1
|
Gopalakrishnan S, Jayapal P, John J. Pneumococcal surface proteins as targets for next-generation vaccines: Addressing the challenges of serotype variation. Diagn Microbiol Infect Dis 2025; 113:116870. [PMID: 40347702 DOI: 10.1016/j.diagmicrobio.2025.116870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 04/20/2025] [Accepted: 04/27/2025] [Indexed: 05/14/2025]
Abstract
Streptococcus pneumoniae is a major global pathogen causing significant morbidity and mortality, particularly among children, the elderly, and immunocompromised populations. While pneumococcal conjugate vaccines (PCVs) have successfully reduced invasive pneumococcal disease (IPD), challenges such as serotype replacement and non-encapsulated strains necessitate serotype-independent vaccine strategies. Pneumococcal surface proteins, including pneumolysin (Ply), choline-binding proteins (CBPs), and histidine triad proteins (PHTs), represent promising universal vaccine targets due to their conserved nature and roles in adhesion, immune evasion, and biofilm formation. Advances in protein engineering, such as detoxified Ply derivatives and multivalent formulations incorporating PhtD and PspA, demonstrate potential in preclinical studies. Novel technologies, including reverse vaccinology and extracellular vesicle-based platforms, further accelerate innovation. This review highlights recent progress in pneumococcal surface protein research, emphasizing their potential to address the limitations of PCVs and mitigate antibiotic-resistant pneumococcal strains, representing a transformative approach to global pneumococcal disease prevention.
Collapse
Affiliation(s)
- Sangeetha Gopalakrishnan
- Department of Medical Laboratory Technology, School of Allied Health Science, Sathyabama Institute of Science and Technology, Chennai, India; Division of Laboratories, Biochemistry & Hematology Section, Central Leprosy Teaching and Research Institute, Chengalpattu, India
| | - Premkumar Jayapal
- Department of Medical Laboratory Technology, School of Allied Health Science, Sathyabama Institute of Science and Technology, Chennai, India; School of Bio & Chemical Engineering, Department of Biomedical Engineering, Sathyabama Institute of Science and Technology, Chennai, India.
| | - James John
- Department of Medical Laboratory Technology, School of Allied Health Science, Sathyabama Institute of Science and Technology, Chennai, India.
| |
Collapse
|
2
|
Gonçalves VM. Novel processes to obtain pneumococcal surface proteins for vaccines. Appl Microbiol Biotechnol 2025; 109:90. [PMID: 40210776 PMCID: PMC11985572 DOI: 10.1007/s00253-025-13440-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Revised: 02/11/2025] [Accepted: 02/18/2025] [Indexed: 04/12/2025]
Abstract
Current pneumococcal vaccines are based on the protection offered by capsular polysaccharides from only a few from > 100 serotypes; therefore, serotype-independent vaccines composed of pneumococcal surface proteins are being developed. Despite the immense number of publications on the discovery, characterization, and evaluation of new pneumococcal vaccine candidates, there are very few that describe the bioprocess development, which is an essential step to generate material for pre-clinical and clinical tests, to obtain enough protein amount for physical-chemical, biochemical, and biological characterization, and to understand critical product and process attributes. Here, aspects of production and purification processes of pneumococcal surface proteins are reviewed, the most common bioreactor cultivation strategies are discussed, and important features of the purification process are explored to bring new insights about the correlation between protein structure and chromatography. The process development oriented to an industrial scale is an essential step for the success of novel protein-based pneumococcal vaccines and can preclude problems that could be hardly identified at flask scale production. Moreover, the early bioprocess development should favor a smooth scale-up and transfer of the process to GMP facilities for future production of new pneumococcal vaccines. KEY POINTS: • Early bioprocess development is crucial to advancing pneumococcal protein vaccines. • Bioreactor cultivation can help to identify possible process bottlenecks. • Structural features of similar proteins can orient purification process development.
Collapse
Affiliation(s)
- Viviane Maimoni Gonçalves
- Laboratory of Vaccine Development, Instituto Butantan, Av Vital Brasil 1500, 05503-900, Sao Paulo, Brazil.
| |
Collapse
|
3
|
Ren JY, Yu HQ, Xu S, Zhou WJ, Liu ZH. Putative pathogenic factors underlying Streptococcus oralis opportunistic infections. JOURNAL OF MICROBIOLOGY, IMMUNOLOGY, AND INFECTION = WEI MIAN YU GAN RAN ZA ZHI 2025; 58:157-163. [PMID: 39261123 DOI: 10.1016/j.jmii.2024.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 08/08/2024] [Accepted: 09/03/2024] [Indexed: 09/13/2024]
Abstract
Streptococcus oralis, belonging to the viridans group streptococci (VGS), has been considered a component of the normal flora predominantly inhabiting the oral cavity. In recent years, a growing body of literature has revealed that dental procedures or daily tooth brushing activities can cause the spread of S. oralis from the oral cavity into various body sites leading to life-threatening opportunistic infections such as infective endocarditis (IE) and meningitis. However, very little is currently known about the pathogenicity of S. oralis. Thus, the aim of this review is to update the current understanding of the pathogenic potential of S. oralis to pave the way for the prevention and treatment of S. oralis opportunistic infections.
Collapse
Affiliation(s)
- Jing-Yi Ren
- Department of Implantology, Yantai Stomatological Hospital Affiliated to Binzhou Medical University, Yantai, China; School of Stomatology, Binzhou Medical University, Yantai, China
| | - Hong-Qiang Yu
- Department of Stomatology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Sheng Xu
- Department of Implantology, Yantai Stomatological Hospital Affiliated to Binzhou Medical University, Yantai, China
| | - Wen-Juan Zhou
- Department of Implantology, Yantai Stomatological Hospital Affiliated to Binzhou Medical University, Yantai, China; Yantai Engineering Research Center for Digital Technology of Stomatology, Yantai, China; Characteristic Laboratories of Colleges and Universities in Shandong Province for Digital Stomatology, Yantai, China.
| | - Zhong-Hao Liu
- Department of Implantology, Yantai Stomatological Hospital Affiliated to Binzhou Medical University, Yantai, China; School of Stomatology, Binzhou Medical University, Yantai, China; Yantai Engineering Research Center for Digital Technology of Stomatology, Yantai, China; Characteristic Laboratories of Colleges and Universities in Shandong Province for Digital Stomatology, Yantai, China
| |
Collapse
|
4
|
Liu Y, Wong CC, Ding Y, Gao M, Wen J, Lau HCH, Cheung AHK, Huang D, Huang H, Yu J. Peptostreptococcus anaerobius mediates anti-PD1 therapy resistance and exacerbates colorectal cancer via myeloid-derived suppressor cells in mice. Nat Microbiol 2024; 9:1467-1482. [PMID: 38750176 PMCID: PMC11153135 DOI: 10.1038/s41564-024-01695-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 04/04/2024] [Indexed: 06/07/2024]
Abstract
Bacteria such as the oral microbiome member Peptostreptococcus anaerobius can exacerbate colorectal cancer (CRC) development. Little is known regarding whether these immunomodulatory bacteria also affect antitumour immune checkpoint blockade therapy. Here we show that administration of P. anaerobius abolished the efficacy of anti-PD1 therapy in mouse models of CRC. P. anaerobius both induced intratumoral myeloid-derived suppressor cells (MDSCs) and stimulated their immunosuppressive activities to impair effective T cell responses. Mechanistically, P. anaerobius administration activated integrin α2β1-NF-κB signalling in CRC cells to induce secretion of CXCL1 and recruit CXCR2+ MDSCs into tumours. The bacterium also directly activated immunosuppressive activity of intratumoral MDSCs by secreting lytC_22, a protein that bound to the Slamf4 receptor on MDSCs and promoted ARG1 and iNOS expression. Finally, therapeutic targeting of either integrin α2β1 or the Slamf4 receptor were revealed as promising strategies to overcome P. anaerobius-mediated resistance to anti-PD1 therapy in CRC.
Collapse
Affiliation(s)
- Yali Liu
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong, China
| | - Chi Chun Wong
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong, China
| | - Yanqiang Ding
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong, China
| | - Mengxue Gao
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
| | - Jun Wen
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong, China
| | - Harry Cheuk-Hay Lau
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong, China
| | - Alvin Ho-Kwan Cheung
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
| | - Dan Huang
- Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - He Huang
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
| | - Jun Yu
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong, China.
| |
Collapse
|
5
|
George JL, Agbavor C, Cabo LF, Cahoon LA. Streptococcus pneumoniae secretion chaperones PrsA, SlrA, and HtrA are required for competence, antibiotic resistance, colonization, and invasive disease. Infect Immun 2024; 92:e0049023. [PMID: 38226817 PMCID: PMC10863415 DOI: 10.1128/iai.00490-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 12/19/2023] [Indexed: 01/17/2024] Open
Abstract
Streptococcus pneumoniae is a Gram-positive bacterium and a significant health threat with the populations most at risk being children, the elderly, and the immuno-compromised. To colonize and transition into an invasive infectious organism, S. pneumoniae secretes virulence factors that are translocated across the bacterial membrane and destined for surface exposure, attachment to the cell wall, or secretion into the host. The surface exposed protein chaperones PrsA, SlrA, and HtrA facilitate S. pneumoniae protein secretion; however, the distinct roles contributed by each of these secretion chaperones have not been well defined. Tandem Mass-Tagged Mass Spectrometry and virulence, adhesion, competence, and cell wall integrity assays were used to interrogate the individual and collective contributions of PrsA, SlrA, and HtrA to multiple aspects of S. pneumoniae physiology and virulence. PrsA, SlrA, and HtrA were found to play critical roles in S. pneumoniae host cell infection and competence, and the absence of each of these secretion chaperones significantly altered the S. pneumoniae secretome in distinct ways. PrsA and SlrA were additionally found to contribute to cell wall assembly and resistance to cell wall-active antimicrobials and were important for enabling S. pneumoniae host cell adhesion during colonization and invasive infection. These findings serve to further illustrate the pivotal contributions of PrsA, SlrA, and HtrA to S. pneumoniae protein secretion and virulence.
Collapse
Affiliation(s)
- Jada L. George
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Charles Agbavor
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Leah F. Cabo
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Laty A. Cahoon
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
6
|
Bazant J, Ott B, Hudel M, Hain T, Lucas R, Mraheil MA. Impact of Endogenous Pneumococcal Hydrogen Peroxide on the Activity and Release of Pneumolysin. Toxins (Basel) 2023; 15:593. [PMID: 37888624 PMCID: PMC10611280 DOI: 10.3390/toxins15100593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 09/21/2023] [Accepted: 09/26/2023] [Indexed: 10/28/2023] Open
Abstract
Streptococcus pneumoniae is the leading cause of community-acquired pneumonia. The pore-forming cholesterol-dependent cytolysin (CDC) pneumolysin (PLY) and the physiological metabolite hydrogen peroxide (H2O2) can greatly increase the virulence of pneumococci. Although most studies have focused on the contribution of both virulence factors to the course of pneumococcal infection, it is unknown whether or how H2O2 can affect PLY activity. Of note, S. pneumoniae exploits endogenous H2O2 as an intracellular signalling molecule to modulate the activity of several proteins. Here, we demonstrate that H2O2 negatively affects the haemolytic activity of PLY in a concentration-dependent manner. Prevention of cysteine-dependent sulfenylation upon substitution of the unique and highly conserved cysteine residue to serine in PLY significantly reduces the toxin's susceptibility to H2O2 treatment and completely abolishes the ability of DTT to activate PLY. We also detect a clear gradual correlation between endogenous H2O2 generation and PLY release, with decreased H2O2 production causing a decline in the release of PLY. Comparative transcriptome sequencing analysis of the wild-type S. pneumoniae strain and three mutants impaired in H2O2 production indicates enhanced expression of several genes involved in peptidoglycan (PG) synthesis and in the production of choline-binding proteins (CPBs). One explanation for the impact of H2O2 on PLY release is the observed upregulation of the PG bridge formation alanyltransferases MurM and MurN, which evidentially negatively affect the PLY release. Our findings shed light on the significance of endogenous pneumococcal H2O2 in controlling PLY activity and release.
Collapse
Affiliation(s)
- Jasmin Bazant
- Institute of Medical Microbiology, German Center for Infection Research, Partner Site Giessen-Marburg-Langen, Justus-Liebig University Giessen, Schubertstrasse 81, 35392 Giessen, Germany; (J.B.); (B.O.); (M.H.); (T.H.)
| | - Benjamin Ott
- Institute of Medical Microbiology, German Center for Infection Research, Partner Site Giessen-Marburg-Langen, Justus-Liebig University Giessen, Schubertstrasse 81, 35392 Giessen, Germany; (J.B.); (B.O.); (M.H.); (T.H.)
| | - Martina Hudel
- Institute of Medical Microbiology, German Center for Infection Research, Partner Site Giessen-Marburg-Langen, Justus-Liebig University Giessen, Schubertstrasse 81, 35392 Giessen, Germany; (J.B.); (B.O.); (M.H.); (T.H.)
| | - Torsten Hain
- Institute of Medical Microbiology, German Center for Infection Research, Partner Site Giessen-Marburg-Langen, Justus-Liebig University Giessen, Schubertstrasse 81, 35392 Giessen, Germany; (J.B.); (B.O.); (M.H.); (T.H.)
| | - Rudolf Lucas
- Vascular Biology Center, Department of Pharmacology and Toxicology and Division of Pulmonary Critical Care Medicine, Medical College of Georgia at Augusta University, Augusta, GA 30912, USA;
| | - Mobarak Abu Mraheil
- Institute of Medical Microbiology, German Center for Infection Research, Partner Site Giessen-Marburg-Langen, Justus-Liebig University Giessen, Schubertstrasse 81, 35392 Giessen, Germany; (J.B.); (B.O.); (M.H.); (T.H.)
| |
Collapse
|
7
|
Vilhena C, Du S, Battista M, Westermann M, Kohler T, Hammerschmidt S, Zipfel PF. The choline-binding proteins PspA, PspC, and LytA of Streptococcus pneumoniae and their interaction with human endothelial and red blood cells. Infect Immun 2023; 91:e0015423. [PMID: 37551971 PMCID: PMC10501214 DOI: 10.1128/iai.00154-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 06/23/2023] [Indexed: 08/09/2023] Open
Abstract
Streptococcus pneumoniae is a Gram-positive opportunistic pathogen that can colonize the upper respiratory tract. It is a leading cause of a wide range of infectious diseases, including community-acquired pneumonia and meningitis. Pneumococcal infections cause 1-2 million deaths per year, most of which occur in developing countries. Here, we focused on three choline-binding proteins (CBPs), i.e., PspC, PspA, and LytA. These pneumococcal proteins have different surface-exposed regions but share related choline-binding anchors. These surface-exposed pneumococcal proteins are in direct contact with host cells and have diverse functions. We explored the role of the three CBPs on adhesion and pathogenicity in a human host by performing relevant imaging and functional analyses, such as electron microscopy, confocal laser scanning microscopy, and functional quantitative assays, targeting biofilm formation and the hemolytic capacity of S. pneumoniae. In vitro biofilm formation assays and electron microscopy experiments were used to examine the ability of knockout mutant strains lacking the lytA, pspC, or pspA genes to adhere to surfaces. We found that LytA plays an important role in robust synthesis of the biofilm matrix. PspA and PspC appeared crucial for the hemolytic effects of S. pneumoniae on human red blood cells. Furthermore, all knockout mutants caused less damage to endothelial cells than wild-type bacteria, highlighting the significance of each CPB for the overall pathogenicity of S. pneumoniae. Hence, in addition to their structural function within the cell wall of S. pneumoniae, each of these three surface-exposed CBPs controls or mediates multiple steps during bacterial pathogenesis.
Collapse
Affiliation(s)
- Cláudia Vilhena
- Department of Infection Biology, Leibniz Institute for Natural Product Research and Infection Biology, Jena, Germany
| | - Shanshan Du
- Department of Infection Biology, Leibniz Institute for Natural Product Research and Infection Biology, Jena, Germany
| | - Miriana Battista
- Department of Infection Biology, Leibniz Institute for Natural Product Research and Infection Biology, Jena, Germany
| | - Martin Westermann
- Centre for Electron Microscopy, Jena University Hospital, Friedrich-Schiller-University of Jena, Jena, Germany
| | - Thomas Kohler
- Department of Molecular Genetics and Infection Biology, Center for Functional Genomics of Microbes, Interfaculty Institute for Genetics and Functional Genomics, University of Greifswald, Greifswald, Germany
| | - Sven Hammerschmidt
- Department of Molecular Genetics and Infection Biology, Center for Functional Genomics of Microbes, Interfaculty Institute for Genetics and Functional Genomics, University of Greifswald, Greifswald, Germany
| | - Peter F. Zipfel
- Department of Infection Biology, Leibniz Institute for Natural Product Research and Infection Biology, Jena, Germany
- Institute of Microbiology, Friedrich-Schiller-University, Jena, Germany
| |
Collapse
|
8
|
Martínez-Caballero S, Freton C, Molina R, Bartual SG, Gueguen-Chaignon V, Mercy C, Gago F, Mahasenan KV, Muñoz IG, Lee M, Hesek D, Mobashery S, Hermoso JA, Grangeasse C. Molecular basis of the final step of cell division in Streptococcus pneumoniae. Cell Rep 2023; 42:112756. [PMID: 37418323 PMCID: PMC10434722 DOI: 10.1016/j.celrep.2023.112756] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 05/13/2023] [Accepted: 06/21/2023] [Indexed: 07/09/2023] Open
Abstract
Bacterial cell-wall hydrolases must be tightly regulated during bacterial cell division to prevent aberrant cell lysis and to allow final separation of viable daughter cells. In a multidisciplinary work, we disclose the molecular dialogue between the cell-wall hydrolase LytB, wall teichoic acids, and the eukaryotic-like protein kinase StkP in Streptococcus pneumoniae. After characterizing the peptidoglycan recognition mode by the catalytic domain of LytB, we further demonstrate that LytB possesses a modular organization allowing the specific binding to wall teichoic acids and to the protein kinase StkP. Structural and cellular studies notably reveal that the temporal and spatial localization of LytB is governed by the interaction between specific modules of LytB and the final PASTA domain of StkP. Our data collectively provide a comprehensive understanding of how LytB performs final separation of daughter cells and highlights the regulatory role of eukaryotic-like kinases on lytic machineries in the last step of cell division in streptococci.
Collapse
Affiliation(s)
- Siseth Martínez-Caballero
- Department of Crystallography and Structural Biology, Instituto de Química-Física "Rocasolano," Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Céline Freton
- Molecular Microbiology and Structural Biochemistry, UMR 5086, Université de Lyon, CNRS, Lyon, France
| | - Rafael Molina
- Department of Crystallography and Structural Biology, Instituto de Química-Física "Rocasolano," Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Sergio G Bartual
- Department of Crystallography and Structural Biology, Instituto de Química-Física "Rocasolano," Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | | | - Chryslène Mercy
- Molecular Microbiology and Structural Biochemistry, UMR 5086, Université de Lyon, CNRS, Lyon, France
| | - Federico Gago
- Department of Biomedical Sciences & Instituto de Química Médica-CSIC Associated Unit, School of Medicine and Health Sciences, University of Alcalá, 28805 Alcalá de Henares, Spain
| | - Kiran V Mahasenan
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Inés G Muñoz
- Structural Biology Program, Spanish National Cancer Research Center (CNIO), 28029 Madrid, Spain
| | - Mijoon Lee
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Dusan Hesek
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Shahriar Mobashery
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Juan A Hermoso
- Department of Crystallography and Structural Biology, Instituto de Química-Física "Rocasolano," Consejo Superior de Investigaciones Científicas, Madrid, Spain.
| | - Christophe Grangeasse
- Molecular Microbiology and Structural Biochemistry, UMR 5086, Université de Lyon, CNRS, Lyon, France.
| |
Collapse
|
9
|
Yao H, Li G, Xiong X, Jin F, Li S, Xie X, Zhong D, Zhang R, Meng F, Yin Y, Jiao X. LygA retention on the surface of Listeria monocytogenes via its interaction with wall teichoic acid modulates bacterial homeostasis and virulence. PLoS Pathog 2023; 19:e1011482. [PMID: 37379353 DOI: 10.1371/journal.ppat.1011482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 06/13/2023] [Indexed: 06/30/2023] Open
Abstract
Wall teichoic acid (WTA) is the abundant cell wall-associated glycopolymer in Gram-positive bacteria, playing crucial roles in surface proteins retention, bacterial homeostasis, and virulence. Hypervirulent serovar (SV) 4h Listeria monocytogenes is a newly designated serotype with only galactosylated (Gal) type II WTA. Although the surface association of some proteins relies on the WTA glycosylation, the nature and function of the noncovalent interactions between cell wall-associated proteins and WTA are less known. In this study, we found Gal-WTA plays a key role in modulating the novel glycine-tryptophan (GW) domain-containing autolysin protein LygA through direct interactions. An SV 4h strain deficient in WTA galactosylation (XYSNΔgalT) showed a dramatic reduction of LygA on the cell surface, significantly decreasing the autolytic activity, impairing the bacterial colonization in colon and brain. Notably, we demonstrated LygA binds to Gal-WTA with high affinity through the GW domain and that the extent of binding increases with the number of GW domains. Moreover, we confirmed the direct Gal-dependent binding of the GW protein Auto from the type I WTA strain, which has no interaction with l-rhamnosylated WTA, indicating that the complexity of both WTA and GW proteins can affect the coordination patterns. Altogether, our findings suggest that both the glycosylation patterns of WTA and a fixed numbers of GW domains are closely associated with the retention of LygA on the cell surface, which facilitates L. monocytogenes infection by promoting bacteria colonization in intestine and brain.
Collapse
Affiliation(s)
- Hao Yao
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, China
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, MOA of China, Yangzhou, Jiangsu Province, China
- Joint International Research Laboratory of Agriculture and Agri-product Safety of the Ministry of Education, Yangzhou, Jiangsu Province, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou, Jiangsu Province, China
| | - Guo Li
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, China
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, MOA of China, Yangzhou, Jiangsu Province, China
- Joint International Research Laboratory of Agriculture and Agri-product Safety of the Ministry of Education, Yangzhou, Jiangsu Province, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou, Jiangsu Province, China
| | - Xianglian Xiong
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, China
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, MOA of China, Yangzhou, Jiangsu Province, China
- Joint International Research Laboratory of Agriculture and Agri-product Safety of the Ministry of Education, Yangzhou, Jiangsu Province, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou, Jiangsu Province, China
| | - Fanxin Jin
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, China
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, MOA of China, Yangzhou, Jiangsu Province, China
- Joint International Research Laboratory of Agriculture and Agri-product Safety of the Ministry of Education, Yangzhou, Jiangsu Province, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou, Jiangsu Province, China
| | - Sirui Li
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, China
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, MOA of China, Yangzhou, Jiangsu Province, China
- Joint International Research Laboratory of Agriculture and Agri-product Safety of the Ministry of Education, Yangzhou, Jiangsu Province, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou, Jiangsu Province, China
| | - Xinyu Xie
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, China
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, MOA of China, Yangzhou, Jiangsu Province, China
- Joint International Research Laboratory of Agriculture and Agri-product Safety of the Ministry of Education, Yangzhou, Jiangsu Province, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou, Jiangsu Province, China
| | - Dan Zhong
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, China
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, MOA of China, Yangzhou, Jiangsu Province, China
- Joint International Research Laboratory of Agriculture and Agri-product Safety of the Ministry of Education, Yangzhou, Jiangsu Province, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou, Jiangsu Province, China
| | - Renling Zhang
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, China
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, MOA of China, Yangzhou, Jiangsu Province, China
- Joint International Research Laboratory of Agriculture and Agri-product Safety of the Ministry of Education, Yangzhou, Jiangsu Province, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou, Jiangsu Province, China
| | - Fanzeng Meng
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, China
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, MOA of China, Yangzhou, Jiangsu Province, China
- Joint International Research Laboratory of Agriculture and Agri-product Safety of the Ministry of Education, Yangzhou, Jiangsu Province, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou, Jiangsu Province, China
| | - Yuelan Yin
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, China
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, MOA of China, Yangzhou, Jiangsu Province, China
- Joint International Research Laboratory of Agriculture and Agri-product Safety of the Ministry of Education, Yangzhou, Jiangsu Province, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou, Jiangsu Province, China
| | - Xin'an Jiao
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, China
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, MOA of China, Yangzhou, Jiangsu Province, China
- Joint International Research Laboratory of Agriculture and Agri-product Safety of the Ministry of Education, Yangzhou, Jiangsu Province, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou, Jiangsu Province, China
| |
Collapse
|
10
|
Gil E, Noursadeghi M, Brown JS. Streptococcus pneumoniae interactions with the complement system. Front Cell Infect Microbiol 2022; 12:929483. [PMID: 35967850 PMCID: PMC9366601 DOI: 10.3389/fcimb.2022.929483] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 07/08/2022] [Indexed: 11/21/2022] Open
Abstract
Host innate and adaptive immunity to infection with Streptococcus pneumoniae is critically dependent on the complement system, demonstrated by the high incidence of invasive S. pneumoniae infection in people with inherited deficiency of complement components. The complement system is activated by S. pneumoniae through multiple mechanisms. The classical complement pathway is activated by recognition of S. pneumoniae by C-reactive protein, serum amyloid P, C1q, SIGN-R1, or natural or acquired antibody. Some S. pneumoniae strains are also recognised by ficolins to activate the mannose binding lectin (MBL) activation pathway. Complement activation is then amplified by the alternative complement pathway, which can also be activated by S. pneumoniae directly. Complement activation results in covalent linkage of the opsonic complement factors C3b and iC3b to the S. pneumoniae surface which promote phagocytic clearance, along with complement-mediated immune adherence to erythrocytes, thereby protecting against septicaemia. The role of complement for mucosal immunity to S. pneumoniae is less clear. Given the major role of complement in controlling infection with S. pneumoniae, it is perhaps unsurprising that S. pneumoniae has evolved multiple mechanisms of complement evasion, including the capsule, multiple surface proteins, and the toxin pneumolysin. There is considerable variation between S. pneumoniae capsular serotypes and genotypes with regards to sensitivity to complement which correlates with ability to cause invasive infections. However, at present we only have a limited understanding of the main mechanisms causing variations in complement sensitivity between S. pneumoniae strains and to non-pathogenic streptococci.
Collapse
Affiliation(s)
- Eliza Gil
- Division of Infection and Immunity, University College London, London, United Kingdom
- *Correspondence: Eliza Gil,
| | - Mahdad Noursadeghi
- Division of Infection and Immunity, University College London, London, United Kingdom
| | - Jeremy S. Brown
- Division of Medicine, University College London, London, United Kingdom
| |
Collapse
|
11
|
Cao L, Li N, Dong Y, Yang XY, Liu J, He QY, Ge R, Sun X. SPD_0090 Negatively Contributes to Virulence of Streptococcus pneumoniae. Front Microbiol 2022; 13:896896. [PMID: 35770170 PMCID: PMC9234739 DOI: 10.3389/fmicb.2022.896896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 05/13/2022] [Indexed: 11/30/2022] Open
Abstract
In most bacteria, iron plays an important role in the survival of bacteria and the process of infection to the host. Streptococcus pneumoniae (S. pneumoniae) evolved three iron transporters (i.e., PiaABC, PiuABC, and PitABC) responsible for the transportation of three kinds of iron (i.e., ferrichrome, hemin, and ferric ion). Our previous study showed that both mRNA and protein levels of SPD_0090 were significantly upregulated in the ΔpiuA/ΔpiaA/ΔpitA triple mutant, but its detailed biological function is unknown. In this study, we constructed spd_0090 knockout and complement strain and found that the deletion of spd_0090 hinders bacterial growth. SPD_0090 is located on the cell membrane and affects the hemin utilization ability of S. pneumoniae. The cell infection model showed that the knockout strain had stronger invasion and adhesion ability. Notably, knockout of the spd_0090 gene resulted in an enhanced infection ability of S. pneumoniae in mice by increasing the expression of virulence factors. Furthermore, iTRAQ quantitative proteomics studies showed that the knockout of spd_0090 inhibited carbon metabolism and thus suppressed bacterial growth. Our study showed that SPD_0090 negatively regulates the virulence of S. pneumoniae.
Collapse
Affiliation(s)
- Linlin Cao
- MOE Key Laboratory of Tumor Molecular Biology and Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Nan Li
- MOE Key Laboratory of Tumor Molecular Biology and Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Yingshan Dong
- MOE Key Laboratory of Tumor Molecular Biology and Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Xiao-Yan Yang
- MOE Key Laboratory of Tumor Molecular Biology and Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Jiajia Liu
- MOE Key Laboratory of Tumor Molecular Biology and Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Qing-Yu He
- MOE Key Laboratory of Tumor Molecular Biology and Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou, China
- *Correspondence: Qing-Yu He,
| | - Ruiguang Ge
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
- Ruiguang Ge,
| | - Xuesong Sun
- MOE Key Laboratory of Tumor Molecular Biology and Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou, China
- Xuesong Sun,
| |
Collapse
|
12
|
Aceil J, Avci FY. Pneumococcal Surface Proteins as Virulence Factors, Immunogens, and Conserved Vaccine Targets. Front Cell Infect Microbiol 2022; 12:832254. [PMID: 35646747 PMCID: PMC9133333 DOI: 10.3389/fcimb.2022.832254] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 04/13/2022] [Indexed: 11/13/2022] Open
Abstract
Streptococcus pneumoniae is an opportunistic pathogen that causes over 1 million deaths annually despite the availability of several multivalent pneumococcal conjugate vaccines (PCVs). Due to the limitations surrounding PCVs along with an evolutionary rise in antibiotic-resistant and unencapsulated strains, conserved immunogenic proteins as vaccine targets continue to be an important field of study for pneumococcal disease prevention. In this review, we provide an overview of multiple classes of conserved surface proteins that have been studied for their contribution to pneumococcal virulence. Furthermore, we discuss the immune responses observed in response to these proteins and their promise as vaccine targets.
Collapse
|
13
|
Huang R, Feng H, Xu Z, Zhang N, Liu Y, Shao J, Shen Q, Zhang R. Identification of Adhesins in Plant Beneficial Rhizobacteria Bacillus velezensis SQR9 and Their Effect on Root Colonization. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2022; 35:64-72. [PMID: 34698535 DOI: 10.1094/mpmi-09-21-0234-r] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Probiotic Bacillus colonization of plant root surfaces has been reported to improve its beneficial effect. Chemotaxis, adhesion, aggregation, and biofilm formation are the four steps of root colonization by plant growth-promoting rhizobacteria (PGPRs). Compared with the other three well-studied processes, adhesion of PGPRs is less known. In this study, using mutant strains deleted for potential adhesin genes in PGPR strain Bacillus velezensis SQR9, adherence to both cucumber root surface and abiotic surface by those strains was evaluated. Results showed that deletion mutations ΔlytB, ΔV529_10500, ΔfliD, ΔyhaN, and ΔsacB reduced the adhesion to root surfaces, while, among them, only ΔfliD had significant defects in adhesion to abiotic surfaces (glass and polystyrene). In addition, B. velevzensis SQR9 mutants defective in adhesion to root surfaces showed a deficiency in rhizosphere colonization. Among the encoded proteins, FliD and YhaN played vital roles in root adhesion. This research systematically explored the potential adhesins in a well-studied PGPR strain and also indicated that adhesion progress was required for root colonization, which will help to enhance rhizosphere colonization and beneficial function of PGPRs in agricultural production.[Formula: see text] Copyright © 2021 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Rong Huang
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Nanjing Agricultural University, Nanjing 210095, Jiangsu, P.R. China
| | - Haichao Feng
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Nanjing Agricultural University, Nanjing 210095, Jiangsu, P.R. China
| | - Zhihui Xu
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Nanjing Agricultural University, Nanjing 210095, Jiangsu, P.R. China
| | - Nan Zhang
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Nanjing Agricultural University, Nanjing 210095, Jiangsu, P.R. China
| | - Yunpeng Liu
- Key Laboratory of Microbial Resources Collection and Preservation, Ministry of Agriculture, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, P.R. China
| | - Jiahui Shao
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Nanjing Agricultural University, Nanjing 210095, Jiangsu, P.R. China
| | - Qirong Shen
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Nanjing Agricultural University, Nanjing 210095, Jiangsu, P.R. China
| | - Ruifu Zhang
- Key Laboratory of Microbial Resources Collection and Preservation, Ministry of Agriculture, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, P.R. China
| |
Collapse
|
14
|
Martín-Galiano AJ, Escolano-Martínez MS, Corsini B, de la Campa AG, Yuste J. Immunization with SP_1992 (DiiA) Protein of Streptococcus pneumoniae Reduces Nasopharyngeal Colonization and Protects against Invasive Disease in Mice. Vaccines (Basel) 2021; 9:vaccines9030187. [PMID: 33668195 PMCID: PMC7995960 DOI: 10.3390/vaccines9030187] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 02/19/2021] [Accepted: 02/19/2021] [Indexed: 11/16/2022] Open
Abstract
Knowledge-based vaccinology can reveal uncharacterized antigen candidates for a new generation of protein-based anti-pneumococcal vaccines. DiiA, encoded by the sp_1992 locus, is a surface protein containing either one or two repeats of a 37mer N-terminal motif that exhibits low interstrain variability. DiiA belongs to the core proteome, contains several conserved B-cell epitopes, and is associated with colonization and pathogenesis. Immunization with DiiA protein via the intraperitoneal route induced a strong IgG response, including different IgG subtypes. Vaccination with DiiA increased bacterial clearance and induced protection against sepsis, conferring 70% increased survival at 48 h post-infection when compared to the adjuvant control. The immunogenic response and survival rates in mice immunized with a truncated DiiA version lacking 119 N-terminal residues were remarkably lower, confirming the relevance of the repeat zone in the immunoprotection by DiiA. Intranasal immunization of mice with the entire recombinant protein elicited mucosal IgG and IgA responses that reduced bacterial colonization of the nasopharynx, confirming that this protein might be a vaccine candidate for reducing the carrier rate. DiiA constitutes an example of how functionally unannotated proteins may still represent promising candidates that can be used in prophylactic strategies against the pneumococcal carrier state and invasive disease.
Collapse
Affiliation(s)
- Antonio J. Martín-Galiano
- Centro Nacional de Microbiología, Instituto de Salud Carlos III (ISCIII), 28220 Madrid, Spain; (M.S.E.-M.); (B.C.); (A.G.d.l.C.)
- Correspondence: (A.J.M.-G.); (J.Y.); Tel.: +34-918223976 (A.J.M.-G.); +34-918223620 (J.Y.)
| | - María S. Escolano-Martínez
- Centro Nacional de Microbiología, Instituto de Salud Carlos III (ISCIII), 28220 Madrid, Spain; (M.S.E.-M.); (B.C.); (A.G.d.l.C.)
| | - Bruno Corsini
- Centro Nacional de Microbiología, Instituto de Salud Carlos III (ISCIII), 28220 Madrid, Spain; (M.S.E.-M.); (B.C.); (A.G.d.l.C.)
| | - Adela G. de la Campa
- Centro Nacional de Microbiología, Instituto de Salud Carlos III (ISCIII), 28220 Madrid, Spain; (M.S.E.-M.); (B.C.); (A.G.d.l.C.)
- Presidencia Consejo Superior de Investigaciones Científicas, 28006 Madrid, Spain
| | - José Yuste
- Centro Nacional de Microbiología, Instituto de Salud Carlos III (ISCIII), 28220 Madrid, Spain; (M.S.E.-M.); (B.C.); (A.G.d.l.C.)
- CIBER de Enfermedades Respiratorias (CIBERES), 28029 Madrid, Spain
- Correspondence: (A.J.M.-G.); (J.Y.); Tel.: +34-918223976 (A.J.M.-G.); +34-918223620 (J.Y.)
| |
Collapse
|
15
|
Vaccination with LytA, LytC, or Pce of Streptococcus pneumoniae Protects against Sepsis by Inducing IgGs That Activate the Complement System. Vaccines (Basel) 2021; 9:vaccines9020186. [PMID: 33672306 PMCID: PMC7926378 DOI: 10.3390/vaccines9020186] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 02/05/2021] [Accepted: 02/19/2021] [Indexed: 11/17/2022] Open
Abstract
The emergence of non-vaccine serotypes of Streptococcus pneumoniae after the use of vaccines based in capsular polysaccharides demonstrates the need of a broader protection vaccine based in protein antigens and widely conserved. In this study, we characterized three important virulence factors of S. pneumoniae namely LytA, LytC, and Pce as vaccine candidates. These proteins are choline-binding proteins that belong to the cell wall hydrolases’ family. Immunization of mice with LytA, LytC, or Pce induced high titers of immunoglobulins G (IgGs) of different subclasses, with IgG1, IgG2a, and IgG2b as the predominant immunoglobulins raised. These antibodies activated the classical pathway of the complement system by increasing the recognition of C1q on the surface of pneumococcal strains of different serotypes. Consequently, the key complement component C3 recognized more efficiently these strains in the presence of specific antibodies elicited by these proteins, activating, therefore, the phagocytosis. Finally, a mouse sepsis model of infection was established, confirming that vaccination with these proteins controlled bacterial replication in the bloodstream, increasing the survival rate. Overall, these results demonstrate that LytA, LytC, and Pce can be protein antigens to be contained in a future universal vaccine against S. pneumoniae.
Collapse
|
16
|
Pneumococcal Choline-Binding Proteins Involved in Virulence as Vaccine Candidates. Vaccines (Basel) 2021; 9:vaccines9020181. [PMID: 33672701 PMCID: PMC7924319 DOI: 10.3390/vaccines9020181] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 02/15/2021] [Accepted: 02/18/2021] [Indexed: 01/25/2023] Open
Abstract
Streptococcus pneumoniae is a pathogen responsible for millions of deaths worldwide. Currently, the available vaccines for the prevention of S. pneumoniae infections are the 23-valent pneumococcal polysaccharide-based vaccine (PPV-23) and the pneumococcal conjugate vaccines (PCV10 and PCV13). These vaccines only cover some pneumococcal serotypes (up to 100 different serotypes have been identified) and are unable to protect against non-vaccine serotypes and non-encapsulated pneumococci. The emergence of antibiotic-resistant non-vaccine serotypes after these vaccines is an increasing threat. Therefore, there is an urgent need to develop new pneumococcal vaccines which could cover a wide range of serotypes. One of the vaccines most characterized as a prophylactic alternative to current PPV-23 or PCVs is a vaccine based on pneumococcal protein antigens. The choline-binding proteins (CBP) are found in all pneumococcal strains, giving them the characteristic to be potential vaccine candidates as they may protect against different serotypes. In this review, we have focused the attention on different CBPs as vaccine candidates because they are involved in the pathogenesis process, confirming their immunogenicity and protection against pneumococcal infection. The review summarizes the major contribution of these proteins to virulence and reinforces the fact that antibodies elicited against many of them may block or interfere with their role in the infection process.
Collapse
|
17
|
Zhou J, Sun T, Kang W, Tang D, Feng Q. Pathogenic and antimicrobial resistance genes in Streptococcus oralis strains revealed by comparative genome analysis. Genomics 2020; 112:3783-3793. [PMID: 32334114 DOI: 10.1016/j.ygeno.2020.04.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Revised: 04/03/2020] [Accepted: 04/20/2020] [Indexed: 02/05/2023]
Abstract
Streptococcus oralis is an early colonizer bacterium in dental plaques and is considered a potential pathogen of infective endocarditis (IE) disease. In this study, we built a complete genome map of Streptococcus oralis strain SOT, Streptococcus oralis strain SOD and Streptococcus infantis strain SO and performed comparative genomic analysis among these three strains. The results showed that there are five genomic islands (GIs) in strain SOT and one CRISPR in strain SOD. Each genome harbors various pathogenic genes related to diseases and drug resistance, while the antibiotic resistance genes in strains SOT and SOD were quite similar but different from those in strain SO. In addition, we identified 17 main virulence factors and capsule-related genes in three strains. These results suggest the pathogenic potential of Streptococcus strains, which lay a foundation for the prevention and treatment of a Streptococcus oralis infection.
Collapse
Affiliation(s)
- Jiannan Zhou
- Department of Human Microbiome, School and Hospital of Stomatology, Shandong University, Shandong Provincial Key Laboratory of Oral Tissue Regeneration, Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, No. 44-1 Wenhua Road West, 250012 Jinan, Shandong, China
| | - Tianyong Sun
- Department of Human Microbiome, School and Hospital of Stomatology, Shandong University, Shandong Provincial Key Laboratory of Oral Tissue Regeneration, Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, No. 44-1 Wenhua Road West, 250012 Jinan, Shandong, China
| | - Wenyan Kang
- Department of Human Microbiome, School and Hospital of Stomatology, Shandong University, Shandong Provincial Key Laboratory of Oral Tissue Regeneration, Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, No. 44-1 Wenhua Road West, 250012 Jinan, Shandong, China
| | - Di Tang
- Department of Human Microbiome, School and Hospital of Stomatology, Shandong University, Shandong Provincial Key Laboratory of Oral Tissue Regeneration, Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, No. 44-1 Wenhua Road West, 250012 Jinan, Shandong, China
| | - Qiang Feng
- Department of Human Microbiome, School and Hospital of Stomatology, Shandong University, Shandong Provincial Key Laboratory of Oral Tissue Regeneration, Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, No. 44-1 Wenhua Road West, 250012 Jinan, Shandong, China; State Key Laboratory of Microbial Technology, Shandong University,266237 Qingdao, Shandong, China; NHC Key Laboratory of Otorhinolaryngology (Shandong University), Jinan, Shandong, China.
| |
Collapse
|
18
|
Domenech M, García E. The N-Acetylglucosaminidase LytB of Streptococcus pneumoniae Is Involved in the Structure and Formation of Biofilms. Appl Environ Microbiol 2020; 86:e00280-20. [PMID: 32198170 PMCID: PMC7205503 DOI: 10.1128/aem.00280-20] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 03/15/2020] [Indexed: 02/07/2023] Open
Abstract
The N-acetylglucosaminidase LytB of Streptococcus pneumoniae is involved in nasopharyngeal colonization and is responsible for cell separation at the end of cell division; thus, ΔlytB mutants form long chains of cells. This paper reports the construction and properties of a defective pneumococcal mutant producing an inactive LytB protein (LytBE585A). It is shown that an enzymatically active LytB is required for in vitro biofilm formation, as lytB mutants (either ΔlytB or producing the inactive LytBE585A) are incapable of forming substantial biofilms, despite that extracellular DNA is present in the biofilm matrix. Adding small amounts (0.5 to 2.0 μg/ml) of exogenous LytB or some LytB constructs restored the biofilm-forming capacity of lytB mutants to wild-type levels. The LytBE585A mutant formed biofilm more rapidly than ΔlytB mutants in the presence of LytB. This suggests that the mutant protein acted in a structural role, likely through the formation of complexes with extracellular DNA. The chain-dispersing capacity of LytB allowed the separation of daughter cells, presumably facilitating the formation of microcolonies and, finally, of biofilms. A role for the possible involvement of LytB in the synthesis of the extracellular polysaccharide component of the biofilm matrix is also discussed.IMPORTANCE It has been previously accepted that biofilm formation in S. pneumoniae must be a multigenic trait because the mutation of a single gene has led to only to partial inhibition of biofilm production. In the present study, however, evidence that the N-acetylglucosaminidase LytB is crucial in biofilm formation is provided. Despite the presence of extracellular DNA, strains either deficient in LytB or producing a defective LytB enzyme formed only shallow biofilms.
Collapse
Affiliation(s)
- Mirian Domenech
- Departamento de Biotecnología Microbiana y de Plantas, Centro de Investigaciones Biológicas (CSIC), Madrid, Spain
- CIBER de Enfermedades Respiratorias (CIBERES), Madrid, Spain
| | - Ernesto García
- Departamento de Biotecnología Microbiana y de Plantas, Centro de Investigaciones Biológicas (CSIC), Madrid, Spain
- CIBER de Enfermedades Respiratorias (CIBERES), Madrid, Spain
| |
Collapse
|
19
|
García López E, Martín-Galiano AJ. The Versatility of Opportunistic Infections Caused by Gemella Isolates Is Supported by the Carriage of Virulence Factors From Multiple Origins. Front Microbiol 2020; 11:524. [PMID: 32296407 PMCID: PMC7136413 DOI: 10.3389/fmicb.2020.00524] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 03/11/2020] [Indexed: 12/29/2022] Open
Abstract
The molecular basis of the pathogenesis of the opportunistic invasive infections caused by isolates of the Gemella genus remains largely unknown. Moreover, inconsistencies in the current species assignation were detected after genome-level comparison of 16 public Gemella isolates. A literature search detected that, between the two most pathogenic species, Gemella morbillorum causes about twice the number of cases compared to Gemella haemolysans. These two species shared their mean diseases - sepsis and endocarditis - but differed in causing other syndromes. A number of well-known virulence factors were harbored by all species, such as a manganese transport/adhesin sharing 83% identity from oral endocarditis-causing streptococci. Likewise, all Gemellae carried the genes required for incorporating phosphorylcholine into their cell walls and encoded some choline-binding proteins. In contrast, other proteins were species-specific, which may justify the known epidemiological differences. G. haemolysans, but not G. morbillorum, harbor a gene cluster potentially encoding a polysaccharidic capsule. Species-specific surface determinants also included Rib and MucBP repeats, hemoglobin-binding NEAT domains, peptidases of C5a complement factor and domains that recognize extracellular matrix molecules exposed in damaged heart valves, such as collagen and fibronectin. Surface virulence determinants were associated with several taxonomically dispersed opportunistic genera of the oral microbiota, such as Granulicatella, Parvimonas, and Streptococcus, suggesting the existence of a horizontally transferrable gene reservoir in the oral environment, likely facilitated by close proximity in biofilms and ultimately linked to endocarditis. The identification of the Gemella virulence pool should be implemented in whole genome-based protocols to rationally predict the pathogenic potential in ongoing clinical infections caused by these poorly known bacterial pathogens.
Collapse
Affiliation(s)
- Ernesto García López
- Departamento de Biotecnología Microbiana y de Plantas, Centro de Investigaciones Biológicas (CSIC), Madrid, Spain
- CIBER de Enfermedades Respiratorias (CIBERES), Madrid, Spain
| | - Antonio J. Martín-Galiano
- Intrahospital Infections Laboratory, National Centre for Microbiology, Instituto de Salud Carlos III (ISCIII), Majadahonda, Spain
| |
Collapse
|
20
|
Rezaei Javan R, Ramos-Sevillano E, Akter A, Brown J, Brueggemann AB. Prophages and satellite prophages are widespread in Streptococcus and may play a role in pneumococcal pathogenesis. Nat Commun 2019; 10:4852. [PMID: 31649284 PMCID: PMC6813308 DOI: 10.1038/s41467-019-12825-y] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 09/27/2019] [Indexed: 02/06/2023] Open
Abstract
Prophages (viral genomes integrated within a host bacterial genome) can confer various phenotypic traits to their hosts, such as enhanced pathogenicity. Here we analyse >1300 genomes of 70 different Streptococcus species and identify nearly 800 prophages and satellite prophages (prophages that do not encode their own structural components but rely on the bacterial host and another helper prophage for survival). We show that prophages and satellite prophages are widely distributed among streptococci in a structured manner, and constitute two distinct entities with little effective genetic exchange between them. Cross-species transmission of prophages is not uncommon. Furthermore, a satellite prophage is associated with virulence in a mouse model of Streptococcus pneumoniae infection. Our findings highlight the potential importance of prophages in streptococcal biology and pathogenesis. Prophages are viral genomes integrated within bacterial genomes. Here, Rezaei Javan et al. identify nearly 800 prophages and satellite prophages in > 1300 Streptococcus genomes, and show that a satellite prophage is associated with virulence in a mouse model of pneumococcal infection.
Collapse
Affiliation(s)
| | | | - Asma Akter
- Department of Medicine, Imperial College London, London, UK
| | - Jeremy Brown
- UCL Respiratory, Division of Medicine, University College London, London, UK
| | - Angela B Brueggemann
- Nuffield Department of Medicine, University of Oxford, Oxford, UK. .,Department of Medicine, Imperial College London, London, UK. .,Nuffield Department of Population Health, University of Oxford, Oxford, UK.
| |
Collapse
|
21
|
Identifying genes associated with invasive disease in S. pneumoniae by applying a machine learning approach to whole genome sequence typing data. Sci Rep 2019; 9:4049. [PMID: 30858412 PMCID: PMC6411942 DOI: 10.1038/s41598-019-40346-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 02/04/2019] [Indexed: 12/12/2022] Open
Abstract
Streptococcus pneumoniae, a normal commensal of the upper respiratory tract, is a major public health concern, responsible for substantial global morbidity and mortality due to pneumonia, meningitis and sepsis. Why some pneumococci invade the bloodstream or CSF (so-called invasive pneumococcal disease; IPD) is uncertain. In this study we identify genes associated with IPD. We transform whole genome sequence (WGS) data into a sequence typing scheme, while avoiding the caveat of using an arbitrary genome as a reference by substituting it with a constructed pangenome. We then employ a random forest machine-learning algorithm on the transformed data, and find 43 genes consistently associated with IPD across three geographically distinct WGS data sets of pneumococcal carriage isolates. Of the genes we identified as associated with IPD, we find 23 genes previously shown to be directly relevant to IPD, as well as 18 uncharacterized genes. We suggest that these uncharacterized genes identified by us are also likely to be relevant for IPD.
Collapse
|
22
|
Roig-Molina E, Domenech M, Retamosa MDG, Nácher-Vázquez M, Rivas L, Maestro B, García P, García E, Sanz JM. Widening the antimicrobial spectrum of esters of bicyclic amines: In vitro effect on gram-positive Streptococcus pneumoniae and gram-negative non-typeable Haemophilus influenzae biofilms. Biochim Biophys Acta Gen Subj 2018; 1863:96-104. [PMID: 30292448 DOI: 10.1016/j.bbagen.2018.10.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 09/10/2018] [Accepted: 10/02/2018] [Indexed: 11/19/2022]
Abstract
Antibiotic resistance is a global current threat of increasing importance. Moreover, biofilms represent a medical challenge since the inherent antibiotic resistance of their producers demands the use of high doses of antibiotics over prolonged periods. Frequently, these therapeutic measures fail, contributing to bacterial persistence, therefore demanding the development of novel antimicrobials. Esters of bicyclic amines (EBAs), which are strong inhibitors of Streptococcus pneumoniae growth, were initially designed as inhibitors of pneumococcal choline-binding proteins on the basis of their structural analogy to the choline residues in the cell wall. However, instead of mimicking the characteristic cell chaining phenotype caused by exogenously added choline on planktonic cultures of pneumococcal cells, EBAs showed an unexpected lytic activity. In this work we demonstrate that EBAs display a second, and even more important, function as cell membrane destabilizers. We then assayed the inhibitory and disintegrating activity of these molecules on pneumococcal biofilms. The selected compound (EBA 31) produced the highest effect on S. pneumoniae (encapsulated and non-encapsulated) biofilms at very low concentrations. EBA 31 was also effective on mixed biofilms of non-encapsulated S. pneumoniae plus non-typeable Haemophilus influenzae, two pathogens frequently forming a self-produced biofilm in the human nasopharynx. These results support the role of EBAs as a promising alternative for the development of novel, broad-range antimicrobial drugs encompassing both Gram-positive and Gram-negative pathogens.
Collapse
Affiliation(s)
- Emma Roig-Molina
- Instituto de Biología Molecular y Celular, Universidad Miguel Hernández, Avda Universidad s/n, Elche 03202, Spain
| | - Mirian Domenech
- Centro de Investigaciones Biológicas, CSIC, Ramiro de Maeztu, 9, 28040 Madrid, Spain
| | - María de Gracia Retamosa
- Instituto de Biología Molecular y Celular, Universidad Miguel Hernández, Avda Universidad s/n, Elche 03202, Spain
| | | | - Luis Rivas
- Centro de Investigaciones Biológicas, CSIC, Ramiro de Maeztu, 9, 28040 Madrid, Spain
| | - Beatriz Maestro
- Instituto de Biología Molecular y Celular, Universidad Miguel Hernández, Avda Universidad s/n, Elche 03202, Spain
| | - Pedro García
- Centro de Investigaciones Biológicas, CSIC, Ramiro de Maeztu, 9, 28040 Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Ramiro de Maeztu, 9, 28040 Madrid, Spain
| | - Ernesto García
- Centro de Investigaciones Biológicas, CSIC, Ramiro de Maeztu, 9, 28040 Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Ramiro de Maeztu, 9, 28040 Madrid, Spain
| | - Jesús M Sanz
- Instituto de Biología Molecular y Celular, Universidad Miguel Hernández, Avda Universidad s/n, Elche 03202, Spain; Centro de Investigaciones Biológicas, CSIC, Ramiro de Maeztu, 9, 28040 Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Ramiro de Maeztu, 9, 28040 Madrid, Spain.
| |
Collapse
|
23
|
Brooks LRK, Mias GI. Streptococcus pneumoniae's Virulence and Host Immunity: Aging, Diagnostics, and Prevention. Front Immunol 2018; 9:1366. [PMID: 29988379 PMCID: PMC6023974 DOI: 10.3389/fimmu.2018.01366] [Citation(s) in RCA: 136] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Accepted: 06/01/2018] [Indexed: 12/14/2022] Open
Abstract
Streptococcus pneumoniae is an infectious pathogen responsible for millions of deaths worldwide. Diseases caused by this bacterium are classified as pneumococcal diseases. This pathogen colonizes the nasopharynx of its host asymptomatically, but overtime can migrate to sterile tissues and organs and cause infections. Pneumonia is currently the most common pneumococcal disease. Pneumococcal pneumonia is a global health concern and vastly affects children under the age of five as well as the elderly and individuals with pre-existing health conditions. S. pneumoniae has a large selection of virulence factors that promote adherence, invasion of host tissues, and allows it to escape host immune defenses. A clear understanding of S. pneumoniae's virulence factors, host immune responses, and examining the current techniques available for diagnosis, treatment, and disease prevention will allow for better regulation of the pathogen and its diseases. In terms of disease prevention, other considerations must include the effects of age on responses to vaccines and vaccine efficacy. Ongoing work aims to improve on current vaccination paradigms by including the use of serotype-independent vaccines, such as protein and whole cell vaccines. Extending our knowledge of the biology of, and associated host immune response to S. pneumoniae is paramount for our improvement of pneumococcal disease diagnosis, treatment, and improvement of patient outlook.
Collapse
Affiliation(s)
- Lavida R. K. Brooks
- Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, United States
- Institute for Quantitative Health Science & Engineering, Michigan State University, East Lansing, MI, United States
| | - George I. Mias
- Institute for Quantitative Health Science & Engineering, Michigan State University, East Lansing, MI, United States
- Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, United States
| |
Collapse
|
24
|
Cwp19 Is a Novel Lytic Transglycosylase Involved in Stationary-Phase Autolysis Resulting in Toxin Release in Clostridium difficile. mBio 2018; 9:mBio.00648-18. [PMID: 29895635 PMCID: PMC6016235 DOI: 10.1128/mbio.00648-18] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Clostridium difficile is the major etiologic agent of antibiotic-associated intestinal disease. Pathogenesis of C. difficile is mainly attributed to the production and secretion of toxins A and B. Unlike most clostridial toxins, toxins A and B have no signal peptide, and they are therefore secreted by unusual mechanisms involving the holin-like TcdE protein and/or autolysis. In this study, we characterized the cell surface protein Cwp19, a newly identified peptidoglycan-degrading enzyme containing a novel catalytic domain. We purified a recombinant His6-tagged Cwp19 protein and showed that it has lytic transglycosylase activity. Moreover, we observed that Cwp19 is involved in cell autolysis and that a C. difficilecwp19 mutant exhibited delayed autolysis in stationary phase compared to the wild type when bacteria were grown in brain heart infusion (BHI) medium. Wild-type cell autolysis is correlated to strong alterations of cell wall thickness and integrity and to release of cytoplasmic material. Furthermore, we demonstrated that toxins were released into the extracellular medium as a result of Cwp19-induced autolysis when cells were grown in BHI medium. In contrast, Cwp19 did not induce autolysis or toxin release when cells were grown in tryptone-yeast extract (TY) medium. These data provide evidence for the first time that TcdE and bacteriolysis are coexisting mechanisms for toxin release, with their relative contributions in vitro depending on growth conditions. Thus, Cwp19 is an important surface protein involved in autolysis of vegetative cells of C. difficile that mediates the release of the toxins from the cell cytosol in response to specific environment conditions.IMPORTANCEClostridium difficile-associated disease is mainly known as a health care-associated infection. It represents the most problematic hospital-acquired infection in North America and Europe and exerts significant economic pressure on health care systems. Virulent strains of C. difficile generally produce two toxins that have been identified as the major virulence factors. The mechanism for release of these toxins from bacterial cells is not yet fully understood but is thought to be partly mediated by bacteriolysis. Here we identify a novel peptidoglycan hydrolase in C. difficile, Cwp19, exhibiting lytic transglycosylase activity. We show that Cwp19 contributes to C. difficile cell autolysis in the stationary phase and, consequently, to toxin release, most probably as a response to environmental conditions such as nutritional signals. These data highlight that Cwp19 constitutes a promising target for the development of new preventive and curative strategies.
Collapse
|
25
|
Chemotherapy with Phage Lysins Reduces Pneumococcal Colonization of the Respiratory Tract. Antimicrob Agents Chemother 2018; 62:AAC.02212-17. [PMID: 29581113 DOI: 10.1128/aac.02212-17] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Accepted: 03/17/2018] [Indexed: 01/21/2023] Open
Abstract
Bacteriophage-borne lytic enzymes, also named lysins or enzybiotics, are efficient agents for the killing of bacterial pathogens. The colonization of the respiratory tract by Streptococcus pneumoniae is a prerequisite for the establishment of the infection process. Hence, we have evaluated the antibacterial activities of three different lysins against pneumococcal colonization using human nasopharyngeal and lung epithelial cells as well as a mouse model of nasopharyngeal colonization. The lysins tested were the wild-type Cpl-1, the engineered Cpl-7S, and the chimera Cpl-711. Moreover, we included amoxicillin as a comparator antibiotic. Human epithelial cells were infected with three different multidrug-resistant clinical isolates of S. pneumoniae followed by a single dose of the corresponding lysin. The antimicrobial activities of these lysins were also evaluated using a mouse nasopharyngeal carriage model. The exposure of the infected epithelial cells to Cpl-7S did not result in the killing of any of the pneumococcal strains investigated. However, the treatment with Cpl-1 or Cpl-711 increased the killing of S. pneumoniae organisms adhered to both types of human epithelial cells, with Cpl-711 being more effective than Cpl-1, at subinhibitory concentrations. In addition, a treatment with amoxicillin had no effect on reducing the carrier state, whereas mice treated by the intranasal route with Cpl-711 showed significantly reduced nasopharyngeal colonization, with no detection of bacterial load in 20 to 40% of the mice. This study indicates that Cpl-1 and Cpl-711 lysins might be promising antimicrobial candidates for therapy against pneumococcal colonization.
Collapse
|
26
|
Blevins LK, Parsonage D, Oliver MB, Domzalski E, Swords WE, Alexander-Miller MA. A Novel Function for the Streptococcus pneumoniae Aminopeptidase N: Inhibition of T Cell Effector Function through Regulation of TCR Signaling. Front Immunol 2017; 8:1610. [PMID: 29230212 PMCID: PMC5711787 DOI: 10.3389/fimmu.2017.01610] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Accepted: 11/07/2017] [Indexed: 12/20/2022] Open
Abstract
Streptococcus pneumoniae (Spn) causes a variety of disease states including fatal bacterial pneumonia. Our previous finding that introduction of Spn into an animal with ongoing influenza virus infection resulted in a CD8+ T cell population with reduced effector function gave rise to the possibility of direct regulation by pneumococcal components. Here, we show that treatment of effector T cells with lysate derived from Spn resulted in inhibition of IFNγ and tumor necrosis factor α production as well as of cytolytic granule release. Spn aminopeptidase N (PepN) was identified as the inhibitory bacterial component and surprisingly, this property was independent of the peptidase activity found in this family of proteins. Inhibitory activity was associated with reduced activation of ZAP-70, ERK1/2, c-Jun N-terminal kinase, and p38, demonstrating the ability of PepN to negatively regulate TCR signaling at multiple points in the cascade. These results reveal a novel immune regulatory function for a bacterial aminopeptidase.
Collapse
Affiliation(s)
- Lance K Blevins
- Department of Microbiology and Immunology, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Derek Parsonage
- Department of Biochemistry, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Melissa B Oliver
- Department of Microbiology and Immunology, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Elizabeth Domzalski
- Department of Microbiology and Immunology, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - W Edward Swords
- Department of Microbiology and Immunology, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Martha A Alexander-Miller
- Department of Microbiology and Immunology, Wake Forest School of Medicine, Winston-Salem, NC, United States
| |
Collapse
|
27
|
Rasmussen LH, Højholt K, Dargis R, Christensen JJ, Skovgaard O, Justesen US, Rosenvinge FS, Moser C, Lukjancenko O, Rasmussen S, Nielsen XC. In silico assessment of virulence factors in strains of Streptococcus oralis and Streptococcus mitis isolated from patients with Infective Endocarditis. J Med Microbiol 2017; 66:1316-1323. [PMID: 28874232 DOI: 10.1099/jmm.0.000573] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Purpose. Streptococcus oralis and Streptococcus mitis belong to the Mitis group, which are mostly commensals in the human oral cavity. Even though S. oralis and S. mitis are oral commensals, they can be opportunistic pathogens causing infective endocarditis. A recent taxonomic re-evaluation of the Mitis group has embedded the species Streptococcus tigurinus and Streptococcus dentisani into the species S. oralis as subspecies. In this study, the distribution of virulence factors that contribute to bacterial immune evasion, colonization and adhesion was assessed in clinical strains of S. oralis (subsp. oralis, subsp. tigurinus and subsp. dentisani) and S. mitis. Methodology. Forty clinical S. oralis (subsp. oralis, subsp. dentisani and subsp. tigurinus) and S. mitis genomes were annotated with the pipeline PanFunPro and aligned against the VFDB database for assessment of virulence factors.Results/Key findings. Three homologues of pavA, psaA and lmb, encoding adhesion proteins, were present in all strains. Seven homologues of nanA, nanB, ply, lytA, lytB, lytC and iga, of importance regarding survival in blood and modulation of the human immune system, were variously present in the genomes. Few S. oralis subspecies specific differences were observed. iga homologues were identified in S. oralis subsp. oralis, whereas lytA homologues were identified in S. oralis subsp. oralis and subsp. tigurinus. Conclusion. Differences in the presence of virulence factors among the three S. oralis subspecies were observed. The virulence gene profiles of the 40 S. mitis and S. oralis (subsp. oralis, subsp. dentisani and subsp. tigurinus) contribute with important new knowledge regarding these species and new subspecies.
Collapse
Affiliation(s)
- Louise H Rasmussen
- Department of Clinical Microbiology, Slagelse Hospital, Ingemannsvej 46, 4200 Slagelse, Denmark.,Department of Science and Environment, Roskilde University, Universitetsvej 1, 4000 Roskilde, Denmark
| | - Katrine Højholt
- Department of Clinical Microbiology, Slagelse Hospital, Ingemannsvej 46, 4200 Slagelse, Denmark.,Center for Biological Sequence Analysis, Department of Systems Biology, Technical University of Denmark, Kemitorvet, Building 208, 2800 Kgs Lyngby, Denmark
| | - Rimtas Dargis
- Department of Clinical Microbiology, Slagelse Hospital, Ingemannsvej 46, 4200 Slagelse, Denmark
| | - Jens Jørgen Christensen
- Department of Clinical Microbiology, Slagelse Hospital, Ingemannsvej 46, 4200 Slagelse, Denmark.,Department of Clinical Medicine, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen N, Denmark
| | - Ole Skovgaard
- Department of Science and Environment, Roskilde University, Universitetsvej 1, 4000 Roskilde, Denmark
| | - Ulrik S Justesen
- Department of Clinical Microbiology, Odense University Hospital, J. B. Winsløws Vej 21, 2, 5000 Odense C, Denmark.,Department of Clinical Microbiology, Rigshospitalet, University Hospital of Copenhagen, Blegdamsvej 9, 2100 Copenhagen Ø, Denmark
| | - Flemming S Rosenvinge
- Department of Clinical Microbiology, Vejle Hospital, Kabbeltoft 25, 7100 Vejle, Denmark
| | - Claus Moser
- Department of Clinical Microbiology, Rigshospitalet, University Hospital of Copenhagen, Blegdamsvej 9, 2100 Copenhagen Ø, Denmark
| | - Oksana Lukjancenko
- National Food Institute, Technical University of Denmark, Søltofts plads, Building 221, 2800 Kgs Lyngby, Denmark
| | - Simon Rasmussen
- Center for Biological Sequence Analysis, Department of Systems Biology, Technical University of Denmark, Kemitorvet, Building 208, 2800 Kgs Lyngby, Denmark
| | - Xiaohui C Nielsen
- Department of Clinical Microbiology, Slagelse Hospital, Ingemannsvej 46, 4200 Slagelse, Denmark
| |
Collapse
|
28
|
Alves LA, Harth-Chu EN, Palma TH, Stipp RN, Mariano FS, Höfling JF, Abranches J, Mattos-Graner RO. The two-component system VicRK regulates functions associated with Streptococcus mutans resistance to complement immunity. Mol Oral Microbiol 2017; 32:419-431. [PMID: 28382721 DOI: 10.1111/omi.12183] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 03/07/2017] [Accepted: 03/29/2017] [Indexed: 12/16/2022]
Abstract
Streptococcus mutans, a dental caries pathogen, can promote systemic infections upon reaching the bloodstream. The two-component system (TCS) VicRKSm of S. mutans regulates the synthesis of and interaction with sucrose-derived exopolysaccharides (EPS), processes associated with oral and systemic virulence. In this study, we investigated the mechanisms by which VicRKSm affects S. mutans susceptibility to blood-mediated immunity. Compared with parent strain UA159, the vicKSm isogenic mutant (UAvic) showed reduced susceptibility to deposition of C3b of complement, low binding to serum immunoglobulin G (IgG), and low frequency of C3b/IgG-mediated opsonophagocytosis by polymorphonuclear cells in a sucrose-independent way (P<.05). Reverse transcriptase quantitative polymerase chain reaction analysis comparing gene expression in UA159 and UAvic revealed that genes encoding putative peptidases of the complement (pepO and smu.399) were upregulated in UAvic in the presence of serum, although genes encoding murein hydrolases (SmaA and Smu.2146c) or metabolic/surface proteins involved in bacterial interactions with host components (enolase, GAPDH) were mostly affected in a serum-independent way. Among vicKSm -downstream genes (smaA, smu.2146c, lysM, atlA, pepO, smu.399), only pepO and smu.399 were associated with UAvic phenotypes; deletion of both genes in UA159 significantly enhanced levels of C3b deposition and opsonophagocytosis (P<.05). Moreover, consistent with the fibronectin-binding function of PepO orthologues, UAvic showed increased binding to fibronectin. Reduced susceptibility to opsonophagocytosis was insufficient to enhance ex vivo persistence of UAvic in blood, which was associated with growth defects of this mutant under limited nutrient conditions. Our findings revealed that S. mutans employs mechanisms of complement evasion through peptidases, which are controlled by VicRKSm.
Collapse
Affiliation(s)
- Livia A Alves
- Department of Oral Diagnosis, Piracicaba Dental School - State University of Campinas, Piracicaba, SP, Brazil
| | - Erika N Harth-Chu
- Department of Oral Diagnosis, Piracicaba Dental School - State University of Campinas, Piracicaba, SP, Brazil
| | - Thais H Palma
- Department of Oral Diagnosis, Piracicaba Dental School - State University of Campinas, Piracicaba, SP, Brazil
| | - Rafael N Stipp
- Department of Oral Diagnosis, Piracicaba Dental School - State University of Campinas, Piracicaba, SP, Brazil
| | - Flávia S Mariano
- Department of Oral Diagnosis, Piracicaba Dental School - State University of Campinas, Piracicaba, SP, Brazil
| | - José F Höfling
- Department of Oral Diagnosis, Piracicaba Dental School - State University of Campinas, Piracicaba, SP, Brazil
| | - Jacqueline Abranches
- Department of Oral Biology, College of Dentistry - University of Florida, Gainesville, FL, USA
| | - Renata O Mattos-Graner
- Department of Oral Diagnosis, Piracicaba Dental School - State University of Campinas, Piracicaba, SP, Brazil
| |
Collapse
|
29
|
Arrigucci R, Pozzi G. Identification of the chain-dispersing peptidoglycan hydrolase LytB of Streptococcus gordonii. PLoS One 2017; 12:e0176117. [PMID: 28414782 PMCID: PMC5393624 DOI: 10.1371/journal.pone.0176117] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Accepted: 04/05/2017] [Indexed: 12/05/2022] Open
Abstract
Bacterial cell division ends with the separation of the daughter cells, a process that requires peptidoglycan hydrolases (PGHs). Bacteria lacking cell separating PGHs are impaired in cell separation with the formation of long chains or clusters. We identified a gene in Streptococcus gordonii encoding for a putative glucosaminidase (lytB). The lytB isogenic mutant grew in long bacterial chains and resulted in impaired biofilm formation. Purified recombinant LytB showed a murolytic activity on Micrococcus lysodeikticus cell suspension and was able to disperse the long chains of the mutant, restoring the wild type diplococci/short chain phenotype. LytB protein was localized only in culture supernatant cell fraction of S. gordonii, and co-cultures of wild type and lytB mutant showed a significant reduction of bacterial chain length, indicating that LytB is a secreted enzyme. Our results demonstrate that LytB is a secreted peptidoglycan hydrolase required for S. gordonii cell separation.
Collapse
Affiliation(s)
- Riccardo Arrigucci
- Public Health Research Institute, Rutgers, The State University of New Jersey, Newark, NJ, United States of America
- * E-mail:
| | - Gianni Pozzi
- LAMMB, Department of Medical Biotechnologies, University of Siena, Siena, Italy
| |
Collapse
|
30
|
Andre GO, Converso TR, Politano WR, Ferraz LFC, Ribeiro ML, Leite LCC, Darrieux M. Role of Streptococcus pneumoniae Proteins in Evasion of Complement-Mediated Immunity. Front Microbiol 2017; 8:224. [PMID: 28265264 PMCID: PMC5316553 DOI: 10.3389/fmicb.2017.00224] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Accepted: 01/31/2017] [Indexed: 12/14/2022] Open
Abstract
The complement system plays a central role in immune defense against Streptococcus pneumoniae. In order to evade complement attack, pneumococci have evolved a number of mechanisms that limit complement mediated opsonization and subsequent phagocytosis. This review focuses on the strategies employed by pneumococci to circumvent complement mediated immunity, both in vitro and in vivo. At last, since many of the proteins involved in interactions with complement components are vaccine candidates in different stages of validation, we explore the use of these antigens alone or in combination, as potential vaccine approaches that aim at elimination or drastic reduction in the ability of this bacterium to evade complement.
Collapse
Affiliation(s)
- Greiciely O Andre
- Laboratório de Biologia Celular e Molecular de Microrganismos, Universidade São Francisco Bragança Paulista, Brazil
| | - Thiago R Converso
- Centro de Biotecnologia, Instituto ButantanSão Paulo, Brazil; Programa de Pós-graduação Interunidades em Biotecnologia, Universidade de São PauloSão Paulo, Brazil
| | - Walter R Politano
- Laboratório de Biologia Celular e Molecular de Microrganismos, Universidade São Francisco Bragança Paulista, Brazil
| | - Lucio F C Ferraz
- Laboratório de Biologia Celular e Molecular de Microrganismos, Universidade São Francisco Bragança Paulista, Brazil
| | - Marcelo L Ribeiro
- Laboratório de Farmacologia, Universidade São Francisco Bragança Paulista, Brazil
| | | | - Michelle Darrieux
- Laboratório de Biologia Celular e Molecular de Microrganismos, Universidade São Francisco Bragança Paulista, Brazil
| |
Collapse
|
31
|
Corsini B, Aguinagalde L, Ruiz S, Domenech M, Antequera ML, Fenoll A, García P, García E, Yuste J. Immunization with LytB protein of Streptococcus pneumoniae activates complement-mediated phagocytosis and induces protection against pneumonia and sepsis. Vaccine 2016; 34:6148-6157. [PMID: 27840016 DOI: 10.1016/j.vaccine.2016.11.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Revised: 10/06/2016] [Accepted: 11/02/2016] [Indexed: 01/12/2023]
Abstract
The cell wall glucosaminidase LytB of Streptococcus pneumoniae is a surface exposed protein involved in daughter cell separation, biofilm formation and contributes to different aspects of the pathogenesis process. In this study we have characterized the antibody responses after immunization of mice with LytB in the presence of alhydrogel as an adjuvant. Enzyme-linked immunosorbent assays measuring different subclasses of immunoglobulin G, demonstrated that the antibody responses to LytB were predominantly IgG1 and IgG2b, followed by IgG3 and IgG2a subclasses. Complement-mediated immunity against two different pneumococcal serotypes was investigated using sera from immunized mice. Immunization with LytB increased the recognition of S. pneumoniae by complement components C1q and C3b demonstrating that anti-LytB antibodies trigger activation of the classical pathway. Phagocytosis assays showed that serum containing antibodies to LytB stimulates neutrophil-mediated phagocytosis against S. pneumoniae. Animal models of infection including invasive pneumonia and sepsis were performed with two different clinical isolates. Vaccination with LytB increased bacterial clearance and induced protection demonstrating that LytB might be a good candidate to be considered in a future protein-based vaccine against S. pneumoniae.
Collapse
Affiliation(s)
- Bruno Corsini
- Centro Nacional de Microbiología, Instituto de Salud Carlos III (ISCIII), 28220 Madrid, Spain
| | - Leire Aguinagalde
- Centro Nacional de Microbiología, Instituto de Salud Carlos III (ISCIII), 28220 Madrid, Spain
| | - Susana Ruiz
- Centro de Investigaciones Biológicas (CIB-CSIC), 28040 Madrid, Spain; CIBER de Enfermedades Respiratorias (CIBERES), 28029 Madrid, Spain
| | - Mirian Domenech
- Centro de Investigaciones Biológicas (CIB-CSIC), 28040 Madrid, Spain; CIBER de Enfermedades Respiratorias (CIBERES), 28029 Madrid, Spain
| | - María Luisa Antequera
- Centro Nacional de Microbiología, Instituto de Salud Carlos III (ISCIII), 28220 Madrid, Spain
| | - Asunción Fenoll
- Centro Nacional de Microbiología, Instituto de Salud Carlos III (ISCIII), 28220 Madrid, Spain
| | - Pedro García
- Centro de Investigaciones Biológicas (CIB-CSIC), 28040 Madrid, Spain; CIBER de Enfermedades Respiratorias (CIBERES), 28029 Madrid, Spain
| | - Ernesto García
- Centro de Investigaciones Biológicas (CIB-CSIC), 28040 Madrid, Spain; CIBER de Enfermedades Respiratorias (CIBERES), 28029 Madrid, Spain
| | - Jose Yuste
- Centro Nacional de Microbiología, Instituto de Salud Carlos III (ISCIII), 28220 Madrid, Spain; CIBER de Enfermedades Respiratorias (CIBERES), 28029 Madrid, Spain.
| |
Collapse
|
32
|
Choline Binding Proteins from Streptococcus pneumoniae: A Dual Role as Enzybiotics and Targets for the Design of New Antimicrobials. Antibiotics (Basel) 2016; 5:antibiotics5020021. [PMID: 27314398 PMCID: PMC4929436 DOI: 10.3390/antibiotics5020021] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2016] [Revised: 05/04/2016] [Accepted: 05/16/2016] [Indexed: 12/20/2022] Open
Abstract
Streptococcus pneumoniae (pneumococcus) is an important pathogen responsible for acute invasive and non-invasive infections such as meningitis, sepsis and otitis media, being the major cause of community-acquired pneumonia. The fight against pneumococcus is currently hampered both by insufficient vaccine coverage and by rising antimicrobial resistances to traditional antibiotics, making necessary the research on novel targets. Choline binding proteins (CBPs) are a family of polypeptides found in pneumococcus and related species, as well as in some of their associated bacteriophages. They are characterized by a structural organization in two modules: a functional module (FM), and a choline-binding module (CBM) that anchors the protein to the choline residues present in the cell wall through non-covalent interactions. Pneumococcal CBPs include cell wall hydrolases, adhesins and other virulence factors, all playing relevant physiological roles for bacterial viability and virulence. Moreover, many pneumococcal phages also make use of hydrolytic CBPs to fulfill their infectivity cycle. Consequently, CBPs may play a dual role for the development of novel antipneumococcal drugs, both as targets for inhibitors of their binding to the cell wall and as active cell lytic agents (enzybiotics). In this article, we review the current state of knowledge about host- and phage-encoded pneumococcal CBPs, with a special focus on structural issues, together with their perspectives for effective anti-infectious treatments.
Collapse
|
33
|
Escolano-Martínez MS, Domenech A, Yuste J, Cercenado MI, Ardanuy C, Liñares J, de la Campa AG, Martin-Galiano AJ. DiiA is a novel dimorphic cell wall protein of Streptococcus pneumoniae involved in invasive disease. J Infect 2016; 73:71-81. [PMID: 27105656 DOI: 10.1016/j.jinf.2016.04.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Revised: 04/06/2016] [Accepted: 04/11/2016] [Indexed: 12/16/2022]
Abstract
OBJECTIVES Many outer multidomain proteins play fundamental virulent roles in an allele-dependent manner. We aimed to investigate the influence of the outer SP1992 protein, here renamed DiiA (Dimorphic invasion-involved A), in pneumococcal disease. METHODS The presence and type of diiA allele was screened by PCR in 560 clinical isolates. Isogenic mutants carrying progressive diiA deletions were constructed and checked in mouse models of infection. DiiA binding to human molecules was carried out by surface plasmon resonance. RESULTS The diiA gene is exclusive of Streptococcus pneumoniae and included in the core genome. DiiA variants contain one or two imperfect repeats (R1 and R2), an unstructured region and a cell-wall anchor domain. Clonal complexes carrying both repeats were associated with invasive disease, while those carrying R2 preferentially caused non-invasive syndromes in patients with underlying risk factors. Mutants lacking both repeats were less efficient in nasopharyngeal colonization and dissemination from lungs. Moreover, the ΔdiiA defective strain suffered a severe impairment in bacterial proliferation in blood. Purified DiiA bound to collagen and lactoferrin with high affinity. CONCLUSIONS DiiA is a distinctive pneumococcal virulence factor contributing to colonization and long-term invasion in this pathogen.
Collapse
Affiliation(s)
- María S Escolano-Martínez
- Instituto de Salud Carlos III, Centro Nacional de Microbiología, Carretera a Pozuelo, km 2.2, Majadahonda, 28220 Madrid, Spain
| | - Arnau Domenech
- CIBER de Enfermedades Respiratorias (CIBERES), Spain; Servicio de Microbiología, Hospital Universitari de Bellvitge, Universitat de Barcelona, IDIBELL, Feixa Llarga, sn. L'Hospitalet de Llobregat, 08907 Barcelona, Spain
| | - José Yuste
- Instituto de Salud Carlos III, Centro Nacional de Microbiología, Carretera a Pozuelo, km 2.2, Majadahonda, 28220 Madrid, Spain; CIBER de Enfermedades Respiratorias (CIBERES), Spain
| | - María I Cercenado
- Instituto de Salud Carlos III, Centro Nacional de Microbiología, Carretera a Pozuelo, km 2.2, Majadahonda, 28220 Madrid, Spain
| | - Carmen Ardanuy
- CIBER de Enfermedades Respiratorias (CIBERES), Spain; Servicio de Microbiología, Hospital Universitari de Bellvitge, Universitat de Barcelona, IDIBELL, Feixa Llarga, sn. L'Hospitalet de Llobregat, 08907 Barcelona, Spain
| | - Josefina Liñares
- CIBER de Enfermedades Respiratorias (CIBERES), Spain; Servicio de Microbiología, Hospital Universitari de Bellvitge, Universitat de Barcelona, IDIBELL, Feixa Llarga, sn. L'Hospitalet de Llobregat, 08907 Barcelona, Spain
| | - Adela G de la Campa
- Instituto de Salud Carlos III, Centro Nacional de Microbiología, Carretera a Pozuelo, km 2.2, Majadahonda, 28220 Madrid, Spain; Presidencia, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Antonio J Martin-Galiano
- Instituto de Salud Carlos III, Centro Nacional de Microbiología, Carretera a Pozuelo, km 2.2, Majadahonda, 28220 Madrid, Spain.
| |
Collapse
|
34
|
PSGL-1 on Leukocytes is a Critical Component of the Host Immune Response against Invasive Pneumococcal Disease. PLoS Pathog 2016; 12:e1005500. [PMID: 26975045 PMCID: PMC4790886 DOI: 10.1371/journal.ppat.1005500] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Accepted: 02/19/2016] [Indexed: 12/21/2022] Open
Abstract
Bacterial uptake by phagocytic cells is a vital event in the clearance of invading pathogens such as Streptococcus pneumoniae. A major role of the P-selectin glycoprotein ligand-1 (PSGL-1) on leukocytes against invasive pneumococcal disease is described in this study. Phagocytosis experiments using different serotypes demonstrated that PSGL-1 is involved in the recognition, uptake and killing of S. pneumoniae. Co-localization of several clinical isolates of S. pneumoniae with PSGL-1 was demonstrated, observing a rapid and active phagocytosis in the presence of PSGL-1. Furthermore, the pneumococcal capsular polysaccharide and the main autolysin of the bacterium ―the amidase LytA― were identified as bacterial ligands for PSGL-1. Experimental models of pneumococcal disease including invasive pneumonia and systemic infection showed that bacterial levels were markedly increased in the blood of PSGL-1−/− mice. During pneumonia, PSGL-1 controls the severity of pneumococcal dissemination from the lung to the bloodstream. In systemic infection, a major role of PSGL-1 in host defense is to clear the bacteria in the systemic circulation controlling bacterial replication. These results confirmed the importance of this receptor in the recognition and clearance of S. pneumoniae during invasive pneumococcal disease. Histological and cellular analysis demonstrated that PSGL-1−/− mice have increased levels of T cells migrating to the lung than the corresponding wild-type mice. In contrast, during systemic infection, PSGL-1−/− mice had increased numbers of neutrophils and macrophages in blood, but were less effective controlling the infection process due to the lack of this functional receptor. Overall, this study demonstrates that PSGL-1 is a novel receptor for S. pneumoniae that contributes to protection against invasive pneumococcal disease. S. pneumoniae is one of the most important and devastating human pathogens worldwide, mainly affecting young children, elderly people and immunocompromised patients. In terms of host immune defense against invasive pneumococcal isolates, professional phagocytes require receptor-mediated recognition of certain ligands on the bacterial surface for the uptake and clearance of the microorganism. In this study, we demonstrate that the P-selectin glycoprotein ligand-1 (PSGL-1) on leukocytes is involved in the phagocytosis process of S. pneumoniae by targeting the capsule and the surface protein LytA as pathogen-associated molecular patterns. To explore this process in more detail, we have used wild-type mice and mice deficient in PSGL-1 demonstrating that lack of PSGL-1 is detrimental for the host by increasing the susceptibility to the infection and the severity of the pneumococcal invasive disease. Overall, these data show the importance of PSGL-1 on leukocytes in host defense against S. pneumoniae and confirm that PSGL-1 plays a critical protective role against invasive bacterial disease.
Collapse
|
35
|
Co-Transcriptomes of Initial Interactions In Vitro between Streptococcus Pneumoniae and Human Pleural Mesothelial Cells. PLoS One 2015; 10:e0142773. [PMID: 26566142 PMCID: PMC4643877 DOI: 10.1371/journal.pone.0142773] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Accepted: 10/27/2015] [Indexed: 01/21/2023] Open
Abstract
Streptococcus pneumoniae (Spn) is a major causative organism of empyema, an inflammatory condition occurring in the pleural sac. In this study, we used human and Spn cDNA microarrays to characterize the transcriptional responses occurring during initial contact between Spn and a human pleural mesothelial cell line (PMC) in vitro. Using stringent filtering criteria, 42 and 23 Spn genes were up-and down-regulated respectively. In particular, genes encoding factors potentially involved in metabolic processes and Spn adherence to eukaryotic cells were up-regulated e.g. glnQ, glnA, aliA, psaB, lytB and nox. After Spn initial contact, 870 human genes were differentially regulated and the largest numbers of significant gene expression changes were found in canonical pathways for eukaryotic initiation factor 2 signaling (60 genes out of 171), oxidative phosphorylation (32/103), mitochondrial dysfunction (37/164), eIF4 and p70S6K signaling (28/142), mTOR signaling (27/182), NRF2-mediated oxidative stress response (20/177), epithelial adherens junction remodeling (11/66) and ubiquitination (22/254). The cellular response appeared to be directed towards host cell survival and defense. Spn did not activate NF-kB or phosphorylate p38 MAPK or induce cytokine production from PMC. Moreover, Spn infection of TNF-α pre-stimulated PMC inhibited production of IL-6 and IL-8 secretion by >50% (p<0.01). In summary, this descriptive study provides datasets and a platform for examining further the molecular mechanisms underlying the pathogenesis of empyema.
Collapse
|
36
|
Substrate recognition and catalysis by LytB, a pneumococcal peptidoglycan hydrolase involved in virulence. Sci Rep 2015; 5:16198. [PMID: 26537571 PMCID: PMC4633669 DOI: 10.1038/srep16198] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Accepted: 10/12/2015] [Indexed: 12/21/2022] Open
Abstract
Streptococcus pneumoniae is a major cause of life-threatening diseases worldwide. Here we provide an in-depth functional characterization of LytB, the peptidoglycan hydrolase responsible for physical separation of daughter cells. Identified herein as an N-acetylglucosaminidase, LytB is involved also in colonization and invasion of the nasopharynx, biofilm formation and evasion of host immunity as previously demonstrated. We have shown that LytB cleaves the GlcNAc-β-(1,4)-MurNAc glycosidic bond of peptidoglycan building units. The hydrolysis occurs at sites with fully acetylated GlcNAc moieties, with preference for uncross-linked muropeptides. The necessity of GlcN acetylation and the presence of a single acidic moiety (Glu585) essential for catalysis strongly suggest a substrate-assisted mechanism with anchimeric assistance of the acetamido group of GlcNAc moieties. Additionally, modelling of the catalytic region bound to a hexasaccharide tripentapeptide provided insights into substrate-binding subsites and peptidoglycan recognition. Besides, cell-wall digestion products and solubilisation rates might indicate a tight control of LytB activity to prevent unrestrained breakdown of the cell wall. Choline-independent localization at the poles of the cell, mediated by the choline-binding domain, peptidoglycan modification, and choline-mediated (lipo)teichoic-acid attachment contribute to the high selectivity of LytB. Moreover, so far unknown chitin hydrolase and glycosyltransferase activities were detected using GlcNAc oligomers as substrate.
Collapse
|
37
|
Domenech M, Ruiz S, Moscoso M, García E. In vitro biofilm development of Streptococcus pneumoniae and formation of choline-binding protein-DNA complexes. ENVIRONMENTAL MICROBIOLOGY REPORTS 2015; 7:715-727. [PMID: 25950767 DOI: 10.1111/1758-2229.12295] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Accepted: 04/08/2015] [Indexed: 06/04/2023]
Abstract
Extracellular deoxyribonucleic acid (eDNA) is an essential component of bacterial biofilm matrices, and is required in their formation and maintenance. Extracellular DNA binds to exopolysaccharides or extracellular proteins, affording biofilms greater structural integrity. Recently, we reported evidence of intercellular eDNA-LytC complexes in pneumococcal biofilms. The LytC lysozyme is a member of the choline-binding family of proteins (CBPs) located on the pneumococcal surface. The present work shows that other CBPs, i.e. LytA, LytB, Pce, PspC and CbpF, which have a pI between 5 and 6, can bind DNA in vitro. This process requires the presence of divalent cations other than Mg(2+). This DNA binding capacity of CBPs appears to be independent of their enzymatic activity and, at least in the case of LytA, does not require the choline-binding domain characteristic of CBPs. Positively charged, surface-exposed, 25 amino acid-long peptides derived from the catalytic domain of LytB, were also found capable of DNA binding through electrostatic interactions. Confocal laser scanning microcopy revealed the existence of cell-associated LytB-eDNA complexes in Streptococcus pneumoniae biofilms. These and other findings suggest that these surface-located proteins of S. pneumoniae could play roles of varying importance in the colonization and/or invasion of human host where different environmental conditions exist.
Collapse
Affiliation(s)
- Mirian Domenech
- Departamento de Microbiología Molecular y Biología de las Infecciones, Centro de Investigaciones Biológicas (CIB-CSIC), Madrid, 28040, Spain
- CIBER de Enfermedades Respiratorias (CIBERES), Madrid, Spain
| | - Susana Ruiz
- CIBER de Enfermedades Respiratorias (CIBERES), Madrid, Spain
| | - Miriam Moscoso
- Departamento de Microbiología Molecular y Biología de las Infecciones, Centro de Investigaciones Biológicas (CIB-CSIC), Madrid, 28040, Spain
| | - Ernesto García
- Departamento de Microbiología Molecular y Biología de las Infecciones, Centro de Investigaciones Biológicas (CIB-CSIC), Madrid, 28040, Spain
- CIBER de Enfermedades Respiratorias (CIBERES), Madrid, Spain
| |
Collapse
|
38
|
Aguinagalde L, Corsini B, Domenech A, Domenech M, Cámara J, Ardanuy C, García E, Liñares J, Fenoll A, Yuste J. Emergence of Amoxicillin-Resistant Variants of Spain9V-ST156 Pneumococci Expressing Serotype 11A Correlates with Their Ability to Evade the Host Immune Response. PLoS One 2015; 10:e0137565. [PMID: 26368279 PMCID: PMC4569277 DOI: 10.1371/journal.pone.0137565] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Accepted: 08/18/2015] [Indexed: 01/08/2023] Open
Abstract
Capsular switching allows pre-existing clones of Streptococcus pneumoniae expressing vaccine serotypes to escape the vaccine-induced immunity by acquisition of capsular genes from pneumococci of a non-vaccine serotype. Here, we have analysed the clonal composition of 492 clinical isolates of serotype 11A causing invasive disease in Spain (2000–2012), and their ability to evade the host immune response. Antibiograms, serotyping and molecular typing were performed. The restriction profiles of pbp2x, pbp1a and pbp2b genes were also analysed. Interaction with the complement components C1q, C3b, C4BP, and factor H was explored whereas opsonophagocytosis assays were performed using a human cell line differentiated to neutrophils. Biofilm formation and the polymorphisms of the major autolysin LytA were evaluated. The main genotypes of the 11A pneumococci were: ST62 (447 isolates, 90.6%), followed by ST6521 (35 isolates, 7.3%) and ST838 (10 isolates, 2.1%). Beta lactam resistant serotype 11A variants of genotypes ST838 and ST6521 closely related to the Spain9V-ST156 clone were first detected in 2005. A different pattern of evasion of complement immunity and phagocytosis was observed between genotypes. The emergence of one vaccine escape variant of Spain9V-ST156 (ST652111A), showing a high potential to avoid the host immune response, was observed. In addition, isolates of ST652111A showed higher ability to produce biofilms than ST83811A or ST6211A, which may have contributed to the emergence of this PEN-resistant ST652111A genotype in the last few years. The emergence of penicillin-resistant 11A invasive variants of the highly successful ST156 clonal complex merits close monitoring.
Collapse
Affiliation(s)
- Leire Aguinagalde
- Spanish Pneumococcal Reference Laboratory, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Madrid, Spain
| | - Bruno Corsini
- Spanish Pneumococcal Reference Laboratory, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Madrid, Spain
| | - Arnau Domenech
- Microbiology Department, Hospital Universitari de Bellvitge-IDIBELL-Barcelona University, Barcelona, Spain
- CIBER de Enfermedades Respiratorias (CIBERES), Madrid, Spain
| | - Mirian Domenech
- CIBER de Enfermedades Respiratorias (CIBERES), Madrid, Spain
- Centro de Investigaciones Biológicas-CSIC, Madrid, Spain
| | - Jordi Cámara
- Microbiology Department, Hospital Universitari de Bellvitge-IDIBELL-Barcelona University, Barcelona, Spain
- CIBER de Enfermedades Respiratorias (CIBERES), Madrid, Spain
| | - Carmen Ardanuy
- Microbiology Department, Hospital Universitari de Bellvitge-IDIBELL-Barcelona University, Barcelona, Spain
- CIBER de Enfermedades Respiratorias (CIBERES), Madrid, Spain
| | - Ernesto García
- CIBER de Enfermedades Respiratorias (CIBERES), Madrid, Spain
- Centro de Investigaciones Biológicas-CSIC, Madrid, Spain
| | - Josefina Liñares
- Microbiology Department, Hospital Universitari de Bellvitge-IDIBELL-Barcelona University, Barcelona, Spain
- CIBER de Enfermedades Respiratorias (CIBERES), Madrid, Spain
| | - Asunción Fenoll
- Spanish Pneumococcal Reference Laboratory, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Madrid, Spain
| | - Jose Yuste
- Spanish Pneumococcal Reference Laboratory, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Madrid, Spain
- CIBER de Enfermedades Respiratorias (CIBERES), Madrid, Spain
- * E-mail:
| |
Collapse
|
39
|
Vandevelde NM, Tulkens PM, Muccioli GG, Van Bambeke F. Modulation of the activity of moxifloxacin and solithromycin in an in vitro pharmacodynamic model of Streptococcus pneumoniae naive and induced biofilms. J Antimicrob Chemother 2015; 70:1713-26. [PMID: 25712316 DOI: 10.1093/jac/dkv032] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2014] [Accepted: 01/21/2015] [Indexed: 12/11/2022] Open
Abstract
OBJECTIVES Bacterial biofilms developing in the bronchial tree of patients experiencing acute exacerbations of chronic bronchitis (AECBs) are suggested to cause relapses and recurrences of the disease because the matrix barrier impairs antibiotic access to the offending organisms. We examined whether bronchodilators could modulate pneumococcal biofilm development and antibiotic action using an in vitro model. METHODS Streptococcus pneumoniae strains from patients hospitalized for AECBs and two reference strains (ATCC 49619 and R6) were screened for biofilm formation (multi-well plates; 2-11 days of growth). Ipratropium and salbutamol (alone or in combination) were added at concentrations of 1.45 and 7.25 mg/L, respectively (mimicking those in the bronchial tree), and their effects were measured on biofilm formation and modulation of the activity of antibiotics [full antibiotic concentration-dependent effects (pharmacodynamic model)] with a focus on moxifloxacin and solithromycin. Bacterial viability and biomass were measured by the reduction of resazurin and crystal violet staining, respectively. Release of sialic acid (from biofilm) and neuraminidase activity were measured using enzymatic and HPLC-MS detection of sialic acid. RESULTS All clinical isolates produced biofilms, but with fast disassembly if from patients who had received muscarinic antagonists. Ipratropium caused: (i) reduced biomass formation and faster biofilm disassembly with free sialic acid release; and (ii) a marked improvement of antibiotic activity (bacterial killing and biomass reduction). Salbutamol stimulated neuraminidase activity associated with improved antibiotic killing activity (reversed by zanamivir) but modest biomass reduction. CONCLUSIONS Ipratropium and, to a lesser extent, salbutamol may cooperate with antibiotics for bacterial clearance and disassembly of pneumococcal biofilms.
Collapse
Affiliation(s)
- Nathalie M Vandevelde
- Pharmacologie cellulaire et moléculaire, Louvain Drug Research Institute, Université catholique de Louvain, Brussels, Belgium
| | - Paul M Tulkens
- Pharmacologie cellulaire et moléculaire, Louvain Drug Research Institute, Université catholique de Louvain, Brussels, Belgium
| | - Giulio G Muccioli
- Bioanalysis and Pharmacology of Bioactive Lipids, Louvain Drug Research Institute, Université catholique de Louvain, Brussels, Belgium
| | - Françoise Van Bambeke
- Pharmacologie cellulaire et moléculaire, Louvain Drug Research Institute, Université catholique de Louvain, Brussels, Belgium
| |
Collapse
|
40
|
Pleiotropic effects of cell wall amidase LytA on Streptococcus pneumoniae sensitivity to the host immune response. Infect Immun 2014; 83:591-603. [PMID: 25404032 DOI: 10.1128/iai.02811-14] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The complement system is a key component of the host immune response for the recognition and clearance of Streptococcus pneumoniae. In this study, we demonstrate that the amidase LytA, the main pneumococcal autolysin, inhibits complement-mediated immunity independently of effects on pneumolysin by a complex process of impaired complement activation, increased binding of complement regulators, and direct degradation of complement C3. The use of human sera depleted of either C1q or factor B confirmed that LytA prevented activation of both the classical and alternative pathways, whereas pneumolysin inhibited only the classical pathway. LytA prevented binding of C1q and the acute-phase protein C-reactive protein to S. pneumoniae, thereby reducing activation of the classical pathway on the bacterial surface. In addition, LytA increased recruitment of the complement downregulators C4BP and factor H to the pneumococcal cell wall and directly cleaved C3b and iC3b to generate degradation products. As a consequence, C3b deposition and phagocytosis increased in the absence of LytA and were markedly enhanced for the lytA ply double mutant, confirming that a combination of LytA and Ply is essential for the establishment of pneumococcal pneumonia and sepsis in a murine model of infection. These data demonstrate that LytA has pleiotropic effects on complement activation, a finding which, in combination with the effects of pneumolysin on complement to assist with pneumococcal complement evasion, confirms a major role of both proteins for the full virulence of the microorganism during septicemia.
Collapse
|
41
|
Martín-Galiano AJ, Yuste J, Cercenado MI, de la Campa AG. Inspecting the potential physiological and biomedical value of 44 conserved uncharacterised proteins of Streptococcus pneumoniae. BMC Genomics 2014; 15:652. [PMID: 25096389 PMCID: PMC4143570 DOI: 10.1186/1471-2164-15-652] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2013] [Accepted: 07/21/2014] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND The major Gram-positive coccoid pathogens cause similar invasive diseases and show high rates of antimicrobial resistance. Uncharacterised proteins shared by these organisms may be involved in virulence or be targets for antimicrobial therapy. RESULTS Forty four uncharacterised proteins from Streptococcus pneumoniae with homologues in Enterococcus faecalis and/or Staphylococcus aureus were selected for analysis. These proteins showed differences in terms of sequence conservation and number of interacting partners. Twenty eight of these proteins were monodomain proteins and 16 were modular, involving domain combinations and, in many cases, predicted unstructured regions. The genes coding for four of these 44 proteins were essential. Genomic and structural studies showed one of the four essential genes to code for a promising antibacterial target. The strongest impact of gene removal was on monodomain proteins showing high sequence conservation and/or interactions with many other proteins. Eleven out of 40 knockouts (one for each gene) showed growth delay and 10 knockouts presented a chaining phenotype. Five of these chaining mutants showed a lack of putative DNA-binding proteins. This suggest this phenotype results from a loss of overall transcription regulation. Five knockouts showed defective autolysis in response to penicillin and vancomycin, and attenuated virulence in an animal model of sepsis. CONCLUSIONS Uncharacterised proteins make up a reservoir of polypeptides of different physiological importance and biomedical potential. A promising antibacterial target was identified. Five of the 44 examined proteins seemed to be virulence factors.
Collapse
Affiliation(s)
- Antonio J Martín-Galiano
- />Centro Nacional de Microbiología and CIBERES (CIBER de Enfermedades Respiratorias), Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
| | - José Yuste
- />Centro Nacional de Microbiología and CIBERES (CIBER de Enfermedades Respiratorias), Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
| | - María I Cercenado
- />Centro Nacional de Microbiología and CIBERES (CIBER de Enfermedades Respiratorias), Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
| | - Adela G de la Campa
- />Centro Nacional de Microbiología and CIBERES (CIBER de Enfermedades Respiratorias), Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
- />Presidencia, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| |
Collapse
|
42
|
Bai XH, Chen HJ, Jiang YL, Wen Z, Huang Y, Cheng W, Li Q, Qi L, Zhang JR, Chen Y, Zhou CZ. Structure of pneumococcal peptidoglycan hydrolase LytB reveals insights into the bacterial cell wall remodeling and pathogenesis. J Biol Chem 2014; 289:23403-16. [PMID: 25002590 DOI: 10.1074/jbc.m114.579714] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Streptococcus pneumoniae causes a series of devastating infections in humans. Previous studies have shown that the endo-β-N-acetylglucosaminidase LytB is critical for pneumococcal cell division and nasal colonization, but the biochemical mechanism of LytB action remains unknown. Here we report the 1.65 Å crystal structure of the catalytic domain (residues Lys-375-Asp-658) of LytB (termed LytBCAT), excluding the choline binding domain. LytBCAT consists of three structurally independent modules: SH3b, WW, and GH73. These modules form a "T-shaped" pocket that accommodates a putative tetrasaccharide-pentapeptide substrate of peptidoglycan. Structural comparison and simulation revealed that the GH73 module of LytB harbors the active site, including the catalytic residue Glu-564. In vitro assays of hydrolytic activity indicated that LytB prefers the peptidoglycan from the lytB-deficient pneumococci, suggesting the existence of a specific substrate of LytB in the immature peptidoglycan. Combined with in vitro cell-dispersing and in vivo cell separation assays, we demonstrated that all three modules are necessary for the optimal activity of LytB. Further functional analysis showed that the full catalytic activity of LytB is required for pneumococcal adhesion to and invasion into human lung epithelial cells. Structure-based alignment indicated that the unique modular organization of LytB is highly conserved in its orthologs from Streptococcus mitis group and Gemella species. These findings provided structural insights into the pneumococcal cell wall remodeling and novel hints for the rational design of therapeutic agents against pneumococcal growth and thereby the related diseases.
Collapse
Affiliation(s)
- Xiao-Hui Bai
- From the Hefei National Laboratory for Physical Sciences at the Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027, China and
| | - Hui-Jie Chen
- From the Hefei National Laboratory for Physical Sciences at the Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027, China and
| | - Yong-Liang Jiang
- From the Hefei National Laboratory for Physical Sciences at the Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027, China and
| | - Zhensong Wen
- Center for Infectious Disease Research, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Yubin Huang
- From the Hefei National Laboratory for Physical Sciences at the Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027, China and
| | - Wang Cheng
- From the Hefei National Laboratory for Physical Sciences at the Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027, China and
| | - Qiong Li
- From the Hefei National Laboratory for Physical Sciences at the Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027, China and
| | - Lei Qi
- From the Hefei National Laboratory for Physical Sciences at the Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027, China and
| | - Jing-Ren Zhang
- Center for Infectious Disease Research, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Yuxing Chen
- From the Hefei National Laboratory for Physical Sciences at the Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027, China and
| | - Cong-Zhao Zhou
- From the Hefei National Laboratory for Physical Sciences at the Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027, China and
| |
Collapse
|
43
|
Olaya-Abril A, Prados-Rosales R, McConnell MJ, Martín-Peña R, González-Reyes JA, Jiménez-Munguía I, Gómez-Gascón L, Fernández J, Luque-García JL, García-Lidón C, Estévez H, Pachón J, Obando I, Casadevall A, Pirofski LA, Rodríguez-Ortega MJ. Characterization of protective extracellular membrane-derived vesicles produced by Streptococcus pneumoniae. J Proteomics 2014; 106:46-60. [PMID: 24769240 DOI: 10.1016/j.jprot.2014.04.023] [Citation(s) in RCA: 173] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2014] [Revised: 04/10/2014] [Accepted: 04/12/2014] [Indexed: 12/31/2022]
Abstract
UNLABELLED Extracellular vesicles are produced by many pathogenic microorganisms and have varied functions that include secretion and release of microbial factors, which contribute to virulence. Very little is known about vesicle production by Gram-positive bacteria, as well as their biogenesis and release mechanisms. In this work, we demonstrate the active production of vesicles by Streptococcus pneumoniae from the plasma membrane, rather than being a product from cell lysis. We biochemically characterized them by proteomics and fatty acid analysis, showing that these vesicles and the plasma membrane resemble in essential aspects, but have some differences: vesicles are more enriched in lipoproteins and short-chain fatty acids. We also demonstrate that these vesicles act as carriers of surface proteins and virulence factors. They are also highly immunoreactive against human sera and induce immune responses that protect against infection. Overall, this work provides insights into the biology of this important Gram-positive human pathogen and the role of extracellular vesicles in clinical applications. BIOLOGICAL SIGNIFICANCE Pneumococcus is one of the leading causes of bacterial pneumonia worldwide in children and the elderly, being responsible for high morbidity and mortality rates in developing countries. The augment of pneumococcal disease in developed countries has raised major public health concern, since the difficulties to treat these infections due to increasing antibiotic resistance. Vaccination is still the best way to combat pneumococcal infections. One of the mechanisms that bacterial pathogens use to combat the defense responses of invaded hosts is the production and release of extracellular vesicles derived from the outer surface. Little is known about this phenomenon in Gram-positives. We show that pneumococcus produces membrane-derived vesicles particularly enriched in lipoproteins. We also show the utility of pneumococcal vesicles as a new type of vaccine, as they induce protection in immunized mice against infection with a virulent strain. This work will contribute to understand the role of these structures in important biological processes such as host-pathogen interactions and prevention of human disease.
Collapse
Affiliation(s)
- Alfonso Olaya-Abril
- Departamento de Bioquímica y Biología Molecular, Universidad de Córdoba, Campus de Excelencia Internacional CeiA3, Córdoba, Spain; Red Española de Investigación en Patología Infecciosa (REIPI), Instituto de Salud Carlos III, Madrid, Spain
| | - Rafael Prados-Rosales
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Michael J McConnell
- Red Española de Investigación en Patología Infecciosa (REIPI), Instituto de Salud Carlos III, Madrid, Spain; Unidad de Enfermedades Infecciosas, Microbiología y Medicina Preventiva, Instituto de Biomedicina de Sevilla/Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Sevilla, Spain
| | - Reyes Martín-Peña
- Red Española de Investigación en Patología Infecciosa (REIPI), Instituto de Salud Carlos III, Madrid, Spain; Unidad de Enfermedades Infecciosas, Microbiología y Medicina Preventiva, Instituto de Biomedicina de Sevilla/Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Sevilla, Spain
| | - José Antonio González-Reyes
- Departamento de Biología Celular, Fisiología e Inmunología, Universidad de Córdoba, Campus de Excelencia Internacional CeiA3, Córdoba, Spain
| | - Irene Jiménez-Munguía
- Departamento de Bioquímica y Biología Molecular, Universidad de Córdoba, Campus de Excelencia Internacional CeiA3, Córdoba, Spain; Red Española de Investigación en Patología Infecciosa (REIPI), Instituto de Salud Carlos III, Madrid, Spain
| | - Lidia Gómez-Gascón
- Departamento de Bioquímica y Biología Molecular, Universidad de Córdoba, Campus de Excelencia Internacional CeiA3, Córdoba, Spain; Red Española de Investigación en Patología Infecciosa (REIPI), Instituto de Salud Carlos III, Madrid, Spain
| | - Javier Fernández
- Departamento de Botánica, Ecología y Fisiología Vegetal, Universidad de Córdoba, Campus de Excelencia Internacional CeiA3, Córdoba, Spain
| | - José L Luque-García
- Departamento de Química Analítica, Universidad Complutense de Madrid, Madrid, Spain
| | - Carlos García-Lidón
- Departamento de Química Analítica, Universidad Complutense de Madrid, Madrid, Spain
| | - Héctor Estévez
- Departamento de Química Analítica, Universidad Complutense de Madrid, Madrid, Spain
| | - Jerónimo Pachón
- Red Española de Investigación en Patología Infecciosa (REIPI), Instituto de Salud Carlos III, Madrid, Spain; Unidad de Enfermedades Infecciosas, Microbiología y Medicina Preventiva, Instituto de Biomedicina de Sevilla/Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Sevilla, Spain
| | - Ignacio Obando
- Sección de Enfermedades Infecciosas Pediátricas e Inmunopatología, Hospital Universitario Infantil Virgen del Rocío, Sevilla, Spain
| | - Arturo Casadevall
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Liise-Anne Pirofski
- Department of Medicine and Microbiology and Immunology, Albert Einstein College of Medicine, Montefiore Medical Center, Bronx, NY, USA
| | - Manuel J Rodríguez-Ortega
- Departamento de Bioquímica y Biología Molecular, Universidad de Córdoba, Campus de Excelencia Internacional CeiA3, Córdoba, Spain; Red Española de Investigación en Patología Infecciosa (REIPI), Instituto de Salud Carlos III, Madrid, Spain.
| |
Collapse
|
44
|
Schulz C, Hammerschmidt S. Exploitation of physiology and metabolomics to identify pneumococcal vaccine candidates. Expert Rev Vaccines 2014; 12:1061-75. [PMID: 24053399 DOI: 10.1586/14760584.2013.824708] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Streptococcus pneumoniae (the pneumococcus) is the etiologic agent of community-acquired pneumonia and invasive pneumococcal diseases such as septicemia and bacterial meningitis. The increasing antibiotic resistance and the suboptimal efficacy or limited serotype coverage of currently available vaccines urgently requires novel approaches in exploring new antimicrobials, therapeutic intervention strategies and vaccines. The current vaccine development strategies rely on the hypothesis that surface-exposed proteins, which are essential for pneumococcal virulence, are the most suitable candidates for future protein-based vaccines. Since virulence is closely linked with bacterial fitness, the potential of a pathogen to colonize and infect the host depends further on its physiology. This review summarizes the application of genome-wide techniques and their exploitation to decipher fundamental insights into bacterial factors associated with fitness, metabolism and virulence, leading to the discovery of vaccine candidates or antimicrobials.
Collapse
Affiliation(s)
- Christian Schulz
- Department Genetics of Microorganisms, Interfaculty Institute for Genetics and Functional Genomics, Ernst Moritz Arndt Universität Greifswald, Friedrich-Ludwig-Jahn-Strasse 15a, D 17487 Greifswald, Germany
| | | |
Collapse
|
45
|
Mugisha L, Köndgen S, Kaddu-Mulindwa D, Gaffikin L, Leendertz FH. Nasopharyngeal colonization by potentially pathogenic bacteria found in healthy semi-captive wild-born chimpanzees in Uganda. Am J Primatol 2013; 76:103-10. [DOI: 10.1002/ajp.22212] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2013] [Revised: 07/30/2013] [Accepted: 08/09/2013] [Indexed: 11/09/2022]
Affiliation(s)
- Lawrence Mugisha
- EcoHealth Research Group; Conservation & Ecosystem Health Alliance (CEHA); Kampala Uganda
- College of Veterinary Medicine; Animal Resources and Biosecurity; Makerere University; Kampala Uganda
| | - Sophie Köndgen
- Research Group Emerging Zoonoses; Robert Koch-Institute; Berlin Germany
| | | | - Lynne Gaffikin
- Evaluation and Research Technologies for Health (EARTH) Inc.; Woodside California
| | | |
Collapse
|
46
|
Abstract
PURPOSE OF REVIEW Infection with Streptococcus pneumoniae (pneumococcus) results in colonization, which can lead to local or invasive disease, of which pneumonia is the most common manifestation. Despite the availability of pneumococcal vaccines, pneumococcal pneumonia is the leading cause of community and inhospital pneumonia in the United States and globally. This article discusses new insights into the pathogenesis of pneumococcal disease. RECENT FINDINGS The host-microbe interactions that determine whether pneumococcal colonization will result in clearance or invasive disease are highly complex. This article focuses on new information in three areas that bear on the pathogenesis of pneumococcal disease: factors that govern colonization, the prelude to invasive disease, including effects on colonization and invasion of capsular serotype, pneumolysin, surface proteins that regulate complement deposition, biofilm formation and agglutination; the effect of coinfection with other bacteria and viruses on pneumococcal growth and virulence, including the synergistic effect of influenza virus; and the contribution of the host inflammatory response to the pathogenesis of pneumococcal pneumonia, including the effects of pattern recognition molecules, cells that enhance and modulate inflammation, and therapies that modulate inflammation, such as statins. SUMMARY Recent research on pneumococcal pathogenesis reveals new mechanisms by which microbial factors govern the ability of pneumococcus to progress from the state of colonization to disease and host inflammatory responses contribute to the development of pneumonia. These mechanisms suggest that therapies which modulate the inflammatory response could hold promise for ameliorating damage stemming from the host inflammatory response in pneumococcal disease.
Collapse
|
47
|
Miyaji EN, Oliveira MLS, Carvalho E, Ho PL. Serotype-independent pneumococcal vaccines. Cell Mol Life Sci 2013; 70:3303-26. [PMID: 23269437 PMCID: PMC11113425 DOI: 10.1007/s00018-012-1234-8] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2012] [Revised: 12/01/2012] [Accepted: 12/04/2012] [Indexed: 12/14/2022]
Abstract
Streptococcus pneumoniae remains an important cause of disease with high mortality and morbidity, especially in children and in the elderly. The widespread use of the polysaccharide conjugate vaccines in some countries has led to a significant decrease in invasive disease caused by vaccine serotypes, but an increase in disease caused by non-vaccine serotypes has impacted on the overall efficacy of these vaccines on pneumococcal disease. The obvious solution to overcome such shortcomings would be the development of new formulations that provide serotype-independent immunity. This review focuses on the most promising approaches, including protein antigens, whole cell pneumococcal vaccines, and recombinant bacteria expressing pneumococcal antigens. The protective capacity of these vaccine candidates against the different stages of pneumococcal infection, including colonization, mucosal disease, and invasive disease in animal models is reviewed. Some of the human trials that have already been performed or that are currently ongoing are presented. Finally, the feasibility and the possible shortcomings of these candidates in relation to an ideal vaccine against pneumococcal infections are discussed.
Collapse
Affiliation(s)
- Eliane Namie Miyaji
- Centro de Biotecnologia, Instituto Butantan, Av Vital Brasil 1500, São Paulo, SP 05503-900 Brazil
| | | | - Eneas Carvalho
- Centro de Biotecnologia, Instituto Butantan, Av Vital Brasil 1500, São Paulo, SP 05503-900 Brazil
| | - Paulo Lee Ho
- Centro de Biotecnologia, Instituto Butantan, Av Vital Brasil 1500, São Paulo, SP 05503-900 Brazil
| |
Collapse
|
48
|
Niu S, Luo M, Tang J, Zhou H, Zhang Y, Min X, Cai X, Zhang W, Xu W, Li D, Ding J, Hu Y, Wang D, Huang A, Yin Y, Wang D. Structural basis of the novel S. pneumoniae virulence factor, GHIP, a glycosyl hydrolase 25 participating in host-cell invasion. PLoS One 2013; 8:e68647. [PMID: 23874703 PMCID: PMC3712932 DOI: 10.1371/journal.pone.0068647] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2013] [Accepted: 05/30/2013] [Indexed: 11/20/2022] Open
Abstract
Pathogenic bacteria produce a wide variety of virulence factors that are considered to be potential antibiotic targets. In this study, we report the crystal structure of a novel S. pneumoniae virulence factor, GHIP, which is a streptococcus-specific glycosyl hydrolase. This novel structure exhibits an α/β-barrel fold that slightly differs from other characterized hydrolases. The GHIP active site, located at the negatively charged groove in the barrel, is very similar to the active site in known peptidoglycan hydrolases. Functionally, GHIP exhibited weak enzymatic activity to hydrolyze the PNP-(GlcNAc)5 peptidoglycan by the general acid/base catalytic mechanism. Animal experiments demonstrated a marked attenuation of S. pneumoniae-mediated virulence in mice infected by ΔGHIP-deficient strains, suggesting that GHIP functions as a novel S. pneumoniae virulence factor. Furthermore, GHIP participates in allowing S. pneumoniae to colonize the nasopharynx and invade host epithelial cells. Taken together, these findings suggest that GHIP can potentially serve as an antibiotic target to effectively treat streptococcus-mediated infection.
Collapse
Affiliation(s)
- Siqiang Niu
- Department of Laboratory Medicine, Chongqing Medical University, Chongqing, People’s Republic of China
- Key Laboratory of Molecular Biology on Infectious Disease, Chongqing Medical University, Chongqing, People’s Republic of China
- The First Affiliated Hospital, Chongqing Medical University, Chongqing, People’s Republic of China
| | - Miao Luo
- Department of Laboratory Medicine, Chongqing Medical University, Chongqing, People’s Republic of China
- Key Laboratory of Molecular Biology on Infectious Disease, Chongqing Medical University, Chongqing, People’s Republic of China
| | - Jian Tang
- Department of Laboratory Medicine, Chongqing Medical University, Chongqing, People’s Republic of China
- Key Laboratory of Molecular Biology on Infectious Disease, Chongqing Medical University, Chongqing, People’s Republic of China
| | - Hua Zhou
- Department of Laboratory Medicine, Chongqing Medical University, Chongqing, People’s Republic of China
- Key Laboratory of Molecular Biology on Infectious Disease, Chongqing Medical University, Chongqing, People’s Republic of China
| | - Yangli Zhang
- Department of Laboratory Medicine, Chongqing Medical University, Chongqing, People’s Republic of China
- Key Laboratory of Molecular Biology on Infectious Disease, Chongqing Medical University, Chongqing, People’s Republic of China
| | - Xun Min
- Department of Laboratory Medicine, Chongqing Medical University, Chongqing, People’s Republic of China
- Key Laboratory of Molecular Biology on Infectious Disease, Chongqing Medical University, Chongqing, People’s Republic of China
| | - Xuefei Cai
- Key Laboratory of Molecular Biology on Infectious Disease, Chongqing Medical University, Chongqing, People’s Republic of China
| | - Wenlu Zhang
- Key Laboratory of Molecular Biology on Infectious Disease, Chongqing Medical University, Chongqing, People’s Republic of China
| | - Wenchu Xu
- Department of Laboratory Medicine, Chongqing Medical University, Chongqing, People’s Republic of China
| | - Defeng Li
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, People’s Republic of China
| | - Jingjin Ding
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, People’s Republic of China
| | - Yonglin Hu
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, People’s Republic of China
| | - Dacheng Wang
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, People’s Republic of China
| | - Ailong Huang
- Key Laboratory of Molecular Biology on Infectious Disease, Chongqing Medical University, Chongqing, People’s Republic of China
| | - Yibin Yin
- Department of Laboratory Medicine, Chongqing Medical University, Chongqing, People’s Republic of China
| | - Deqiang Wang
- Department of Laboratory Medicine, Chongqing Medical University, Chongqing, People’s Republic of China
- Key Laboratory of Molecular Biology on Infectious Disease, Chongqing Medical University, Chongqing, People’s Republic of China
| |
Collapse
|
49
|
Biofilm formation avoids complement immunity and phagocytosis of Streptococcus pneumoniae. Infect Immun 2013; 81:2606-15. [PMID: 23649097 DOI: 10.1128/iai.00491-13] [Citation(s) in RCA: 117] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Streptococcus pneumoniae is a frequent member of the microbiota of the human nasopharynx. Colonization of the nasopharyngeal tract is a first and necessary step in the infectious process and often involves the formation of sessile microbial communities by this human pathogen. The ability to grow and persist as biofilms is an advantage for many microorganisms, because biofilm-grown bacteria show reduced susceptibility to antimicrobial agents and hinder recognition by the immune system. The extent of host protection against biofilm-related pneumococcal disease has not been determined yet. Using pneumococcal strains growing as planktonic cultures or as biofilms, we have investigated the recognition of S. pneumoniae by the complement system and its interactions with human neutrophils. Deposition of C3b, the key complement component, was impaired on S. pneumoniae biofilms. In addition, binding of C-reactive protein and the complement component C1q to the pneumococcal surface was reduced in biofilm bacteria, demonstrating that pneumococcal biofilms avoid the activation of the classical complement pathway. In addition, recruitment of factor H, the downregulator of the alternative pathway, was enhanced by S. pneumoniae growing as biofilms. Our results also show that biofilm formation diverts the alternative complement pathway activation by a PspC-mediated mechanism. Furthermore, phagocytosis of pneumococcal biofilms was also impaired. The present study confirms that biofilm formation in S. pneumoniae is an efficient means of evading both the classical and the PspC-dependent alternative complement pathways the host immune system.
Collapse
|
50
|
Cefditoren and ceftriaxone enhance complement-mediated immunity in the presence of specific antibodies against antibiotic-resistant pneumococcal strains. PLoS One 2012; 7:e44135. [PMID: 22957048 PMCID: PMC3434200 DOI: 10.1371/journal.pone.0044135] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2012] [Accepted: 07/30/2012] [Indexed: 12/20/2022] Open
Abstract
Background Specific antibodies mediate humoral and cellular protection against invading pathogens such as Streptococcus pneumoniae by activating complement mediated immunity, promoting phagocytosis and stimulating bacterial clearance. The emergence of pneumococcal strains with high levels of antibiotic resistance is of great concern worldwide and a serious threat for public health. Methodology/Principal Findings Flow cytometry was used to determine whether complement-mediated immunity against three antibiotic-resistant S. pneumoniae clinical isolates is enhanced in the presence of sub-inhibitory concentrations of cefditoren and ceftriaxone. The binding of acute phase proteins such as C-reactive protein and serum amyloid P component, and of complement component C1q, to pneumococci was enhanced in the presence of serum plus either of these antibiotics. Both antibiotics therefore trigger the activation of the classical complement pathway against S. pneumoniae. C3b deposition was also increased in the presence of specific anti-pneumococcal antibodies and sub-inhibitory concentrations of cefditoren and ceftriaxone confirming that the presence of these antibiotics enhances complement-mediated immunity to S. pneumoniae. Conclusions/Significance Using cefditoren and ceftriaxone to promote the binding of acute phase proteins and C1q to pneumococci, and to increase C3b deposition, when anti-pneumococcal antibodies are present, might help reduce the impact of antibiotic resistance in S. pneumoniae infections.
Collapse
|