1
|
Mao J, Kang HJ, Eom GD, Yoon KW, Chu KB, Quan FS. Vaccine efficacy induced by 2020-2021 seasonal influenza-derived H3N1 virus-like particles co-expressing M2e5x or N2. Vaccine 2025; 43:126530. [PMID: 39551038 DOI: 10.1016/j.vaccine.2024.126530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 11/08/2024] [Accepted: 11/11/2024] [Indexed: 11/19/2024]
Abstract
Influenza A matrix protein 2 (M2e) and neuraminidase (NA) antigens are known to play important roles in mounting a broad range of protection. Nonetheless, the protective efficacy of the VLP vaccines co-expressing both M2e and NA antigens has not been explored. In this study, we generated 2020/2021 seasonal influenza H3N1 VLPs that co-expressed either M2e5x (H3N1M2e5x) or N2 (H3N1N2 VLP) antigens. The protective efficacy of these VLPs was assessed by challenge infection with heterologous H3N2 and heterosubtypic H1N1 and H5N1 viruses in mice. Both VLP formulations induced cross-protection against distinct viruses, H3N1M2e5x VLPs elicited higher levels of cross-reactive IgG in sera against H1N1 and H5N1 viruses than H3N1N2 VLPs. Compared to H3N1N2 VLPs, H3N1M2e5x VLPs also induced substantially enhanced germinal center B cell responses while inhibiting IFN-γ production in the lungs. Importantly, H3N1M2e5x VLPs significantly reduced the lung virus titers upon H1N1, H3N2, and H5N1 challenge infections. These results indicated that VLPs comprising the M2e5x antigen are a promising vaccine design strategy that could aid in the pursuit of a universal influenza vaccine.
Collapse
MESH Headings
- Animals
- Influenza Vaccines/immunology
- Influenza Vaccines/administration & dosage
- Mice
- Vaccines, Virus-Like Particle/immunology
- Vaccines, Virus-Like Particle/administration & dosage
- Viral Matrix Proteins/immunology
- Viral Matrix Proteins/genetics
- Influenza A Virus, H3N2 Subtype/immunology
- Antibodies, Viral/immunology
- Antibodies, Viral/blood
- Orthomyxoviridae Infections/prevention & control
- Orthomyxoviridae Infections/immunology
- Neuraminidase/immunology
- Influenza A Virus, H5N1 Subtype/immunology
- Influenza A Virus, H1N1 Subtype/immunology
- Cross Protection/immunology
- Female
- Mice, Inbred BALB C
- Vaccine Efficacy
- Cross Reactions/immunology
- Viral Proteins/immunology
- Viral Proteins/genetics
- Humans
- Influenza, Human/prevention & control
- Influenza, Human/immunology
- Immunoglobulin G/blood
- Immunoglobulin G/immunology
- Lung/virology
- Lung/immunology
- Viroporin Proteins
Collapse
Affiliation(s)
- Jie Mao
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Hae-Ji Kang
- Department of Microbiology, Dongguk University College of Medicine, Gyeongju 38066, Korea
| | - Gi-Deok Eom
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Keon-Woong Yoon
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Ki Back Chu
- Department of Parasitology, Inje University College of Medicine, Busan 47392, Republic of Korea; Department of Infectious Disease and Malaria, Paik Institute of Clinical Research, Inje University, Busan 47392, Republic of Korea
| | - Fu-Shi Quan
- Department of Medical Zoology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea; Medical Research Center for Bioreaction to Reactive Oxygen Species and Biomedical Science Institute, School of Medicine, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea.
| |
Collapse
|
2
|
Wu NC, Wilson IA. A Perspective on the Structural and Functional Constraints for Immune Evasion: Insights from Influenza Virus. J Mol Biol 2017. [PMID: 28648617 DOI: 10.1016/j.jmb.2017.06.015] [Citation(s) in RCA: 128] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Influenza virus evolves rapidly to constantly escape from natural immunity. Most humoral immune responses to influenza virus target the hemagglutinin (HA) glycoprotein, which is the major antigen on the surface of the virus. The HA is composed of a globular head domain for receptor binding and a stem domain for membrane fusion. The major antigenic sites of HA are located in the globular head subdomain, which is highly tolerant of amino acid substitutions and continual addition of glycosylation sites. Nonetheless, the evolution of the receptor-binding site and the stem region on HA is severely constrained by their functional roles in engaging the host receptor and in mediating membrane fusion, respectively. Here, we review how broadly neutralizing antibodies (bnAbs) exploit these evolutionary constraints to protect against diverse influenza strains. We also discuss the emerging role of other epitopes that are conserved only in subsets of viruses. This rapidly increasing knowledge of the evolutionary biology, immunology, structural biology, and virology of influenza virus is invaluable for development and design of more universal influenza vaccines and novel therapeutics.
Collapse
Affiliation(s)
- Nicholas C Wu
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Ian A Wilson
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA; The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA 92037, USA.
| |
Collapse
|
3
|
Divergent Requirement of Fc-Fcγ Receptor Interactions for In Vivo Protection against Influenza Viruses by Two Pan-H5 Hemagglutinin Antibodies. J Virol 2017; 91:JVI.02065-16. [PMID: 28331095 DOI: 10.1128/jvi.02065-16] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Accepted: 03/14/2017] [Indexed: 12/21/2022] Open
Abstract
Recent studies have shown that Fc-Fcγ receptor (FcγR) interactions are required for in vivo protection against influenza viruses by broadly reactive anti-hemagglutinin (HA) stem, but not virus strain-specific, anti-receptor binding site (RBS), antibodies (Abs). Since only a few Abs recognizing epitopes in the head region but outside the RBS have been tested against single-challenge virus strains, it remains unknown whether Fc-FcγR interactions are required for in vivo protection by Abs recognizing epitopes outside the RBS and whether the requirement is virus strain specific or epitope specific. In the present study, we therefore investigated the requirements for in vivo protection using two pan-H5 Abs, 65C6 and 100F4. We generated chimeric Abs, 65C6/IgG2a and 100F4/IgG2a, which preferentially engage activating FcγRs, and isogenic forms, 65C6/D265A and 100F4/D265A, which do not bind FcγR. Virus neutralizing activity, binding, antibody-dependent cellular cytotoxicity (ADCC), and in vivo protection of these Abs were compared using three H5 strains, A/Shenzhen/406H/2006 (SZ06), A/chicken/Shanxi/2/2006 (SX06), and A/chicken/Netherlands/14015526/2014 (NE14). We found that all four chimeric Abs bound and neutralized the SZ06 and NE14 strains but poorly inhibited the SX06 strain. 65C6/IgG2a and 100F4/IgG2a, but not 65C6/D265A and 100F4/D265A, mediated ADCC against target cells expressing HA derived from all three virus strains. Interestingly, both 65C6/IgG2a and 65C6/D265A demonstrated comparable protection against all three virus strains in vivo; however, 100F4/IgG2a, but not 100F4/D265A, showed in vivo protection. Thus, we conclude that Fc-FcγR interactions are required for in vivo protection by 100F4, but not by 65C6, and therefore, protection is not virus strain specific but epitope specific.IMPORTANCE Abs play an important role in immune protection against influenza virus infection. Fc-FcγR interactions are required for in vivo protection by broadly neutralizing antistem, but not by virus strain-specific, anti-receptor binding site (RBS), Abs. Whether such interactions are necessary for protection by Abs that recognize epitopes outside RBS is not fully understood. In the present study, we investigated in vivo protection mechanisms against three H5 strains by two pan-H5 Abs, 65C6 and 100F4. We show that although these two Abs have similar neutralizing, binding, and ADCC activities against all three H5 strains in vitro, they have divergent requirements for Fc-FcγR interactions to protect against the three H5 strains in vivo The Fc-FcγR interactions are required for in vivo protection by 100F4, but not by 65C6. Thus, we conclude that Fc-FcγR interactions for in vivo protection by pan-H5 Abs is not strain specific, but epitope specific.
Collapse
|
4
|
Influenza virus neuraminidase (NA): a target for antivirals and vaccines. Arch Virol 2016; 161:2087-94. [PMID: 27255748 DOI: 10.1007/s00705-016-2907-7] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Accepted: 05/22/2016] [Indexed: 10/21/2022]
Abstract
Influenza, the most common infectious disease, poses a great threat to human health because of its highly contagious nature and fast transmissibility, often leading to high morbidity and mortality. Effective vaccination strategies may aid in the prevention and control of recurring epidemics and pandemics associated with this infectious disease. However, antigenic shifts and drifts are major concerns with influenza virus, requiring effective global monitoring and updating of vaccines. Current vaccines are standardized primarily based on the amount of hemagglutinin, a major surface antigen, which chiefly constitutes these preparations along with the varying amounts of neuraminidase (NA). Anti-influenza drugs targeting the active site of NA have been in use for more than a decade now. However, NA has not been approved as an effective antigenic component of the influenza vaccine because of standardization issues. Although some studies have suggested that NA antibodies are able to reduce the severity of the disease and induce a long-term and cross-protective immunity, a few major scientific issues need to be addressed prior to launching NA-based vaccines. Interestingly, an increasing number of studies have shown NA to be a promising target for future influenza vaccines. This review is an attempt to consolidate studies that reflect the strength of NA as a suitable vaccine target. The studies discussed in this article highlight NA as a potential influenza vaccine candidate and support taking the process of developing NA vaccines to the next stage.
Collapse
|
5
|
Meta-Analysis and Potential Role of Preexisting Heterosubtypic Cellular Immunity Based on Variations in Disease Severity Outcomes for Influenza Live Viral Challenges in Humans. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2015; 22:949-56. [PMID: 26084515 DOI: 10.1128/cvi.00101-15] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Accepted: 06/14/2015] [Indexed: 11/20/2022]
Abstract
Influenza live viral challenges in humans are valuable models for testing the efficacy of vaccines and antiviral agents. Volunteers are treated with an investigational agent, and their clinical outcomes postchallenge are compared to those of placebo-treated volunteers. Despite using a common protocol, similar recruitment criteria, and similar doses of the same challenge strain, we noticed differences in disease severity outcomes between the placebo groups from different studies. We investigated whether these differences were significant and, if so, whether any pattern and its possible causes could be identified. We compared the clinical outcomes postchallenge in placebo groups from five clinical studies carried out between 2008 and 2013. Correlations between the prechallenge heterosubtypic cellular response (gamma interferon [IFN-γ]) and postchallenge clinical outcomes were also investigated in one study. Placebo groups from studies carried out between 2009 and 2010 attained significantly reduced (P < 0.05) symptom scores postchallenge compared to those of placebo groups from studies carried out in either 2008 or 2013. Also, in a 2010 study, the frequency of high-influenza heterosubtypic cellular responders prevaccination was significantly lower in the test group (FLU-v) than that in the placebo group (P = 0.04). Moreover, the increased preexisting heterosubtypic cellular response of the placebo group correlated with reductions in symptom score and viral shedding postchallenge (P ≤ 0.023). Only postvaccination did the test group display an equivalent correlation. The last influenza pandemic coincided with a significant reduction in disease severity outcomes. This reduction also appears to correlate with increased preexisting influenza heterosubtypic cellular responses. (This study is registered at ClinicalTrials.gov under registration number NCT01226758.).
Collapse
|
6
|
Carnell GW, Ferrara F, Grehan K, Thompson CP, Temperton NJ. Pseudotype-based neutralization assays for influenza: a systematic analysis. Front Immunol 2015; 6:161. [PMID: 25972865 PMCID: PMC4413832 DOI: 10.3389/fimmu.2015.00161] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2015] [Accepted: 03/25/2015] [Indexed: 12/02/2022] Open
Abstract
The use of vaccination against the influenza virus remains the most effective method of mitigating the significant morbidity and mortality caused by this virus. Antibodies elicited by currently licensed influenza vaccines are predominantly hemagglutination-inhibition (HI)-competent antibodies that target the globular head of hemagglutinin (HA) thus inhibiting influenza virus entry into target cells. These antibodies predominantly confer homosubtypic/strain specific protection and only rarely confer heterosubtypic protection. However, recent academia or pharma-led R&D toward the production of a “universal vaccine” has centered on the elicitation of antibodies directed against the stalk of the influenza HA that has been shown to confer broad protection across a range of different subtypes (H1–H16). The accurate and sensitive measurement of antibody responses elicited by these “next-generation” influenza vaccines is, however, hampered by the lack of sensitivity of the traditional influenza serological assays HI, single radial hemolysis, and microneutralization. Assays utilizing pseudotypes, chimeric viruses bearing influenza glycoproteins, have been shown to be highly efficient for the measurement of homosubtypic and heterosubtypic broadly neutralizing antibodies, making them ideal serological tools for the study of cross-protective responses against multiple influenza subtypes with pandemic potential. In this review, we will analyze and compare literature involving the production of influenza pseudotypes with particular emphasis on their use in serum antibody neutralization assays. This will enable us to establish the parameters required for optimization and propose a consensus protocol to be employed for the further deployment of these assays in influenza vaccine immunogenicity studies.
Collapse
Affiliation(s)
- George William Carnell
- Viral Pseudotype Unit, Medway School of Pharmacy, The Universities of Greenwich and Kent at Medway , Chatham Maritime, Kent , UK
| | - Francesca Ferrara
- Viral Pseudotype Unit, Medway School of Pharmacy, The Universities of Greenwich and Kent at Medway , Chatham Maritime, Kent , UK
| | - Keith Grehan
- Viral Pseudotype Unit, Medway School of Pharmacy, The Universities of Greenwich and Kent at Medway , Chatham Maritime, Kent , UK
| | - Craig Peter Thompson
- Viral Pseudotype Unit, Medway School of Pharmacy, The Universities of Greenwich and Kent at Medway , Chatham Maritime, Kent , UK ; Department of Zoology, University of Oxford , Oxford , UK ; The Jenner Institute Laboratories, University of Oxford , Oxford , UK
| | - Nigel James Temperton
- Viral Pseudotype Unit, Medway School of Pharmacy, The Universities of Greenwich and Kent at Medway , Chatham Maritime, Kent , UK
| |
Collapse
|
7
|
Roos A, Roozendaal R, Theeuwsen J, Riahi S, Vaneman J, Tolboom J, Dekking L, Koudstaal W, Goudsmit J, Radošević K. Protection against H5N1 by multiple immunizations with seasonal influenza vaccine in mice is correlated with H5 cross-reactive antibodies. Vaccine 2015; 33:1739-47. [PMID: 25659276 DOI: 10.1016/j.vaccine.2015.01.070] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Revised: 12/03/2014] [Accepted: 01/27/2015] [Indexed: 11/25/2022]
Abstract
BACKGROUND Current seasonal influenza vaccines are believed to confer protection against a narrow range of virus strains. However, their protective ability is commonly estimated based on an in vitro correlate of protection that only considers a subset of anti-influenza antibodies that are typically strain specific, i.e., hemagglutination inhibiting antibodies. Here, we evaluate the breadth of protection induced with a seasonal trivalent influenza vaccine (composition H1N1 A/California/07/09, H3N2 A/Victoria/210/08, B/Brisbane/60/08) against influenza challenge in mice. METHODS Balb/c mice were immunized once, twice, or three times with seasonal influenza vaccine to assess protection against heterosubtypic H5N1 influenza challenge, or homologous H1N1 influenza virus as a control. Passive transfer of immune serum was used to determine the contribution of humoral immunity to protection. RESULTS Multiple immunizations with seasonal influenza vaccine induced up to 80% protection against heterosubtypic H5N1 influenza challenge in mice without eliciting detectable H5N1 neutralizing antibodies. Comparable levels of protection were reached by passive transfer of immune serum, and protection was correlated with the titer of vaccine-induced, H5 cross-reactive, non-neutralizing antibodies that are at least in part directed against conserved HA epitopes. CONCLUSIONS Here, we demonstrate that seasonal vaccine has the ability to induce broad serum-mediated protection, and that the mechanism of this protection is different from the vaccine-induced homologous protection.
Collapse
Affiliation(s)
- Anna Roos
- Crucell Vaccine Institute, Janssen Center of Excellence for Immunoprophylaxis, Crucell Holland B.V., Leiden, The Netherlands; Infectious Diseases and Vaccines Therapeutic area, Janssen Research and Development, A Division of Janssen Pharmaceutica, Leiden, The Netherlands
| | - Ramon Roozendaal
- Crucell Vaccine Institute, Janssen Center of Excellence for Immunoprophylaxis, Crucell Holland B.V., Leiden, The Netherlands; Infectious Diseases and Vaccines Therapeutic area, Janssen Research and Development, A Division of Janssen Pharmaceutica, Leiden, The Netherlands.
| | - Jessica Theeuwsen
- Crucell Vaccine Institute, Janssen Center of Excellence for Immunoprophylaxis, Crucell Holland B.V., Leiden, The Netherlands; Infectious Diseases and Vaccines Therapeutic area, Janssen Research and Development, A Division of Janssen Pharmaceutica, Leiden, The Netherlands
| | - Sarra Riahi
- Crucell Vaccine Institute, Janssen Center of Excellence for Immunoprophylaxis, Crucell Holland B.V., Leiden, The Netherlands; Infectious Diseases and Vaccines Therapeutic area, Janssen Research and Development, A Division of Janssen Pharmaceutica, Leiden, The Netherlands
| | - Joost Vaneman
- Crucell Vaccine Institute, Janssen Center of Excellence for Immunoprophylaxis, Crucell Holland B.V., Leiden, The Netherlands; Infectious Diseases and Vaccines Therapeutic area, Janssen Research and Development, A Division of Janssen Pharmaceutica, Leiden, The Netherlands
| | - Jeroen Tolboom
- Crucell Vaccine Institute, Janssen Center of Excellence for Immunoprophylaxis, Crucell Holland B.V., Leiden, The Netherlands; Infectious Diseases and Vaccines Therapeutic area, Janssen Research and Development, A Division of Janssen Pharmaceutica, Leiden, The Netherlands
| | - Liesbeth Dekking
- Crucell Vaccine Institute, Janssen Center of Excellence for Immunoprophylaxis, Crucell Holland B.V., Leiden, The Netherlands; Infectious Diseases and Vaccines Therapeutic area, Janssen Research and Development, A Division of Janssen Pharmaceutica, Leiden, The Netherlands
| | - Wouter Koudstaal
- Crucell Vaccine Institute, Janssen Center of Excellence for Immunoprophylaxis, Crucell Holland B.V., Leiden, The Netherlands; Janssen Prevention Center, Center of Excellence within Janssen Research & Development, A Division of Janssen Pharmaceutica, Leiden, The Netherlands
| | - Jaap Goudsmit
- Crucell Vaccine Institute, Janssen Center of Excellence for Immunoprophylaxis, Crucell Holland B.V., Leiden, The Netherlands; Janssen Prevention Center, Center of Excellence within Janssen Research & Development, A Division of Janssen Pharmaceutica, Leiden, The Netherlands
| | - Katarina Radošević
- Crucell Vaccine Institute, Janssen Center of Excellence for Immunoprophylaxis, Crucell Holland B.V., Leiden, The Netherlands; Sanofi, Global Biotherapeutics, Vitry-sur-Seine, France
| |
Collapse
|
8
|
Comparative serological assays for the study of h5 and h7 avian influenza viruses. INFLUENZA RESEARCH AND TREATMENT 2013; 2013:286158. [PMID: 24163763 PMCID: PMC3791816 DOI: 10.1155/2013/286158] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2013] [Accepted: 08/16/2013] [Indexed: 01/20/2023]
Abstract
The nature of influenza virus to randomly mutate and evolve into new types is an important challenge in the control of influenza infection. It is necessary to monitor virus evolution for a better understanding of the pandemic risk posed by certain variants as evidenced by the highly pathogenic avian influenza (HPAI) viruses. This has been clearly recognized in Egypt following the notification of the first HPAI H5N1 outbreak. The continuous circulation of the virus and the mass vaccination programme undertaken in poultry have resulted in a progressive genetic evolution and a significant antigenic drift near the major antigenic sites. In order to establish if vaccination is sufficient to provide significant intra- and interclade cross-protection, lentiviral pseudotypes derived from H5N1 HPAI viruses (A/Vietnam/1194/04, A/chicken/Egypt-1709-01/2007) and an antigenic drift variant (A/chicken/Egypt-1709-06-2008) were constructed and used in pseudotype-based neutralization assays (pp-NT). pp-NT data obtained was confirmed and correlated with HI and MN assays. A panel of pseudotypes belonging to influenza Groups 1 and 2, with a combination of reporter systems, was also employed for testing avian sera in order to support further application of pp-NT as an alternative valid assay that can improve avian vaccination efficacy testing, vaccine virus selection, and the reliability of reference sera.
Collapse
|
9
|
Rimmelzwaan GF, Katz JM. Immune responses to infection with H5N1 influenza virus. Virus Res 2013; 178:44-52. [PMID: 23735534 DOI: 10.1016/j.virusres.2013.05.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2012] [Revised: 04/03/2013] [Accepted: 05/20/2013] [Indexed: 01/22/2023]
Abstract
Influenza A H5N1 viruses remain a substantial threat to global public health. In particular, the expanding genetic diversity of H5N1 viruses and the associated risk for human adaptation underscore the importance of better understanding host immune responses that may protect against disease or infection. Although much emphasis has been placed on investigating early virus-host interactions and the induction of innate immune responses, little is known of the consequent adaptive immune response to H5N1 virus infection. In this review, we describe the H5N1 virus-specific and cross-reactive antibody and T cell responses in humans and animal models. Data from limited studies suggest that although initially robust, there is substantial waning of the serum antibody responses in survivors of H5N1 virus infection. Characterization of monoclonal antibodies generated from memory B cells of survivors of H5N1 virus infection has provided an understanding of the fine specificity of the human antibody response to H5N1 virus infection and identified strategies for immunotherapy. Human T cell responses induced by infection with seasonal influenza viruses are directed to relatively conserved internal proteins and cross-react with the H5N1 subtype. A role for T cell-based heterosubtypic immunity against H5N1 viruses is suggested in animal studies. Further studies on adaptive immune responses to H5N1 virus infection in both humans and animals are needed to inform the design of optimal immunological treatment and prevention modalities.
Collapse
Affiliation(s)
- Guus F Rimmelzwaan
- Viroscience Laboratory, Erasmus Medical Center, Rotterdam, The Netherlands
| | | |
Collapse
|
10
|
Exposure to a low pathogenic A/H7N2 virus in chickens protects against highly pathogenic A/H7N1 virus but not against subsequent infection with A/H5N1. PLoS One 2013; 8:e58692. [PMID: 23469288 PMCID: PMC3587606 DOI: 10.1371/journal.pone.0058692] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2012] [Accepted: 02/05/2013] [Indexed: 11/22/2022] Open
Abstract
Recent evidences have demonstrated that the presence of low pathogenic avian influenza viruses (LPAIV) may play an important role in host ecology and transmission of avian influenza viruses (AIV). While some authors have clearly demonstrated that LPAIV can mutate to render highly pathogenic avian influenza viruses (HPAIV), others have shown that their presence could provide the host with enough immunological memory to resist re-infections with HPAIV. In order to experimentally study the role of pre-existing host immunity, chickens previously infected with H7N2 LPAIV were subsequently challenged with H7N1 HPAIV. Pre-infection of chickens with H7N2 LAPIV conferred protection against the lethal challenge with H7N1 HPAIV, dramatically reducing the viral shedding, the clinical signs and the pathological outcome. Correlating with the protection afforded, sera from chickens primed with H7N2 LPAIV reacted with the H7-AIV subtype in hemagglutination inhibition assay and specifically with the N2-neuraminidase antigen. Conversely, subsequent exposure to H5N1 HPAIV resulted in a two days-delay on the onset of disease but all chickens died by 7 days post-challenge. Lack of protection correlated with the absence of H5-hemagglutining inhibitory antibodies prior to H5N1 HPAIV challenge. Our data suggest that in naturally occurring outbreaks of HPAIV, birds with pre-existing immunity to LPAIV could survive lethal infections with HA-homologous HPAIV but not subsequent re-infections with HA-heterologous HPAIV. These results could be useful to better understand the dynamics of AIV in chickens and might help in future vaccine formulations.
Collapse
|
11
|
Abstract
The desired effect of vaccination is to elicit protective immune responses against infection with pathogenic agents. An inactivated influenza vaccine is able to induce the neutralizing antibodies directed primarily against two surface antigens, hemagglutinin and neuraminidase. These two antigens undergo frequent antigenic drift and hence necessitate the annual update of a new vaccine strain. Besides the antigenic drift, the unpredictable emergence of the pandemic influenza strain, as seen in the 2009 pandemic H1N1, underscores the development of a new influenza vaccine that elicits broadly protective immunity against the diverse influenza strains. Cold-adapted live attenuated influenza vaccines (CAIVs) are advocated as a more appropriate strategy for cross-protection than inactivated vaccines and extensive studies have been conducted to address the issues in animal models. Here, we briefly describe experimental and clinical evidence for cross-protection by the CAIVs against antigenically distant strains and discuss possible explanations for cross-protective immune responses afforded by CAIVs. Potential barriers to the achievement of a universal influenza vaccine are also discussed, which will provide useful guidelines for future research on designing an ideal influenza vaccine with broad protection without causing pathogenic effects such as autoimmunity or attrition of protective immunity against homologous infection.
Collapse
Affiliation(s)
- Yo Han Jang
- Laboratory of Molecular Medicine, Department of Biotechnology, College of Life Science and Biotechnology, Seoul, Korea
| | - Baik Lin Seong
- Laboratory of Molecular Medicine, Department of Biotechnology, College of Life Science and Biotechnology, Seoul, Korea
- Translational Research Center for Protein Function Control, Yonsei University, Seoul, Korea
| |
Collapse
|
12
|
Huijskens EGW, Reimerink J, Mulder PGH, van Beek J, Meijer A, de Bruin E, Friesema I, de Jong MD, Rimmelzwaan GF, Peeters MF, Rossen JWA, Koopmans M. Profiling of humoral response to influenza A(H1N1)pdm09 infection and vaccination measured by a protein microarray in persons with and without history of seasonal vaccination. PLoS One 2013; 8:e54890. [PMID: 23365683 PMCID: PMC3554683 DOI: 10.1371/journal.pone.0054890] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2012] [Accepted: 12/18/2012] [Indexed: 01/24/2023] Open
Abstract
BACKGROUND The influence of prior seasonal influenza vaccination on the antibody response produced by natural infection or vaccination is not well understood. METHODS We compared the profiles of antibody responses of 32 naturally infected subjects and 98 subjects vaccinated with a 2009 influenza A(H1N1) monovalent MF59-adjuvanted vaccine (Focetria, Novartis), with and without a history of seasonal influenza vaccination. Antibodies were measured by hemagglutination inhibition (HI) assay for influenza A(H1N1)pdm09 and by protein microarray (PA) using the HA1 subunit for seven recent and historic H1, H2 and H3 influenza viruses, and three avian influenza viruses. Serum samples for the infection group were taken at the moment of collection of the diagnostic sample, 10 days and 30 days after onset of influenza symptoms. For the vaccination group, samples were drawn at baseline, 3 weeks after the first vaccination and 5 weeks after the second vaccination. RESULTS We showed that subjects with a history of seasonal vaccination generally exhibited higher baseline titers for the various HA1 antigens than subjects without a seasonal vaccination history. Infection and pandemic influenza vaccination responses in persons with a history of seasonal vaccination were skewed towards historic antigens. CONCLUSIONS Seasonal vaccination is of significant influence on the antibody response to subsequent infection and vaccination, and further research is needed to understand the effect of annual vaccination on protective immunity.
Collapse
MESH Headings
- Adolescent
- Adult
- Aged
- Animals
- Antibodies, Viral/biosynthesis
- Antibodies, Viral/blood
- Antibodies, Viral/immunology
- Birds
- Female
- Hemagglutination Inhibition Tests
- Hemagglutinin Glycoproteins, Influenza Virus/blood
- Hemagglutinin Glycoproteins, Influenza Virus/immunology
- Humans
- Influenza A Virus, H1N1 Subtype/immunology
- Influenza Vaccines/administration & dosage
- Influenza Vaccines/immunology
- Influenza in Birds/immunology
- Influenza in Birds/virology
- Influenza, Human/blood
- Influenza, Human/immunology
- Influenza, Human/prevention & control
- Influenza, Human/virology
- Male
- Middle Aged
- Protein Array Analysis
- Vaccination/methods
- Vaccination/statistics & numerical data
Collapse
Affiliation(s)
- Elisabeth G W Huijskens
- Laboratory of Medical Microbiology and Immunology, St. Elisabeth Hospital, Tilburg, The Netherlands.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Patel A, Kobinger GP. Evaluation of mismatched immunity against influenza viruses. Future Virol 2012. [DOI: 10.2217/fvl.12.105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Prior immunity against influenza A viruses generates sterilizing immunity against matched (homologous) viruses and varying levels of protection against mismatched (heterologous) viruses of the same or different subtypes. Natural immunity carries the risk of high morbidity and mortality, therefore immunization offers the best preventative measure. Antibody responses against the viral hemagglutinin protein correlate with protection in humans and evidence increasingly supports a role for robust cellular immune responses. By exploiting mismatched immunity, current conventional and experimental vaccine candidates can improve the generation of cross-protective immune responses against heterologous viruses. Experimental vaccines such as virus-like particles, DNA vectors, viral vectors and broadly neutralizing antibodies are able to expand cross-protection through mismatched B- and T-cell responses. However, the generation of mismatched immune responses can also have the opposite effect and impair protective immunity. This review discusses mismatched immunity in the context of natural infection and immunization. Additionally, we discuss strategies to exploit mismatched immunity in order to improve current conventional and experimental influenza A virus vaccines.
Collapse
Affiliation(s)
- Ami Patel
- San Raffaele-Telethon Institute of Gene Therapy (hSR-TIGET), Milan, Italy Division of Gene Therapy & Regenerative Medicine, via Olgettina 58, Milan, Italy, 20132
| | - Gary P Kobinger
- Department of Medical Microbiology, University of Manitoba, Winnipeg, Manitoba, Canada
- Department of Immunology, University of Manitoba, Winnipeg, Manitoba, Canada
- Special Pathogens Programme, National Microbiology Laboratory, Public Health Agency of Canada, Canadian Science Centre for Human & Animal Health, 1015 Arlington Street, Winnipeg, Manitoba, Canada, R3E 3R2
| |
Collapse
|
14
|
Koukuntla R, Mandell RB, Flick R. Virus-Like Particle-Based Countermeasures Against Rift Valley Fever Virus. Zoonoses Public Health 2012; 59 Suppl 2:142-50. [DOI: 10.1111/j.1863-2378.2012.01478.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
15
|
Comment on Lethality of H5N1 Infection in Humans. Biosecur Bioterror 2012; 10:263. [DOI: 10.1089/bsp.2012.0036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
16
|
Marcelin G, Sandbulte MR, Webby RJ. Contribution of antibody production against neuraminidase to the protection afforded by influenza vaccines. Rev Med Virol 2012; 22:267-79. [PMID: 22438243 PMCID: PMC3389592 DOI: 10.1002/rmv.1713] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2011] [Revised: 01/23/2012] [Accepted: 02/08/2012] [Indexed: 11/08/2022]
Abstract
Vaccines are instrumental in controlling the burden of influenza virus infection in humans and animals. Antibodies raised against both major viral surface glycoproteins, hemagglutinin (HA) and neuraminidase (NA), can contribute to protective immunity. Vaccine-induced HA antibodies have been characterized extensively, and they generally confer protection by blocking the attachment and fusion of a homologous virus onto host cells. Although not as well characterized, some functions of NA antibodies in influenza vaccine-mediated immunity have been recognized for many years. In this review, we summarize the case for NA antibodies in influenza vaccine-mediated immunity. In the absence of well-matched HA antibodies, NA antibodies can provide varying degrees of protection against disease. NA proteins of seasonal influenza vaccines have been shown in some instances to elicit serum antibodies with cross-reactivity to avian-origin and swine-origin influenza strains, in addition to HA drift variants. NA-mediated immunity has been linked to (i) conserved NA epitopes amongst otherwise antigenically distinct strains, partly attributable to the segmented influenza viral genome; (ii) inhibition of NA enzymatic activity; and (iii) the NA content in vaccine formulations. There is a potential to enhance the effectiveness of existing and future influenza vaccines by focusing greater attention on the antigenic characteristics and potency of the NA protein.
Collapse
Affiliation(s)
- Glendie Marcelin
- Department of Infectious Diseases, Division Virology, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Matthew R. Sandbulte
- Department of Veterinary Microbiology and Preventive Medicine, Iowa State University, 2120 Veterinary Medicine, Ames, IA 50011, USA
| | - Richard J. Webby
- Department of Infectious Diseases, Division Virology, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| |
Collapse
|
17
|
Yim K, Miles B, Zinsou R, Prince G, Boukhvalova M. Efficacy of trivalent inactivated influenza vaccines in the cotton rat Sigmodon hispidus model. Vaccine 2011; 30:1291-6. [PMID: 22210139 DOI: 10.1016/j.vaccine.2011.12.084] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2011] [Revised: 12/12/2011] [Accepted: 12/17/2011] [Indexed: 01/30/2023]
Abstract
Annually adjusted inactivated influenza vaccines can prevent infection and limit the spread of seasonal influenza when vaccine strain closely matches circulating strain. For the years when the match is difficult to achieve, a rapid screening of a larger repertoire of vaccines may be required but is difficult to accomplish due to the lack of a convenient small animal model of seasonal influenza vaccines. The goal of this work was to determine whether the cotton rat Sigmodon hispidus, a small laboratory animal susceptible to infection with unadapted influenza viruses, may become such a model. Cotton rats were immunized with a trivalent inactivated vaccine (TIV) FluLaval (2006/2007) and vaccine immunogenicity and antiviral efficacy was evaluated against the homologous H1N1 and a heterologous H3N2 challenge. FluLaval induced a strong virus-specific IgG and neutralizing antibody response against homologous virus, elicited sterilizing immunity in the lungs and significantly reduced viral replication in the nose of infected animals. FluLaval was efficacious in cotton rats as either a single-time or a double immunization, although higher level of protection of the upper respiratory tract was achieved following two doses of vaccine. Antibodies against a heterologous influenza strain were induced in FluLaval-vaccinated animals, but vaccine lacked antiviral efficacy and did not reduce replication of a heterologous virus. Similarity of these findings to human TIV data suggests that the cotton rat may prove to be a reliable small animal model of human influenza vaccines.
Collapse
Affiliation(s)
- Kevin Yim
- Sigmovir Biosystems, Inc., 9610 Medical Center Drive, Suite 100, Rockville, MD 20850, USA
| | | | | | | | | |
Collapse
|
18
|
Selman MHJ, de Jong SE, Soonawala D, Kroon FP, Adegnika AA, Deelder AM, Hokke CH, Yazdanbakhsh M, Wuhrer M. Changes in antigen-specific IgG1 Fc N-glycosylation upon influenza and tetanus vaccination. Mol Cell Proteomics 2011; 11:M111.014563. [PMID: 22184099 PMCID: PMC3322571 DOI: 10.1074/mcp.m111.014563] [Citation(s) in RCA: 104] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Antibody effector functions have been shown to be influenced by the structure of the Fc N-glycans. Here we studied the changes in plasma or serum IgG Fc N-glycosylation upon vaccination of 10 Caucasian adults and 10 African children. Serum/plasma IgG was purified by affinity chromatography prior to and at two time points after vaccination. Fc N-glycosylation profiles of individual IgG subclasses were determined for both total IgG and affinity-purified anti-vaccine IgG using a recently developed fast nanoliquid chromatography-electrospray ionization MS (LC-ESI-MS) method. While vaccination had no effect on the glycosylation of total IgG, anti-vaccine IgG showed increased levels of galactosylation and sialylation upon active immunization. Interestingly, the number of sialic acids per galactose increased during the vaccination time course, suggesting a distinct regulation of galactosylation and sialylation. In addition we observed a decrease in the level of IgG1 bisecting N-acetylglucosamine whereas no significant changes were observed for the level of fucosylation. Our data indicate that dependent on the vaccination time point the infectious agent will encounter IgGs with different glycosylation profiles, which are expected to influence the antibody effector functions relevant in immunity.
Collapse
Affiliation(s)
- Maurice H J Selman
- Department of Parasitology, Leiden University Medical Center, Leiden, the Netherlands
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Kreijtz JHCM, Fouchier RAM, Rimmelzwaan GF. Immune responses to influenza virus infection. Virus Res 2011; 162:19-30. [PMID: 21963677 DOI: 10.1016/j.virusres.2011.09.022] [Citation(s) in RCA: 231] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2011] [Revised: 09/15/2011] [Accepted: 09/15/2011] [Indexed: 10/17/2022]
Abstract
Influenza viruses cause annual outbreaks of respiratory tract infection with attack rates of 5-10%. This means that humans are infected repeatedly with intervals of, on average, 10-20 years. Upon each infection subjects develop innate and adaptive immune responses which aim at clearing the infection. Strain-specific antibody responses are induced, which exert selective pressure on circulating influenza viruses and which drive antigenic drift of seasonal influenza viruses, especially in the hemagglutinin molecule. This antigenic drift necessitates updating of seasonal influenza vaccines regularly in order to match the circulating strains. Upon infection also virus-specific T cell responses are induced, including CD4+ T helper cells and CD8+ cytotoxic T cells. These cells are mainly directed to conserved proteins and therefore display cross-reactivity with a variety of influenza A viruses of different subtypes. T cell mediated immunity therefore may contribute to so-called heterosubtypic immunity and may afford protection against antigenically distinct, potentially pandemic influenza viruses. At present, novel viral targets are identified that may help to develop broad-protective vaccines. Here we review the various arms of the immune response to influenza virus infections and their viral targets and discuss the possibility of developing universal vaccines. The development of such novel vaccines would imply that also new immune correlates of protection need to be established in order to facilitate assessment of vaccine efficacy.
Collapse
Affiliation(s)
- J H C M Kreijtz
- Department of Virology, Erasmus MC, Rotterdam, The Netherlands
| | | | | |
Collapse
|
20
|
Annual vaccination against influenza virus hampers development of virus-specific CD8⁺ T cell immunity in children. J Virol 2011; 85:11995-2000. [PMID: 21880755 DOI: 10.1128/jvi.05213-11] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Infection with seasonal influenza A viruses induces immunity to potentially pandemic influenza A viruses of other subtypes (heterosubtypic immunity). We recently demonstrated that vaccination against seasonal influenza prevented the induction of heterosubtypic immunity against influenza A/H5N1 virus induced by infection with seasonal influenza in animal models, which correlated with the absence of virus-specific CD8(+) T cell responses. Annual vaccination of all healthy children against influenza has been recommended, but the impact of vaccination on the development of the virus-specific CD8(+) T cell immunity in children is currently unknown. Here we compared the virus-specific CD8(+) T cell immunity in children vaccinated annually with that in unvaccinated children. In the present study, we compared influenza A virus-specific cellular and humoral responses of unvaccinated healthy control children with those of children with cystic fibrosis (CF) who were vaccinated annually. Similar virus-specific CD4(+) T cell and antibody responses were observed, while an age-dependent increase of the virus-specific CD8(+) T cell response that was absent in vaccinated CF children was observed in unvaccinated healthy control children. Our results indicate that annual influenza vaccination is effective against seasonal influenza but hampers the development of virus-specific CD8(+) T cell responses. The consequences of these findings are discussed in the light of the development of protective immunity to seasonal and future pandemic influenza viruses.
Collapse
|