1
|
van Deel ED, Snelders M, van Vliet N, Te Riet L, van den Bosch TPP, Fiedler LR, van Spreeuwel ACC, Bax NAM, Boontje N, Halabi CM, Sasaki T, Reinhardt DP, van der Velden J, Bouten CVC, von der Thüsen JH, Danser AHJ, Duncker DJ, Schneider MD, van der Pluijm I, Essers J. Induction of cardiac fibulin-4 protects against pressure overload-induced cardiac hypertrophy and heart failure. Commun Biol 2025; 8:661. [PMID: 40274989 PMCID: PMC12022050 DOI: 10.1038/s42003-025-08087-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 04/14/2025] [Indexed: 04/26/2025] Open
Abstract
The prevailing view of fibulin-4 deficient mice is that the cardiac phenotype is the result of aortic and/or valvular disease. In the present study, we have tested whether the cardiac phenotype is, at least in part, the consequence of primary cardiac effects of fibulin-4. We have found fibulin-4 expression to be activated throughout the myocardium in wildtype (fibulin-4+/+) C57Bl/6J;129 Sv mice subjected to transverse aortic constriction (TAC). In contrast, haploinsufficient fibulin-4+/R mice exposed to severe TAC do not show this increase in myocardial fibulin-4 expression, but display altered physical properties of myocardial tissue. Moreover, TAC-induced cardiac fibrosis, pulmonary congestion, and mortality are aggravated in fibulin-4+/R mice. In vitro investigations of myocardial tissue show that fibulin-4 deficiency results in cardiomyocyte hypertrophy, and a decreased beating frequency and contractile force. In conclusion, we demonstrate functions for fibulin-4 in cardiac homeostasis and show that reduced fibulin-4 expression drives myocardial disease in response to cardiac pressure overload, independent of aortic valvular pathology.
Collapse
Affiliation(s)
- E D van Deel
- Department of Molecular Genetics, Erasmus University Medical Center, Rotterdam, the Netherlands
- Division of Experimental Cardiology, Department of Cardiology, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - M Snelders
- Department of Molecular Genetics, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - N van Vliet
- Department of Molecular Genetics, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - L Te Riet
- Division of Pharmacology, Department of Internal Medicine, Erasmus University Medical Center, Rotterdam, the Netherlands
- Department of Vascular Surgery, Cardiovascular Institute, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - T P P van den Bosch
- Department of Pathology and Clinical Bioinformatics, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - L R Fiedler
- British Heart Foundation Centre of Research Excellence, National Heart and Lung Institute, Imperial College London, London, UK
| | - A C C van Spreeuwel
- Department of Biomedical Engineering, and Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, the Netherlands
| | - N A M Bax
- Department of Biomedical Engineering, and Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, the Netherlands
| | - N Boontje
- Department of Physiology, VU University Medical Center, Institute for Cardiovascular Research (ICaR-VU), Amsterdam, the Netherlands
| | - C M Halabi
- Division of Nephrology, Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, USA
| | - T Sasaki
- Department of Pharmacology, Faculty of Medicine, Oita University, Oita, Japan
| | - D P Reinhardt
- Faculty of Medicine and Health Sciences, McGill University, Montreal, QC, Canada
- Faculty of Dentistry and Oral Health Sciences, McGill University, Montreal, QC, Canada
| | - J van der Velden
- Department of Physiology, VU University Medical Center, Institute for Cardiovascular Research (ICaR-VU), Amsterdam, the Netherlands
| | - C V C Bouten
- Department of Biomedical Engineering, and Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, the Netherlands
| | - J H von der Thüsen
- Department of Pathology and Clinical Bioinformatics, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - A H J Danser
- Division of Pharmacology, Department of Internal Medicine, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - D J Duncker
- Division of Experimental Cardiology, Department of Cardiology, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - M D Schneider
- British Heart Foundation Centre of Research Excellence, National Heart and Lung Institute, Imperial College London, London, UK
| | - I van der Pluijm
- Department of Molecular Genetics, Erasmus University Medical Center, Rotterdam, the Netherlands
- Department of Vascular Surgery, Cardiovascular Institute, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - J Essers
- Department of Molecular Genetics, Erasmus University Medical Center, Rotterdam, the Netherlands.
- Department of Vascular Surgery, Cardiovascular Institute, Erasmus University Medical Center, Rotterdam, the Netherlands.
- Department of Radiotherapy, Erasmus University Medical Center, Rotterdam, the Netherlands.
| |
Collapse
|
2
|
Stefens SJM, van Vliet N, IJpma A, Burger J, Li Y, van Heijningen PM, Lindeman JHN, Majoor-Krakauer D, Verhagen HJM, Kanaar R, Essers J, van der Pluijm I. Increased vascular smooth muscle cell senescence in aneurysmal Fibulin-4 mutant mice. NPJ AGING 2024; 10:31. [PMID: 38902222 PMCID: PMC11189919 DOI: 10.1038/s41514-024-00154-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 04/26/2024] [Indexed: 06/22/2024]
Abstract
Aortic aneurysms are dilatations of the aorta that can rupture when left untreated. We used the aneurysmal Fibulin-4R/R mouse model to further unravel the underlying mechanisms of aneurysm formation. RNA sequencing of 3-month-old Fibulin-4R/R aortas revealed significant upregulation of senescence-associated secretory phenotype (SASP) factors and key senescence factors, indicating the involvement of senescence. Analysis of aorta histology and of vascular smooth muscle cells (VSMCs) in vitro confirmed the senescent phenotype of Fibulin-4R/R VSMCs by revealing increased SA-β-gal, p21, and p16 staining, increased IL-6 secretion, increased presence of DNA damage foci and increased nuclei size. Additionally, we found that p21 luminescence was increased in the dilated aorta of Fibulin-4R/R|p21-luciferase mice. Our studies identify a cellular aging cascade in Fibulin-4 aneurysmal disease, by revealing that Fibulin-4R/R aortic VSMCs have a pronounced SASP and a senescent phenotype that may underlie aortic wall degeneration. Additionally, we demonstrated the therapeutic effect of JAK/STAT and TGF-β pathway inhibition, as well as senolytic treatment on Fibulin-4R/R VSMCs in vitro. These findings can contribute to improved therapeutic options for aneurysmal disease aimed at reducing senescent cells.
Collapse
Affiliation(s)
- Sanne J M Stefens
- Department of Molecular Genetics, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Nicole van Vliet
- Department of Molecular Genetics, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Arne IJpma
- Department of Pathology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Joyce Burger
- Department of Molecular Genetics, Erasmus University Medical Center, Rotterdam, The Netherlands
- Department of Clinical Genetics, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Yunlei Li
- Department of Pathology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Paula M van Heijningen
- Department of Molecular Genetics, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Jan H N Lindeman
- Department of Vascular Surgery, Leiden University Medical Center, Leiden, The Netherlands
| | | | - Hence J M Verhagen
- Department of Vascular Surgery, Cardiovascular Institute, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Roland Kanaar
- Department of Molecular Genetics, Erasmus University Medical Center, Rotterdam, The Netherlands
- Department of Radiotherapy, Erasmus University Medical Center, Rotterdam, The Netherlands
- Oncode Institute, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Jeroen Essers
- Department of Molecular Genetics, Erasmus University Medical Center, Rotterdam, The Netherlands.
- Department of Vascular Surgery, Cardiovascular Institute, Erasmus University Medical Center, Rotterdam, The Netherlands.
- Department of Radiotherapy, Erasmus University Medical Center, Rotterdam, The Netherlands.
| | - Ingrid van der Pluijm
- Department of Molecular Genetics, Erasmus University Medical Center, Rotterdam, The Netherlands.
- Department of Vascular Surgery, Cardiovascular Institute, Erasmus University Medical Center, Rotterdam, The Netherlands.
| |
Collapse
|
3
|
Gadanec LK, McSweeney KR, Kubatka P, Caprnda M, Gaspar L, Prosecky R, Dragasek J, Kruzliak P, Apostolopoulos V, Zulli A. Angiotensin II constricts mouse iliac arteries: possible mechanism for aortic aneurysms. Mol Cell Biochem 2024; 479:233-242. [PMID: 37027096 DOI: 10.1007/s11010-023-04724-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 03/27/2023] [Indexed: 04/08/2023]
Abstract
Abdominal aortic aneurysms (AAA) result from maladaptive remodeling of the vascular wall and reduces structural integrity. Angiotensin II (AngII) infusion has become a standard laboratory model for studying AAA initiation and progression. We determined the different vasoactive responses of various mouse arteries to Ang II. Ex vivo isometric tension analysis was conducted on 18-week-old male C57BL/6 mice (n = 4) brachiocephalic arteries (BC), iliac arteries (IL), and abdominal (AA) and thoracic aorta (TA). Arterial rings were mounted between organ hooks, gently stretched and an AngII dose response was performed. Rings were placed in 4% paraformaldehyde for immunohistochemistry analysis to quantify peptide expression of angiotensin type 1 (AT1R) and 2 receptors (AT2R) in the endothelium, media, and adventitia. Results from this study demonstrated vasoconstriction responses in IL were significantly higher at all AngII doses when compared to BC, and TA and AA responses (maximum constriction-IL: 68.64 ± 5.47% vs. BC: 1.96 ± 1.00%; TA: 3.13 ± 0.16% and AA: 2.75 ± 1.77%, p < 0.0001). Expression of AT1R was highest in the endothelium of IL (p < 0.05) and in the media and (p < 0.05) adventitia (p < 0.05) of AA. In contrast, AT2R expression was highest in endothelium (p < 0.05), media (p < 0.01, p < 0.05) and adventitia of TA. These results suggest that mouse arteries display different vasoactive responses to AngII, and the exaggerated response in IL arteries may play a role during AAA development.
Collapse
Affiliation(s)
- Laura Kate Gadanec
- Institute of Health and Sport, Victoria University, Werribee Camous, Melbourne, VIC, 3030, Australia.
| | - Kristen Renee McSweeney
- Institute of Health and Sport, Victoria University, Werribee Camous, Melbourne, VIC, 3030, Australia
| | - Peter Kubatka
- Department of Medical Biology, Jessenius Faculty of Medicine, Comenius University in Bratislava, Martin, Slovakia
| | - Martin Caprnda
- 1st Department of Internal Medicine, Faculty of Medicine, Comenius University and University Hospital, Bratislava, Slovakia
| | - Ludovit Gaspar
- Faculty of Health Sciences, University of Ss. Cyril and Methodius in Trnava, Trnava, Slovakia
| | - Robert Prosecky
- 2nd Department of Internal Medicine, Faculty of Medicine, Masaryk University and St. Anne'S University Hospital, Brno, Czech Republic
- International Clinical Research Centre, St. Anne's University Hospital and Masaryk University, Brno, Czech Republic
| | - Jozef Dragasek
- Faculty of Medicine, Pavol Jozef Safarik University and University Hospital, Kosice, Slovakia
| | - Peter Kruzliak
- 2nd Department of Surgery, Faculty of Medicine, Masaryk University and St. Anne's University Hospital, Brno, Czech Republic.
| | - Vasso Apostolopoulos
- Institute of Health and Sport, Victoria University, Werribee Camous, Melbourne, VIC, 3030, Australia
- Australian Institute for Musculoskeletal Science (AIMSS), Sunshine Hospital, Melbourne, VIC, 3021, Australia
| | - Anthony Zulli
- Institute of Health and Sport, Victoria University, Werribee Camous, Melbourne, VIC, 3030, Australia.
| |
Collapse
|
4
|
Zhi K, Yin R, Guo H, Qu L. PUM2 regulates the formation of thoracic aortic dissection through EFEMP1. Exp Cell Res 2023; 427:113602. [PMID: 37062520 DOI: 10.1016/j.yexcr.2023.113602] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 03/31/2023] [Accepted: 04/13/2023] [Indexed: 04/18/2023]
Abstract
Thoracic aortic dissection (TAD) is a severe cardiovascular disease attributed to the abnormal phenotypic switch of vascular smooth muscle cells (VSMCs). We found that the RNA-binding protein PUM2 and the fibulin protein EFEMP1 were significantly decreased at the TAD anatomical site. Therefore, we constructed expression and silencing vectors for PUM2 and EFEMP1 to analyze differential expression. Overexpression of PUM2 inhibited VSMC proliferation and migration. Western blot analysis indicated that PUM2 overexpression in VSMCs upregulated α-SMA and SM22α and downregulated OPN and MMP2. Immunofluorescence demonstrated that PUM2 and EFEMP1 were co-expressed in VSMCs. Immunoprecipitation confirmed that PUM2 bound to EFEMP1 mRNA to promote EFEMP1 expression. An Ang-II-induced aortic dissection mouse model showed that PUM2 impedes the development of aortic dissection in vivo. Our study demonstrates that PUM2 inhibits the VSMC phenotypic switch to prevent aortic dissection by targeting EFEMP1 mRNA. These findings could assist the development of targeted therapy for TAD.
Collapse
Affiliation(s)
- Kangkang Zhi
- Department of Vascular Surgery, Changzheng Hospital, Second Mlitary Medical University, Shanghai, 200003, China
| | - Renqi Yin
- Department of Vascular Surgery, Changzheng Hospital, Second Mlitary Medical University, Shanghai, 200003, China
| | - Hongbo Guo
- Department of Vascular Surgery, Changzheng Hospital, Second Mlitary Medical University, Shanghai, 200003, China
| | - Lefeng Qu
- Department of Vascular Surgery, Changzheng Hospital, Second Mlitary Medical University, Shanghai, 200003, China.
| |
Collapse
|
5
|
Li Z, Cong X, Kong W. Matricellular proteins: Potential biomarkers and mechanistic factors in aortic aneurysms. J Mol Cell Cardiol 2022; 169:41-56. [DOI: 10.1016/j.yjmcc.2022.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 03/30/2022] [Accepted: 05/03/2022] [Indexed: 10/18/2022]
|
6
|
Role of Fibulins in Embryonic Stage Development and Their Involvement in Various Diseases. Biomolecules 2021; 11:biom11050685. [PMID: 34063320 PMCID: PMC8147605 DOI: 10.3390/biom11050685] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 04/29/2021] [Accepted: 04/30/2021] [Indexed: 12/24/2022] Open
Abstract
The extracellular matrix (ECM) plays an important role in the evolution of early metazoans, as it provides structural and biochemical support to the surrounding cells through the cell–cell and cell–matrix interactions. In multi-cellular organisms, ECM plays a pivotal role in the differentiation of tissues and in the development of organs. Fibulins are ECM glycoproteins, found in a variety of tissues associated with basement membranes, elastic fibers, proteoglycan aggregates, and fibronectin microfibrils. The expression profile of fibulins reveals their role in various developmental processes such as elastogenesis, development of organs during the embryonic stage, tissue remodeling, maintenance of the structural integrity of basement membrane, and elastic fibers, as well as other cellular processes. Apart from this, fibulins are also involved in the progression of human diseases such as cancer, cardiac diseases, congenital disorders, and chronic fibrotic disorders. Different isoforms of fibulins show a dual role of tumor-suppressive and tumor-promoting activities, depending on the cell type and cellular microenvironment in the body. Knockout animal models have provided deep insight into their role in development and diseases. The present review covers details of the structural and expression patterns, along with the role of fibulins in embryonic development and disease progression, with more emphasis on their involvement in the modulation of cancer diseases.
Collapse
|
7
|
Creamer TJ, Bramel EE, MacFarlane EG. Insights on the Pathogenesis of Aneurysm through the Study of Hereditary Aortopathies. Genes (Basel) 2021; 12:183. [PMID: 33514025 PMCID: PMC7912671 DOI: 10.3390/genes12020183] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 01/20/2021] [Accepted: 01/22/2021] [Indexed: 12/15/2022] Open
Abstract
Thoracic aortic aneurysms (TAA) are permanent and localized dilations of the aorta that predispose patients to a life-threatening risk of aortic dissection or rupture. The identification of pathogenic variants that cause hereditary forms of TAA has delineated fundamental molecular processes required to maintain aortic homeostasis. Vascular smooth muscle cells (VSMCs) elaborate and remodel the extracellular matrix (ECM) in response to mechanical and biochemical cues from their environment. Causal variants for hereditary forms of aneurysm compromise the function of gene products involved in the transmission or interpretation of these signals, initiating processes that eventually lead to degeneration and mechanical failure of the vessel. These include mutations that interfere with transduction of stimuli from the matrix to the actin-myosin cytoskeleton through integrins, and those that impair signaling pathways activated by transforming growth factor-β (TGF-β). In this review, we summarize the features of the healthy aortic wall, the major pathways involved in the modulation of VSMC phenotypes, and the basic molecular functions impaired by TAA-associated mutations. We also discuss how the heterogeneity and balance of adaptive and maladaptive responses to the initial genetic insult might contribute to disease.
Collapse
Affiliation(s)
- Tyler J. Creamer
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; (T.J.C.); (E.E.B.)
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Emily E. Bramel
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; (T.J.C.); (E.E.B.)
- Predoctoral Training in Human Genetics and Molecular Biology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Elena Gallo MacFarlane
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; (T.J.C.); (E.E.B.)
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
8
|
Abstract
Mutations in extracellular matrix and smooth muscle cell contractile proteins predispose to thoracic aortic aneurysms in Marfan syndrome (MFS) and related disorders. These genetic alterations lead to a compromised extracellular matrix-smooth muscle cell contractile unit. The abnormal aortic tissue responds with defective mechanosensing under hemodynamic stress. Aberrant mechanosensing is associated with transforming growth factor-beta (TGF-β) hyperactivity, enhanced angiotensin-II (Ang-II) signaling, and perturbation of other cellular signaling pathways. The downstream consequences include enhanced proteolytic activity, expression of inflammatory cytokines and chemokines, infiltration of inflammatory cells in the aortic wall, vascular smooth muscle cell apoptosis, and medial degeneration. Mouse models highlight aortic inflammation as a contributing factor in the development of aortic aneurysms. Anti-inflammatory drugs and antioxidants can reduce aortic oxidative stress that prevents aggravation of aortic disease in MFS mice. Targeting TGF-β and Ang-II downstream signaling pathways such as ERK1/2, mTOR, PI3/Akt, P38/MAPK, and Rho kinase signaling attenuates disease pathogenesis. Aortic extracellular matrix degradation and medial degeneration were reduced upon inhibition of inflammatory cytokines and matrix metalloproteinases, but the latter lack specificity. Treating inflammation associated with aortic aneurysms in MFS and related disorders could prove to be beneficial in limiting disease pathogenesis.
Collapse
|
9
|
van der Pluijm I, Burger J, van Heijningen PM, IJpma A, van Vliet N, Milanese C, Schoonderwoerd K, Sluiter W, Ringuette LJ, Dekkers DHW, Que I, Kaijzel EL, te Riet L, MacFarlane EG, Das D, van der Linden R, Vermeij M, Demmers JA, Mastroberardino PG, Davis EC, Yanagisawa H, Dietz HC, Kanaar R, Essers J. Decreased mitochondrial respiration in aneurysmal aortas of Fibulin-4 mutant mice is linked to PGC1A regulation. Cardiovasc Res 2018; 114:1776-1793. [PMID: 29931197 PMCID: PMC6198735 DOI: 10.1093/cvr/cvy150] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Revised: 09/26/2017] [Accepted: 06/19/2018] [Indexed: 12/18/2022] Open
Abstract
Aim Thoracic aortic aneurysms are a life-threatening condition often diagnosed too late. To discover novel robust biomarkers, we aimed to better understand the molecular mechanisms underlying aneurysm formation. Methods and results In Fibulin-4R/R mice, the extracellular matrix protein Fibulin-4 is 4-fold reduced, resulting in progressive ascending aneurysm formation and early death around 3 months of age. We performed proteomics and genomics studies on Fibulin-4R/R mouse aortas. Intriguingly, we observed alterations in mitochondrial protein composition in Fibulin-4R/R aortas. Consistently, functional studies in Fibulin-4R/R vascular smooth muscle cells (VSMCs) revealed lower oxygen consumption rates, but increased acidification rates. Yet, mitochondria in Fibulin-4R/R VSMCs showed no aberrant cytoplasmic localization. We found similar reduced mitochondrial respiration in Tgfbr-1M318R/+ VSMCs, a mouse model for Loeys-Dietz syndrome (LDS). Interestingly, also human fibroblasts from Marfan (FBN1) and LDS (TGFBR2 and SMAD3) patients showed lower oxygen consumption. While individual mitochondrial Complexes I-V activities were unaltered in Fibulin-4R/R heart and muscle, these tissues showed similar decreased oxygen consumption. Furthermore, aortas of aneurysmal Fibulin-4R/R mice displayed increased reactive oxygen species (ROS) levels. Consistent with these findings, gene expression analyses revealed dysregulation of metabolic pathways. Accordingly, blood ketone levels of Fibulin-4R/R mice were reduced and liver fatty acids were decreased, while liver glycogen was increased, indicating dysregulated metabolism at the organismal level. As predicted by gene expression analysis, the activity of PGC1α, a key regulator between mitochondrial function and organismal metabolism, was downregulated in Fibulin-4R/R VSMCs. Increased TGFβ reduced PGC1α levels, indicating involvement of TGFβ signalling in PGC1α regulation. Activation of PGC1α restored the decreased oxygen consumption in Fibulin-4R/R VSMCs and improved their reduced growth potential, emphasizing the importance of this key regulator. Conclusion Our data indicate altered mitochondrial function and metabolic dysregulation, leading to increased ROS levels and altered energy production, as a novel mechanism, which may contribute to thoracic aortic aneurysm formation.
Collapse
MESH Headings
- Animals
- Aorta, Thoracic/metabolism
- Aorta, Thoracic/pathology
- Aortic Aneurysm, Thoracic/genetics
- Aortic Aneurysm, Thoracic/metabolism
- Aortic Aneurysm, Thoracic/pathology
- Cell Respiration
- Cells, Cultured
- Disease Models, Animal
- Energy Metabolism
- Extracellular Matrix Proteins/genetics
- Extracellular Matrix Proteins/metabolism
- Humans
- Mice, Inbred C57BL
- Mice, Knockout
- Mitochondria, Muscle/metabolism
- Mitochondria, Muscle/pathology
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Mutation
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/pathology
- Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/genetics
- Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/metabolism
- Reactive Oxygen Species/metabolism
- Receptor, Transforming Growth Factor-beta Type I/genetics
- Receptor, Transforming Growth Factor-beta Type I/metabolism
- Signal Transduction
Collapse
Affiliation(s)
- Ingrid van der Pluijm
- Department of Vascular Surgery, Erasmus MC, Wytemaweg 80, CN Rotterdam, The Netherlands
- Department of Molecular Genetics, Erasmus MC, Wytemaweg 80, CN Rotterdam, The Netherlands
| | - Joyce Burger
- Department of Molecular Genetics, Erasmus MC, Wytemaweg 80, CN Rotterdam, The Netherlands
- Department of Clinical Genetics, Erasmus MC, Wytemaweg 80, CN Rotterdam, The Netherlands
| | - Paula M van Heijningen
- Department of Molecular Genetics, Erasmus MC, Wytemaweg 80, CN Rotterdam, The Netherlands
| | - Arne IJpma
- Clinical Bioinformatics Unit, Department of Pathology, Erasmus MC, Wytemaweg 80, CN Rotterdam, The Netherlands
| | - Nicole van Vliet
- Department of Molecular Genetics, Erasmus MC, Wytemaweg 80, CN Rotterdam, The Netherlands
| | - Chiara Milanese
- Department of Molecular Genetics, Erasmus MC, Wytemaweg 80, CN Rotterdam, The Netherlands
| | - Kees Schoonderwoerd
- Department of Clinical Genetics, Erasmus MC, Wytemaweg 80, CN Rotterdam, The Netherlands
| | - Willem Sluiter
- Department of Molecular Genetics, Erasmus MC, Wytemaweg 80, CN Rotterdam, The Netherlands
| | - Lea-Jeanne Ringuette
- Department of Anatomy and Cell Biology, McGill University, Rue University, Montréal, QC H3A 0C7, Canada
| | - Dirk H W Dekkers
- Proteomics Center, Erasmus MC, Wytemaweg 80, CN Rotterdam, The Netherlands
| | - Ivo Que
- Department of Radiology, Leiden University Medical Center, Albinusdreef 2, ZA Leiden, The Netherlands
| | - Erik L Kaijzel
- Department of Radiology, Leiden University Medical Center, Albinusdreef 2, ZA Leiden, The Netherlands
| | - Luuk te Riet
- Department of Vascular Surgery, Erasmus MC, Wytemaweg 80, CN Rotterdam, The Netherlands
- Department of Pharmacology, Erasmus MC, Wytemaweg 80, CN Rotterdam, The Netherlands
| | - Elena G MacFarlane
- Department of Surgery, McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, 733 N Broadway, Baltimore, MD, USA
| | - Devashish Das
- Department of Molecular Genetics, Erasmus MC, Wytemaweg 80, CN Rotterdam, The Netherlands
| | | | - Marcel Vermeij
- Department of Pathology, Erasmus MC, Wytemaweg 80, CN Rotterdam, The Netherlands
| | - Jeroen A Demmers
- Proteomics Center, Erasmus MC, Wytemaweg 80, CN Rotterdam, The Netherlands
| | - Pier G Mastroberardino
- Department of Molecular Genetics, Erasmus MC, Wytemaweg 80, CN Rotterdam, The Netherlands
| | - Elaine C Davis
- Department of Anatomy and Cell Biology, McGill University, Rue University, Montréal, QC H3A 0C7, Canada
| | - Hiromi Yanagisawa
- Life Science Center, Tsukuba Advanced Research Alliance, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, Japan
| | - Harry C Dietz
- Department of Surgery, McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, 733 N Broadway, Baltimore, MD, USA
- Institute of Genetic Medicine, Johns Hopkins University School of Medicine, 733 N Broadway, Baltimore, MD, USA
- Division of Pediatric Cardiology, Department of Pediatrics, and Department of Medicine, Johns Hopkins University School of Medicine, 733 N Broadway, Baltimore, MD, USA
| | - Roland Kanaar
- Department of Radiation Oncology, Erasmus MC, Wytemaweg 80, CN Rotterdam, The Netherlands
- Department of Molecular Genetics, Oncode Institute, Erasmus MC, Rotterdan, The Netherlands
| | - Jeroen Essers
- Department of Vascular Surgery, Erasmus MC, Wytemaweg 80, CN Rotterdam, The Netherlands
- Department of Radiation Oncology, Erasmus MC, Wytemaweg 80, CN Rotterdam, The Netherlands
- Department of Molecular Genetics, Oncode Institute, Erasmus MC, Rotterdan, The Netherlands
| |
Collapse
|
10
|
Extracellular Interactions between Fibulins and Transforming Growth Factor (TGF)-β in Physiological and Pathological Conditions. Int J Mol Sci 2018; 19:ijms19092787. [PMID: 30227601 PMCID: PMC6163299 DOI: 10.3390/ijms19092787] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 09/11/2018] [Accepted: 09/12/2018] [Indexed: 12/25/2022] Open
Abstract
Transforming growth factor (TGF)-β is a multifunctional peptide growth factor that has a vital role in the regulation of cell growth, differentiation, inflammation, and repair in a variety of tissues, and its dysregulation mediates a number of pathological conditions including fibrotic disorders, chronic inflammation, cardiovascular diseases, and cancer progression. Regulation of TGF-β signaling is multifold, but one critical site of regulation is via interaction with certain extracellular matrix (ECM) microenvironments, as TGF-β is primarily secreted as a biologically inactive form sequestrated into ECM. Several ECM proteins are known to modulate TGF-β signaling via cell–matrix interactions, including thrombospondins, SPARC (Secreted Protein Acidic and Rich in Cystein), tenascins, osteopontin, periostin, and fibulins. Fibulin family members consist of eight ECM glycoproteins characterized by a tandem array of calcium-binding epidermal growth factor-like modules and a common C-terminal domain. Fibulins not only participate in structural integrity of basement membrane and elastic fibers, but also serve as mediators for cellular processes and tissue remodeling as they are highly upregulated during embryonic development and certain disease processes, especially at the sites of epithelial–mesenchymal transition (EMT). Emerging studies have indicated a close relationship between fibulins and TGF-β signaling, but each fibulin plays a different role in a context-dependent manner. In this review, regulatory interactions between fibulins and TGF-β signaling are discussed. Understanding biological roles of fibulins in TGF-β regulation may introduce new insights into the pathogenesis of some human diseases.
Collapse
|
11
|
Halabi CM, Broekelmann TJ, Lin M, Lee VS, Chu ML, Mecham RP. Fibulin-4 is essential for maintaining arterial wall integrity in conduit but not muscular arteries. SCIENCE ADVANCES 2017; 3:e1602532. [PMID: 28508064 PMCID: PMC5415335 DOI: 10.1126/sciadv.1602532] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Accepted: 02/28/2017] [Indexed: 06/07/2023]
Abstract
Homozygous or compound heterozygous mutations in fibulin-4 (FBLN4) lead to autosomal recessive cutis laxa type 1B (ARCL1B), a multisystem disorder characterized by significant cardiovascular abnormalities, including abnormal elastin assembly, arterial tortuosity, and aortic aneurysms. We sought to determine the consequences of a human disease-causing mutation in FBLN4 (E57K) on the cardiovascular system and vascular elastic fibers in a mouse model of ARCL1B. Fbln4E57K/E57K mice were hypertensive and developed arterial elongation, tortuosity, and ascending aortic aneurysms. Smooth muscle cell organization within the arterial wall of large conducting vessels was abnormal, and elastic fibers were fragmented and had a moth-eaten appearance. In contrast, vessel wall structure and elastic fiber integrity were normal in resistance/muscular arteries (renal, mesenteric, and saphenous). Elastin cross-linking and total elastin content were unchanged in large or small arteries, whereas elastic fiber architecture was abnormal in large vessels. While the E57K mutation did not affect Fbln4 mRNA levels, FBLN4 protein was lower in the ascending aorta of mutant animals compared to wild-type arteries but equivalent in mesenteric arteries. We found a differential role of FBLN4 in elastic fiber assembly, where it functions mainly in large conduit arteries. These results suggest that elastin assembly has different requirements depending on vessel type. Normal levels of elastin cross-links in mutant tissue call into question FBLN4's suggested role in mediating lysyl oxidase-elastin interactions. Future studies investigating tissue-specific elastic fiber assembly may lead to novel therapeutic interventions for ARCL1B and other disorders of elastic fiber assembly.
Collapse
Affiliation(s)
- Carmen M. Halabi
- Division of Nephrology, Department of Pediatrics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Thomas J. Broekelmann
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Michelle Lin
- Division of Nephrology, Department of Pediatrics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Vivian S. Lee
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Mon-Li Chu
- Department of Dermatology and Cutaneous Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Robert P. Mecham
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| |
Collapse
|
12
|
Shen YH, LeMaire SA. Molecular pathogenesis of genetic and sporadic aortic aneurysms and dissections. Curr Probl Surg 2017; 54:95-155. [PMID: 28521856 DOI: 10.1067/j.cpsurg.2017.01.001] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Accepted: 01/16/2017] [Indexed: 12/20/2022]
Affiliation(s)
- Ying H Shen
- Division of Cardiothoracic Surgery, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX; Department of Cardiovascular Surgery, Texas Heart Institute, Houston, TX; Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX.
| | - Scott A LeMaire
- Division of Cardiothoracic Surgery, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX; Department of Cardiovascular Surgery, Texas Heart Institute, Houston, TX; Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX; Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX.
| |
Collapse
|
13
|
Milewicz DM, Prakash SK, Ramirez F. Therapeutics Targeting Drivers of Thoracic Aortic Aneurysms and Acute Aortic Dissections: Insights from Predisposing Genes and Mouse Models. Annu Rev Med 2017; 68:51-67. [PMID: 28099082 PMCID: PMC5499376 DOI: 10.1146/annurev-med-100415-022956] [Citation(s) in RCA: 90] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Thoracic aortic diseases, including aneurysms and dissections of the thoracic aorta, are a major cause of morbidity and mortality. Risk factors for thoracic aortic disease include increased hemodynamic forces on the ascending aorta, typically due to poorly controlled hypertension, and heritable genetic variants. The altered genes predisposing to thoracic aortic disease either disrupt smooth muscle cell (SMC) contraction or adherence to an impaired extracellular matrix, or decrease canonical transforming growth factor beta (TGF-β) signaling. Paradoxically, TGF-β hyperactivity has been postulated to be the primary driver for the disease. More recently, it has been proposed that the response of aortic SMCs to the hemodynamic load on a structurally defective aorta is the primary driver of thoracic aortic disease, and that TGF-β overactivity in diseased aortas is a secondary, unproductive response to restore tissue function. The engineering of mouse models of inherited aortopathies has identified potential therapeutic agents to prevent thoracic aortic disease.
Collapse
Affiliation(s)
- Dianna M Milewicz
- Division of Medical Genetics, Department of Internal Medicine, University of Texas Health Science Center at Houston, Houston, Texas 77030;
| | - Siddharth K Prakash
- Division of Medical Genetics, Department of Internal Medicine, University of Texas Health Science Center at Houston, Houston, Texas 77030;
| | - Francesco Ramirez
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| |
Collapse
|
14
|
AT1-receptor blockade, but not renin inhibition, reduces aneurysm growth and cardiac failure in fibulin-4 mice. J Hypertens 2016; 34:654-65. [PMID: 26828783 DOI: 10.1097/hjh.0000000000000845] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
AIMS Increasing evidence supports a role for the angiotensin II-AT1-receptor axis in aneurysm development. Here, we studied whether counteracting this axis via stimulation of AT2 receptors is beneficial. Such stimulation occurs naturally during AT1-receptor blockade with losartan, but not during renin inhibition with aliskiren. METHODS AND RESULTS Aneurysmal homozygous fibulin-4 mice, displaying a four-fold reduced fibulin-4 expression, were treated with placebo, losartan, aliskiren, or the β-blocker propranolol from day 35 to 100. Their phenotype includes cystic media degeneration, aortic regurgitation, left ventricular dilation, reduced ejection fraction, and fractional shortening. Although losartan and aliskiren reduced hemodynamic stress and increased renin similarly, only losartan increased survival. Propranolol had no effect. No drug rescued elastic fiber fragmentation in established aneurysms, although losartan did reduce aneurysm size. Losartan also increased ejection fraction, decreased LV diameter, and reduced cardiac pSmad2 signaling. None of these effects were seen with aliskiren or propranolol. Longitudinal micro-CT measurements, a novel method in which each mouse serves as its own control, revealed that losartan reduced LV growth more than aneurysm growth, presumably because the heart profits both from the local (cardiac) effects of losartan and its effects on aortic root remodeling. CONCLUSION Losartan, but not aliskiren or propranolol, improved survival in fibulin-4 mice. This most likely relates to its capacity to improve structure and function of both aorta and heart. The absence of this effect during aliskiren treatment, despite a similar degree of blood pressure reduction and renin-angiotensin system blockade, suggests that it might be because of AT2-receptor stimulation.
Collapse
|
15
|
van der Pluijm I, van Vliet N, von der Thusen JH, Robertus JL, Ridwan Y, van Heijningen PM, van Thiel BS, Vermeij M, Hoeks SE, Buijs-Offerman RMGB, Verhagen HJM, Kanaar R, Bertoli-Avella AM, Essers J. Defective Connective Tissue Remodeling in Smad3 Mice Leads to Accelerated Aneurysmal Growth Through Disturbed Downstream TGF-β Signaling. EBioMedicine 2016; 12:280-294. [PMID: 27688095 PMCID: PMC5078606 DOI: 10.1016/j.ebiom.2016.09.006] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Revised: 08/29/2016] [Accepted: 09/08/2016] [Indexed: 12/15/2022] Open
Abstract
Aneurysm-osteoarthritis syndrome characterized by unpredictable aortic aneurysm formation, is caused by SMAD3 mutations. SMAD3 is part of the SMAD2/3/4 transcription factor, essential for TGF-β-activated transcription. Although TGF-β-related gene mutations result in aneurysms, the underlying mechanism is unknown. Here, we examined aneurysm formation and progression in Smad3-/- animals. Smad3-/- animals developed aortic aneurysms rapidly, resulting in premature death. Aortic wall immunohistochemistry showed no increase in extracellular matrix and collagen accumulation, nor loss of vascular smooth muscle cells (VSMCs) but instead revealed medial elastin disruption and adventitial inflammation. Remarkably, matrix metalloproteases (MMPs) were not activated in VSMCs, but rather specifically in inflammatory areas. Although Smad3-/- aortas showed increased nuclear pSmad2 and pErk, indicating TGF-β receptor activation, downstream TGF-β-activated target genes were not upregulated. Increased pSmad2 and pErk staining in pre-aneurysmal Smad3-/- aortas implied that aortic damage and TGF-β receptor-activated signaling precede aortic inflammation. Finally, impaired downstream TGF-β activated transcription resulted in increased Smad3-/- VSMC proliferation. Smad3 deficiency leads to imbalanced activation of downstream genes, no activation of MMPs in VSMCs, and immune responses resulting in rapid aortic wall dilatation and rupture. Our findings uncover new possibilities for treatment of SMAD3 patients; instead of targeting TGF-β signaling, immune suppression may be more beneficial.
Collapse
Affiliation(s)
- I van der Pluijm
- Department of Vascular Surgery, Erasmus University Medical Center, Rotterdam, The Netherlands; Department of Molecular Genetics, Cancer Genomics Netherlands, Erasmus University Medical Center, Rotterdam, The Netherlands; Department of Clinical Genetics, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - N van Vliet
- Department of Molecular Genetics, Cancer Genomics Netherlands, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - J H von der Thusen
- Department of Pathology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - J L Robertus
- Department of Pathology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Y Ridwan
- Department of Molecular Genetics, Cancer Genomics Netherlands, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - P M van Heijningen
- Department of Molecular Genetics, Cancer Genomics Netherlands, Erasmus University Medical Center, Rotterdam, The Netherlands; Department of Clinical Genetics, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - B S van Thiel
- Department of Vascular Surgery, Erasmus University Medical Center, Rotterdam, The Netherlands; Department of Molecular Genetics, Cancer Genomics Netherlands, Erasmus University Medical Center, Rotterdam, The Netherlands; Department of Pharmacology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - M Vermeij
- Department of Molecular Genetics, Cancer Genomics Netherlands, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - S E Hoeks
- Department of Anesthesiology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - R M G B Buijs-Offerman
- Department of Clinical Genetics, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - H J M Verhagen
- Department of Vascular Surgery, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - R Kanaar
- Department of Molecular Genetics, Cancer Genomics Netherlands, Erasmus University Medical Center, Rotterdam, The Netherlands; Department of Radiation Oncology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - A M Bertoli-Avella
- Department of Clinical Genetics, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - J Essers
- Department of Vascular Surgery, Erasmus University Medical Center, Rotterdam, The Netherlands; Department of Molecular Genetics, Cancer Genomics Netherlands, Erasmus University Medical Center, Rotterdam, The Netherlands; Department of Radiation Oncology, Erasmus University Medical Center, Rotterdam, The Netherlands.
| |
Collapse
|
16
|
Bultmann-Mellin I, Essers J, van Heijingen PM, von Melchner H, Sengle G, Sterner-Kock A. Function of Ltbp-4L and fibulin-4 in survival and elastogenesis in mice. Dis Model Mech 2016; 9:1367-1374. [PMID: 27585882 PMCID: PMC5117228 DOI: 10.1242/dmm.026005] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Accepted: 08/15/2016] [Indexed: 12/18/2022] Open
Abstract
LTBP-4L and LTBP-4S are two isoforms of the extracellular matrix protein latent-transforming growth factor beta-binding protein 4 (LTBP-4). The mutational inactivation of both isoforms causes autosomal recessive cutis laxa type 1C (ARCL1C) in humans and an ARCL1C-like phenotype in Ltbp4-/- mice, both characterized by high postnatal mortality and severely affected elastogenesis. However, genetic data in mice suggest isoform-specific functions for Ltbp-4 because Ltbp4S-/- mice, solely expressing Ltbp-4L, survive to adulthood. This clearly suggests a requirement of Ltbp-4L for postnatal survival. A major difference between Ltbp4S-/- and Ltbp4-/- mice is the matrix incorporation of fibulin-4 (a key factor for elastogenesis; encoded by the Efemp2 gene), which is normal in Ltbp4S-/- mice, whereas it is defective in Ltbp4-/- mice, suggesting that the presence of Ltbp-4L might be required for this process. To investigate the existence of a functional interaction between Ltbp-4L and fibulin-4, we studied the consequences of fibulin-4 deficiency in mice only expressing Ltbp-4L. Resulting Ltbp4S-/-;Fibulin-4R/R mice showed a dramatically reduced lifespan compared to Ltbp4S-/- or Fibulin-4R/R mice, which survive to adulthood. This dramatic reduction in survival of Ltbp4S-/-;Fibulin-4R/R mice correlates with severely impaired elastogenesis resulting in defective alveolar septation and distal airspace enlargement in lung, and increased aortic wall thickness with severely fragmented elastic lamellae. Additionally, Ltbp4S-/-;Fibulin-4R/R mice suffer from aortic aneurysm formation combined with aortic tortuosity, in contrast to Ltbp4S-/- or Fibulin-4R/R mice. Together, in accordance with our previous biochemical findings of a physical interaction between Ltbp-4L and fibulin-4, these novel in vivo data clearly establish a functional link between Ltbp-4L and fibulin-4 as a crucial molecular requirement for survival and elastogenesis in mice.
Collapse
Affiliation(s)
- Insa Bultmann-Mellin
- Center for Experimental Medicine, Medical Faculty, University of Cologne, 50931 Cologne, Germany
| | - Jeroen Essers
- Department of Molecular Genetics, Cancer Genomics Centre, Erasmus MC, 3015 CN Rotterdam, The Netherlands.,Department of Radiation Oncology, Erasmus MC, 3015 CN Rotterdam, The Netherlands.,Department of Vascular Surgery, Erasmus MC, 3015 CN Rotterdam, The Netherlands
| | - Paula M van Heijingen
- Department of Molecular Genetics, Cancer Genomics Centre, Erasmus MC, 3015 CN Rotterdam, The Netherlands
| | - Harald von Melchner
- Department of Molecular Hematology, University of Frankfurt Medical School, 60590 Frankfurt am Main, Germany
| | - Gerhard Sengle
- Center for Biochemistry, Medical Faculty, University of Cologne, 50931 Cologne, Germany.,Center for Molecular Medicine Cologne (CMMC), University of Cologne, 50931 Cologne, Germany
| | - Anja Sterner-Kock
- Center for Experimental Medicine, Medical Faculty, University of Cologne, 50931 Cologne, Germany
| |
Collapse
|
17
|
Lee SJ, Oh J, Ko YG, Lee S, Chang BC, Lee DY, Kwak YR, Choi D. The Beneficial Effect of Renin-Angiotensin-Aldosterone System Blockade in Marfan Syndrome Patients after Aortic Root Replacement. Yonsei Med J 2016; 57:81-7. [PMID: 26632386 PMCID: PMC4696976 DOI: 10.3349/ymj.2016.57.1.81] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Revised: 05/28/2015] [Accepted: 06/05/2015] [Indexed: 01/25/2023] Open
Abstract
PURPOSE In this study, we evaluated the long term beneficial effect of Renin-Angiotensin-Aldosterone System (RAAS) blockade therapy in treatment of Marfan aortopathy. MATERIALS AND METHODS We reviewed Marfan syndrome (MFS) patients who underwent aortic root replacement (ARR) between January 1996 and January 2011. All patients were prescribed β-blockers indefinitely. We compared major aortic events including mortality, aortic dissection, and reoperation in patients without RAAS blockade (group 1, n=27) to those with (group 2, n=63). The aortic growth rate was calculated by dividing the diameter change on CT scans taken immediately post-operatively and the latest scan available. RESULTS There were no differences in clinical parameters except for age which was higher in patients with RAAS blockade. In group 1, 2 (7%) deaths, 5 (19%) aortic dissections, and 7 (26%) reoperations occurred. In group 2, 3 (5%) deaths, 2 (3%) aortic dissections, and 3 (5%) reoperations occurred. A Kaplan-Meier plot demonstrated improved survival free from major aortic events in group 2. On multivariate Cox, RAAS blockade was an independent negative predictor of major aortic events (hazard ratio 0.38, 95% confidence interval 0.30-0.43, p=0.002). Mean diameter change in descending thoracic and supra-renal abdominal aorta was significantly higher in patients without RAAS blockade (p<0.05). CONCLUSION In MFS patients who underwent ARR, the addition of RAAS blockade to β-blocker was associated with reduction of aortic dilatation and clinical events.
Collapse
Affiliation(s)
- Seung Jun Lee
- Cardiology Division, Department of Internal Medicine, Severance Cardiovascular Hospital, Yonsei University Health System, Seoul, Korea
| | - Jaewon Oh
- Cardiology Division, Department of Internal Medicine, Severance Cardiovascular Hospital, Yonsei University Health System, Seoul, Korea
| | - Young Guk Ko
- Cardiology Division, Department of Internal Medicine, Severance Cardiovascular Hospital, Yonsei University Health System, Seoul, Korea
| | - Sak Lee
- Department of Cardiovascular Surgery, Severance Cardiovascular Hospital, Yonsei University Health System, Seoul, Korea
| | - Byung Chul Chang
- Department of Cardiovascular Surgery, Severance Cardiovascular Hospital, Yonsei University Health System, Seoul, Korea
| | - Do Yun Lee
- Department of Radiology, Research Institute of Radiological Science, Yonsei University Health System, Seoul, Korea
| | - Young Ran Kwak
- Department of Anesthesiology and Pain Medicine, Severance Cardiovascular Hospital, Yonsei University Health System, Seoul, Korea
| | - Donghoon Choi
- Cardiology Division, Department of Internal Medicine, Severance Cardiovascular Hospital, Yonsei University Health System, Seoul, Korea.
| |
Collapse
|
18
|
Ramnath NWM, Hawinkels LJAC, van Heijningen PM, te Riet L, Paauwe M, Vermeij M, Danser AHJ, Kanaar R, ten Dijke P, Essers J. Fibulin-4 deficiency increases TGF-β signalling in aortic smooth muscle cells due to elevated TGF-β2 levels. Sci Rep 2015; 5:16872. [PMID: 26607280 PMCID: PMC4660353 DOI: 10.1038/srep16872] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Accepted: 10/19/2015] [Indexed: 12/18/2022] Open
Abstract
Fibulins are extracellular matrix proteins associated with elastic fibres. Homozygous Fibulin-4 mutations lead to life-threatening abnormalities such as aortic aneurysms. Aortic aneurysms in Fibulin-4 mutant mice were associated with upregulation of TGF-β signalling. How Fibulin-4 deficiency leads to deregulation of the TGF-β pathway is largely unknown. Isolated aortic smooth muscle cells (SMCs) from Fibulin-4 deficient mice showed reduced growth, which could be reversed by treatment with TGF-β neutralizing antibodies. In Fibulin-4 deficient SMCs increased TGF-β signalling was detected using a transcriptional reporter assay and by increased SMAD2 phosphorylation. Next, we investigated if the increased activity was due to increased levels of the three TGF-β isoforms. These data revealed slightly increased TGF-β1 and markedly increased TGF-β2 levels. Significantly increased TGF-β2 levels were also detectable in plasma from homozygous Fibulin-4(R/R) mice, not in wild type mice. TGF-β2 levels were reduced after losartan treatment, an angiotensin-II type-1 receptor blocker, known to prevent aortic aneurysm formation. In conclusion, we have shown increased TGF-β signalling in isolated SMCs from Fibulin-4 deficient mouse aortas, not only caused by increased levels of TGF-β1, but especially TGF-β2. These data provide new insights in the molecular interaction between Fibulin-4 and TGF-β pathway regulation in the pathogenesis of aortic aneurysms.
Collapse
Affiliation(s)
- N W M Ramnath
- Department of Genetics, Cancer Genomics Centre Netherlands, Erasmus MC, Rotterdam, The Netherlands.,Department of Vascular Surgery, Erasmus MC, Rotterdam, The Netherlands
| | - L J A C Hawinkels
- Department of Molecular Cell Biology Leiden University Medical Centre, Leiden, The Netherlands, Cancer Genomics Centre.,Department of Gastroenterology-Hepatology, Leiden University Medical Centre, Leiden, The Netherlands
| | - P M van Heijningen
- Department of Genetics, Cancer Genomics Centre Netherlands, Erasmus MC, Rotterdam, The Netherlands
| | - L te Riet
- Department of Vascular Surgery, Erasmus MC, Rotterdam, The Netherlands.,Department of Pharmacology, Erasmus MC, Rotterdam, The Netherlands
| | - M Paauwe
- Department of Molecular Cell Biology Leiden University Medical Centre, Leiden, The Netherlands, Cancer Genomics Centre
| | - M Vermeij
- Department of Pathology, Erasmus MC, Rotterdam, The Netherlands
| | - A H J Danser
- Department of Pharmacology, Erasmus MC, Rotterdam, The Netherlands
| | - R Kanaar
- Department of Genetics, Cancer Genomics Centre Netherlands, Erasmus MC, Rotterdam, The Netherlands.,Department of Radiation Oncology, Erasmus MC, Rotterdam, The Netherlands
| | - P ten Dijke
- Department of Molecular Cell Biology Leiden University Medical Centre, Leiden, The Netherlands, Cancer Genomics Centre
| | - J Essers
- Department of Genetics, Cancer Genomics Centre Netherlands, Erasmus MC, Rotterdam, The Netherlands.,Department of Vascular Surgery, Erasmus MC, Rotterdam, The Netherlands.,Department of Radiation Oncology, Erasmus MC, Rotterdam, The Netherlands
| |
Collapse
|
19
|
Mechanical contribution of lamellar and interlamellar elastin along the mouse aorta. J Biomech 2015; 48:3599-605. [DOI: 10.1016/j.jbiomech.2015.08.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Revised: 07/17/2015] [Accepted: 08/03/2015] [Indexed: 11/21/2022]
|
20
|
Papke CL, Yamashiro Y, Yanagisawa H. MMP17/MT4-MMP and thoracic aortic aneurysms: OPNing new potential for effective treatment. Circ Res 2015; 117:109-12. [PMID: 26139854 PMCID: PMC4493766 DOI: 10.1161/circresaha.117.306851] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Christina L Papke
- From the Department of Molecular Biology, UT Southwestern Medical Center, Dallas, TX (C.L.P., H.Y.); and Life Science Center, Tsukuba Advanced Research Alliance, University of Tsukuba, Tsukuba, Ibaraki, Japan (Y.Y., H.Y.)
| | - Yoshito Yamashiro
- From the Department of Molecular Biology, UT Southwestern Medical Center, Dallas, TX (C.L.P., H.Y.); and Life Science Center, Tsukuba Advanced Research Alliance, University of Tsukuba, Tsukuba, Ibaraki, Japan (Y.Y., H.Y.)
| | - Hiromi Yanagisawa
- From the Department of Molecular Biology, UT Southwestern Medical Center, Dallas, TX (C.L.P., H.Y.); and Life Science Center, Tsukuba Advanced Research Alliance, University of Tsukuba, Tsukuba, Ibaraki, Japan (Y.Y., H.Y.).
| |
Collapse
|
21
|
Kim J, Procknow JD, Yanagisawa H, Wagenseil JE. Differences in genetic signaling, and not mechanical properties of the wall, are linked to ascending aortic aneurysms in fibulin-4 knockout mice. Am J Physiol Heart Circ Physiol 2015; 309:H103-13. [PMID: 25934097 PMCID: PMC4491524 DOI: 10.1152/ajpheart.00178.2015] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Accepted: 04/30/2015] [Indexed: 12/21/2022]
Abstract
Fibulin-4 is an extracellular matrix protein that is essential for proper assembly of arterial elastic fibers. Mutations in fibulin-4 cause cutis laxa with thoracic aortic aneurysms (TAAs). Sixty percent of TAAs occur in the ascending aorta (AA). Newborn mice lacking fibulin-4 (Fbln4(-/-)) have aneurysms in the AA, but narrowing in the descending aorta (DA), and are a unique model to investigate locational differences in aneurysm susceptibility. We measured mechanical behavior and gene expression of AA and DA segments in newborn Fbln4(-/-) and Fbln4(+/+) mice. Fbln4(-/-) AA has increased diameters compared with Fbln4(+/+) AA and Fbln4(-/-) DA at most applied pressures, confirming genotypic and locational specificity of the aneurysm phenotype. When diameter compliance and tangent modulus were calculated from the mechanical data, we found few significant differences between genotypes, suggesting that the mechanical response to incremental diameter changes is similar, despite the fragmented elastic fibers in Fbln4(-/-) aortas. Fbln4(-/-) aortas showed a trend toward increased circumferential stretch, which may be transmitted to smooth muscle cells (SMCs) in the wall. Gene expression data suggest activation of pathways for SMC proliferation and inflammation in Fbln4(-/-) aortas compared with Fbln4(+/+). Additional genes in both pathways, as well as matrix metalloprotease-8 (Mmp8), are upregulated specifically in Fbln4(-/-) AA compared with Fbln4(+/+) AA and Fbln4(-/-) DA. Mmp8 is a neutrophil collagenase that targets type 1 collagen, and upregulation may be necessary to allow diameter expansion in Fbln4(-/-) AA. Our results provide molecular and mechanical targets for further investigation in aneurysm pathogenesis.
Collapse
MESH Headings
- Acute-Phase Proteins/genetics
- Acute-Phase Proteins/metabolism
- Animals
- Animals, Newborn
- Aorta/metabolism
- Aorta/physiopathology
- Aorta/ultrastructure
- Aorta, Thoracic/metabolism
- Aorta, Thoracic/physiopathology
- Aorta, Thoracic/ultrastructure
- Aortic Aneurysm, Thoracic/genetics
- Calcium-Binding Proteins
- Collagen Type VIII/genetics
- Collagen Type VIII/metabolism
- Cyclooxygenase 2/genetics
- Cyclooxygenase 2/metabolism
- Elastic Modulus
- Epiregulin/genetics
- Epiregulin/metabolism
- Extracellular Matrix Proteins/genetics
- Gene Expression Profiling
- Heparin-binding EGF-like Growth Factor/genetics
- Heparin-binding EGF-like Growth Factor/metabolism
- Matrix Metalloproteinase 8/genetics
- Matrix Metalloproteinase 8/metabolism
- Mice
- Mice, Knockout
- Microscopy, Electron
- Muscle Proteins/genetics
- Muscle Proteins/metabolism
- Muscle, Smooth, Vascular/cytology
- Muscle, Smooth, Vascular/metabolism
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/ultrastructure
- Nuclear Proteins/genetics
- Nuclear Proteins/metabolism
- RNA, Messenger/metabolism
- Receptors, Cell Surface/genetics
- Receptors, Cell Surface/metabolism
- Receptors, G-Protein-Coupled
- Repressor Proteins/genetics
- Repressor Proteins/metabolism
- Reverse Transcriptase Polymerase Chain Reaction
- Serpins/genetics
- Serpins/metabolism
- Up-Regulation
Collapse
Affiliation(s)
- Jungsil Kim
- Department of Mechanical Engineering and Materials Science, Washington University, St. Louis, Missouri
| | - Jesse D Procknow
- Department of Mechanical Engineering and Materials Science, Washington University, St. Louis, Missouri
| | - Hiromi Yanagisawa
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas; and Life Science Center of Tsukuba Advanced Research Alliance, University of Tsukuba, Tsukuba, Japan
| | - Jessica E Wagenseil
- Department of Mechanical Engineering and Materials Science, Washington University, St. Louis, Missouri;
| |
Collapse
|
22
|
Te Riet L, van Esch JHM, Roks AJM, van den Meiracker AH, Danser AHJ. Hypertension: renin-angiotensin-aldosterone system alterations. Circ Res 2015; 116:960-75. [PMID: 25767283 DOI: 10.1161/circresaha.116.303587] [Citation(s) in RCA: 508] [Impact Index Per Article: 50.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Blockers of the renin-angiotensin-aldosterone system (RAAS), that is, renin inhibitors, angiotensin (Ang)-converting enzyme (ACE) inhibitors, Ang II type 1 receptor antagonists, and mineralocorticoid receptor antagonists, are a cornerstone in the treatment of hypertension. How exactly they exert their effect, in particular in patients with low circulating RAAS activity, also taking into consideration the so-called Ang II/aldosterone escape that often occurs after initial blockade, is still incompletely understood. Multiple studies have tried to find parameters that predict the response to RAAS blockade, allowing a personalized treatment approach. Consequently, the question should now be answered on what basis (eg, sex, ethnicity, age, salt intake, baseline renin, ACE or aldosterone, and genetic variance) a RAAS blocker can be chosen to treat an individual patient. Are all blockers equal? Does optimal blockade imply maximum RAAS blockade, for example, by combining ≥2 RAAS blockers or by simply increasing the dose of 1 blocker? Exciting recent investigations reveal a range of unanticipated extrarenal effects of aldosterone, as well as a detailed insight in the genetic causes of primary aldosteronism, and mineralocorticoid receptor blockers have now become an important treatment option for resistant hypertension. Finally, apart from the deleterious ACE-Ang II-Ang II type 1 receptor arm, animal studies support the existence of protective aminopeptidase A-Ang III-Ang II type 2 receptor and ACE2-Ang-(1 to 7)-Mas receptor arms, paving the way for multiple new treatment options. This review provides an update about all these aspects, critically discussing the many controversies and allowing the reader to obtain a full understanding of what we currently know about RAAS alterations in hypertension.
Collapse
Affiliation(s)
- Luuk Te Riet
- From the Division of Pharmacology and Vascular Medicine, Department of Internal Medicine, Erasmus MC, Rotterdam, The Netherlands
| | - Joep H M van Esch
- From the Division of Pharmacology and Vascular Medicine, Department of Internal Medicine, Erasmus MC, Rotterdam, The Netherlands
| | - Anton J M Roks
- From the Division of Pharmacology and Vascular Medicine, Department of Internal Medicine, Erasmus MC, Rotterdam, The Netherlands
| | - Anton H van den Meiracker
- From the Division of Pharmacology and Vascular Medicine, Department of Internal Medicine, Erasmus MC, Rotterdam, The Netherlands
| | - A H Jan Danser
- From the Division of Pharmacology and Vascular Medicine, Department of Internal Medicine, Erasmus MC, Rotterdam, The Netherlands.
| |
Collapse
|
23
|
Humphrey JD, Schwartz MA, Tellides G, Milewicz DM. Role of mechanotransduction in vascular biology: focus on thoracic aortic aneurysms and dissections. Circ Res 2015; 116:1448-61. [PMID: 25858068 PMCID: PMC4420625 DOI: 10.1161/circresaha.114.304936] [Citation(s) in RCA: 266] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Thoracic aortic diseases that involve progressive enlargement, acute dissection, or rupture are influenced by the hemodynamic loads and mechanical properties of the wall. We have only limited understanding, however, of the mechanobiological processes that lead to these potentially lethal conditions. Homeostasis requires that intramural cells sense their local chemomechanical environment and establish, maintain, remodel, or repair the extracellular matrix to provide suitable compliance and yet sufficient strength. Proper sensing, in turn, necessitates both receptors that connect the extracellular matrix to intracellular actomyosin filaments and signaling molecules that transmit the related information to the nucleus. Thoracic aortic aneurysms and dissections are associated with poorly controlled hypertension and mutations in genes for extracellular matrix constituents, membrane receptors, contractile proteins, and associated signaling molecules. This grouping of factors suggests that these thoracic diseases result, in part, from dysfunctional mechanosensing and mechanoregulation of the extracellular matrix by the intramural cells, which leads to a compromised structural integrity of the wall. Thus, improved understanding of the mechanobiology of aortic cells could lead to new therapeutic strategies for thoracic aortic aneurysms and dissections.
Collapse
MESH Headings
- Aortic Dissection/genetics
- Aortic Dissection/metabolism
- Aortic Dissection/pathology
- Aortic Dissection/physiopathology
- Aortic Dissection/therapy
- Animals
- Aorta, Thoracic/metabolism
- Aorta, Thoracic/pathology
- Aorta, Thoracic/physiopathology
- Aortic Aneurysm, Thoracic/genetics
- Aortic Aneurysm, Thoracic/metabolism
- Aortic Aneurysm, Thoracic/pathology
- Aortic Aneurysm, Thoracic/physiopathology
- Aortic Aneurysm, Thoracic/therapy
- Aortic Rupture/genetics
- Aortic Rupture/metabolism
- Aortic Rupture/pathology
- Aortic Rupture/physiopathology
- Aortic Rupture/therapy
- Biomechanical Phenomena
- Disease Progression
- Extracellular Matrix Proteins/genetics
- Extracellular Matrix Proteins/metabolism
- Genetic Predisposition to Disease
- Hemodynamics
- Humans
- Mechanotransduction, Cellular
- Phenotype
- Stress, Mechanical
Collapse
Affiliation(s)
- Jay D Humphrey
- From the Departments of Biomedical Engineering (J.D.H., M.A.S.), Medicine (Cardiology) (M.A.S.), Cell Biology (M.A.S.), and Surgery (G.T.), Yale University, New Haven, CT; and Department of Internal Medicine, University of Texas Health Science Center, Houston (D.M.M.)
| | - Martin A Schwartz
- From the Departments of Biomedical Engineering (J.D.H., M.A.S.), Medicine (Cardiology) (M.A.S.), Cell Biology (M.A.S.), and Surgery (G.T.), Yale University, New Haven, CT; and Department of Internal Medicine, University of Texas Health Science Center, Houston (D.M.M.)
| | - George Tellides
- From the Departments of Biomedical Engineering (J.D.H., M.A.S.), Medicine (Cardiology) (M.A.S.), Cell Biology (M.A.S.), and Surgery (G.T.), Yale University, New Haven, CT; and Department of Internal Medicine, University of Texas Health Science Center, Houston (D.M.M.)
| | - Dianna M Milewicz
- From the Departments of Biomedical Engineering (J.D.H., M.A.S.), Medicine (Cardiology) (M.A.S.), Cell Biology (M.A.S.), and Surgery (G.T.), Yale University, New Haven, CT; and Department of Internal Medicine, University of Texas Health Science Center, Houston (D.M.M.).
| |
Collapse
|
24
|
Wang M, Kim SH, Monticone RE, Lakatta EG. Matrix metalloproteinases promote arterial remodeling in aging, hypertension, and atherosclerosis. Hypertension 2015; 65:698-703. [PMID: 25667214 DOI: 10.1161/hypertensionaha.114.03618] [Citation(s) in RCA: 143] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Mingyi Wang
- From the Laboratory of Cardiovascular Science, National Institute on Aging, National Institutes of Health, Biomedical Research Center (BRC), Baltimore, MD.
| | - Soo Hyuk Kim
- From the Laboratory of Cardiovascular Science, National Institute on Aging, National Institutes of Health, Biomedical Research Center (BRC), Baltimore, MD
| | - Robert E Monticone
- From the Laboratory of Cardiovascular Science, National Institute on Aging, National Institutes of Health, Biomedical Research Center (BRC), Baltimore, MD
| | - Edward G Lakatta
- From the Laboratory of Cardiovascular Science, National Institute on Aging, National Institutes of Health, Biomedical Research Center (BRC), Baltimore, MD.
| |
Collapse
|
25
|
Molecular mechanisms of inherited thoracic aortic disease - from gene variant to surgical aneurysm. Biophys Rev 2014; 7:105-115. [PMID: 28509973 DOI: 10.1007/s12551-014-0147-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2014] [Accepted: 11/10/2014] [Indexed: 12/14/2022] Open
Abstract
Aortic dissection is a catastrophic event that has a high mortality rate. Thoracic aortic aneurysms are the clinically silent precursor that confers an increased risk of acute aortic dissection. There are several gene mutations that have been identified in key structural and regulatory proteins within the aortic wall that predispose to thoracic aneurysm formation. The most common and well characterised of these is the FBN1 gene mutation that is known to cause Marfan syndrome. Others less well-known mutations include TGF-β1 and TGF-β2 receptor mutations that cause Loeys-Dietz syndrome, Col3A1 mutations causing Ehlers-Danlos Type 4 syndrome and Smad3 and-4, ACTA2 and MYHII mutations that cause familial thoracic aortic aneurysm and dissection. Despite the variation in the proteins affected by these genetic mutations, there is a unifying pathological end point of medial degeneration within the wall of the aorta characterised by vascular smooth muscle cell loss, fragmentation and loss of elastic fibers, and accumulation of proteoglycans and glycosaminoglycans within vascular smooth muscle cell-depleted areas of the aortic media. Our understanding of these mutations and their post-translational effects has led to a greater understanding of the pathophysiology that underlies thoracic aortic aneurysm formation. Despite this, there are still many unanswered questions regarding the molecular mechanisms. Further elucidation of the signalling pathways will help us identify targets that may be suitable modifiers to enhance treatment of this often fatal condition.
Collapse
|
26
|
Cangemi C, Hansen ML, Argraves WS, Rasmussen LM. Fibulins and their role in cardiovascular biology and disease. Adv Clin Chem 2014; 67:245-65. [PMID: 25735864 DOI: 10.1016/bs.acc.2014.09.008] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Fibulins are a group of extracellular matrix proteins of which many are present in high amounts in the cardiovascular system. They share common biochemical properties and are often found in relation to basement membranes or elastic fibers. Observations in humans with specific mutations in fibulin genes, together with results from genetically engineered mice and data from human cardiovascular tissue suggest that the fibulin family of proteins play important functional roles in the cardiovascular system. Moreover, fibulin-1 circulates in high concentrations in plasma and may function as a cardiovascular disease marker.
Collapse
Affiliation(s)
- Claudia Cangemi
- Department of Clinical Biochemistry and Pharmacology, Odense University Hospital, Odense, Denmark
| | - Maria Lyck Hansen
- Department of Clinical Biochemistry and Pharmacology, Odense University Hospital, Odense, Denmark
| | - William Scott Argraves
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Lars Melholt Rasmussen
- Department of Clinical Biochemistry and Pharmacology, Odense University Hospital, Odense, Denmark.
| |
Collapse
|
27
|
Rateri DL, Davis FM, Balakrishnan A, Howatt DA, Moorleghen JJ, O'Connor WN, Charnigo R, Cassis LA, Daugherty A. Angiotensin II induces region-specific medial disruption during evolution of ascending aortic aneurysms. THE AMERICAN JOURNAL OF PATHOLOGY 2014; 184:2586-95. [PMID: 25038458 DOI: 10.1016/j.ajpath.2014.05.014] [Citation(s) in RCA: 80] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2014] [Revised: 05/19/2014] [Accepted: 05/27/2014] [Indexed: 12/16/2022]
Abstract
Angiotensin II (Ang II) promotes development of ascending aortic aneurysms (AAs), but progression of this pathology is undefined. We evaluated factors potentially involved in progression, and determined the temporal sequence of tissue changes during development of Ang II-induced ascending AAs. Ang II infusion into C57BL/6J mice promoted rapid expansion of the ascending aorta, with significant increases within 5 days, as determined by both in vivo ultrasonography and ex vivo sequential acquisition of tissues. Rates of expansion were not significantly different in LDL receptor-null mice fed a saturated fat-enriched diet, demonstrating a lack of effect of hypercholesterolemia. Augmenting systolic blood pressure with norepinephrine infusion had no significant effect on ascending aortic expansion. Pathological changes observed within 5 days of Ang II infusion included increased medial thickness and intramural hemorrhage characterized by erythrocyte extravasation in outer lamellar layers of the media. Intramedial hemorrhage was not observed after prolonged Ang II infusion, although partial medial disruption was present. Elastin fragmentation and transmural medial breaks of the ascending aorta were observed with continued Ang II infusion, which were restricted to anterior aspects. CD45(+) cells accumulated in adventitia but were minimal in media. Similar pathology was observed in tissues obtained from patients with ascending AAs. In conclusion, Ang II promotes ascending AAs through region-specific changes that are independent of hypercholesterolemia or systolic blood pressure.
Collapse
Affiliation(s)
- Debra L Rateri
- Saha Cardiovascular Research Center, University of Kentucky, Lexington, Kentucky
| | - Frank M Davis
- Saha Cardiovascular Research Center, University of Kentucky, Lexington, Kentucky
| | - Anju Balakrishnan
- Saha Cardiovascular Research Center, University of Kentucky, Lexington, Kentucky
| | - Deborah A Howatt
- Saha Cardiovascular Research Center, University of Kentucky, Lexington, Kentucky
| | - Jessica J Moorleghen
- Saha Cardiovascular Research Center, University of Kentucky, Lexington, Kentucky
| | | | - Richard Charnigo
- Department of Biostatistics, University of Kentucky, Lexington, Kentucky
| | - Lisa A Cassis
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, Kentucky
| | - Alan Daugherty
- Saha Cardiovascular Research Center, University of Kentucky, Lexington, Kentucky.
| |
Collapse
|
28
|
Papke CL, Yanagisawa H. Fibulin-4 and fibulin-5 in elastogenesis and beyond: Insights from mouse and human studies. Matrix Biol 2014; 37:142-9. [PMID: 24613575 DOI: 10.1016/j.matbio.2014.02.004] [Citation(s) in RCA: 102] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2014] [Revised: 02/25/2014] [Accepted: 02/26/2014] [Indexed: 01/03/2023]
Abstract
The fibulin family of extracellular matrix/matricellular proteins is composed of long fibulins (fibulin-1, -2, -6) and short fibulins (fibulin-3, -4, -5, -7) and is involved in protein-protein interaction with the components of basement membrane and extracellular matrix proteins. Fibulin-1, -2, -3, -4, and -5 bind the monomeric form of elastin (tropoelastin) in vitro and fibulin-2, -3, -4, and -5 are shown to be involved in various aspects of elastic fiber development in vivo. In particular, fibulin-4 and -5 are critical molecules for elastic fiber assembly and play a non-redundant role during elastic fiber formation. Despite manifestation of systemic elastic fiber defects in all elastogenic tissues, fibulin-5 null (Fbln5(-/-)) mice have a normal lifespan. In contrast, fibulin-4 null (Fbln4(-/-)) mice die during the perinatal period due to rupture of aortic aneurysms, indicating differential functions of fibulin-4 and fibulin-5 in normal development. In this review, we will update biochemical characterization of fibulin-4 and fibulin-5 and discuss their roles in elastogenesis and outside of elastogenesis based on knowledge obtained from loss-of-function studies in mouse and in human patients with FBLN4 or FBLN5 mutations. Finally, we will evaluate therapeutic options for matrix-related diseases.
Collapse
Affiliation(s)
- Christina L Papke
- Department of Molecular Biology, UT Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX 75390-9148, USA
| | - Hiromi Yanagisawa
- Department of Molecular Biology, UT Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX 75390-9148, USA.
| |
Collapse
|
29
|
Huang J, Yamashiro Y, Papke CL, Ikeda Y, Lin Y, Patel M, Inagami T, Le VP, Wagenseil JE, Yanagisawa H. Angiotensin-converting enzyme-induced activation of local angiotensin signaling is required for ascending aortic aneurysms in fibulin-4-deficient mice. Sci Transl Med 2014; 5:183ra58, 1-11. [PMID: 23636094 DOI: 10.1126/scitranslmed.3005025] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Aortic aneurysms are life-threatening and often associated with defects in connective tissues and mutations in smooth muscle cell (SMC) contractile proteins. Despite recent advances in understanding altered signaling in aneurysms of Marfan syndrome, the underlying mechanisms and options for pharmacological treatment for other forms of aneurysms are still under investigation. We previously showed in mice that deficiency in the fibulin-4 gene in vascular SMCs (Fbln4(SMKO)) leads to loss of the SMC contractile phenotype, hyperproliferation, and ascending aortic aneurysms. We report that abnormal up-regulation of angiotensin-converting enzyme (ACE) in SMCs and subsequent activation of angiotensin II (AngII) signaling are involved in the onset of aortic aneurysms in Fbln4(SMKO) mice. In this model, aneurysm formation was completely prevented by inhibition of the AngII pathway with losartan or captopril within a narrow therapeutic window during the first month of life, even though the altered mechanical properties of blood vessel walls were not reversed by the pharmacological treatment. The therapeutic effects of losartan in Fbln4(SMKO) mice do not require the AngII receptor type 2 (Agtr2) but likely require both type 1a (Agtr1a) and 1b (Agtr1b) receptors. The results indicate that fibulin-4 is a vascular matrix component required for regulation of local angiotensin signaling and development and maintenance of the SMC phenotype.
Collapse
Affiliation(s)
- Jianbin Huang
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390-9148
| | - Yoshito Yamashiro
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390-9148
| | - Christina L Papke
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390-9148
| | - Yuichi Ikeda
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX 75390-9148.,Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390-9050
| | - Yanling Lin
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390-9148
| | - Miteshkumar Patel
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390-9148
| | - Tadashi Inagami
- Department of Biochemistry, School of Medicine, Vanderbilt University, Nashville, TN 37235
| | - Victoria P Le
- Department of Biomedical Engineering, St. Louis University, St. Louis, MO 63103-2010
| | - Jessica E Wagenseil
- Department of Biomedical Engineering, St. Louis University, St. Louis, MO 63103-2010
| | - Hiromi Yanagisawa
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390-9148
| |
Collapse
|
30
|
Smooth muscle LDL receptor-related protein-1 deletion induces aortic insufficiency and promotes vascular cardiomyopathy in mice. PLoS One 2013; 8:e82026. [PMID: 24312398 PMCID: PMC3843717 DOI: 10.1371/journal.pone.0082026] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2013] [Accepted: 10/28/2013] [Indexed: 11/19/2022] Open
Abstract
Valvular disease is common in patients with Marfan syndrome and can lead to cardiomyopathy. However, some patients develop cardiomyopathy in the absence of hemodynamically significant valve dysfunction, suggesting alternative mechanisms of disease progression. Disruption of LDL receptor-related protein-1 (Lrp1) in smooth muscle cells has been shown to cause vascular pathologies similar to Marfan syndrome, with activation of smooth muscle cells, vascular dysfunction and aortic aneurysms. This study used echocardiography and blood pressure monitoring in mouse models to determine whether inactivation of Lrp1 in vascular smooth muscle leads to cardiomyopathy, and if so, whether the mechanism is a consequence of valvular disease. Hemodynamic changes during treatment with captopril were also assessed. Dilation of aortic roots was observed in young Lrp1-knockout mice and progressed as they aged, whereas no significant aortic dilation was detected in wild type littermates. Diastolic blood pressure was lower and pulse pressure higher in Lrp1-knockout mice, which was normalized by treatment with captopril. Aortic dilation was followed by development of aortic insufficiency and subsequent dilated cardiomyopathy due to valvular disease. Thus, smooth muscle cell Lrp1 deficiency results in aortic dilation and insufficiency that causes secondary cardiomyopathy that can be improved by captopril. These findings provide novel insights into mechanisms of cardiomyopathy associated with vascular activation and offer a new model of valvular cardiomyopathy.
Collapse
|
31
|
Sawyer SL, Dicke F, Kirton A, Rajapkse T, Rebeyka IM, McInnes B, Parboosingh JS, Bernier FP. Longer term survival of a child with autosomal recessive cutis laxa due to a mutation in FBLN4. Am J Med Genet A 2013; 161A:1148-53. [PMID: 23532871 DOI: 10.1002/ajmg.a.35827] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2012] [Accepted: 12/04/2012] [Indexed: 12/31/2022]
Abstract
Autosomal recessive cutis laxa (ARCL) is a clinically and genetically heterogeneous group of disorders characterized by loose, inelastic skin and variable systemic involvement and severity. Mutations in the FBLN4 gene are associated with ARCL1B. Fibulin-4 is important in elastic fiber formation and smooth muscle cell differentiation. We describe herein an 8-year-old boy who presented with severe aortic root dilatation and arterial tortuosity at 1 year of age which required surgical repair. His parents were consanguineous and there was a family history of three brothers who died early in life with an unknown type of connective tissue disorder in the 1960s. Both parents of the patient reported here were related to these three boys. We used a homozygosity mapping strategy with a 900K SNP array and identified FBLN4 as a candidate gene in an extended region of homozygosity. We sequenced this gene in the patient and identified a homozygous non-synonymous mutation at c.376G>A (p.Glu126Lys) in exon 5 that was predicted to be damaging. ARCL1B has most typically been associated with early demise but our report suggests that long-term survival is possible. With this longer term survival we are learning more about the natural history of this disorder, which includes baroreceptor reflex failure and low bone mineral density in this patient.
Collapse
Affiliation(s)
- Sarah L Sawyer
- Department of Medical Genetics, University of Ottawa, Ottawa, Ontario, Canada
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Chen X, Lu H, Rateri DL, Cassis LA, Daugherty A. Conundrum of angiotensin II and TGF-β interactions in aortic aneurysms. Curr Opin Pharmacol 2013; 13:180-5. [PMID: 23395156 DOI: 10.1016/j.coph.2013.01.002] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2012] [Revised: 01/04/2013] [Accepted: 01/07/2013] [Indexed: 02/08/2023]
Abstract
Angiotensin II (AngII) has been invoked as a principal mediator for the development and progression of both thoracic and abdominal aortic aneurysms. While there is consistency in experimental and clinical studies that overactivation of the renin angiotensin system promotes aortic aneurysm development, there are many unknowns regarding the mechanistic basis underlying AngII-induced aneurysms. Interactions of AngII with TGF-β in both thoracic and abdominal aortic aneurysms have been the focus of recent studies. While these studies have demonstrated profound effects of manipulating TGF-β activity on AngII-induced aortic aneurysms, they have also led to more questions regarding the interactions between AngII and this multifunctional cytokine. This review compiled the recent literature to provide insights into understanding the potentially complex interactions between AngII and TGF-β in the development of aortic aneurysms.
Collapse
Affiliation(s)
- Xiaofeng Chen
- Saha Cardiovascular Research Center, University of Kentucky, Lexington, KY 40536, United States
| | | | | | | | | |
Collapse
|
33
|
Abstract
The syncytium of cardiomyocytes in the heart is tethered within a matrix composed principally of type I fibrillar collagen. The matrix has diverse mechanical functions that ensure the optimal contractile efficiency of this muscular pump. In the diseased heart, cardiomyocytes are lost to necrotic cell death, and phenotypically transformed fibroblast-like cells-termed 'myofibroblasts'-are activated to initiate a 'reparative' fibrosis. The structural integrity of the myocardium is preserved by this scar tissue, although at the expense of its remodelled architecture, which has increased tissue stiffness and propensity to arrhythmias. A persisting population of activated myofibroblasts turns this fibrous tissue into a living 'secretome' that generates angiotensin II and its type 1 receptor, and fibrogenic growth factors (such as transforming growth factor-β), all of which collectively act as a signal-transducer-effector signalling pathway to type I collagen synthesis and, therefore, fibrosis. Persistent myofibroblasts, and the resultant fibrous tissue they produce, cause progressive adverse myocardial remodelling, a pathological hallmark of the failing heart irrespective of its etiologic origin. Herein, we review relevant cellular, subcellular, and molecular mechanisms integral to cardiac fibrosis and consequent remodelling of atria and ventricles with a heterogeneity in cardiomyocyte size. Signalling pathways that antagonize collagen fibrillogenesis provide novel strategies for cardioprotection.
Collapse
|
34
|
Involvement of the renin-angiotensin system in abdominal and thoracic aortic aneurysms. Clin Sci (Lond) 2012; 123:531-43. [PMID: 22788237 DOI: 10.1042/cs20120097] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Aortic aneurysms are relatively common maladies that may lead to the devastating consequence of aortic rupture. AAAs (abdominal aortic aneurysms) and TAAs (thoracic aortic aneurysms) are two common forms of aneurysmal diseases in humans that appear to have distinct pathologies and mechanisms. Despite this divergence, there are numerous and consistent demonstrations that overactivation of the RAS (renin-angiotensin system) promotes both AAAs and TAAs in animal models. For example, in mice, both AAAs and TAAs are formed during infusion of AngII (angiotensin II), the major bioactive peptide in the RAS. There are many proposed mechanisms by which the RAS initiates and perpetuates aortic aneurysms, including effects of AngII on a diverse array of cell types and mediators. These experimental findings are complemented in humans by genetic association studies and retrospective analyses of clinical data that generally support a role of the RAS in both AAAs and TAAs. Given the lack of a validated pharmacological therapy for any form of aortic aneurysm, there is a pressing need to determine whether the consistent findings on the role of the RAS in animal models are translatable to humans afflicted with these diseases. The present review compiles the recent literature that has shown the RAS as a critical component in the pathogenesis of aortic aneurysms.
Collapse
|
35
|
Doyle JJ, Gerber EE, Dietz HC. Matrix-dependent perturbation of TGFβ signaling and disease. FEBS Lett 2012; 586:2003-15. [PMID: 22641039 PMCID: PMC3426037 DOI: 10.1016/j.febslet.2012.05.027] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2012] [Revised: 05/13/2012] [Accepted: 05/15/2012] [Indexed: 02/07/2023]
Abstract
Transforming growth factor beta (TGFβ) is a multipotent cytokine that is sequestered in the extracellular matrix (ECM) through interactions with a number of ECM proteins. The ECM serves to concentrate latent TGFβ at sites of intended function, to influence the bioavailability and/or function of TGFβ activators, and perhaps to regulate the intrinsic performance of cell surface effectors of TGFβ signal propagation. The downstream consequences of TGFβ signaling cascades in turn provide feedback modulation of the ECM. This review covers recent examples of how genetic mutations in constituents of the ECM or TGFβ signaling cascade result in altered ECM homeostasis, cellular performance and ultimately disease, with an emphasis on emerging therapeutic strategies that seek to capitalize on this refined mechanistic understanding.
Collapse
|