All the eusiderins had similar antiviral activities, with eusiderin B having the best selectivity index. These results show that the chromanone moiety of the flavonolignans is not essential for bioactivity.
Collapse
Affiliation(s)
- Lisa I Pilkington
- School of Chemical Sciences , University of Auckland , 23 Symonds Street , Auckland 1142 , New Zealand
| | | | | | | | - David Barker
- School of Chemical Sciences , University of Auckland , 23 Symonds Street , Auckland 1142 , New Zealand
- The MacDiarmid Institute of Advanced Materials and Nanotechnology , New Zealand
| |
Collapse
|
12
|
Abdel-Hamid NM, Abass SA, Mohamed AA, Muneam Hamid D. Herbal management of hepatocellular carcinoma through cutting the pathways of the common risk factors. Biomed Pharmacother 2018; 107:1246-1258. [PMID: 30257339 PMCID: PMC7127621 DOI: 10.1016/j.biopha.2018.08.104] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2018] [Revised: 08/11/2018] [Accepted: 08/15/2018] [Indexed: 02/07/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is considered the most frequent tumor that associated with high mortality rate. Several risk factors contribute to the pathogenesis of HCC, such as chronic persistent infection with hepatitis C virus or hepatitis B virus, chronic untreated inflammation of liver with different etiology, oxidative stress and fatty liver disease. Several treatment protocols are used in the treatment of HCC but they also associated with diverse side effects. Many natural products are helpful in the co-treatment and prevention of HCC. Several mechanisms are involved in the action of these herbal products and their bioactive compounds in the prevention and co-treatment of HCC. They can inhibit the liver cancer development and progression in several ways as protecting against liver carcinogens, enhancing effects of chemotherapeutic drugs, inhibiting tumor cell growth and metastasis, and suppression of oxidative stress and chronic inflammation. In this review, we will discuss the utility of diverse natural products in the prevention and co-treatment of HCC, through its capturing of the common risk factors known to lead to HCC and shed the light on their possible mechanisms of action. Our theory assumes that shutting down the risk factor to cancer development pathways is a critical strategy in cancer prevention and management. We recommend the use of these plants side by side to recent chemical medications and after stopping these chemicals, as a maintenance therapy to avoid HCC progression and decrease its global incidence.
Collapse
Affiliation(s)
- Nabil M Abdel-Hamid
- Biochemistry Department, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, 33516, Egypt.
| | - Shimaa A Abass
- Biochemistry Department, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, 33516, Egypt
| | - Ahmed A Mohamed
- Biochemistry Department, Faculty of Pharmacy, Mansura University, Mansura, Egypt
| | - Daniah Muneam Hamid
- Biotechnology Department, Technical Medical Institute Al-Mansour, Middle Technological University, Baghdad, Iraq
| |
Collapse
|
13
|
|
14
|
Liu CH, Lin CC, Hsu WC, Chung CY, Lin CC, Jassey A, Chang SP, Tai CJ, Tai CJ, Shields J, Richardson CD, Yen MH, Tyrrell DLJ, Lin LT. Highly bioavailable silibinin nanoparticles inhibit HCV infection. Gut 2017; 66:1853-1861. [PMID: 27436270 DOI: 10.1136/gutjnl-2016-312019] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Revised: 06/12/2016] [Accepted: 06/23/2016] [Indexed: 12/12/2022]
Abstract
OBJECTIVE Silibinin is a flavonolignan that is well established for its robust antiviral activity against HCV infection and has undergone several clinical trials for the management of hepatitis C. Despite its potency, silibinin suffers from poor solubility and bioavailability, restricting its clinical use. To overcome this limitation, we developed highly bioavailable silibinin nanoparticles (SB-NPs) and evaluated their efficiency against HCV infection. DESIGN SB-NPs were prepared using a nanoemulsification technique and were physicochemically characterised. Infectious HCV culture systems were used to evaluate the influence of SB-NP on the virus life cycle and examine their antioxidant activity against HCV-induced oxidative stress. The safety profiles of SB-NP, in vivo pharmacokinetic studies and antiviral activity against infection of primary human hepatocytes were also assessed. RESULTS SB-NP consisted of nanoscale spherical particles (<200 nm) encapsulating amorphous silibinin at >97% efficiency and increasing the compound's solubility by >75%. Treatment with SB-NP efficiently restricted HCV cell-to-cell transmission, suggesting that they retained silibinin's robust anti-HCV activity. In addition, SB-NP exerted an antioxidant effect via their free radical scavenging function. Oral administration of SB-NP in rodents produced no apparent in vivo toxicity, and pharmacokinetic studies revealed an enhanced serum level and superior biodistribution to the liver compared with non-modified silibinin. Finally, SB-NP efficiently reduced HCV infection of primary human hepatocytes. CONCLUSIONS Due to SB-NP's enhanced bioavailability, effective anti-HCV activity and an overall hepatoprotective effect, we suggest that SB-NP may be a cost-effective anti-HCV agent that merits further evaluation for the treatment of hepatitis C.
Collapse
Affiliation(s)
- Ching-Hsuan Liu
- Department of Microbiology and Immunology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Chun-Ching Lin
- School of Pharmacy, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, Taiwan.,Graduate Institute of Natural Products, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Wen-Chan Hsu
- School of Pharmacy, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chueh-Yao Chung
- Graduate Institute of Natural Products, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chih-Chan Lin
- Department of Medical Research, Chi Mei Medical Center, Tainan, Taiwan
| | - Alagie Jassey
- Department of Microbiology and Immunology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.,Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Shun-Pang Chang
- School of Pharmacy, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chen-Jei Tai
- Department of Chinese Medicine, Taipei Medical University Hospital, Taipei, Taiwan.,Department of Obstetrics and Gynecology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Cheng-Jeng Tai
- Division of Hematology and Oncology, Department of Internal Medicine, Taipei Medical University Hospital, Taipei, Taiwan.,Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Justin Shields
- Li Ka Shing Institute of Virology, Edmonton, Alberta, Canada
| | - Christopher D Richardson
- Department of Microbiology & Immunology, Dalhousie University, Halifax, Nova Scotia, Canada.,Department of Pediatrics and Canadian Center for Vaccinology, Izaak Walton Killam Health Centre, Halifax, Nova Scotia, Canada
| | - Ming-Hong Yen
- Graduate Institute of Natural Products, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, Taiwan
| | | | - Liang-Tzung Lin
- Department of Microbiology and Immunology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.,Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
15
|
Hafid AF, Aoki-Utsubo C, Permanasari AA, Adianti M, Tumewu L, Widyawaruyanti A, Wahyuningsih SPA, Wahyuni TS, Lusida MI, Soetjipto, Hotta H. Antiviral activity of the dichloromethane extracts from Artocarpus heterophyllus leaves against hepatitis C virus. Asian Pac J Trop Biomed 2017. [DOI: 10.1016/j.apjtb.2017.06.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
16
|
Alkushi AG. Protective Effect of Sorrel Extract on Adult Rats Treated by Carbon Tetrachloride. Pharmacognosy Res 2017; 9:200-207. [PMID: 28539746 PMCID: PMC5424563 DOI: 10.4103/0974-8490.204653] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
CONTEXT Heart, kidneys, and liver are the vital organs present in vertebrates and some other animals. They have a wide range of functions, such as maintaining homeostasis, detoxification, protein synthesis, and production of biochemical, that are necessary for digestion and maintaining circulation. These organs are necessary for the survival, and currently, there are no means to compensate for the absence of their functionalities in a long term. The damage of liver can affect other vital organs, including kidneys and heart. AIMS This study aimed at investigating the effect of sorrel extract in the treatment of some of the diseases of liver, kidneys, and heart using experimental animals. SETTINGS AND DESIGN This study is a randomized, controlled clinical trial. MATERIALS AND METHODS Forty mature male albino rats, weighing 150-160 g, were used and divided into four equal groups. One group was kept as negative control (C -ve) group whereas the other three groups were injected subcutaneously (s/c) with carbon tetrachloride in 50% V/V paraffin oil (2 ml/kg b.wt.). Tissue specimens were obtained from all the groups and fixed in 10% formalin for histopathological examination. STATISTICAL ANALYSIS USED The obtained data were statistically analyzed using computerized Superior Performing Statistical Software (SPSS) at SAS Institute, Cary, NC, USA. Effects of different treatments were analyzed by one-way analysis of variance test using Duncan's multiple range test, and P < 0.05 was also used to indicate the significance level between different groups (Snedecor and Cochran, 1967). RESULTS The resulting data showed that the sorrel extract demonstrated a significant enhancement in liver intoxication and all other tested parameters. In addition, it also helped in minimizing the structural tissue damages in the vital organs. CONCLUSIONS According to these results, sorrel can impair the liver function and maintain the functions of the vital organs. SUMMARY All rats, poisoned with carbon tetrachloride (CCl4) and administrated with all tested herbs, showed a significant increase in BWG as compared to the control (+ve) groupSorrel extract demonstrates a significant enhancement in liver intoxication and all other tested parameters and can reduce the lipid peroxidation in CCl4-induced liver damageAll rats, poisoned with CCl4 and orally fed with all tested herbs, showed a significant decrease in the mentioned parameters when compared to control (+ve) group. Abbreviations Used: ALT: Alanine transaminase; AST: Aspartate transaminase; ALP: Alkaline phosphatase; ALB: Albumin; BWG%: Body weight gain percentage; CCl4: Carbon tetrachloride; CAT: Catalase; GGT: Gamma-glutamyl transferase; GSH-Px: Glutathione peroxidase; GLOB: Globulin; iNOS: Inducible nitric oxide synthase; MDA: Malondialdehyde; RP: Rumex patientia; SOD: Superoxide dismutase; TP: Total protein; TC: Total cholesterol; TGs: Riglycerides.
Collapse
Affiliation(s)
- Abdullah Glil Alkushi
- Department of Anatomy, Faculty of Medicine, Umm Al-Qura University, Makkah, Kingdom of Saudi Arabia
| |
Collapse
|
17
|
Lovelace ES, Maurice NJ, Miller HW, Slichter CK, Harrington R, Magaret A, Prlic M, De Rosa S, Polyak SJ. Silymarin suppresses basal and stimulus-induced activation, exhaustion, differentiation, and inflammatory markers in primary human immune cells. PLoS One 2017; 12:e0171139. [PMID: 28158203 PMCID: PMC5291532 DOI: 10.1371/journal.pone.0171139] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Accepted: 01/15/2017] [Indexed: 12/13/2022] Open
Abstract
Silymarin (SM), and its flavonolignan components, alter cellular metabolism and inhibit inflammatory status in human liver and T cell lines. In this study, we hypothesized that SM suppresses both acute and chronic immune activation (CIA), including in the context of HIV infection. SM treatment suppressed the expression of T cell activation and exhaustion markers on CD4+ and CD8+ T cells from chronically-infected, HIV-positive subjects. SM also showed a trend towards modifying CD4+ T cell memory subsets from HIV+ subjects. In the HIV-negative setting, SM treatment showed trends towards suppressing pro-inflammatory cytokines from non-activated and pathogen-associated molecular pattern (PAMP)-activated primary human monocytes, and non-activated and cytokine- and T cell receptor (TCR)-activated mucosal-associated invariant T (MAIT) cells. The data suggest that SM elicits broad anti-inflammatory and immunoregulatory activity in primary human immune cells. By using novel compounds to alter cellular inflammatory status, it may be possible to regulate inflammation in both non-disease and disease states.
Collapse
Affiliation(s)
- Erica S. Lovelace
- Department of Laboratory Medicine, University of Washington, Seattle, WA, United States of America
| | - Nicholas J. Maurice
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States of America
| | - Hannah W. Miller
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States of America
| | - Chloe K. Slichter
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States of America
- Department of Global Health, University of Washington, Seattle, WA, United States of America
| | - Robert Harrington
- Division of Allergy and Infectious Disease, University of Washington, Seattle, WA, United States of America
| | - Amalia Magaret
- Department of Laboratory Medicine, University of Washington, Seattle, WA, United States of America
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States of America
- Department of Biostatistics, University of Washington, Seattle, WA, United States of America
| | - Martin Prlic
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States of America
- Department of Global Health, University of Washington, Seattle, WA, United States of America
| | - Stephen De Rosa
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States of America
| | - Stephen J. Polyak
- Department of Laboratory Medicine, University of Washington, Seattle, WA, United States of America
- Department of Global Health, University of Washington, Seattle, WA, United States of America
- Department of Microbiology, University of Washington, Seattle, WA, United States of America
| |
Collapse
|
18
|
Federico A, Dallio M, Loguercio C. Silymarin/Silybin and Chronic Liver Disease: A Marriage of Many Years. Molecules 2017; 22:molecules22020191. [PMID: 28125040 PMCID: PMC6155865 DOI: 10.3390/molecules22020191] [Citation(s) in RCA: 284] [Impact Index Per Article: 35.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Revised: 01/13/2017] [Accepted: 01/18/2017] [Indexed: 02/06/2023] Open
Abstract
Silymarin is the extract of Silybum marianum, or milk thistle, and its major active compound is silybin, which has a remarkable biological effect. It is used in different liver disorders, particularly chronic liver diseases, cirrhosis and hepatocellular carcinoma, because of its antioxidant, anti-inflammatory and antifibrotic power. Indeed, the anti-oxidant and anti-inflammatory effect of silymarin is oriented towards the reduction of virus-related liver damages through inflammatory cascade softening and immune system modulation. It also has a direct antiviral effect associated with its intravenous administration in hepatitis C virus infection. With respect to alcohol abuse, silymarin is able to increase cellular vitality and to reduce both lipid peroxidation and cellular necrosis. Furthermore, silymarin/silybin use has important biological effects in non-alcoholic fatty liver disease. These substances antagonize the progression of non-alcoholic fatty liver disease, by intervening in various therapeutic targets: oxidative stress, insulin resistance, liver fat accumulation and mitochondrial dysfunction. Silymarin is also used in liver cirrhosis and hepatocellular carcinoma that represent common end stages of different hepatopathies by modulating different molecular patterns. Therefore, the aim of this review is to examine scientific studies concerning the effects derived from silymarin/silybin use in chronic liver diseases, cirrhosis and hepatocellular carcinoma.
Collapse
Affiliation(s)
- Alessandro Federico
- Department of Clinical and Experimental Medicine, Second University of Naples, 80131 Naples, Italy.
| | - Marcello Dallio
- Department of Clinical and Experimental Medicine, Second University of Naples, 80131 Naples, Italy.
| | - Carmelina Loguercio
- Department of Clinical and Experimental Medicine, Second University of Naples, 80131 Naples, Italy.
| |
Collapse
|
19
|
Bastos JCS, Padilla MA, Caserta LC, Miotto N, Vigani AG, Arns CW. Hepatitis C virus: Promising discoveries and new treatments. World J Gastroenterol 2016; 22:6393-6401. [PMID: 27605875 PMCID: PMC4968121 DOI: 10.3748/wjg.v22.i28.6393] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Revised: 06/07/2016] [Accepted: 06/15/2016] [Indexed: 02/06/2023] Open
Abstract
Despite advances in therapy, hepatitis C virus (HCV) infection remains an important global health issue. It is estimated that a significant part of the world population is chronically infected with the virus, and many of those affected may develop cirrhosis or liver cancer. The virus shows considerable variability, a characteristic that directly interferes with disease treatment. The response to treatment varies according to HCV genotype and subtype. The continuous generation of variants (quasispecies) allows the virus to escape control by antivirals. Historically, the combination of ribavirin and interferon therapy has represented the only treatment option for the disease. Currently, several new treatment options are emerging and are available to a large part of the affected population. In addition, the search for new substances with antiviral activity against HCV continues, promising future improvements in treatment. Researchers should consider the mutation capacity of the virus and the other variables that affect treatment success.
Collapse
|
20
|
Lipopolysaccharide and Tumor Necrosis Factor Alpha Inhibit Interferon Signaling in Hepatocytes by Increasing Ubiquitin-Like Protease 18 (USP18) Expression. J Virol 2016; 90:5549-5560. [PMID: 27009955 PMCID: PMC4886784 DOI: 10.1128/jvi.02557-15] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Accepted: 02/29/2016] [Indexed: 12/22/2022] Open
Abstract
Inflammation may be maladaptive to the control of viral infection when it impairs interferon (IFN) responses, enhancing viral replication and spread. Dysregulated immunity as a result of inappropriate innate inflammatory responses is a hallmark of chronic viral infections such as, hepatitis B virus and hepatitis C virus (HCV). Previous studies from our laboratory have shown that expression of an IFN-stimulated gene (ISG), ubiquitin-like protease (USP)18 is upregulated in chronic HCV infection, leading to impaired hepatocyte responses to IFN-α. We examined the ability of inflammatory stimuli, including tumor necrosis factor alpha (TNF-α), lipopolysaccharide (LPS), interleukin-6 (IL-6) and IL-10 to upregulate hepatocyte USP18 expression and blunt the IFN-α response. Human hepatoma cells and primary murine hepatocytes were treated with TNF-α/LPS/IL-6/IL-10 and USP18, phosphorylated (p)-STAT1 and myxovirus (influenza virus) resistance 1 (Mx1) expression was determined. Treatment of Huh7.5 cells and primary murine hepatocytes with LPS and TNF-α, but not IL-6 or IL-10, led to upregulated USP18 expression and induced an IFN-α refractory state, which was reversed by USP18 knockdown. Liver inflammation was induced in vivo using a murine model of hepatic ischemia/reperfusion injury. Hepatic ischemia/reperfusion injury led to an induction of USP18 expression in liver tissue and promotion of lymphocytic choriomeningitis replication. These data demonstrate that certain inflammatory stimuli (TNF-α and LPS) but not others (IL-6 and IL-10) target USP18 expression and thus inhibit IFN signaling. These findings represent a new paradigm for how inflammation alters hepatic innate immune responses, with USP18 representing a potential target for intervention in various inflammatory states. IMPORTANCE Inflammation may prevent the control of viral infection when it impairs the innate immune response, enhancing viral replication and spread. Blunted immunity as a result of inappropriate innate inflammatory responses is a common characteristic of chronic viral infections. Previous studies have shown that expression of certain interferon-stimulated genes is upregulated in chronic HCV infection, leading to impaired hepatocyte responses. In this study, we show that multiple inflammatory stimuli can modulate interferon stimulated gene expression and thus inhibit hepatocyte interferon signaling via USP18 induction. These findings represent a new paradigm for how inflammation alters hepatic innate immune responses, with the induction of USP18 representing a potential target for intervention in various inflammatory states.
Collapse
|
21
|
Hellerbrand C, Schattenberg JM, Peterburs P, Lechner A, Brignoli R. The potential of silymarin for the treatment of hepatic disorders. CLINICAL PHYTOSCIENCE 2016. [DOI: 10.1186/s40816-016-0019-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|
22
|
Lovelace ES, Polyak SJ. Natural Products as Tools for Defining How Cellular Metabolism Influences Cellular Immune and Inflammatory Function during Chronic Infection. Viruses 2015; 7:6218-32. [PMID: 26633463 PMCID: PMC4690857 DOI: 10.3390/v7122933] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Revised: 11/13/2015] [Accepted: 11/19/2015] [Indexed: 12/21/2022] Open
Abstract
Chronic viral infections like those caused by hepatitis C virus (HCV) and human immunodeficiency virus (HIV) cause disease that establishes an ongoing state of chronic inflammation. While there have been tremendous improvements towards curing HCV with directly acting antiviral agents (DAA) and keeping HIV viral loads below detection with antiretroviral therapy (ART), there is still a need to control inflammation in these diseases. Recent studies indicate that many natural products like curcumin, resveratrol and silymarin alter cellular metabolism and signal transduction pathways via enzymes such as adenosine monophosphate kinase (AMPK) and mechanistic target of rapamycin (mTOR), and these pathways directly influence cellular inflammatory status (such as NF-κB) and immune function. Natural products represent a vast toolkit to dissect and define how cellular metabolism controls cellular immune and inflammatory function.
Collapse
Affiliation(s)
- Erica S Lovelace
- Department of Laboratory Medicine, University of Washington, Seattle, WA 98195, USA.
| | - Stephen J Polyak
- Department of Laboratory Medicine, University of Washington, Seattle, WA 98195, USA.
- Department of Microbiology, University of Washington, Seattle, WA 98195, USA.
- Department of Global Health, University of Washington, Seattle, WA 98195, USA.
| |
Collapse
|
23
|
Raja HA, Kaur A, El-Elimat T, Figueroa M, Kumar R, Deep G, Agarwal R, Faeth SH, Cech NB, Oberlies NH. Phylogenetic and chemical diversity of fungal endophytes isolated from Silybum marianum (L) Gaertn. (milk thistle). Mycology 2015; 6:8-27. [PMID: 26000195 PMCID: PMC4409047 DOI: 10.1080/21501203.2015.1009186] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2014] [Accepted: 01/13/2015] [Indexed: 01/30/2023] Open
Abstract
Use of the herb milk thistle (Silybum marianum) is widespread, and its chemistry has been studied for over 50 years. However, milk thistle endophytes have not been studied previously for their fungal and chemical diversity. We examined the fungal endophytes inhabiting this medicinal herb to determine: (1) species composition and phylogenetic diversity of fungal endophytes; (2) chemical diversity of secondary metabolites produced by these organisms; and (3) cytotoxicity of the pure compounds against the human prostate carcinoma (PC-3) cell line. Forty-one fungal isolates were identified from milk thistle comprising 25 operational taxonomic units based on BLAST search via GenBank using published authentic sequences from nuclear ribosomal internal transcribed spacer sequence data. Maximum likelihood analyses of partial 28S rRNA gene showed that these endophytes had phylogenetic affinities to four major classes of Ascomycota, the Dothideomycetes, Sordariomycetes, Eurotiomycetes, and Leotiomycetes. Chemical studies of solid-substrate fermentation cultures led to the isolation of four new natural products. In addition, 58 known secondary metabolites, representing diverse biosynthetic classes, were isolated and characterized using a suite of nuclear magnetic resonance and mass spectrometry techniques. Selected pure compounds were tested against the PC-3 cell line, where six compounds displayed cytotoxicity.
Collapse
Affiliation(s)
- Huzefa A. Raja
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, NC27402, USA
| | - Amninder Kaur
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, NC27402, USA
| | - Tamam El-Elimat
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, NC27402, USA
| | - Mario Figueroa
- Facultad de Química, Universidad Nacional Autónoma de México, Mexico, DF04510, Mexico
| | - Rahul Kumar
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Denver, Aurora, CO80045, USA
| | - Gagan Deep
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Denver, Aurora, CO80045, USA
| | - Rajesh Agarwal
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Denver, Aurora, CO80045, USA
| | - Stanley H. Faeth
- Department of Biology, University of North Carolina at Greensboro, Greensboro, NC27402, USA
| | - Nadja B. Cech
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, NC27402, USA
| | - Nicholas H. Oberlies
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, NC27402, USA
| |
Collapse
|
24
|
Yang Z, Zhuang L, Lu Y, Xu Q, Chen X. Effects and tolerance of silymarin (milk thistle) in chronic hepatitis C virus infection patients: a meta-analysis of randomized controlled trials. BIOMED RESEARCH INTERNATIONAL 2014; 2014:941085. [PMID: 25247194 PMCID: PMC4163440 DOI: 10.1155/2014/941085] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2014] [Accepted: 08/06/2014] [Indexed: 02/08/2023]
Abstract
OBJECTIVE This study aimed to evaluate the efficacy and safety of silymarin on chronic hepatitis C virus- (HCV-) infected patients. METHODS Randomized controlled trials (RCTs) of silymarin in chronic HCV-infected patients up to April 1, 2014 were systematically identified in PubMed, Ovid, Web of Science, and Cochrane Library databases. RESULTS A total of 222 and 167 patients in five RCTs were randomly treated with silymarin (or intravenous silibinin) and placebo, respectively. Serum HCV RNA relatively decreased in patients treated with silymarin compared with those administered with placebo, but no significance was found (P = 0.09). Meta-analysis of patients orally treated with silymarin indicated that the changes of HCV RNA are similar in the two groups (P = 0.19). The effect on alanine aminotransferase (ALT) of oral silymarin is not different from that of placebo (P = 0.45). Improvements in quality-of-life (Short Form-36) in both silymarin and placebo recipients were impressive but relatively identical (P = 0.09). CONCLUSION Silymarin is well tolerated in chronic HCV-infected patients. However, no evidence of salutary effects of oral silymarin has yet been reported based on intermediate endpoints (ALT and HCV RNA) in this population. Moreover, intravenous administration of silymarin should be further studied.
Collapse
Affiliation(s)
- Zongguo Yang
- Shanghai Public Health Clinical Center Affiliated to Fudan University, No. 2901, Caolang Road, Jinshan District, Shanghai 201508, China
- Key Laboratory of Infectious Diseases of State Administration of Traditional Chinese Medicine (Clinical Base), Shanghai 201508, China
| | - Liping Zhuang
- Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Yunfei Lu
- Shanghai Public Health Clinical Center Affiliated to Fudan University, No. 2901, Caolang Road, Jinshan District, Shanghai 201508, China
- Key Laboratory of Infectious Diseases of State Administration of Traditional Chinese Medicine (Clinical Base), Shanghai 201508, China
| | - Qingnian Xu
- Shanghai Public Health Clinical Center Affiliated to Fudan University, No. 2901, Caolang Road, Jinshan District, Shanghai 201508, China
- Key Laboratory of Infectious Diseases of State Administration of Traditional Chinese Medicine (Clinical Base), Shanghai 201508, China
| | - Xiaorong Chen
- Shanghai Public Health Clinical Center Affiliated to Fudan University, No. 2901, Caolang Road, Jinshan District, Shanghai 201508, China
- Key Laboratory of Infectious Diseases of State Administration of Traditional Chinese Medicine (Clinical Base), Shanghai 201508, China
| |
Collapse
|
25
|
Mathew S, Faheem M, Archunan G, Ilyas M, Begum N, Jahangir S, Qadri I, Qahtani MA, Mathew S. In silico studies of medicinal compounds against hepatitis C capsid protein from north India. Bioinform Biol Insights 2014; 8:159-168. [PMID: 25002815 PMCID: PMC4076477 DOI: 10.4137/bbi.s15211] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2014] [Revised: 05/20/2014] [Accepted: 05/21/2014] [Indexed: 02/07/2023] Open
Abstract
Hepatitis viral infection is a leading cause of chronic hepatitis, cirrhosis, and hepatocellular carcinoma (HCC). Over one million people are estimated to be persistently infected with hepatitis C virus (HCV) worldwide. As capsid core protein is the key element in spreading HCV; hence, it is considered to be the superlative target of antiviral compounds. Novel drug inhibitors of HCV are in need to complement or replace the current treatments such as pegylated interferon's and ribavirin as they are partially booming and beset with various side effects. Our study was conducted to predict 3D structure of capsid core protein of HCV from northern part of India. Core, the capsid protein of HCV, handles the assembly and packaging of HCV RNA genome and is the least variable of all the ten HCV proteins among the six HCV genotypes. Therefore, we screened four phytochemicals inhibitors that are known to disrupt the interactions of core and other HCV proteins such as (a) epigallocatechin gallate (EGCG), (b) ladanein, (c) naringenin, and (d) silybin extracted from medicinal plants; targeted against active site of residues of HCV-genotype 3 (G3) (Q68867) and its subtypes 3b (Q68861) and 3g (Q68865) from north India. To study the inhibitory activity of the recruited flavonoids, we conducted a quantitative structure-activity relationship (QSAR). Furthermore, docking interaction suggests that EGCG showed a maximum number of hydrogen bond (H-bond) interactions with all the three modeled capsid proteins with high interaction energy followed by naringenin and silybin. Thus, our results strongly correlate the inhibitory activity of the selected bioflavonoid. Finally, the dynamic predicted capsid protein molecule of HCV virion provides a general avenue to target structure-based antiviral compounds that support the hypothesis that the screened inhibitors for viral capsid might constitute new class of potent agents but further confirmation is necessary using in vitro and in vivo studies.
Collapse
Affiliation(s)
- Shilu Mathew
- Post Graduate Department of Biotechnology, Jamal Mohamed College, Tiruchirappalli, India
- Center of Excellence in Genomic Medicine Research, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Animal Science, Bharathidasan University, Tiruchirappalli, India
| | - Muhammad Faheem
- Department of Biochemistry, King Abdul Aziz University, Jeddah, Saudi Arabia
| | | | - Muhammad Ilyas
- Post Graduate Department of Botany, Jamal Mohamed College, Tiruchirappalli, Tamil Nadu, India
| | - Nargis Begum
- Post Graduate Department of Biotechnology, Jamal Mohamed College, Tiruchirappalli, India
| | - Syed Jahangir
- Post Graduate Department of Biotechnology, Jamal Mohamed College, Tiruchirappalli, India
| | - Ishtiaq Qadri
- King Fahd Medical Research Center, King Abdul Aziz University, Jeddah, Saudi Arabia
| | - Mohammad Al Qahtani
- Center of Excellence in Genomic Medicine Research, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Shiny Mathew
- Department of Multimedia Technology, Karunya University, Coimbatore, India
| |
Collapse
|
26
|
El-Elimat T, Raja HA, Graf TN, Faeth SH, Cech NB, Oberlies NH. Flavonolignans from Aspergillus iizukae, a fungal endophyte of milk thistle (Silybum marianum). JOURNAL OF NATURAL PRODUCTS 2014; 77:193-9. [PMID: 24456525 DOI: 10.1021/np400955q] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Silybin A (1), silybin B (2), and isosilybin A (3), three of the seven flavonolignans that constitute silymarin, an extract of the fruits of milk thistle (Silybum marianum), were detected for the first time from a fungal endophyte, Aspergillus iizukae, isolated from the surface-sterilized leaves of S. marianum. The flavonolignans were identified using a UPLC-PDA-HRMS-MS/MS method by matching retention times, HRMS, and MS/MS data with authentic reference compounds. Attenuation of flavonolignan production was observed following successive subculturing of the original flavonolignan-producing culture, as is often the case with endophytes that produce plant-based secondary metabolites. However, production of 1 and 2 resumed when attenuated spores were harvested from cultures grown on a medium to which autoclaved leaves of S. marianum were added. The cycle of attenuation followed by resumed biosynthesis of these flavonolignans was replicated in triplicate.
Collapse
Affiliation(s)
- Tamam El-Elimat
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro , Greensboro, North Carolina 27402, United States
| | | | | | | | | | | |
Collapse
|
27
|
Tarahovsky YS, Kim YA, Yagolnik EA, Muzafarov EN. Flavonoid-membrane interactions: involvement of flavonoid-metal complexes in raft signaling. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2014; 1838:1235-46. [PMID: 24472512 DOI: 10.1016/j.bbamem.2014.01.021] [Citation(s) in RCA: 109] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2013] [Revised: 01/13/2014] [Accepted: 01/17/2014] [Indexed: 02/07/2023]
Abstract
Flavonoids are polyphenolic compounds produced by plants and delivered to the human body through food. Although the epidemiological analyses of large human populations did not reveal a simple correlation between flavonoid consumption and health, laboratory investigations and clinical trials clearly demonstrate the effectiveness of flavonoids in the prevention of cardiovascular, carcinogenic, neurodegenerative and immune diseases, as well as other diseases. At present, the abilities of flavonoids in the regulation of cell metabolism, gene expression, and protection against oxidative stress are well-known, although certain biophysical aspects of their functioning are not yet clear. Most flavonoids are poorly soluble in water and, similar to lipophilic compounds, have a tendency to accumulate in biological membranes, particularly in lipid rafts, where they can interact with different receptors and signal transducers and influence their functioning through modulation of the lipid-phase behavior. In this study, we discuss the enhancement in the lipophilicity and antioxidative activity of flavonoids after their complexation with transient metal cations. We hypothesize that flavonoid-metal complexes are involved in the formation of molecular assemblies due to the facilitation of membrane adhesion and fusion, protein-protein and protein-membrane binding, and other processes responsible for the regulation of cell metabolism and protection against environmental hazards.
Collapse
Affiliation(s)
- Yury S Tarahovsky
- Institute of Theoretical and Experimental Biophysics, RAS, Pushchino, Moscow Region 142290, Russia.
| | - Yuri A Kim
- Institute of Cell Biophysics, RAS, Pushchino, Moscow Region 142290, Russia
| | | | | |
Collapse
|
28
|
McClure J, Margineantu DH, Sweet IR, Polyak SJ. Inhibition of HIV by Legalon-SIL is independent of its effect on cellular metabolism. Virology 2014; 449:96-103. [PMID: 24418542 PMCID: PMC3909448 DOI: 10.1016/j.virol.2013.11.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2013] [Revised: 09/22/2013] [Accepted: 11/01/2013] [Indexed: 01/18/2023]
Abstract
In this report, we further characterized the effects of silibinin (SbN), derived from milk thistle extract, and Legalon-SIL (SIL), a water-soluble derivative of SbN, on T cell metabolism and HIV infection. We assessed the effects of SbN and SIL on peripheral blood mononuclear cells (PBMC) and CEM-T4 cells in terms of cellular growth, ATP content, metabolism, and HIV infection. SIL and SbN caused a rapid and reversible (upon removal) decrease in cellular ATP levels, which was associated with suppression of mitochondrial respiration and glycolysis. SbN, but not SIL inhibited glucose uptake. Exposure of T cells to SIL (but not SbN or metabolic inhibitors) during virus adsorption blocked HIV infection. Thus, both SbN and SIL rapidly perturb T cell metabolism in vitro, which may account for its anti-inflammatory and anti-proliferative effects that arise with prolonged exposure of cells. However, the metabolic effects are not involved in SIL's unique ability to block HIV entry.
Collapse
Affiliation(s)
- Janela McClure
- Department of Laboratory Medicine, University of Washington, Seattle, WA, United States
| | - Daciana H Margineantu
- Department of Clinical Research, Fred Hutchinson Cancer Research Center, Seattle, WA, United States
| | - Ian R Sweet
- Department of Medicine (Division of Metabolism, Endocrinology, and Nutrition), University of Washington, Seattle, WA, United States
| | - Stephen J Polyak
- Department of Laboratory Medicine, University of Washington, Seattle, WA, United States; Department of Global Health, University of Washington, Seattle, WA, United States.
| |
Collapse
|
29
|
Siegel AB, Narayan R, Rodriguez R, Goyal A, Jacobson JS, Kelly K, Ladas E, Lunghofer PJ, Hansen RJ, Gustafson DL, Flaig TW, Tsai WY, Wu DPH, Lee V, Greenlee H. A phase I dose-finding study of silybin phosphatidylcholine (milk thistle) in patients with advanced hepatocellular carcinoma. Integr Cancer Ther 2014; 13:46-53. [PMID: 23757319 PMCID: PMC3866213 DOI: 10.1177/1534735413490798] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
PURPOSE To determine the maximum tolerated dose per day of silybin phosphatidylcholine (Siliphos) in patients with advanced hepatocellular carcinoma (HCC) and hepatic dysfunction. EXPERIMENTAL DESIGN Patients with advanced HCC not eligible for other therapies based on poor hepatic function were enrolled in a phase I study of silybin phosphatidylcholine. A standard phase I design was used with 4 planned cohorts, dose escalating from 2, 4, 8, to 12 g per day in divided doses for 12 weeks. RESULTS Three participants enrolled in this single institution trial. All enrolled subjects consumed 2 g per day of study agent in divided doses. Serum concentrations of silibinin and silibinin glucuronide increased within 1 to 3 weeks. In all 3 patients, liver function abnormalities and tumor marker α-fetoprotein progressed, but after day 56 the third patient showed some improvement in liver function abnormalities and inflammatory biomarkers. All 3 participants died within 23 to 69 days of enrolling into the trial, likely from hepatic failure, but it could not be ruled out that deaths were possibly due to the study drug. CONCLUSION Short-term administration of silybin phosphatidylcholine in patients with advanced HCC resulted in detectable increases in silibinin and its metabolite, silibinin glucuronide. The maximum tolerated dose could not be established. Since patients died soon after enrollment, this patient population may have been too ill to benefit from an intervention designed to improve liver function tests.
Collapse
Affiliation(s)
| | - Rupa Narayan
- Stanford University Medical Center, Palo Alto, CA,
USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Carreño V. Review article: management of chronic hepatitis C in patients with contraindications to anti-viral therapy. Aliment Pharmacol Ther 2014; 39:148-62. [PMID: 24279580 DOI: 10.1111/apt.12562] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2013] [Revised: 08/13/2013] [Accepted: 11/05/2013] [Indexed: 12/15/2022]
Abstract
BACKGROUND There are patients with chronic hepatitis C who are not eligible for the current interferon-based therapies or refuse to be treated due to secondary effects. AIM To provide information on alternative treatments for the management of these patients. METHODS A PubMed search was performed to identify relevant literature. Search terms included hepatitis C virus, anti-inflammatory treatment, antioxidant, natural products and alternative treatment, alone or in combination. Additional publications were identified using the references cited by primary and review articles. RESULTS Several approaches, such as iron depletion (phlebotomy), treatment with ursodeoxycholic acid or glycyrrhizin, have anti-inflammatory and/or anti-fibrotic effects. Life interventions like weight loss, exercise and coffee consumption are associated with a biochemical improvement. Other alternatives (ribavirin monotherapy, amantadine, silibinin, vitamin supplementation, etc.) do not have any beneficial effect or need to be tested in larger clinical studies. CONCLUSION There are therapeutic strategies and lifestyle interventions that can be used to improve liver damage in patients with chronic hepatitis C who cannot receive or refuse interferon-based treatments.
Collapse
Affiliation(s)
- V Carreño
- Fundación Estudio Hepatitis Virales, Madrid, Spain
| |
Collapse
|
31
|
Blaising J, Lévy PL, Gondeau C, Phelip C, Varbanov M, Teissier E, Ruggiero F, Polyak SJ, Oberlies NH, Ivanovic T, Boulant S, Pécheur EI. Silibinin inhibits hepatitis C virus entry into hepatocytes by hindering clathrin-dependent trafficking. Cell Microbiol 2013; 15:1866-82. [PMID: 23701235 DOI: 10.1111/cmi.12155] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2012] [Revised: 05/01/2013] [Accepted: 05/20/2013] [Indexed: 12/17/2022]
Abstract
Hepatitis C virus (HCV) is a global health concern infecting 170 million people worldwide. Previous studies indicate that the extract from milk thistle known as silymarin and its main component silibinin inhibit HCV infection. Here we investigated the mechanism of anti-HCV action of silymarin-derived compounds at the molecular level. By using live-cell confocal imaging, single particle tracking, transmission electron microscopy and biochemical approaches on HCV-infected human hepatoma cells and primary hepatocytes, we show that silibinin potently inhibits HCV infection and hinders HCV entry by slowing down trafficking through clathrin-coated pits and vesicles. Detailed analyses revealed that silibinin altered the formation of both clathrin-coated pits and vesicles in cells and caused abnormal uptake and trafficking of transferrin, a well-known cargo of the clathrin endocytic pathway. Silibinin also inhibited infection by other viruses that enter cells by clathrin-mediated endocytosis including reovirus, vesicular stomatitis and influenza viruses. Our study demonstrates that silibinin inhibits HCV early steps of infection by affecting endosomal trafficking of virions. It provides new insights into the molecular mechanisms of action of silibinin against HCV entry and also suggests that silibinin is a potential broad-spectrum antiviral therapy.
Collapse
Affiliation(s)
- Julie Blaising
- UMR CNRS 5086, IBCP, Lyon, France; UMR Inserm U1052/CNRS 5286, Cancer Research Center of Lyon, University of Lyon, Lyon, France
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Phenothiazines inhibit hepatitis C virus entry, likely by increasing the fluidity of cholesterol-rich membranes. Antimicrob Agents Chemother 2013; 57:2571-81. [PMID: 23529728 DOI: 10.1128/aac.02593-12] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Despite recent progress in the development of direct-acting antiviral agents against hepatitis C virus (HCV), more effective therapies are still urgently needed. We and others previously identified three phenothiazine compounds as potent HCV entry inhibitors. In this study, we show that phenothiazines inhibit HCV entry at the step of virus-host cell fusion, by intercalating into cholesterol-rich domains of the target membrane and increasing membrane fluidity. Perturbation of the alignment/packing of cholesterol in lipid membranes likely increases the energy barrier needed for virus-host fusion. A screening assay based on the ability of molecules to selectively increase the fluidity of cholesterol-rich membranes was subsequently developed. One compound that emerged from the library screen, topotecan, is able to very potently inhibit the fusion of liposomes with cell culture-derived HCV (HCVcc). These results yield new insights into HCV infection and provide a platform for the identification of new HCV inhibitors.
Collapse
|
33
|
Esser-Nobis K, Romero-Brey I, Ganten TM, Gouttenoire J, Harak C, Klein R, Schemmer P, Binder M, Schnitzler P, Moradpour D, Bartenschlager R, Polyak SJ, Stremmel W, Penin F, Eisenbach C, Lohmann V. Analysis of hepatitis C virus resistance to silibinin in vitro and in vivo points to a novel mechanism involving nonstructural protein 4B. Hepatology 2013; 57:953-963. [PMID: 23322644 PMCID: PMC3593759 DOI: 10.1002/hep.26260] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2012] [Accepted: 11/09/2012] [Indexed: 01/07/2023]
Abstract
UNLABELLED Intravenous silibinin (SIL) is an approved therapeutic that has recently been applied to patients with chronic hepatitis C, successfully clearing hepatitis C virus (HCV) infection in some patients even in monotherapy. Previous studies suggested multiple antiviral mechanisms of SIL; however, the dominant mode of action has not been determined. We first analyzed the impact of SIL on replication of subgenomic replicons from different HCV genotypes in vitro and found a strong inhibition of RNA replication for genotype 1a and genotype 1b. In contrast, RNA replication and infection of genotype 2a were minimally affected by SIL. To identify the viral target of SIL we analyzed resistance to SIL in vitro and in vivo. Selection for drug resistance in cell culture identified a mutation in HCV nonstructural protein (NS) 4B conferring partial resistance to SIL. This was corroborated by sequence analyses of HCV from a liver transplant recipient experiencing viral breakthrough under SIL monotherapy. Again, we identified distinct mutations affecting highly conserved amino acid residues within NS4B, which mediated phenotypic SIL resistance also in vitro. Analyses of chimeric viral genomes suggest that SIL might target an interaction between NS4B and NS3/4A. Ultrastructural studies revealed changes in the morphology of viral membrane alterations upon SIL treatment of a susceptible genotype 1b isolate, but not of a resistant NS4B mutant or genotype 2a, indicating that SIL might interfere with the formation of HCV replication sites. CONCLUSION Mutations conferring partial resistance to SIL treatment in vivo and in cell culture argue for a mechanism involving NS4B. This novel mode of action renders SIL an attractive candidate for combination therapies with other directly acting antiviral drugs, particularly in difficult-to-treat patient cohorts.
Collapse
Affiliation(s)
- Katharina Esser-Nobis
- Department of Infectious Diseases, Molecular Virology, University of Heidelberg, Germany
| | - Inés Romero-Brey
- Department of Infectious Diseases, Molecular Virology, University of Heidelberg, Germany
| | - Tom M. Ganten
- Department of Gastroenterology, University of Heidelberg, Heidelberg, Germany
| | - Jérôme Gouttenoire
- Division of Gastroenterology and Hepatology, Centre Hospitalier Universitaire Vaudois, University of Lausanne, Lausanne, Switzerland
| | - Christian Harak
- Department of Infectious Diseases, Molecular Virology, University of Heidelberg, Germany
| | - Rahel Klein
- Department of Infectious Diseases, Molecular Virology, University of Heidelberg, Germany
| | - Peter Schemmer
- Department of Surgery, University of Heidelberg, Heidelberg, Germany
| | - Marco Binder
- Department of Infectious Diseases, Molecular Virology, University of Heidelberg, Germany
| | - Paul Schnitzler
- Department of Infectious Diseases, Virology, University of Heidelberg, Heidelberg, Germany
| | - Darius Moradpour
- Division of Gastroenterology and Hepatology, Centre Hospitalier Universitaire Vaudois, University of Lausanne, Lausanne, Switzerland
| | - Ralf Bartenschlager
- Department of Infectious Diseases, Molecular Virology, University of Heidelberg, Germany
- German Centre for Infection Research, Heidelberg University
| | - Stephen J. Polyak
- Department of Laboratory Medicine, University of Washington, Seattle, Washington, United States of America
| | - Wolfgang Stremmel
- Department of Gastroenterology, University of Heidelberg, Heidelberg, Germany
| | - Francois Penin
- Bases Moléculaires et Structurales des Systèmes Infectieux, IBCP, Université Lyon 1, Lyon, France
| | - Christoph Eisenbach
- Department of Gastroenterology, University of Heidelberg, Heidelberg, Germany
| | - Volker Lohmann
- Department of Infectious Diseases, Molecular Virology, University of Heidelberg, Germany
| |
Collapse
|
34
|
Safety and anti-HCV effect of prolonged intravenous silibinin in HCV genotype 1 subjects in the immediate liver transplant period. J Hepatol 2013; 58:421-6. [PMID: 23073223 DOI: 10.1016/j.jhep.2012.10.009] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2012] [Revised: 10/01/2012] [Accepted: 10/08/2012] [Indexed: 01/16/2023]
Abstract
BACKGROUND & AIMS Reinfection of the graft is the rule in patients with HCV cirrhosis undergoing liver transplantation, and HCV-RNA reaches pre-transplantation levels within the first month. Short-term intravenous silibinin monotherapy is safe and shows a potent in vivo anti-HCV effect. We aimed at evaluating the safety and antiviral effect of prolonged intravenous silibinin, started immediately before liver transplantation. METHODS Single centre, prospective, pilot study, to assess the safety and effect on HCV-RNA kinetics during at least 21 days of intravenous silibinin monotherapy (20 mg/kg/day) in 9 consecutive HCV genotype 1 subjects, in comparison to a control, non-treated group of 7 consecutive prior transplanted subjects under the same immunosuppressive regimen (basiliximab, steroids, delayed tacrolimus, micophenolate). RESULTS Intravenous silibinin led to significant, maintained and progressive HCV-RNA decreases (mean HCV-RNA drop at week 3, -4.1 ± 1.3 log(10)IU/ml), and lack of viral breakthrough during administration. Four patients (44%) reached negative HCV-RNA, maintained during silibinin treatment, vs. none in the control group, but HCV-RNA relapsed in all of them after a median of 21 days (16-28), following silibinin withdrawal. Partial responders to silibinin showed marked decreases in HCV-RNA when compared to controls, but lower than complete responders. There were no clinical adverse effects, and silibinin led to asymptomatic transient hyperbilirubinemia (week 2, 4.2 ± 2.2 vs. 2.5 ± 3.6 mg/dl; p=0.02). CONCLUSIONS Prolonged intravenous silibinin monotherapy was safe in the immediate liver transplantation period, leading to a potent and time dependent antiviral effect and lack of HCV-RNA breakthrough during administration. However, HCV-RNA rebounded after withdrawal, and silibinin monotherapy did not avoid reinfection of the graft.
Collapse
|
35
|
Polyak SJ, Ferenci P, Pawlotsky JM. Hepatoprotective and antiviral functions of silymarin components in hepatitis C virus infection. Hepatology 2013; 57:1262-1271. [PMID: 23213025 PMCID: PMC3594650 DOI: 10.1002/hep.26179] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2012] [Accepted: 09/05/2012] [Indexed: 12/21/2022]
Affiliation(s)
- Stephen J Polyak
- Department of Laboratory Medicine, University of Washington, Seattle, WA 98104, USA.
| | | | | |
Collapse
|
36
|
Interplay between Hepatitis C Virus and Redox Cell Signaling. Int J Mol Sci 2013; 14:4705-21. [PMID: 23443167 PMCID: PMC3634496 DOI: 10.3390/ijms14034705] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2013] [Revised: 02/13/2013] [Accepted: 02/17/2013] [Indexed: 12/14/2022] Open
Abstract
Hepatitis C virus (HCV) infects approximately 3% of the world’s population. Currently licensed treatment of HCV chronic infection with pegylated-interferon-α and ribavirin, is not fully effective against all HCV genotypes and is associated to severe side effects. Thus, development of novel therapeutics and identification of new targets for treatment of HCV infection is necessary. Current opinion is orienting to target antiviral drug discovery to the host cell pathways on which the virus relies, instead of against viral structures. Many intracellular signaling pathways manipulated by HCV for its own replication are finely regulated by the oxido-reductive (redox) state of the host cell. At the same time, HCV induces oxidative stress that has been found to affect both virus replication as well as progression and severity of HCV infection. A dual role, positive or negative, for the host cell oxidized conditions on HCV replication has been reported so far. This review examines current information about the effect of oxidative stress on HCV life cycle and the main redox-regulated intracellular pathways activated during HCV infection and involved in its replication.
Collapse
|
37
|
Sy-Cordero AA, Graf TN, Runyon SP, Wani MC, Kroll DJ, Agarwal R, Brantley SJ, Paine MF, Polyak SJ, Oberlies NH. Enhanced bioactivity of silybin B methylation products. Bioorg Med Chem 2013; 21:742-7. [PMID: 23260576 PMCID: PMC3630461 DOI: 10.1016/j.bmc.2012.11.035] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2012] [Revised: 11/14/2012] [Accepted: 11/19/2012] [Indexed: 11/23/2022]
Abstract
Flavonolignans from milk thistle (Silybum marianum) have been investigated for their cellular modulatory properties, including cancer chemoprevention and hepatoprotection, as an extract (silymarin), as partially purified mixtures (silibinin and isosilibinin), and as pure compounds (a series of seven isomers). One challenge with the use of these compounds in vivo is their relatively short half-life due to conjugation, particularly glucuronidation. In an attempt to generate analogues with improved in vivo properties, particularly reduced metabolic liability, a semi-synthetic series was prepared in which the hydroxy groups of silybin B were alkylated. A total of five methylated analogues of silybin B were synthesized using standard alkylation conditions (dimethyl sulfate and potassium carbonate in acetone), purified using preparative HPLC, and elucidated via spectroscopy and spectrometry. Of the five, one was monomethylated (3), one was dimethylated (4), two were trimethylated (2 and 6), and one was tetramethylated (5). The relative potency of all compounds was determined in a 72 h growth-inhibition assay against a panel of three prostate cancer cell lines (DU-145, PC-3, and LNCaP) and a human hepatoma cell line (Huh7.5.1) and compared to natural silybin B. Compounds also were evaluated for inhibition of both cytochrome P450 2C9 (CYP2C9) activity in human liver microsomes and hepatitis C virus infection in Huh7.5.1 cells. The monomethyl and dimethyl analogues were shown to have enhanced activity in terms of cytotoxicity, CYP2C9 inhibitory potency, and antiviral activity (up to 6-fold increased potency) compared to the parent compound, silybin B. In total, these data suggested that methylation of flavonolignans can increase bioactivity.
Collapse
Affiliation(s)
- Arlene A. Sy-Cordero
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, NC 27402, USA
| | - Tyler N. Graf
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, NC 27402, USA
| | - Scott P. Runyon
- Center for Organic and Medicinal Chemistry, Research Triangle Institute, Research Triangle Park, NC 27709, USA
| | - Mansukh C. Wani
- Natural Products Laboratory, Research Triangle Institute, Research Triangle Park, NC 27709, USA
| | - David J. Kroll
- Department of Pharmaceutical Sciences, BRITE, North Carolina Central University, Durham, NC 27707, USA
| | - Rajesh Agarwal
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Colorado Denver, Aurora, CO 80045, USA
| | - Scott J. Brantley
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Mary F. Paine
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Stephen J. Polyak
- Departments of Laboratory Medicine and Global Health, University of Washington, Seattle, WA, 98104, USA
| | - Nicholas H. Oberlies
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, NC 27402, USA
| |
Collapse
|
38
|
Abstract
Mathematical modeling of hepatitis C viral kinetics has been an important tool in understanding hepatitis C virus (HCV) infection dynamics and in estimating crucial in vivo parameters characterizing the effectiveness of HCV therapy. Because of the introduction of direct-acting antiviral agents, there is a need to extend previous models so as to understand, characterize, and compare various new HCV treatment regimens. Here we review recent modeling efforts in this direction.
Collapse
Affiliation(s)
- Anushree Chatterjee
- Theoretical Biology and Biophysics, Los Alamos National Laboratory, NM 87545, USA,Center for Nonlinear Studies, Los Alamos National Laboratory, NM 87545, USA
| | - Patrick F. Smith
- Clinical Pharmacology, Pharma Research and Early Development, Roche, Nutley, NJ, USA
| | - Alan S. Perelson
- Theoretical Biology and Biophysics, Los Alamos National Laboratory, NM 87545, USA,Corresponding author.
| |
Collapse
|
39
|
Abstract
Hepatitis C Virus (HCV) Genotype 2 accounts for 10% of the patients with chronic HCV worldwide. The current standard of care (SOC) in these patients is 24 weeks of Pegylated Interferon (PEG-IFN) plus Ribavirin (RBV), with sustained virological response rates (SVR) of 80-90%. However, there are subgroups of patients with HCV-2, such as those with advanced fibrosis/cirrhosis, in whom SVR rates are still suboptimal, and highly responsive groups in whom SVR rates reach 95%. Treatment optimization is necessary to maximize efficacy in the former group and reduce treatment-related side effects in the latter. Unfortunately, any attempt to modify the duration or dosing of the SOC according to baseline factors has been disappointing and should not be continued at present. On the other hand on-treatment HCV RNA kinetics are fundamental for individualized treatment regimens because achieving negative HCV RNA at week 4 (rapid virological response, RVR) is the key factor when the duration of PEG-IFN/RBV is tailored in HCV-2 patients. Several studies have shown that treatment can be shortened to 16 weeks in HCV-2 patients with a RVR, without increasing the risk of post-treatment relapse, thus increasing tolerance to treatment while reducing healthcare costs. On the other hand, patients who do not achieve a RVR correspond to a population of difficult-to-cure HCV-2 patients who need alternative treatment strategies which are not yet available.
Collapse
Affiliation(s)
- Eleonora Grassi
- A.M. and A. Migliavacca Center for Liver Disease, First Division of Gastroenterology, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, Università degli Studi di Milano, Milan, Italy
| | | |
Collapse
|
40
|
Hackett ES, Twedt DC, Gustafson DL. Milk thistle and its derivative compounds: a review of opportunities for treatment of liver disease. J Vet Intern Med 2013; 27:10-6. [PMID: 23140176 DOI: 10.1111/jvim.12002] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2012] [Revised: 08/18/2012] [Accepted: 09/18/2012] [Indexed: 02/06/2023] Open
Abstract
Milk thistle extracts have been used as a "liver tonic" for centuries. In recent years, silibinin, the active ingredient in milk thistle extracts, has been studied both in vitro and in vivo to evaluate the beneficial effects in hepatic disease. Silibinin increases antioxidant concentrations and improves outcomes in hepatic diseases resulting from oxidant injury. Silibinin treatment has been associated with protection against hepatic toxins, and also has resulted in decreased hepatic inflammation and fibrosis. Limited information currently is available regarding silibinin use in veterinary medicine. Future study is justified to evaluate dose, kinetics, and treatment effects in domestic animals.
Collapse
Affiliation(s)
- E S Hackett
- Department of Clinical Sciences, Colorado State University, Fort Collins, CO 80523, USA.
| | | | | |
Collapse
|
41
|
Souto EB, Severino P, Basso R, Santana MHA. Encapsulation of antioxidants in gastrointestinal-resistant nanoparticulate carriers. Methods Mol Biol 2013; 1028:37-46. [PMID: 23740112 DOI: 10.1007/978-1-62703-475-3_3] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Reactive oxygen species (ROS) are known to cause several human pathologies. For this reason, antioxidants have gained utmost importance because of their potential as prophylactic and therapeutic agents in many diseases. Examples of their application include their use in diabetic patients, as aging drugs, in cancer diseases, Parkinson's, Alzheimer's, autoimmune disorders, and also in inflammation. Antioxidants have limited absorption profiles, therefore low bioavailability and low concentrations at the target site. Efforts have been done towards loading antioxidant molecules in advanced nanoparticulate carriers, e.g., liposomes, polymeric nanoparticles, solid lipid nanoparticles, self-emulsifying drug delivery system. Examples of -successful achievements include the encapsulation of drugs and other active ingredients, e.g., coenzyme Q10, vitamin E and vitamin A, resveratrol and polyphenols, curcumin, lycopene, silymarin, and superoxide dismutase. This review focuses on the comprehensive analysis of using nanoparticulate carriers for loading these molecules for oral administration.
Collapse
Affiliation(s)
- Eliana B Souto
- Faculty of Health Sciences, Centre of Genetics and Biotechnology, Institute of Biotechnology and Bioengineering, Fernando Pessoa University, Porto, Portugal
| | | | | | | |
Collapse
|
42
|
Sy-Cordero AA, Day CS, Oberlies NH. Absolute configuration of isosilybin A by X-ray crystallography of the heavy atom analogue 7-(4-Bromobenzoyl)isosilybin A. JOURNAL OF NATURAL PRODUCTS 2012; 75:1879-81. [PMID: 23116206 PMCID: PMC3620721 DOI: 10.1021/np3005369] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Isosilybin A (1) is one of the major flavonolignans that constitute silymarin, an extract of the fruits (achenes) of milk thistle (Silybum marianum). The chemistry of the Silybum flavonolignans has been studied for over four decades, and the absolute configuration of 1 has been determined previously by electronic circular dichroism and X-ray crystallography via correlating the relative configuration of the phenylpropanoid moiety to the established absolute configuration of the 3-hydroxyflavanone portion of the molecule. Herein we report the X-ray crystallographic structure of the product of the reaction of 1 with 4-bromobenzoyl chloride, and, thus, the absolute configuration of 1 was established as (2R, 3R, 7″R, 8″R) directly via X-ray crystallography of an analogue that incorporated a heavy atom. The results were consistent with previously reported assignments and verified the absolute configuration of the diastereoisomer of 1, isosilybin B, and the related diastereoisomeric regioisomers, silybin A and silybin B.
Collapse
Affiliation(s)
- Arlene A. Sy-Cordero
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, NC 27402
| | - Cynthia S. Day
- Department of Chemistry, Wake Forest University, Winston-Salem, NC 27109
| | - Nicholas H. Oberlies
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, NC 27402
| |
Collapse
|
43
|
Qiu LP, Chen KP. Anti-HBV agents derived from botanical origin. Fitoterapia 2012; 84:140-57. [PMID: 23164603 DOI: 10.1016/j.fitote.2012.11.003] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2012] [Revised: 10/29/2012] [Accepted: 11/04/2012] [Indexed: 01/16/2023]
Abstract
There are 350,000 hepatitis B virus (HBV) carriers all over the world. Chronic HBV infection is at a high risk of developing liver cirrhosis and hepatocelluar carcinoma (HCC), and heavily threatened people's health. Two kinds of drugs approved by FDA for anti-HBV therapy are immunomodulators (interferon α, pegylated-interferon α) and nucleos(t)ide analogues (lamivudine, adefovir dipivoxil, entecavir, telbivudine, and tenofovir disoproxil fumarate). These drugs have been proved to be far from being satisfactory due to their low specificity, side effects, and high rate of drug resistance. There is an urgent need to discover and develop novel effective anti-HBV drugs. With vast resources, various structures, diverse biological activities and action mechanisms, as well as abundant clinical experiences, botanical agents become a promising source of finding new anti-HBV drugs. This review summarizes the recent research and development of anti-HBV agents derived from botanical origin on their sources and active components, inhibitory effects and possible toxicities, as well as action targets and mechanisms, and also addresses the advantages and the existing shortcomings in the development of botanical inhibitors. This information may not only broaden the knowledge of anti-HBV therapy, and offer possible alternative or substitutive drugs for CHB patients, but also provides considerable information for developing new safe and effective anti-HBV drugs.
Collapse
Affiliation(s)
- Li-Peng Qiu
- Institute of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu Province, 212013, China
| | | |
Collapse
|
44
|
Calland N, Dubuisson J, Rouillé Y, Séron K. Hepatitis C virus and natural compounds: a new antiviral approach? Viruses 2012; 4:2197-217. [PMID: 23202460 PMCID: PMC3497048 DOI: 10.3390/v4102197] [Citation(s) in RCA: 97] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2012] [Revised: 10/02/2012] [Accepted: 10/10/2012] [Indexed: 12/18/2022] Open
Abstract
Hepatitis C is a major global health burden with an estimated 160 million infected individuals worldwide. This long-term disease evolves slowly, often leading to chronicity and potentially to liver failure. There is no anti-HCV vaccine, and, until recently, the only treatment available, based on pegylated interferon and ribavirin, was partially effective, and had considerable side effects. With recent advances in the understanding of the HCV life cycle, the development of promising direct acting antivirals (DAAs) has been achieved. Their use in combination with the current treatment has led to encouraging results for HCV genotype 1 patients. However, this therapy is quite expensive and will probably not be accessible for all patients worldwide. For this reason, constant efforts are being made to identify new antiviral molecules. Recent reports about natural compounds highlight their antiviral activity against HCV. Here, we aim to review the natural molecules that interfere with the HCV life cycle and discuss their potential use in HCV therapy.
Collapse
Affiliation(s)
- Noémie Calland
- Inserm U1019, CNRS UMR8204, Center for Infection & Immunity of Lille, Institut Pasteur de Lille, Université Lille Nord de France, Lille, France.
| | | | | | | |
Collapse
|
45
|
Chatterjee A, Guedj J, Perelson AS. Mathematical modelling of HCV infection: what can it teach us in the era of direct-acting antiviral agents? Antivir Ther 2012. [PMID: 23186606 DOI: 10.3851/imp2428] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
HCV infection is a major cause of chronic liver disease and affects nearly 170 million people worldwide. Whereas the previous standard of care with pegylated interferon and ribavirin had a modest effectiveness, the recent approval of two highly potent protease inhibitors and the ongoing development of dozens of direct-acting antiviral agents (DAAs) constitute a major milestone for HCV therapy. Mathematical modelling of viral kinetics under treatment has played an instrumental role in improving our understanding of virus pathogenesis and in guiding drug development. Here, we review the current state of HCV kinetic modelling, and challenges to the standard biphasic viral decline model that arise when fitting viral kinetic models to data obtained with DAAs.
Collapse
Affiliation(s)
- Anushree Chatterjee
- Theoretical Biology and Biophysics, Los Alamos National Laboratory, Los Alamos, NM, USA
| | | | | |
Collapse
|
46
|
Polyak SJ, Oberlies NH, Pécheur EI, Dahari H, Ferenci P, Pawlotsky JM. Silymarin for HCV infection. Antivir Ther 2012; 18:141-147. [PMID: 23011959 PMCID: PMC4076489 DOI: 10.3851/imp2402] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/11/2012] [Indexed: 12/11/2022]
Abstract
Silymarin, an extract of milk thistle seeds, and silymarin-derived compounds have been considered hepatoprotective since the plant was first described in ancient times. Hepatoprotection is defined as several non-mutually exclusive biological activities including antiviral, antioxidant, anti-inflammatory and immunomodulatory functions. Despite clear evidence for silymarin-induced hepatoprotection in cell culture and animal models, evidence for beneficial effects in humans has been equivocal. This review will summarize the current state of knowledge on silymarin in the context of HCV infection. The information was collated from a recent workshop on silibinin in Germany.
Collapse
Affiliation(s)
- Stephen J Polyak
- Department of Laboratory Medicine, University of Washington, Seattle, WA, USA.
| | | | | | | | | | | |
Collapse
|
47
|
|
48
|
Blaising J, Pécheur EI. Lipids: a key for hepatitis C virus entry and a potential target for antiviral strategies. Biochimie 2012; 95:96-102. [PMID: 22884392 DOI: 10.1016/j.biochi.2012.07.016] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2012] [Accepted: 07/20/2012] [Indexed: 12/30/2022]
Abstract
Viruses have evolved to complex relationship with their host cells. Many viruses modulate the lipid composition, lipid synthesis and signaling of their host cell. Lipids are also an essential part of the life cycle of the hepatitis C virus (HCV). HCV is a major human pathogen, persistently infecting 170 million people worldwide, with no currently effective treatment available for all patients. HCV appears to make use of the host lipid metabolism and one common feature of chronic hepatitis C is the steatosis, characterized by excessive accumulation of triglycerides and lipid content in the liver. Thus, HCV lifecycle appears to be closely connected to host cell lipid metabolism, from cell entry, through viral RNA replication to viral particle production and formation/assembly. HCV particles have a unique lipid composition, certainly distinct from other viruses. In the blood of chronically-infected patients, viral particles are bound to serum lipoproteins and are thus called lipo-viro-particles. The density of these circulating viral particles is heterogeneous. Specific infectivity and fusion of low density particles are greater than those of high density particles. Lipids and association to lipoproteins therefore play a key role in HCV life cycle. The purpose of this review is to make a state of the art on recent findings on the contribution of lipids in cell entry and membrane fusion of HCV. The influence of lipids as chemically-defined entities will be analyzed, as well as the role played by cholesterol transporters and lipoprotein receptors in HCV entry and fusion. Since viral entry would constitute a key target for antiviral strategies, inhibitor molecules interacting with viral and/or cellular membranes or interfering with the function of lipid metabolism regulators of HCV entry could offer strong antiviral potential. This will be lastly discussed in this review.
Collapse
Affiliation(s)
- Julie Blaising
- UMR INSERM U1052/CNRS 5286, Centre de Recherche en Cancérologie de Lyon, Université de Lyon, Lyon cedex, France
| | | |
Collapse
|
49
|
Silibinin inhibits HIV-1 infection by reducing cellular activation and proliferation. PLoS One 2012; 7:e41832. [PMID: 22848626 PMCID: PMC3404953 DOI: 10.1371/journal.pone.0041832] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2012] [Accepted: 06/25/2012] [Indexed: 12/17/2022] Open
Abstract
Purified silymarin-derived natural products from the milk thistle plant (Silybum marianum) block hepatitis C virus (HCV) infection and inhibit T cell proliferation in vitro. An intravenous formulation of silibinin (SIL), a major component of silymarin, displays anti-HCV effects in humans and also inhibits T-cell proliferation in vitro. We show that SIL inhibited replication of HIV-1 in TZM-bl cells, PBMCs, and CEM cells in vitro. SIL suppression of HIV-1 coincided with dose-dependent reductions in actively proliferating CD19+, CD4+, and CD8+ cells, resulting in fewer CD4+ T cells expressing the HIV-1 co-receptors CXCR4 and CCR5. SIL inhibition of T-cell growth was not due to cytotoxicity measured by cell cycle arrest, apoptosis, or necrosis. SIL also blocked induction of the activation markers CD38, HLA-DR, Ki67, and CCR5 on CD4+ T cells. The data suggest that SIL attenuated cellular functions involved in T-cell activation, proliferation, and HIV-1 infection. Silymarin-derived compounds provide cytoprotection by suppressing virus infection, immune activation, and inflammation, and as such may be relevant for both HIV mono-infected and HIV/HCV co-infected subjects.
Collapse
|
50
|
Aghemo A, Bhoori S, De nicola S, Mazzaferro V, Colombo M. Failure of Intravenous Silibinin Monotherapy to Prevent Hepatitis C Genotype 2A Liver Graft Reinfection. HEPATITIS MONTHLY 2012; 12:411-4. [PMID: 22879832 PMCID: PMC3412559 DOI: 10.5812/hepatmon.6135] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2012] [Revised: 05/28/2012] [Accepted: 05/31/2012] [Indexed: 12/11/2022]
Abstract
BACKGROUND Hepatitis C virus (HCV) recurrence after orthotopic liver transplantation (OLT) remains a serious problem in the clinical management of post-oLT patients. Recently, two case reports have described successful prevention of HCV liver graft reinfection with intravenous silibinin (SIL) monotherapy in two carriers of genotype 3a and 1a/4 HCV. Based on these findings, we decided to offer such a therapy to a 65 year old woman on the oLT list. CASE PRESENTATION A 65 year old patient with HCV 2a cirrhosis, a previous relapse to PegIFn and Rbv therapy, was listed for oLT due to hepatocellular carcinoma. She started SIL monotherapy 24 hours before oLT. After an initial HCV-RnA decline following surgery,a progressive HCV RnA increase was observed. For this reason, SIL was stopped after 15 days of monotherapy. CONCLUSIONS SIL has multiple anti-HCV mechanisms of action, most of them have been characterized in vitro only. Our case report shows that the antiviral effect of SIL might be HCV genotype dependent, as recently suggested by a study, showing no effect of SIL on the HCV-2a subgenomic replicon model. our case reinforces the need for controlled studies to assess the efficacy of silibinin therapy in HCV infected patients before it can be broadly used in all clinical settings.
Collapse
Affiliation(s)
- Alessio Aghemo
- Angela Maria e Antonio Migliavacca Center for Liver Disease, First Division of Gastroenterology, Fondazione IRCCS Ca’ Granda ospedale Maggiore Policlinico, University of Milan, Milan, Italy
- Corresponding author: Alessio Aghemo, Angela Maria e Antonio Migliavacca Center for Liver Disease, First Division of Gastroenterology, Fondazione IRCCS Ca’ Granda ospedale Maggiore Policlinico, University of Milan, Via F. Sforza 35, 20122, Milan, Italy. Tel.: +39-0255035432, Fax: +39-0250320410, E-mail:
| | - Sherrie Bhoori
- Hepato-oncology Group, Department of Gastroenterology and Surgery, IRCCS national Cancer Institute, Milan, Italy
| | - Stella De nicola
- Angela Maria e Antonio Migliavacca Center for Liver Disease, First Division of Gastroenterology, Fondazione IRCCS Ca’ Granda ospedale Maggiore Policlinico, University of Milan, Milan, Italy
| | - Vincenzo Mazzaferro
- Hepato-oncology Group, Department of Gastroenterology and Surgery, IRCCS national Cancer Institute, Milan, Italy
| | - Massimo Colombo
- Angela Maria e Antonio Migliavacca Center for Liver Disease, First Division of Gastroenterology, Fondazione IRCCS Ca’ Granda ospedale Maggiore Policlinico, University of Milan, Milan, Italy
| |
Collapse
|