1
|
Dravid AA, Singh A, García AJ. Biomaterial-Based Therapeutic Delivery of Immune Cells. Adv Healthc Mater 2025; 14:e2400586. [PMID: 38813869 PMCID: PMC11607182 DOI: 10.1002/adhm.202400586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 05/15/2024] [Indexed: 05/31/2024]
Abstract
Immune cell therapy (ICT) is a transformative approach used to treat a wide range of diseases including type 1 diabetes, sickle cell disease, disorders of the hematopoietic system, and certain forms of cancers. Despite excellent clinical successes, the scope of adoptively transferred immune cells is limited because of toxicities like cytokine release syndrome and immune effector cell-associated neurotoxicity in patients. Furthermore, reports suggest that such treatment can impact major organ systems including cardiac, renal, pulmonary, and hepatic systems in the long term. Additionally, adoptively transferred immune cells cannot achieve significant penetration into solid tissues, thus limiting their therapeutic potential. Recent studies suggest that biomaterial-assisted delivery of immune cells can address these challenges by reducing toxicity, improving localization, and maintaining desired phenotypes to eventually regain tissue function. In this review, recent efforts in the field of biomaterial-based immune cell delivery for the treatment of diseases, their pros and cons, and where these approaches stand in terms of clinical treatment are highlighted.
Collapse
Affiliation(s)
- Ameya A. Dravid
- Woodruff School of Mechanical EngineeringGeorgia Institute of TechnologyAtlantaGA30332USA
| | - Ankur Singh
- Woodruff School of Mechanical EngineeringGeorgia Institute of TechnologyAtlantaGA30332USA
- Coulter Department of Biomedical EngineeringGeorgia Institute of Technology and Emory UniversityAtlantaGA30332USA
- Petit Institute for Bioengineering and BioscienceGeorgia Institute of TechnologyAtlantaGA30332USA
| | - Andrés J. García
- Woodruff School of Mechanical EngineeringGeorgia Institute of TechnologyAtlantaGA30332USA
- Petit Institute for Bioengineering and BioscienceGeorgia Institute of TechnologyAtlantaGA30332USA
| |
Collapse
|
2
|
Yang M, Zhou J, Lu L, Deng D, Huang J, Tang Z, Shi X, Lo P, Lovell JF, Zheng Y, Jin H. Tumor cell membrane-based vaccines: A potential boost for cancer immunotherapy. EXPLORATION (BEIJING, CHINA) 2024; 4:20230171. [PMID: 39713208 PMCID: PMC11655317 DOI: 10.1002/exp.20230171] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 03/08/2024] [Indexed: 12/24/2024]
Abstract
Because therapeutic cancer vaccines can, in theory, eliminate tumor cells specifically with relatively low toxicity, they have long been considered for application in repressing cancer progression. Traditional cancer vaccines containing a single or a few discrete tumor epitopes have failed in the clinic, possibly due to challenges in epitope selection, target downregulation, cancer cell heterogeneity, tumor microenvironment immunosuppression, or a lack of vaccine immunogenicity. Whole cancer cell or cancer membrane vaccines, which provide a rich source of antigens, are emerging as viable alternatives. Autologous and allogenic cellular cancer vaccines have been evaluated as clinical treatments. Tumor cell membranes (TCMs) are an intriguing antigen source, as they provide membrane-accessible targets and, at the same time, serve as integrated carriers of vaccine adjuvants and other therapeutic agents. This review provides a summary of the properties and technologies for TCM cancer vaccines. Characteristics, categories, mechanisms, and preparation methods are discussed, as are the demonstrable additional benefits derived from combining TCM vaccines with chemotherapy, sonodynamic therapy, phototherapy, and oncolytic viruses. Further research in chemistry, biomedicine, cancer immunology, and bioinformatics to address current drawbacks could facilitate the clinical adoption of TCM vaccines.
Collapse
Affiliation(s)
- Muyang Yang
- College of Biomedicine and Health and College of Life Science and TechnologyHuazhong Agricultural UniversityWuhanChina
| | - Jie Zhou
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory HealthThe First Affiliated Hospital of Guangzhou Medical UniversityGuangzhouChina
| | - Liseng Lu
- College of Biomedicine and Health and College of Life Science and TechnologyHuazhong Agricultural UniversityWuhanChina
| | - Deqiang Deng
- College of Biomedicine and Health and College of Life Science and TechnologyHuazhong Agricultural UniversityWuhanChina
| | - Jing Huang
- College of Biomedicine and Health and College of Life Science and TechnologyHuazhong Agricultural UniversityWuhanChina
| | - Zijian Tang
- College of Biomedicine and Health and College of Life Science and TechnologyHuazhong Agricultural UniversityWuhanChina
| | - Xiujuan Shi
- College of Biomedicine and Health and College of Life Science and TechnologyHuazhong Agricultural UniversityWuhanChina
| | - Pui‐Chi Lo
- Department of Biomedical SciencesCity University of Hong KongKowloonHong KongChina
| | - Jonathan F. Lovell
- Department of Biomedical EngineeringUniversity at BuffaloState University of New YorkBuffaloNew YorkUSA
| | - Yongfa Zheng
- Department of OncologyRenmin Hospital of Wuhan UniversityWuhanChina
| | - Honglin Jin
- College of Biomedicine and Health and College of Life Science and TechnologyHuazhong Agricultural UniversityWuhanChina
| |
Collapse
|
3
|
Burn OK, Dasyam N, Hermans IF. Recruiting Natural Killer T Cells to Improve Vaccination: Lessons from Preclinical and Clinical Studies. Crit Rev Oncog 2024; 29:31-43. [PMID: 38421712 DOI: 10.1615/critrevoncog.2023049407] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
The capacity of type I natural killer T (NKT) cells to provide stimulatory signals to antigen-presenting cells has prompted preclinical research into the use of agonists as immune adjuvants, with much of this work focussed on stimulating T cell responses to cancer. In attempting to evaluate this approach in the clinic, our recent dendritic-cell based study failed to show an advantage to adding an agonist to the vaccine. Here we present potential limitations of the study, and suggest why other simpler strategies may be more effective. These include strategies to target antigen-presenting cells in the host, either through promoting efficient transfer from injected cell lines, facilitating uptake of antigen and agonist as injected conjugates, or encapsulating the components into injected nanovectors. While the vaccine landscape has changed with the rapid uptake of mRNA vaccines, we suggest that there is still a role for recruiting NKT cells in altering T cell differentiation programmes, notably the induction of resident memory T cells.
Collapse
Affiliation(s)
- Olivia K Burn
- Malaghan Institute of Medical Research, Wellington, New Zealand
| | | | - Ian F Hermans
- Malaghan Institute of Medical Research, Wellington, New Zealand
| |
Collapse
|
4
|
Kaczmarek M, Poznańska J, Fechner F, Michalska N, Paszkowska S, Napierała A, Mackiewicz A. Cancer Vaccine Therapeutics: Limitations and Effectiveness-A Literature Review. Cells 2023; 12:2159. [PMID: 37681891 PMCID: PMC10486481 DOI: 10.3390/cells12172159] [Citation(s) in RCA: 72] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 08/12/2023] [Accepted: 08/18/2023] [Indexed: 09/09/2023] Open
Abstract
In recent years, there has been a surge of interest in tumor microenvironment-associated cancer vaccine therapies. These innovative treatments aim to activate and enhance the body's natural immune response against cancer cells by utilizing specific antigens present in the tumor microenvironment. The goal is to achieve a complete clinical response, where all measurable cancer cells are either eliminated or greatly reduced in size. With their potential to revolutionize cancer treatment, these therapies represent a promising avenue for researchers and clinicians alike. Despite over 100 years of research, the success of therapeutic cancer vaccines has been variable, particularly in advanced cancer patients, with various limitations, including the heterogeneity of the tumor microenvironment, the presence of immunosuppressive cells, and the potential for tumor escape mechanisms. Additionally, the effectiveness of these therapies may be limited by the variability of the patient's immune system response and the difficulty in identifying appropriate antigens for each patient. Despite these challenges, tumor microenvironment-targeted vaccine cancer therapies have shown promising results in preclinical and clinical studies and have the potential to become a valuable addition to current cancer treatment and "curative" options. While chemotherapeutic and monoclonal antibody treatments remain popular, ongoing research is needed to optimize the design and delivery of these therapies and to identify biomarkers that can predict response and guide patient selection. This comprehensive review explores the mechanisms of cancer vaccines, various delivery methods, and the role of adjuvants in improving treatment outcomes. It also discusses the historical background of cancer vaccine research and examines the current state of major cancer vaccination immunotherapies. Furthermore, the limitations and effectiveness of each vaccine type are analyzed, providing insights into the future of cancer vaccine development.
Collapse
Affiliation(s)
- Mariusz Kaczmarek
- Department of Medical Biotechnology, Poznan University of Medical Sciences, 61-866 Poznań, Poland
- Department of Cancer Diagnostics and Immunology, Greater Poland Cancer Center, 61-866 Poznań, Poland
| | - Justyna Poznańska
- Scientific Society of Cancer Immunology, Poznań University of Medical Sciences, 61-866 Poznań, Poland; (J.P.)
| | - Filip Fechner
- Scientific Society of Cancer Immunology, Poznań University of Medical Sciences, 61-866 Poznań, Poland; (J.P.)
| | - Natasza Michalska
- Scientific Society of Cancer Immunology, Poznań University of Medical Sciences, 61-866 Poznań, Poland; (J.P.)
| | - Sara Paszkowska
- Scientific Society of Cancer Immunology, Poznań University of Medical Sciences, 61-866 Poznań, Poland; (J.P.)
| | - Adrianna Napierała
- Scientific Society of Cancer Immunology, Poznań University of Medical Sciences, 61-866 Poznań, Poland; (J.P.)
| | - Andrzej Mackiewicz
- Department of Medical Biotechnology, Poznan University of Medical Sciences, 61-866 Poznań, Poland
- Department of Cancer Diagnostics and Immunology, Greater Poland Cancer Center, 61-866 Poznań, Poland
| |
Collapse
|
5
|
Dasyam N, Sharples KJ, Barrow C, Huang Y, Bauer E, Mester B, Wood CE, Authier-Hall A, Dzhelali M, Ostapowicz T, Kumar R, Lowe J, Maxwell A, Burn OK, Williams GM, Carley SE, Caygill G, Jones J, Chan STS, Hinder VA, Macapagal J, McCusker M, Weinkove R, Brimble MA, Painter GF, Findlay MP, Dunbar PR, Gasser O, Hermans IF. A randomised controlled trial of long NY-ESO-1 peptide-pulsed autologous dendritic cells with or without alpha-galactosylceramide in high-risk melanoma. Cancer Immunol Immunother 2023; 72:2267-2282. [PMID: 36881133 PMCID: PMC10264280 DOI: 10.1007/s00262-023-03400-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 02/06/2023] [Indexed: 03/08/2023]
Abstract
AIM We have previously reported that polyfunctional T cell responses can be induced to the cancer testis antigen NY-ESO-1 in melanoma patients injected with mature autologous monocyte-derived dendritic cells (DCs) loaded with long NY-ESO-1-derived peptides together with α-galactosylceramide (α-GalCer), an agonist for type 1 Natural Killer T (NKT) cells. OBJECTIVE To assess whether inclusion of α-GalCer in autologous NY-ESO-1 long peptide-pulsed DC vaccines (DCV + α-GalCer) improves T cell responses when compared to peptide-pulsed DC vaccines without α-GalCer (DCV). DESIGN, SETTING AND PARTICIPANTS Single-centre blinded randomised controlled trial in patients ≥ 18 years old with histologically confirmed, fully resected stage II-IV malignant cutaneous melanoma, conducted between July 2015 and June 2018 at the Wellington Blood and Cancer Centre of the Capital and Coast District Health Board. INTERVENTIONS Stage I. Patients were randomised to two cycles of DCV or DCV + α-GalCer (intravenous dose of 10 × 106 cells, interval of 28 days). Stage II. Patients assigned to DCV + α-GalCer were randomised to two further cycles of DCV + α-GalCer or observation, while patients initially assigned to DCV crossed over to two cycles of DCV + α-GalCer. OUTCOME MEASURES Primary: Area under the curve (AUC) of mean NY-ESO-1-specific T cell count detected by ex vivo IFN-γ ELISpot in pre- and post-treatment blood samples, compared between treatment arms at Stage I. Secondary: Proportion of responders in each arm at Stage I; NKT cell count in each arm at Stage I; serum cytokine levels at Stage I; adverse events Stage I; T cell count for DCV + α-GalCer versus observation at Stage II, T cell count before versus after cross-over. RESULTS Thirty-eight patients gave written informed consent; 5 were excluded before randomisation due to progressive disease or incomplete leukapheresis, 17 were assigned to DCV, and 16 to DCV + α-GalCer. The vaccines were well tolerated and associated with increases in mean total T cell count, predominantly CD4+ T cells, but the difference between the treatment arms was not statistically significant (difference - 6.85, 95% confidence interval, - 21.65 to 7.92; P = 0.36). No significant improvements in T cell response were associated with DCV + α-GalCer with increased dosing, or in the cross-over. However, the NKT cell response to α-GalCer-loaded vaccines was limited compared to previous studies, with mean circulating NKT cell levels not significantly increased in the DCV + α-GalCer arm and no significant differences in cytokine response between the treatment arms. CONCLUSIONS A high population coverage of NY-ESO-1-specific T cell responses was achieved with a good safety profile, but we failed to demonstrate that loading with α-GalCer provided an additional advantage to the T cell response with this cellular vaccine design. CLINICAL TRIAL REGISTRATION ACTRN12612001101875. Funded by the Health Research Council of New Zealand.
Collapse
Affiliation(s)
- Nathaniel Dasyam
- Malaghan Institute of Medical Research, PO Box 7060, Wellington, 6242, New Zealand
| | - Katrina J Sharples
- Dunedin School of Medicine, University of Otago, PO Box 56, Dunedin, 9054, New Zealand
- Cancer Trials New Zealand, University of Auckland, Private Bag 92019, Auckland, 1142, New Zealand
| | - Catherine Barrow
- Capital and Coast District Health Board, Private Bag 7902, Wellington, 6242, New Zealand
| | - Ying Huang
- Cancer Trials New Zealand, University of Auckland, Private Bag 92019, Auckland, 1142, New Zealand
| | - Evelyn Bauer
- Malaghan Institute of Medical Research, PO Box 7060, Wellington, 6242, New Zealand
| | - Brigitta Mester
- Malaghan Institute of Medical Research, PO Box 7060, Wellington, 6242, New Zealand
| | - Catherine E Wood
- Malaghan Institute of Medical Research, PO Box 7060, Wellington, 6242, New Zealand
- Capital and Coast District Health Board, Private Bag 7902, Wellington, 6242, New Zealand
| | - Astrid Authier-Hall
- Malaghan Institute of Medical Research, PO Box 7060, Wellington, 6242, New Zealand
| | - Marina Dzhelali
- Capital and Coast District Health Board, Private Bag 7902, Wellington, 6242, New Zealand
| | - Tess Ostapowicz
- Capital and Coast District Health Board, Private Bag 7902, Wellington, 6242, New Zealand
| | - Rajiv Kumar
- Capital and Coast District Health Board, Private Bag 7902, Wellington, 6242, New Zealand
| | - Jessica Lowe
- Malaghan Institute of Medical Research, PO Box 7060, Wellington, 6242, New Zealand
- Capital and Coast District Health Board, Private Bag 7902, Wellington, 6242, New Zealand
| | - Alice Maxwell
- Malaghan Institute of Medical Research, PO Box 7060, Wellington, 6242, New Zealand
- Capital and Coast District Health Board, Private Bag 7902, Wellington, 6242, New Zealand
| | - Olivia K Burn
- Malaghan Institute of Medical Research, PO Box 7060, Wellington, 6242, New Zealand
| | - Geoffrey M Williams
- School of Chemical Sciences, University of Auckland, PO Box 92019, Auckland, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, Private Bag 92019, Auckland, 1142, New Zealand
| | - Sarah E Carley
- School of Chemical Sciences, University of Auckland, PO Box 92019, Auckland, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, Private Bag 92019, Auckland, 1142, New Zealand
| | | | - Jeremy Jones
- GlycoSyn, PO Box 31 310, Lower Hutt, 5040, New Zealand
| | - Susanna T S Chan
- The Ferrier Research Institute, Victoria University of Wellington, PO Box 33436, Lower Hutt, 5046, New Zealand
| | - Victoria A Hinder
- Cancer Trials New Zealand, University of Auckland, Private Bag 92019, Auckland, 1142, New Zealand
| | - Jerome Macapagal
- Cancer Trials New Zealand, University of Auckland, Private Bag 92019, Auckland, 1142, New Zealand
| | - Monica McCusker
- Cancer Trials New Zealand, University of Auckland, Private Bag 92019, Auckland, 1142, New Zealand
| | - Robert Weinkove
- Malaghan Institute of Medical Research, PO Box 7060, Wellington, 6242, New Zealand
- Capital and Coast District Health Board, Private Bag 7902, Wellington, 6242, New Zealand
| | - Margaret A Brimble
- School of Chemical Sciences, University of Auckland, PO Box 92019, Auckland, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, Private Bag 92019, Auckland, 1142, New Zealand
| | - Gavin F Painter
- The Ferrier Research Institute, Victoria University of Wellington, PO Box 33436, Lower Hutt, 5046, New Zealand
| | - Michael P Findlay
- Cancer Trials New Zealand, University of Auckland, Private Bag 92019, Auckland, 1142, New Zealand
| | - P Rod Dunbar
- Maurice Wilkins Centre for Molecular Biodiscovery, Private Bag 92019, Auckland, 1142, New Zealand
- School of Biological Sciences, University of Auckland, PO Box 92019, Auckland, New Zealand
| | - Olivier Gasser
- Malaghan Institute of Medical Research, PO Box 7060, Wellington, 6242, New Zealand.
| | - Ian F Hermans
- Malaghan Institute of Medical Research, PO Box 7060, Wellington, 6242, New Zealand.
- Maurice Wilkins Centre for Molecular Biodiscovery, Private Bag 92019, Auckland, 1142, New Zealand.
| |
Collapse
|
6
|
Fu C, Ma T, Zhou L, Mi QS, Jiang A. Dendritic Cell-Based Vaccines Against Cancer: Challenges, Advances and Future Opportunities. Immunol Invest 2022; 51:2133-2158. [PMID: 35946383 DOI: 10.1080/08820139.2022.2109486] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
As the most potent professional antigen presenting cells, dendritic cells (DCs) have the ability to activate both naive CD4 and CD8 T cells. Recognized for their exceptional ability to cross-present exogenous antigens to prime naive antigen-specific CD8 T cells, DCs play a critical role in generating CD8 T cell immunity, as well as mediating CD8 T cell tolerance to tumor antigens. Despite the ability to potentiate host CD8 T cell-mediated anti-tumor immunity, current DC-based cancer vaccines have not yet achieved the promised success clinically with the exception of FDA-approved Provenge. Interestingly, recent studies have shown that type 1 conventional DCs (cDC1s) play a critical role in cross-priming tumor-specific CD8 T cells and determining the anti-tumor efficacy of cancer immunotherapies including immune checkpoint blockade (ICB). Together with promising clinical results in neoantigen-based cancer vaccines, there is a great need for DC-based vaccines to be further developed and refined either as monotherapies or in combination with other immunotherapies. In this review, we will present a brief review of DC development and function, discuss recent progress, and provide a perspective on future directions to realize the promising potential of DC-based cancer vaccines.
Collapse
Affiliation(s)
- Chunmei Fu
- Center for Cutaneous Biology and Immunology, Department of Dermatology, Henry Ford Health System, Detroit, Michigan, USA
| | - Tianle Ma
- Department of Computer Science and Engineering, School of Engineering and Computer Science, Oakland University, Rochester, Michigan, USA
| | - Li Zhou
- Center for Cutaneous Biology and Immunology, Department of Dermatology, Henry Ford Health System, Detroit, Michigan, USA
| | - Qing-Sheng Mi
- Center for Cutaneous Biology and Immunology, Department of Dermatology, Henry Ford Health System, Detroit, Michigan, USA
| | - Aimin Jiang
- Center for Cutaneous Biology and Immunology, Department of Dermatology, Henry Ford Health System, Detroit, Michigan, USA
| |
Collapse
|
7
|
Burn OK, Pankhurst TE, Painter GF, Connor LM, Hermans IF. Harnessing NKT cells for vaccination. OXFORD OPEN IMMUNOLOGY 2021; 2:iqab013. [PMID: 36845569 PMCID: PMC9914585 DOI: 10.1093/oxfimm/iqab013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 06/09/2021] [Accepted: 06/11/2021] [Indexed: 11/14/2022] Open
Abstract
Natural killer T (NKT) cells are innate-like T cells capable of enhancing both innate and adaptive immune responses. When NKT cells are stimulated in close temporal association with co-administered antigens, strong antigen-specific immune responses can be induced, prompting the study of NKT cell agonists as novel immune adjuvants. This activity has been attributed to the capacity of activated NKT cells to act as universal helper cells, with the ability to provide molecular signals to dendritic cells and B cells that facilitate T cell and antibody responses, respectively. These signals can override the requirement for conventional CD4+ T cell help, so that vaccines can be designed without need to consider CD4+ T cell repertoire and major histocompatibility complex Class II diversity. Animal studies have highlighted some drawbacks of the approach, namely, concerns around induction of NKT cell hyporesponsiveness, which may limit vaccine boosting, and potential for toxicity. Here we highlight studies that suggest these obstacles can be overcome by targeted delivery in vivo. We also feature new studies that suggest activating NKT cells can help encourage differentiation of T cells into tissue-resident memory cells that play an important role in prophylaxis against infection, and may be required in cancer therapy.
Collapse
Affiliation(s)
- Olivia K Burn
- Malaghan Institute of Medical Research, PO Box 7060, Wellington 6042, New Zealand
| | - Theresa E Pankhurst
- The School of Biological Sciences, Victoria University of Wellington, PO Box 600, Wellington 6140, New Zealand
| | - Gavin F Painter
- The Ferrier Research Institute, Victoria University of Wellington, PO Box 33436, Petone 5046, New Zealand,Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, Private Bag 92019, Auckland, New Zealand
| | - Lisa M Connor
- Malaghan Institute of Medical Research, PO Box 7060, Wellington 6042, New Zealand,The School of Biological Sciences, Victoria University of Wellington, PO Box 600, Wellington 6140, New Zealand
| | - Ian F Hermans
- Malaghan Institute of Medical Research, PO Box 7060, Wellington 6042, New Zealand,Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, Private Bag 92019, Auckland, New Zealand,Correspondence address. Malaghan Institute of Medical Research, Wellington, New Zealand. Tel: +64 4 4996914; E-mail: (I.F.H.)
| |
Collapse
|
8
|
Painter GF, Burn OK, Hermans IF. Using agonists for iNKT cells in cancer therapy. Mol Immunol 2020; 130:1-6. [PMID: 33340930 DOI: 10.1016/j.molimm.2020.12.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 12/02/2020] [Indexed: 01/03/2023]
Abstract
The capacity of α-galactosylceramide (α-GalCer) to act as an anti-cancer agent in mice through the specific stimulation of type I NKT (iNKT) cells has prompted extensive investigation to translate this finding to the clinic. However, low frequencies of iNKT cells in cancer patients and their hypo-responsiveness to repeated stimulation have been seen as barriers to its efficacy. Currently the most promising clinical application of α-GalCer, or its derivatives, is as stimuli for ex vivo expansion of iNKT cells for adoptive therapy, although some encouraging clinical results have recently been reported using α-GalCer pulsed onto large numbers of antigen presenting cells (APCs). In on-going preclinical studies, attempts to improve efficacy of injected iNKT cell agonists have focussed on optimising presentation in vivo, through encapsulation in particulate vectors, making structural changes that help binding to the presenting molecule CD1d, or injecting agonists covalently attached to recombinant CD1d. Variations on these same approaches are being used to enhance the APC-licencing function of iNKT cells in vivo to induce adaptive immune responses to associated tumour antigens. Looking ahead, a unique capacity of in vivo-activated iNKT cells to facilitate formation of resident memory CD8+ T cells is a new observation that could find a role in cancer therapy.
Collapse
Affiliation(s)
- Gavin F Painter
- Ferrier Research Institute, Victoria University of Wellington, Lower Hutt, New Zealand; Maurice Wilkins Centre for Molecular Biodiscovery, Auckland, New Zealand.
| | - Olivia K Burn
- Malaghan Institute of Medical Research, Wellington, New Zealand
| | - Ian F Hermans
- Maurice Wilkins Centre for Molecular Biodiscovery, Auckland, New Zealand; Malaghan Institute of Medical Research, Wellington, New Zealand.
| |
Collapse
|
9
|
Huang MN, Nicholson LT, Batich KA, Swartz AM, Kopin D, Wellford S, Prabhakar VK, Woroniecka K, Nair SK, Fecci PE, Sampson JH, Gunn MD. Antigen-loaded monocyte administration induces potent therapeutic antitumor T cell responses. J Clin Invest 2020; 130:774-788. [PMID: 31661470 DOI: 10.1172/jci128267] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Accepted: 10/22/2019] [Indexed: 12/20/2022] Open
Abstract
Efficacy of dendritic cell (DC) cancer vaccines is classically thought to depend on their antigen-presenting cell (APC) activity. Studies show, however, that DC vaccine priming of cytotoxic T lymphocytes (CTLs) requires the activity of endogenous DCs, suggesting that exogenous DCs stimulate antitumor immunity by transferring antigens (Ags) to endogenous DCs. Such Ag transfer functions are most commonly ascribed to monocytes, implying that undifferentiated monocytes would function equally well as a vaccine modality and need not be differentiated to DCs to be effective. Here, we used several murine cancer models to test the antitumor efficacy of undifferentiated monocytes loaded with protein or peptide Ag. Intravenously injected monocytes displayed antitumor activity superior to DC vaccines in several cancer models, including aggressive intracranial glioblastoma. Ag-loaded monocytes induced robust CTL responses via Ag transfer to splenic CD8+ DCs in a manner independent of monocyte APC activity. Ag transfer required cell-cell contact and the formation of connexin 43-containing gap junctions between monocytes and DCs. These findings demonstrate the existence of an efficient gap junction-mediated Ag transfer pathway between monocytes and CD8+ DCs and suggest that administration of tumor Ag-loaded undifferentiated monocytes may serve as a simple and efficacious immunotherapy for the treatment of human cancers.
Collapse
Affiliation(s)
- Min-Nung Huang
- Department of Immunology.,Division of Cardiology, Department of Medicine
| | | | - Kristen A Batich
- School of Medicine.,Department of Pathology.,Preston Robert Tisch Brain Tumor Center
| | - Adam M Swartz
- Department of Pathology.,Preston Robert Tisch Brain Tumor Center
| | | | | | | | - Karolina Woroniecka
- School of Medicine.,Department of Pathology.,Preston Robert Tisch Brain Tumor Center
| | - Smita K Nair
- Department of Pathology.,Preston Robert Tisch Brain Tumor Center.,Department of Neurosurgery, and.,Department of Surgery, Duke University Medical Center, Durham, North Carolina, USA
| | - Peter E Fecci
- Department of Pathology.,Preston Robert Tisch Brain Tumor Center.,Department of Neurosurgery, and
| | - John H Sampson
- Department of Pathology.,Preston Robert Tisch Brain Tumor Center.,Department of Neurosurgery, and
| | - Michael D Gunn
- Department of Immunology.,Division of Cardiology, Department of Medicine
| |
Collapse
|
10
|
Gardner A, de Mingo Pulido Á, Ruffell B. Dendritic Cells and Their Role in Immunotherapy. Front Immunol 2020; 11:924. [PMID: 32508825 PMCID: PMC7253577 DOI: 10.3389/fimmu.2020.00924] [Citation(s) in RCA: 331] [Impact Index Per Article: 66.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 04/21/2020] [Indexed: 12/14/2022] Open
Abstract
Despite significant advances in the field of cancer immunotherapy, the majority of patients still do not benefit from treatment and must rely on traditional therapies. Dendritic cells have long been a focus of cancer immunotherapy due to their role in inducing protective adaptive immunity, but cancer vaccines have shown limited efficacy in the past. With the advent of immune checkpoint blockade and the ability to identify patient-specific neoantigens, new vaccines, and combinatorial therapies are being evaluated in the clinic. Dendritic cells are also emerging as critical regulators of the immune response within tumors. Understanding how to augment the function of these intratumoral dendritic cells could offer new approaches to enhance immunotherapy, in addition to improving the cytotoxic and targeted therapies that are partially dependent upon a robust immune response for their efficacy. Here we will discuss the role of specific dendritic cell subsets in regulating the anti-tumor immune response, as well as the current status of dendritic cell-based immunotherapies, in order to provide an overview for future lines of research and clinical trials.
Collapse
Affiliation(s)
- Alycia Gardner
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, United States.,Cancer Biology PhD Program, University of South Florida, Tampa, FL, United States
| | - Álvaro de Mingo Pulido
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, United States
| | - Brian Ruffell
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, United States.,Department of Breast Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, United States
| |
Collapse
|
11
|
Falcón-Beas C, Tittarelli A, Mora-Bau G, Tempio F, Pérez C, Hevia D, Behrens C, Flores I, Falcón-Beas F, Garrido P, Ascui G, Pereda C, González FE, Salazar-Onfray F, López MN. Dexamethasone turns tumor antigen-presenting cells into tolerogenic dendritic cells with T cell inhibitory functions. Immunobiology 2019; 224:697-705. [PMID: 31221438 DOI: 10.1016/j.imbio.2019.05.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 05/05/2019] [Accepted: 05/30/2019] [Indexed: 02/08/2023]
Abstract
BACKGROUND Dendritic cells (DCs) are usually immunogenic, but they are also capable of inducing tolerance under anti-inflammatory conditions. Immunotherapy based on autologous DCs loaded with an allogeneic melanoma cell lysate (TRIMEL/DCs) induces immunological responses and increases melanoma patient survival. Glucocorticoids can suppress DC maturation and function, leading to a DC-mediated inhibition of T cell responses. METHODS The effect of dexamethasone, a glucocorticoid extensively used in cancer therapies, on TRIMEL/DCs phenotype and immunogenicity was examined. RESULTS Dexamethasone induced a semi-mature phenotype on TRIMEL/DC with low maturation surface marker expressions, decreased pro-inflammatory cytokine induction (IL-1β and IL-12) and increased release of regulatory cytokines (IL-10 and TGF-β). Dexamethasone-treated TRIMEL/DCs inhibited allogeneic CD4+ T cell proliferation and cytokine release (IFNγ, TNF-α and IL-17). Co-culturing melanoma-specific memory tumor-infiltrating lymphocytes with dexamethasone-treated TRIMEL/DC inhibited proliferation and effector T cell activities, including cytokine secretion and anti-melanoma cytotoxicity. CONCLUSIONS These findings suggest that dexamethasone repressed melanoma cell lysate-mediated DC maturation, generating a potent tolerogenic-like DC phenotype that inhibited melanoma-specific effector T cell activities. These results suggest that dexamethasone-induced immunosuppression may interfere with the clinical efficacy of DC-based melanoma vaccines, and must be taken into account for optimal design of cellular therapy against cancer.
Collapse
Affiliation(s)
- Cristián Falcón-Beas
- Disciplinary Program of Immunology, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, 8380453 Santiago, Chile; Millennium Institute on Immunology and Immunotherapy, Faculty of Medicine, University of Chile, 8380453 Santiago, Chile
| | - Andrés Tittarelli
- Disciplinary Program of Immunology, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, 8380453 Santiago, Chile; Millennium Institute on Immunology and Immunotherapy, Faculty of Medicine, University of Chile, 8380453 Santiago, Chile
| | - Gabriela Mora-Bau
- Disciplinary Program of Immunology, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, 8380453 Santiago, Chile; Millennium Institute on Immunology and Immunotherapy, Faculty of Medicine, University of Chile, 8380453 Santiago, Chile
| | - Fabián Tempio
- Disciplinary Program of Immunology, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, 8380453 Santiago, Chile; Millennium Institute on Immunology and Immunotherapy, Faculty of Medicine, University of Chile, 8380453 Santiago, Chile
| | - Claudio Pérez
- Disciplinary Program of Immunology, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, 8380453 Santiago, Chile; Cell Therapy Laboratory, Blood Bank Service, University of Chile Clinical Hospital, 8380453 Santiago, Chile
| | - Daniel Hevia
- Disciplinary Program of Immunology, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, 8380453 Santiago, Chile; Millennium Institute on Immunology and Immunotherapy, Faculty of Medicine, University of Chile, 8380453 Santiago, Chile
| | - Carolina Behrens
- Disciplinary Program of Immunology, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, 8380453 Santiago, Chile; Millennium Institute on Immunology and Immunotherapy, Faculty of Medicine, University of Chile, 8380453 Santiago, Chile
| | - Iván Flores
- Disciplinary Program of Immunology, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, 8380453 Santiago, Chile; Millennium Institute on Immunology and Immunotherapy, Faculty of Medicine, University of Chile, 8380453 Santiago, Chile
| | - Felipe Falcón-Beas
- Disciplinary Program of Immunology, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, 8380453 Santiago, Chile; Millennium Institute on Immunology and Immunotherapy, Faculty of Medicine, University of Chile, 8380453 Santiago, Chile
| | - Paola Garrido
- Disciplinary Program of Immunology, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, 8380453 Santiago, Chile; Millennium Institute on Immunology and Immunotherapy, Faculty of Medicine, University of Chile, 8380453 Santiago, Chile
| | - Gabriel Ascui
- Disciplinary Program of Immunology, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, 8380453 Santiago, Chile; Millennium Institute on Immunology and Immunotherapy, Faculty of Medicine, University of Chile, 8380453 Santiago, Chile
| | - Cristián Pereda
- Disciplinary Program of Immunology, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, 8380453 Santiago, Chile; Millennium Institute on Immunology and Immunotherapy, Faculty of Medicine, University of Chile, 8380453 Santiago, Chile
| | - Fermín E González
- Millennium Institute on Immunology and Immunotherapy, Faculty of Medicine, University of Chile, 8380453 Santiago, Chile; Laboratory of Experimental Immunology & Cancer, Department of Conservative Dentistry, Faculty of Dentistry, University of Chile, 8380492 Santiago, Chile
| | - Flavio Salazar-Onfray
- Disciplinary Program of Immunology, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, 8380453 Santiago, Chile; Millennium Institute on Immunology and Immunotherapy, Faculty of Medicine, University of Chile, 8380453 Santiago, Chile
| | - Mercedes N López
- Disciplinary Program of Immunology, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, 8380453 Santiago, Chile; Millennium Institute on Immunology and Immunotherapy, Faculty of Medicine, University of Chile, 8380453 Santiago, Chile; Cell Therapy Laboratory, Blood Bank Service, University of Chile Clinical Hospital, 8380453 Santiago, Chile.
| |
Collapse
|
12
|
Backer RA, Diener N, Clausen BE. Langerin +CD8 + Dendritic Cells in the Splenic Marginal Zone: Not So Marginal After All. Front Immunol 2019; 10:741. [PMID: 31031751 PMCID: PMC6474365 DOI: 10.3389/fimmu.2019.00741] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Accepted: 03/19/2019] [Indexed: 12/24/2022] Open
Abstract
Dendritic cells (DC) fulfill an essential sentinel function within the immune system, acting at the interface of innate and adaptive immunity. The DC family, both in mouse and man, shows high functional heterogeneity in order to orchestrate immune responses toward the immense variety of pathogens and other immunological threats. In this review, we focus on the Langerin+CD8+ DC subpopulation in the spleen. Langerin+CD8+ DC exhibit a high ability to take up apoptotic/dying cells, and therefore they are essential to prime and shape CD8+ T cell responses. Next to the induction of immunity toward blood-borne pathogens, i.e., viruses, these DC are important for the regulation of tolerance toward cell-associated self-antigens. The ontogeny and differentiation pathways of CD8+CD103+ DC should be further explored to better understand the immunological role of these cells as a prerequisite of their therapeutic application.
Collapse
Affiliation(s)
- Ronald A Backer
- Paul Klein Center for Immune Intervention, Institute for Molecular Medicine, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| | - Nathalie Diener
- Paul Klein Center for Immune Intervention, Institute for Molecular Medicine, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| | - Björn E Clausen
- Paul Klein Center for Immune Intervention, Institute for Molecular Medicine, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| |
Collapse
|
13
|
Zhang L, Donda A. Alpha-Galactosylceramide/CD1d-Antibody Fusion Proteins Redirect Invariant Natural Killer T Cell Immunity to Solid Tumors and Promote Prolonged Therapeutic Responses. Front Immunol 2017; 8:1417. [PMID: 29163493 PMCID: PMC5672503 DOI: 10.3389/fimmu.2017.01417] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Accepted: 10/12/2017] [Indexed: 12/16/2022] Open
Abstract
Major progress in cancer immunotherapies have been obtained by the use of tumor targeting strategies, in particular with the development of bi-functional fusion proteins such as ImmTacs or BiTes, which engage effector T cells for targeted elimination of tumor cells. Given the significance of invariant natural killer T (iNKT) cells in bridging innate and adaptive immunity, we have developed a bi-functional protein composed of the extracellular part of CD1d molecule that was genetically fused to an scFv fragment from high affinity antibodies against HER2 or CEA. Systemic treatments with the CD1d-antitumor fusion proteins loaded with the agonist alpha-galactosylceramide (αGalCer) led to specific iNKT cell activation, resulting in a sustained growth inhibition of established tumors expressing HER2 or CEA, while treatment with the free αGalCer was ineffective. Importantly, we discovered that αGalCer/CD1d-antitumor fusion proteins were able to maintain iNKT cells reactive to multiple re-stimulations in contrast to their anergic state induced after a single injection of free αGalCer. We further demonstrated that the antitumor effects by αGalCer/CD1d-antitumor fusion proteins were largely dependent on the iNKT cell-mediated transactivation of NK cells. Moreover, prolonged antitumor effects could be obtained when combining the CD1d-antitumor fusion protein treatment with a therapeutic peptide/CpG cancer vaccine, which favored the capacity of iNKT cells to transactivate cross-presenting DCs for efficient priming of tumor-specific CD8 T cells. We will also summarize these pre-clinical results with a special focus on the cellular mechanisms underlying iNKT cell unresponsiveness to antigen re-challenge. Finally, we will discuss the perspectives regarding iNKT cell-mediated tumor targeting strategy in cancer immunotherapy.
Collapse
Affiliation(s)
- Lianjun Zhang
- Translational Tumor Immunology Group, Ludwig Center for Cancer Research, University of Lausanne, Lausanne, Switzerland.,Department of Fundamental Oncology, University of Lausanne, Lausanne, Switzerland
| | - Alena Donda
- Translational Tumor Immunology Group, Ludwig Center for Cancer Research, University of Lausanne, Lausanne, Switzerland.,Department of Fundamental Oncology, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
14
|
Lutz MB, Strobl H, Schuler G, Romani N. GM-CSF Monocyte-Derived Cells and Langerhans Cells As Part of the Dendritic Cell Family. Front Immunol 2017; 8:1388. [PMID: 29109731 PMCID: PMC5660299 DOI: 10.3389/fimmu.2017.01388] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Accepted: 10/09/2017] [Indexed: 12/21/2022] Open
Abstract
Dendritic cells (DCs) and macrophages (Mph) share many characteristics as components of the innate immune system. The criteria to classify the multitude of subsets within the mononuclear phagocyte system are currently phenotype, ontogeny, transcription patterns, epigenetic adaptations, and function. More recently, ontogenetic, transcriptional, and proteomic research approaches uncovered major developmental differences between Flt3L-dependent conventional DCs as compared with Mphs and monocyte-derived DCs (MoDCs), the latter mainly generated in vitro from murine bone marrow-derived DCs (BM-DCs) or human CD14+ peripheral blood monocytes. Conversely, in vitro GM-CSF-dependent monocyte-derived Mphs largely resemble MoDCs whereas tissue-resident Mphs show a common embryonic origin from yolk sac and fetal liver with Langerhans cells (LCs). The novel ontogenetic findings opened discussions on the terminology of DCs versus Mphs. Here, we bring forward arguments to facilitate definitions of BM-DCs, MoDCs, and LCs. We propose a group model of terminology for all DC subsets that attempts to encompass both ontogeny and function.
Collapse
Affiliation(s)
- Manfred B Lutz
- Institute for Virology and Immunobiology, University of Würzburg, Würzburg, Germany
| | - Herbert Strobl
- Institute of Pathophysiology and Immunology, Medical University of Graz, Graz, Austria
| | - Gerold Schuler
- Department of Dermatology, University Hospital Erlangen, Erlangen, Germany
| | - Nikolaus Romani
- Department of Dermatology, Venereology and Allergology, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
15
|
Saunderson SC, McLellan AD. Role of Lymphocyte Subsets in the Immune Response to Primary B Cell-Derived Exosomes. THE JOURNAL OF IMMUNOLOGY 2017; 199:2225-2235. [PMID: 28842467 DOI: 10.4049/jimmunol.1601537] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Accepted: 07/26/2017] [Indexed: 12/15/2022]
Abstract
Exosomes are lipid nanovesicles released after fusion of the endosomal limiting membrane with the plasma membrane. In this study, we investigated the requirement for CD4 T cells, B cells, and NK cells to provide help for CD8 T cell-mediated response to B cell-derived exosomes. CTL responses to Ag-loaded exosomes were dependent on host MHC class I, with a critical role for splenic langerin+ CD8α+ dendritic cells (DCs) in exosomal Ag cross-presentation. In addition, there was an absolute dependence on the presence of CD4 T cells, CD8 T cells, and NK cells, where the loss of any one of these subsets led to a complete loss of CTL response. Interestingly, NK cell depletion experiments demonstrated a critical cutoff point for depletion efficacy, with low-level residual NK cells providing sufficient help to allow optimal CD8 T cell proliferative responses to exosomal protein. Despite the potential role for B cells in the response to B cell-derived exosomal proteins, B cell depletion did not alter the exosome-induced CTL response. Similarly, a possible role for the BCR or circulating Ab in mediating CTL responses to B cell-derived exosomes was ruled out using DHLMP2A mice, which lack secreted and membrane-bound Ab, yet harbor marginal zone and follicular B cells. In contrast, CTL responses to DC-derived exosomes were significantly inhibited within Ab-deficient DHLMP2A mice compared with wild-type mice. However, this response was not restored upon serum transfer, implicating a role for the BCR, but not circulating Ab, in DC-derived exosome responses.
Collapse
Affiliation(s)
- Sarah C Saunderson
- Department of Microbiology and Immunology, University of Otago, Dunedin 9010, Otago, New Zealand
| | - Alexander D McLellan
- Department of Microbiology and Immunology, University of Otago, Dunedin 9010, Otago, New Zealand
| |
Collapse
|
16
|
Abstract
Conventional vaccine adjuvants enhance peptide-specific T-cell and B-cell responses by modifying peptide stability or uptake or by binding to pattern-recognition receptors on antigen-presenting cells (APCs). This article discusses the application of a distinct mechanism of adjuvant activity: the activation of type I, or invariant, natural killer T (iNKT) cells to drive cellular and humoral immune responses. Using a semi-invariant T-cell receptor (TCR), iNKT cells recognize glycolipid antigens presented on cluster of differentiation (CD)-1d molecules. When their ligands are presented in concert with peptides, iNKT cells can provide T-cell help, 'licensing' APCs to augment peptide-specific T-cell and antibody responses. We discuss the potential benefits and limitations of exploiting iNKT cells as 'universal helpers' to enhance vaccine responses for the treatment and prevention of cancer and infectious diseases.
Collapse
Affiliation(s)
- Mary Speir
- Malaghan Institute of Medical Research, PO Box 7060, Wellington, 6242, New Zealand
| | - Ian F Hermans
- Malaghan Institute of Medical Research, PO Box 7060, Wellington, 6242, New Zealand.
- School of Biological Sciences, Victoria University Wellington, PO Box 600, Wellington, 6140, New Zealand.
- Maurice Wilkins Centre, Private Bag 92019, Auckland, New Zealand.
| | - Robert Weinkove
- Malaghan Institute of Medical Research, PO Box 7060, Wellington, 6242, New Zealand.
- Wellington Blood and Cancer Centre, Wellington Hospital, Private Bag 7902, Wellington, 6242, New Zealand.
- Department of Pathology and Molecular Medicine, University of Otago Wellington, Wellington, 6021, New Zealand.
| |
Collapse
|
17
|
Gardner A, Ruffell B. Dendritic Cells and Cancer Immunity. Trends Immunol 2016; 37:855-865. [PMID: 27793569 DOI: 10.1016/j.it.2016.09.006] [Citation(s) in RCA: 644] [Impact Index Per Article: 71.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Revised: 09/23/2016] [Accepted: 09/27/2016] [Indexed: 02/06/2023]
Abstract
Dendritic cells (DCs) are central regulators of the adaptive immune response, and as such are necessary for T-cell-mediated cancer immunity. In particular, antitumoral responses depend on a specialized subset of conventional DCs that transport tumor antigens to draining lymph nodes and cross-present antigen to activate cytotoxic T lymphocytes. DC maturation is necessary to provide costimulatory signals to T cells, but while DC maturation occurs within tumors, it is often insufficient to induce potent immunity, particularly in light of suppressive mechanisms within tumors. Bypassing suppressive pathways or directly activating DCs can unleash a T-cell response, and although clinical efficacy has proven elusive, therapeutic targeting of DCs continues to hold translational potential in combinatorial approaches.
Collapse
Affiliation(s)
- Alycia Gardner
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA; Cancer Biology PhD Program, University of South Florida, Tampa, FL, USA
| | - Brian Ruffell
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA; Breast Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA.
| |
Collapse
|
18
|
Leleux J, Atalis A, Roy K. Engineering immunity: Modulating dendritic cell subsets and lymph node response to direct immune-polarization and vaccine efficacy. J Control Release 2015; 219:610-621. [PMID: 26489733 DOI: 10.1016/j.jconrel.2015.09.063] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Revised: 09/25/2015] [Accepted: 09/28/2015] [Indexed: 12/23/2022]
Abstract
While successful vaccines have been developed against many pathogens, there are still many diseases and pathogenic infections that are highly evasive to current vaccination strategies. Thus, more sophisticated approaches to control the type and quality of vaccine-induced immune response must be developed. Dendritic cells (DCs) are the sentinels of the body and play a critical role in immune response generation and direction by bridging innate and adaptive immunity. It is now well recognized that DCs can be separated into many subgroups, each of which has a unique function. Better understanding of how various DC subsets, in lymphoid organs and in the periphery, can be targeted through controlled delivery; and how these subsets modulate and control the resulting immune response could greatly enhance our ability to develop new, effective vaccines against complex diseases. In this review, we provide an overview of DC subset biology and discuss current immunotherapeutic strategies that utilize DC targeting to modulate and control immune responses.
Collapse
Affiliation(s)
- Jardin Leleux
- The Wallace H. Coulter Dept. of Biomedical Engineering at Georgia Tech and Emory University and The Center for Immunoengineering at Georgia Tech, The Parker H. Petit Institute for Bioengineering and Biosciences Georgia Institute of Technology, Atlanta, GA 30332, United States
| | - Alexandra Atalis
- The Wallace H. Coulter Dept. of Biomedical Engineering at Georgia Tech and Emory University and The Center for Immunoengineering at Georgia Tech, The Parker H. Petit Institute for Bioengineering and Biosciences Georgia Institute of Technology, Atlanta, GA 30332, United States
| | - Krishnendu Roy
- The Wallace H. Coulter Dept. of Biomedical Engineering at Georgia Tech and Emory University and The Center for Immunoengineering at Georgia Tech, The Parker H. Petit Institute for Bioengineering and Biosciences Georgia Institute of Technology, Atlanta, GA 30332, United States.
| |
Collapse
|
19
|
Mac Keon S, Ruiz MS, Gazzaniga S, Wainstok R. Dendritic cell-based vaccination in cancer: therapeutic implications emerging from murine models. Front Immunol 2015; 6:243. [PMID: 26042126 PMCID: PMC4438595 DOI: 10.3389/fimmu.2015.00243] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Accepted: 05/06/2015] [Indexed: 01/29/2023] Open
Abstract
Dendritic cells (DCs) play a pivotal role in the orchestration of immune responses, and are thus key targets in cancer vaccine design. Since the 2010 FDA approval of the first cancer DC-based vaccine (Sipuleucel-T), there has been a surge of interest in exploiting these cells as a therapeutic option for the treatment of tumors of diverse origin. In spite of the encouraging results obtained in the clinic, many elements of DC-based vaccination strategies need to be optimized. In this context, the use of experimental cancer models can help direct efforts toward an effective vaccine design. This paper reviews recent findings in murine models regarding the antitumoral mechanisms of DC-based vaccination, covering issues related to antigen sources, the use of adjuvants and maturing agents, and the role of DC subsets and their interaction in the initiation of antitumoral immune responses. The summary of such diverse aspects will highlight advantages and drawbacks in the use of murine models, and contribute to the design of successful DC-based translational approaches for cancer treatment.
Collapse
Affiliation(s)
- Soledad Mac Keon
- Laboratorio de Cancerología, Fundación Instituto Leloir, Instituto de Investigaciones Bioquímicas de Buenos Aires IIBBA-CONICET , Buenos Aires , Argentina
| | - María Sol Ruiz
- Centro de Investigaciones Oncológicas, Fundación para la Investigación, Docencia y Prevención del Cáncer (FUCA) , Buenos Aires , Argentina
| | - Silvina Gazzaniga
- Laboratorio de Biología Tumoral, Departamento de Química Biológica IQUIBICEN-CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires , Buenos Aires , Argentina
| | - Rosa Wainstok
- Laboratorio de Cancerología, Fundación Instituto Leloir, Instituto de Investigaciones Bioquímicas de Buenos Aires IIBBA-CONICET , Buenos Aires , Argentina ; Laboratorio de Biología Tumoral, Departamento de Química Biológica IQUIBICEN-CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires , Buenos Aires , Argentina
| |
Collapse
|
20
|
An autologous leukemia cell vaccine prevents murine acute leukemia relapse after cytarabine treatment. Blood 2014; 124:2953-63. [PMID: 25237205 DOI: 10.1182/blood-2014-04-568956] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Acute leukemias with adverse prognostic features carry a high relapse rate without allogeneic stem cell transplantation (allo-SCT). Allo-SCT has a high morbidity and is precluded for many patients because of advanced age or comorbidities. Postremission therapies with reduced toxicities are urgently needed. The murine acute leukemia model C1498 was used to study the efficacy of an intravenously administered vaccine consisting of irradiated leukemia cells loaded with the natural killer T (NKT)-cell agonist α-galactosylceramide (α-GalCer). Prophylactically, the vaccine was highly effective at preventing leukemia development through the downstream activities of activated NKT cells, which were dependent on splenic langerin(+)CD8α(+) dendritic cells and which led to stimulation of antileukemia CD4(+) and CD8(+) T cells. However, hosts with established leukemia received no protective benefit from the vaccine, despite inducing NKT-cell activation. Established leukemia was associated with increases in regulatory T cells and myeloid-derived suppressor cells, and the leukemic cells themselves were highly suppressive in vitro. Although this suppressive environment impaired both effector arms of the immune response, CD4(+) T-cell responses were more severely affected. When cytarabine chemotherapy was administered prior to vaccination, all animals in remission posttherapy were protected against rechallenge with viable leukemia cells.
Collapse
|
21
|
Schirrmacher V, Fournier P, Schlag P. Autologous tumor cell vaccines for post-operative active-specific immunotherapy of colorectal carcinoma: long-term patient survival and mechanism of function. Expert Rev Vaccines 2014; 13:117-30. [PMID: 24219122 DOI: 10.1586/14760584.2014.854169] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Colorectal cancer (CRC) is one of the leading causes of cancer-related deaths worldwide. Surgery remains the primary curative treatment but nearly 50% of patients relapse as consequence of micrometastatic or minimal residual disease (MRD) at the time of surgery. Spontaneous T-cell-mediated immune responses to CRC tumor-associated antigens (TAAs) in tumor-draining lymph nodes and in the bone marrow (BM) lead to infiltration of the tumors by lymphocytes. Certain types of such tumor-infiltrating lymphocytes (TILs) have a positive and others a negative impact on the patients' prognosis. This review focuses on advances in CRC active-specific immunotherapy (ASI), in particular on results from randomized controlled clinical studies employing therapeutic autologous tumor cell vaccines. The observed improvement of long-term survival is explained by activation and mobilization of a pre-existing repertoire of tumor-reactive memory T cells which, according to recent discoveries, reside in distinct niches of patients' bone marrow in neighborhood with hematopoietic (HSC) and mesenchymal (MSC) stem cells. Interestingly, memory T cells also contain a subset of stem memory T cells (SMTs) in addition to effector (EMTs) and central memory T cells (CMTs). The mechanism of function of a therapeutic vaccine in a chronic disease is distinct from that of prophylactic vaccines which have to generate de novo protective immune responses. The advantage of autologous vaccines for mobilization of a broad and highly individual repertoire of memory T cells will be discussed.
Collapse
Affiliation(s)
- Volker Schirrmacher
- German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | | | | |
Collapse
|
22
|
Duval A, Fuertes Marraco SA, Schwitter D, Leuenberger L, Acha-Orbea H. Large T Antigen-Specific Cytotoxic T Cells Protect Against Dendritic Cell Tumors through Perforin-Mediated Mechanisms Independent of CD4 T Cell Help. Front Immunol 2014; 5:338. [PMID: 25101081 PMCID: PMC4101877 DOI: 10.3389/fimmu.2014.00338] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2014] [Accepted: 07/03/2014] [Indexed: 01/21/2023] Open
Abstract
Our newly generated murine tumor dendritic cell (MuTuDC) lines, generated from tumors developing in transgenic mice expressing the simian virus 40 large T antigen (SV40LgT) and GFP under the DC specific promoter CD11c, reproduce the phenotypic and functional properties of splenic wild type CD8α+ conventional DCs. They have an immature phenotype with low co-stimulation molecule expression (CD40, CD70, CD80, and CD86) that is upregulated after activation with toll-like receptor ligands. We observed that after transfer into syngeneic C57BL/6 mice, MuTuDC lines were quickly rejected. Tumors grew efficiently in large T transgene-tolerant mice. To investigate the immune response toward the large T antigen that leads to rejection of the MuTuDC lines, they were genetically engineered by lentiviral transduction to express luciferase and tested for the induction of DC tumors after adoptive transfer in various gene deficient recipient mice. Here, we document that the MuTuDC line was rejected in C57BL/6 mice by a CD4 T cell help-independent, perforin-mediated CD8 T cell response to the SV40LgT without pre-activation or co-injection of adjuvants. Using depleting anti-CD8β antibodies, we were able to induce efficient tumor growth in C57BL/6 mice. These results are important for researchers who want to use the MuTuDC lines for in vivo studies.
Collapse
Affiliation(s)
- Anaïs Duval
- Department of Biochemistry, Center of Immunity and Infection Lausanne, University of Lausanne , Lausanne , Switzerland
| | - Silvia A Fuertes Marraco
- Department of Biochemistry, Center of Immunity and Infection Lausanne, University of Lausanne , Lausanne , Switzerland
| | - Dominik Schwitter
- Department of Biochemistry, Center of Immunity and Infection Lausanne, University of Lausanne , Lausanne , Switzerland
| | - Line Leuenberger
- Department of Biochemistry, Center of Immunity and Infection Lausanne, University of Lausanne , Lausanne , Switzerland
| | - Hans Acha-Orbea
- Department of Biochemistry, Center of Immunity and Infection Lausanne, University of Lausanne , Lausanne , Switzerland
| |
Collapse
|
23
|
Hu YX, Li M, Jia XH, Du QX, Miao FT, Yao L, Shen JD. HPV16 CTL epitope peptide-activated dendritic cell and natural killer co-culture for therapy of cervical cancer in an animal model. Asian Pac J Cancer Prev 2014; 14:7335-8. [PMID: 24460298 DOI: 10.7314/apjcp.2013.14.12.7335] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
There is increasing evidence that natural killer (NK) cells play an important role in antitumor immunity following dendritic cell (DC) vaccination. Little is known, however, about the optimal stimulation of DCs by epitopes and NK interactions for cytotoxicity in tumors. In this study, DC cells activated by the HPV16E7.49-57 epitope and LPS were co-cultured with NK cells in vitro, and then used ot immunize mice to study CTL activity of TC-1, which constitutively expresses HPV16E6E7, with an LDH release assay. Cytotoxicity in mice immunized with DC loaded with epitope HPVE7.49-57 vaccine co-cultured with NK was enhanced significantly (p<0.01). In conclusion, talk-across between DC and NK cells enhances their functions, also improving cytotoxicity againsttumor cells, suggesting that activated DC-NK by epitopes has potential application for cancer-specific immuno-cellular therapy.
Collapse
Affiliation(s)
- Yan-Xia Hu
- Department of Gynecology and Obstetrics, People's Hospital of Zhengzhou, Zhengzhou, Henan, China E-mail :
| | | | | | | | | | | | | |
Collapse
|
24
|
Ataera H, Simkins HMA, Hyde E, Yang J, Hermans IF, Petersen TR, Ronchese F. The control of CD8+ T cell responses is preserved in perforin-deficient mice and released by depletion of CD4+CD25+ regulatory T cells. J Leukoc Biol 2013; 94:825-33. [PMID: 23883515 DOI: 10.1189/jlb.0413200] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Immune suppression by Treg has been demonstrated in a number of models, but the mechanisms of this suppression are only partly understood. Recent work has suggested that Tregs may suppress by directly killing immune cell populations in vivo in a perforin- and granzyme B-dependent manner. To establish whether perforin is necessary for the regulation of immune responses in vivo, we examined OVA-specific CD8(+) T cell responses in WT and PKO mice immunized with OVA and α-GalCer and the expansion of WT OT-I CD8(+) T cells adoptively transferred into WT or PKO mice immunized with DC-OVA. We observed similar expansion, phenotype, and effector function of CD8(+) T cells in WT and PKO mice, suggesting that CD8(+) T cells were subjected to a similar amount of regulation in the two mouse strains. In addition, when WT and PKO mice were depleted of Tregs by anti-CD25 mAb treatment before DC-OVA immunization, CD8(+) T cell proliferation, cytotoxicity, and cytokine production were increased similarly, suggesting a comparable involvement of CD25(+) Tregs in controlling T cell proliferation and effector function in these two mouse strains. These data suggest that perforin expression is not required for normal immune regulation in these models of in vivo CD8(+) T cell responses induced by immunization with OVA and α-GalCer or DC-OVA.
Collapse
Affiliation(s)
- Haley Ataera
- 2.Entrance 7 Kelburn Parade, 6012 Kelburn, Wellington, New Zealand.
| | | | | | | | | | | | | |
Collapse
|
25
|
Fournier P, Schirrmacher V. Oncolytic Newcastle Disease Virus as Cutting Edge between Tumor and Host. BIOLOGY 2013; 2:936-75. [PMID: 24833054 PMCID: PMC3960873 DOI: 10.3390/biology2030936] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2013] [Revised: 06/11/2013] [Accepted: 06/18/2013] [Indexed: 12/17/2022]
Abstract
Oncolytic viruses (OVs) replicate selectively in tumor cells and exert anti-tumor cytotoxic activity. Among them, Newcastle Disease Virus (NDV), a bird RNA virus of the paramyxovirus family, appears outstanding. Its anti-tumor effect is based on: (i) oncolytic activity and (ii) immunostimulation. Together these activities facilitate the induction of post-oncolytic adaptive immunity. We will present milestones during the last 60 years of clinical evaluation of this virus. Two main strategies of clinical application were followed using the virus (i) as a virotherapeutic agent, which is applied systemically or (ii) as an immunostimulatory agent combined with tumor cells for vaccination of cancer patients. More recently, a third strategy evolved. It combines the strategies (i) and (ii) and includes also dendritic cells (DCs). The first step involves systemic application of NDV to condition the patient. The second step involves intradermal application of a special DC vaccine pulsed with viral oncolysate. This strategy, called NDV/DC, combines anti-cancer activity (oncolytic virotherapy) and immune-stimulatory properties (oncolytic immunotherapy) with the high potential of DCs (DC therapy) to prime naive T cells. The aim of such treatment is to first prepare the cancer-bearing host for immunocompetence and then to instruct the patient's immune system with information about tumor-associated antigens (TAAs) of its own tumor together with danger signals derived from virus infection. This multimodal concept should optimize the generation of strong polyclonal T cell reactivity targeted against the patient's TAAs and lead to the establishment of a long-lasting memory T cell repertoire.
Collapse
Affiliation(s)
- Philippe Fournier
- German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany.
| | - Volker Schirrmacher
- German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany.
| |
Collapse
|
26
|
Eyrich M, Rachor J, Schreiber SC, Wölfl M, Schlegel PG. Dendritic cell vaccination in pediatric gliomas: lessons learnt and future perspectives. Front Pediatr 2013; 1:12. [PMID: 24400258 PMCID: PMC3860891 DOI: 10.3389/fped.2013.00012] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Accepted: 05/27/2013] [Indexed: 01/01/2023] Open
Abstract
Immunotherapy of malignant gliomas with autologous dendritic cells (DCs) in addition to surgery and radiochemotherapy has been a focus of intense research during the past decade. Since both children and adults are affected by this highly aggressive brain tumor, 10-15% of the several hundred vaccinated patients represent children, making pediatric glioma patients the largest uniform pediatric vaccination cohort so far. In general, DC vaccination in malignant gliomas has been shown to be safe and several studies with a non-vaccinated control group could clearly demonstrate a survival benefit for the vaccinated patients. Interestingly, children and adolescents below 21 years of age seem to benefit even more than adult patients. This review summarizes the findings of the 25 clinical trials published so far and gives a perspective how DC vaccination could be implemented as part of multimodal therapeutic strategies in the near future.
Collapse
Affiliation(s)
- Matthias Eyrich
- Department of Pediatric Oncology, University Children's Hospital, University of Würzburg Würzburg, Germany
| | - Johannes Rachor
- Department of Pediatric Oncology, University Children's Hospital, University of Würzburg Würzburg, Germany
| | - Susanne C Schreiber
- Department of Pediatric Oncology, University Children's Hospital, University of Würzburg Würzburg, Germany
| | - Matthias Wölfl
- Department of Pediatric Oncology, University Children's Hospital, University of Würzburg Würzburg, Germany
| | - Paul G Schlegel
- Department of Pediatric Oncology, University Children's Hospital, University of Würzburg Würzburg, Germany
| |
Collapse
|
27
|
Tabarkiewicz J. Dendritic cells: active and passive players in therapy of human diseases. Immunotherapy 2012; 4:975-8. [PMID: 23148747 DOI: 10.2217/imt.12.97] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
28
|
Weinkove R, Brooks CR, Carter JM, Hermans IF, Ronchese F. Functional invariant natural killer T-cell and CD1d axis in chronic lymphocytic leukemia: implications for immunotherapy. Haematologica 2012; 98:376-84. [PMID: 23065503 DOI: 10.3324/haematol.2012.072835] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Invariant natural killer T cells recognize glycolipid antigens such as α-galactosylceramide presented by CD1d. In preclinical models of B-cell malignancies, α-galactosylceramide is an adjuvant to tumor vaccination, enhancing tumor-specific T-cell responses and prolonging survival. However, numerical and functional invariant natural killer T-cell defects exist in patients with some cancers. Our aim was to assess this axis in patients with chronic lymphocytic leukemia. The numbers of circulating invariant natural killer T cells and the expression of CD1d on antigen-presenting cells were evaluated in patients with chronic lymphocytic leukemia and age-matched controls. Cytokine profile and in vitro proliferative capacity were determined. Patient- and control-derived invariant natural killer T-cell lines were generated and characterized, and allogeneic and autologous responses to α-galactosylce-ramide-treated leukemia cells were assessed. Absolute numbers and phenotype of invariant natural killer T cells were normal in patients with untreated chronic lymphocytic leukemia, and cytokine profile and proliferative capacity were intact. Chemotherapy-treated patients had reduced numbers of invariant natural killer T cells and myeloid dendritic cells, but α-galactosylceramide-induced proliferation was preserved. Invariant natural killer T-cell lines from patients lysed CD1d-expressing targets. Irradiated α-galactosylceramide-treated leukemic cells elicited allogeneic and autologous invariant natural killer T-cell proliferation, and α-galactosylceramide treatment led to increased proliferation of conventional T cells in response to tumor. In conclusion, the invariant natural killer T-cell and CD1d axis is fundamentally intact in patients with early-stage chronic lymphocytic leukemia and, despite reduced circulating numbers, function is retained in fludarabine-treated patients. Immunotherapies exploiting the adjuvant effect of α-galactosylceramide may be feasible.
Collapse
Affiliation(s)
- Robert Weinkove
- Malaghan Institute of Medical Research, Wellington, New Zealand.
| | | | | | | | | |
Collapse
|
29
|
Murine CD4+ T cell responses are inhibited by cytotoxic T cell-mediated killing of dendritic cells and are restored by antigen transfer. PLoS One 2012; 7:e37481. [PMID: 22649530 PMCID: PMC3359309 DOI: 10.1371/journal.pone.0037481] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2012] [Accepted: 04/24/2012] [Indexed: 12/21/2022] Open
Abstract
Cytotoxic T lymphocytes (CTL) provide protection against pathogens and tumors. In addition, experiments in mouse models have shown that CTL can also kill antigen-presenting dendritic cells (DC), reducing their ability to activate primary and secondary CD8(+) T cell responses. In contrast, the effects of CTL-mediated killing on CD4(+) T cell responses have not been fully investigated. Here we use adoptive transfer of TCR transgenic T cells and DC immunization to show that specific CTL significantly inhibited CD4(+) T cell proliferation induced by DC loaded with peptide or low concentrations of protein antigen. In contrast, CTL had little effect on CD4(+) T cell proliferation induced by DC loaded with high protein concentrations or expressing antigen endogenously, even if these DC were efficiently killed and failed to accumulate in the lymph node (LN). Residual CD4(+) T cell proliferation was due to the transfer of antigen from carrier DC to host APC, and predominantly involved skin DC populations. Importantly, the proliferating CD4(+) T cells also developed into IFN-γ producing memory cells, a property normally requiring direct presentation by activated DC. Thus, CTL-mediated DC killing can inhibit CD4(+) T cell proliferation, with the extent of inhibition being determined by the form and amount of antigen used to load DC. In the presence of high antigen concentrations, antigen transfer to host DC enables the generation of CD4(+) T cell responses regardless of DC killing, and suggests mechanisms whereby CD4(+) T cell responses can be amplified.
Collapse
|
30
|
Pantel A, Cheong C, Dandamudi D, Shrestha E, Mehandru S, Brane L, Ruane D, Teixeira A, Bozzacco L, Steinman RM, Longhi MP. A new synthetic TLR4 agonist, GLA, allows dendritic cells targeted with antigen to elicit Th1 T-cell immunity in vivo. Eur J Immunol 2012; 42:101-9. [PMID: 22002164 PMCID: PMC3517108 DOI: 10.1002/eji.201141855] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2011] [Revised: 09/01/2011] [Accepted: 10/07/2011] [Indexed: 12/23/2022]
Abstract
Protein-based vaccines offer safety and cost advantages but require adjuvants to induce immunity. Here we examined the adjuvant capacity of glucopyranosyl lipid A (GLA), a new synthetic non-toxic analogue of lipopolysaccharide. In mice, in comparison with non-formulated LPS and monophosphoryl lipid A, formulated GLA induced higher antibody titers and generated Type 1 T-cell responses to HIV gag-p24 protein in spleen and lymph nodes, which was dependent on TLR4 expression. Immunization was greatly improved by targeting HIV gag p24 to DCs with an antibody to DEC-205, a DC receptor for antigen uptake and processing. Subcutaneous immunization induced antigen-specific T-cell responses in the intestinal lamina propria. Immunity did not develop in mice transiently depleted of DCs. To understand how GLA works, we studied DCs directly from vaccinated mice. Within 4 h, GLA caused DCs to upregulate CD86 and CD40 and produce cytokines including IL-12p70 in vivo. Importantly, DCs removed from mice 4 h after vaccination became immunogenic, capable of inducing T-cell immunity upon injection into naïve mice. These data indicate that a synthetic and clinically feasible TLR4 agonist rapidly stimulates full maturation of DCs in vivo, allowing for adaptive immunity to develop many weeks to months later.
Collapse
Affiliation(s)
- Austin Pantel
- Laboratory of Cellular Physiology and Immunology and Chris Browne Center, Rockefeller University, New York, NY 10065-6399, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
T cells as vehicles for cancer vaccination. J Biomed Biotechnol 2011; 2011:417403. [PMID: 22131805 PMCID: PMC3205726 DOI: 10.1155/2011/417403] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2011] [Accepted: 08/30/2011] [Indexed: 12/20/2022] Open
Abstract
The success of cancer vaccines is dependent on the delivery of tumor-associated antigens (TAAs) within lymphoid tissue in the context of costimulatory molecules and immune stimulatory cytokines. Dendritic cells (DCs) are commonly utilized to elicit antitumor immune responses due to their attractive costimulatory molecule and cytokine expression profile. However, the efficacy of DC-based vaccines is limited by the poor viability and lymph-node migration of exogenously generated DCs in vivo. Alternatively, adoptively transferred T cells persist for long periods of time in vivo and readily migrate between the lymphoid and vascular compartments. In addition, T cells may be genetically modified to express both TAA and DC-activating molecules, suggesting that T cells may be ideal candidates to serve as cellular vehicles for antigen delivery to lymph node-resident DCs in vivo. This paper discusses the concept of using T cells to induce tumor-specific immunity for vaccination against cancer.
Collapse
|