1
|
Simula L, Fumagalli M, Vimeux L, Rajnpreht I, Icard P, Birsen G, An D, Pendino F, Rouault A, Bercovici N, Damotte D, Lupo-Mansuet A, Alifano M, Alves-Guerra MC, Donnadieu E. Mitochondrial metabolism sustains CD8 + T cell migration for an efficient infiltration into solid tumors. Nat Commun 2024; 15:2203. [PMID: 38467616 PMCID: PMC10928223 DOI: 10.1038/s41467-024-46377-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Accepted: 02/26/2024] [Indexed: 03/13/2024] Open
Abstract
The ability of CD8+ T cells to infiltrate solid tumors and reach cancer cells is associated with improved patient survival and responses to immunotherapy. Thus, identifying the factors controlling T cell migration in tumors is critical, so that strategies to intervene on these targets can be developed. Although interstitial motility is a highly energy-demanding process, the metabolic requirements of CD8+ T cells migrating in a 3D environment remain unclear. Here, we demonstrate that the tricarboxylic acid (TCA) cycle is the main metabolic pathway sustaining human CD8+ T cell motility in 3D collagen gels and tumor slices while glycolysis plays a more minor role. Using pharmacological and genetic approaches, we report that CD8+ T cell migration depends on the mitochondrial oxidation of glucose and glutamine, but not fatty acids, and both ATP and ROS produced by mitochondria are required for T cells to migrate. Pharmacological interventions to increase mitochondrial activity improve CD8+ T cell intratumoral migration and CAR T cell recruitment into tumor islets leading to better control of tumor growth in human xenograft models. Our study highlights the rationale of targeting mitochondrial metabolism to enhance the migration and antitumor efficacy of CAR T cells in treating solid tumors.
Collapse
Affiliation(s)
- Luca Simula
- Institut Cochin, Inserm U1016, CNRS UMR8104, Université Paris-Cité, Equipe labellisée "Ligue contre le Cancer", Paris, 75014, France.
| | - Mattia Fumagalli
- Institut Cochin, Inserm U1016, CNRS UMR8104, Université Paris-Cité, Equipe labellisée "Ligue contre le Cancer", Paris, 75014, France
| | - Lene Vimeux
- Institut Cochin, Inserm U1016, CNRS UMR8104, Université Paris-Cité, Equipe labellisée "Ligue contre le Cancer", Paris, 75014, France
| | - Irena Rajnpreht
- Institut Cochin, Inserm U1016, CNRS UMR8104, Université Paris-Cité, Equipe labellisée "Ligue contre le Cancer", Paris, 75014, France
| | - Philippe Icard
- Université de Normandie, UNICAEN, Inserm U1086 Interdisciplinary Research Unit for Cancer Prevention and Treatment, Caen, France
- Thoracic Surgery Department, Cochin Hospital, APHP-Centre, Université Paris-Cité, Paris, France
| | - Gary Birsen
- Department of Pneumology, Thoracic Oncology Unit, Cochin Hospital, APHP-Centre, Université Paris-Cité, 75014, Paris, France
| | - Dongjie An
- Institut Cochin, Inserm U1016, CNRS UMR8104, Université Paris-Cité, Equipe labellisée "Ligue contre le Cancer", Paris, 75014, France
| | - Frédéric Pendino
- Institut Cochin, Inserm U1016, CNRS UMR8104, Université Paris-Cité, Equipe labellisée "Ligue contre le Cancer", Paris, 75014, France
| | - Adrien Rouault
- Institut Cochin, Inserm U1016, CNRS UMR8104, Université Paris-Cité, Equipe labellisée "Ligue contre le Cancer", Paris, 75014, France
| | - Nadège Bercovici
- Institut Cochin, Inserm U1016, CNRS UMR8104, Université Paris-Cité, Equipe labellisée "Ligue contre le Cancer", Paris, 75014, France
| | - Diane Damotte
- Department of Pathology, Cochin Hospital, APHP-Centre, Université Paris-Cité, 75014, Paris, France
| | - Audrey Lupo-Mansuet
- Department of Pathology, Cochin Hospital, APHP-Centre, Université Paris-Cité, 75014, Paris, France
| | - Marco Alifano
- Thoracic Surgery Department, Cochin Hospital, APHP-Centre, Université Paris-Cité, Paris, France
- Inserm U1138, Integrative Cancer Immunology Unit, 75006, Paris, France
| | | | - Emmanuel Donnadieu
- Institut Cochin, Inserm U1016, CNRS UMR8104, Université Paris-Cité, Equipe labellisée "Ligue contre le Cancer", Paris, 75014, France.
| |
Collapse
|
2
|
Yu H, Jacquelot N, Belz GT. Metabolic features of innate lymphoid cells. J Exp Med 2022; 219:e20221140. [PMID: 36301303 PMCID: PMC9617479 DOI: 10.1084/jem.20221140] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 08/31/2022] [Accepted: 10/04/2022] [Indexed: 12/02/2022] Open
Abstract
Innate and adaptive immune cells are found in distinct tissue niches where they orchestrate immune responses. This requires intrinsic and temporal metabolic adaptability to coordinately activate the immune response cascade. Dysregulation of this program is a key feature of immunosuppression. Direct or indirect metabolic immune cell reprogramming may offer new approaches to modulate immune cells behavior for therapy to overcome dysregulation. In this review, we explored how metabolism regulates lymphocytes beyond the classical T cell subsets. We focus on the innate lymphoid cell (ILC) family, highlighting the distinct metabolic characteristics of these cells, the impact of environmental factors, and the receptors that could alter immune cell functions through manipulation of metabolic pathways to potentially prevent or treat various diseases.
Collapse
Affiliation(s)
- Huiyang Yu
- The University of Queensland, Diamantina Institute, Brisbane, Queensland, Australia
| | - Nicolas Jacquelot
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Gabrielle T. Belz
- The University of Queensland, Diamantina Institute, Brisbane, Queensland, Australia
| |
Collapse
|
3
|
Nagree MS, Felizardo TC, Faber ML, Rybova J, Rupar CA, Foley SR, Fuller M, Fowler DH, Medin JA. Autologous, lentivirus-modified, T-rapa cell "micropharmacies" for lysosomal storage disorders. EMBO Mol Med 2022; 14:e14297. [PMID: 35298086 PMCID: PMC8988206 DOI: 10.15252/emmm.202114297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 02/07/2022] [Accepted: 02/09/2022] [Indexed: 11/11/2022] Open
Abstract
T cells are the current choice for many cell therapy applications. They are relatively easy to access, expand in culture, and genetically modify. Rapamycin-conditioning ex vivo reprograms T cells, increasing their memory properties and capacity for survival, while reducing inflammatory potential and the amount of preparative conditioning required for engraftment. Rapamycin-conditioned T cells have been tested in patients and deemed to be safe to administer in numerous settings, with reduced occurrence of infusion-related adverse events. We demonstrate that ex vivo lentivirus-modified, rapamycin-conditioned CD4+ T cells can also act as next-generation cellular delivery vehicles-that is, "micropharmacies"-to disseminate corrective enzymes for multiple lysosomal storage disorders. We evaluated the therapeutic potential of this treatment platform for Fabry, Gaucher, Farber, and Pompe diseases in vitro and in vivo. For example, such micropharmacies expressing α-galactosidase A for treatment of Fabry disease were transplanted in mice where they provided functional enzyme in key affected tissues such as kidney and heart, facilitating clearance of pathogenic substrate after a single administration.
Collapse
Affiliation(s)
- Murtaza S Nagree
- Department of Medical BiophysicsUniversity of TorontoTorontoONCanada
- Department of PediatricsMedical College of WisconsinMilwaukeeWIUSA
| | | | - Mary L Faber
- Department of PediatricsMedical College of WisconsinMilwaukeeWIUSA
| | - Jitka Rybova
- Department of PediatricsMedical College of WisconsinMilwaukeeWIUSA
| | - C Anthony Rupar
- Department of Pathology and Laboratory MedicineWestern UniversityLondonONCanada
| | - S Ronan Foley
- Juravinski Hospital and Cancer CentreMcMaster UniversityHamiltonONCanada
| | - Maria Fuller
- Genetics and Molecular PathologySA Pathology at Women's and Children's HospitalNorth AdelaideSAAustralia
| | | | - Jeffrey A Medin
- Department of Medical BiophysicsUniversity of TorontoTorontoONCanada
- Department of PediatricsMedical College of WisconsinMilwaukeeWIUSA
- Department of BiochemistryMedical College of WisconsinMilwaukeeWIUSA
| |
Collapse
|
4
|
Smith PL, Piadel K, Dalgleish AG. Directing T-Cell Immune Responses for Cancer Vaccination and Immunotherapy. Vaccines (Basel) 2021; 9:1392. [PMID: 34960140 PMCID: PMC8708201 DOI: 10.3390/vaccines9121392] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 11/08/2021] [Accepted: 11/10/2021] [Indexed: 12/21/2022] Open
Abstract
Cancer vaccination and immunotherapy revolutionised the treatment of cancer, a result of decades of research into the immune system in health and disease. However, despite recent breakthroughs in treating otherwise terminal cancer, only a minority of patients respond to cancer immunotherapy and some cancers are largely refractive to immunotherapy treatment. This is due to numerous issues intrinsic to the tumour, its microenvironment, or the immune system. CD4+ and CD8+ αβ T-cells emerged as the primary effector cells of the anti-tumour immune response but their function in cancer patients is often compromised. This review details the mechanisms by which T-cell responses are hindered in the setting of cancer and refractive to immunotherapy, and details many of the approaches under investigation to direct T-cell function and improve the efficacy of cancer vaccination and immunotherapy.
Collapse
Affiliation(s)
- Peter Lawrence Smith
- Institute of Infection and Immunity, St. Georges University of London, London SW17 0RE, UK; (K.P.); (A.G.D.)
| | | | | |
Collapse
|
5
|
Reina-Campos M, Scharping NE, Goldrath AW. CD8 + T cell metabolism in infection and cancer. Nat Rev Immunol 2021; 21:718-738. [PMID: 33981085 PMCID: PMC8806153 DOI: 10.1038/s41577-021-00537-8] [Citation(s) in RCA: 331] [Impact Index Per Article: 82.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/09/2021] [Indexed: 02/03/2023]
Abstract
Cytotoxic CD8+ T cells play a key role in the elimination of intracellular infections and malignant cells and can provide long-term protective immunity. In the response to infection, CD8+ T cell metabolism is coupled to transcriptional, translational and epigenetic changes that are driven by extracellular metabolites and immunological signals. These programmes facilitate the adaptation of CD8+ T cells to the diverse and dynamic metabolic environments encountered in the circulation and in the tissues. In the setting of disease, both cell-intrinsic and cell-extrinsic metabolic cues contribute to CD8+ T cell dysfunction. In addition, changes in whole-body metabolism, whether through voluntary or disease-induced dietary alterations, can influence CD8+ T cell-mediated immunity. Defining the metabolic adaptations of CD8+ T cells in specific tissue environments informs our understanding of how these cells protect against pathogens and tumours and maintain tissue health at barrier sites. Here, we highlight recent findings revealing how metabolic networks enforce specific CD8+ T cell programmes and discuss how metabolism is integrated with CD8+ T cell differentiation and function and determined by environmental cues.
Collapse
Affiliation(s)
- Miguel Reina-Campos
- Division of Biological Sciences, Section of Molecular Biology, University of California, San Diego, La Jolla, CA, USA
| | - Nicole E. Scharping
- Division of Biological Sciences, Section of Molecular Biology, University of California, San Diego, La Jolla, CA, USA
| | - Ananda W. Goldrath
- Division of Biological Sciences, Section of Molecular Biology, University of California, San Diego, La Jolla, CA, USA.,
| |
Collapse
|
6
|
Abstract
Involvement of T lymphocytes in kidney transplantation is a well-developed topic; however, most of the scientific interest focused on the different type of CD4+ lymphocyte subpopulations. Few authors, instead, investigated the role of CD8+ T cells in renal transplantation and how deleterious they can be to long-term allograft survival. Recently, there has been a renewed interest in the CD8+ T cells involvement in the transplantation field with the aim to investigate the immunological mechanisms underlying the infiltration of CD8+ T cells and their biological functions in human kidney allografts. The purpose of the present review is to highlight the role of allo-reactive cytotoxic T lymphocytes (CTLs) CD8+ subset in allograft kidney recipients and their related clinical complications.
Collapse
|
7
|
Chen X, Li S, Long D, Shan J, Li Y. Rapamycin facilitates differentiation of regulatory T cells via enhancement of oxidative phosphorylation. Cell Immunol 2021; 365:104378. [PMID: 34015699 DOI: 10.1016/j.cellimm.2021.104378] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 04/14/2021] [Accepted: 05/06/2021] [Indexed: 02/05/2023]
Abstract
We explored the interplay between energy metabolism and the impact of rapamycin (Rapa) on regulatory T cell (Treg) differentiation. Naïve CD4+ T cells were stimulated under Treg-polarizing conditions with or without Rapa. Rapa promoted Treg induction, as the expression of Foxp3 and Treg phenotypic markers were enhanced. Rapa disrupts glycolysis while favoring mitochondrial metabolism in induced Tregs (iTregs). Metabolic profiling showed reduced glycolytic metabolites in Rapa-treated iTregs, in line with the downregulation of glucose uptake and the expression of glycolytic enzymes. Conversely, Rapa increased the ratios of ATP/ADP and ATP/AMP, the production of mitochondrial ATP, and the expression of ATP5A. Treatment with oxidative phosphorylation inhibitors suppressed Foxp3 expression in Rapa-treated cells. Moreover, Rapa decreased oleic acid and palmitoleic acid levels and increased l-carnitine and acetylcarnitine levels and CPT1A expression in iTregs, indicative of augmented fatty acid oxidation. In conclusion, Rapa induces metabolic reprogramming in Tregs, affecting their differentiation.
Collapse
Affiliation(s)
- Xuelu Chen
- Key Laboratory of Transplant Engineering and Immunology of The Ministry of Health, Regenerative Medicine Research Centre, The Organ Transplantation Centre, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, PR China
| | - Shengfu Li
- Key Laboratory of Transplant Engineering and Immunology of The Ministry of Health, Regenerative Medicine Research Centre, The Organ Transplantation Centre, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, PR China
| | - Dan Long
- Key Laboratory of Transplant Engineering and Immunology of The Ministry of Health, Regenerative Medicine Research Centre, The Organ Transplantation Centre, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, PR China
| | - Juan Shan
- Chengdu Medical College, Chengdu 610500, Sichuan Province, PR China.
| | - Youping Li
- Key Laboratory of Transplant Engineering and Immunology of The Ministry of Health, Regenerative Medicine Research Centre, The Organ Transplantation Centre, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, PR China; Chinese Cochrane Centre, Chinese Evidence-Based Medicine Centre, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, PR China.
| |
Collapse
|
8
|
Rangel Rivera GO, Knochelmann HM, Dwyer CJ, Smith AS, Wyatt MM, Rivera-Reyes AM, Thaxton JE, Paulos CM. Fundamentals of T Cell Metabolism and Strategies to Enhance Cancer Immunotherapy. Front Immunol 2021; 12:645242. [PMID: 33815400 PMCID: PMC8014042 DOI: 10.3389/fimmu.2021.645242] [Citation(s) in RCA: 81] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 03/01/2021] [Indexed: 01/11/2023] Open
Abstract
Emerging reports show that metabolic pathways can be targeted to enhance T cell-mediated immunity to tumors. Yet, tumors consume key metabolites in the host to survive, thus robbing T cells of these nutrients to function and thrive. T cells are often deprived of basic building blocks for energy in the tumor, including glucose and amino acids needed to proliferate or produce cytotoxic molecules against tumors. Immunosuppressive molecules in the host further compromise the lytic capacity of T cells. Moreover, checkpoint receptors inhibit T cell responses by impairing their bioenergetic potential within tumors. In this review, we discuss the fundamental metabolic pathways involved in T cell activation, differentiation and response against tumors. We then address ways to target metabolic pathways to improve the next generation of immunotherapies for cancer patients.
Collapse
Affiliation(s)
- Guillermo O Rangel Rivera
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC, United States.,Department of Surgery, Emory University, Atlanta, GA, United States.,Department of Microbiology and Immunology, Emory University, Atlanta, GA, United States
| | - Hannah M Knochelmann
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC, United States.,Department of Surgery, Emory University, Atlanta, GA, United States.,Department of Microbiology and Immunology, Emory University, Atlanta, GA, United States
| | - Connor J Dwyer
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC, United States
| | - Aubrey S Smith
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC, United States.,Department of Surgery, Emory University, Atlanta, GA, United States.,Department of Microbiology and Immunology, Emory University, Atlanta, GA, United States
| | - Megan M Wyatt
- Department of Surgery, Emory University, Atlanta, GA, United States.,Department of Microbiology and Immunology, Emory University, Atlanta, GA, United States
| | - Amalia M Rivera-Reyes
- Department of Surgery, Emory University, Atlanta, GA, United States.,Department of Microbiology and Immunology, Emory University, Atlanta, GA, United States
| | - Jessica E Thaxton
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC, United States.,Department of Orthopaedics and Physical Medicine, Medical University of South Carolina, Charleston, SC, United States
| | - Chrystal M Paulos
- Department of Surgery, Emory University, Atlanta, GA, United States.,Department of Microbiology and Immunology, Emory University, Atlanta, GA, United States
| |
Collapse
|
9
|
Otto NA, Butler JM, Ramirez-Moral I, van Weeghel M, van Heijst JWJ, Scicluna BP, Houtkooper RH, de Vos AF, van der Poll T. Adherence Affects Monocyte Innate Immune Function and Metabolic Reprogramming after Lipopolysaccharide Stimulation In Vitro. THE JOURNAL OF IMMUNOLOGY 2021; 206:827-838. [PMID: 33408258 DOI: 10.4049/jimmunol.2000702] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 12/07/2020] [Indexed: 11/19/2022]
Abstract
Circulating nonadherent monocytes can migrate to extravascular sites by a process that involves adherence. Alterations in intracellular metabolism shape the immunological phenotype of phagocytes upon activation. To determine the effect of adherence on their metabolic and functional response human monocytes were stimulated with LPS under nonadherent and adherent conditions. Adherent monocytes (relative to nonadherent monocytes) produced less TNF and IL-1β (proinflammatory) and more IL-10 (anti-inflammatory) upon LPS stimulation and had an increased capacity to phagocytose and produce reactive oxygen species. RNA sequencing analysis confirmed that adherence modified the LPS-induced response of monocytes, reducing expression of proinflammatory genes involved in TLR signaling and increasing induction of genes involved in pathogen elimination. Adherence resulted in an increased glycolytic response as indicated by lactate release, gene set enrichment, and [13C]-glucose flux analysis. To determine the role of glycolysis in LPS-induced immune responses, this pathway was inhibited by glucose deprivation or the glucose analogue 2-deoxy-d-glucose (2DG). Although both interventions equally inhibited glycolysis, only 2DG influenced monocyte functions, inhibiting expression of genes involved in TLR signaling and pathogen elimination, as well as cytokine release. 2DG, but not glucose deprivation, reduced expression of genes involved in oxidative phosphorylation. Inhibition of oxidative phosphorylation affected TNF and IL-10 release in a similar way as 2DG. Collectively, these data suggest that adherence may modify the metabolic and immunological profile of monocytes and that inhibition of glycolysis and oxidative phosphorylation, but not inhibition of glycolysis alone, has a profound effect on immune functions of monocytes exposed to LPS.
Collapse
Affiliation(s)
- Natasja A Otto
- Center for Experimental and Molecular Medicine, University of Amsterdam, 1105 AZ Amsterdam, the Netherlands; .,Amsterdam Infection and Immunity Institute, 1105 AZ Amsterdam, the Netherlands
| | - Joe M Butler
- Center for Experimental and Molecular Medicine, University of Amsterdam, 1105 AZ Amsterdam, the Netherlands.,Amsterdam Infection and Immunity Institute, 1105 AZ Amsterdam, the Netherlands
| | - Ivan Ramirez-Moral
- Center for Experimental and Molecular Medicine, University of Amsterdam, 1105 AZ Amsterdam, the Netherlands.,Amsterdam Infection and Immunity Institute, 1105 AZ Amsterdam, the Netherlands
| | - Michel van Weeghel
- Laboratory Genetic Metabolic Diseases, University of Amsterdam, 1105 AZ Amsterdam, the Netherlands.,Core Facility Metabolomics, University of Amsterdam, 1105 AZ Amsterdam, the Netherlands.,Amsterdam Gastroenterology and Metabolism, 1105 AZ Amsterdam, the Netherlands.,Amsterdam Cardiovascular Sciences, 1105 AZ Amsterdam, the Netherlands
| | | | - Brendon P Scicluna
- Center for Experimental and Molecular Medicine, University of Amsterdam, 1105 AZ Amsterdam, the Netherlands.,Amsterdam Infection and Immunity Institute, 1105 AZ Amsterdam, the Netherlands.,Department of Clinical Epidemiology, Biostatistics and Bioinformatics, University of Amsterdam, 1105 AZ Amsterdam, the Netherlands; and
| | - Riekelt H Houtkooper
- Laboratory Genetic Metabolic Diseases, University of Amsterdam, 1105 AZ Amsterdam, the Netherlands.,Amsterdam Gastroenterology and Metabolism, 1105 AZ Amsterdam, the Netherlands.,Amsterdam Cardiovascular Sciences, 1105 AZ Amsterdam, the Netherlands
| | - Alex F de Vos
- Center for Experimental and Molecular Medicine, University of Amsterdam, 1105 AZ Amsterdam, the Netherlands.,Amsterdam Infection and Immunity Institute, 1105 AZ Amsterdam, the Netherlands
| | - Tom van der Poll
- Center for Experimental and Molecular Medicine, University of Amsterdam, 1105 AZ Amsterdam, the Netherlands.,Amsterdam Infection and Immunity Institute, 1105 AZ Amsterdam, the Netherlands.,Division of Infectious Diseases, Amsterdam University Medical Centers, University of Amsterdam, 1105 AZ Amsterdam, the Netherlands
| |
Collapse
|
10
|
Sun Y, Preiss NK, Valenteros KB, Kamal Y, Usherwood YK, Frost HR, Usherwood EJ. Zbtb20 Restrains CD8 T Cell Immunometabolism and Restricts Memory Differentiation and Antitumor Immunity. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2020; 205:2649-2666. [PMID: 32998985 PMCID: PMC7931848 DOI: 10.4049/jimmunol.2000459] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 09/04/2020] [Indexed: 12/20/2022]
Abstract
CD8 T cell differentiation is orchestrated by dynamic metabolic changes that direct activation, proliferation, cytotoxic function, and epigenetic changes. We report that the BTB-ZF family transcriptional repressor Zbtb20 negatively regulates CD8 T cell metabolism and memory differentiation in mice. Effector and memory CD8 T cells with conditional Zbtb20 deficiency displayed enhanced mitochondrial and glycolytic metabolism, and memory CD8 T cells had enhanced spare respiratory capacity. Furthermore, Zbtb20-deficient CD8 T cells displayed increased flexibility in the use of mitochondrial fuel sources. Phenotypic and transcriptional skewing toward the memory fate was observed during the CD8 T cell response to Listeria monocytogenes Memory cells mounted larger secondary responses and conferred better protection following tumor challenge. These data suggest that inactivation of Zbtb20 may offer an approach to enhance metabolic activity and flexibility and improve memory CD8 T cell differentiation, useful attributes for T cells used in adoptive immunotherapy.
Collapse
Affiliation(s)
- Yanbo Sun
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, NH 03755; and
| | - Nicholas K Preiss
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, NH 03755; and
| | - Kristine B Valenteros
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, NH 03755; and
| | - Yasmin Kamal
- Department of Biomedical Data Science, Geisel School of Medicine at Dartmouth, Lebanon, NH 03756
| | - Young-Kwang Usherwood
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, NH 03755; and
| | - H Robert Frost
- Department of Biomedical Data Science, Geisel School of Medicine at Dartmouth, Lebanon, NH 03756
| | - Edward J Usherwood
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, NH 03755; and
| |
Collapse
|
11
|
Abstract
There is a considerable unmet demand for safe and efficacious medications in the realm of autoimmune and inflammatory diseases. The fate of the immune cells is precisely governed by control of various metabolic processes such as mitochondrial oxidative phosphorylation, glycolysis, fatty acid synthesis, beta-oxidation, amino acid metabolism, and several others including the pentose phosphate pathway, which is a unique source of metabolites for cell proliferation and maintenance of a reducing environment. These pathways are tightly regulated by the cytokines, growth factors, availability of the nutrients and host-microbe interaction. Exploring the immunometabolic pathways that govern the fate of cells of the innate and adaptive immune system, during various stages of activation, proliferation, differentiation and effector response, is crucial for new development of new treatment targets. Identifying the pathway connections and key enzymes will help us to target the dysregulated inflammation in autoimmune diseases. The mechanistic target of rapamycin (mTOR) pathway is increasingly recognized as one of the key drivers of proinflammatory responses in autoimmune diseases. In this review, we provide an update on the current understanding of the metabolic signatures noted within different immune cells of many different autoimmune diseases with a focus on selecting pathways and specific metabolites as targets for treatment.
Collapse
|
12
|
Haug T, Aigner M, Peuser MM, Strobl CD, Hildner K, Mougiakakos D, Bruns H, Mackensen A, Völkl S. Human Double-Negative Regulatory T-Cells Induce a Metabolic and Functional Switch in Effector T-Cells by Suppressing mTOR Activity. Front Immunol 2019; 10:883. [PMID: 31105702 PMCID: PMC6498403 DOI: 10.3389/fimmu.2019.00883] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 04/05/2019] [Indexed: 01/07/2023] Open
Abstract
The recently discovered population of TCRαβ+ CD4–/CD8– (double-negative, DN) T-cells are highly potent suppressor cells in mice and humans. In preclinical transplantation models, adoptive transfer of DN T-cells specifically inhibits alloreactive T-cells and prevents transplant rejection or graft-vs.-host disease (GvHD). Interestingly, clinical studies in patients who underwent allogeneic stem cell transplantation reveal an inverse correlation between the frequency of circulating DN T-cells and the severity of GvHD, suggesting a therapeutic potential of human DN T-cells. However, their exact mode of action has not been elucidated yet. Investigating the impact of DN T-cells on conventional T-cells, we found that human DN T-cells selectively inhibit mTOR signaling in CD4 T-cells. Given that mTOR is a critical regulator of cellular metabolism, we further determined the impact of DN T-cells on the metabolic framework of T-cells. Intriguingly, DN T-cells diminished expression of glucose transporters and glucose uptake, whereas fatty acid uptake was not modified, indicating that DN T-cells prevent metabolic adaptation of CD4 T-cells upon activation (i.e., glycolytic switch) thereby contributing to their suppression. Further analyses demonstrated that CD4 T-cells also do not upregulate homing receptors associated with inflammatory processes. In contrast, expression of central memory-cell associated cell surface markers and transcription factors were increased by DN T-cells. Moreover, CD4 T-cells failed to produce inflammatory cytokines after co-culture with DN T-cells, whereas IL-2 secretion was enhanced. Taken together DN T-cells impair metabolic reprogramming of conventional CD4 T-cells by abrogating mTOR signaling, thereby modulating CD4 T-cell functionality. These results uncover a new mechanism of DN T-cell-mediated suppression, pointing out that DN T-cells could serve as cell-based therapy to limit alloreactive immune response.
Collapse
Affiliation(s)
- Tabea Haug
- Department of Internal Medicine 5, Hematology and Oncology, University Hospital Erlangen, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Michael Aigner
- Department of Internal Medicine 5, Hematology and Oncology, University Hospital Erlangen, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Moritz M Peuser
- Department of Internal Medicine 5, Hematology and Oncology, University Hospital Erlangen, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Carolin D Strobl
- Department of Internal Medicine 5, Hematology and Oncology, University Hospital Erlangen, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Kai Hildner
- Department of Internal Medicine 1, University Hospital Erlangen, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Dimitrios Mougiakakos
- Department of Internal Medicine 5, Hematology and Oncology, University Hospital Erlangen, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Heiko Bruns
- Department of Internal Medicine 5, Hematology and Oncology, University Hospital Erlangen, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Andreas Mackensen
- Department of Internal Medicine 5, Hematology and Oncology, University Hospital Erlangen, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Simon Völkl
- Department of Internal Medicine 5, Hematology and Oncology, University Hospital Erlangen, University of Erlangen-Nuremberg, Erlangen, Germany
| |
Collapse
|
13
|
Raud B, McGuire PJ, Jones RG, Sparwasser T, Berod L. Fatty acid metabolism in CD8 + T cell memory: Challenging current concepts. Immunol Rev 2019; 283:213-231. [PMID: 29664569 DOI: 10.1111/imr.12655] [Citation(s) in RCA: 104] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
CD8+ T cells are key members of the adaptive immune response against infections and cancer. As we discuss in this review, these cells can present diverse metabolic requirements, which have been intensely studied during the past few years. Our current understanding suggests that aerobic glycolysis is a hallmark of activated CD8+ T cells, while naive and memory (Tmem ) cells often rely on oxidative phosphorylation, and thus mitochondrial metabolism is a crucial determinant of CD8+ Tmem cell development. Moreover, it has been proposed that CD8+ Tmem cells have a specific requirement for the oxidation of long-chain fatty acids (LC-FAO), a process modulated in lymphocytes by the enzyme CPT1A. However, this notion relies heavily on the metabolic analysis of in vitro cultures and on chemical inhibition of CPT1A. Therefore, we introduce more recent studies using genetic models to demonstrate that CPT1A-mediated LC-FAO is dispensable for the development of CD8+ T cell memory and protective immunity, and question the use of chemical inhibitors to target this enzyme. We discuss insights obtained from those and other studies analyzing the metabolic characteristics of CD8+ Tmem cells, and emphasize how T cells exhibit flexibility in their choice of metabolic fuel.
Collapse
Affiliation(s)
- Brenda Raud
- Institute of Infection Immunology, TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Medical School Hannover (MHH) and the Helmholtz Centre for Infection Research (HZI), Hannover, Germany
| | - Peter J McGuire
- Metabolism, Infection, and Immunity Section, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Russell G Jones
- Department of Physiology, Goodman Cancer Research Centre, McGill University, Montreal, QC, Canada
| | - Tim Sparwasser
- Institute of Infection Immunology, TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Medical School Hannover (MHH) and the Helmholtz Centre for Infection Research (HZI), Hannover, Germany
| | - Luciana Berod
- Institute of Infection Immunology, TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Medical School Hannover (MHH) and the Helmholtz Centre for Infection Research (HZI), Hannover, Germany
| |
Collapse
|
14
|
Rostamzadeh D, Yousefi M, Haghshenas MR, Ahmadi M, Dolati S, Babaloo Z. mTOR Signaling pathway as a master regulator of memory CD8 + T-cells, Th17, and NK cells development and their functional properties. J Cell Physiol 2019; 234:12353-12368. [PMID: 30710341 DOI: 10.1002/jcp.28042] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Accepted: 12/03/2018] [Indexed: 12/27/2022]
Abstract
The mammalian target of rapamycin (mTOR) is a member of the evolutionary phosphatidylinositol kinase-related kinases (PIKKs). mTOR plays a pivotal role in the regulation of diverse aspects of cellular physiology such as body metabolism, cell growth, protein synthesis, cell size, autophagy, and cell differentiation. Immunologically, mTOR has a fundamental part in controlling and shaping diverse functions of innate and adaptive immune cells, in particular, T-cell subsets differentiation, survival, and metabolic reprogramming to ultimately regulate the fate of diverse immune cell types. Researchers report that rapamycin, a selective mTOR inhibitor, and immunosuppressive agent, has surprising immunostimulatory effects on inducing both quantitative and qualitative aspects of virus-specific memory CD8+ T-cells differentiation and homeostasis in a T-cell-intrinsic manner. The mTOR signaling pathway also plays a critical role in dictating the outcome of regulatory T cells (Treg), T helper 17 (Th17) cells, and natural killer (NK) cells proliferation and maturation, as well as the effector functions and cytotoxic properties of NK cells. Manipulation of mTOR activity is a critical therapeutic approach for pharmacological agents that seek to inhibit mTOR. This approach should enhance specific memory CD8 + T-cells responses and induce fully functional effector properties of NK cells to provoke their antitumor and antiviral activities.
Collapse
Affiliation(s)
- Davood Rostamzadeh
- Department of Immunology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.,Shiraz Institute for Cancer Research, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mehdi Yousefi
- Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.,Student's Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Reza Haghshenas
- Shiraz Institute for Cancer Research, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Majid Ahmadi
- Department of Immunology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.,Stem Cell and Regenerative Medicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sanam Dolati
- Department of Immunology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.,Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Zohreh Babaloo
- Immunology Unit, Drug Applied Research Center, Tabriz University of Medical Sciences.,Head of Immunology Department, Medicine Faculty, Tabriz University of Medical Science
| |
Collapse
|
15
|
Comins C, Simpson GR, Rogers W, Relph K, Harrington K, Melcher A, Roulstone V, Kyula J, Pandha H. Synergistic antitumour effects of rapamycin and oncolytic reovirus. Cancer Gene Ther 2018; 25:148-160. [PMID: 29720674 DOI: 10.1038/s41417-018-0011-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Revised: 08/30/2017] [Accepted: 08/31/2017] [Indexed: 12/24/2022]
Abstract
There are currently numerous oncolytic viruses undergoing clinical trial evaluation in cancer patients and one agent, Talimogene laherparepvec, has been approved for the treatment of malignant melanoma. This progress highlights the huge clinical potential of this treatment modality, and the focus is now combining these agents with conventional anticancer treatments or agents that enhance viral replication, and thereby oncolysis, in the tumour microenvironment. We evaluated the combination of reovirus with rapamycin in B16F10 cell, a murine model of malignant melanoma, based on potential mechanisms by which mTOR inhibitors might enhance viral oncolysis. Rapamycin was not immunomodulatory in that it had no effect on the generation of an antireovirus-neutralising antibody response in C57/black 6 mice. The cell cycle effects of reovirus (increase G0/G1 fraction) were unaffected by concomitant or sequential exposure of rapamycin. However, rapamycin attenuated viral replication if given prior or concomitantly with reovirus and similarly reduced reovirus-induced apoptotic cell death Annexin V/PI and caspase 3/7 activation studies. We found clear evidence of synergistic antitumour effects of the combination both in vitro and in vivo, which was sequence dependent only in the in vitro setting. In conclusion, we have demonstrated synergistic antitumour efficacy of reovirus and rapamycin combination.
Collapse
Affiliation(s)
- Charles Comins
- Oncology, Faculty of Health and Medical Sciences, University of Surrey, Leggett Building, Guildford, Surrey, GU2 7WG, UK
| | - Guy Richard Simpson
- Oncology, Faculty of Health and Medical Sciences, University of Surrey, Leggett Building, Guildford, Surrey, GU2 7WG, UK
| | - William Rogers
- Oncology, Faculty of Health and Medical Sciences, University of Surrey, Leggett Building, Guildford, Surrey, GU2 7WG, UK
| | - Kate Relph
- Oncology, Faculty of Health and Medical Sciences, University of Surrey, Leggett Building, Guildford, Surrey, GU2 7WG, UK
| | - Kevin Harrington
- Institute of Cancer Research, 123 Old Brompton Road, London, SW7 3RP, UK
| | - Alan Melcher
- Institute of Cancer Research, 123 Old Brompton Road, London, SW7 3RP, UK
| | - Victoria Roulstone
- Institute of Cancer Research, 123 Old Brompton Road, London, SW7 3RP, UK
| | - Joan Kyula
- Institute of Cancer Research, 123 Old Brompton Road, London, SW7 3RP, UK
| | - Hardev Pandha
- Oncology, Faculty of Health and Medical Sciences, University of Surrey, Leggett Building, Guildford, Surrey, GU2 7WG, UK.
| |
Collapse
|
16
|
Fumarola C, Petronini PG, Alfieri R. Impairing energy metabolism in solid tumors through agents targeting oncogenic signaling pathways. Biochem Pharmacol 2018. [PMID: 29530507 DOI: 10.1016/j.bcp.2018.03.006] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Cell metabolic reprogramming is one of the main hallmarks of cancer and many oncogenic pathways that drive the cancer-promoting signals also drive the altered metabolism. This review focuses on recent data on the use of oncogene-targeting agents as potential modulators of deregulated metabolism in different solid cancers. Many drugs, originally designed to inhibit a specific target, then have turned out to have different effects involving also cell metabolism, which may contribute to the mechanisms underlying the growth inhibitory activity of these drugs. Metabolic reprogramming may also represent a way by which cancer cells escape from the selective pressure of targeted drugs and become resistant. Here we discuss how targeting metabolism could emerge as a new effective strategy to overcome such resistance. Finally, accumulating evidence indicates that cancer metabolic rewiring may have profound effects on tumor-infiltrating immune cells. Modulating cancer metabolic pathways through oncogene-targeting agents may not only restore more favorable conditions for proper lymphocytes activation, but also increase the persistence of memory T cells, thereby improving the efficacy of immune-surveillance.
Collapse
Affiliation(s)
- Claudia Fumarola
- Department of Medicine and Surgery, University of Parma, Parma, Italy.
| | | | - Roberta Alfieri
- Department of Medicine and Surgery, University of Parma, Parma, Italy.
| |
Collapse
|
17
|
Kraig E, Linehan LA, Liang H, Romo TQ, Liu Q, Wu Y, Benavides AD, Curiel TJ, Javors MA, Musi N, Chiodo L, Koek W, Gelfond JAL, Kellogg DL. A randomized control trial to establish the feasibility and safety of rapamycin treatment in an older human cohort: Immunological, physical performance, and cognitive effects. Exp Gerontol 2018; 105:53-69. [PMID: 29408453 DOI: 10.1016/j.exger.2017.12.026] [Citation(s) in RCA: 112] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Accepted: 12/31/2017] [Indexed: 12/21/2022]
Abstract
Inhibition of the mechanistic target of rapamycin (mTOR) pathway by rapamycin (RAPA), an FDA-approved immunosuppressive drug used as a clinical therapy to prevent solid organ allograft rejection, enhances longevity in mice. Importantly, RAPA was efficacious even when initiated in relatively old animals, suggesting that mTOR inhibition could potentially slow the progression of aging-associated pathologies in older humans (Harrison et al., 2009; Miller et al., 2011). However, the safety and tolerability of RAPA in older human subjects have not yet been demonstrated. Towards this end, we undertook a placebo-controlled pilot study in 25 generally healthy older adults (aged 70-95 years); subjects were randomized to receive either 1 mg RAPA or placebo daily. Although three subjects withdrew, 11 RAPA and 14 controls completed at least 8 weeks of treatment and were included in the analysis. We monitored for changes that would indicate detrimental effects of RAPA treatment on metabolism, including both standard clinical laboratory assays (CBC, CMP, HbA1c) and oral glucose tolerance tests (OGTTs). We also monitored parameters typically associated with aging that could potentially be modified by RAPA; these included cognitive function which was assessed by three different tools: Executive Interview-25 (EXIT25); Saint Louis University Mental Status Exam (SLUMS); and Texas Assessment of Processing Speed (TAPS). In addition, physical performance was measured by handgrip strength and 40-foot timed walks. Lastly, changes in general parameters of healthy immune aging, including serum pro-inflammatory cytokine levels and blood cell subsets, were assessed. Five subjects reported potential adverse side effects; in the RAPA group, these were limited to facial rash (1 subject), stomatitis (1 subject) and gastrointestinal issues (2 subjects) whereas placebo treated subjects only reported stomatitis (1 subject). Although no other adverse events were reported, statistically significant decrements in several erythrocyte parameters including hemoglobin (HgB) and hematocrit (Hct) as well as in red blood cell count (RBC), red blood cell distribution width (RDW), mean corpuscular volume (MCV), and mean corpuscular hemoglobin (MCH) were observed in the RAPA-treatment group. None of these changes manifested clinically significant effects during the short duration of this study. Similarly, no changes were noted in any other clinical laboratory, cognitive, physical performance, or self-perceived health status measure over the study period. Immune parameters were largely unchanged as well, possibly due to the advanced ages of the cohort (70-93 years; mean age 80.5). RAPA-associated increases in a myeloid cell subset and in TREGS were detected, but changes in most other PBMC cell subsets were not statistically significant. Importantly, the OGTTs revealed no RAPA-induced change in blood glucose concentration, insulin secretion, and insulin sensitivity. Thus, based on the results of our pilot study, it appears that short-term RAPA treatment can be used safely in older persons who are otherwise healthy; a trial with a larger sample size and longer treatment duration is warranted.
Collapse
Affiliation(s)
- Ellen Kraig
- Barshop Institute for Longevity and Aging Studies, The University of Texas Health Science Center, San Antonio, USA; Department of Cell Systems and Anatomy, The University of Texas Health Science Center, San Antonio, USA.
| | - Leslie A Linehan
- Department of Cell Systems and Anatomy, The University of Texas Health Science Center, San Antonio, USA
| | - Hanyu Liang
- Barshop Institute for Longevity and Aging Studies, The University of Texas Health Science Center, San Antonio, USA
| | - Terry Q Romo
- Barshop Institute for Longevity and Aging Studies, The University of Texas Health Science Center, San Antonio, USA; GRECC, South Texas Veterans Health Care System, The University of Texas Health Science Center, San Antonio, USA
| | - Qianqian Liu
- Department of Epidemiology and Biostatistics, The University of Texas Health Science Center, San Antonio, USA
| | - Yubo Wu
- Department of Medicine, The University of Texas Health Science Center, San Antonio, USA
| | - Adriana D Benavides
- Department of Microbiology, Immunology, and Molecular Genetics, The University of Texas Health Science Center, San Antonio, USA
| | - Tyler J Curiel
- Barshop Institute for Longevity and Aging Studies, The University of Texas Health Science Center, San Antonio, USA; Department of Medicine, The University of Texas Health Science Center, San Antonio, USA
| | - Martin A Javors
- Barshop Institute for Longevity and Aging Studies, The University of Texas Health Science Center, San Antonio, USA; Department of Psychiatry, The University of Texas Health Science Center, San Antonio, USA
| | - Nicolas Musi
- Barshop Institute for Longevity and Aging Studies, The University of Texas Health Science Center, San Antonio, USA; Department of Medicine, The University of Texas Health Science Center, San Antonio, USA; GRECC, South Texas Veterans Health Care System, The University of Texas Health Science Center, San Antonio, USA
| | - Laura Chiodo
- GRECC, South Texas Veterans Health Care System, The University of Texas Health Science Center, San Antonio, USA
| | - Wouter Koek
- Department of Cell Systems and Anatomy, The University of Texas Health Science Center, San Antonio, USA; Department of Psychiatry, The University of Texas Health Science Center, San Antonio, USA
| | - Jonathan A L Gelfond
- Barshop Institute for Longevity and Aging Studies, The University of Texas Health Science Center, San Antonio, USA; Department of Epidemiology and Biostatistics, The University of Texas Health Science Center, San Antonio, USA
| | - Dean L Kellogg
- Barshop Institute for Longevity and Aging Studies, The University of Texas Health Science Center, San Antonio, USA; Department of Medicine, The University of Texas Health Science Center, San Antonio, USA; GRECC, South Texas Veterans Health Care System, The University of Texas Health Science Center, San Antonio, USA
| |
Collapse
|
18
|
Abstract
In healthy individuals, metabolically quiescent T cells survey lymph nodes and peripheral tissues in search of cognate antigens. During infection, T cells that encounter cognate antigens are activated and - in a context-specific manner - proliferate and/or differentiate to become effector T cells. This process is accompanied by important changes in cellular metabolism (known as metabolic reprogramming). The magnitude and spectrum of metabolic reprogramming as it occurs in T cells in the context of acute infection ensure host survival. By contrast, altered T cell metabolism, and hence function, is also observed in various disease states, in which T cells actively contribute to pathology. In this Review, we introduce the idea that the spectrum of immune cell metabolic states can provide a basis for categorizing human diseases. Specifically, we first summarize the metabolic and interlinked signalling requirements of T cells responding to acute infection. We then discuss how metabolic reprogramming of T cells is linked to disease.
Collapse
|
19
|
Fischer HJ, Sie C, Schumann E, Witte AK, Dressel R, van den Brandt J, Reichardt HM. The Insulin Receptor Plays a Critical Role in T Cell Function and Adaptive Immunity. THE JOURNAL OF IMMUNOLOGY 2017; 198:1910-1920. [PMID: 28115529 DOI: 10.4049/jimmunol.1601011] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Accepted: 12/27/2016] [Indexed: 12/25/2022]
Abstract
T cell activation is an energy-demanding process fueled by increased glucose consumption and accompanied by upregulation of the insulin receptor (INSR). In this article, we report that silencing the INSR in inducible knockdown rats impairs selective T cell functions but not thymocyte development. Glucose transport and glycolysis in activated CD4+ T cells were compromised in the absence of the INSR, which was associated with alterations in intracellular signaling pathways. The observed metabolic defects coincided with reduced cytokine production, proliferation, and migration, as well as increased apoptosis of CD4+ T cells. The cytotoxicity of CD8+ T cells in response to alloantigens was also diminished under these conditions, whereas the frequency and suppressive capacity of regulatory T cells were unaffected. The observed impairments proved to be decisive in vivo because silencing of the INSR attenuated clinical symptoms in animal models of acute graft-versus-host disease and multiple sclerosis. Taken together, our results suggest that upregulation of the INSR on T cells following activation is required for efficient adaptive immunity.
Collapse
Affiliation(s)
- Henrike J Fischer
- Institute for Cellular and Molecular Immunology, University Medical Center Göttingen, 37073 Göttingen, Germany; and.,Institute for Multiple Sclerosis Research and Neuroimmunology, University Medical Center Göttingen, 37075 Göttingen, Germany
| | - Christopher Sie
- Institute for Cellular and Molecular Immunology, University Medical Center Göttingen, 37073 Göttingen, Germany; and
| | - Eric Schumann
- Institute for Cellular and Molecular Immunology, University Medical Center Göttingen, 37073 Göttingen, Germany; and
| | - Ann-Kathrin Witte
- Institute for Cellular and Molecular Immunology, University Medical Center Göttingen, 37073 Göttingen, Germany; and
| | - Ralf Dressel
- Institute for Cellular and Molecular Immunology, University Medical Center Göttingen, 37073 Göttingen, Germany; and
| | - Jens van den Brandt
- Institute for Cellular and Molecular Immunology, University Medical Center Göttingen, 37073 Göttingen, Germany; and
| | - Holger M Reichardt
- Institute for Cellular and Molecular Immunology, University Medical Center Göttingen, 37073 Göttingen, Germany; and
| |
Collapse
|
20
|
Larsen SE, Bilenkin A, Tarasenko TN, Arjunaraja S, Stinson JR, McGuire PJ, Snow AL. Sensitivity to Restimulation-Induced Cell Death Is Linked to Glycolytic Metabolism in Human T Cells. THE JOURNAL OF IMMUNOLOGY 2016; 198:147-155. [PMID: 27852741 DOI: 10.4049/jimmunol.1601218] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Accepted: 10/21/2016] [Indexed: 12/27/2022]
Abstract
Restimulation-induced cell death (RICD) regulates immune responses by restraining effector T cell expansion and limiting nonspecific damage to the host. RICD is triggered by re-engagement of the TCR on a cycling effector T cell, resulting in apoptosis. It remains unclear how RICD sensitivity is calibrated in T cells derived from different individuals or subsets. In this study we show that aerobic glycolysis strongly correlates with RICD sensitivity in human CD8+ effector T cells. Reducing glycolytic activity or glucose availability rendered effector T cells significantly less sensitive to RICD. We found that active glycolysis specifically facilitates the induction of proapoptotic Fas ligand upon TCR restimulation, accounting for enhanced RICD sensitivity in highly glycolytic T cells. Collectively, these data indicate that RICD susceptibility is linked to metabolic reprogramming, and that switching back to metabolic quiescence may help shield T cells from RICD as they transition into the memory pool.
Collapse
Affiliation(s)
- Sasha E Larsen
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, MD 20814; and
| | - Abegail Bilenkin
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, MD 20814; and
| | - Tatiana N Tarasenko
- Metabolism, Infection and Immunity Unit, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892
| | - Swadhinya Arjunaraja
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, MD 20814; and
| | - Jeffrey R Stinson
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, MD 20814; and
| | - Peter J McGuire
- Metabolism, Infection and Immunity Unit, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892
| | - Andrew L Snow
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, MD 20814; and
| |
Collapse
|
21
|
Wang R, Xu A, Zhang X, Wu J, Freywald A, Xu J, Xiang J. Novel exosome-targeted T-cell-based vaccine counteracts T-cell anergy and converts CTL exhaustion in chronic infection via CD40L signaling through the mTORC1 pathway. Cell Mol Immunol 2016; 14:529-545. [PMID: 27264687 DOI: 10.1038/cmi.2016.23] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Revised: 03/25/2016] [Accepted: 03/25/2016] [Indexed: 12/16/2022] Open
Abstract
CD8+ cytotoxic T lymphocyte (CTL) exhaustion is a chief issue for ineffective virus elimination in chronic infectious diseases. We generated novel ovalbumin (OVA)-specific OVA-Texo and HIV-specific Gag-Texo vaccines inducing therapeutic immunity. To assess their therapeutic effect in chronic infection, we developed a new chronic infection model by i.v. infecting C57BL/6 mice with the OVA-expressing adenovirus AdVova. During chronic AdVova infection, mouse CTLs were found to express the inhibitory molecules programmed cell-death protein-1 (PD-1) and lymphocyte-activation gene-3 (LAG-3) and to be functionally exhausted, showing a significant deficiency in T-cell proliferation, IFN-γ production and cytolytic effects. Naive CD8+ T cells upregulated inhibitory PD-ligand 1 (PD-L1), B- and T-lymphocyte attenuator and T-cell anergy-associated molecules (Grail and Itch) while down-regulating the proliferative response upon stimulation in mice with chronic infection. Remarkably, the OVA-Texo vaccine counteracted T-cell anergy and converted CTL exhaustion. The latter was associated with (i) the upregulation of a marker for CTL functionality, diacetylated histone-H3 (diAcH3), (ii) a fourfold increase in CTLs, occurring independent of host DCs or CD4+ T cells, and (iii) the restoration of CTL IFN-γ production and cytotoxicity. In vivo OVA-Texo-stimulated CTLs upregulated the activities of the mTORC1 pathway-related molecules Akt, S6, eIF4E and T-bet, and treatment of the CTLs with an mTORC1 inhibitor, rapamycin, significantly reduced the OVA-Texo-induced increase in CTLs. Interestingly, OVA-Texo-mediated CD40L signaling played a critical role in the observed immunological effects. Importantly, the Gag-Texo vaccine induced Gag-specific therapeutic immunity in chronic infection. Therefore, this study should have a serious impact on the development of new therapeutic vaccines for human immunodeficiency virus (HIV-1) infection.
Collapse
Affiliation(s)
- Rong Wang
- Cancer Research Cluster, Saskatchewan Cancer Agency, Saskatoon, Saskatchewan, Canada S7N4H4.,School of Public Health, University of Saskatchewan, Saskatoon, Saskatchewan, Canada S7N 5E5
| | - Aizhang Xu
- Cancer Research Cluster, Saskatchewan Cancer Agency, Saskatoon, Saskatchewan, Canada S7N4H4
| | - Xueying Zhang
- Cancer Research Cluster, Saskatchewan Cancer Agency, Saskatoon, Saskatchewan, Canada S7N4H4.,School of Public Health, University of Saskatchewan, Saskatoon, Saskatchewan, Canada S7N 5E5
| | - Jie Wu
- Cancer Research Cluster, Saskatchewan Cancer Agency, Saskatoon, Saskatchewan, Canada S7N4H4
| | - Andrew Freywald
- Department of Pathology, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada S7N 5E5
| | - Jianqing Xu
- Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, China
| | - Jim Xiang
- Cancer Research Cluster, Saskatchewan Cancer Agency, Saskatoon, Saskatchewan, Canada S7N4H4.,School of Public Health, University of Saskatchewan, Saskatoon, Saskatchewan, Canada S7N 5E5.,Department of Oncology, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada S7N 5E5
| |
Collapse
|
22
|
Keating R, McGargill MA. mTOR Regulation of Lymphoid Cells in Immunity to Pathogens. Front Immunol 2016; 7:180. [PMID: 27242787 PMCID: PMC4862984 DOI: 10.3389/fimmu.2016.00180] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2015] [Accepted: 04/25/2016] [Indexed: 12/15/2022] Open
Abstract
Immunity to pathogens exists as a fine balance between promoting activation and expansion of effector cells, while simultaneously limiting normal and aberrant responses. These seemingly opposing functions are kept in check by immune regulators. The mechanistic target of rapamycin (mTOR) is a serine/threonine kinase that senses nutrient availability and, in turn, regulates cell metabolism, growth, and survival accordingly. mTOR plays a pivotal role in facilitating immune defense against invading pathogens by regulating the differentiation, activation, and effector functions of lymphoid cells. Here, we focus on the emerging and sometimes contradictory roles of mTOR in orchestrating lymphoid cell-mediated host immune responses to pathogens. A thorough understanding of how mTOR impacts lymphoid cells in pathogen defense will provide the necessary base for developing therapeutic interventions for infectious diseases.
Collapse
Affiliation(s)
- Rachael Keating
- Department of Immunology, St. Jude Children's Research Hospital , Memphis, TN , USA
| | | |
Collapse
|
23
|
Xu A, Bhanumathy KK, Wu J, Ye Z, Freywald A, Leary SC, Li R, Xiang J. IL-15 signaling promotes adoptive effector T-cell survival and memory formation in irradiation-induced lymphopenia. Cell Biosci 2016; 6:30. [PMID: 27158441 PMCID: PMC4858849 DOI: 10.1186/s13578-016-0098-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Accepted: 04/25/2016] [Indexed: 11/28/2022] Open
Abstract
Background Lymphopenia promotes naïve T-cell homeostatic proliferation and adoptive effector T-cell survival and memory formation. IL-7 plays a critical role in homeostatic proliferation, survival and memory formation of naïve T-cells in lymphopenia, and its underlying molecular mechanism has also been well studied. However, the mechanism for adoptively transferred effector T-cell survival and memory formation is not fully understood. Here, we transferred in vitro-activated transgenic OT-I CD8+ effector T-cells into irradiation (600 rads)-induced lymphopenic C57BL/6, IL-7 knockout (KO) and IL-15 KO mice, and investigated the survival and memory formation of transferred T-cells in lymphopenia. Results We demonstrate that transferred T-cells prolong their survival and enhance their memory in lymphopenic mice, in a manner that depends on IL-15 signaling, but not IL-7. We determine that in vitro stimulation of naïve or effector T-cells with IL-7 and IL-15 reduces IL-7Rα, and increases and/or maintains IL-15Rβ expression, respectively. Consistent with these findings, the expression of IL-7Rα and IL-15Rβ is down- and up-regulated, respectively, in vivo on transferred T-cells in an early phase post T-cell transfer in lymphopenia. We further show that in vitro IL-15 restimulation-induced memory T-cells (compared to IL-2 restimulation-induced effector T-cells) and in vivo transferred T-cells in irradiated IL-15-sufficient C57BL/6 mice (compared to IL-15-deficient IL-15 KO mice) have increased mitochondrial content, but less NADH and lower mitochondrial potential (ΔΨm), and demonstrate greater phosphorylation of signal transducers and activators of transcription-5 (STAT5) and Unc-51-like kinase-1 (ULK1), and higher expression of B-cell leukemia/lymphoma-2 (Bcl2) and memory-, autophagy- and mitochondrial biogenesis-related molecules. Conclusion Irradiation-induced lymphopenia promotes effector T-cell survival via IL-15 signaling the STAT5/Bcl2 pathway, enhances T-cell memory formation via IL-15 activation of the forkhead-box family of transcription factor (FOXO)/eomesodermin (Eomes) memory and ULK1/autophagy-related gene-7 (ATG7) autophagy pathways, and via IL-15 activation of the mitochondrial remodeling. Our data thus identify some important targets to consider when designing potent adoptive T-cell immunotherapies of cancer. Electronic supplementary material The online version of this article (doi:10.1186/s13578-016-0098-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Aizhang Xu
- State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai, China ; School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Kalpana Kalyanasundaram Bhanumathy
- Cancer Research Cluster, Saskatchewan Cancer Agency, Saskatoon, SK Canada ; Departments of Oncology, University of Saskatchewan, HSB Room 4D30.1, 107 Wiggins Road, Saskatoon, SK S7N 5E5 Canada
| | - Jie Wu
- Cancer Research Cluster, Saskatchewan Cancer Agency, Saskatoon, SK Canada
| | - Zhenmin Ye
- Cancer Research Cluster, Saskatchewan Cancer Agency, Saskatoon, SK Canada
| | - Andrew Freywald
- Department of Pathology, University of Saskatchewan, Saskatoon, SK Canada
| | - Scot C Leary
- Department of Biochemistry, University of Saskatchewan, Saskatoon, SK Canada
| | - Rongxiu Li
- State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai, China ; School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China ; Engineering Research Center of Cell & Therapeutic Antibody, School of Pharmacy, Ministry of Education, Shanghai Jiao Tong University, Shanghai, China
| | - Jim Xiang
- Cancer Research Cluster, Saskatchewan Cancer Agency, Saskatoon, SK Canada ; Departments of Oncology, University of Saskatchewan, HSB Room 4D30.1, 107 Wiggins Road, Saskatoon, SK S7N 5E5 Canada
| |
Collapse
|
24
|
Oishi Y, Manabe I. Integrated regulation of the cellular metabolism and function of immune cells in adipose tissue. Clin Exp Pharmacol Physiol 2016; 43:294-303. [DOI: 10.1111/1440-1681.12539] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Revised: 12/28/2015] [Accepted: 12/29/2015] [Indexed: 01/01/2023]
Affiliation(s)
- Yumiko Oishi
- Department of Cellular and Molecular Medicine; Medical Research Institute; Tokyo Medical and Dental University; Tokyo Japan
| | - Ichiro Manabe
- Department of Aging Research; Graduate School of Medicine; Chiba University; Chiba Japan
| |
Collapse
|
25
|
Palmer CS, Hussain T, Duette G, Weller TJ, Ostrowski M, Sada-Ovalle I, Crowe SM. Regulators of Glucose Metabolism in CD4 + and CD8 + T Cells. Int Rev Immunol 2015; 35:477-488. [PMID: 26606199 DOI: 10.3109/08830185.2015.1082178] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Much like cancer cells, activated T cells undergo various metabolic changes that allow them to grow and proliferate rapidly. By adopting aerobic glycolysis upon activation, T cells effectively prioritize efficiency in biosynthesis over energy generation. There are distinct differences in the way CD4+ and CD8+ T cells process activation signals. CD8+ effector T cells are less dependent on Glut1 and oxygen levels compared to their CD4+ counterparts. Similarly the downstream signaling by TCR also differs in both effector T cell types. Recent studies have explored PI3K/Akt, mTORC, HIF1α, p70S6K and Bcl-6 signaling in depth providing definition of the crucial roles of these regulators in glucose metabolism. These new insights may allow improved therapeutic manipulation against inflammatory conditions that are associated with dysfunctional T-cell metabolism such as autoimmune disorders, metabolic syndrome, HIV, and cancers.
Collapse
Affiliation(s)
- Clovis S Palmer
- a Centre for Biomedical Research, Burnet Institute , Melbourne , Australia.,b Department of Infectious Diseases , Monash University , Melbourne , Australia
| | - Tabinda Hussain
- a Centre for Biomedical Research, Burnet Institute , Melbourne , Australia
| | - Gabriel Duette
- c Instituto de Investigaciones Biomédicas en Retrovirus y SIDA, Facultad de Medicina , Buenos Aires , Argentina
| | - Thomas J Weller
- d Department of Immunology , Monash University , Melbourne , Australia
| | - Matias Ostrowski
- c Instituto de Investigaciones Biomédicas en Retrovirus y SIDA, Facultad de Medicina , Buenos Aires , Argentina
| | - Isabel Sada-Ovalle
- e Laboratory of Integrative Immunology, National Institute of Respiratory Diseases Ismael CosÃ-o Villegas , Mexico City , Mexico
| | - Suzanne M Crowe
- a Centre for Biomedical Research, Burnet Institute , Melbourne , Australia.,b Department of Infectious Diseases , Monash University , Melbourne , Australia.,f Infectious Diseases Department , The Alfred Hospital , Melbourne , Australia
| |
Collapse
|
26
|
de Souza APD, de Freitas DN, Antuntes Fernandes KE, D'Avila da Cunha M, Antunes Fernandes JL, Benetti Gassen R, Fazolo T, Pinto LA, Scotta M, Mattiello R, Pitrez PM, Bonorino C, Stein RT. Respiratory syncytial virus induces phosphorylation of mTOR at ser2448 in CD8 T cells from nasal washes of infected infants. Clin Exp Immunol 2015; 183:248-57. [PMID: 26437614 DOI: 10.1111/cei.12720] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/25/2015] [Indexed: 12/12/2022] Open
Abstract
Respiratory syncytial virus (RSV)-specific CD8(+) T cell responses do not protect against reinfection. Activation of mammalian target of rapamycin (mTOR) impairs memory CD8(+) T cell differentiation. Our hypothesis was that RSV inhibits the formation of CD8(+) T cells memory responses through mTOR activation. To explore this, human and mouse T cells were used. RSV induced mTOR phosphorylation at Ser2448 in CD8 T cells. mTOR activation by RSV was completely inhibited using rapamycin. RSV-infected children presented higher mTOR gene expression on nasal washes comparing to children infected with metapneumovirus and rhinovirus. In addition, RSV-infected infants presented a higher frequency of CD8(+) pmTORser2448(+) T cells in nasal washes compared to RSV-negative infants. Rapamycin treatment increased the frequency of mouse CD8 RSV-M282-90 pentamer-positive T cells and the frequency of RSV-specific memory T cells precursors. These data demonstrate that RSV is activating mTOR directly in CD8 T cells, indicating a role for mTOR during the course of RSV infection.
Collapse
Affiliation(s)
- A P Duarte de Souza
- Laboratório De Imunologia Clínica E Experimental, Pontifícia Universidade Católica Do Rio Grande Do Sul (PUCRS), Porto Alegre, Brazil.,Centro Infant, Pontifícia Universidade Católica Do Rio Grande Do Sul (PUCRS), Porto Alegre, Brazil.,Instituto De Pesquisas Biomédicas, Pontifícia Universidade Católica Do Rio Grande Do Sul (PUCRS), Porto Alegre, Brazil
| | - D Nascimento de Freitas
- Laboratório De Imunologia Clínica E Experimental, Pontifícia Universidade Católica Do Rio Grande Do Sul (PUCRS), Porto Alegre, Brazil.,Centro Infant, Pontifícia Universidade Católica Do Rio Grande Do Sul (PUCRS), Porto Alegre, Brazil.,Instituto De Pesquisas Biomédicas, Pontifícia Universidade Católica Do Rio Grande Do Sul (PUCRS), Porto Alegre, Brazil
| | - K E Antuntes Fernandes
- Laboratório De Imunologia Clínica E Experimental, Pontifícia Universidade Católica Do Rio Grande Do Sul (PUCRS), Porto Alegre, Brazil.,Centro Infant, Pontifícia Universidade Católica Do Rio Grande Do Sul (PUCRS), Porto Alegre, Brazil.,Instituto De Pesquisas Biomédicas, Pontifícia Universidade Católica Do Rio Grande Do Sul (PUCRS), Porto Alegre, Brazil
| | - M D'Avila da Cunha
- Laboratório De Imunologia Clínica E Experimental, Pontifícia Universidade Católica Do Rio Grande Do Sul (PUCRS), Porto Alegre, Brazil.,Centro Infant, Pontifícia Universidade Católica Do Rio Grande Do Sul (PUCRS), Porto Alegre, Brazil.,Instituto De Pesquisas Biomédicas, Pontifícia Universidade Católica Do Rio Grande Do Sul (PUCRS), Porto Alegre, Brazil
| | - J L Antunes Fernandes
- Laboratório De Imunologia Clínica E Experimental, Pontifícia Universidade Católica Do Rio Grande Do Sul (PUCRS), Porto Alegre, Brazil.,Centro Infant, Pontifícia Universidade Católica Do Rio Grande Do Sul (PUCRS), Porto Alegre, Brazil.,Instituto De Pesquisas Biomédicas, Pontifícia Universidade Católica Do Rio Grande Do Sul (PUCRS), Porto Alegre, Brazil
| | - R Benetti Gassen
- Laboratório De Imunologia Clínica E Experimental, Pontifícia Universidade Católica Do Rio Grande Do Sul (PUCRS), Porto Alegre, Brazil.,Centro Infant, Pontifícia Universidade Católica Do Rio Grande Do Sul (PUCRS), Porto Alegre, Brazil.,Instituto De Pesquisas Biomédicas, Pontifícia Universidade Católica Do Rio Grande Do Sul (PUCRS), Porto Alegre, Brazil
| | - T Fazolo
- Laboratório De Imunologia Clínica E Experimental, Pontifícia Universidade Católica Do Rio Grande Do Sul (PUCRS), Porto Alegre, Brazil.,Centro Infant, Pontifícia Universidade Católica Do Rio Grande Do Sul (PUCRS), Porto Alegre, Brazil.,Instituto De Pesquisas Biomédicas, Pontifícia Universidade Católica Do Rio Grande Do Sul (PUCRS), Porto Alegre, Brazil
| | - L A Pinto
- Laboratório De Respirologia Pediátrica, Pontifícia Universidade Católica Do Rio Grande Do Sul (PUCRS), Porto Alegre, Brazil.,Centro Infant, Pontifícia Universidade Católica Do Rio Grande Do Sul (PUCRS), Porto Alegre, Brazil.,Instituto De Pesquisas Biomédicas, Pontifícia Universidade Católica Do Rio Grande Do Sul (PUCRS), Porto Alegre, Brazil
| | - M Scotta
- Laboratório De Respirologia Pediátrica, Pontifícia Universidade Católica Do Rio Grande Do Sul (PUCRS), Porto Alegre, Brazil.,Centro Infant, Pontifícia Universidade Católica Do Rio Grande Do Sul (PUCRS), Porto Alegre, Brazil.,Instituto De Pesquisas Biomédicas, Pontifícia Universidade Católica Do Rio Grande Do Sul (PUCRS), Porto Alegre, Brazil
| | - R Mattiello
- Laboratório De Respirologia Pediátrica, Pontifícia Universidade Católica Do Rio Grande Do Sul (PUCRS), Porto Alegre, Brazil.,Centro Infant, Pontifícia Universidade Católica Do Rio Grande Do Sul (PUCRS), Porto Alegre, Brazil.,Instituto De Pesquisas Biomédicas, Pontifícia Universidade Católica Do Rio Grande Do Sul (PUCRS), Porto Alegre, Brazil
| | - P M Pitrez
- Laboratório De Respirologia Pediátrica, Pontifícia Universidade Católica Do Rio Grande Do Sul (PUCRS), Porto Alegre, Brazil.,Centro Infant, Pontifícia Universidade Católica Do Rio Grande Do Sul (PUCRS), Porto Alegre, Brazil.,Instituto De Pesquisas Biomédicas, Pontifícia Universidade Católica Do Rio Grande Do Sul (PUCRS), Porto Alegre, Brazil
| | - C Bonorino
- Laboratorio De Imunologia Celular E Molecular, Pontifícia Universidade Católica Do Rio Grande Do Sul (PUCRS), Porto Alegre, Brazil.,Instituto De Pesquisas Biomédicas, Pontifícia Universidade Católica Do Rio Grande Do Sul (PUCRS), Porto Alegre, Brazil
| | - R T Stein
- Laboratório De Respirologia Pediátrica, Pontifícia Universidade Católica Do Rio Grande Do Sul (PUCRS), Porto Alegre, Brazil.,Centro Infant, Pontifícia Universidade Católica Do Rio Grande Do Sul (PUCRS), Porto Alegre, Brazil.,Instituto De Pesquisas Biomédicas, Pontifícia Universidade Católica Do Rio Grande Do Sul (PUCRS), Porto Alegre, Brazil
| |
Collapse
|
27
|
Böttcher M, D. Hofmann A, Bruns H, Haibach M, Loschinski R, Saul D, Mackensen A, Le Blanc K, Jitschin R, Mougiakakos D. Mesenchymal Stromal Cells Disrupt mTOR-Signaling and Aerobic Glycolysis During T-Cell Activation. Stem Cells 2015; 34:516-21. [DOI: 10.1002/stem.2234] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Revised: 09/02/2015] [Accepted: 10/05/2015] [Indexed: 01/07/2023]
Affiliation(s)
- Martin Böttcher
- Department of Internal Medicine 5, Hematology and Oncology; University of Erlangen-Nuremberg; Germany
| | - Andreas D. Hofmann
- Department of Internal Medicine 5, Hematology and Oncology; University of Erlangen-Nuremberg; Germany
| | - Heiko Bruns
- Department of Internal Medicine 5, Hematology and Oncology; University of Erlangen-Nuremberg; Germany
| | - Martina Haibach
- Department of Internal Medicine 5, Hematology and Oncology; University of Erlangen-Nuremberg; Germany
| | - Romy Loschinski
- Department of Internal Medicine 5, Hematology and Oncology; University of Erlangen-Nuremberg; Germany
| | - Domenica Saul
- Department of Internal Medicine 5, Hematology and Oncology; University of Erlangen-Nuremberg; Germany
| | - Andreas Mackensen
- Department of Internal Medicine 5, Hematology and Oncology; University of Erlangen-Nuremberg; Germany
| | - Katarina Le Blanc
- Department of Laboratory Medicine, Karolinska Institutet; Karolinska University Hospital; Stockholm Sweden
| | - Regina Jitschin
- Department of Internal Medicine 5, Hematology and Oncology; University of Erlangen-Nuremberg; Germany
| | - Dimitrios Mougiakakos
- Department of Internal Medicine 5, Hematology and Oncology; University of Erlangen-Nuremberg; Germany
| |
Collapse
|
28
|
Pollizzi KN, Waickman AT, Patel CH, Sun IH, Powell JD. Cellular size as a means of tracking mTOR activity and cell fate of CD4+ T cells upon antigen recognition. PLoS One 2015; 10:e0121710. [PMID: 25849206 PMCID: PMC4388710 DOI: 10.1371/journal.pone.0121710] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Accepted: 02/17/2015] [Indexed: 11/18/2022] Open
Abstract
mTOR is a central integrator of metabolic and immunological stimuli, dictating immune cell activation, proliferation and differentiation. In this study, we demonstrate that within a clonal population of activated T cells, there exist both mTORhi and mTORlo cells exhibiting highly divergent metabolic and immunologic functions. By taking advantage of the role of mTOR activation in controlling cellular size, we demonstrate that upon antigen recognition, mTORhi CD4+ T cells are destined to become highly glycolytic effector cells. Conversely, mTORlo T cells preferentially develop into long-lived cells that express high levels of Bcl-2, CD25, and CD62L. Furthermore, mTORlo T cells have a greater propensity to differentiate into suppressive Foxp3+ T regulatory cells, and this paradigm was also observed in human CD4+ T cells. Overall, these studies provide the opportunity to track the development of effector and memory T cells from naïve precursors, as well as facilitate the interrogation of immunologic and metabolic programs that inform these fates.
Collapse
Affiliation(s)
- Kristen N. Pollizzi
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Adam T. Waickman
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Chirag H. Patel
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Im Hong Sun
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Jonathan D. Powell
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- * E-mail:
| |
Collapse
|
29
|
Schlie K, Westerback A, DeVorkin L, Hughson LR, Brandon JM, MacPherson S, Gadawski I, Townsend KN, Poon VI, Elrick MA, Côté HCF, Abraham N, Wherry EJ, Mizushima N, Lum JJ. Survival of effector CD8+ T cells during influenza infection is dependent on autophagy. THE JOURNAL OF IMMUNOLOGY 2015; 194:4277-86. [PMID: 25833396 DOI: 10.4049/jimmunol.1402571] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Accepted: 02/25/2015] [Indexed: 12/27/2022]
Abstract
The activation and expansion of effector CD8(+) T cells are essential for controlling viral infections and tumor surveillance. During an immune response, T cells encounter extrinsic and intrinsic factors, including oxidative stress, nutrient availability, and inflammation, that can modulate their capacity to activate, proliferate, and survive. The dependency of T cells on autophagy for in vitro and in vivo activation, expansion, and memory remains unclear. Moreover, the specific signals and mechanisms that activate autophagy in T effector cells and their survival are not known. In this study, we generated a novel inducible autophagy knockout mouse to study T cell effector responses during the course of a virus infection. In response to influenza infection, Atg5(-/-) CD8(+) T cells had a decreased capacity to reach the peak effector response and were unable to maintain cell viability during the effector phase. As a consequence of Atg5 deletion and the impairment in effector-to-memory cell survival, mice fail to mount a memory response following a secondary challenge. We found that Atg5(-/-) effector CD8(+) T cells upregulated p53, a transcriptional state that was concomitant with widespread hypoxia in lymphoid tissues of infected mice. The onset of p53 activation was concurrent with higher levels of reactive oxygen species (ROS) that resulted in ROS-dependent apoptotic cell death, a fate that could be rescued by treating with the ROS scavenger N-acetylcysteine. Collectively, these results demonstrate that effector CD8(+) T cells require autophagy to suppress cell death and maintain survival in response to a viral infection.
Collapse
Affiliation(s)
- Katrin Schlie
- Trev and Joyce Deeley Research Centre, British Columbia Cancer Agency, Victoria, British Columbia V8R 6V5, Canada
| | - Ashley Westerback
- Trev and Joyce Deeley Research Centre, British Columbia Cancer Agency, Victoria, British Columbia V8R 6V5, Canada
| | - Lindsay DeVorkin
- Trev and Joyce Deeley Research Centre, British Columbia Cancer Agency, Victoria, British Columbia V8R 6V5, Canada; Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia V8W 3P6, Canada
| | - Luke R Hughson
- Trev and Joyce Deeley Research Centre, British Columbia Cancer Agency, Victoria, British Columbia V8R 6V5, Canada; Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia V8W 3P6, Canada
| | - Jillian M Brandon
- Trev and Joyce Deeley Research Centre, British Columbia Cancer Agency, Victoria, British Columbia V8R 6V5, Canada
| | - Sarah MacPherson
- Trev and Joyce Deeley Research Centre, British Columbia Cancer Agency, Victoria, British Columbia V8R 6V5, Canada; Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia V8W 3P6, Canada
| | - Izabelle Gadawski
- Department of Pathology and Laboratory Medicine, Centre for Blood Research, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Katelin N Townsend
- Trev and Joyce Deeley Research Centre, British Columbia Cancer Agency, Victoria, British Columbia V8R 6V5, Canada; Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia V8W 3P6, Canada
| | - Vincent I Poon
- Trev and Joyce Deeley Research Centre, British Columbia Cancer Agency, Victoria, British Columbia V8R 6V5, Canada; Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia V8W 3P6, Canada
| | - Mary A Elrick
- Trev and Joyce Deeley Research Centre, British Columbia Cancer Agency, Victoria, British Columbia V8R 6V5, Canada; Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia V8W 3P6, Canada
| | - Helene C F Côté
- Department of Pathology and Laboratory Medicine, Centre for Blood Research, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Ninan Abraham
- Department of Zoology, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada; Department of Microbiology and Immunology, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - E John Wherry
- Department of Microbiology and Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104; and
| | - Noboru Mizushima
- Department of Biochemistry and Molecular Biology, Graduate School and Faculty of Medicine, University of Tokyo, Tokyo 113-0033, Japan
| | - Julian J Lum
- Trev and Joyce Deeley Research Centre, British Columbia Cancer Agency, Victoria, British Columbia V8R 6V5, Canada; Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia V8W 3P6, Canada;
| |
Collapse
|
30
|
Pedicord VA, Cross JR, Montalvo-Ortiz W, Miller ML, Allison JP. Friends not foes: CTLA-4 blockade and mTOR inhibition cooperate during CD8+ T cell priming to promote memory formation and metabolic readiness. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2015; 194:2089-98. [PMID: 25624453 DOI: 10.4049/jimmunol.1402390] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
During primary Ag encounter, T cells receive numerous positive and negative signals that control their proliferation, function, and differentiation, but how these signals are integrated to modulate T cell memory has not been fully characterized. In these studies, we demonstrate that combining seemingly opposite signals, CTLA-4 blockade and rapamycin-mediated mammalian target of rapamycin inhibition, during in vivo T cell priming leads to both an increase in the frequency of memory CD8(+) T cells and improved memory responses to tumors and bacterial challenges. This enhanced efficacy corresponds to increased early expansion and memory precursor differentiation of CD8(+) T cells and increased mitochondrial biogenesis and spare respiratory capacity in memory CD8(+) T cells in mice treated with anti-CTLA-4 and rapamycin during immunization. Collectively, these results reveal that mammalian target of rapamycin inhibition cooperates with rather than antagonizes blockade of CTLA-4, promoting unrestrained effector function and proliferation, and an optimal metabolic program for CD8(+) T cell memory.
Collapse
Affiliation(s)
- Virginia A Pedicord
- Department of Immunology, Howard Hughes Medical Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065;
| | - Justin R Cross
- Donald B. and Catherine C. Marron Cancer Metabolism Center, Memorial Sloan Kettering Cancer Center, New York, NY 10065; and
| | - Welby Montalvo-Ortiz
- Department of Immunology, Howard Hughes Medical Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065
| | - Martin L Miller
- Computational Biology Center, Memorial Sloan Kettering Cancer Center, New York, NY 10065
| | - James P Allison
- Department of Immunology, Howard Hughes Medical Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065;
| |
Collapse
|
31
|
Insight into the role of mTOR and metabolism in T cells reveals new potential approaches to preventing graft rejection. Curr Opin Organ Transplant 2015; 19:363-71. [PMID: 24991977 DOI: 10.1097/mot.0000000000000098] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
PURPOSE OF REVIEW In this review, we discuss the recent advances with regard to the mammalian target of rapamycin (mTOR) signaling pathway and focus on how this pathway modulates immune responses. Overall, these insights provide important clues in terms of strategically integrating mTOR and metabolic inhibitors into transplantation rejection protocols. RECENT FINDINGS mTOR is regulated by environmental cues and activates diverse downstream pathways to guide cell growth and fate. What has emerged from recent studies is that mechanistically mTOR directs T cell differentiation and function in part by regulating metabolic programs. Such findings not only inform us with regard to the metabolic demands of effector and memory T cells but also elucidate metabolic pathways that might be targeted to selectively regulate immune responses. SUMMARY Initial studies focused on the ability of the mTOR inhibitor rapamycin to suppress immune responses by inhibiting T cell proliferation. Since then, both pharmacologic and genetic studies have revealed a central role for mTOR in regulating T cell activation, differentiation, and function independent of proliferation. Specifically, it has become clear that mTOR plays an important role in regulating the metabolic machinery necessary for effector, regulatory, and memory T cell generation. As such, direct inhibition of metabolism may emerge as a potent and selective means of preventing graft rejection. This review will discuss new insights regarding the ability of downstream signaling pathways, including mTOR-dependent metabolic pathways in regulating T cell responses. Finally, we will discuss these new insights in the context of developing novel immunoregulatory regimens for transplantation.
Collapse
|
32
|
Keppel MP, Saucier N, Mah AY, Vogel TP, Cooper MA. Activation-specific metabolic requirements for NK Cell IFN-γ production. THE JOURNAL OF IMMUNOLOGY 2015; 194:1954-62. [PMID: 25595780 DOI: 10.4049/jimmunol.1402099] [Citation(s) in RCA: 220] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
There has been increasing recognition of the importance of cellular metabolism and metabolic substrates for the function and differentiation of immune cells. In this study, for the first time to our knowledge, we investigate the metabolic requirements for production of IFN-γ by freshly isolated NK cells. Primary murine NK cells mainly use mitochondrial oxidative phosphorylation at rest and with short-term activation. Remarkably, we discovered significant differences in the metabolic requirements of murine NK cell IFN-γ production depending upon the activation signal. Stimulation of NK cell IFN-γ production was independent of glycolysis or mitochondrial oxidative phosphorylation when cells were activated with IL-12 plus IL-18. By contrast, stimulation via activating NK receptors required glucose-driven oxidative phosphorylation. Prolonged treatment with high-dose, but not low-dose, IL-15 eliminated the metabolic requirement for receptor stimulation. In summary, this study demonstrates that metabolism provides an essential second signal for induction of IFN-γ production by activating NK cell receptors that can be reversed with prolonged high-dose IL-15 treatment.
Collapse
Affiliation(s)
- Molly P Keppel
- Division of Rheumatology, Department of Pediatrics, Washington University School of Medicine, St. Louis, MO 63110
| | - Nermina Saucier
- Division of Rheumatology, Department of Pediatrics, Washington University School of Medicine, St. Louis, MO 63110
| | - Annelise Y Mah
- Division of Rheumatology, Department of Pediatrics, Washington University School of Medicine, St. Louis, MO 63110; Medical Scientist Training Program, Washington University School of Medicine, St. Louis, MO 63110
| | - Tiphanie P Vogel
- Division of Rheumatology, Department of Pediatrics, Washington University School of Medicine, St. Louis, MO 63110; Division of Rheumatology, Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO 63110; and
| | - Megan A Cooper
- Division of Rheumatology, Department of Pediatrics, Washington University School of Medicine, St. Louis, MO 63110; Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110
| |
Collapse
|
33
|
Pollizzi KN, Powell JD. Regulation of T cells by mTOR: the known knowns and the known unknowns. Trends Immunol 2014; 36:13-20. [PMID: 25522665 DOI: 10.1016/j.it.2014.11.005] [Citation(s) in RCA: 155] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Revised: 11/18/2014] [Accepted: 11/19/2014] [Indexed: 02/08/2023]
Abstract
Mammalian/mechanistic target of rapamycin (mTOR) is emerging as an important integrator of environmental cues critical for the regulation of T cell activation, differentiation, and function. Recent studies leveraging pharmacologic inhibition or T cell specific genetic deletion of signaling components in the mTOR pathway have provided important insights into the mechanisms involved, and have been informative in defining targets downstream of mTOR that promote immune regulation. However, these studies have also presented confusing and, at times, contradictory findings, highlighting the complexities involved in examining the mTOR pathway in distinct contexts. Here, we review current understanding of the roles of mTOR in T cell biology, highlighting emerging concepts and areas of investigation where the precise role of mTOR has yet to be fully discerned.
Collapse
Affiliation(s)
- Kristen N Pollizzi
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA.
| | - Jonathan D Powell
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA.
| |
Collapse
|
34
|
Pollizzi KN, Powell JD. Integrating canonical and metabolic signalling programmes in the regulation of T cell responses. Nat Rev Immunol 2014; 14:435-46. [PMID: 24962260 DOI: 10.1038/nri3701] [Citation(s) in RCA: 308] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Over the past decade, our understanding of T cell activation, differentiation and function has markedly expanded, providing a greater appreciation of the signals and pathways that regulate these processes. It has become clear that evolutionarily conserved pathways that regulate stress responses, metabolism, autophagy and survival have crucial and specific roles in regulating T cell responses. Recent studies suggest that the metabolic pathways involving MYC, hypoxia-inducible factor 1α (HIF1α), AMP-activated protein kinase (AMPK) and mammalian target of rapamycin (mTOR) are activated upon antigen recognition and that they are required for directing the consequences of T cell receptor engagement. The purpose of this Review is to provide an integrated view of the role of these metabolic pathways and of canonical T cell signalling pathways in regulating the outcome of T cell responses.
Collapse
Affiliation(s)
- Kristen N Pollizzi
- Sidney Kimmel Comprehensive Cancer Research Center, Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287, USA
| | - Jonathan D Powell
- Sidney Kimmel Comprehensive Cancer Research Center, Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287, USA
| |
Collapse
|
35
|
Adenosine-mono-phosphate-activated protein kinase-independent effects of metformin in T cells. PLoS One 2014; 9:e106710. [PMID: 25181053 PMCID: PMC4152329 DOI: 10.1371/journal.pone.0106710] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2014] [Accepted: 08/06/2014] [Indexed: 01/04/2023] Open
Abstract
The anti-diabetic drug metformin regulates T-cell responses to immune activation and is proposed to function by regulating the energy-stress-sensing adenosine-monophosphate-activated protein kinase (AMPK). However, the molecular details of how metformin controls T cell immune responses have not been studied nor is there any direct evidence that metformin acts on T cells via AMPK. Here, we report that metformin regulates cell growth and proliferation of antigen-activated T cells by modulating the metabolic reprogramming that is required for effector T cell differentiation. Metformin thus inhibits the mammalian target of rapamycin complex I signalling pathway and prevents the expression of the transcription factors c-Myc and hypoxia-inducible factor 1 alpha. However, the inhibitory effects of metformin on T cells did not depend on the expression of AMPK in T cells. Accordingly, experiments with metformin inform about the importance of metabolic reprogramming for T cell immune responses but do not inform about the importance of AMPK.
Collapse
|
36
|
Cao Y, Rathmell JC, Macintyre AN. Metabolic reprogramming towards aerobic glycolysis correlates with greater proliferative ability and resistance to metabolic inhibition in CD8 versus CD4 T cells. PLoS One 2014; 9:e104104. [PMID: 25090630 PMCID: PMC4121309 DOI: 10.1371/journal.pone.0104104] [Citation(s) in RCA: 110] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2014] [Accepted: 07/09/2014] [Indexed: 11/19/2022] Open
Abstract
T lymphocytes (T cells) undergo metabolic reprogramming after activation to provide energy and biosynthetic materials for growth, proliferation and differentiation. Distinct T cell subsets, however, adopt metabolic programs specific to support their needs. As CD4 T cells coordinate adaptive immune responses while CD8 T cells become cytotoxic effectors, we compared activation-induced proliferation and metabolic reprogramming of these subsets. Resting CD4 and CD8 T cells were metabolically similar and used a predominantly oxidative metabolism. Following activation CD8 T cells proliferated more rapidly. Stimulation led both CD4 and CD8 T cells to sharply increase glucose metabolism and adopt aerobic glycolysis as a primary metabolic program. Activated CD4 T cells, however, remained more oxidative and had greater maximal respiratory capacity than activated CD8 T cells. CD4 T cells were also associated with greater levels of ROS and increased mitochondrial content, irrespective of the activation context. CD8 cells were better able, however, to oxidize glutamine as an alternative fuel source. The more glycolytic metabolism of activated CD8 T cells correlated with increased capacity for growth and proliferation, along with reduced sensitivity of cell growth to metabolic inhibition. These specific metabolic programs may promote greater growth and proliferation of CD8 T cells and enhance survival in diverse nutrient conditions.
Collapse
Affiliation(s)
- Yilin Cao
- Department of Pharmacology and Cancer Biology, Department of Immunology, Sarah W. Stedman Center for Nutrition and Metabolism, Duke University, Durham, NC, United States of America
| | - Jeffrey C. Rathmell
- Department of Pharmacology and Cancer Biology, Department of Immunology, Sarah W. Stedman Center for Nutrition and Metabolism, Duke University, Durham, NC, United States of America
| | - Andrew N. Macintyre
- Department of Pharmacology and Cancer Biology, Department of Immunology, Sarah W. Stedman Center for Nutrition and Metabolism, Duke University, Durham, NC, United States of America
| |
Collapse
|
37
|
Abstract
Pharmacologic inhibition of the mechanistic target of rapamycin (mTOR) represents a stress test for tumor cells and T cells. Mechanisms exist that allow cells to survive this stress, including suboptimal target block, alternative signaling pathways, and autophagy. Rapamycin-resistant effector T (T-Rapa) cells have an altered phenotype that associates with increased function. Ex vivo rapamycin, when used in combination with polarizing cytokines and antigen-presenting-cell free costimulation, is a flexible therapeutic approach as polarization to T-helper 1 (Th1)- or Th2-type effectors is possible. Murine T-Rapa cells skewed toward a Th2-type prevented graft rejection and graft-versus-host disease (GVHD) more potently than control Th2 cells and effectively balanced GVHD and graft-versus-tumor (GVT) effects. A phase II clinical trial using low-intensity allogeneic hematopoietic cell transplantation demonstrated that interleukin-4 polarized human T-Rapa cells had a mixed Th2/Th1 phenotype; T-Rapa cell recipients had a balanced Th2/Th1 cytokine profile, conversion of mixed chimerism toward full donor chimerism, and a potentially favorable balance between GVHD and GVT effects. In addition, a phase I clinical trial evaluating autologous T-Rapa cells skewed toward a Th1- and Tc1-type is underway. Use of ex vivo rapamycin to modulate effector T-cell function represents a promising new approach to transplantation therapy.
Collapse
Affiliation(s)
- Daniel H Fowler
- Experimental Transplantation and Immunology Branch, National Cancer Institute, Center for Cancer Research, Bethesda, MD, USA
| |
Collapse
|
38
|
Pilipow K, Basso V, Migone N, Mondino A. Monoallelic germline TSC1 mutations are permissive for T lymphocyte development and homeostasis in tuberous sclerosis complex individuals. PLoS One 2014; 9:e91952. [PMID: 24633152 PMCID: PMC3954840 DOI: 10.1371/journal.pone.0091952] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2013] [Accepted: 02/18/2014] [Indexed: 01/09/2023] Open
Abstract
Germline and somatic biallelic mutations of the Tuberous sclerosis complex (TSC) 1 and TSC2 gene products cause TSC, an autosomal dominant multifocal hamartomatosis with variable neurological manifestations. The consequences of TSC1 or TSC2 loss in cells of hematopoietic origin have recently started to be unveiled in mice and showed to hinder the development of proper T cell immunity. To date, the consequences of germline TSC1 mutations and/or its loss in mature human T cells remain to be determined. To address these issues, we analyzed subset representation, phenotype and responsiveness to mitogens in T cells from patients with inherited monoallelic TSC1 mutations, and induced shRNA-mediated TSC1 down-regulation in primary and transformed human T cells. We report that, the distribution of peripheral CD4 and CD8 T cell subsets, their cytokine-secretion profile, and responsiveness to in vitro stimulation were largely preserved in TSC subjects with monoallelic TSC1 germline mutations when compared to healthy controls. Sufficient levels of hamartin and tuberin and proper control of mTOR-dependent signaling in primary T cells from TSC subjects best explained this. In contrast, shRNA-induced down-regulation of TSC1, likely mimicking biallelic inactivation of TSC1, compromised hamartin and tuberin expression and mTORC2/AKT/FoxO1/3 signaling causing both primary and transformed T cells to die by apoptosis. Thus, our results indicate that, while one functional TSC1 allele preserves human T lymphocytes development and homeostasis, TSC1 acute down-regulation is detrimental to the survival of both primary and transformed T cells.
Collapse
Affiliation(s)
- Karolina Pilipow
- Lymphocyte Activation Unit, Immunology, Transplantation and Infectious Disease Division, San Raffaele Scientific Institute, Milano, Italy
- Università Vita-Salute San Raffaele, Milano, Italy
| | - Veronica Basso
- Lymphocyte Activation Unit, Immunology, Transplantation and Infectious Disease Division, San Raffaele Scientific Institute, Milano, Italy
| | - Nicola Migone
- Department of Genetics, Biology and Biochemistry, University of Torino, and Medical Genetics, Azienda Ospedaliero-Universitaria San Giovanni Battista, Torino, Italy
| | - Anna Mondino
- Lymphocyte Activation Unit, Immunology, Transplantation and Infectious Disease Division, San Raffaele Scientific Institute, Milano, Italy
- * E-mail:
| |
Collapse
|
39
|
Cheng PH, Lian S, Zhao R, Rao XM, McMasters KM, Zhou HS. Combination of autophagy inducer rapamycin and oncolytic adenovirus improves antitumor effect in cancer cells. Virol J 2013; 10:293. [PMID: 24059864 PMCID: PMC3850263 DOI: 10.1186/1743-422x-10-293] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2013] [Accepted: 08/21/2013] [Indexed: 02/07/2023] Open
Abstract
Background Combination of oncolytic adenoviruses (Ads) and chemotherapy drugs has shown promising therapeutic results and is considered as a potential approach for cancer therapy. We previously have shown that autophagy may generate decomposed cellular molecules that can be used as nutrition to support virus replication in cancer cells. In this study, we evaluated a unique combination of the novel oncolytic Ad-cycE with rapamycin, an autophagy inducer and first-line chemotherapeutic drug. Methods The combination of oncolytic Ad-cycE and the autophagy inducer rapamycin was assessed for enhanced antitumor effect. We also evaluated the combined effects of rapamycin and Ad-cycE on cancer cell viability. The interaction between Ad-cycE and rapamycin was analyzed with Calcusyn (Biosoft, Ferguson, MO). Results We show that rapamycin induces autophagy, enhances Ad E1A expression and increases Ad oncolytic replication. Combination of rapamycin and Ad-cycE elicits stronger cytotoxicity than single treatment alone. The analyzed data indicates that the Ad-cycE and rapamycin combination has a significantly synergistic antitumor effect. Conclusions Our study provides a new insight into vector development and demonstrates the novel roles of autophagy in adenovirus replication. The combination of autophagy-induced chemotherapy and oncolytic virotherapy may be a new approach to improve future cancer treatment.
Collapse
Affiliation(s)
- Pei-Hsin Cheng
- Department of Surgery, University of Louisville School of Medicine, Louisville, KY 40292, USA.
| | | | | | | | | | | |
Collapse
|
40
|
Soliman GA. The role of mechanistic target of rapamycin (mTOR) complexes signaling in the immune responses. Nutrients 2013; 5:2231-57. [PMID: 23783557 PMCID: PMC3725503 DOI: 10.3390/nu5062231] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2013] [Revised: 06/05/2013] [Accepted: 06/05/2013] [Indexed: 12/17/2022] Open
Abstract
The mechanistic Target of Rapamycin (mTOR) is an evolutionarily conserved serine/threonine kinase which is a member of the PI3K related kinase (PIKK) family. mTOR emerged as a central node in cellular metabolism, cell growth, and differentiation, as well as cancer metabolism. mTOR senses the nutrients, energy, insulin, growth factors, and environmental cues and transmits signals to downstream targets to effectuate the cellular and metabolic response. Recently, mTOR was also implicated in the regulation of both the innate and adaptive immune responses. This paper will summarize the current knowledge of mTOR, as related to the immune microenvironment and immune responses.
Collapse
Affiliation(s)
- Ghada A Soliman
- Department of Health Promotion, Social and Behavioral Health Sciences, College of Public Health, University of Nebraska Medical Center, 984365 Nebraska Medical Center, Omaha, NE 68198, USA.
| |
Collapse
|
41
|
Wahl DR, Byersdorfer CA, Ferrara JLM, Opipari AW, Glick GD. Distinct metabolic programs in activated T cells: opportunities for selective immunomodulation. Immunol Rev 2013; 249:104-15. [PMID: 22889218 DOI: 10.1111/j.1600-065x.2012.01148.x] [Citation(s) in RCA: 89] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
For several decades, it has been known that T-cell activation in vitro leads to increased glycolytic metabolism that fuels proliferation and effector function. Recently, this simple model has been complicated by the observation that different T-cell subsets differentially regulate fundamental metabolic pathways under the control of distinct molecular regulators. Although the majority of these data have been generated in vitro, several recent studies have documented the metabolism of T cells activated in vivo. Here, we review the recent data surrounding the differential regulation of metabolism by distinct T-cell subsets in vitro and in vivo and discuss how differential metabolic regulation might facilitate T-cell function vis-à-vis proliferation, survival, and energy production. We further discuss the important therapeutic implications of differential metabolism across T-cell subsets and review recent successes in exploiting lymphocyte metabolism to treat immune-mediated diseases.
Collapse
Affiliation(s)
- Daniel R Wahl
- Chemical Biology Doctoral Program, University of Michigan, Ann Arbor, MI 48109-1055, USA
| | | | | | | | | |
Collapse
|
42
|
Waickman AT, Powell JD. mTOR, metabolism, and the regulation of T-cell differentiation and function. Immunol Rev 2013; 249:43-58. [PMID: 22889214 DOI: 10.1111/j.1600-065x.2012.01152.x] [Citation(s) in RCA: 320] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Upon antigen recognition, naive T cells undergo rapid expansion and activation. The energy requirements for this expansion are formidable, and T-cell activation is accompanied by dramatic changes in cellular metabolism. Furthermore, the outcome of antigen engagement is guided by multiple cues derived from the immune microenvironment. Mammalian target of rapamycin (mTOR) is emerging as a central integrator of these signals playing a critical role in driving T-cell differentiation and function. Indeed, multiple metabolic programs are controlled by mTOR signaling. In this review, we discuss the role of mTOR in regulating metabolism and how these pathways intersect with the ability of mTOR to integrate cues that guide the outcome of T-cell receptor engagement.
Collapse
Affiliation(s)
- Adam T Waickman
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | | |
Collapse
|
43
|
Heikamp EB, Powell JD. Sensing the immune microenvironment to coordinate T cell metabolism, differentiation & function. Semin Immunol 2013; 24:414-20. [PMID: 23332779 DOI: 10.1016/j.smim.2012.12.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2012] [Accepted: 12/11/2012] [Indexed: 12/14/2022]
Abstract
Mounting an adaptive immune response is bioenergetically demanding. As a result, T cell activation coincides with profound changes in cellular metabolism that must be coordinated with instructive signals from cytokine and costimulatory receptors to generate an immune response. Studies examining the intimate link between metabolism and immune function have revealed that different types of T cells have distinct metabolic profiles. Data is emerging that place mTOR, an evolutionarily conserved serine-threonine kinase, as a central integrator of these processes. In this review, we will discuss the role of mTOR in determining both CD4 and CD8 T cell metabolism, differentiation, and trafficking.
Collapse
Affiliation(s)
- Emily B Heikamp
- Sidney Kimmel Comprehensive Cancer Research Center, Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, United States
| | | |
Collapse
|
44
|
Abstract
T cell activation leads to dramatic shifts in cell metabolism to protect against pathogens and to orchestrate the action of other immune cells. Quiescent T cells require predominantly ATP-generating processes, whereas proliferating effector T cells require high metabolic flux through growth-promoting pathways. Further, functionally distinct T cell subsets require distinct energetic and biosynthetic pathways to support their specific functional needs. Pathways that control immune cell function and metabolism are intimately linked, and changes in cell metabolism at both the cell and system levels have been shown to enhance or suppress specific T cell functions. As a result of these findings, cell metabolism is now appreciated as a key regulator of T cell function specification and fate. This review discusses the role of cellular metabolism in T cell development, activation, differentiation, and function to highlight the clinical relevance and opportunities for therapeutic interventions that may be used to disrupt immune pathogenesis.
Collapse
Affiliation(s)
- Nancie J MacIver
- Department of Pediatrics, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | | | |
Collapse
|
45
|
Abstract
mTOR is an evolutionarily conserved serine/threonine kinase that plays a critical role in cell growth and metabolism by sensing different environmental cues. There is a growing appreciation of mTOR in immunology for its role in integrating diverse signals from the immune microenvironment and coordinating the functions of immune cells and their metabolism. In CD8 T cells, mTOR has shown to influence cellular commitment to effector versus memory programming; in CD4 T cells, mTOR integrates environmental cues that instruct effector cell differentiation. In this review, we summarize and discuss recent advances in the field, with a focus on the mechanisms through which mTOR regulates cellular and humoral immunity. Further understanding will enable the manipulation of mTOR signaling to direct the biological functions of immune cells, which holds great potential for improving immune therapies and vaccination against infections and cancer.
Collapse
Affiliation(s)
| | | | - Koichi Araki
- Emory Vaccine Center and Department of Microbiology and Immunology, Emory, University School of Medicine, Atlanta, GA, 30322, USA
| | - Rafi Ahmed
- Emory Vaccine Center and Department of Microbiology and Immunology, Emory, University School of Medicine, Atlanta, GA, 30322, USA
| |
Collapse
|
46
|
Townsend KN, Hughson LRK, Schlie K, Poon VI, Westerback A, Lum JJ. Autophagy inhibition in cancer therapy: metabolic considerations for antitumor immunity. Immunol Rev 2012; 249:176-94. [DOI: 10.1111/j.1600-065x.2012.01141.x] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
47
|
Waickman AT, Powell JD. Mammalian target of rapamycin integrates diverse inputs to guide the outcome of antigen recognition in T cells. THE JOURNAL OF IMMUNOLOGY 2012; 188:4721-9. [PMID: 22556133 DOI: 10.4049/jimmunol.1103143] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
T cells must integrate a diverse array of intrinsic and extrinsic signals upon Ag recognition. Although these signals have canonically been categorized into three distinct events--Signal 1 (TCR engagement), Signal 2 (costimulation or inhibition), and Signal 3 (cytokine exposure)--it is now appreciated that many other environmental cues also dictate the outcome of T cell activation. These include nutrient availability, the presence of growth factors and stress signals, as well as chemokine exposure. Although all of these distinct inputs initiate unique signaling cascades, they also modulate the activity of the evolutionarily conserved serine/threonine kinase mammalian target of rapamycin (mTOR). Indeed, mTOR serves to integrate these diverse environmental inputs, ultimately transmitting a signaling program that determines the fate of newly activated T cells. In this review, we highlight how diverse signals from the immune microenvironment can guide the outcome of TCR activation through the activation of the mTOR pathway.
Collapse
Affiliation(s)
- Adam T Waickman
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | | |
Collapse
|
48
|
Low dose rapamycin exacerbates autoimmune experimental uveitis. PLoS One 2012; 7:e36589. [PMID: 22574188 PMCID: PMC3344911 DOI: 10.1371/journal.pone.0036589] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2011] [Accepted: 04/03/2012] [Indexed: 11/22/2022] Open
Abstract
Background Rapamycin, a potent immune modulator, is used to treat transplant rejection and some autoimmune diseases. Uveitis is a potentially severe inflammatory eye disease, and 2 clinical trials of treating uveitis with rapamycin are under way. Unexpectedly, recent research has demonstrated that low dose rapamycin enhances the memory T cell population and function. However, it is unclear how low dose rapamycin influences the immune response in the setting of uveitis. Design and Methods B10.RIII mice were immunized to induce experimental autoimmune uveitis (EAU). Ocular inflammation of control and rapamycin-treated mice was compared based on histological change. ELISPOT and T cell proliferation assays were performed to assess splenocyte response to ocular antigen. In addition, we examined the effect of rapamycin on activation-induced cell death (AICD) using the MitoCapture assay and Annexin V staining. Results Administration of low dose rapamycin exacerbated EAU, whereas treating mice with high dose rapamycin attenuated ocular inflammation. The progression of EAU by low dose rapamycin coincided with the increased frequency of antigen-reactive lymphocytes. Lastly, fewer rapamycin-treated T cells underwent AICD, which might contribute to exaggerated ocular inflammation and the uveitogenic immune response. Conclusion These data reveal a paradoxical role for rapamycin in uveitis in a dose-dependent manner. This study has a potentially important clinical implication as rapamycin might cause unwanted consequences dependent on dosing and pharmacokinetics. Thus, more research is needed to further define the mechanism by which low dose rapamycin augments the immune response.
Collapse
|
49
|
Schmueck M, Fischer AM, Hammoud B, Brestrich G, Fuehrer H, Luu SH, Mueller K, Babel N, Volk HD, Reinke P. Preferential Expansion of Human Virus-Specific Multifunctional Central Memory T Cells by Partial Targeting of the IL-2 Receptor Signaling Pathway: The Key Role of CD4+ T Cells. THE JOURNAL OF IMMUNOLOGY 2012; 188:5189-98. [DOI: 10.4049/jimmunol.1103763] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
50
|
Abstract
mTOR is an evolutionarily conserved serine/threonine kinase that plays a central role in integrating environmental cues in the form of growth factors, amino acids, and energy. In the study of the immune system, mTOR is emerging as a critical regulator of immune function because of its role in sensing and integrating cues from the immune microenvironment. With the greater appreciation of cellular metabolism as an important regulator of immune cell function, mTOR is proving to be a vital link between immune function and metabolism. In this review, we discuss the ability of mTOR to direct the adaptive immune response. Specifically, we focus on the role of mTOR in promoting differentiation, activation, and function in T cells, B cells, and antigen-presenting cells.
Collapse
Affiliation(s)
- Jonathan D Powell
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21231, USA.
| | | | | | | |
Collapse
|