1
|
Garcia de Leon R, Hodges TE, Brown HK, Bodnar TS, Galea LAM. Inflammatory signalling during the perinatal period: Implications for short- and long-term disease risk. Psychoneuroendocrinology 2025; 172:107245. [PMID: 39561569 DOI: 10.1016/j.psyneuen.2024.107245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 11/11/2024] [Accepted: 11/12/2024] [Indexed: 11/21/2024]
Abstract
During pregnancy and the postpartum, there are dynamic fluctuations in steroid and peptide hormone levels as well as inflammatory signalling. These changes are required for a healthy pregnancy and can persist well beyond the postpartum. Many of the same hormone and inflammatory signalling changes observed during the perinatal period also play a role in symptoms related to autoimmune disorders, psychiatric disorders, and perhaps neurodegenerative disease later in life. In this review, we outline hormonal and immunological shifts linked to pregnancy and the postpartum and discuss the possible role of these shifts in increasing psychiatric, neurodegenerative disease risk and autoimmune symptoms during and following pregnancy. Furthermore, we discuss how key variables such as the number of births (parity) and sex of the fetus can influence inflammatory signalling, and possibly future disease risk, but are not often studied. We conclude by discussing the importance of studying female experiences such as pregnancy and parenting on physiology and disease.
Collapse
Affiliation(s)
- Romina Garcia de Leon
- Centre for Addiction and Mental Health, Toronto, ON, Canada; University of Toronto, Toronto, ON, Canada
| | | | | | | | - Liisa A M Galea
- Centre for Addiction and Mental Health, Toronto, ON, Canada; University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
2
|
Dye CN, Webb AI, Fankhauser MP, Singleton JJ, Kalathil A, Ringland A, Leuner B, Lenz KM. Peripartum buprenorphine and oxycodone exposure impair maternal behavior and increase neuroinflammation in new mother rats. Brain Behav Immun 2025; 124:264-279. [PMID: 39612963 PMCID: PMC11793016 DOI: 10.1016/j.bbi.2024.11.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 11/06/2024] [Accepted: 11/22/2024] [Indexed: 12/01/2024] Open
Abstract
7 % of pregnant people use opioids. Opioid use during pregnancy can negatively impact maternal and offspring health. Medications for opioid use disorder (MOUD), commonly buprenorphine, are the recommended treatment for opioid use disorder during pregnancy to prevent cycles of withdrawal and relapse. In addition to effects on opioid receptors, opioids have strong binding affinity to toll-like receptor (TLR) 4, an immune cell receptor, and thereby impact neuroinflammatory signaling. We have previously shown that neuroimmune alterations are important for the display of maternal behavior. Here, we used a rodent model to assess the impact of chronic peripartum opioid exposure or MOUD on maternal caregiving and neuroinflammation in the postpartum brain. Female rats were exposed to vehicle (VEH), buprenorphine (BUP) to model MOUD, or oxycodone (OXY), to model peripartum drug use, before, during, and after pregnancy. Opioid exposure reduced gestation length and maternal weight gain. Postpartum maternal caretaking behaviors, including pup retrieval, huddling and nursing, and pup-directed sniffing and licking, were reduced in opioid-exposed mothers. Following behavioral testing, tissue was collected from brain regions important for maternal caretaking, including the prefrontal cortex (PFC), nucleus accumbens (NAc), preoptic area (POA), amygdala (AMY), and periaqueductal grey (PAG). Immunofluorescent labeling showed that BUP increased astrocyte labeling, while OXY increased microglia labeling in the PAG, but not other regions. Gene expression analysis also showed regional and treatment differences in immune transcripts. BUP and OXY increased TLR4 in the PFC. BUP increased TNF in the NAc but decreased IL1β in the POA. OXY increased CD68 in the POA, and IL1β, TNF, and TLR4 in the PAG. Together, these results provide novel evidence of peripartum neuroimmune alterations following chronic opioid exposure that could be mediating maternal care deficits. This work provides a foundation to explore the extent to which modulation of neuroimmune activation may be a potential intervention for caregiving deficits in mothers exposed to opioids during pregnancy.
Collapse
Affiliation(s)
- Courtney N Dye
- Neuroscience Graduate Program, The Ohio State University, Columbus, OH, USA; Department of Psychology, The Ohio State University, Columbus, OH, USA
| | - Aliyah I Webb
- Department of Psychology, The Ohio State University, Columbus, OH, USA
| | | | | | - Aravind Kalathil
- Neuroscience Graduate Program, The Ohio State University, Columbus, OH, USA
| | - Amanda Ringland
- Department of Psychology, The Ohio State University, Columbus, OH, USA
| | - Benedetta Leuner
- Neuroscience Graduate Program, The Ohio State University, Columbus, OH, USA; Department of Psychology, The Ohio State University, Columbus, OH, USA; Department of Neuroscience, The Ohio State University, Columbus, OH, USA
| | - Kathryn M Lenz
- Neuroscience Graduate Program, The Ohio State University, Columbus, OH, USA; Department of Psychology, The Ohio State University, Columbus, OH, USA; Department of Neuroscience, The Ohio State University, Columbus, OH, USA; Institute for Behavioral Medicine Research, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
3
|
Haimson B, Mizrahi A. Plasticity in auditory cortex during parenthood. Hear Res 2023; 431:108738. [PMID: 36931020 DOI: 10.1016/j.heares.2023.108738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 02/09/2023] [Accepted: 03/06/2023] [Indexed: 03/11/2023]
Abstract
Most animals display robust parental behaviors that support the survival and well-being of their offspring. The manifestation of parental behaviors is accompanied by physiological and hormonal changes, which affect both the body and the brain for better care giving. Rodents exhibit a behavior called pup retrieval - a stereotyped sequence of perception and action - used to identify and retrieve their newborn pups back to the nest. Pup retrieval consists of a significant auditory component, which depends on plasticity in the auditory cortex (ACx). We review the evidence of neural changes taking place in the ACx of rodents during the transition to parenthood. We discuss how the plastic changes both in and out of the ACx support the encoding of pup vocalizations. Key players in the mechanism of this plasticity are hormones and experience, both of which have a clear dynamic signature during the transition to parenthood. Mothers, co caring females, and fathers have been used as models to understand parental plasticity at disparate levels of organization. Yet, common principles of cortical plasticity and the biological mechanisms underlying its involvement in parental behavior are just beginning to be unpacked.
Collapse
Affiliation(s)
- Baruch Haimson
- The Edmond and Lily Safra Center for Brain Sciences, and 2Department of Neurobiology, The Hebrew University of Jerusalem, Jerusalem 91904, Israel.
| | - Adi Mizrahi
- The Edmond and Lily Safra Center for Brain Sciences, and 2Department of Neurobiology, The Hebrew University of Jerusalem, Jerusalem 91904, Israel.
| |
Collapse
|
4
|
Rurak GM, Woodside B, Aguilar-Valles A, Salmaso N. Astroglial cells as neuroendocrine targets in forebrain development: Implications for sex differences in psychiatric disease. Front Neuroendocrinol 2021; 60:100897. [PMID: 33359797 DOI: 10.1016/j.yfrne.2020.100897] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 12/05/2020] [Accepted: 12/15/2020] [Indexed: 12/23/2022]
Abstract
Astroglial cells are the most abundant cell type in the mammalian brain. They are implicated in almost every aspect of brain physiology, including maintaining homeostasis, building and maintaining the blood brain barrier, and the development and maturation of neuronal networks. Critically, astroglia also express receptors for gonadal sex hormones, respond rapidly to gonadal hormones, and are able to synthesize hormones. Thus, they are positioned to guide and mediate sexual differentiation of the brain, particularly neuronal networks in typical and pathological conditions. In this review, we describe astroglial involvement in the organization and development of the brain, and consider known sex differences in astroglial responses to understand how astroglial cell-mediated organization may play a role in forebrain sexual dimorphisms in human populations. Finally, we consider how sexually dimorphic astroglial responses and functions in development may lead to sex differences in vulnerability for neuropsychiatric disorders.
Collapse
Affiliation(s)
- Gareth M Rurak
- Department of Neuroscience, Carleton University, Ottawa, Ontario, Canada
| | - Barbara Woodside
- Department of Neuroscience, Carleton University, Ottawa, Ontario, Canada; Concordia University, Montreal, Quebec, Canada
| | | | - Natalina Salmaso
- Department of Neuroscience, Carleton University, Ottawa, Ontario, Canada.
| |
Collapse
|
5
|
Keller M, Vandenberg LN, Charlier TD. The parental brain and behavior: A target for endocrine disruption. Front Neuroendocrinol 2019; 54:100765. [PMID: 31112731 PMCID: PMC6708493 DOI: 10.1016/j.yfrne.2019.100765] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 05/15/2019] [Accepted: 05/17/2019] [Indexed: 12/25/2022]
Abstract
During pregnancy, the sequential release of progesterone, 17β-estradiol, prolactin, oxytocin and placental lactogens reorganize the female brain. Brain structures such as the medial preoptic area, the bed nucleus of the stria terminalis and the motivation network including the ventral tegmental area and the nucleus accumbens are reorganized by this specific hormonal schedule such that the future mother will be ready to provide appropriate care for her offspring right at parturition. Any disruption to this hormone pattern, notably by exposures to endocrine disrupting chemicals (EDC), is therefore likely to affect the maternal brain and result in maladaptive maternal behavior. Development effects of EDCs have been the focus of intense study, but relatively little is known about how the maternal brain and behavior are affected by EDCs. We encourage further research to better understand how the physiological hormone sequence prepares the mother's brain and how EDC exposure could disturb this reorganization.
Collapse
Affiliation(s)
- Matthieu Keller
- Laboratoire de Physiologie de la Reproduction & des Comportements, UMR 7247 INRA/CNRS/Université de Tours/IFCE, Nouzilly, France
| | - Laura N Vandenberg
- School of Public Health and Health Sciences, University of Massachusetts, Amherst, USA
| | - Thierry D Charlier
- Univ Rennes, Inserm, EHESP, Irset (Institut de Recherche en Santé, Environnement et Travail), UMR_S 1085, F-35000 Rennes, France.
| |
Collapse
|
6
|
Medina J, Workman JL. Maternal experience and adult neurogenesis in mammals: Implications for maternal care, cognition, and mental health. J Neurosci Res 2018; 98:1293-1308. [DOI: 10.1002/jnr.24311] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Revised: 07/07/2018] [Accepted: 07/11/2018] [Indexed: 01/02/2023]
Affiliation(s)
- Joanna Medina
- Department of Psychology and the Center for Neuroscience Research University at Albany, State University of New York New York
| | - Joanna L. Workman
- Department of Psychology and the Center for Neuroscience Research University at Albany, State University of New York New York
| |
Collapse
|
7
|
Simard S, Coppola G, Rudyk CA, Hayley S, McQuaid RJ, Salmaso N. Profiling changes in cortical astroglial cells following chronic stress. Neuropsychopharmacology 2018; 43:1961-1971. [PMID: 29907879 PMCID: PMC6046043 DOI: 10.1038/s41386-018-0105-x] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Revised: 04/12/2018] [Accepted: 05/08/2018] [Indexed: 12/21/2022]
Abstract
Recent studies have suggested that cortical astroglia play an important role in depressive-like behaviors. Potential astroglial contributions have been proposed based on their known neuroplastic functions, such as glutamate recycling and synaptic plasticity. However, the specific mechanisms by which astroglial cells may contribute or protect against a depressive phenotype remain unknown. To delineate astroglial changes that accompany depressive-like behavior, we used astroglial-specific bacTRAP mice exposed to chronic variable stress (CVS) and profiled the astroglial translatome using translating ribosome affinity purification (TRAP) in conjunction with RNAseq. As expected, CVS significantly increased anxiety- and depressive-like behaviors and corticosterone levels and decreased GFAP expression in astroglia, although this did not reflect a change in the total number of astroglial cells. TRAPseq results showed that CVS decreased genes associated with astroglial plasticity: RhoGTPases, growth factor signaling, and transcription regulation, and increased genes associated with the formation of extracellular matrices such as perineuronal nets (PNNs). PNNs inhibit neuroplasticity and astroglia contribute to the formation, organization, and maintenance of PNNs. To validate our TRAPseq findings, we showed an increase in PNNs following CVS. Degradation of PNNs in the prefrontal cortex of mice exposed to CVS reversed the CVS-induced behavioral phenotype in the forced swim test. These data lend further support to the neuroplasticity hypothesis of depressive behaviors and, in particular, extend this hypothesis beyond neuronal plasticity to include an overall decrease in genes associated with cortical astroglial plasticity following CVS. Further studies will be needed to assess the antidepressant potential of directly targeting astroglial cell function in models of depression.
Collapse
Affiliation(s)
- Stephanie Simard
- 0000 0004 1936 893Xgrid.34428.39Department of Neuroscience, Carleton University, Ottawa, ON Canada
| | - Gianfilippo Coppola
- 0000000419368710grid.47100.32Child Study Center, Yale University, New Haven, CT USA
| | - Christopher A. Rudyk
- 0000 0004 1936 893Xgrid.34428.39Department of Neuroscience, Carleton University, Ottawa, ON Canada
| | - Shawn Hayley
- 0000 0004 1936 893Xgrid.34428.39Department of Neuroscience, Carleton University, Ottawa, ON Canada
| | - Robyn J. McQuaid
- 0000 0001 1503 7525grid.414622.7The Royal Ottawa Hospital, Ottawa, ON Canada
| | - Natalina Salmaso
- Department of Neuroscience, Carleton University, Ottawa, ON, Canada. .,Child Study Center, Yale University, New Haven, CT, USA.
| |
Collapse
|
8
|
Pereira M. Structural and Functional Plasticity in the Maternal Brain Circuitry. New Dir Child Adolesc Dev 2017; 2016:23-46. [PMID: 27589496 DOI: 10.1002/cad.20163] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Parenting recruits a distributed network of brain structures (and neuromodulators) that coordinates caregiving responses attuned to the young's affect, needs, and developmental stage. Many of these structures and connections undergo significant structural and functional plasticity, mediated by the interplay between maternal hormones and social experience while the reciprocal relationship between the mother and her infant forms and develops. These alterations account for the remarkable behavioral plasticity of mothers. This review will examine the molecular and neurobiological modulation and plasticity through which parenting develops and adjusts in new mothers, primarily discussing recent findings in nonhuman animals. A better understanding of how parenting impacts the brain at the molecular, cellular, systems/network, and behavioral levels is likely to significantly contribute to novel strategies for treating postpartum neuropsychiatric disorders in new mothers, and critical for both the mother's physiological and mental health and the development and well-being of her young.
Collapse
|
9
|
Leuner B, Sabihi S. The birth of new neurons in the maternal brain: Hormonal regulation and functional implications. Front Neuroendocrinol 2016; 41:99-113. [PMID: 26969795 PMCID: PMC4942360 DOI: 10.1016/j.yfrne.2016.02.004] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Revised: 02/25/2016] [Accepted: 02/27/2016] [Indexed: 12/21/2022]
Abstract
The maternal brain is remarkably plastic and exhibits multifaceted neural modifications. Neurogenesis has emerged as one of the mechanisms by which the maternal brain exhibits plasticity. This review highlights what is currently known about peripartum-associated changes in adult neurogenesis and the underlying hormonal mechanisms. We also consider the functional consequences of neurogenesis in the peripartum brain and extent to which this process may play a role in maternal care, cognitive function and postpartum mood. Finally, while most work investigating the effects of parenting on adult neurogenesis has focused on mothers, a few studies have examined fathers and these results are also discussed.
Collapse
Affiliation(s)
- Benedetta Leuner
- The Ohio State University, Department of Psychology, Columbus, OH, USA; The Ohio State University, Department of Neuroscience, Columbus, OH, USA; The Ohio State University, Behavioral Neuroendocrinology Group, Columbus, OH, USA.
| | - Sara Sabihi
- The Ohio State University, Department of Psychology, Columbus, OH, USA
| |
Collapse
|
10
|
Zhao C, Gammie SC. Metabotropic glutamate receptor 3 is downregulated and its expression is shifted from neurons to astrocytes in the mouse lateral septum during the postpartum period. J Histochem Cytochem 2015; 63:417-26. [PMID: 25739438 DOI: 10.1369/0022155415578283] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Accepted: 02/27/2015] [Indexed: 12/11/2022] Open
Abstract
The inhibitory metabotropic glutamate receptor 3 (mGluR3) plays diverse and complex roles in brain function, including synaptic plasticity and neurotransmission. We recently found that mGluR3 is downregulated in the lateral septum (LS) of postpartum females using microarray and qPCR analysis. In this study, we used double fluorescence immunohistochemical approaches to characterize mGluR3 changes in LS of the postpartum brain. The number of mGluR3-immunoractive cells was significantly reduced in the dorsal (LSD) and intermediate (LSI) but not ventral (LSV) parts of the LS in postpartum versus virgin females. mGluR3 immunoreactivity in the LS was found predominantly in neurons (~70%), with a smaller portion (~20%-30%) in astrocytes. Colocalization analysis revealed a reduced mGluR3 expression in neurons but an increased astrocytic localization in postpartum LSI. This change in the pattern of expression suggests that mGluR3 expression is shifted from neurons to astrocytes in postpartum LS, and the decrease in mGluR3 is neuron-specific. Because mGluR3 is inhibitory and negatively regulates glutamate and GABA release, decreases in neuronal expression would increase glutamate and GABA signaling. Given our recent finding that ~90% of LS neurons are GABAergic, the present data suggest that decreases in mGluR3 are a mechanism for elevated GABA in LS in the postpartum state.
Collapse
Affiliation(s)
- Changjiu Zhao
- Department of Zoology, University of Wisconsin-Madison, Madison, Wisconsin (CZ, SCG)
| | - Stephen C Gammie
- Department of Zoology, University of Wisconsin-Madison, Madison, Wisconsin (CZ, SCG),Neuroscience Training Program, University of Wisconsin-Madison, Madison, Wisconsin (SCG)
| |
Collapse
|
11
|
Harshaw C. Interoceptive dysfunction: toward an integrated framework for understanding somatic and affective disturbance in depression. Psychol Bull 2015; 141:311-363. [PMID: 25365763 PMCID: PMC4346391 DOI: 10.1037/a0038101] [Citation(s) in RCA: 193] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Depression is characterized by disturbed sleep and eating, a variety of other nonspecific somatic symptoms, and significant somatic comorbidities. Why there is such close association between cognitive and somatic dysfunction in depression is nonetheless poorly understood. An explosion of research in the area of interoception-the perception and interpretation of bodily signals-over the last decade nonetheless holds promise for illuminating what have until now been obscure links between the social, cognitive-affective, and somatic features of depression. This article reviews rapidly accumulating evidence that both somatic signaling and interoception are frequently altered in depression. This includes comparative studies showing vagus-mediated effects on depression-like behaviors in rodent models as well as studies in humans indicating both dysfunction in the neural substrates for interoception (e.g., vagus, insula, anterior cingulate cortex) and reduced sensitivity to bodily stimuli in depression. An integrative framework for organizing and interpreting this evidence is put forward which incorporates (a) multiple potential pathways to interoceptive dysfunction; (b) interaction with individual, gender, and cultural differences in interoception; and (c) a developmental psychobiological systems perspective, emphasizing likely differential susceptibility to somatic and interoceptive dysfunction across the lifespan. Combined with current theory and evidence, it is suggested that core symptoms of depression (e.g., anhedonia, social deficits) may be products of disturbed interoceptive-exteroceptive integration. More research is nonetheless needed to fully elucidate the relationship between mind, body, and social context in depression.
Collapse
|
12
|
Glutamate, GABA, and glutamine are synchronously upregulated in the mouse lateral septum during the postpartum period. Brain Res 2014; 1591:53-62. [PMID: 25451092 DOI: 10.1016/j.brainres.2014.10.023] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2014] [Revised: 09/26/2014] [Accepted: 10/13/2014] [Indexed: 01/12/2023]
Abstract
Dramatic structural and functional remodeling occurs in the postpartum brain for the establishment of maternal care, which is essential for the growth and development of young offspring. Glutamate and GABA signaling are critically important in modulating multiple behavioral performances. Large scale signaling changes occur in the postpartum brain, but it is still not clear to what extent the neurotransmitters glutamate and GABA change and whether the ratio of glutamate/GABA remains balanced. In this study, we examined the glutamate/GABA-glutamine cycle in the lateral septum (LS) of postpartum female mice. In postpartum females (relative to virgins), tissue levels of glutamate and GABA were elevated in LS and increased mRNA was found for the respective enzymes producing glutamate and GABA, glutaminase (Gls) and glutamate decarboxylase 1 and 2 (Gad1 and Gad2). The common precursor, glutamine, was elevated as was the enzyme that produces it, glutamate-ammonia ligase (Glul). Additionally, glutamate, GABA, and glutamine were positively correlated and the glutamate/GABA ratio was almost identical in the postpartum and virgin females. Collectively, these findings indicate that glutamate and GABA signaling are increased and that the ratio of glutamate/GABA is well balanced in the maternal LS. The postpartum brain may provide a useful model system for understanding how glutamate and GABA are linked despite large signaling changes. Given that some mental health disorders, including depression and schizophrenia display dysregulated glutamate/GABA ratio, and there is increased vulnerability to mental disorders in mothers, it is possible that these postpartum disorders emerge when glutamate and GABA changes are not properly coordinated.
Collapse
|
13
|
Olza-Fernández I, Marín Gabriel MA, Gil-Sanchez A, Garcia-Segura LM, Arevalo MA. Neuroendocrinology of childbirth and mother-child attachment: the basis of an etiopathogenic model of perinatal neurobiological disorders. Front Neuroendocrinol 2014; 35:459-72. [PMID: 24704390 DOI: 10.1016/j.yfrne.2014.03.007] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2013] [Revised: 03/17/2014] [Accepted: 03/24/2014] [Indexed: 12/15/2022]
Abstract
This review focuses on the neuroendocrine mechanisms in the mother and the newborn that are involved in the generation and consolidation of mother-child attachment. The role that different hormones and neurotransmitters play on the regulation of these mechanisms during parturition, the immediate postpartum period and lactation is discussed. Interferences in the initiation of mother-child attachment may have potential long-term effects for the behavior and affection of the newborn. Therefore, the possible consequences of alterations in the physiological neuroendocrine mechanisms of attachment, caused by elective Cesarean section, intrapartum hormonal manipulations, preterm delivery, mother-infant postpartum separation and bottle-feeding instead of breastfeeding are also discussed.
Collapse
Affiliation(s)
- Ibone Olza-Fernández
- Department of Psychiatry, Autonomous University of Madrid, Hospital Universitario Puerta de Hierro Majadahonda, Madrid, Spain
| | | | - Alfonso Gil-Sanchez
- Unidad Docente de Salud Mental de la Región de Murcia, Hospital General Universitario Santa María del Rosell de Cartagena, Murcia, Spain
| | | | | |
Collapse
|
14
|
Stolzenberg DS, Stevens JS, Rissman EF. Histone deacetylase inhibition induces long-lasting changes in maternal behavior and gene expression in female mice. Endocrinology 2014; 155:3674-83. [PMID: 24932804 PMCID: PMC4138561 DOI: 10.1210/en.2013-1946] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
In many species, including mice, maternal responsiveness is experience-dependent and permanent, lasting for long periods (months to years). We have shown that after brief exposures to pups, virgin female mice continue to respond maternally toward pups for at least one month. Administration of a histone deacetylase inhibitor (HDACi) reduces the amount of maternal experience required to affect maternal behavior and gene expression. In this set of studies, we examined the epigenetic mechanisms that underlie these motivated behaviors. We assessed whether the effects of HDACi persisted 1 month after the initial experience (in the absence of continued pup experience or HDACi treatment) and whether the maintenance of maternal memory was associated with stable changes in gene expression. Using chromatin immunoprecipitation, we examined whether Esr2 and Oxt gene expression might be mediated by recruitment of the histone acetyltransferase cAMP response element binding protein (CBP) to their promoter regions after maternal memory consolidation. We report that HDACi treatment induced long-lasting changes in maternal responsiveness. Maternal learning was associated with increased recruitment of CBP to the Esr2 and Oxt gene promoters during the consolidation of maternal memory as well as a persistent increase in estrogen receptor-β (Esr2) mRNA and decreased expression of the de novo DNA methyltransferase Dnmt3a within the medial preoptic area. The consolidation of the maternal experience may involve the CBP recruitment and stable changes in gene expression, which maintain increased maternal responsiveness for long periods of time.
Collapse
Affiliation(s)
- Danielle S Stolzenberg
- Department of Psychology (D.S.S.), University of California, Davis, Davis, California 95616; and Department of Biochemistry and Molecular Genetics (J.S.S., E.F.R.), University of Virginia School of Medicine, Charlottesville, Virginia 22908
| | | | | |
Collapse
|
15
|
González-Arenas A, Piña-Medina AG, González-Flores O, Galván-Rosas A, Camacho-Arroyo I. Sex hormones and expression pattern of cytoskeletal proteins in the rat brain throughout pregnancy. J Steroid Biochem Mol Biol 2014; 139:154-8. [PMID: 23318880 DOI: 10.1016/j.jsbmb.2013.01.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2012] [Revised: 12/20/2012] [Accepted: 01/04/2013] [Indexed: 10/27/2022]
Abstract
Pregnancy involves diverse changes in brain function that implicate a re-organization in neuronal cytoskeleton. In this physiological state, the brain is in contact with several hormones that it has never been exposed, as well as with very high levels of hormones that the brain has been in touch throughout life. Among the latter hormones are progesterone and estradiol which regulate several brain functions, including learning, memory, neuroprotection, and the display of sexual and maternal behavior. These functions involve changes in the structure and organization of neurons and glial cells that require the participation of cytoskeletal proteins whose expression and activity is regulated by estradiol and progesterone. We have found that the expression pattern of Microtubule Associated Protein 2, Tau, and Glial Fibrillary Acidic Protein changes in a tissue-specific manner in the brain of the rat throughout gestation and the start of lactation, suggesting that these proteins participate in the plastic changes observed in the brain during pregnancy. This article is part of a Special Issue entitled 'Pregnancy and Steroids'.
Collapse
Affiliation(s)
- Aliesha González-Arenas
- Facultad de Química, Departamento de Biología, Universidad Nacional Autónoma de México, Ciudad Universitaria, Coyoacán 04510, México, D.F., México
| | | | | | | | | |
Collapse
|
16
|
Laeger T, Sauerwein H, Tuchscherer A, Bellmann O, Metges C, Kuhla B. Concentrations of hormones and metabolites in cerebrospinal fluid and plasma of dairy cows during the periparturient period. J Dairy Sci 2013; 96:2883-93. [DOI: 10.3168/jds.2012-5909] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2012] [Accepted: 01/09/2013] [Indexed: 01/18/2023]
|
17
|
Use of biotinylated ubiquitin for analysis of rat brain mitochondrial proteome and interactome. Int J Mol Sci 2012; 13:11593-11609. [PMID: 23109873 PMCID: PMC3472765 DOI: 10.3390/ijms130911593] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2012] [Revised: 08/22/2012] [Accepted: 09/03/2012] [Indexed: 11/16/2022] Open
Abstract
Applicability of in vitro biotinylated ubiquitin for evaluation of endogenous ubiquitin conjugation and analysis of ubiquitin-associated protein-protein interactions has been investigated. Incubation of rat brain mitochondria with biotinylated ubiquitin followed by affinity chromatography on avidin-agarose, intensive washing, tryptic digestion of proteins bound to the affinity sorbent and their mass spectrometry analysis resulted in reliable identification of 50 proteins belonging to mitochondrial and extramitochondrial compartments. Since all these proteins were bound to avidin-agarose only after preincubation of the mitochondrial fraction with biotinylated ubiquitin, they could therefore be referred to as specifically bound proteins. A search for specific ubiquitination signature masses revealed several extramitochondrial and intramitochondrial ubiquitinated proteins representing about 20% of total number of proteins bound to avidin-agarose. The interactome analysis suggests that the identified non-ubiquitinated proteins obviously form tight complexes either with ubiquitinated proteins or with their partners and/or mitochondrial membrane components. Results of the present study demonstrate that the use of biotinylated ubiquitin may be considered as the method of choice for in vitro evaluation of endogenous ubiquitin-conjugating machinery in particular subcellular organelles and changes in ubiquitin/organelle associated interactomes. This may be useful for evaluation of changes in interactomes induced by protein ubiquitination under norm and various brain pathologies.
Collapse
|
18
|
Dendritic morphology in the striatum and hypothalamus differentially exhibits experience-dependent changes in response to maternal care and early social isolation. Behav Brain Res 2012; 233:79-89. [DOI: 10.1016/j.bbr.2012.04.048] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2011] [Revised: 04/26/2012] [Accepted: 04/28/2012] [Indexed: 01/06/2023]
|
19
|
Ballesteros-Yáñez I, Castillo CA, Amo-Salas M, Albasanz JL, Martín M. Differential Effect of Caffeine Consumption on Diverse Brain Areas of Pregnant Rats. JOURNAL OF CAFFEINE RESEARCH 2012; 2:90-98. [PMID: 24761269 DOI: 10.1089/jcr.2012.0011] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND It has previously been shown that during gestation, the mother's brain has an increase in glial fibrillary acidic protein (GFAP)-immunoreactivity (-ir) and a decrease in the mRNA level of A1 adenosine receptor. Little is known about the A2A adenosine receptor in the maternal brain, and whether caffeine consumption throughout gestational period modifies GFAP and adenosine receptor density in specific brain areas. This study was undertaken to investigate the protein density of GFAP and adenosine receptors (A1 and A2A subtypes) in different regions of pregnant rat brain and the possible effect of caffeine on these proteins. METHODS For this purpose, we examined the GFAP-, A1- and A2A-ir in the cingulate cortex (Cg2), dentate gyrus (DG), medial preoptic area (mPOA), secondary somatosensory cortex (S2), and striatum (Str) of pregnant Wistar rats (drug-free tap water or water with 1g/L diluted caffeine). RESULTS We show a consistent and highly significant reduction of GFAP-ir in caffeine-treated pregnant rats in most of the areas analyzed. Our data demonstrate that caffeine consumption induces a significant increase of A2A-ir in Str. Concerning A1 receptor, the observed changes are dependent on the region analyzed; this receptor density is increased in Cg2, DG, and mPOA and decreased in the somatosensory cortex and Str. The results were confirmed by Western blotting. CONCLUSIONS Our results suggest that chronic caffeine exposure could modify the physiolological situation of gestation by a reorganization of the neural circuits and the adenosine neuromodulator system.
Collapse
Affiliation(s)
- Inmaculada Ballesteros-Yáñez
- Department of Inorganic and Organic Chemistry and Biochemistry, Faculty of Medicine, Regional Center of Biomedical Research, University of Castilla-La Mancha , Ciudad Real, Spain . ; Department of Inorganic and Organic Chemistry and Biochemistry, Chemistry Faculty, Regional Center of Biomedical Research, University of Castilla-La Mancha , Ciudad Real, Spain
| | - Carlos Alberto Castillo
- Department of Inorganic and Organic Chemistry and Biochemistry, Chemistry Faculty, Regional Center of Biomedical Research, University of Castilla-La Mancha , Ciudad Real, Spain . ; Department of Nursing, Faculty of Nursing, Occupational and Speech Therapies, University of Castilla-La Mancha , Talavera de la Reina, Spain
| | - Mariano Amo-Salas
- Department of Mathematics, Faculty of Medicine, University of Castilla-La Mancha , Ciudad Real, Spain
| | - José Luis Albasanz
- Department of Inorganic and Organic Chemistry and Biochemistry, Faculty of Medicine, Regional Center of Biomedical Research, University of Castilla-La Mancha , Ciudad Real, Spain . ; Department of Inorganic and Organic Chemistry and Biochemistry, Chemistry Faculty, Regional Center of Biomedical Research, University of Castilla-La Mancha , Ciudad Real, Spain
| | - Mairena Martín
- Department of Inorganic and Organic Chemistry and Biochemistry, Faculty of Medicine, Regional Center of Biomedical Research, University of Castilla-La Mancha , Ciudad Real, Spain . ; Department of Inorganic and Organic Chemistry and Biochemistry, Chemistry Faculty, Regional Center of Biomedical Research, University of Castilla-La Mancha , Ciudad Real, Spain
| |
Collapse
|