1
|
Li Y, Sun M, Ding Y, Li A. Mandible-derived extracellular vesicles regulate early tooth development in miniature swine via targeting KDM2B. Int J Oral Sci 2025; 17:36. [PMID: 40289114 PMCID: PMC12034755 DOI: 10.1038/s41368-025-00348-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 01/10/2025] [Accepted: 01/13/2025] [Indexed: 04/30/2025] Open
Abstract
Tissue interactions play a crucial role in tooth development. Notably, extracellular vesicle-mediated interactions between the mandible and tooth germ are considered essential. Here, we revealed that mandible extracellular vesicles could modulate the proliferation and differentiation of dental mesenchymal cells by regulating the histone demethylase KDM2B. Further investigation showed that mandible derived extracellular vesicles could deliver miR-206 to KDM2B, thereby regulating tooth development. An animal study demonstrated that the miR-206/KDM2B pathway affected tooth morphogenesis and mineralization after eight weeks of subcutaneous transplantation in nude mice. In conclusion, this study suggested that the mandible played a critical role in tooth morphogenesis and mineralization, which could be a potential therapeutic target for abnormal tooth development and an alternative model for tooth regeneration.
Collapse
Affiliation(s)
- Ye Li
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, China
| | - Meng Sun
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, China
- Department of Periodontology, College of Stomatology, Xi'an Jiaotong University, Xi'an, China
| | - Yi Ding
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, China
- Department of Periodontology, College of Stomatology, Xi'an Jiaotong University, Xi'an, China
| | - Ang Li
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, China.
- Department of Periodontology, College of Stomatology, Xi'an Jiaotong University, Xi'an, China.
| |
Collapse
|
2
|
Kyaw MS, Kamano Y, Yahata Y, Tanaka T, Sato N, Toyama F, Noguchi T, Saito M, Nakano M, Harada F, Saito M. Endodontic Regeneration Therapy: Current Strategies and Tissue Engineering Solutions. Cells 2025; 14:422. [PMID: 40136671 PMCID: PMC11941292 DOI: 10.3390/cells14060422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Revised: 02/28/2025] [Accepted: 03/11/2025] [Indexed: 03/27/2025] Open
Abstract
With increasing life expectancy and an aging population, the demand for dental treatments that preserve natural teeth has grown significantly. Among these treatments, endodontic therapies for pulpitis and apical periodontitis play a vital role, not only in keeping occlusal function, but also in preventing the exacerbation of systemic diseases. Both pulpitis and apical periodontitis are primarily caused by infections of the oral pathobiont within the root canal, leading to inflammation and destruction of the pulp, apical periodontal tissue, and bone. Standard root canal therapy aims to remove the infection source and facilitate natural tissue healing through the body's regenerative capacity. However, challenges remain, including limited tooth functionality after complete pulp removal in pulpitis and insufficient recovery of the large bone defect in apical periodontitis. To address these limitations, endodontic regenerative therapies have emerged as promising alternatives. Pulp regeneration therapy seeks to restore the functionality of dental pulp, while bone regeneration therapy aims to repair and regenerate large bone defects affected by apical periodontal tissue.
Collapse
Affiliation(s)
| | - Yuya Kamano
- Department of Restorative Dentistry, Division of Operative Dentistry, Graduate School of Dentistry, Tohoku University, Sendai 980-8575, Japan; (M.S.K.); (Y.Y.); (T.T.); (N.S.); (F.T.); (T.N.); (M.S.); (M.N.); (F.H.); (M.S.)
| | | | | | | | | | | | | | | | | | | |
Collapse
|
3
|
Varshney S, Dwivedi A, Pandey V. Bioprinting techniques for regeneration of oral and craniofacial tissues: Current advances and future prospects. J Oral Biol Craniofac Res 2025; 15:331-346. [PMID: 40027866 PMCID: PMC11870160 DOI: 10.1016/j.jobcr.2025.01.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 12/12/2024] [Accepted: 01/18/2025] [Indexed: 03/05/2025] Open
Abstract
Background Regenerative dentistry aims to reinstate, fix, renew, and regrow tissues within the oral and craniofacial domain. Existing regenerative methods are based on insights into tissue biology or disease processes that lead to tissue degradation. However, achieving complete and functional Tissue regeneration remains a primary challenge in real-world medical scenarios. Aim The review focuses on the application of bioprinting techniques for rejuvenating intricate Oral and craniofacial tissues, such as craniofacial bone, periodontal ligament, cementum, dental pulp, temporomandibular joint cartilage, and whole teeth. Methods Bioprinting, a cutting-edge technology in regenerative dentistry, strives to create entirely new Functional tissues and organs. This approach merges principles from engineering and biology to produce three-dimensional biologically operational constructs containing bioactive substances, Living cells and cell clusters using automated bioprinters. The review summarizes the outcomes achieved through bioprinting techniques in both in vitro (laboratory experiments) and in vivo (Studies on living organisms) experiments. Result The emergence of this innovative tissue engineering technology has yielded highly promising outcomes during the experimental stages. Conclusion These promising experimental results necessitate replication through human clinical trials to ascertain the viability of bioprinting techniques for mainstream clinical implementation in regenerative dentistry.
Collapse
Affiliation(s)
- Shailesh Varshney
- Department of Periodontology, School of Dental Sciences, Sharda University, Greater Noida, Uttar Pradesh, India
| | - Anshuman Dwivedi
- ,Department of Stem Cells & Regenerative Medicine, Santosh, University, Ghaziabad, Uttar Pradesh, India
| | - Vibha Pandey
- ,Department of Psychology, Himalayan, Garhwal University, Uttarakhand, India
| |
Collapse
|
4
|
Morita K, Wang J, Okamoto K, Iwata T. The next generation of regenerative dentistry: From tooth development biology to periodontal tissue, dental pulp, and whole tooth reconstruction in the clinical setting. Regen Ther 2025; 28:333-344. [PMID: 39885872 PMCID: PMC11780712 DOI: 10.1016/j.reth.2025.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 12/08/2024] [Accepted: 01/04/2025] [Indexed: 02/01/2025] Open
Abstract
In modern dentistry, prosthetic approaches such as implants and dentures have been developed as symptomatic solutions for tooth loss. However, the complete regeneration of teeth and periodontal tissue, an ultimate aspiration of humanity, remains unachieved. Recent advancements in fundamental scientific technologies, including single-cell RNA sequencing and spatial transcriptomics, have significantly advanced our molecular understanding of tooth development, paving the way toward achieving this goal. This review summarizes the fundamental processes of tooth development in humans and mice, recent findings from basic research, and current clinical applications in dental regenerative medicine, including periodontal, alveolar bone, and dental pulp regeneration using cellular approaches. Building on accumulated scientific knowledge, the complete regeneration of teeth and periodontal tissues may be achievable in the near future. We discuss the potential of emerging approaches, such as organoids derived from pluripotent stem cells and xenotransplantation using genetically modified animals, to transform dental medicine. These innovative concepts and integrated technologies hold the promise of enabling the regeneration of fully functional teeth and periodontal tissues.
Collapse
Affiliation(s)
- Kazuki Morita
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Institute of Science Tokyo (Science Tokyo), 1-5-45, Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan
| | - Jiacheng Wang
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Institute of Science Tokyo (Science Tokyo), 1-5-45, Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan
| | - Keisuke Okamoto
- Health Science Research and Development Center (HeRD), Institute of Science Tokyo (Science Tokyo), 1-5-45, Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan
| | - Takanori Iwata
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Institute of Science Tokyo (Science Tokyo), 1-5-45, Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan
| |
Collapse
|
5
|
Zhang W, Yelick PC. In vivo bioengineered tooth formation using decellularized tooth bud extracellular matrix scaffolds. Stem Cells Transl Med 2025; 14:szae076. [PMID: 39729491 PMCID: PMC11878782 DOI: 10.1093/stcltm/szae076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 09/09/2024] [Indexed: 12/29/2024] Open
Abstract
The use of dental implants to replace lost or damaged teeth has become increasingly widespread due to their reported high survival and success rates. In reality, the long-term survival of dental implants remains a health concern, based on their short-term predicted survival of ~15 years, significant potential for jawbone resorption, and risk of peri-implantitis. The ability to create functional bioengineered teeth, composed of living tissues with properties similar to those of natural teeth, would be a significant improvement over currently used synthetic titanium implants. To address this possibility, our research has focused on creating biological tooth substitutes. The study presented here validates a potentially clinically relevant bioengineered tooth replacement therapy for eventual use in humans. We created bioengineered tooth buds by seeding decellularized tooth bud (dTB) extracellular matrix (ECM) scaffolds with human dental pulp cells, porcine tooth bud-derived dental epithelial cells, and human umbilical vein endothelial cells. The resulting bioengineered tooth bud constructs were implanted in the mandibles of adult Yucatan minipigs and grown for 2 or 4 months. We observed the formation of tooth-like tissues, including tooth-supporting periodontal ligament tissues, in cell-seeded dTB ECM constructs. This preclinical translational study validates this approach as a potential clinically relevant alternative to currently used dental implants.
Collapse
Affiliation(s)
- Weibo Zhang
- Department of Orthodontics, Division of Craniofacial and Molecular Genetics, Tufts University School of Dental Medicine, Boston, MA 02111, United States
| | - Pamela C Yelick
- Department of Orthodontics, Division of Craniofacial and Molecular Genetics, Tufts University School of Dental Medicine, Boston, MA 02111, United States
| |
Collapse
|
6
|
Abdal Dayem A, Bin Jang S, Lim N, Yeo HC, Kwak Y, Lee SH, Shin HJ, Cho SG. Advances in lacrimal gland organoid development: Techniques and therapeutic applications. Biomed Pharmacother 2025; 183:117870. [PMID: 39870025 DOI: 10.1016/j.biopha.2025.117870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 01/11/2025] [Accepted: 01/23/2025] [Indexed: 01/29/2025] Open
Abstract
The human lacrimal gland (LG), located above the outer orbital region within the frontal bone socket, is essential in maintaining eye surface health and lubrication. It is firmly anchored to the orbital periosteum by the connective tissue, and it is vital for protecting and lubricating the eye by secreting lacrimal fluid. Disruption in the production, composition, or secretion of lacrimal fluid can lead to dry eye syndrome, a condition characterized by ocular discomfort and potential eye surface damage. This review explores the recent advancements in LG organoid generation using tissues and stem cells, highlighting cutting-edge techniques in biomaterial-based and scaffold-free technologies. Additionally, we shed light on the complex pathophysiology of LG dysfunction, providing insights into the LG physiological roles while identifying strategies for generating LG organoids and exploring their potential clinical applications. Alterations in LG morphology or secretory function can affect the tear film stability and quality, leading to various ocular pathological conditions. This comprehensive review underlines the critical crosslink of LG organoid development with disease modeling and drug screening, underscoring their potential for advancing therapeutic applications.
Collapse
Affiliation(s)
- Ahmed Abdal Dayem
- Department of Stem Cell and Regenerative Biotechnology, School of Advanced Biotechnology, Molecular & Cellular Reprogramming Center, Institute of Advanced Regenerative Science, and Institute of Health, Aging & Society, Konkuk University, 120 Neungdong-ro Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Soo Bin Jang
- Department of Stem Cell and Regenerative Biotechnology, School of Advanced Biotechnology, Molecular & Cellular Reprogramming Center, Institute of Advanced Regenerative Science, and Institute of Health, Aging & Society, Konkuk University, 120 Neungdong-ro Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Nahee Lim
- Department of Stem Cell and Regenerative Biotechnology, School of Advanced Biotechnology, Molecular & Cellular Reprogramming Center, Institute of Advanced Regenerative Science, and Institute of Health, Aging & Society, Konkuk University, 120 Neungdong-ro Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Han Cheol Yeo
- Department of Stem Cell and Regenerative Biotechnology, School of Advanced Biotechnology, Molecular & Cellular Reprogramming Center, Institute of Advanced Regenerative Science, and Institute of Health, Aging & Society, Konkuk University, 120 Neungdong-ro Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Yeonjoo Kwak
- Department of Stem Cell and Regenerative Biotechnology, School of Advanced Biotechnology, Molecular & Cellular Reprogramming Center, Institute of Advanced Regenerative Science, and Institute of Health, Aging & Society, Konkuk University, 120 Neungdong-ro Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Shin-Hyo Lee
- Department of Anatomy, Wonkwang University School of Medicine, Iksan, Republic of Korea; Jesaeng-Euise Clinical Anatomy Center, Wonkwang University School of Medicine, Iksan, Republic of Korea
| | - Hyun Jin Shin
- Konkuk University School of Medicine, Chungju city, Republic of Korea; Department of Ophthalmology, Konkuk University Medical Center, Seoul, Republic of Korea; Research Institute of Medical Science, Konkuk University School of Medicine, Seoul, Republic of Korea; Institute of Biomedical Science & Technology, Konkuk University, Seoul, Republic of Korea.
| | - Sang-Goo Cho
- Department of Stem Cell and Regenerative Biotechnology, School of Advanced Biotechnology, Molecular & Cellular Reprogramming Center, Institute of Advanced Regenerative Science, and Institute of Health, Aging & Society, Konkuk University, 120 Neungdong-ro Gwangjin-gu, Seoul 05029, Republic of Korea; R&D Team, StemExOne Co., Ltd., Seoul, Republic of Korea.
| |
Collapse
|
7
|
Zhang X, Contessi Negrini N, Correia R, Sharpe PT, Celiz AD, Angelova Volponi A. Generating Tooth Organoids Using Defined Bioorthogonally Cross-Linked Hydrogels. ACS Macro Lett 2024; 13:1620-1626. [PMID: 39532305 PMCID: PMC11656705 DOI: 10.1021/acsmacrolett.4c00520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 11/06/2024] [Accepted: 11/08/2024] [Indexed: 11/16/2024]
Abstract
Generating teeth in vitro requires mimicking tooth developmental processes. Biomaterials are essential to support 3D tooth organoid formation, but their properties must be finely tuned to achieve the required biomimicry for tooth development. For the first time, we used bioorthogonally cross-linked hydrogels as defined 3D matrixes for tooth developmental engineering, and we highlighted how their properties play a pivotal role in enabling 3D tooth organoid formation in vitro. We prepared hydrogels by mixing gelatin precursors modified either with tetrazine (Tz) or norbornene (Nb) moieties. We tuned the hydrogel properties (E = 2-7 kPa; G' = 500-1500 Pa) by varying the gelatin concentration (8% vs 12% w/V) and stoichiometric ratio (Tz:Nb = 1 vs 0.5). We encapsulated dental epithelial-mesenchymal cell pellets in a library of hydrogels and identified a hydrogel formulation that enabled successful growth kinetics and morphogenesis of tooth germs, introducing a defined tunable platform for tooth organoid engineering and modeling.
Collapse
Affiliation(s)
- Xuechen Zhang
- Centre
for Craniofacial and Regenerative Biology, Faculty of Dentistry, Oral
& Craniofacial Sciences, King’s
College London, Guy’s Hospital, SE1 9RT London, U.K.
| | - Nicola Contessi Negrini
- Department
of Bioengineering, Imperial College London, W12 0BZ London, U.K.
- The
Francis Crick Institute, NW1 1AT London, U.K.
| | - Rita Correia
- Department
of Bioengineering, Imperial College London, W12 0BZ London, U.K.
- The
Francis Crick Institute, NW1 1AT London, U.K.
| | - Paul T. Sharpe
- Centre
for Craniofacial and Regenerative Biology, Faculty of Dentistry, Oral
& Craniofacial Sciences, King’s
College London, Guy’s Hospital, SE1 9RT London, U.K.
| | - Adam D. Celiz
- Department
of Bioengineering, Imperial College London, W12 0BZ London, U.K.
- The
Francis Crick Institute, NW1 1AT London, U.K.
| | - Ana Angelova Volponi
- Centre
for Craniofacial and Regenerative Biology, Faculty of Dentistry, Oral
& Craniofacial Sciences, King’s
College London, Guy’s Hospital, SE1 9RT London, U.K.
| |
Collapse
|
8
|
Eldeeb D, Okada H, Suzuki Y, Seki M, Tanaka J, Mishima K, Chung UI, Ohba S, Hojo H. Exploring the role of DNMT1 in dental papilla cell fate specification during mouse tooth germ development through integrated single-cell transcriptomics and bulk RNA sequencing. J Oral Biosci 2024; 66:530-538. [PMID: 38942194 DOI: 10.1016/j.job.2024.06.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 06/22/2024] [Accepted: 06/24/2024] [Indexed: 06/30/2024]
Abstract
OBJECTIVES This study aimed to investigate the regulatory mechanisms governing dental mesenchymal cell commitment during tooth development, focusing on odontoblast differentiation and the role of epigenetic regulation in this process. METHODS We performed single-cell RNA sequencing (scRNA-seq) of dental cells from embryonic day 14.5 (E14.5) mice to understand the heterogeneity of developing tooth germ cells. Computational analyses including gene regulatory network (GRN) assessment were conducted. We validated our findings using immunohistochemistry (IHC) and in vitro loss-of-function analyses using the DNA methyltransferase 1 (DNMT1) inhibitor Gsk-3484862 in primary dental mesenchymal cells (DMCs) isolated from E14.5 mouse tooth germs. Bulk RNA-seq of Gsk-3484862-treated DMCs was performed to identify potential downstream targets of DNMT1. RESULTS scRNA-seq analysis revealed diverse cell populations within the tooth germs, including epithelial, mesenchymal, immune, and muscle cells. Using single-cell regulatory network inference and clustering (SCENIC), we identified Dnmt1 as a key regulator of early odontoblast development. IHC analysis showed the ubiquitous expression of DNMT1 in the dental papilla and epithelium. Bulk RNA-seq of cultured DMCs showed that Gsk-3484862 treatment upregulated odontoblast-related genes, whereas genes associated with cell division and the cell cycle were downregulated. Integrated analysis of bulk RNA-seq data with scRNA-seq SCENIC profiles was used to identify the potential Dnmt1 target genes. CONCLUSIONS Dnmt1 may negatively affect odontoblast commitment and differentiation during tooth development. These findings contribute to a better understanding of the molecular mechanisms underlying tooth development and future development of hard-tissue regenerative therapies.
Collapse
Affiliation(s)
- Dahlia Eldeeb
- Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Japan; Department of Oral Biology, Faculty of Dentistry, Cairo University, Egypt
| | - Hiroyuki Okada
- Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Japan; Department of Orthopaedic Surgery, Graduate School of Medicine, The University of Tokyo, Japan
| | - Yutaka Suzuki
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Japan
| | - Masahide Seki
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Japan
| | - Junichi Tanaka
- Division of Pathology, Department of Oral Diagnostic Sciences, School of Dentistry, Showa University, Japan
| | - Kenji Mishima
- Division of Pathology, Department of Oral Diagnostic Sciences, School of Dentistry, Showa University, Japan
| | - Ung-Il Chung
- Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Japan; Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, Japan
| | - Shinsuke Ohba
- Department of Tissue and Developmental Biology, Graduate School of Dentistry, Osaka University, Japan.
| | - Hironori Hojo
- Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Japan; Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, Japan.
| |
Collapse
|
9
|
Hermans F, Hasevoets S, Vankelecom H, Bronckaers A, Lambrichts I. From Pluripotent Stem Cells to Organoids and Bioprinting: Recent Advances in Dental Epithelium and Ameloblast Models to Study Tooth Biology and Regeneration. Stem Cell Rev Rep 2024; 20:1184-1199. [PMID: 38498295 PMCID: PMC11222197 DOI: 10.1007/s12015-024-10702-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/20/2024] [Indexed: 03/20/2024]
Abstract
Ameloblasts are the specialized dental epithelial cell type responsible for enamel formation. Following completion of enamel development in humans, ameloblasts are lost and biological repair or regeneration of enamel is not possible. In the past, in vitro models to study dental epithelium and ameloblast biology were limited to freshly isolated primary cells or immortalized cell lines, both with limited translational potential. In recent years, large strides have been made with the development of induced pluripotent stem cell and organoid models of this essential dental lineage - both enabling modeling of human dental epithelium. Upon induction with several different signaling factors (such as transforming growth factor and bone morphogenetic proteins) these models display elevated expression of ameloblast markers and enamel matrix proteins. The advent of 3D bioprinting, and its potential combination with these advanced cellular tools, is poised to revolutionize the field - and its potential for tissue engineering, regenerative and personalized medicine. As the advancements in these technologies are rapidly evolving, we evaluate the current state-of-the-art regarding in vitro cell culture models of dental epithelium and ameloblast lineage with a particular focus toward their applicability for translational tissue engineering and regenerative/personalized medicine.
Collapse
Affiliation(s)
- Florian Hermans
- Department of Cardiology and Organ Systems (COS), Biomedical Research Institute (BIOMED), Faculty of Medicine and Life Sciences, Hasselt University, Diepenbeek, 3590, Belgium.
| | - Steffie Hasevoets
- Department of Cardiology and Organ Systems (COS), Biomedical Research Institute (BIOMED), Faculty of Medicine and Life Sciences, Hasselt University, Diepenbeek, 3590, Belgium
| | - Hugo Vankelecom
- Laboratory of Tissue Plasticity in Health and Disease, Cluster of Stem Cell and Developmental Biology, Department of Development and Regeneration, KU Leuven, Leuven, 3000, Belgium
| | - Annelies Bronckaers
- Department of Cardiology and Organ Systems (COS), Biomedical Research Institute (BIOMED), Faculty of Medicine and Life Sciences, Hasselt University, Diepenbeek, 3590, Belgium
| | - Ivo Lambrichts
- Department of Cardiology and Organ Systems (COS), Biomedical Research Institute (BIOMED), Faculty of Medicine and Life Sciences, Hasselt University, Diepenbeek, 3590, Belgium.
| |
Collapse
|
10
|
Shah P, Aghazadeh M, Rajasingh S, Dixon D, Jain V, Rajasingh J. Stem cells in regenerative dentistry: Current understanding and future directions. J Oral Biosci 2024; 66:288-299. [PMID: 38403241 DOI: 10.1016/j.job.2024.02.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 02/15/2024] [Accepted: 02/18/2024] [Indexed: 02/27/2024]
Abstract
BACKGROUND Regenerative dentistry aims to enhance the structure and function of oral tissues and organs. Modern tissue engineering harnesses cell and gene-based therapies to advance traditional treatment approaches. Studies have demonstrated the potential of mesenchymal stem cells (MSCs) in regenerative dentistry, with some progressing to clinical trials. This review comprehensively examines animal studies that have utilized MSCs for various therapeutic applications. Additionally, it seeks to bridge the gap between related findings and the practical implementation of MSC therapies, offering insights into the challenges and translational aspects involved in transitioning from preclinical research to clinical applications. HIGHLIGHTS To achieve this objective, we have focused on the protocols and achievements related to pulp-dentin, alveolar bone, and periodontal regeneration using dental-derived MSCs in both animal and clinical studies. Various types of MSCs, including dental-derived cells, bone-marrow stem cells, and umbilical cord stem cells, have been employed in root canals, periodontal defects, socket preservation, and sinus lift procedures. Results of such include significant hard tissue reconstruction, functional pulp regeneration, root elongation, periodontal ligament formation, and cementum deposition. However, cell-based treatments for tooth and periodontium regeneration are still in early stages. The increasing demand for stem cell therapies in personalized medicine underscores the need for scientists and responsible organizations to develop standardized treatment protocols that adhere to good manufacturing practices, ensuring high reproducibility, safety, and cost-efficiency. CONCLUSION Cell therapy in regenerative dentistry represents a growing industry with substantial benefits and unique challenges as it strives to establish sustainable, long-term, and effective oral tissue regeneration solutions.
Collapse
Affiliation(s)
- Pooja Shah
- Department of Bioscience Research, College of Dentistry, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Marziyeh Aghazadeh
- Department of Bioscience Research, College of Dentistry, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Sheeja Rajasingh
- Department of Bioscience Research, College of Dentistry, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Douglas Dixon
- Department of Bioscience Research, College of Dentistry, University of Tennessee Health Science Center, Memphis, TN, USA; Department of Periodontology, College of Dentistry, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Vinay Jain
- Department of Prosthodontics, College of Dentistry, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Johnson Rajasingh
- Department of Bioscience Research, College of Dentistry, University of Tennessee Health Science Center, Memphis, TN, USA; Department of Medicine-Cardiology, University of Tennessee Health Science Center, Memphis, TN, USA; Department of Microbiology, Immunology, and Biochemistry, University of Tennessee Health Science Center, Memphis, TN, USA.
| |
Collapse
|
11
|
Sadrabad MJ, Saberian E, Izadi A, Emami R, Ghadyani F. Success in Tooth Bud Regeneration: A Short Communication. J Endod 2024; 50:351-354. [PMID: 38154652 DOI: 10.1016/j.joen.2023.12.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 12/10/2023] [Accepted: 12/17/2023] [Indexed: 12/30/2023]
Abstract
INTRODUCTION Tooth caries and loss are frequent clinical diseases in dentistry. Tissue engineering is a new therapeutic choice for the complete biological regeneration of pulpal and dental tissues in regenerative dentistry. The aim of this study was to establish a protocol for in situ regeneration of a dental bud in the extracted socket. METHODS The current study examined tooth bud regeneration with dental pulp stem cells induced by a dentin derivative signal in a rabbit's jaw. RESULT A tooth bud was regenerated; the morphology and structure of it were typical, and it was post-Bell stage. CONCLUSIONS In our study, a real tooth bud was formed in the post-Bell stage with complete morphologic and biological features. However, the application of this method for tooth regeneration in humans necessitates further research.
Collapse
Affiliation(s)
- Maryam Jalili Sadrabad
- Oral Medicine Department, Dental School, Semnan University of Medical Sciences, Semnan, Iran; Department of Tissue Engineering and Applied Cell Sciences, School of Medicine, Semnan University of Medical Sciences, Semnan, Iran.
| | - Elham Saberian
- Dental Medicine Faculty, Pavol Jozef Safarik University, Kosice, Slovakia
| | - Armin Izadi
- Student Research Committee, Oral Medicine Department, Dental Faculty, Semnan University of Medical Sciences, Semnan, Iran
| | - Rahele Emami
- Radiology Department, Dental School, Tehran University of Medical Sciences, Tehran, Iran
| | - Farid Ghadyani
- Student Research Committee, Dental Faculty, Semnan University of Medical Sciences, Semnan, Iran
| |
Collapse
|
12
|
Hu N, Li W, Jiang W, Wen J, Gu S. Creating a Microenvironment to Give Wings to Dental Pulp Regeneration-Bioactive Scaffolds. Pharmaceutics 2023; 15:158. [PMID: 36678787 PMCID: PMC9861529 DOI: 10.3390/pharmaceutics15010158] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/13/2022] [Accepted: 12/23/2022] [Indexed: 01/05/2023] Open
Abstract
Dental pulp and periapical diseases make patients suffer from acute pain and economic loss. Although root canal therapies, as demonstrated through evidence-based medicine, can relieve symptoms and are commonly employed by dentists, it is still difficult to fully restore a dental pulp's nutrition, sensory, and immune-regulation functions. In recent years, researchers have made significant progress in tissue engineering to regenerate dental pulp in a desired microenvironment. With breakthroughs in regenerative medicine and material science, bioactive scaffolds play a pivotal role in creating a suitable microenvironment for cell survival, proliferation, and differentiation, following dental restoration and regeneration. This article focuses on current challenges and novel perspectives about bioactive scaffolds in creating a microenvironment to promote dental pulp regeneration. We hope our readers will gain a deeper understanding and new inspiration of dental pulp regeneration through our summary.
Collapse
Affiliation(s)
- Nan Hu
- Department of Endodontics, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, Shanghai 200011, China
- National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai 200011, China
| | - Weiping Li
- National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai 200011, China
- Department of Oral and Maxillofacial Head & Neck Oncology, Shanghai Ninth People’s Hospital, College of Stomatology, Shanghai Jiao Tong University, Shanghai 200011, China
| | - Wentao Jiang
- Department of Endodontics, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, Shanghai 200011, China
- National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai 200011, China
| | - Jin Wen
- National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai 200011, China
- Department of Prosthodontics, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, Shanghai 200011, China
- Shanghai Key Laboratory of Stomatology, Shanghai Engineering Research Center of Advanced Dental Technology and Materials, Shanghai 200125, China
| | - Shensheng Gu
- Department of Endodontics, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, Shanghai 200011, China
- National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai 200011, China
| |
Collapse
|
13
|
Morsczeck C. Dental stem cells for tooth regeneration: how far have we come and where next? Expert Opin Biol Ther 2023; 23:527-537. [PMID: 37101404 DOI: 10.1080/14712598.2023.2208268] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 04/25/2023] [Indexed: 04/28/2023]
Abstract
INTRODUCTION Human dental stem cells are promising for tooth repair because of their differentiation potential. In 2018, this journal published a report on dental stem cell treatment options that had been attempted since the early 2000s. Although it is very difficult to follow every trend since then, new achievements have been made in the last 5 years. This review summarizes selected developments in dental stem cell research. AREAS COVERED This article provides an overview of new developments with human dental stem cells and parts of these cells like extracellular vesicles for regenerative medicine. Preclinical research, clinical trials, and other works in the field of dental stem cells research for whole tooth engineering, dental pulp regeneration, periodontitis, and tooth root regeneration are summarized. In addition, works with dental stem cells for the regeneration of diseases that cannot be cured with the regeneration of dental tissues, such as diabetes, will be presented. EXPERT OPINION Over the past five years, a number of studies using dental stem cells have improved new strategies for tooth repair. In addition, there are new dental stem cell products such as extracellular vesicles which, in combination with findings from basic research, will lead to new treatment options in the future.
Collapse
Affiliation(s)
- Christian Morsczeck
- Department of Oral and Maxillofacial Surgery, University Hospital Regensburg, Regensburg, Germany
| |
Collapse
|
14
|
Ostrovidov S, Ramalingam M, Bae H, Orive G, Fujie T, Shi X, Kaji H. Bioprinting and biomaterials for dental alveolar tissue regeneration. Front Bioeng Biotechnol 2023; 11:991821. [PMID: 37122863 PMCID: PMC10140526 DOI: 10.3389/fbioe.2023.991821] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 04/03/2023] [Indexed: 05/02/2023] Open
Abstract
Three dimensional (3D) bioprinting is a powerful tool, that was recently applied to tissue engineering. This technique allows the precise deposition of cells encapsulated in supportive bioinks to fabricate complex scaffolds, which are used to repair targeted tissues. Here, we review the recent developments in the application of 3D bioprinting to dental tissue engineering. These tissues, including teeth, periodontal ligament, alveolar bones, and dental pulp, present cell types and mechanical properties with great heterogeneity, which is challenging to reproduce in vitro. After highlighting the different bioprinting methods used in regenerative dentistry, we reviewed the great variety of bioink formulations and their effects on cells, which have been established to support the development of these tissues. We discussed the different advances achieved in the fabrication of each dental tissue to provide an overview of the current state of the methods. We conclude with the remaining challenges and future needs.
Collapse
Affiliation(s)
- Serge Ostrovidov
- Department of Biomechanics, Institute of Biomaterials and Bioengineering (IBB), Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Murugan Ramalingam
- Institute of Tissue Regeneration Engineering, Dankook University, Cheonan, Republic of Korea
- Department of Nanobiomedical Science, BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, Republic of Korea
- School of Basic Medical Science, Chengdu University, Chengdu, China
- Mechanobiology Dental Medicine Research Center, Dankook University, Cheonan, Republic of Korea
- UCL Eastman-Korea Dental Medicine Innovation Centre, Dankook University, Cheonan, Republic of Korea
- Department of Metallurgical and Materials Engineering, Faculty of Engineering, Atilim University, Ankara, Türkiye
| | - Hojae Bae
- Department of Stem Cell and Regenerative Biotechnology, KU Convergence Science and Technology Institute, Konkuk University, Hwayang-dong, Seoul, Republic of Korea
| | - Gorka Orive
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country UPV/EHU, Vitoria-Gasteiz, Spain
- Bioaraba, NanoBioCel Research Group, Vitoria-Gasteiz, Spain
- Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Vitoria-Gasteiz, Spain
| | - Toshinori Fujie
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Japan
- Living System Materialogy (LiSM) Reseach Group, International Research Frontiers Initiative (IRFI), Tokyo Institute of Technology, Yokohama, Japan
| | - Xuetao Shi
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, Guangdong, China
| | - Hirokazu Kaji
- Department of Biomechanics, Institute of Biomaterials and Bioengineering (IBB), Tokyo Medical and Dental University (TMDU), Tokyo, Japan
- *Correspondence: Hirokazu Kaji,
| |
Collapse
|
15
|
Towards a New Concept of Regenerative Endodontics Based on Mesenchymal Stem Cell-Derived Secretomes Products. BIOENGINEERING (BASEL, SWITZERLAND) 2022; 10:bioengineering10010004. [PMID: 36671576 PMCID: PMC9854964 DOI: 10.3390/bioengineering10010004] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/09/2022] [Accepted: 12/15/2022] [Indexed: 12/24/2022]
Abstract
The teeth, made up of hard and soft tissues, represent complex functioning structures of the oral cavity, which are frequently affected by processes that cause structural damage that can lead to their loss. Currently, replacement therapy such as endodontics or implants, restore structural defects but do not perform any biological function, such as restoring blood and nerve supplies. In the search for alternatives to regenerate the dental pulp, two alternative regenerative endodontic procedures (REP) have been proposed: (I) cell-free REP (based in revascularization and homing induction to remaining dental pulp stem cells (DPSC) and even stem cells from apical papilla (SCAP) and (II) cell-based REP (with exogenous cell transplantation). Regarding the last topic, we show several limitations with these procedures and therefore, we propose a novel regenerative approach in order to revitalize the pulp and thus restore homeostatic functions to the dentin-pulp complex. Due to their multifactorial biological effects, the use of mesenchymal stem cells (MSC)-derived secretome from non-dental sources could be considered as inducers of DPSC and SCAP to completely regenerate the dental pulp. In partial pulp damage, appropriate stimulate DPSC by MSC-derived secretome could contribute to formation and also to restore the vasculature and nerves of the dental pulp.
Collapse
|
16
|
Kilic Bektas C, Zhang W, Mao Y, Wu X, Kohn J, Yelick PC. Self-Assembled Hydrogel Microparticle-Based Tooth-Germ Organoids. Bioengineering (Basel) 2022; 9:bioengineering9050215. [PMID: 35621493 PMCID: PMC9137977 DOI: 10.3390/bioengineering9050215] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 05/09/2022] [Accepted: 05/11/2022] [Indexed: 11/16/2022] Open
Abstract
Here, we describe the characterization of tooth-germ organoids, three-dimensional (3D) constructs cultured in vitro with the potential to develop into living teeth. To date, the methods used to successfully create tooth organoids capable of forming functional teeth have been quite limited. Recently, hydrogel microparticles (HMP) have demonstrated utility in tissue repair and regeneration based on their useful characteristics, including their scaffolding ability, effective cell and drug delivery, their ability to mimic the natural tissue extracellular matrix, and their injectability. These outstanding properties led us to investigate the utility of using HMPs (average diameter: 158 ± 32 µm) derived from methacrylated gelatin (GelMA) (degree of substitution: 100%) to create tooth organoids. The tooth organoids were created by seeding human dental pulp stem cells (hDPSCs) and porcine dental epithelial cells (pDE) onto the HMPs, which provided an extensive surface area for the cells to effectively attach and proliferate. Interestingly, the cell-seeded HMPs cultured on low-attachment tissue culture plates with gentle rocking self-assembled into organoids, within which the cells maintained their viability and morphology throughout the incubation period. The self-assembled organoids reached a volume of ~50 mm3 within two weeks of the in vitro tissue culture. The co-cultured hDPSC-HMP and pDE-HMP structures effectively attached to each other without any externally applied forces. The presence of polarized, differentiated dental cells in these composite tooth-bud organoids demonstrated the potential of self-assembled dental cell HMPs to form tooth-bud organoid-like structures for potential applications in tooth regeneration strategies.
Collapse
Affiliation(s)
- Cemile Kilic Bektas
- Department of Chemistry and Chemical Biology, Rutgers University, 123 Bevier Rd, Piscataway, NJ 08854, USA; (C.K.B.); (Y.M.); (X.W.); (J.K.)
| | - Weibo Zhang
- Division of Craniofacial and Molecular Genetics, Department of Orthodontics, Tufts University School of Dental Medicine, 1 Kneeland Avenue, Boston, MA 02111, USA;
| | - Yong Mao
- Department of Chemistry and Chemical Biology, Rutgers University, 123 Bevier Rd, Piscataway, NJ 08854, USA; (C.K.B.); (Y.M.); (X.W.); (J.K.)
| | - Xiaohuan Wu
- Department of Chemistry and Chemical Biology, Rutgers University, 123 Bevier Rd, Piscataway, NJ 08854, USA; (C.K.B.); (Y.M.); (X.W.); (J.K.)
| | - Joachim Kohn
- Department of Chemistry and Chemical Biology, Rutgers University, 123 Bevier Rd, Piscataway, NJ 08854, USA; (C.K.B.); (Y.M.); (X.W.); (J.K.)
| | - Pamela C. Yelick
- Division of Craniofacial and Molecular Genetics, Department of Orthodontics, Tufts University School of Dental Medicine, 1 Kneeland Avenue, Boston, MA 02111, USA;
- Correspondence:
| |
Collapse
|
17
|
Mohabatpour F, Chen X, Papagerakis S, Papagerakis P. Novel trends, challenges and new perspectives for enamel repair and regeneration to treat dental defects. Biomater Sci 2022; 10:3062-3087. [PMID: 35543379 DOI: 10.1039/d2bm00072e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Dental enamel is the hardest tissue in the human body, providing external protection for the tooth against masticatory forces, temperature changes and chemical stimuli. Once enamel is damaged/altered by genetic defects, dental caries, trauma, and/or dental wear, it cannot repair itself due to the loss of enamel producing cells following the tooth eruption. The current restorative dental materials are unable to replicate physico-mechanical, esthetic features and crystal structures of the native enamel. Thus, development of alternative approaches to repair and regenerate enamel defects is much needed but remains challenging due to the structural and functional complexities involved. This review paper summarizes the clinical aspects to be taken into consideration for the development of optimal therapeutic approaches to tackle dental enamel defects. It also provides a comprehensive overview of the emerging acellular and cellular approaches proposed for enamel remineralization and regeneration. Acellular approaches aim to artificially synthesize or re-mineralize enamel, whereas cell-based strategies aim to mimic the natural process of enamel development given that epithelial cells can be stimulated to produce enamel postnatally during the adult life. The key issues and current challenges are also discussed here, along with new perspectives for future research to advance the field of regenerative dentistry.
Collapse
Affiliation(s)
- Fatemeh Mohabatpour
- Division of Biomedical Engineering, University of Saskatchewan, 57 Campus Dr., S7N 5A9, SK, Canada. .,College of Dentistry, University of Saskatchewan, 105 Wiggins Rd, Saskatoon, S7N 5E4, SK, Canada
| | - Xiongbiao Chen
- Division of Biomedical Engineering, University of Saskatchewan, 57 Campus Dr., S7N 5A9, SK, Canada. .,Department of Mechanical Engineering, University of Saskatchewan, 57 Campus Dr., Saskatoon, S7N 5A9, SK, Canada
| | - Silvana Papagerakis
- Division of Biomedical Engineering, University of Saskatchewan, 57 Campus Dr., S7N 5A9, SK, Canada. .,Department of Surgery, College of Medicine, University of Saskatchewan, 107 Wiggins Rd B419, S7N 0 W8, SK, Canada
| | - Petros Papagerakis
- Division of Biomedical Engineering, University of Saskatchewan, 57 Campus Dr., S7N 5A9, SK, Canada. .,College of Dentistry, University of Saskatchewan, 105 Wiggins Rd, Saskatoon, S7N 5E4, SK, Canada
| |
Collapse
|
18
|
Furquim CP, Kumagai RY, Bustillos-Torrez W, Meza-Mauricio J, Tanaka CJ, Santana V, Retamal-Valdes B, Shibli JA. Whole Tooth Regeneration: Can Animal Studies be Translated into Clinical Application? Tissue Eng Part C Methods 2022; 28:104-112. [PMID: 35172636 DOI: 10.1089/ten.tec.2022.0022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Abstract
Tooth loss leads to several oral problems and although a large number of treatments have been proposed to rehabilitate partially or totally edentulous patients, none of them is based on replacement of a missing tooth by a new natural whole tooth. In the field of tissue engineering, some animal models have been developed to regenerate a natural tooth in the oral cavity. This review shows the state of the art in whole tooth regeneration based on data from in vivo studies. A systematic scoping review was conducted to evaluate studies that described whole-tooth regeneration and eruption in the oral cavity. The data demonstrated that over 100 animals were used in experimental studies and all of them received implants of tooth germs constructed by bioengineering processes. Mini pigs and pigs were used in four studies followed by mice (n = 1) and dog (n = 1). Over 58 (44%) animals showed whole tooth eruption around 3.5 months after tooth germ implantation (1 to 13.5 months). Most of specimens revealed the presence of odontoblasts, dentin, dentinal tubules, dental pulp, root analogue, cementum, blood vessels, and alveolar bone. It could be concluded that in vivo whole tooth regeneration was proved to be possible, but the challenge to overcome translational barriers and test these approaches in humans still remains. Impact Statement Advances in tissue engineering have led to the development of new methods to regenerate and replace tissues and organs, including teeth. Tooth regeneration is the main goal for the replacement of tooth loss and therefore current evidence showed that tissue engineering might provide this treatment in future.
Collapse
Affiliation(s)
- Camila Pinheiro Furquim
- Dental Research Division, Department of Periodontology, Guarulhos University, Guarulhos, Brazil
| | - Rose Yakushijin Kumagai
- Dental Research Division, Department of Periodontology, Guarulhos University, Guarulhos, Brazil
| | - Willy Bustillos-Torrez
- Dental Research Division, Department of Periodontology, Guarulhos University, Guarulhos, Brazil
| | - Jonathan Meza-Mauricio
- Dental Research Division, Department of Periodontology, Guarulhos University, Guarulhos, Brazil
| | - Caio Junji Tanaka
- Dental Research Division, Department of Periodontology, Guarulhos University, Guarulhos, Brazil
| | - Veronica Santana
- Dental Research Division, Department of Periodontology, Guarulhos University, Guarulhos, Brazil
| | - Belen Retamal-Valdes
- Dental Research Division, Department of Periodontology, Guarulhos University, Guarulhos, Brazil
| | - Jamil Awad Shibli
- Dental Research Division, Department of Periodontology, Guarulhos University, Guarulhos, Brazil
| |
Collapse
|
19
|
Makishi S, Yamazaki T, Ohshima H. Osteopontin on the Dental Implant Surface Promotes Direct Osteogenesis in Osseointegration. Int J Mol Sci 2022; 23:ijms23031039. [PMID: 35162963 PMCID: PMC8835189 DOI: 10.3390/ijms23031039] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 01/08/2022] [Accepted: 01/15/2022] [Indexed: 02/01/2023] Open
Abstract
After dental implantation, osteopontin (OPN) is deposited on the hydroxyapatite (HA) blasted implant surface followed by direct osteogenesis, which is significantly disturbed in Opn-knockout (KO) mice. However, whether applying OPN on the implant surface promotes direct osteogenesis remains unclarified. This study analyzed the effects of various OPN modified protein/peptides coatings on the healing patterns of the bone-implant interface after immediately placed implantation in the maxilla of four-week-old Opn-KO and wild-type (WT) mice (n = 96). The decalcified samples were processed for immunohistochemistry for OPN and Ki67 and tartrate-resistant acid phosphatase histochemistry. In the WT mice, the proliferative activity in the HA binding peptide-OPN mimic peptide fusion coated group was significantly higher than that in the control group from day 3 to week 1, and the rates of OPN deposition and direct osteogenesis around the implant surface significantly increased in the recombinant-mouse-OPN (rOPN) group compared to the Gly-Arg-Gly-Asp-Ser peptide group in week 2. The rOPN group achieved the same rates of direct osteogenesis and osseointegration as those in the control group in a half period (week 2). None of the implant surfaces could rescue the direct osteogenesis in the healing process in the Opn-KO mice. These results suggest that the rOPN coated implant enhances direct osteogenesis during osseointegration following implantation.
Collapse
Affiliation(s)
- Sanako Makishi
- Division of Anatomy and Cell Biology of the Hard Tissue, Department of Tissue Regeneration and Reconstruction, Niigata University Graduate School of Medical and Dental Sciences, Niigata 951-8514, Japan;
| | - Tomohiko Yamazaki
- Research Center for Functional Materials, National Institute for Materials Science, Tsukuba 305-0047, Japan;
| | - Hayato Ohshima
- Division of Anatomy and Cell Biology of the Hard Tissue, Department of Tissue Regeneration and Reconstruction, Niigata University Graduate School of Medical and Dental Sciences, Niigata 951-8514, Japan;
- Correspondence: ; Tel.: +81-25-227-2812
| |
Collapse
|
20
|
Katata C, Sasaki J, Li A, Abe G, Nör J, Hayashi M, Imazato S. Fabrication of Vascularized DPSC Constructs for Efficient Pulp Regeneration. J Dent Res 2021; 100:1351-1358. [PMID: 33913364 PMCID: PMC9290113 DOI: 10.1177/00220345211007427] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Dental pulp regeneration is a promising approach to restore the vitality of necrotic teeth. We have previously reported the fabrication of scaffold-free cell constructs containing only dental pulp stem cells (DPSCs) and their ability to form pulp-like tissue in the pulpless tooth. However, the DPSC construct could not build pulp-like tissue with a full root length because it is difficult to induce blood vessels from a small root canal foramen. Therefore, we hypothesized that vascular structure could be preformed in the DPSC construct by employing endothelial differentiation capability of DPSCs, and vascularized constructs might facilitate dental pulp regeneration in the pulpless tooth. In this study, vascularized DPSC constructs were fabricated by inducing endothelial differentiation, and then we investigated the behavior of differentiated DPSCs, the internal structure of cell constructs, and their pulp regenerative ability in vivo. We observed that DPSCs positive for CD31 and von Willebrand factor were localized at the outer layer of constructs and formed a reticulated lumen structure. The cells constituting the outer layer of the construct expressed endothelial differentiation markers at higher levels than cells in the inner part. These results indicated that DPSCs in the outer layer differentiated into endothelial cells and formed vascular-like structures in the cell construct. Next, a vascularized DPSC construct was transplanted into the human pulpless tooth that was implanted into immunodeficient mice in the subcutaneous space. After 6 wk of implantation, the vascularized construct formed pulp-like tissues with higher density of human CD31-positive blood vessels when compared with specimens implanted with a DPSC construct without prevascularization. These results suggest that the vascular structure formed in the DPSC construct facilitated the blood supply and enhanced pulp regeneration. This study demonstrates that a vascularized DPSC construct is a prospective biomaterial as an implant for novel dental pulp regeneration.
Collapse
Affiliation(s)
- C. Katata
- Department of Biomaterials
Science, Osaka University Graduate School of Dentistry, Osaka, Japan
- Department of Restorative
Dentistry and Endodontology, Osaka University Graduate School of Dentistry,
Osaka, Japan
| | - J.I. Sasaki
- Department of Biomaterials
Science, Osaka University Graduate School of Dentistry, Osaka, Japan
| | - A. Li
- Department of Biomaterials
Science, Osaka University Graduate School of Dentistry, Osaka, Japan
| | - G.L. Abe
- Department of Biomaterials
Science, Osaka University Graduate School of Dentistry, Osaka, Japan
| | - J.E. Nör
- Department of Cariology,
Restorative Sciences and Endodontics, University of Michigan School of
Dentistry, Ann Arbor, MI, USA
| | - M. Hayashi
- Department of Restorative
Dentistry and Endodontology, Osaka University Graduate School of Dentistry,
Osaka, Japan
| | - S. Imazato
- Department of Biomaterials
Science, Osaka University Graduate School of Dentistry, Osaka, Japan
- Department of Advanced Functional
Materials Science, Osaka University Graduate School of Dentistry, Osaka,
Japan
| |
Collapse
|
21
|
Latimer JM, Maekawa S, Yao Y, Wu DT, Chen M, Giannobile WV. Regenerative Medicine Technologies to Treat Dental, Oral, and Craniofacial Defects. Front Bioeng Biotechnol 2021; 9:704048. [PMID: 34422781 PMCID: PMC8378232 DOI: 10.3389/fbioe.2021.704048] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Accepted: 06/29/2021] [Indexed: 01/10/2023] Open
Abstract
Additive manufacturing (AM) is the automated production of three-dimensional (3D) structures through successive layer-by-layer deposition of materials directed by computer-aided-design (CAD) software. While current clinical procedures that aim to reconstruct hard and soft tissue defects resulting from periodontal disease, congenital or acquired pathology, and maxillofacial trauma often utilize mass-produced biomaterials created for a variety of surgical indications, AM represents a paradigm shift in manufacturing at the individual patient level. Computer-aided systems employ algorithms to design customized, image-based scaffolds with high external shape complexity and spatial patterning of internal architecture guided by topology optimization. 3D bioprinting and surface modification techniques further enhance scaffold functionalization and osteogenic potential through the incorporation of viable cells, bioactive molecules, biomimetic materials and vectors for transgene expression within the layered architecture. These computational design features enable fabrication of tissue engineering constructs with highly tailored mechanical, structural, and biochemical properties for bone. This review examines key properties of scaffold design, bioresorbable bone scaffolds produced by AM processes, and clinical applications of these regenerative technologies. AM is transforming the field of personalized dental medicine and has great potential to improve regenerative outcomes in patient care.
Collapse
Affiliation(s)
- Jessica M Latimer
- Department of Oral Medicine, Infection, and Immunity, Harvard School of Dental Medicine, Boston, MA, United States
| | - Shogo Maekawa
- Department of Oral Medicine, Infection, and Immunity, Harvard School of Dental Medicine, Boston, MA, United States.,Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Yao Yao
- Department of Periodontics & Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, MI, United States.,Biointerfaces Institute, University of Michigan, Ann Arbor, MI, United States
| | - David T Wu
- Department of Oral Medicine, Infection, and Immunity, Harvard School of Dental Medicine, Boston, MA, United States.,Laboratory for Cell and Tissue Engineering, Harvard John A. Paulson School of Engineering and Applied Sciences, Boston, MA, United States.,Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, United States
| | - Michael Chen
- Department of Oral Medicine, Infection, and Immunity, Harvard School of Dental Medicine, Boston, MA, United States
| | - William V Giannobile
- Department of Oral Medicine, Infection, and Immunity, Harvard School of Dental Medicine, Boston, MA, United States
| |
Collapse
|
22
|
Shoushrah SH, Transfeld JL, Tonk CH, Büchner D, Witzleben S, Sieber MA, Schulze M, Tobiasch E. Sinking Our Teeth in Getting Dental Stem Cells to Clinics for Bone Regeneration. Int J Mol Sci 2021; 22:6387. [PMID: 34203719 PMCID: PMC8232184 DOI: 10.3390/ijms22126387] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/27/2021] [Accepted: 06/02/2021] [Indexed: 12/12/2022] Open
Abstract
Dental stem cells have been isolated from the medical waste of various dental tissues. They have been characterized by numerous markers, which are evaluated herein and differentiated into multiple cell types. They can also be used to generate cell lines and iPSCs for long-term in vitro research. Methods for utilizing these stem cells including cellular systems such as organoids or cell sheets, cell-free systems such as exosomes, and scaffold-based approaches with and without drug release concepts are reported in this review and presented with new pictures for clarification. These in vitro applications can be deployed in disease modeling and subsequent pharmaceutical research and also pave the way for tissue regeneration. The main focus herein is on the potential of dental stem cells for hard tissue regeneration, especially bone, by evaluating their potential for osteogenesis and angiogenesis, and the regulation of these two processes by growth factors and environmental stimulators. Current in vitro and in vivo publications show numerous benefits of using dental stem cells for research purposes and hard tissue regeneration. However, only a few clinical trials currently exist. The goal of this review is to pinpoint this imbalance and encourage scientists to pick up this research and proceed one step further to translation.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Edda Tobiasch
- Department of Natural Sciences, Bonn-Rhein-Sieg University of Applied Sciences, von-Liebig- Strasse. 20, 53359 Rheinbach, Germany; (S.H.S.); (J.L.T.); (C.H.T.); (D.B.); (S.W.); (M.A.S.); (M.S.)
| |
Collapse
|
23
|
Meng H, Hu L, Zhou Y, Ge Z, Wang H, Wu CT, Jin J. A Sandwich Structure of Human Dental Pulp Stem Cell Sheet, Treated Dentin Matrix, and Matrigel for Tooth Root Regeneration. Stem Cells Dev 2021; 29:521-532. [PMID: 32089088 DOI: 10.1089/scd.2019.0162] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Tooth loss can cause a lot of physiological and psychological suffering. And tooth root engineering is a promising way for tooth loss treatment. Two kinds of seed cells are usually adopted for tooth root regeneration. In this study, a practical sandwich structure for tooth root regeneration was developed, which was constituted by only one kind of seed cell: human dental pulp stem cells (hDPSCs) and three kinds of graft materials: Vitamin C (VC) induced hDPSC sheet, human treated dentin matrix (hTDM), and Matrigel. It was found that VC could induce hDPSCs to form a cell sheet with two or three cell layers and promote their collagen type I (COL1) mRNA expression obviously. hDPSCs could attach and grow on hTDM, and the mRNA expression of osteocalcin (OCN), dentin sialophosphoprotein (DSPP), vascular endothelial growth factor receptor 1 (VEGFR1), and Nestin in hDPSCs was obviously upregulated by hTDM leaching solution. hDPSCs could stretch and proliferate in Matrigel. And when cultured in Matrigel condition medium, they positively expressed CD31, β3-Tubulin, and Nestin proteins, as well as increased the mRNA expression of OCN, ALP, and Nestin. Furthermore, periodontium, dentin, and pulp-like tissues were successfully regenerated after the sandwich structure of hDPSC sheet/TDM/Matrigel was transplanted in nude mice subcutaneously for 3 months. Periodontium-like dense connective tissue was regenerated around the hTDM, and a great mass of predentin was formed on the cavity side of hTDM. Odontoblast-like cells and blood vessel-like structures, even nerve-like fibers, were observed in the pulp cavity. In summary, the above results showed that hDPSCs could be used as seed cells for the whole tooth root regeneration, and the sandwich structure constituted by hDPSC sheet, TDM/hDPSCs, and Matrigel/hDPSCs could be utilized for tooth root regeneration.
Collapse
Affiliation(s)
- Hongfang Meng
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, People's Republic of China.,Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, People's Republic of China
| | - Lei Hu
- Molecular Laboratory for Gene Therapy and Tooth Regeneration, Capital Medical University School of Stomatology, Beijing, People's Republic of China
| | - Ying Zhou
- Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, People's Republic of China
| | - Zhiqiang Ge
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, People's Republic of China
| | - Hua Wang
- Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, People's Republic of China
| | - Chu-Tse Wu
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, People's Republic of China.,Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, People's Republic of China
| | - Jide Jin
- Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, People's Republic of China
| |
Collapse
|
24
|
Stutz C, Clauss F, Huck O, Schulz G, Benkirane-Jessel N, Bornert F, Kuchler-Bopp S, Strub M. Eruption of Bioengineered Teeth: A New Approach Based on a Polycaprolactone Biomembrane. NANOMATERIALS 2021; 11:nano11051315. [PMID: 34067681 PMCID: PMC8156264 DOI: 10.3390/nano11051315] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 05/02/2021] [Accepted: 05/10/2021] [Indexed: 12/27/2022]
Abstract
Obtaining a functional tooth is the ultimate goal of tooth engineering. However, the implantation of bioengineered teeth in the jawbone of adult animals never allows for spontaneous eruption due mainly to ankylosis within the bone crypt. The objective of this study was to develop an innovative approach allowing eruption of implanted bioengineered teeth through the isolation of the germ from the bone crypt using a polycaprolactone membrane (PCL). The germs of the first lower molars were harvested on the 14th day of embryonic development, cultured in vitro, and then implanted in the recipient site drilled in the maxillary bone of adult mice. To prevent the ankylosis of the dental germ, a PCL membrane synthesized by electrospinning was placed between the germ and the bone. After 10 weeks of follow-up, microtomography, and histology of the implantation site were performed. In control mice where germs were directly placed in contact with the bone, a spontaneous eruption of bioengineered teeth was only observed in 3.3% of the cases versus 19.2% in the test group where PCL biomembrane was used as a barrier (p < 0.1). This preliminary study is the first to describe an innovative method allowing the eruption of bioengineered tooth implanted directly in the jawbone of mice. This new approach is a hope for the field of tooth regeneration, especially in children with oligodontia in whom titanium implants are not an optimal solution.
Collapse
Affiliation(s)
- Céline Stutz
- INSERM (French National Institute of Health and Medical Research), UMR 1260, CRBS Regenerative NanoMedicine (RNM), FMTS, 1 rue Eugène Boeckel, 67084 Strasbourg, France; (C.S.); (F.C.); (O.H.); (N.B.-J.); (F.B.); (S.K.-B.)
| | - François Clauss
- INSERM (French National Institute of Health and Medical Research), UMR 1260, CRBS Regenerative NanoMedicine (RNM), FMTS, 1 rue Eugène Boeckel, 67084 Strasbourg, France; (C.S.); (F.C.); (O.H.); (N.B.-J.); (F.B.); (S.K.-B.)
- Faculty of Dentistry, University of Strasbourg (UDS), 8 rue Ste Elisabeth, 67000 Strasbourg, France
- Department of Pediatric Dentistry, University Hospitals of Strasbourg (HUS), 1 Place de l’Hôpital, 67000 Strasbourg, France
| | - Olivier Huck
- INSERM (French National Institute of Health and Medical Research), UMR 1260, CRBS Regenerative NanoMedicine (RNM), FMTS, 1 rue Eugène Boeckel, 67084 Strasbourg, France; (C.S.); (F.C.); (O.H.); (N.B.-J.); (F.B.); (S.K.-B.)
- Faculty of Dentistry, University of Strasbourg (UDS), 8 rue Ste Elisabeth, 67000 Strasbourg, France
- Department of Periodontology, University Hospitals of Strasbourg (HUS), 1 Place de l’Hôpital, 67000 Strasbourg, France
| | - Georg Schulz
- Core Facility Micro- and Nanotomography, Biomaterials Science Center (BMC), Department of Biomedical Engineering, University of Basel, Gewerbestrasse 14, 4123 Allschwil, Switzerland;
| | - Nadia Benkirane-Jessel
- INSERM (French National Institute of Health and Medical Research), UMR 1260, CRBS Regenerative NanoMedicine (RNM), FMTS, 1 rue Eugène Boeckel, 67084 Strasbourg, France; (C.S.); (F.C.); (O.H.); (N.B.-J.); (F.B.); (S.K.-B.)
- Faculty of Dentistry, University of Strasbourg (UDS), 8 rue Ste Elisabeth, 67000 Strasbourg, France
| | - Fabien Bornert
- INSERM (French National Institute of Health and Medical Research), UMR 1260, CRBS Regenerative NanoMedicine (RNM), FMTS, 1 rue Eugène Boeckel, 67084 Strasbourg, France; (C.S.); (F.C.); (O.H.); (N.B.-J.); (F.B.); (S.K.-B.)
- Department of Pediatric Dentistry, University Hospitals of Strasbourg (HUS), 1 Place de l’Hôpital, 67000 Strasbourg, France
- Department of Oral Medicine and Oral Surgery, University Hospitals of Strasbourg (HUS), 1 Place de l’Hôpital, 67000 Strasbourg, France
| | - Sabine Kuchler-Bopp
- INSERM (French National Institute of Health and Medical Research), UMR 1260, CRBS Regenerative NanoMedicine (RNM), FMTS, 1 rue Eugène Boeckel, 67084 Strasbourg, France; (C.S.); (F.C.); (O.H.); (N.B.-J.); (F.B.); (S.K.-B.)
| | - Marion Strub
- INSERM (French National Institute of Health and Medical Research), UMR 1260, CRBS Regenerative NanoMedicine (RNM), FMTS, 1 rue Eugène Boeckel, 67084 Strasbourg, France; (C.S.); (F.C.); (O.H.); (N.B.-J.); (F.B.); (S.K.-B.)
- Faculty of Dentistry, University of Strasbourg (UDS), 8 rue Ste Elisabeth, 67000 Strasbourg, France
- Department of Pediatric Dentistry, University Hospitals of Strasbourg (HUS), 1 Place de l’Hôpital, 67000 Strasbourg, France
- Correspondence:
| |
Collapse
|
25
|
Zhang W, Yelick PC. Tooth Repair and Regeneration: Potential of Dental Stem Cells. Trends Mol Med 2021; 27:501-511. [PMID: 33781688 PMCID: PMC9907435 DOI: 10.1016/j.molmed.2021.02.005] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 02/22/2021] [Accepted: 02/24/2021] [Indexed: 02/06/2023]
Abstract
Tooth defects are an extremely common health condition that affects millions of individuals. Currently used dental repair treatments include fillings for caries, endodontic treatment for pulp necrosis, and dental implants to replace missing teeth, all of which rely on the use of synthetic materials. By contrast, the fields of tissue engineering and regenerative medicine and dentistry (TERMD) use biologically based therapeutic strategies for vital tissue regeneration, and thus have the potential to regenerate living tissues. Methods to create bioengineered replacement teeth benefit from a detailed understanding of the molecular signaling networks regulating natural tooth development. We discuss how key signaling pathways regulating natural tooth development are being exploited for applications in TERMD approaches for vital tooth regeneration.
Collapse
Affiliation(s)
- Weibo Zhang
- Department of Orthodontics, Division of Craniofacial and Molecular Genetics, Tufts University School of Dental Medicine, Boston, MA, USA
| | - Pamela C Yelick
- Department of Orthodontics, Division of Craniofacial and Molecular Genetics, Tufts University School of Dental Medicine, Boston, MA, USA.
| |
Collapse
|
26
|
Mohamed Abdelgawad L, Abd El-hamed MM, Sabry D, Abdelgwad M. Efficacy of Photobiomodulation and Metformin on Diabetic Cell Line of Human Periodontal Ligament Stem Cells through Keap1/Nrf2/Ho-1 Pathway. Rep Biochem Mol Biol 2021; 10:30-40. [PMID: 34277866 PMCID: PMC8279709 DOI: 10.52547/rbmb.10.1.30] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 08/29/2020] [Indexed: 12/11/2022]
Abstract
BACKGROUND Diabetes mellitus (DM) is a metabolic disorder resulting from hyperglycemia. Hyperglycemia contributes to oxidative stress, and the release of advanced glycation end products (AGEs) further promotes disease pathogenesis. Uncontrolled diabetes reflects great oral complications and affects human oral health. So, the present study aimed to assess the effects of photobiomodulation therapy (PBMT) and Metformin on proliferation and viability of human periodontal ligament stem cells (HPDLSCs) cultured in high glucose medium. METHODS HPDLSCs were collected, isolated, and characterized and then divided into eight groups. Addition of extra glucose to diabetic groups 24 hours before cell irradiations. Metformin was added to half of the diabetic groups. Cells were irradiated with 808 nm diode laser 24, 48 hours. Cell viability was analyzed with MTT assay 24 hours post-irradiation to detect cell viability in each group. Real-time (PCR) was used to evaluate gene expression of Nrf2, Keap1, PIK3, and HO-1 and the effect of PBMT on Keap1/Nrf2/Ho-1 Pathway. ELISA reader was used to evaluating cell viability through (ROS, TNF-α, IL-10) protein levels after cell irradiation. RESULTS Photobiomodulation at 1, 2, and 3 J/cm2 combined with metformin significantly promoted diabetic cell lines of HPDLSCs viability (in MTT assay and ELISA reader of ROS, TNF-α, IL-10 results) and gene expression of Nrf2, Keap1, PIK3, and HO-1 levels (p< 0.05). CONCLUSION photobiomodulation with 3 J/cm2 combined with metformin enhanced proliferation and viability of diabetic cell lines of HPDLSCs and thus could improve differentiation and function of diabetic cell lines of HPDLSCs with minimum side effects.
Collapse
Affiliation(s)
- Latifa Mohamed Abdelgawad
- Department of Medical Laser applications, National Institute of laser enhanced science, Cairo University, Egypt.
| | - Manar Mohy Abd El-hamed
- Department of Medical Laser application, National Institute of laser enhanced science, Cairo University, Egypt.
| | - Dina Sabry
- Department of biochemistry & molecular biology, faculty of medicine, Cairo University, Egypt.
| | - Marwa Abdelgwad
- Department of biochemistry & molecular biology, faculty of medicine, Cairo University, Egypt.
| |
Collapse
|
27
|
Contessi Negrini N, Angelova Volponi A, Higgins C, Sharpe P, Celiz A. Scaffold-based developmental tissue engineering strategies for ectodermal organ regeneration. Mater Today Bio 2021; 10:100107. [PMID: 33889838 PMCID: PMC8050778 DOI: 10.1016/j.mtbio.2021.100107] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 02/15/2021] [Accepted: 02/27/2021] [Indexed: 12/12/2022] Open
Abstract
Tissue engineering (TE) is a multidisciplinary research field aiming at the regeneration, restoration, or replacement of damaged tissues and organs. Classical TE approaches combine scaffolds, cells and soluble factors to fabricate constructs mimicking the native tissue to be regenerated. However, to date, limited success in clinical translations has been achieved by classical TE approaches, because of the lack of satisfactory biomorphological and biofunctional features of the obtained constructs. Developmental TE has emerged as a novel TE paradigm to obtain tissues and organs with correct biomorphology and biofunctionality by mimicking the morphogenetic processes leading to the tissue/organ generation in the embryo. Ectodermal appendages, for instance, develop in vivo by sequential interactions between epithelium and mesenchyme, in a process known as secondary induction. A fine artificial replication of these complex interactions can potentially lead to the fabrication of the tissues/organs to be regenerated. Successful developmental TE applications have been reported, in vitro and in vivo, for ectodermal appendages such as teeth, hair follicles and glands. Developmental TE strategies require an accurate selection of cell sources, scaffolds and cell culture configurations to allow for the correct replication of the in vivo morphogenetic cues. Herein, we describe and discuss the emergence of this TE paradigm by reviewing the achievements obtained so far in developmental TE 3D scaffolds for teeth, hair follicles, and salivary and lacrimal glands, with particular focus on the selection of biomaterials and cell culture configurations.
Collapse
Affiliation(s)
| | - A. Angelova Volponi
- Centre for Craniofacial and Regenerative Biology, King's College London, London, UK
| | - C.A. Higgins
- Department of Bioengineering, Imperial College London, London, UK
| | - P.T. Sharpe
- Centre for Craniofacial and Regenerative Biology, King's College London, London, UK
| | - A.D. Celiz
- Department of Bioengineering, Imperial College London, London, UK
| |
Collapse
|
28
|
Nizami MZI, Nishina Y. Recent Advances in Stem Cells for Dental Tissue Engineering. ENGINEERING MATERIALS FOR STEM CELL REGENERATION 2021:281-324. [DOI: 10.1007/978-981-16-4420-7_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
29
|
Manafi N, Shokri F, Achberger K, Hirayama M, Mohammadi MH, Noorizadeh F, Hong J, Liebau S, Tsuji T, Quinn PMJ, Mashaghi A. Organoids and organ chips in ophthalmology. Ocul Surf 2020; 19:1-15. [PMID: 33220469 DOI: 10.1016/j.jtos.2020.11.004] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 11/12/2020] [Indexed: 12/13/2022]
Abstract
Recent advances have driven the development of stem cell-derived, self-organizing, three-dimensional miniature organs, termed organoids, which mimic different eye tissues including the retina, cornea, and lens. Organoids and engineered microfluidic organ-on-chips (organ chips) are transformative technologies that show promise in simulating the architectural and functional complexity of native organs. Accordingly, they enable exploration of facets of human disease and development not accurately recapitulated by animal models. Together, these technologies will increase our understanding of the basic physiology of different eye structures, enable us to interrogate unknown aspects of ophthalmic disease pathogenesis, and serve as clinically-relevant surrogates for the evaluation of ocular therapeutics. Both the burden and prevalence of monogenic and multifactorial ophthalmic diseases, which can cause visual impairment or blindness, in the human population warrants a paradigm shift towards organoids and organ chips that can provide sensitive, quantitative, and scalable phenotypic assays. In this article, we review the current situation of organoids and organ chips in ophthalmology and discuss how they can be leveraged for translational applications.
Collapse
Affiliation(s)
- Navid Manafi
- Medical Systems Biophysics and Bioengineering, The Leiden Academic Centre for Drug Research (LACDR), Leiden University, 2333CC, Leiden, the Netherlands; Max Rady College of Medicine, University of Manitoba, Winnipeg, MB R3E 0W2, Canada
| | - Fereshteh Shokri
- Department of Epidemiology, Erasmus Medical Center, 3000 CA, Rotterdam, the Netherlands
| | - Kevin Achberger
- Institute of Neuroanatomy & Developmental Biology (INDB), Eberhard Karls University Tübingen, Österbergstrasse 3, 72074, Tübingen, Germany
| | - Masatoshi Hirayama
- Department of Ophthalmology, Tokyo Dental College Ichikawa General Hospital, Chiba, 272-8513, Japan; Department of Ophthalmology, School of Medicine, Keio University, Tokyo, 160-8582, Japan
| | - Melika Haji Mohammadi
- Medical Systems Biophysics and Bioengineering, The Leiden Academic Centre for Drug Research (LACDR), Leiden University, 2333CC, Leiden, the Netherlands
| | | | - Jiaxu Hong
- Medical Systems Biophysics and Bioengineering, The Leiden Academic Centre for Drug Research (LACDR), Leiden University, 2333CC, Leiden, the Netherlands; Department of Ophthalmology and Visual Science, Eye, and ENT Hospital, Shanghai Medical College, Fudan University, 83 Fenyang Road, Shanghai, China; Key NHC Key Laboratory of Myopia (Fudan University), Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai, China; Key Laboratory of Myopia, National Health and Family Planning Commission, Shanghai, China
| | - Stefan Liebau
- Institute of Neuroanatomy & Developmental Biology (INDB), Eberhard Karls University Tübingen, Österbergstrasse 3, 72074, Tübingen, Germany
| | - Takashi Tsuji
- Laboratory for Organ Regeneration, RIKEN Center for Biosystems Dynamics Research, Hyogo, 650-0047, Japan; Organ Technologies Inc., Minato, Tokyo, 105-0001, Japan
| | - Peter M J Quinn
- Jonas Children's Vision Care and Bernard & Shirlee Brown Glaucoma Laboratory, Columbia Stem Cell Initiative, Departments of Ophthalmology, Pathology & Cell Biology, Institute of Human Nutrition, Vagelos College of Physicians and Surgeons, Columbia University. New York, NY, USA; Edward S. Harkness Eye Institute, Department of Ophthalmology, Columbia University Irving Medical Center - New York-Presbyterian Hospital, New York, NY, USA.
| | - Alireza Mashaghi
- Medical Systems Biophysics and Bioengineering, The Leiden Academic Centre for Drug Research (LACDR), Leiden University, 2333CC, Leiden, the Netherlands.
| |
Collapse
|
30
|
Vagropoulou G, Trentsiou M, Georgopoulou A, Papachristou E, Prymak O, Kritis A, Epple M, Chatzinikolaidou M, Bakopoulou A, Koidis P. Hybrid chitosan/gelatin/nanohydroxyapatite scaffolds promote odontogenic differentiation of dental pulp stem cells and in vitro biomineralization. Dent Mater 2020; 37:e23-e36. [PMID: 33208264 DOI: 10.1016/j.dental.2020.09.021] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 09/05/2020] [Accepted: 09/28/2020] [Indexed: 01/09/2023]
Abstract
OBJECTIVE Hybrid chitosan/gelatin/nanohydroxyapatite (CS/Gel/nHA) scaffolds have attracted considerable interest in tissue engineering (TE) of mineralized tissues. The present study aimed to investigate the potential of CS/Gel/nHA scaffolds loaded with dental pulp stem cells (DPSCs) to induce odontogenic differentiation and in vitro biomineralization. METHODS CS/Gel/nHA scaffolds were synthesized by freeze-drying, seeded with DPSCs, and characterized with flow cytometry. Scanning Electron Microscopy (SEM), live/dead staining, and MTT assays were used to evaluate cell morphology and viability; real-time PCR for odontogenesis-related gene expression analysis; SEM-EDS (Energy Dispersive X-ray spectroscopy), and X-ray Diffraction analysis (XRD) for structural and chemical characterization of the mineralized constructs, respectively. RESULTS CS/Gel/nHA scaffolds supported viability and proliferation of DPSCs over 14 days in culture. Gene expression patterns indicated pronounced odontogenic shift of DPSCs, evidenced by upregulation of DSPP, BMP-2, ALP, and the transcription factors RunX2 and Osterix. SEM-EDS showed the production of a nanocrystalline mineralized matrix inside the cell-based and - to a lesser extent - the cell-free constructs, with a time-dependent production of net-like nanocrystals (appr. 25-30nm in diameter). XRD analysis gave the crystallite size (D=50nm) but could not distinguish between the initially incorporated and the biologically produced nHA. SIGNIFICANCE This is the first study validating the potential of CS/Gel/nHA scaffolds to support viability and proliferation of DPSCs, and to provide a biomimetic microenvironment favoring odontogenic differentiation and in vitro biomineralization without the addition of any inductive factors, including dexamethasone and/or growth/morphogenetic factors. These results reveal a promising strategy towards TE of mineralized dental tissues.
Collapse
Affiliation(s)
- Georgia Vagropoulou
- Department of Prosthodontics, School of Dentistry, Faculty of Health Sciences, Aristotle University of Thessaloniki (A.U.Th), Greece
| | - Maria Trentsiou
- Department of Prosthodontics, School of Dentistry, Faculty of Health Sciences, Aristotle University of Thessaloniki (A.U.Th), Greece
| | | | - Eleni Papachristou
- Department of Prosthodontics, School of Dentistry, Faculty of Health Sciences, Aristotle University of Thessaloniki (A.U.Th), Greece
| | - Oleg Prymak
- Inorganic Chemistry and Center for Nanointegration Duisburg-Essen (CeNIDE), University of Duisburg-Essen, Essen, Germany
| | - Aristeidis Kritis
- Department of Physiology and Pharmacology, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki (A.U.Th), Greece
| | - Matthias Epple
- Inorganic Chemistry and Center for Nanointegration Duisburg-Essen (CeNIDE), University of Duisburg-Essen, Essen, Germany
| | - Maria Chatzinikolaidou
- Department of Materials Science and Technology, University of Crete, Greece; Foundation for Research and Technology Hellas-Institute of Electronic Structure and Laser FORTH-IESL, Heraklion, Greece.
| | - Athina Bakopoulou
- Department of Prosthodontics, School of Dentistry, Faculty of Health Sciences, Aristotle University of Thessaloniki (A.U.Th), Greece.
| | - Petros Koidis
- Department of Prosthodontics, School of Dentistry, Faculty of Health Sciences, Aristotle University of Thessaloniki (A.U.Th), Greece.
| |
Collapse
|
31
|
Bakopoulou A. Prospects of Advanced Therapy Medicinal Products-Based Therapies in Regenerative Dentistry: Current Status, Comparison with Global Trends in Medicine, and Future Perspectives. J Endod 2020; 46:S175-S188. [PMID: 32950189 DOI: 10.1016/j.joen.2020.06.026] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
INTRODUCTION Regenerative medicine offers innovative approaches to restore damaged tissues on the basis of tissue engineering (TE). Although research on advanced therapy medicinal products (ATMPs) has been very active in recent years, the number of licensed products remains surprisingly low and restricted to the treatment of severe, incurable diseases. METHODS This paper provides a critical review of current literature on the regulatory, clinical, and commercial status of ATMP-based therapies in the EU and worldwide and the hurdles to overcome for their broader application in Regenerative Dentistry. RESULTS Competent authorities have focused on developing regulatory pathways to address unmet patient needs. Oncology represents the dominating field, followed by cardiovascular, musculoskeletal, neurodegenerative, immunologic, and inherited diseases. Yet, the status remains in early development, and scientific, regulatory, and cost-effectiveness issues impose considerable hurdles toward marketing authorization, technology adoption, and patient accessibility. In this context, although regenerative dentistry has achieved breakthrough innovations in TE of several dental/oral tissues in preclinical models, it has hardly harnessed research progress to integrate innovative regenerative treatments into clinical practice. CONCLUSION Global demographic changes, which demonstrate a steady increase of the aging population, highlight the societal need for the application of ATMP-based therapies in the treatment of noncommunicable diseases (NCDs). Although oral diseases, as an integral part of NCDs, are not life-threatening and largely preventable, they sustain high prevalence, with severe burden on economy and quality of life. In this perspective, the urgent request to ultimately translate draining research in dental TE conducted during the last decades into innovative treatments brought safely and cost-effectively into society at large still holds the stage. This review provides an overview of the regulatory, clinical, and commercial status of ATMP-based therapies in the European Union and worldwide and the hurdles to overcome for their broader application in regenerative dentistry.
Collapse
Affiliation(s)
- Athina Bakopoulou
- Faculty of Health Sciences, Department of Prosthodontics, School of Dentistry, Aristotle University of Thessaloniki (AUTH), Thessaloniki, Greece.
| |
Collapse
|
32
|
Investigation of the effect of a time delay on the characteristics and survival of dental pulp stem cells from extracted teeth. Arch Oral Biol 2020; 119:104896. [PMID: 32932148 DOI: 10.1016/j.archoralbio.2020.104896] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 08/29/2020] [Accepted: 08/30/2020] [Indexed: 11/21/2022]
Abstract
OBJECTIVES This study investigates the post-extraction storage period of human dental pulp stem cells (hDPSCs) for stem cell banking by investigating the viability, function, mineralization, and gene expression of hDPSCs isolated from extracted teeth after 1 h, 6 h and 24 h post-tooth extraction. DESIGN hDPSCs were extracted from the pulp of impacted third molar teeth after 1 h, 6 h, and 24 h after extraction. The mesenchymal stem cell (MSCs) properties of three groups of cells were analyzed using flow cytometry. Cell morphology and proliferation were analyzed using a light microscope and an MTT assay. The viability, function, mineralization, and gene expression of hDPSCs of 1 h, 6 h, and 24 h groups were also assessed. RESULTS The delayed harvesting of hDPSCs for 1, 6 or 24 h caused a 31 % reduction in mineral nodule formation and a reduction in the gene expression of osteocalcin (OCN) and vascular endothelial growth factor-alpha (VEGFA). However, the 1, 6 or 24 h, time delay had little effect on MTT cell proliferation, cell viability or morphology. The delayed of harvesting of hDPSCs for 1, 6 or 24 h also had little effect on the expression of MSCs positive (CD44, CD106, CD90) or negative surface markers (CD45 and CD11b). CONCLUSIONS Our results suggest that a 24 h delay in harvesting hDPSCs from extracted teeth can reduce their mineralization and gene activity but does not markedly reduce survival. Quicker hDPSCs harvesting is likely to yield more useful hDPSCs for experimentation and clinical treatment.
Collapse
|
33
|
Grawish ME, Grawish LM, Grawish HM, Grawish MM, El-Negoly SA. Challenges of Engineering Biomimetic Dental and Paradental Tissues. Tissue Eng Regen Med 2020; 17:403-421. [PMID: 32621282 PMCID: PMC7392996 DOI: 10.1007/s13770-020-00269-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 04/07/2020] [Accepted: 04/27/2020] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Loss of the dental and paradental tissues resulting from trauma, caries or from systemic diseases considered as one of the most significant and frequent clinical problem to the healthcare professionals. Great attempts have been implemented to recreate functionally, healthy dental and paradental tissues in order to substitute dead and diseased tissues resulting from secondary trauma of car accidents, congenital malformations of cleft lip and palate or due to acquired diseases such as cancer and periodontal involvements. METHOD An extensive literature search has been done on PubMed database from 2010 to 2019 about the challenges of engineering a biomimetic tooth (BioTooth) regarding basic biology of the tooth and its supporting structures, strategies, and different techniques of obtaining biological substitutes for dental tissue engineering. RESULTS It has been found that great challenges need to be considered before engineering biomimetic individual parts of the tooth such as enamel, dentin-pulp complex and periodontium. In addition, two approaches have been adopted to engineer a BioTooth. The first one was to engineer a BioTooth as an individual unit and the other was to engineer a BioTooth with its supporting structures. CONCLUSION Engineering of BioTooth with its supporting structures thought to be in the future will replace the traditional and conventional treatment modalities in the field of dentistry. To accomplish this goal, different cell lines and growth factors with a variety of scaffolds at the nano-scale level are now in use. Recent researches in this area of interest are dedicated for this objective, both in vivo and in vitro. Despite progress in this field, there are still many challenges ahead and need to be overcome, many of which related to the basic tooth biology and its supporting structures and some others related to the sophisticated techniques isolating cells, fabricating the needed scaffolds and obtaining the signaling molecules.
Collapse
Affiliation(s)
- Mohammed E Grawish
- Department of Oral Biology, Faculty of Dentistry, Mansoura University, Elgomhouria St., Mansoura, 35516, Egypt.
| | - Lamyaa M Grawish
- Faculty of Oral and Dental Medicine, Delta University for Science and Technology, Costal International Road in front of Industrial Area, Mansoura, Gamasa, 11152, Egypt
| | - Hala M Grawish
- Faculty of Oral and Dental Medicine, Delta University for Science and Technology, Costal International Road in front of Industrial Area, Mansoura, Gamasa, 11152, Egypt
| | - Mahmoud M Grawish
- Mansoura Manchester Dental Program, Faculty of Dentistry, Mansoura University, Elgomhouria St., Mansoura, 35516, Egypt
| | - Salwa A El-Negoly
- Department of Dental Biomaterials, Faculty of Dentistry, Mansoura University, Elgomhouria St., Mansoura, 35516, Egypt
| |
Collapse
|
34
|
Nesic D, Schaefer BM, Sun Y, Saulacic N, Sailer I. 3D Printing Approach in Dentistry: The Future for Personalized Oral Soft Tissue Regeneration. J Clin Med 2020; 9:E2238. [PMID: 32679657 PMCID: PMC7408636 DOI: 10.3390/jcm9072238] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 07/09/2020] [Accepted: 07/10/2020] [Indexed: 12/21/2022] Open
Abstract
Three-dimensional (3D) printing technology allows the production of an individualized 3D object based on a material of choice, a specific computer-aided design and precise manufacturing. Developments in digital technology, smart biomaterials and advanced cell culturing, combined with 3D printing, provide promising grounds for patient-tailored treatments. In dentistry, the "digital workflow" comprising intraoral scanning for data acquisition, object design and 3D printing, is already in use for manufacturing of surgical guides, dental models and reconstructions. 3D printing, however, remains un-investigated for oral mucosa/gingiva. This scoping literature review provides an overview of the 3D printing technology and its applications in regenerative medicine to then describe 3D printing in dentistry for the production of surgical guides, educational models and the biological reconstructions of periodontal tissues from laboratory to a clinical case. The biomaterials suitable for oral soft tissues printing are outlined. The current treatments and their limitations for oral soft tissue regeneration are presented, including "off the shelf" products and the blood concentrate (PRF). Finally, tissue engineered gingival equivalents are described as the basis for future 3D-printed oral soft tissue constructs. The existing knowledge exploring different approaches could be applied to produce patient-tailored 3D-printed oral soft tissue graft with an appropriate inner architecture and outer shape, leading to a functional as well as aesthetically satisfying outcome.
Collapse
Affiliation(s)
- Dobrila Nesic
- Division of Fixed Prosthodontics and Biomaterials, University Clinic of Dental Medicine, University of Geneva, Rue Michel-Servet 1, CH-1211 Geneva 4, Switzerland; (Y.S.); (I.S.)
| | | | - Yue Sun
- Division of Fixed Prosthodontics and Biomaterials, University Clinic of Dental Medicine, University of Geneva, Rue Michel-Servet 1, CH-1211 Geneva 4, Switzerland; (Y.S.); (I.S.)
| | - Nikola Saulacic
- Department of Cranio-Maxillofacial Surgery, Inselspital, Bern University Hospital, University of Bern, Freiburgstrasse 10, CH-3010 Bern, Switzerland;
| | - Irena Sailer
- Division of Fixed Prosthodontics and Biomaterials, University Clinic of Dental Medicine, University of Geneva, Rue Michel-Servet 1, CH-1211 Geneva 4, Switzerland; (Y.S.); (I.S.)
| |
Collapse
|
35
|
Turkkahraman H, Yuan X, Salmon B, Chen CH, Brunski JB, Helms JA. Root resorption and ensuing cementum repair by Wnt/β-catenin dependent mechanism. Am J Orthod Dentofacial Orthop 2020; 158:16-27. [DOI: 10.1016/j.ajodo.2019.06.021] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2018] [Revised: 06/01/2019] [Accepted: 06/01/2019] [Indexed: 02/02/2023]
|
36
|
Baranova J, Büchner D, Götz W, Schulze M, Tobiasch E. Tooth Formation: Are the Hardest Tissues of Human Body Hard to Regenerate? Int J Mol Sci 2020; 21:E4031. [PMID: 32512908 PMCID: PMC7312198 DOI: 10.3390/ijms21114031] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 06/02/2020] [Accepted: 06/03/2020] [Indexed: 12/12/2022] Open
Abstract
With increasing life expectancy, demands for dental tissue and whole-tooth regeneration are becoming more significant. Despite great progress in medicine, including regenerative therapies, the complex structure of dental tissues introduces several challenges to the field of regenerative dentistry. Interdisciplinary efforts from cellular biologists, material scientists, and clinical odontologists are being made to establish strategies and find the solutions for dental tissue regeneration and/or whole-tooth regeneration. In recent years, many significant discoveries were done regarding signaling pathways and factors shaping calcified tissue genesis, including those of tooth. Novel biocompatible scaffolds and polymer-based drug release systems are under development and may soon result in clinically applicable biomaterials with the potential to modulate signaling cascades involved in dental tissue genesis and regeneration. Approaches for whole-tooth regeneration utilizing adult stem cells, induced pluripotent stem cells, or tooth germ cells transplantation are emerging as promising alternatives to overcome existing in vitro tissue generation hurdles. In this interdisciplinary review, most recent advances in cellular signaling guiding dental tissue genesis, novel functionalized scaffolds and drug release material, various odontogenic cell sources, and methods for tooth regeneration are discussed thus providing a multi-faceted, up-to-date, and illustrative overview on the tooth regeneration matter, alongside hints for future directions in the challenging field of regenerative dentistry.
Collapse
Affiliation(s)
- Juliana Baranova
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, Avenida Professor Lineu Prestes 748, Vila Universitária, São Paulo 05508-000, Brazil;
| | - Dominik Büchner
- Department of Natural Sciences, Bonn-Rhein-Sieg University of Applied Sciences, von-Liebig-Straße 20, 53359 Rheinbach, NRW, Germany; (D.B.); (M.S.)
| | - Werner Götz
- Oral Biology Laboratory, Department of Orthodontics, Dental Hospital of the University of Bonn, Welschnonnenstraße 17, 53111 Bonn, NRW, Germany;
| | - Margit Schulze
- Department of Natural Sciences, Bonn-Rhein-Sieg University of Applied Sciences, von-Liebig-Straße 20, 53359 Rheinbach, NRW, Germany; (D.B.); (M.S.)
| | - Edda Tobiasch
- Department of Natural Sciences, Bonn-Rhein-Sieg University of Applied Sciences, von-Liebig-Straße 20, 53359 Rheinbach, NRW, Germany; (D.B.); (M.S.)
| |
Collapse
|
37
|
Zeitlin BD. Banking on teeth - Stem cells and the dental office. Biomed J 2020; 43:124-133. [PMID: 32381462 PMCID: PMC7283549 DOI: 10.1016/j.bj.2020.02.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 01/29/2020] [Accepted: 02/12/2020] [Indexed: 12/23/2022] Open
Abstract
Science and commerce advance together and the stem cell field is no exception. With the promise of cures for conditions as diverse as cancer, autism, neural degeneration, organ replacement and addiction, long-term preservation of dental stem cells is a growth market. The discovery nearly twenty years ago, of viable, multipotent, stem cells in dental pulp from both baby and adult teeth initiated, and drives, this market.The dental stem cell preservation services, "tooth banks", focus on the collection of a child's baby teeth, as they are shed naturally, and storage of the stem cells from within the pulp for therapeutic use in later years should the child require them. This review focuses on the procedures related to these stem cell storage services and may serve as an introduction for many to the practice of "tooth banking".
Collapse
Affiliation(s)
- Benjamin D Zeitlin
- University of the Pacific, Arthur A. Dugoni School of Dentistry, San Francisco, CA, USA.
| |
Collapse
|
38
|
Ikeda E, Ogawa M, Takeo M, Tsuji T. Functional ectodermal organ regeneration as the next generation of organ replacement therapy. Open Biol 2020; 9:190010. [PMID: 30836846 PMCID: PMC6451364 DOI: 10.1098/rsob.190010] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
In this decade, substantial progress in the fields of developmental biology and stem cell biology has ushered in a new era for three-dimensional organ regenerative therapy. The emergence of novel three-dimensional cell manipulation technologies enables the effective mimicking of embryonic organ germ formation using the fate-determined organ-inductive potential of epithelial and mesenchymal stem cells. This advance shows great potential for the regeneration of functional organs with substitution of complete original function in situ. Organoids generated from multipotent stem cells or tissue stem cells via establishment of an organ-forming field can only partially recover original organ function owing to the size limitation; they are considered ‘mini-organs’. Nevertheless, they hold great promise to realize regenerative medicine. In particular, regeneration of a functional salivary gland and an integumentary organ system by orthotopic and heterotopic implantation of organoids clearly points to the future direction of organ regeneration research. In this review, we describe multiple strategies and recent progress in regenerating functional three-dimensional organs, focusing on ectodermal organs, and discuss their potential and future directions to achieve organ replacement therapy as a next-generation regenerative medicine.
Collapse
Affiliation(s)
- Etsuko Ikeda
- 1 Laboratory for Organ Regeneration, RIKEN Center for Biosystems Dynamics Research , Kobe, Hyogo 650-0047 , Japan
| | - Miho Ogawa
- 1 Laboratory for Organ Regeneration, RIKEN Center for Biosystems Dynamics Research , Kobe, Hyogo 650-0047 , Japan.,2 Organ Technologies Inc. , Tokyo 101-0048 , Japan
| | - Makoto Takeo
- 1 Laboratory for Organ Regeneration, RIKEN Center for Biosystems Dynamics Research , Kobe, Hyogo 650-0047 , Japan
| | - Takashi Tsuji
- 1 Laboratory for Organ Regeneration, RIKEN Center for Biosystems Dynamics Research , Kobe, Hyogo 650-0047 , Japan.,2 Organ Technologies Inc. , Tokyo 101-0048 , Japan
| |
Collapse
|
39
|
|
40
|
Mohammadi Amirabad L, Zarrintaj P, Lindemuth A, Tayebi L. Whole Tooth Engineering. APPLICATIONS OF BIOMEDICAL ENGINEERING IN DENTISTRY 2020:443-462. [DOI: 10.1007/978-3-030-21583-5_19] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
41
|
Song Y, Wang B, Li H, Hu X, Lin X, Hu X, Zhang Y. Low temperature culture enhances ameloblastic differentiation of human keratinocyte stem cells. J Mol Histol 2019; 50:417-425. [PMID: 31278616 DOI: 10.1007/s10735-019-09837-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 06/30/2019] [Indexed: 10/26/2022]
Abstract
Previous studies have demonstrated that several types of human stem cells of non-dental origin can be induced to differentiate into enamel-secreting ameloblasts after recombined with mouse embryonic dental mesenchyme. However, the successful rate of ameloblastic differentiation is about rather low, which presents a major obstacle for future stem cell-based whole tooth bioengineering. Previous studies have shown that cultures at reduced temperature could improve the differentiation capability of stem cells in tissue engineering. In this study, we systematically investigated the effects of low temperature on the viability, proliferation and stemness of human keratinocytes stem cells (hKSCs) in cell culture and further examined ameloblastic differentiation of the hKSCs in human-mouse recombinant chimeric tooth germs. Our results demonstrated that low temperature indeed reduces growth rate and maintains healthy undifferentiated morphology of hKSCs without any effects on cell viability. Moreover, examination of stemness makers revealed improved stemness of hKSCs cultured at low temperature with increased expression of stemness markers K15, CD29 and p63 and decreased expression differentiation marker K10, as compared to those cultured at 37 °C. These low temperature treated hKSCs, when recombined with mouse embryonic dental mesenchyme, exhibited significantly increased rate (40%) of ameloblastic differentiation, as compared to that (17%) in tissue recombinants with those hKSCs treated at standard temperature. Our studies demonstrate that low temperature cell culture improves the stemness and plasticity of hKSCs, which in turn enhances ameloblastic differentiation capability of the stem cells in bioengineered teeth.
Collapse
Affiliation(s)
- Yingnan Song
- Southern Center for Biomedical Research, Fujian Key Laboratory of Developmental and Neural Biology, College of Life Sciences, Fujian Normal University, Fuzhou, 350108, Fujian, People's Republic of China
| | - Bingmei Wang
- Southern Center for Biomedical Research, Fujian Key Laboratory of Developmental and Neural Biology, College of Life Sciences, Fujian Normal University, Fuzhou, 350108, Fujian, People's Republic of China
| | - Hua Li
- Southern Center for Biomedical Research, Fujian Key Laboratory of Developmental and Neural Biology, College of Life Sciences, Fujian Normal University, Fuzhou, 350108, Fujian, People's Republic of China
| | - Xiaoxiao Hu
- Southern Center for Biomedical Research, Fujian Key Laboratory of Developmental and Neural Biology, College of Life Sciences, Fujian Normal University, Fuzhou, 350108, Fujian, People's Republic of China
| | - Xin Lin
- Southern Center for Biomedical Research, Fujian Key Laboratory of Developmental and Neural Biology, College of Life Sciences, Fujian Normal University, Fuzhou, 350108, Fujian, People's Republic of China
| | - Xuefeng Hu
- Southern Center for Biomedical Research, Fujian Key Laboratory of Developmental and Neural Biology, College of Life Sciences, Fujian Normal University, Fuzhou, 350108, Fujian, People's Republic of China
| | - Yanding Zhang
- Southern Center for Biomedical Research, Fujian Key Laboratory of Developmental and Neural Biology, College of Life Sciences, Fujian Normal University, Fuzhou, 350108, Fujian, People's Republic of China.
| |
Collapse
|
42
|
Using Chitosan Besides Nano Hydroxyapatite and Fluorohydroxyapatite Boost Dental Pulp Stem Cell Proliferation. JOURNAL OF BIOMIMETICS BIOMATERIALS AND BIOMEDICAL ENGINEERING 2019. [DOI: 10.4028/www.scientific.net/jbbbe.42.39] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The dental tissue scaffold must provide a favorable surface for dental pulp stem cell attachment and proliferation. Employing nanohydroxyapatite (HA) and nanofluorohydroxyapatite (FHA) beside synthetic and organic polymer in favor of scaffolds would be used in bone and dental tissue engineering. In this research, nanoHA and FHA/chitosan scaffolds were synthesized by freeze-drying technique. Surface morphology, chemical composition and hydrophilicity have a great impact on initial cell attachment which will further affect the cell viability and proliferation which evaluated by SEM, XRD and contact angle measurement. Bioactivity of scaffolds was investigated by immersion in simulated body fluid (SBF) and cell proliferation assay. In freeze-drying technique percentage usage of hydroxyapatite could be risen up to 40% and shown better macro-mechanical and physical properties and bioactivity. According to obtained results by adding chitosan, contact angle was decreased by %54 and %37 for polycaprolactone (PCL)/HA and PCL/FHA scaffolds. In addition, addition of chitosan causes significant increase in the cell proliferation for PCL/HA and PCL/FHA up to 81% and 164%, respectively. These results indicate that PCL/FHA/chitosan scaffold represent a big potential for dental tissue engineering.
Collapse
|
43
|
Mozaffari MS, Emami G, Khodadadi H, Baban B. Stem cells and tooth regeneration: prospects for personalized dentistry. EPMA J 2019; 10:31-42. [PMID: 30984312 PMCID: PMC6459449 DOI: 10.1007/s13167-018-0156-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Accepted: 12/18/2018] [Indexed: 12/21/2022]
Abstract
Over the last several decades, a wealth of information has become available regarding various sources of stem cells and their potential use for regenerative purposes. Given the intense debate regarding embryonic stem cells, much of the focus has centered around application of adult stem cells for regenerative engineering along with other relevant aspects including use of growth factors and scaffolding materials. The more recent discovery of tooth-derived stem cells has sparked much interest in their application to regenerative dentistry to treat and alleviate the most prevalent oral diseases-i.e., dental caries and periodontal diseases. Also exciting is the advent of induced pluripotent stem cells, which provides the means of using patient-derived somatic cells for their creation, and their eventual application for generation of the dental complex. Thus, evolving developments in the field of regenerative dentistry indicate the prospect of constructing "custom-made" tooth and supporting structures thereby fostering the realization of "personalized dentistry." On the other hand, others have explored the possibility of augmenting endogenous regenerative capacity through utilization of small molecules to regulate molecular signaling mechanisms that mediate regeneration of tooth structure. This review is focused on these aspects of regenerative dentistry in view of their relevance to personalized dentistry.
Collapse
Affiliation(s)
- Mahmood S. Mozaffari
- Department of Oral Biology and Diagnostic Sciences; CL-2134, Dental College of Georgia, Augusta University, Augusta, GA 30912-1128 USA
| | - Golnaz Emami
- Department of Oral Biology and Diagnostic Sciences; CL-2134, Dental College of Georgia, Augusta University, Augusta, GA 30912-1128 USA
| | - Hesam Khodadadi
- Department of Oral Biology and Diagnostic Sciences; CL-2134, Dental College of Georgia, Augusta University, Augusta, GA 30912-1128 USA
| | - Babak Baban
- Department of Oral Biology and Diagnostic Sciences; CL-2134, Dental College of Georgia, Augusta University, Augusta, GA 30912-1128 USA
| |
Collapse
|
44
|
Yokoi M, Kuremoto KI, Okada S, Sasaki M, Tsuga K. Effect of attenuation of fibroblast growth factor receptor 2b signaling on odontoblast differentiation and dentin formation. In Vitro Cell Dev Biol Anim 2019; 55:211-219. [DOI: 10.1007/s11626-019-00323-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 01/16/2019] [Indexed: 12/14/2022]
|
45
|
Insulin-like growth factor 1 modulates bioengineered tooth morphogenesis. Sci Rep 2019; 9:368. [PMID: 30675004 PMCID: PMC6344556 DOI: 10.1038/s41598-018-36863-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Accepted: 11/21/2018] [Indexed: 11/08/2022] Open
Abstract
Regenerative therapy to replace missing teeth is a critical area of research. Functional bioengineered teeth have been produced by the organ germ method using mouse tooth germ cells. However, these bioengineered teeth are significantly smaller in size and exhibit an abnormal crown shape when compared with natural teeth. The proper sizes and shapes of teeth contribute to their normal function. Therefore, a method is needed to control the morphology of bioengineered teeth. Here, we investigated whether insulin-like growth factor 1 (IGF1) can regulate the sizes and shapes of bioengineered teeth, and assessed underlying mechanisms of such regulation. IGF1 treatment significantly increased the size of bioengineered tooth germs, while preserving normal tooth histology. IGF1-treated bioengineered teeth, which were developed from bioengineered tooth germs in subrenal capsules and jawbones, showed increased sizes and cusp numbers. IGF1 increased the number of fibroblast growth factor (Fgf4)-expressing enamel knots in bioengineered tooth germs and enhanced the proliferation and differentiation of dental epithelial and mesenchymal cells. This study is the first to reveal that IGF1 increases the sizes and cusp numbers of bioengineered teeth via the induction of enamel knot formation, as well as the proliferation and differentiation of dental epithelial and mesenchymal cells.
Collapse
|
46
|
Differentiation of mouse-induced pluripotent stem cells into dental epithelial-like cells in the absence of added serum. In Vitro Cell Dev Biol Anim 2019; 55:130-137. [PMID: 30659476 DOI: 10.1007/s11626-019-00320-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Accepted: 01/07/2019] [Indexed: 01/30/2023]
Abstract
Recent studies have successfully generated tooth-like structure by mimicking the reciprocal interaction between dental epithelial and mesenchymal cells in tooth organogenesis. However, clinical applications of these methods are limited primarily due to the lack of appropriate sources for dental epithelial cells. Induced pluripotent stem cells (iPSCs) are attractive as a source for dental epithelial cells due to their unique characteristics. In this study, we examined the effect of neurotrophin-4 (NT-4) on the differentiation of mouse iPSCs (miPSCs) into dental epithelial cells. Our results showed that the addition of NT-4 during the formation of embryoid body significantly triggered the upregulation of epithelial markers such as p63 and CK14, suggesting that NT-4 provides an inductive condition for the differentiation of miPSCs into epithelial cells. Expansion of the NT-4-treated cells under serum-free culture conditions improves the formation of cells with cobblestone-like morphology and significantly downregulated the expression of pluripotent and ectodermal markers. Phenotypic analysis revealed that a dental epithelial surface marker, CD49f, was highly expressed on these cells. Formation of miPSCs-derived dental epithelial-like cells was further confirmed by the expression of ameloblast-specific markers. These results suggest that the addition of NT-4 during the formation of embryoid body together with the serum-free culture condition promoted the differentiation of miPSCs into dental epithelial-like cells.
Collapse
|
47
|
Han J, Kim DS, Jang H, Kim HR, Kang HW. Bioprinting of three-dimensional dentin-pulp complex with local differentiation of human dental pulp stem cells. J Tissue Eng 2019; 10:2041731419845849. [PMID: 31205671 PMCID: PMC6535759 DOI: 10.1177/2041731419845849] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Accepted: 04/02/2019] [Indexed: 01/16/2023] Open
Abstract
Numerous approaches have been introduced to regenerate artificial dental tissues. However, conventional approaches are limited when producing a construct with three-dimensional patient-specific shapes and compositions of heterogeneous dental tissue. In this research, bioprinting technology was applied to produce a three-dimensional dentin-pulp complex with patient-specific shapes by inducing localized differentiation of human dental pulp stem cells within a single structure. A fibrin-based bio-ink was designed for bioprinting with the human dental pulp stem cells. The effects of fibrinogen concentration within the bio-ink were investigated in terms of printability, human dental pulp stem cell compatibility, and differentiation. The results show that micro-patterns with human dental pulp stem cells could be achieved with more than 88% viability. Its odontogenic differentiation was also regulated according to the fibrinogen concentration. Based on these results, a dentin-pulp complex having patient-specific shape was produced by co-printing the human dental pulp stem cell-laden bio-inks with polycaprolactone, which is a bio-thermoplastic used for producing the overall shape. After culturing with differentiation medium for 15 days, localized differentiation of human dental pulp stem cells in the outer region of the three-dimensional cellular construct was successfully achieved with localized mineralization. This result demonstrates the possibility to produce patient-specific composite tissues for tooth tissue engineering using three-dimensional bioprinting technology.
Collapse
Affiliation(s)
- Jonghyeuk Han
- Biomedical Engineering, School of Life Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan, South Korea
| | - Da Sol Kim
- Department of Oral Biochemistry, School of Dentistry, Pusan National University, Yangsan, South Korea
| | - Ho Jang
- Department of Oral Biochemistry, School of Dentistry, Pusan National University, Yangsan, South Korea
- Institute of Translational Dental Sciences, School of Dentistry, Pusan National University, Yangsan, South Korea
| | - Hyung-Ryong Kim
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, South Korea
- College of Dentistry, Dankook University, Cheonan, South Korea
| | - Hyun-Wook Kang
- Biomedical Engineering, School of Life Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan, South Korea
| |
Collapse
|
48
|
Pushpalatha C, Nagaraja S, Sowmya SV, Kamala C. Biomaterials in Tooth Tissue Engineering. MATERIALS HORIZONS: FROM NATURE TO NANOMATERIALS 2019:91-115. [DOI: 10.1007/978-981-13-9977-0_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
49
|
Ma Y, Xie L, Yang B, Tian W. Three-dimensional printing biotechnology for the regeneration of the tooth and tooth-supporting tissues. Biotechnol Bioeng 2018; 116:452-468. [PMID: 30475386 DOI: 10.1002/bit.26882] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2018] [Revised: 11/09/2018] [Accepted: 11/21/2018] [Indexed: 02/05/2023]
Abstract
The tooth and its supporting tissues are organized with complex three-dimensional (3D) architecture, including the dental pulp with a blood supply and nerve tissues, complex multilayer periodontium, and highly aligned periodontal ligament (PDL). Mimicking such 3D complexity and the multicellular interactions naturally existing in dental structures represents great challenges in dental regeneration. Attempts to construct the complex system of the tooth and tooth-supporting apparatus (i.e., the PDL, alveolar bone, and cementum) have made certain progress owing to 3D printing biotechnology. Recent advances have enabled the 3D printing of biocompatible materials, seed cells, and supporting components into complex 3D functional living tissue. Furthermore, 3D bioprinting is driving major innovations in regenerative medicine, giving the field of regenerative dentistry a boost. The fabrication of scaffolds via 3D printing is already being performed extensively at the laboratory bench and in clinical trials; however, printing living cells and matrix materials together to produce tissue constructs by 3D bioprinting remains limited to the regeneration of dental pulp and the tooth germ. This review summarizes the application of scaffolds for cell seeding and biofabricated tissues via 3D printing and bioprinting, respectively, in the tooth and its supporting tissues. Additionally, the key advantages and prospects of 3D bioprinting in regenerative dentistry are highlighted, providing new ideas for dental regeneration.
Collapse
Affiliation(s)
- Yue Ma
- State Key Laboratory of Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu, People's Republic of China.,National Engineering Laboratory for Oral Regenerative Medicine, West China School of Stomatology, Sichuan University, Chengdu, People's Republic of China.,Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, People's Republic of China
| | - Li Xie
- State Key Laboratory of Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu, People's Republic of China.,National Engineering Laboratory for Oral Regenerative Medicine, West China School of Stomatology, Sichuan University, Chengdu, People's Republic of China
| | - Bo Yang
- State Key Laboratory of Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu, People's Republic of China.,National Engineering Laboratory for Oral Regenerative Medicine, West China School of Stomatology, Sichuan University, Chengdu, People's Republic of China.,Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, People's Republic of China
| | - Weidong Tian
- State Key Laboratory of Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu, People's Republic of China.,National Engineering Laboratory for Oral Regenerative Medicine, West China School of Stomatology, Sichuan University, Chengdu, People's Republic of China.,Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, People's Republic of China
| |
Collapse
|
50
|
Hirayama M. Advances in Functional Restoration of the Lacrimal Glands. Invest Ophthalmol Vis Sci 2018; 59:DES174-DES182. [PMID: 30481824 DOI: 10.1167/iovs.17-23528] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
The lacrimal glands produce tears to support a healthy homeostatic environment on the ocular surface. The lacrimal gland dysfunction characteristic of dry eye disease causes ocular discomfort and visual disturbances and in severe cases can result in a loss of vision. The demand for adequate restoration of lacrimal gland function has been intensified due to advances in stem cell biology, developmental biology, and bioengineering technologies. In addition to conventional therapies, including artificial tears, tear alternatives (such as autologous serum eye drops) and salivary gland transplantation, a regenerative medicine approach has been identified as a novel strategy to restore the function of the lacrimal gland. Recent studies have demonstrated the potential of progenitor cell injection therapy to repair the tissue of the lacrimal glands. A current three-dimensional (3D) tissue engineering technique has been shown to regenerate a secretory gland structure by reproducing reciprocal epithelial-mesenchymal interactions during ontogenesis in vitro and in vivo. A novel direct reprogramming method has suggested a possibility to induce markers in the lacrimal gland developmental process from human pluripotent stem cells. The development of this method is supported by advances in our understanding of gene expression and regulatory networks involved in the development and differentiation of the lacrimal glands. Engineering science has proposed a medical device to stimulate tearing and a bio-hybrid scaffold to reconstruct the 3D lacrimal gland structure. In this review, we will summarize recent bioengineering advances in lacrimal gland regeneration toward the functional restoration of the lacrimal glands as a future dry eye therapy.
Collapse
Affiliation(s)
- Masatoshi Hirayama
- Department of Ophthalmology, Keio University School of Medicine, Shinjuku-ku, Tokyo, Japan.,Regulatory Biology Laboratory, Salk Institute for Biological Studies, La Jolla, California, United States
| |
Collapse
|