1
|
Nguyen TF, Kwan JZJ, Mitchell JE, Cui JH, Teves SS. Dynamic regulation of murine RNA polymerase III transcription during heat shock stress. Genetics 2025; 230:iyaf042. [PMID: 40101151 PMCID: PMC12059648 DOI: 10.1093/genetics/iyaf042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Accepted: 02/27/2025] [Indexed: 03/20/2025] Open
Abstract
Cells respond to many different types of stresses by overhauling gene expression patterns, both at the transcriptional and translational levels. Under heat stress, global transcription and translation are inhibited, while the expression of chaperone proteins is preferentially favored. As the direct link between mRNA transcription and protein translation, transfer RNA (tRNA) expression is intricately regulated during the stress response. Despite extensive research into the heat shock response (HSR), the regulation of tRNA expression by RNA polymerase III (Pol III) transcription has yet to be fully elucidated in mammalian cells. Here, we examine the regulation of Pol III transcription during different stages of heat shock stress in mouse embryonic stem cells. We observe that Pol III transcription is downregulated after 30 min of heat shock, followed by an overall increase in transcription after 60 min of heat shock. This effect is more evident in tRNAs, although other Pol III gene targets are also similarly affected. Notably, we show that the downregulation at 30 min of heat shock is independent of HSF1, the master transcription factor of the HSR, but that the subsequent increase in expression at 60 min requires HSF1. Taken together, these results demonstrate an adaptive RNA Pol III response to heat stress and an intricate relationship between the canonical HSR and tRNA expression.
Collapse
Affiliation(s)
- Thomas F Nguyen
- Department of Biochemistry and Molecular Biology, Life Sciences Institute, The University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - James Z J Kwan
- Department of Biochemistry and Molecular Biology, Life Sciences Institute, The University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Jennifer E Mitchell
- Department of Biochemistry and Molecular Biology, Life Sciences Institute, The University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Jieying H Cui
- Department of Biochemistry and Molecular Biology, Life Sciences Institute, The University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Sheila S Teves
- Department of Biochemistry and Molecular Biology, Life Sciences Institute, The University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| |
Collapse
|
2
|
Rutledge BS, Kim YJ, McDonald DW, Jurado-Coronel JC, Prado MAM, Johnson JL, Choy WY, Duennwald ML. Stress-inducible phosphoprotein 1 (Sti1/Stip1/Hop) sequesters misfolded proteins during stress. FEBS J 2024. [PMID: 39739753 DOI: 10.1111/febs.17389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 09/16/2024] [Accepted: 12/20/2024] [Indexed: 01/02/2025]
Abstract
Co-chaperones are key elements of cellular protein quality control. They cooperate with the major heat shock proteins Hsp70 and Hsp90 in folding proteins and preventing the toxic accumulation of misfolded proteins upon exposure to stress. Hsp90 interacts with the co-chaperone stress-inducible phosphoprotein 1 (Sti1/Stip1/Hop) and activator of Hsp90 ATPase protein 1 (Aha1) among many others. Sti1 and Aha1 control the ATPase activity of Hsp90, but Sti1 also facilitates the transfer of client proteins from Hsp70 to Hsp90, thus connecting these two major branches of protein quality control. We find that misbalanced expression of Sti1 and Aha1 in yeast and mammalian cells causes severe growth defects. Also, deletion of STI1 causes an accumulation of soluble misfolded ubiquitinated proteins and a strong activation of the heat shock response. We discover that, during proteostatic stress, Sti1 forms cytoplasmic inclusions in yeast and mammalian cells that overlap with misfolded proteins. Our work indicates a key role of Sti1 in proteostasis independent of its Hsp90 ATPase regulatory functions by sequestering misfolded proteins during stress.
Collapse
Affiliation(s)
- Benjamin S Rutledge
- Department of Biochemistry, The University of Western Ontario, London, Canada
| | - Young J Kim
- Department of Anatomy and Cell Biology, The University of Western Ontario, London, Canada
| | - Donovan W McDonald
- Department of Anatomy and Cell Biology, The University of Western Ontario, London, Canada
| | - Juan C Jurado-Coronel
- Department of Anatomy and Cell Biology, The University of Western Ontario, London, Canada
| | - Marco A M Prado
- Department of Anatomy and Cell Biology, The University of Western Ontario, London, Canada
- Robarts Research Institute and Department of Physiology and Pharmacology, The University of Western Ontario, London, Canada
| | - Jill L Johnson
- Department of Biological Sciences, University of Idaho, Moscow, ID, USA
| | - Wing-Yiu Choy
- Department of Biochemistry, The University of Western Ontario, London, Canada
| | - Martin L Duennwald
- Department of Anatomy and Cell Biology, The University of Western Ontario, London, Canada
| |
Collapse
|
3
|
Yang X, Zhao X, Zhao Z, Du J. Genome-wide analysis reveals transcriptional and translational changes during diapause of the Asian corn borer (Ostrinia furnacalis). BMC Biol 2024; 22:206. [PMID: 39272107 PMCID: PMC11401443 DOI: 10.1186/s12915-024-02000-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 09/02/2024] [Indexed: 09/15/2024] Open
Abstract
BACKGROUND Diapause, a pivotal phase in the insect life cycle, enables survival during harsh environmental conditions. Unraveling the gene expression profiles of the diapause process helps uncover the molecular mechanisms that underlying diapause, which is crucial for understanding physiological adaptations. In this study, we utilize RNA-seq and Ribo-seq data to examine differentially expressed genes (DEGs) and translational efficiency during diapause of Asian corn borer (Ostrinia furnacalis, ACB). RESULTS Our results unveil genes classified as "forwarded", "exclusive", "intensified", or "buffered" during diapause, shedding light on their transcription and translation regulation patterns. Furthermore, we explore the landscape of lncRNAs (long non-coding RNAs) during diapause and identify differentially expressed lncRNAs, suggesting their roles in diapause regulation. Comparative analysis of different types of diapause in insects uncovers shared and unique KEGG pathways. While shared pathways highlight energy balance, exclusive pathways in the ACB larvae indicate insect-specific adaptations related to nutrient utilization and stress response. Interestingly, our study also reveals dynamic changes in the HSP70 gene family and proteasome pathway during diapause. Manipulating HSP protein levels and proteasome pathway by HSP activator or inhibitor and proteasome inhibitor affects diapause, indicating their vital role in the process. CONCLUSIONS In summary, these findings enhance our knowledge of how insects navigate challenging conditions through intricate molecular mechanisms.
Collapse
Affiliation(s)
- Xingzhuo Yang
- Department of Entomology, MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, 100193, China
| | - Xianguo Zhao
- Department of Entomology, MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, 100193, China
| | - Zhangwu Zhao
- Department of Entomology, MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, 100193, China
| | - Juan Du
- Department of Entomology, MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
4
|
Da Costa RT, Urquiza P, Perez MM, Du Y, Khong ML, Zheng H, Guitart-Mampel M, Elustondo PA, Scoma ER, Hambardikar V, Ueberheide B, Tanner JA, Cohen A, Pavlov EV, Haynes CM, Solesio ME. Mitochondrial inorganic polyphosphate is required to maintain proteostasis within the organelle. Front Cell Dev Biol 2024; 12:1423208. [PMID: 39050895 PMCID: PMC11266304 DOI: 10.3389/fcell.2024.1423208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 06/07/2024] [Indexed: 07/27/2024] Open
Abstract
The existing literature points towards the presence of robust mitochondrial mechanisms aimed at mitigating protein dyshomeostasis within the organelle. However, the precise molecular composition of these mechanisms remains unclear. Our data show that inorganic polyphosphate (polyP), a polymer well-conserved throughout evolution, is a component of these mechanisms. In mammals, mitochondria exhibit a significant abundance of polyP, and both our research and that of others have already highlighted its potent regulatory effect on bioenergetics. Given the intimate connection between energy metabolism and protein homeostasis, the involvement of polyP in proteostasis has also been demonstrated in several organisms. For example, polyP is a bacterial primordial chaperone, and its role in amyloidogenesis has already been established. Here, using mammalian models, our study reveals that the depletion of mitochondrial polyP leads to increased protein aggregation within the organelle, following stress exposure. Furthermore, mitochondrial polyP is able to bind to proteins, and these proteins differ under control and stress conditions. The depletion of mitochondrial polyP significantly affects the proteome under both control and stress conditions, while also exerting regulatory control over gene expression. Our findings suggest that mitochondrial polyP is a previously unrecognized, and potent component of mitochondrial proteostasis.
Collapse
Affiliation(s)
- Renata T. Da Costa
- Department of Biology, College of Arts and Sciences, Rutgers University, Camden, NJ, United States
| | - Pedro Urquiza
- Department of Biology, College of Arts and Sciences, Rutgers University, Camden, NJ, United States
| | - Matheus M. Perez
- Department of Biology, College of Arts and Sciences, Rutgers University, Camden, NJ, United States
| | - YunGuang Du
- Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Chan Medical School, Amherst, MA, United States
| | - Mei Li Khong
- School of Clinical Medicine, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
- School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Haiyan Zheng
- Center for Advanced Biotechnology and Medicine, Rutgers University, New Brunswick, NJ, United States
| | - Mariona Guitart-Mampel
- Department of Biology, College of Arts and Sciences, Rutgers University, Camden, NJ, United States
| | - Pia A. Elustondo
- Biological Mass Spectrometry Core Facility, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada
| | - Ernest R. Scoma
- Department of Biology, College of Arts and Sciences, Rutgers University, Camden, NJ, United States
| | - Vedangi Hambardikar
- Department of Biology, College of Arts and Sciences, Rutgers University, Camden, NJ, United States
| | - Beatrix Ueberheide
- Proteomics Laboratory, Division of Advanced Research Technologies, New York University-Grossman School of Medicine, New York City, NY, United States
| | - Julian A. Tanner
- School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
- Materials Innovation Institute for Life Sciences and Energy (MILES), HKU-SIRI, Shenzhen, China
- Advanced Biomedical Instrumentation Centre, Hong Kong Science Park, Hong Kong SAR, China
| | - Alejandro Cohen
- Biological Mass Spectrometry Core Facility, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada
| | - Evgeny V. Pavlov
- Department of Molecular Pathobiology, College of Dentistry, New York University, New York City, NY, United States
| | - Cole M. Haynes
- Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Chan Medical School, Amherst, MA, United States
| | - Maria E. Solesio
- Department of Biology, College of Arts and Sciences, Rutgers University, Camden, NJ, United States
| |
Collapse
|
5
|
Viana P, Hamar P. Targeting the heat shock response induced by modulated electro-hyperthermia (mEHT) in cancer. Biochim Biophys Acta Rev Cancer 2024; 1879:189069. [PMID: 38176599 DOI: 10.1016/j.bbcan.2023.189069] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 12/20/2023] [Accepted: 12/28/2023] [Indexed: 01/06/2024]
Abstract
The Heat Shock Response (HSR) is a cellular stress reaction crucial for cell survival against stressors, including heat, in both healthy and cancer cells. Modulated electro-hyperthermia (mEHT) is an emerging non-invasive cancer therapy utilizing electromagnetic fields to selectively target cancer cells via temperature-dependent and independent mechanisms. However, mEHT triggers HSR in treated cells. Despite demonstrated efficacy in cancer treatment, understanding the underlying molecular mechanisms for improved therapeutic outcomes remains a focus. This review examines the HSR induced by mEHT in cancer cells, discussing potential strategies to modulate it for enhanced tumor-killing effects. Approaches such as HSF1 gene-knockdown and small molecule inhibitors like KRIBB11 are explored to downregulate the HSR and augment tumor destruction. We emphasize the impact of HSR inhibition on cancer cell viability, mEHT sensitivity, and potential synergistic effects, addressing challenges and future directions. This understanding offers opportunities for optimizing treatment strategies and advancing precision medicine in cancer therapy.
Collapse
Affiliation(s)
- Pedro Viana
- Institute of Translational Medicine, Semmelweis University, Tűzoltó utca 37-49, 1094 Budapest, Hungary.
| | - Péter Hamar
- Institute of Translational Medicine, Semmelweis University, Tűzoltó utca 37-49, 1094 Budapest, Hungary.
| |
Collapse
|
6
|
François-Moutal L, Scott DD, Ambrose AJ, Zerio CJ, Rodriguez-Sanchez M, Dissanayake K, May DG, Carlson JM, Barbieri E, Moutal A, Roux KJ, Shorter J, Khanna R, Barmada SJ, McGurk L, Khanna M. Heat shock protein Grp78/BiP/HspA5 binds directly to TDP-43 and mitigates toxicity associated with disease pathology. Sci Rep 2022; 12:8140. [PMID: 35581326 PMCID: PMC9114370 DOI: 10.1038/s41598-022-12191-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 05/04/2022] [Indexed: 11/09/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease with no cure or effective treatment in which TAR DNA Binding Protein of 43 kDa (TDP-43) abnormally accumulates into misfolded protein aggregates in affected neurons. It is widely accepted that protein misfolding and aggregation promotes proteotoxic stress. The molecular chaperones are a primary line of defense against proteotoxic stress, and there has been long-standing interest in understanding the relationship between chaperones and aggregated protein in ALS. Of particular interest are the heat shock protein of 70 kDa (Hsp70) family of chaperones. However, defining which of the 13 human Hsp70 isoforms is critical for ALS has presented many challenges. To gain insight into the specific Hsp70 that modulates TDP-43, we investigated the relationship between TDP-43 and the Hsp70s using proximity-dependent biotin identification (BioID) and discovered several Hsp70 isoforms associated with TDP-43 in the nucleus, raising the possibility of an interaction with native TDP-43. We further found that HspA5 bound specifically to the RNA-binding domain of TDP-43 using recombinantly expressed proteins. Moreover, in a Drosophila strain that mimics ALS upon TDP-43 expression, the mRNA levels of the HspA5 homologue (Hsc70.3) were significantly increased. Similarly we observed upregulation of HspA5 in prefrontal cortex neurons from human ALS patients. Finally, overexpression of HspA5 in Drosophila rescued TDP-43-induced toxicity, suggesting that upregulation of HspA5 may have a compensatory role in ALS pathobiology.
Collapse
Affiliation(s)
- Liberty François-Moutal
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ, 85724, USA.,Center for Innovation in Brain Science, Tucson, AZ, 85721, USA
| | - David Donald Scott
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ, 85724, USA.,Center for Innovation in Brain Science, Tucson, AZ, 85721, USA
| | - Andrew J Ambrose
- Pharmacology and Toxicology, School of Pharmacy, University of Arizona, Tucson, AZ, 85724, USA
| | - Christopher J Zerio
- Pharmacology and Toxicology, School of Pharmacy, University of Arizona, Tucson, AZ, 85724, USA
| | | | - Kumara Dissanayake
- Cell and Developmental Biology, School of Life Sciences, University of Dundee, Dow Street, Dundee, DD1 5EH, UK
| | - Danielle G May
- Enabling Technologies Group, Sanford Research, Sioux Falls, SD, USA
| | - Jacob M Carlson
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ, 85724, USA.,Center for Innovation in Brain Science, Tucson, AZ, 85721, USA
| | - Edward Barbieri
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Aubin Moutal
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ, 85724, USA.,Center for Innovation in Brain Science, Tucson, AZ, 85721, USA
| | - Kyle J Roux
- Enabling Technologies Group, Sanford Research, Sioux Falls, SD, USA.,Department of Pediatrics, Sanford School of Medicine, University of South Dakota, Sioux Falls, SD, USA
| | - James Shorter
- Department of Pediatrics, Sanford School of Medicine, University of South Dakota, Sioux Falls, SD, USA
| | - Rajesh Khanna
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ, 85724, USA.,Center for Innovation in Brain Science, Tucson, AZ, 85721, USA
| | - Sami J Barmada
- Department of Neurology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Leeanne McGurk
- Cell and Developmental Biology, School of Life Sciences, University of Dundee, Dow Street, Dundee, DD1 5EH, UK
| | - May Khanna
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ, 85724, USA. .,Center for Innovation in Brain Science, Tucson, AZ, 85721, USA. .,Department of Molecular Pathobiology, NYU, New York, NY, USA. .,Department of Molecular Pathobiology, College of Dentistry, NYU, 433 1st Ave, New York, NY, 10010, USA.
| |
Collapse
|
7
|
Li X, Duan S, Zheng Y, Yang Y, Wang L, Li X, Zhang Q, Thorne RF, Li W, Yang D. Hyperthermia inhibits growth of nasopharyngeal carcinoma through degradation of c-Myc. Int J Hyperthermia 2022; 39:358-371. [PMID: 35184661 DOI: 10.1080/02656736.2022.2038282] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Affiliation(s)
- Xiaole Li
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
- Department of Radiotherapy, First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Shichao Duan
- Department of Pathology, First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yingjuan Zheng
- Department of Radiotherapy, First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yongqiang Yang
- Department of Radiotherapy, First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Lei Wang
- Department of Pathology, First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xinqiang Li
- Department of Pathology, First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Qing Zhang
- Translational Research Institute, Henan Provincial People’s Hospital, Academy of Medical Science, Zhengzhou University, Zhengzhou, China
| | - Rick F. Thorne
- Translational Research Institute, Henan Provincial People’s Hospital, Academy of Medical Science, Zhengzhou University, Zhengzhou, China
| | - Wencai Li
- Department of Pathology, First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Daoke Yang
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
- Department of Radiotherapy, First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
8
|
Dominguez CE, Cunningham D, Venkataramany AS, Chandler DS. Heat increases full-length SMN splicing: promise for splice-augmenting therapies for SMA. Hum Genet 2022; 141:239-256. [PMID: 35088120 DOI: 10.1007/s00439-021-02408-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 11/30/2021] [Indexed: 11/28/2022]
Abstract
Spinal muscular atrophy (SMA) is a debilitating neurodegenerative pediatric disease characterized by low levels of the survival motor protein (SMN). Humans have two SMN genes that produce identical SMN proteins, but they differ at a key nucleotide in exon 7 that induces differential mRNA splicing. SMN1 primarily produces full-length SMN protein, but due to the spliceosome's inability to efficiently recognize exon 7, SMN2 transcripts are often truncated. SMA occurs primarily through mutations or deletions in the SMN1 gene; therefore, current therapies use antisense oligonucleotides (ASOs) to target exon 7 inclusion in SMN2 mRNA and promote full-length SMN protein production. Here, we explore additional methods that can target SMN splicing and therapeutically increase full-length SMN protein. We demonstrate that in vitro heat treatment of cells increases exon 7 inclusion and relative abundance of full-length SMN2 mRNA and protein, a response that is modulated through the upregulation of the positive splicing factor TRA2 beta. We also observe that HSP90, but not HSP40 or HSP70, in the heat shock response is essential for SMN2 exon 7 splicing under hyperthermic conditions. Finally, we show that pulsatile heat treatments for one hour in vitro and in vivo are effective in increasing full-length SMN2 levels. These findings suggest that timed interval treatments could be a therapeutic alternative for SMA patients who do not respond to current ASO-based therapies or require a unique combination regimen.
Collapse
Affiliation(s)
- Catherine E Dominguez
- Molecular, Cellular and Developmental Biology Graduate Program and The Center for RNA Biology, The Ohio State University, Columbus, OH, USA.,Center for Childhood Cancer and Blood Diseases, The Research Institute at Nationwide Children's Hospital, 700 Children's Drive, Columbus, OH, 43205, USA
| | - David Cunningham
- Center for Childhood Cancer and Blood Diseases, The Research Institute at Nationwide Children's Hospital, 700 Children's Drive, Columbus, OH, 43205, USA
| | - Akila S Venkataramany
- Center for Childhood Cancer and Blood Diseases, The Research Institute at Nationwide Children's Hospital, 700 Children's Drive, Columbus, OH, 43205, USA.,Biomedical Sciences Graduate Program, The Ohio State University, Columbus, OH, USA.,Medical Scientist Training Program, The Ohio State University, Columbus, OH, USA
| | - Dawn S Chandler
- Molecular, Cellular and Developmental Biology Graduate Program and The Center for RNA Biology, The Ohio State University, Columbus, OH, USA. .,Center for Childhood Cancer and Blood Diseases, The Research Institute at Nationwide Children's Hospital, 700 Children's Drive, Columbus, OH, 43205, USA. .,Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH, USA.
| |
Collapse
|
9
|
Kalb D, Vo HD, Adikari S, Hong-Geller E, Munsky B, Werner J. Visualization and modeling of inhibition of IL-1β and TNF-α mRNA transcription at the single-cell level. Sci Rep 2021; 11:13692. [PMID: 34211022 PMCID: PMC8249620 DOI: 10.1038/s41598-021-92846-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 06/11/2021] [Indexed: 11/29/2022] Open
Abstract
IL-1β and TNF-α are canonical immune response mediators that play key regulatory roles in a wide range of inflammatory responses to both chronic and acute conditions. Here we employ an automated microscopy platform for the analysis of messenger RNA (mRNA) expression of IL-1β and TNF-α at the single-cell level. The amount of IL-1β and TNF-α mRNA expressed in a human monocytic leukemia cell line (THP-1) is visualized and counted using single-molecule fluorescent in-situ hybridization (smFISH) following exposure of the cells to lipopolysaccharide (LPS), an outer-membrane component of Gram-negative bacteria. We show that the small molecule inhibitors MG132 (a 26S proteasome inhibitor used to block NF-κB signaling) and U0126 (a MAPK Kinase inhibitor used to block CCAAT-enhancer-binding proteins C/EBP) successfully block IL-1β and TNF-α mRNA expression. Based upon this single-cell mRNA expression data, we screened 36 different mathematical models of gene expression, and found two similar models that capture the effects by which the drugs U0126 and MG132 affect the rates at which the genes transition into highly activated states. When their parameters were informed by the action of each drug independently, both models were able to predict the effects of the combined drug treatment. From our data and models, we postulate that IL-1β is activated by both NF-κB and C/EBP, while TNF-α is predominantly activated by NF-κB. Our combined single-cell experimental and modeling efforts show the interconnection between these two genes and demonstrates how the single-cell responses, including the distribution shapes, mean expression, and kinetics of gene expression, change with inhibition.
Collapse
Affiliation(s)
- Daniel Kalb
- Center for Integrated Nanotechnologies, Los Alamos National Laboratory, Los Alamos, NM, USA
| | - Huy D Vo
- Department of Chemical and Biological Engineering, Colorado State University, Fort Collins, CO, USA
| | - Samantha Adikari
- Bioscience Division, Los Alamos National Laboratory, Los Alamos, NM, USA
| | | | - Brian Munsky
- Department of Chemical and Biological Engineering, Colorado State University, Fort Collins, CO, USA.
| | - James Werner
- Center for Integrated Nanotechnologies, Los Alamos National Laboratory, Los Alamos, NM, USA.
| |
Collapse
|
10
|
Beltrán-Heredia E, Monroy F, Cao-García FJ. Mechanical conditions for stable symmetric cell constriction. Phys Rev E 2019; 100:052408. [PMID: 31869912 DOI: 10.1103/physreve.100.052408] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Indexed: 11/07/2022]
Abstract
Cell constriction is a decisive step for division in many cells. However, its physical pathway remains poorly understood, calling for a quantitative analysis of the forces required in different cytokinetic scenarios. Using a model cell composed by a flexible membrane (actin cortex and cell membrane) that encloses the cytoplasm, we study the mechanical conditions necessary for stable symmetric constriction under radial equatorial forces using analytical and numerical methods. We deduce that stable symmetric constriction requires positive effective spontaneous curvature, while spontaneous constriction requires a spontaneous curvature higher than the characteristic inverse cell size. Surface tension reduction (for example by actin cortex growth and membrane trafficking) increases the stability and spontaneity of cellular constriction. A reduction of external pressure also increases stability and spontaneity. Cells with prolate lobes (elongated cells) require lower stabilization forces than oblate-shaped cells (discocytes). We also show that the stability and spontaneity of symmetric constriction increase as constriction progresses. Our quantitative results settle the physical requirements for stable cytokinesis, defining a quantitative framework to analyze the mechanical role of the different constriction machinery and cytokinetic pathways found in real cells, so contributing to a deeper quantitative understanding of the physical mechanism of the cell division process.
Collapse
Affiliation(s)
- Elena Beltrán-Heredia
- Departamento de Estructura de la Materia, Física Térmica, y Electrónica, Universidad Complutense de Madrid, Plaza de Ciencias 1, 28040 Madrid, Spain.,Departamento de Química Física, Universidad Complutense de Madrid, Avenida Complutense s/n, 28040 Madrid, Spain
| | - Francisco Monroy
- Departamento de Química Física, Universidad Complutense de Madrid, Avenida Complutense s/n, 28040 Madrid, Spain.,Unit of Translational Biophysics, Instituto de Investigación Sanitaria Hospital Doce de Octubre (imas12), Avenida de Cordoba s/n, 28041 Madrid, Spain
| | - Francisco J Cao-García
- Departamento de Estructura de la Materia, Física Térmica, y Electrónica, Universidad Complutense de Madrid, Plaza de Ciencias 1, 28040 Madrid, Spain.,IMDEA Nanociencia, Calle Faraday 9, 28049 Madrid, Spain
| |
Collapse
|
11
|
Morozov AV, Burov AV, Astakhova TM, Spasskaya DS, Margulis BA, Karpov VL. Dynamics of the Functional Activity and Expression of Proteasome Subunits during Cellular Adaptation to Heat Shock. Mol Biol 2019. [DOI: 10.1134/s0026893319040071] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
12
|
Liu Z, Dong X, Yi HW, Yang J, Gong Z, Wang Y, Liu K, Zhang WP, Tang C. Structural basis for the recognition of K48-linked Ub chain by proteasomal receptor Rpn13. Cell Discov 2019; 5:19. [PMID: 30962947 PMCID: PMC6443662 DOI: 10.1038/s41421-019-0089-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 02/15/2019] [Accepted: 02/19/2019] [Indexed: 01/18/2023] Open
Abstract
The interaction between K48-linked ubiquitin (Ub) chain and Rpn13 is important for proteasomal degradation of ubiquitinated substrate proteins. Only the complex structure between the N-terminal domain of Rpn13 (Rpn13NTD) and Ub monomer has been characterized, while it remains unclear how Rpn13 specifically recognizes K48-linked Ub chain. Using single-molecule FRET, here we show that K48-linked diubiquitin (K48-diUb) fluctuates among distinct conformational states, and a preexisting compact state is selectively enriched by Rpn13NTD. The same binding mode is observed for full-length Rpn13 and longer K48-linked Ub chain. Using solution NMR spectroscopy, we have determined the complex structure between Rpn13NTD and K48-diUb. In this structure, Rpn13NTD simultaneously interacts with proximal and distal Ub subunits of K48-diUb that remain associated in the complex, thus corroborating smFRET findings. The proximal Ub interacts with Rpn13NTD similarly as the Ub monomer in the known Rpn13NTD:Ub structure, while the distal Ub binds to a largely electrostatic surface of Rpn13NTD. Thus, a charge-reversal mutation in Rpn13NTD weakens the interaction between Rpn13 and K48-linked Ub chain, causing accumulation of ubiquitinated proteins. Moreover, physical blockage of the access of the distal Ub to Rpn13NTD with a proximity-attached Ub monomer can disrupt the interaction between Rpn13 and K48-diUb. Taken together, the bivalent interaction of K48-linked Ub chain with Rpn13 provides the structural basis for Rpn13 linkage selectivity, which opens a new window for modulating proteasomal function.
Collapse
Affiliation(s)
- Zhu Liu
- 1CAS Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic Molecular Physics, National Center for Magnetic Resonance at Wuhan, Wuhan Institute of Physics and Mathematics of the Chinese Academy of Sciences, Wuhan, Hubei Province 430071 China.,2National Key Laboratory of Crop Genetic Improvement, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070 China
| | - Xu Dong
- 1CAS Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic Molecular Physics, National Center for Magnetic Resonance at Wuhan, Wuhan Institute of Physics and Mathematics of the Chinese Academy of Sciences, Wuhan, Hubei Province 430071 China
| | - Hua-Wei Yi
- 1CAS Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic Molecular Physics, National Center for Magnetic Resonance at Wuhan, Wuhan Institute of Physics and Mathematics of the Chinese Academy of Sciences, Wuhan, Hubei Province 430071 China.,3University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Ju Yang
- 1CAS Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic Molecular Physics, National Center for Magnetic Resonance at Wuhan, Wuhan Institute of Physics and Mathematics of the Chinese Academy of Sciences, Wuhan, Hubei Province 430071 China.,3University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Zhou Gong
- 1CAS Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic Molecular Physics, National Center for Magnetic Resonance at Wuhan, Wuhan Institute of Physics and Mathematics of the Chinese Academy of Sciences, Wuhan, Hubei Province 430071 China
| | - Yi Wang
- 4Department of Pharmacology, Institute of Neuroscience, Key Laboratory of Medical Neurobiology of Ministry of Health of China, and Zhejiang Province Key Laboratory of Mental Disorder's Management, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province 310027 China
| | - Kan Liu
- 1CAS Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic Molecular Physics, National Center for Magnetic Resonance at Wuhan, Wuhan Institute of Physics and Mathematics of the Chinese Academy of Sciences, Wuhan, Hubei Province 430071 China
| | - Wei-Ping Zhang
- 4Department of Pharmacology, Institute of Neuroscience, Key Laboratory of Medical Neurobiology of Ministry of Health of China, and Zhejiang Province Key Laboratory of Mental Disorder's Management, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province 310027 China
| | - Chun Tang
- 1CAS Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic Molecular Physics, National Center for Magnetic Resonance at Wuhan, Wuhan Institute of Physics and Mathematics of the Chinese Academy of Sciences, Wuhan, Hubei Province 430071 China.,3University of Chinese Academy of Sciences, Beijing, 100049 China.,5Wuhan National Laboratory for Optoelectronics, Wuhan, Hubei Province 430074 China
| |
Collapse
|
13
|
Park AY, Park YS, So D, Song IK, Choi JE, Kim HJ, Lee KJ. Activity-Regulated Cytoskeleton-Associated Protein (Arc/Arg3.1) is Transiently Expressed after Heat Shock Stress and Suppresses Heat Shock Factor 1. Sci Rep 2019; 9:2592. [PMID: 30796345 PMCID: PMC6385231 DOI: 10.1038/s41598-019-39292-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Accepted: 01/17/2019] [Indexed: 02/07/2023] Open
Abstract
Heat shock proteins are induced by activation of heat shock factor 1 (HSF1) in response to heat shock and protect against heat stress. However, the molecular mechanisms underlying the downstream signal of heat shock have not been fully elucidated. We found that similarly to canonical Hsps, Arc/Arg3.1 is also markedly induced by heat shock and by other cellular stress inducers, including diamide, sodium arsenite and H2O2 in various cells. We noted that heat stress–induced Arc/Arg3.1 protein is short lived, with a half-life of <30 min, and is readily degraded by the ubiquitin–proteasome system. Arc/Arg3.1 overexpression inhibited the up-regulation of heat shock–induced Hsp70 and Hsp27, suggesting that Arc/Arg3.1 is a negative regulator of heat shock response (HSR). Studying the effect of Arc/Arg3.1 on HSF1, a major transcription factor in HSR, we found that Arc/Arg3.1 binds to HSF1 and inhibits its binding to the heat shock element in gene promoters, resulting in reduced induction of Hsp27 and Hsp70 mRNAs, without affecting HSF1′s phosphorylation-dependent activation, or nuclear localization. Arc/Arg3.1 overexpression decreased cell survival in response to heat shock. We conclude that Arc/Arg3.1 is transiently expressed after heat shock and negatively regulates HSF1 in the feedback loop of HSR.
Collapse
Affiliation(s)
- A Young Park
- College of Pharmacy and Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul, 03760, Korea
| | - Yeon Seung Park
- College of Pharmacy and Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul, 03760, Korea
| | - Dami So
- College of Pharmacy and Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul, 03760, Korea
| | - In-Kang Song
- College of Pharmacy and Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul, 03760, Korea
| | - Jung-Eun Choi
- College of Pharmacy and Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul, 03760, Korea
| | - Hee-Jung Kim
- College of Pharmacy and Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul, 03760, Korea. .,Spark biopharma, #203-207A, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Korea.
| | - Kong-Joo Lee
- College of Pharmacy and Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul, 03760, Korea.
| |
Collapse
|
14
|
Huang C, Wu J, Xu L, Wang J, Chen Z, Yang R. Regulation of HSF1 protein stabilization: An updated review. Eur J Pharmacol 2018; 822:69-77. [PMID: 29341886 DOI: 10.1016/j.ejphar.2018.01.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Revised: 12/11/2017] [Accepted: 01/09/2018] [Indexed: 12/12/2022]
Abstract
Heat shock factor 1 (HSF1) is a transcriptional factor that determines the efficiency of heat shock responses (HSRs) in the cell. Given its function has been extensively studied in recent years, HSF1 is considered a potential target for the treatment of disorders associated with protein aggregation. The activity of HSF1 is traditionally regulated at the transcriptional level in which the transactivation domain of HSF1 is modified by extensive array of pos-translational modifications, such as phosphorylation, sumoylation, and acetylation. Recently, HSF1 is also reported to be regulated at the monomeric level. For example, in neurodegenerative disorders such as Huntington's disease and Alzheimer's disease the expression levels of the monomeric HSF1 are found to be reduced markedly. Methylene blue (MB) and riluzole, two clinical available drugs, increase the amount of the monomeric HSF1 in both cells and animals. Since the monomeric HSF1 not only determines the efficiency of HSRs, but exerts protective effects in a trimerization-independent manner, increasing the amount of the monomeric HSF1 via stabilization of HSF1 may be an alternative strategy for the amplification of HSR. However, to date we have no outlined knowledges about HSF1 protein stabilization, though studies regarding the regulation of the monomeric HSF1 have been documented in recent years. Here, we summarize the regulation of the monomeric HSF1 by some previously reported factors, such as synuclein, Huntingtin (Htt), TDP-43, unfolded protein response (UPR), MB and doxorubicin (DOX), as well as their possible mechanisms, aiming to push the understanding about HSF1 protein stabilization.
Collapse
Affiliation(s)
- Chao Huang
- Department of Pharmacology, School of Pharmacy, Nantong University, #19 Qixiu Road, Nantong 226001, Jiangsu, China.
| | - Jingjing Wu
- Department of Cardiology, Suzhou Kowloon Hospital of Shanghai Jiaotong University School of Medicine, #118 Wansheng Street, Suzhou 215021, Jiangsu, China
| | - Li Xu
- Department of Ultrasound, Danyang People's Hospital, #2 Xinmin Western Road, Danyang 212300, Jiangsu, China
| | - Jili Wang
- Department of Pharmacology, School of Pharmacy, Nantong University, #19 Qixiu Road, Nantong 226001, Jiangsu, China
| | - Zhuo Chen
- Invasive Technology Department, Nantong First People's Hospital, The Second Affiliated Hospital of Nantong University, # 6 North Road Hai'er Xiang, Nantong 226001, Jiangsu, China
| | - Rongrong Yang
- Department of Anesthesiology, Affiliated Hospital of Nantong University, Jiangsu Province, #20Xisi Road, Nantong 226001, Jiangsu, China.
| |
Collapse
|
15
|
Sidor-Kaczmarek J, Cichorek M, Spodnik JH, Wójcik S, Moryś J. Proteasome inhibitors against amelanotic melanoma. Cell Biol Toxicol 2017; 33:557-573. [PMID: 28281027 PMCID: PMC5658467 DOI: 10.1007/s10565-017-9390-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Accepted: 02/15/2017] [Indexed: 12/11/2022]
Abstract
The incidence of malignant melanoma, the most aggressive skin cancer, is increasing constantly. Despite new targeted therapies, the prognosis for patients with metastatic disease remains poor. Thus, there is a need for new combinational treatments, and antineoplastic agents potentially valuable in this approach are inhibitors of the ubiquitin-proteasome system (UPS). In this work, we analyze the cytotoxicity mechanisms of proteasome inhibitors (MG-132, epoxomicin, and lactacystin) in a specific form of melanoma which does not synthesize melanin-the amelanotic melanoma (Ab cells). We found that the most cytotoxic of the compounds tested was epoxomicin. Caspase-9 activation as well as cytochrome C and AIF release from mitochondria indicated that exposure to epoxomicin induced the mitochondrial pathway of apoptosis. Epoxomicin treatment also resulted in accumulation of Bcl-2 family members-proapoptotic Noxa and antiapoptotic Mcl-1, which were postulated as the targets for bortezomib in melanoma. Inhibition of caspases by BAF revealed that cell death was partially caspase-independent. We observed no cell cycle arrest preceding the apoptosis of Ab cells, even though cdk inhibitors p21Cip1/Waf1 and p27Kip1 were up-regulated. The cell cycle was blocked only after inactivation of caspases by the pan-caspase inhibitor BAF. In summary, this is the first study exploring molecular mechanisms of cell death induced by epoxomicin in melanoma. We found that Ab cells died on the mitochondrial pathway of apoptosis and also partially by the caspase-independent way of death. Apoptosis induction was fast and efficient and was not preceded by cell cycle arrest.
Collapse
Affiliation(s)
| | | | - Jan Henryk Spodnik
- Department of Anatomy and Neurobiology, Medical University of Gdansk, Gdansk, Poland
| | - Sławomir Wójcik
- Department of Anatomy and Neurobiology, Medical University of Gdansk, Gdansk, Poland
| | - Janusz Moryś
- Department of Anatomy and Neurobiology, Medical University of Gdansk, Gdansk, Poland
| |
Collapse
|
16
|
Kim HJ, Lee JJ, Cho JH, Jeong J, Park AY, Kang W, Lee KJ. Heterogeneous nuclear ribonucleoprotein K inhibits heat shock-induced transcriptional activity of heat shock factor 1. J Biol Chem 2017; 292:12801-12812. [PMID: 28592492 DOI: 10.1074/jbc.m117.774992] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Revised: 06/06/2017] [Indexed: 12/22/2022] Open
Abstract
When cells are exposed to heat shock and various other stresses, heat shock factor 1 (HSF1) is activated, and the heat shock response (HSR) is elicited. To better understand the molecular regulation of the HSR, we used 2D-PAGE-based proteome analysis to screen for heat shock-induced post-translationally modified cellular proteins. Our analysis revealed that two protein spots typically present on 2D-PAGE gels and containing heterogeneous nuclear ribonucleoprotein K (hnRNP K) with trioxidized Cys132 disappeared after the heat shock treatment and reappeared during recovery, but the total amount of hnRNP K protein remained unchanged. We next tested whether hnRNP K plays a role in HSR by regulating HSF1 and found that hnRNP K inhibits HSF1 activity, resulting in reduced expression of hsp70 and hsp27 mRNAs. hnRNP K also reduced binding affinity of HSF1 to the heat shock element by directly interacting with HSF1 but did not affect HSF1 phosphorylation-dependent activation or nuclear localization. hnRNP K lost its ability to induce these effects when its Cys132 was substituted with Ser, Asp, or Glu. These findings suggest that hnRNP K inhibits transcriptional activity of HSF1 by inhibiting its binding to heat shock element and that the oxidation status of Cys132 in hnRNP K is critical for this inhibition.
Collapse
Affiliation(s)
- Hee-Jung Kim
- Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Womans University, Seoul 120-750, Korea
| | - Jae-Jin Lee
- Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Womans University, Seoul 120-750, Korea
| | - Jin-Hwan Cho
- Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Womans University, Seoul 120-750, Korea
| | - Jaeho Jeong
- Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Womans University, Seoul 120-750, Korea
| | - A Young Park
- Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Womans University, Seoul 120-750, Korea
| | - Wonmo Kang
- Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Womans University, Seoul 120-750, Korea
| | - Kong-Joo Lee
- Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Womans University, Seoul 120-750, Korea.
| |
Collapse
|
17
|
Beltrán-Heredia E, Almendro-Vedia VG, Monroy F, Cao FJ. Modeling the Mechanics of Cell Division: Influence of Spontaneous Membrane Curvature, Surface Tension, and Osmotic Pressure. Front Physiol 2017; 8:312. [PMID: 28579960 PMCID: PMC5437162 DOI: 10.3389/fphys.2017.00312] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Accepted: 04/30/2017] [Indexed: 11/13/2022] Open
Abstract
Many cell division processes have been conserved throughout evolution and are being revealed by studies on model organisms such as bacteria, yeasts, and protozoa. Cellular membrane constriction is one of these processes, observed almost universally during cell division. It happens similarly in all organisms through a mechanical pathway synchronized with the sequence of cytokinetic events in the cell interior. Arguably, such a mechanical process is mastered by the coordinated action of a constriction machinery fueled by biochemical energy in conjunction with the passive mechanics of the cellular membrane. Independently of the details of the constriction engine, the membrane component responds against deformation by minimizing the elastic energy at every constriction state following a pathway still unknown. In this paper, we address a theoretical study of the mechanics of membrane constriction in a simplified model that describes a homogeneous membrane vesicle in the regime where mechanical work due to osmotic pressure, surface tension, and bending energy are comparable. We develop a general method to find approximate analytical expressions for the main descriptors of a symmetrically constricted vesicle. Analytical solutions are obtained by combining a perturbative expansion for small deformations with a variational approach that was previously demonstrated valid at the reference state of an initially spherical vesicle at isotonic conditions. The analytic approximate results are compared with the exact solution obtained from numerical computations, getting a good agreement for all the computed quantities (energy, area, volume, constriction force). We analyze the effects of the spontaneous curvature, the surface tension and the osmotic pressure in these quantities, focusing especially on the constriction force. The more favorable conditions for vesicle constriction are determined, obtaining that smaller constriction forces are required for positive spontaneous curvatures, low or negative membrane tension and hypertonic media. Conditions for spontaneous constriction at a given constriction force are also determined. The implications of these results for biological cell division are discussed. This work contributes to a better quantitative understanding of the mechanical pathway of cellular division, and could assist the design of artificial divisomes in vesicle-based self-actuated microsystems obtained from synthetic biology approaches.
Collapse
Affiliation(s)
- Elena Beltrán-Heredia
- Departamento de Física Atómica, Molecular y Nuclear, Universidad Complutense de MadridMadrid, Spain.,Departamento de Química Física I, Universidad Complutense de MadridMadrid, Spain
| | - Víctor G Almendro-Vedia
- Departamento de Física Atómica, Molecular y Nuclear, Universidad Complutense de MadridMadrid, Spain.,Departamento de Química Física I, Universidad Complutense de MadridMadrid, Spain
| | - Francisco Monroy
- Departamento de Química Física I, Universidad Complutense de MadridMadrid, Spain.,Translational Biophysics, Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12)Madrid, Spain
| | - Francisco J Cao
- Departamento de Física Atómica, Molecular y Nuclear, Universidad Complutense de MadridMadrid, Spain
| |
Collapse
|
18
|
Regulatory module involving FGF13, miR-504, and p53 regulates ribosomal biogenesis and supports cancer cell survival. Proc Natl Acad Sci U S A 2016; 114:E496-E505. [PMID: 27994142 DOI: 10.1073/pnas.1614876114] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The microRNA miR-504 targets TP53 mRNA encoding the p53 tumor suppressor. miR-504 resides within the fibroblast growth factor 13 (FGF13) gene, which is overexpressed in various cancers. We report that the FGF13 locus, comprising FGF13 and miR-504, is transcriptionally repressed by p53, defining an additional negative feedback loop in the p53 network. Furthermore, we show that FGF13 1A is a nucleolar protein that represses ribosomal RNA transcription and attenuates protein synthesis. Importantly, in cancer cells expressing high levels of FGF13, the depletion of FGF13 elicits increased proteostasis stress, associated with the accumulation of reactive oxygen species and apoptosis. Notably, stepwise neoplastic transformation is accompanied by a gradual increase in FGF13 expression and increased dependence on FGF13 for survival ("nononcogene addiction"). Moreover, FGF13 overexpression enables cells to cope more effectively with the stress elicited by oncogenic Ras protein. We propose that, in cells in which activated oncogenes drive excessive protein synthesis, FGF13 may favor survival by maintaining translation rates at a level compatible with the protein quality-control capacity of the cell. Thus, FGF13 may serve as an enabler, allowing cancer cells to evade proteostasis stress triggered by oncogene activation.
Collapse
|
19
|
Cheng CY, Tu WL, Wang SH, Tang PC, Chen CF, Chen HH, Lee YP, Chen SE, Huang SY. Annotation of Differential Gene Expression in Small Yellow Follicles of a Broiler-Type Strain of Taiwan Country Chickens in Response to Acute Heat Stress. PLoS One 2015; 10:e0143418. [PMID: 26587838 PMCID: PMC4654548 DOI: 10.1371/journal.pone.0143418] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Accepted: 11/04/2015] [Indexed: 12/19/2022] Open
Abstract
This study investigated global gene expression in the small yellow follicles (6-8 mm diameter) of broiler-type B strain Taiwan country chickens (TCCs) in response to acute heat stress. Twelve 30-wk-old TCC hens were divided into four groups: control hens maintained at 25°C and hens subjected to 38°C acute heat stress for 2 h without recovery (H2R0), with 2-h recovery (H2R2), and with 6-h recovery (H2R6). Small yellow follicles were collected for RNA isolation and microarray analysis at the end of each time point. Results showed that 69, 51, and 76 genes were upregulated and 58, 15, 56 genes were downregulated after heat treatment of H2R0, H2R2, and H2R6, respectively, using a cutoff value of two-fold or higher. Gene ontology analysis revealed that these differentially expressed genes are associated with the biological processes of cell communication, developmental process, protein metabolic process, immune system process, and response to stimuli. Upregulation of heat shock protein 25, interleukin 6, metallopeptidase 1, and metalloproteinase 13, and downregulation of type II alpha 1 collagen, discoidin domain receptor tyrosine kinase 2, and Kruppel-like factor 2 suggested that acute heat stress induces proteolytic disintegration of the structural matrix and inflamed damage and adaptive responses of gene expression in the follicle cells. These suggestions were validated through gene expression, using quantitative real-time polymerase chain reaction. Functional annotation clarified that interleukin 6-related pathways play a critical role in regulating acute heat stress responses in the small yellow follicles of TCC hens.
Collapse
Affiliation(s)
- Chuen-Yu Cheng
- Department of Animal Science, National Chung Hsing University, Taichung, Taiwan
| | - Wei-Lin Tu
- Department of Animal Science, National Chung Hsing University, Taichung, Taiwan
| | - Shih-Han Wang
- Department of Animal Science, National Chung Hsing University, Taichung, Taiwan
| | - Pin-Chi Tang
- Department of Animal Science, National Chung Hsing University, Taichung, Taiwan
- Agricultural Biotechnology Center, National Chung Hsing University, Taichung, Taiwan
- Center for the Integrative and Evolutionary Galliformes Genomics, iEGG Center, National Chung Hsing University, Taichung, Taiwan
| | - Chih-Feng Chen
- Department of Animal Science, National Chung Hsing University, Taichung, Taiwan
- Agricultural Biotechnology Center, National Chung Hsing University, Taichung, Taiwan
- Center for the Integrative and Evolutionary Galliformes Genomics, iEGG Center, National Chung Hsing University, Taichung, Taiwan
| | - Hsin-Hsin Chen
- Department of Veterinary Medicine, National Chung Hsing University, Taichung, Taiwan
| | - Yen-Pai Lee
- Department of Animal Science, National Chung Hsing University, Taichung, Taiwan
| | - Shuen-Ei Chen
- Department of Animal Science, National Chung Hsing University, Taichung, Taiwan
- Agricultural Biotechnology Center, National Chung Hsing University, Taichung, Taiwan
- Center for the Integrative and Evolutionary Galliformes Genomics, iEGG Center, National Chung Hsing University, Taichung, Taiwan
- * E-mail: (SEC); (SYH)
| | - San-Yuan Huang
- Department of Animal Science, National Chung Hsing University, Taichung, Taiwan
- Agricultural Biotechnology Center, National Chung Hsing University, Taichung, Taiwan
- Center for the Integrative and Evolutionary Galliformes Genomics, iEGG Center, National Chung Hsing University, Taichung, Taiwan
- Center of Nanoscience and Nanotechnology, National Chung Hsing University, Taichung, Taiwan
- * E-mail: (SEC); (SYH)
| |
Collapse
|
20
|
Gonzalez-Reyes A, Menaouar A, Yip D, Danalache B, Plante E, Noiseux N, Gutkowska J, Jankowski M. Molecular mechanisms underlying oxytocin-induced cardiomyocyte protection from simulated ischemia-reperfusion. Mol Cell Endocrinol 2015; 412:170-81. [PMID: 25963797 DOI: 10.1016/j.mce.2015.04.028] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Revised: 04/29/2015] [Accepted: 04/29/2015] [Indexed: 01/26/2023]
Abstract
Oxytocin (OT) stimulates cardioprotection. Here we investigated heart-derived H9c2 cells in simulated ischemia-reperfusion (I-R) experiments in order to examine the mechanism of OT protection. I-R was induced in an anoxic chamber for 2 hours and followed by 2 h of reperfusion. In comparison to normoxia, I-R resulted in decrease of formazan production by H9c2 cells to 63.5 ± 1.7% (MTT assay) and in enhanced apoptosis from 1.7 ± 0.3% to 2.8 ± 0.4% (Tunel test). Using these assays it was observed that treatment with OT (1-500 nM) exerted significant protection during I-R, especially when OT was added at the time of ischemia or reperfusion. Using the CM-H2DCFDA probe we found that OT triggers a short-lived burst in reactive oxygen species (ROS) production in cells but reduces ROS production evoked by I-R. In cells treated with OT, Western-blot revealed the phosphorylation of Akt (Thr 308, p-Akt), eNOS and ERK 1/2. Microscopy showed translocation of p-Akt and eNOS into the nuclear and perinuclear area and NO production in cells treated with OT. The OT-induced protection against I-R was abrogated by an OT antagonist, the Pi3K inhibitor Wortmannin, the cGMP-dependent protein kinase (PKG) inhibitor, KT5823, as well as soluble guanylate cyclase (GC) inhibitor, ODQ, and particulate GC antagonist, A71915. In conditions of I-R, the cells with siRNA-mediated reduction in OT receptor (OTR) expression responded to OT treatment by enhanced apoptosis. In conclusion, the OTR protected H9c2 cells against I-R, especially if activated at the onset of ischemia or reperfusion. The OTR-transduced signals include pro-survival kinases, such as Akt and PKG.
Collapse
Affiliation(s)
- Araceli Gonzalez-Reyes
- Cardiovascular Biochemistry Laboratory, CRCHUM, Montréal, Québec, Canada; Department of Experimental Medicine, McGill University
| | - Ahmed Menaouar
- Cardiovascular Biochemistry Laboratory, CRCHUM, Montréal, Québec, Canada
| | - Denis Yip
- Cardiovascular Biochemistry Laboratory, CRCHUM, Montréal, Québec, Canada; Department of Experimental Medicine, McGill University
| | - Bogdan Danalache
- Cardiovascular Biochemistry Laboratory, CRCHUM, Montréal, Québec, Canada
| | - Eric Plante
- Cardiovascular Biochemistry Laboratory, CRCHUM, Montréal, Québec, Canada
| | - Nicolas Noiseux
- Department of Surgery, Faculty of Medicine, University of Montreal
| | - Jolanta Gutkowska
- Cardiovascular Biochemistry Laboratory, CRCHUM, Montréal, Québec, Canada; Department of Experimental Medicine, McGill University; Department of Medicine, University of Montreal
| | - Marek Jankowski
- Cardiovascular Biochemistry Laboratory, CRCHUM, Montréal, Québec, Canada; Department of Medicine, University of Montreal.
| |
Collapse
|
21
|
Kim HJ, Ha S, Lee HY, Lee KJ. ROSics: chemistry and proteomics of cysteine modifications in redox biology. MASS SPECTROMETRY REVIEWS 2015; 34:184-208. [PMID: 24916017 PMCID: PMC4340047 DOI: 10.1002/mas.21430] [Citation(s) in RCA: 82] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2012] [Revised: 04/30/2013] [Accepted: 11/20/2013] [Indexed: 05/29/2023]
Abstract
Post-translational modifications (PTMs) occurring in proteins determine their functions and regulations. Proteomic tools are available to identify PTMs and have proved invaluable to expanding the inventory of these tools of nature that hold the keys to biological processes. Cysteine (Cys), the least abundant (1-2%) of amino acid residues, are unique in that they play key roles in maintaining stability of protein structure, participating in active sites of enzymes, regulating protein function and binding to metals, among others. Cys residues are major targets of reactive oxygen species (ROS), which are important mediators and modulators of various biological processes. It is therefore necessary to identify the Cys-containing ROS target proteins, as well as the sites and species of their PTMs. Cutting edge proteomic tools which have helped identify the PTMs at reactive Cys residues, have also revealed that Cys residues are modified in numerous ways. These modifications include formation of disulfide, thiosulfinate and thiosulfonate, oxidation to sulfenic, sulfinic, sulfonic acids and thiosulfonic acid, transformation to dehydroalanine (DHA) and serine, palmitoylation and farnesylation, formation of chemical adducts with glutathione, 4-hydroxynonenal and 15-deoxy PGJ2, and various other chemicals. We present here, a review of relevant ROS biology, possible chemical reactions of Cys residues and details of the proteomic strategies employed for rapid, efficient and sensitive identification of diverse and novel PTMs involving reactive Cys residues of redox-sensitive proteins. We propose a new name, "ROSics," for the science which describes the principles of mode of action of ROS at molecular levels.
Collapse
Affiliation(s)
- Hee-Jung Kim
- Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Womans UniversitySeoul, 120-750, Korea
| | - Sura Ha
- Department of Chemistry, Korea Advanced Institute of Science & Technology (KAIST)Daejeon, 305-701, Korea
| | - Hee Yoon Lee
- Department of Chemistry, Korea Advanced Institute of Science & Technology (KAIST)Daejeon, 305-701, Korea
| | - Kong-Joo Lee
- Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Womans UniversitySeoul, 120-750, Korea
| |
Collapse
|
22
|
Proteasome stress responses in Schistosoma mansoni. Parasitol Res 2015; 114:1747-60. [DOI: 10.1007/s00436-015-4360-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2014] [Accepted: 01/30/2015] [Indexed: 12/19/2022]
|
23
|
Almendro-Vedia VG, Monroy F, Cao FJ. Analytical results for cell constriction dominated by bending energy. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2015; 91:012713. [PMID: 25679648 DOI: 10.1103/physreve.91.012713] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Indexed: 06/04/2023]
Abstract
Analytical expressions are obtained for the main magnitudes of a symmetrically constricted vesicle. These equations provide an easy and compact way to predict minimal requirements for successful constriction and its main magnitudes. Thus, they can be useful for the design of synthetic divisomes and give good predictions for magnitudes including constriction energy, length of the constriction zone, volume and area of the vesicle, and the stability coefficient for symmetric constriction. The analytical expressions are derived combining a perturbative expansion in the Lagrangian for small deformations with a cosine ansatz in the constriction region. Already the simple fourth-order (or sixth-order) approximation provides a good approximation to the values of the main physical magnitudes during constriction, as we show through comparison with numerical results. Results are for vesicles with negligible effects from spontaneous curvature, surface tension, and pressure differences. This is the case when membrane components generating spontaneous curvature are scarce, membrane trafficking is present with low energetic cost, and the external medium is isotonic.
Collapse
Affiliation(s)
- Victor G Almendro-Vedia
- Departamento de Física Atómica, Molecular y Nuclear, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Francisco Monroy
- Departamento de Química Física I, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Francisco J Cao
- Departamento de Física Atómica, Molecular y Nuclear, Universidad Complutense de Madrid, 28040 Madrid, Spain
| |
Collapse
|
24
|
Rodriguez KA, Osmulski PA, Pierce A, Weintraub ST, Gaczynska M, Buffenstein R. A cytosolic protein factor from the naked mole-rat activates proteasomes of other species and protects these from inhibition. BIOCHIMICA ET BIOPHYSICA ACTA 2014; 1842:2060-72. [PMID: 25018089 PMCID: PMC4829350 DOI: 10.1016/j.bbadis.2014.07.005] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Revised: 06/11/2014] [Accepted: 07/03/2014] [Indexed: 10/25/2022]
Abstract
The naked mole-rat maintains robust proteostasis and high levels of proteasome-mediated proteolysis for most of its exceptional (~31years) life span. Here, we report that the highly active proteasome from the naked mole-rat liver resists attenuation by a diverse suite of proteasome-specific small molecule inhibitors. Moreover, mouse, human, and yeast proteasomes exposed to the proteasome-depleted, naked mole-rat cytosolic fractions, recapitulate the observed inhibition resistance, and mammalian proteasomes also show increased activity. Gel filtration coupled with mass spectrometry and atomic force microscopy indicates that these traits are supported by a protein factor that resides in the cytosol. This factor interacts with the proteasome and modulates its activity. Although Heat shock protein 72 kDa (HSP72) and Heat shock protein 40 kDa (Homolog of bacterial DNAJ1) (HSP40(Hdj1)) are among the constituents of this factor, the observed phenomenon, such as increasing peptidase activity and protecting against inhibition cannot be reconciled with any known chaperone functions. This novel function may contribute to the exceptional protein homeostasis in the naked mole-rat and allow it to successfully defy aging.
Collapse
Affiliation(s)
- Karl A Rodriguez
- Sam and Ann Barshop Institute for Aging and Longevity Studies, University of Texas Health Science Center at San Antonio, 15355 Lambda Dr., San Antonio, TX 78245, USA; Department of Physiology, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229, USA
| | - Pawel A Osmulski
- Sam and Ann Barshop Institute for Aging and Longevity Studies, University of Texas Health Science Center at San Antonio, 15355 Lambda Dr., San Antonio, TX 78245, USA; Department of Molecular Medicine, University of Texas Health Science Center at San Antonio, 15355 Lambda Dr., San Antonio, TX 78245, USA
| | - Anson Pierce
- Mitchell Center for Neurodegenerative Diseases, Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, 301 University Boulevard, Galveston, TX 77555, USA
| | - Susan T Weintraub
- Department of Biochemistry, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229, USA
| | - Maria Gaczynska
- Sam and Ann Barshop Institute for Aging and Longevity Studies, University of Texas Health Science Center at San Antonio, 15355 Lambda Dr., San Antonio, TX 78245, USA; Department of Molecular Medicine, University of Texas Health Science Center at San Antonio, 15355 Lambda Dr., San Antonio, TX 78245, USA
| | - Rochelle Buffenstein
- Sam and Ann Barshop Institute for Aging and Longevity Studies, University of Texas Health Science Center at San Antonio, 15355 Lambda Dr., San Antonio, TX 78245, USA; Department of Physiology, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229, USA; Department of Cellular and Structural Biology, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229, USA.
| |
Collapse
|
25
|
Almendro-Vedia VG, Monroy F, Cao FJ. Mechanics of constriction during cell division: a variational approach. PLoS One 2013; 8:e69750. [PMID: 23990888 PMCID: PMC3749217 DOI: 10.1371/journal.pone.0069750] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2013] [Accepted: 06/12/2013] [Indexed: 11/19/2022] Open
Abstract
During symmetric division cells undergo large constriction deformations at a stable midcell site. Using a variational approach, we investigate the mechanical route for symmetric constriction by computing the bending energy of deformed vesicles with rotational symmetry. Forces required for constriction are explicitly computed at constant area and constant volume, and their values are found to be determined by cell size and bending modulus. For cell-sized vesicles, considering typical bending modulus of [Formula: see text], we calculate constriction forces in the range [Formula: see text]. The instability of symmetrical constriction is shown and quantified with a characteristic coefficient of the order of [Formula: see text], thus evidencing that cells need a robust mechanism to stabilize constriction at midcell.
Collapse
Affiliation(s)
- Victor G. Almendro-Vedia
- Departamento de Física Atómica, Molecular y Nuclear and Departamento de Química Física I, Universidad Complutense, Avenida Complutense s/n, Madrid, Spain
| | - Francisco Monroy
- Departamento de Química Física I, Universidad Complutense, Avenida Complutense s/n, Madrid, Spain
| | - Francisco J. Cao
- Departamento de Física Atómica, Molecular y Nuclear, Universidad Complutense, Avenida Complutense s/n, Madrid, Spain
| |
Collapse
|
26
|
Chow AM, Tang DWF, Hanif A, Brown IR. Induction of heat shock proteins in cerebral cortical cultures by celastrol. Cell Stress Chaperones 2013; 18:155-60. [PMID: 22865541 PMCID: PMC3581628 DOI: 10.1007/s12192-012-0364-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2012] [Revised: 07/23/2012] [Accepted: 07/24/2012] [Indexed: 01/06/2023] Open
Abstract
Alzheimer's disease, Parkinson's disease and amyotrophic lateral sclerosis (ALS) are 'protein misfolding disorders' of the mature nervous system that are characterized by the accumulation of protein aggregates and selective cell loss. Different brain regions are impacted, with Alzheimer's affecting cells in the cerebral cortex, Parkinson's targeting dopaminergic cells in the substantia nigra and ALS causing degeneration of cells in the spinal cord. These diseases differ widely in frequency in the human population. Alzheimer's is more frequent than Parkinson's and ALS. Heat shock proteins (Hsps) are 'protein repair agents' that provide a line of defense against misfolded, aggregation-prone proteins. We have suggested that differing levels of constitutively expressed Hsps (Hsc70 and Hsp27) in neural cell populations confer a variable buffering capacity against 'protein misfolding disorders' that correlates with the relative frequencies of these neurodegenerative diseases. The high relative frequency of Alzheimer's may due to low levels of Hsc70 and Hsp27 in affected cell populations that results in a reduced defense capacity against protein misfolding. Here, we demonstrate that celastrol, but not classical heat shock treatment, is effective in inducing a set of neuroprotective Hsps in cultures derived from cerebral cortices, including Hsp70, Hsp27 and Hsp32. This set of Hsps is induced by celastrol at 'days in vitro' (DIV) 13 when cultured cortical cells reached maturity. The inducibility of a set of neuroprotective Hsps in mature cortical cultures at DIV13 suggests that celastrol is a potential agent to counter Alzheimer's disease, a neurodegenerative 'protein misfolding disorder' of the adult brain that targets cells in the cerebral cortex.
Collapse
Affiliation(s)
- Ari M. Chow
- Centre for the Neurobiology of Stress, Department of Biological Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, ON M1C 1A4 Canada
| | - Derek W. F. Tang
- Centre for the Neurobiology of Stress, Department of Biological Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, ON M1C 1A4 Canada
| | - Asad Hanif
- Centre for the Neurobiology of Stress, Department of Biological Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, ON M1C 1A4 Canada
| | - Ian R. Brown
- Centre for the Neurobiology of Stress, Department of Biological Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, ON M1C 1A4 Canada
| |
Collapse
|
27
|
Wang SH, Cheng CY, Tang PC, Chen CF, Chen HH, Lee YP, Huang SY. Differential gene expressions in testes of L2 strain Taiwan country chicken in response to acute heat stress. Theriogenology 2013; 79:374-82.e1-7. [DOI: 10.1016/j.theriogenology.2012.10.010] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2012] [Revised: 10/14/2012] [Accepted: 10/14/2012] [Indexed: 01/03/2023]
|
28
|
LIN YITING, LIU ZHIWEN, LIU XUANMING, ZHANG YUNSHENG, RONG ZHUOXIAN, LI DAN. Microarray-based analysis of the gene expression profile in GC-1 spg cells transfected with spermatogenesis associated gene 12. Int J Mol Med 2012; 31:459-66. [DOI: 10.3892/ijmm.2012.1225] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2012] [Accepted: 11/16/2012] [Indexed: 11/06/2022] Open
|
29
|
Intracellular context affects levels of a chemically dependent destabilizing domain. PLoS One 2012; 7:e43297. [PMID: 22984418 PMCID: PMC3440426 DOI: 10.1371/journal.pone.0043297] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2012] [Accepted: 07/19/2012] [Indexed: 12/22/2022] Open
Abstract
The ability to regulate protein levels in live cells is crucial to understanding protein function. In the interest of advancing the tool set for protein perturbation, we developed a protein destabilizing domain (DD) that can confer its instability to a fused protein of interest. This destabilization and consequent degradation can be rescued in a reversible and dose-dependent manner with the addition of a small molecule that is specific for the DD, Shield-1. Proteins encounter different local protein quality control (QC) machinery when targeted to cellular compartments such as the mitochondrial matrix or endoplasmic reticulum (ER). These varied environments could have profound effects on the levels and regulation of the cytoplasmically derived DD. Here we show that DD fusions in the cytoplasm or nucleus can be efficiently degraded in mammalian cells; however, targeting fusions to the mitochondrial matrix or ER lumen leads to accumulation even in the absence of Shield-1. Additionally, we characterize the behavior of the DD with perturbants that modulate protein production, degradation, and local protein QC machinery. Chemical induction of the unfolded protein response in the ER results in decreased levels of an ER-targeted DD indicating the sensitivity of the DD to the degradation environment. These data reinforce that DD is an effective tool for protein perturbation, show that the local QC machinery affects levels of the DD, and suggest that the DD may be a useful probe for monitoring protein quality control machinery.
Collapse
|
30
|
Li D, Lin Y, Liu Z, Zhang Y, Rong Z, Liu X. Transcriptional regulation of human novel gene SPATA12 promoter by AP-1 and HSF. Gene 2012; 511:18-25. [PMID: 22981541 DOI: 10.1016/j.gene.2012.08.047] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2012] [Revised: 08/03/2012] [Accepted: 08/15/2012] [Indexed: 11/19/2022]
Abstract
Human SPATA12 is a spermatogenesis associated gene and is supposed to function as an inhibitor during male germ cell development. SPATA12 is specifically expressed in spermatocytes, spermatids, and spermatozoa of human testis. In order to understand the regulation mechanism of SPATA12 gene expression, we identified and characterized the SPATA12 gene core promoter region and transcription factor binding sites by using reporter gene assays. AP-1 is founded to be a potential transcriptional activator of SPATA12. The promoter activity of SPATA12 was drastically declined after AP-1 binding site mutation or deletion. We also demonstrated that AP-1 combined with Smad3/4 contributes to the transcriptional regulation of SPATA12 in response to TGF-β1. The expression of SPATA12 could be induced by TGF-β1 in a dose-dependent manner, suggesting that AP-1 as an activator plays a role in the regulation of SPATA12 promoter. We have also shown that heat shock treatment could activate the expression of SPATA12 and transcription factor HSF binding sites in the SPATA12 promoter might be responsible for this heat-induction. These results suggested that AP-1 and HSF may play an important role in regulating SPATA12 promoter activity.
Collapse
Affiliation(s)
- Dan Li
- Department of Life Science, School of Biology, Hunan University, Changsha 410082, China.
| | | | | | | | | | | |
Collapse
|
31
|
Integrated protein quality-control pathways regulate free α-globin in murine β-thalassemia. Blood 2012; 119:5265-75. [PMID: 22427201 DOI: 10.1182/blood-2011-12-397729] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Cells remove unstable polypeptides through protein quality-control (PQC) pathways such as ubiquitin-mediated proteolysis and autophagy. In the present study, we investigated how these pathways are used in β-thalassemia, a common hemoglobinopathy in which β-globin gene mutations cause the accumulation and precipitation of cytotoxic α-globin subunits. In β-thalassemic erythrocyte precursors, free α-globin was polyubiquitinated and degraded by the proteasome. These cells exhibited enhanced proteasome activity, and transcriptional profiling revealed coordinated induction of most proteasome subunits that was mediated by the stress-response transcription factor Nrf1. In isolated thalassemic cells, short-term proteasome inhibition blocked the degradation of free α-globin. In contrast, prolonged in vivo treatment of β-thalassemic mice with the proteasome inhibitor bortezomib did not enhance the accumulation of free α-globin. Rather, systemic proteasome inhibition activated compensatory proteotoxic stress-response mechanisms, including autophagy, which cooperated with ubiquitin-mediated proteolysis to degrade free α-globin in erythroid cells. Our findings show that multiple interregulated PQC responses degrade excess α-globin. Therefore, β-thalassemia fits into the broader framework of protein-aggregation disorders that use PQC pathways as cell-protective mechanisms.
Collapse
|
32
|
Wang Y, Sun B, Volk HD, Proesch S, Kern F. Comparative Study of the Influence of Proteasome Inhibitor MG132 and Ganciclovir on the Cytomegalovirus-Specific CD8+T-Cell Immune Response. Viral Immunol 2011; 24:455-61. [DOI: 10.1089/vim.2011.0038] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Yanjun Wang
- Institut für Medizinische Immunologie der Charité, Abteilung Klinische Immunologie, Humboldt-Universität zu Berlin (Charité), Campus Charité Mitte, Berlin, Germany
- Beijing Institute of Liver Diseases, Capital Medical University, Beijing, China
| | - Bin Sun
- Intervention Therapy Center of Liver Diseases, Beijing You An Hospital, Capital Medical University, Beijing, China
| | - Hans-Dieter Volk
- Institut für Medizinische Immunologie der Charité, Abteilung Klinische Immunologie, Humboldt-Universität zu Berlin (Charité), Campus Charité Mitte, Berlin, Germany
| | - Susanna Proesch
- Institut für Virologie der Charité, Campus Mitte, Berlin, Germany
| | - Florian Kern
- BSMS, University of Sussex, Falmer, Brighton, U.K
| |
Collapse
|