1
|
Xiang Y, Xing X, Hua X, Zhang Y, Xue X, Wu J, Zheng M, Wang H, Xu J. Resting-state brain network remodeling after different nerve reconstruction surgeries: a functional magnetic resonance imaging study in brachial plexus injury rats. Neural Regen Res 2025; 20:1495-1504. [PMID: 39075915 PMCID: PMC11624879 DOI: 10.4103/nrr.nrr-d-23-00493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 10/07/2023] [Accepted: 12/29/2023] [Indexed: 07/31/2024] Open
Abstract
JOURNAL/nrgr/04.03/01300535-202505000-00031/figure1/v/2024-07-28T173839Z/r/image-tiff Distinct brain remodeling has been found after different nerve reconstruction strategies, including motor representation of the affected limb. However, differences among reconstruction strategies at the brain network level have not been elucidated. This study aimed to explore intra-network changes related to altered peripheral neural pathways after different nerve reconstruction surgeries, including nerve repair, end-to-end nerve transfer, and end-to-side nerve transfer. Sprague-Dawley rats underwent complete left brachial plexus transection and were divided into four equal groups of eight: no nerve repair, grafted nerve repair, phrenic nerve end-to-end transfer, and end-to-side transfer with a graft sutured to the anterior upper trunk. Resting-state brain functional magnetic resonance imaging was obtained 7 months after surgery. The independent component analysis algorithm was utilized to identify group-level network components of interest and extract resting-state functional connectivity values of each voxel within the component. Alterations in intra-network resting-state functional connectivity were compared among the groups. Target muscle reinnervation was assessed by behavioral observation (elbow flexion) and electromyography. The results showed that alterations in the sensorimotor and interoception networks were mostly related to changes in the peripheral neural pathway. Nerve repair was related to enhanced connectivity within the sensorimotor network, while end-to-side nerve transfer might be more beneficial for restoring control over the affected limb by the original motor representation. The thalamic-cortical pathway was enhanced within the interoception network after nerve repair and end-to-end nerve transfer. Brain areas related to cognition and emotion were enhanced after end-to-side nerve transfer. Our study revealed important brain networks related to different nerve reconstructions. These networks may be potential targets for enhancing motor recovery.
Collapse
Affiliation(s)
- Yunting Xiang
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Engineering Research Center of Traditional Chinese Medicine Intelligent Rehabilitation, Ministry of Education, Shanghai, China
| | - Xiangxin Xing
- Department of Rehabilitation Medicine, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xuyun Hua
- Department of Rehabilitation Medicine, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Department of Traumatology and Orthopedics, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yuwen Zhang
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
| | - Xin Xue
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jiajia Wu
- Department of Rehabilitation Medicine, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Department of Traumatology and Orthopedics, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Mouxiong Zheng
- Department of Rehabilitation Medicine, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Department of Traumatology and Orthopedics, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - He Wang
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
- Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence (Fudan University), Ministry of Education, Shanghai, China
- Human Phenome Institute, Fudan University, Shanghai, China
| | - Jianguang Xu
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Engineering Research Center of Traditional Chinese Medicine Intelligent Rehabilitation, Ministry of Education, Shanghai, China
- Department of Rehabilitation Medicine, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
2
|
Wang X, Alkaabi F, Cornett A, Choi M, Scheven UM, Di Natale MR, Furness JB, Liu Z. Magnetic Resonance Imaging of Gastric Motility in Conscious Rats. Neurogastroenterol Motil 2024:e14982. [PMID: 39737873 DOI: 10.1111/nmo.14982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 11/26/2024] [Accepted: 12/02/2024] [Indexed: 01/01/2025]
Abstract
INTRODUCTION Gastrointestinal (GI) magnetic resonance imaging (MRI) enables simultaneous assessment of gastric peristalsis, emptying, and intestinal filling and transit. However, GI MRI in animals typically requires anesthesia, which complicates physiology and confounds interpretation and translation to humans. This study aimed to establish GI MRI in conscious rats, and for the first time, characterize GI motor functions in awake versus anesthetized conditions. METHODS Fourteen Sprague-Dawley rats were acclimated to remain awake, still, and minimally stressed during MRI. GI MRI was performed under both awake and anesthetized conditions following voluntary consumption of a contrast-enhanced test meal. RESULTS Awake rats remained physiologically stable during MRI, giving rise to gastric emptying of 23.7% ± 1.4% at 48 min and robust peristaltic contractions propagating through the antrum at 0.72 ± 0.04 mm/s, with a relative amplitude of 40.7% ± 2.3% and a frequency of 5.1 ± 0.1 cycles per minute. Under anesthesia, gastric emptying was approximately halved, mainly due to a significant reduction in peristaltic contraction amplitude, rather than the change in propagation speed, whereas the contraction frequency remained unchanged. Additionally, the small intestine showed faster filling and stronger motility in awake rats. CONCLUSION This study demonstrates the feasibility of GI MRI in awake rats and highlights notable differences in gastric and intestinal motility between awake and anesthetized states. Our protocol provides a novel and valuable framework for preclinical studies of GI physiology and pathophysiology.
Collapse
Affiliation(s)
- Xiaokai Wang
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan, USA
| | - Fatimah Alkaabi
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan, USA
| | - Ashley Cornett
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan, USA
| | - Minkyu Choi
- Division of Electrical and Computer Engineering, University of Michigan, Ann Arbor, Michigan, USA
| | - Ulrich M Scheven
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, Michigan, USA
| | - Madeleine R Di Natale
- Department of Anatomy and Physiology, University of Melbourne, Parkville, Victoria, Australia
- Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia
| | - John B Furness
- Department of Anatomy and Physiology, University of Melbourne, Parkville, Victoria, Australia
- Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia
| | - Zhongming Liu
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan, USA
- Division of Electrical and Computer Engineering, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
3
|
Wang X, Alkaabi F, Cornett A, Choi M, Scheven UM, Di Natale MR, Furness JB, Liu Z. Magnetic Resonance Imaging of Gastric Motility in Conscious Rats. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.09.612090. [PMID: 39314428 PMCID: PMC11419018 DOI: 10.1101/2024.09.09.612090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Introduction Gastrointestinal (GI) magnetic resonance imaging (MRI) can simultaneously capture gastric peristalsis, emptying, and intestinal filling and transit. Performing GI MRI with animals requires anesthesia, which complicates physiology and confounds interpretation and translation from animals to humans. This study aims to enable MRI in conscious rats, and for the first time, characterize GI motor functions in awake versus anesthetized conditions. Methods We acclimated rats to remain awake, still, and minimally stressed during MRI. We scanned 14 Sprague-Dawley rats in both awake and anesthetized conditions after voluntarily consuming a contrast-enhanced test meal. Results Awake rats remained physiologically stable during MRI, showed gastric emptying of 23.7±1.4% after 48 minutes, and exhibited strong peristaltic contractions propagating through the antrum with a velocity of 0.72±0.04 mm/s, a relative amplitude of 40.7±2.3%, and a frequency of 5.1±0.1 cycles per minute. In the anesthetized condition, gastric emptying was about half of that in the awake condition, likely due to the effect of anesthesia in halving the amplitudes of peristaltic contractions rather than their frequency (not significantly changed) or velocity. In awake rats, the intestine filled more quickly and propulsive contractions were more occlusive. Conclusion We demonstrated the effective acquisition and analysis of GI MRI in awake rats. Awake rats show faster gastric emptying, stronger gastric contraction with a faster propagation speed, and more effective intestinal filling and transit, compared to anesthetized rats. Our protocol is expected to benefit future preclinical studies of GI physiology and pathophysiology.
Collapse
|
4
|
Yassin W, de Moura FB, Withey SL, Cao L, Kangas BD, Bergman J, Kohut SJ. Resting state networks of awake adolescent and adult squirrel monkeys using ultra-high field (9.4T) functional magnetic resonance imaging. eNeuro 2024; 11:ENEURO.0173-23.2024. [PMID: 38627065 DOI: 10.1523/eneuro.0173-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 02/07/2024] [Accepted: 02/07/2024] [Indexed: 04/30/2024] Open
Abstract
Resting state networks (RSNs) are increasingly forwarded as candidate biomarkers for neuropsychiatric disorders. Such biomarkers may provide objective measures for evaluating novel therapeutic interventions in nonhuman primates often used in translational neuroimaging research. This study aimed to characterize the RSNs of awake squirrel monkeys and compare the characteristics of those networks in adolescent and adult subjects. Twenty-seven squirrel monkeys (n=12 adolescents [6 male/6 female] ∼2.5 years and n=15 adults [7 male/8 female] ∼9.5 years) were gradually acclimated to awake scanning procedures; whole-brain fMRI images were acquired with a 9.4 Tesla scanner. Group level independent component (ICA) analysis (30 ICs) with dual regression was used to detect and compare RSNs. Twenty ICs corresponding to physiologically meaningful networks representing a range of neural functions, including motor, sensory, reward, and cognitive processes were identified in both adolescent and adult monkeys. The reproducibility of these RSNs was evaluated across several ICA model orders. Adults showed a trend for greater connectivity compared to adolescent subjects in two of the networks of interest: (1) in the right occipital region with the OFC network and (2) in the left temporal cortex, bilateral occipital cortex, and cerebellum with the posterior cingulate network. However, when age was entered into the above model, this trend for significance was lost. These results demonstrate that squirrel monkey RSNs are stable and consistent with RSNs previously identified in humans, rodents, and other nonhuman primate species. These data also identify several networks in adolescence that are conserved and others that may change into adulthood.Significance Statement Functional magnetic resonance imaging procedures have revealed important information about how the brain is modified by experimental manipulations, disease states, and aging throughout the lifespan. Preclinical neuroimaging, especially in nonhuman primates, has become a frequently used means to answer targeted questions related to brain resting-state functional connectivity. The present study characterized resting state networks (RSNs) in adult and adolescent squirrel monkeys; twenty RSNs corresponding to networks representing a range of neural functions were identified. The RSNs identified here can be utilized in future studies examining the effects of experimental manipulations on brain connectivity in squirrel monkeys. These data also may be useful for comparative analysis with other primate species to provide an evolutionary perspective for understanding brain function and organization.
Collapse
Affiliation(s)
- Walin Yassin
- Behavioral Neuroimaging Laboratory, McLean Hospital, Belmont, MA 02478
- Behavioral Biology Program, McLean Hospital, Belmont, MA 02478
- Department of Psychiatry, Harvard Medical School, Boston, MA 02478
| | - Fernando B de Moura
- Behavioral Neuroimaging Laboratory, McLean Hospital, Belmont, MA 02478
- Behavioral Biology Program, McLean Hospital, Belmont, MA 02478
- McLean Imaging Center, McLean Hospital, Belmont, MA 02478
- Department of Psychiatry, Harvard Medical School, Boston, MA 02478
| | - Sarah L Withey
- Behavioral Biology Program, McLean Hospital, Belmont, MA 02478
- Department of Psychiatry, Harvard Medical School, Boston, MA 02478
| | - Lei Cao
- Behavioral Neuroimaging Laboratory, McLean Hospital, Belmont, MA 02478
- Behavioral Biology Program, McLean Hospital, Belmont, MA 02478
- McLean Imaging Center, McLean Hospital, Belmont, MA 02478
| | - Brian D Kangas
- Behavioral Biology Program, McLean Hospital, Belmont, MA 02478
- Department of Psychiatry, Harvard Medical School, Boston, MA 02478
| | - Jack Bergman
- Behavioral Biology Program, McLean Hospital, Belmont, MA 02478
- Department of Psychiatry, Harvard Medical School, Boston, MA 02478
| | - Stephen J Kohut
- Behavioral Neuroimaging Laboratory, McLean Hospital, Belmont, MA 02478
- Behavioral Biology Program, McLean Hospital, Belmont, MA 02478
- McLean Imaging Center, McLean Hospital, Belmont, MA 02478
- Department of Psychiatry, Harvard Medical School, Boston, MA 02478
| |
Collapse
|
5
|
Koorliyil H, Sitt J, Rivals I, Liu Y, Bertolo A, Cazzanelli S, Dizeux A, Deffieux T, Tanter M, Pezet S. Specific and Nonuniform Brain States during Cold Perception in Mice. J Neurosci 2024; 44:e0909232023. [PMID: 38182417 PMCID: PMC10957214 DOI: 10.1523/jneurosci.0909-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 11/01/2023] [Accepted: 11/13/2023] [Indexed: 01/07/2024] Open
Abstract
The quest to decode the complex supraspinal mechanisms that integrate cutaneous thermal information in the central system is still ongoing. The dorsal horn of the spinal cord is the first hub that encodes thermal input which is then transmitted to brain regions via the spinothalamic and thalamocortical pathways. So far, our knowledge about the strength of the interplay between the brain regions during thermal processing is limited. To address this question, we imaged the brains of adult awake male mice in resting state using functional ultrasound imaging during plantar exposure to constant and varying temperatures. Our study reveals for the first time the following: (1) a dichotomy in the response of the somatomotor-cingulate cortices and the hypothalamus, which was never described before, due to the lack of appropriate tools to study such regions with both good spatial and temporal resolutions. (2) We infer that cingulate areas may be involved in the affective responses to temperature changes. (3) Colder temperatures (ramped down) reinforce the disconnection between the somatomotor-cingulate and hypothalamus networks. (4) Finally, we also confirm the existence in the mouse brain of a brain mode characterized by low cognitive strength present more frequently at resting neutral temperature. The present study points toward the existence of a common hub between somatomotor and cingulate regions, whereas hypothalamus functions are related to a secondary network.
Collapse
Affiliation(s)
- Haritha Koorliyil
- Physics for Medicine Paris, INSERM, ESPCI Paris, CNRS, PSL Research University, Paris 70015, France
| | - Jacobo Sitt
- PICNIC Lab, Inserm U 1127, ICM, Institut du Cerveau et de la Moelle épinière, Paris F-75013, France
| | - Isabelle Rivals
- Equipe de Statistique Appliquée, ESPCI Paris, PSL Research University, UMRS 1158, Paris 75005, France
| | - Yushan Liu
- Equipe de Statistique Appliquée, ESPCI Paris, PSL Research University, UMRS 1158, Paris 75005, France
| | - Adrien Bertolo
- Physics for Medicine Paris, INSERM, ESPCI Paris, CNRS, PSL Research University, Paris 70015, France
- Iconeus, Paris 75014, France
| | - Silvia Cazzanelli
- Physics for Medicine Paris, INSERM, ESPCI Paris, CNRS, PSL Research University, Paris 70015, France
- Iconeus, Paris 75014, France
| | - Alexandre Dizeux
- Physics for Medicine Paris, INSERM, ESPCI Paris, CNRS, PSL Research University, Paris 70015, France
| | - Thomas Deffieux
- Physics for Medicine Paris, INSERM, ESPCI Paris, CNRS, PSL Research University, Paris 70015, France
| | - Mickael Tanter
- Physics for Medicine Paris, INSERM, ESPCI Paris, CNRS, PSL Research University, Paris 70015, France
| | - Sophie Pezet
- Physics for Medicine Paris, INSERM, ESPCI Paris, CNRS, PSL Research University, Paris 70015, France
| |
Collapse
|
6
|
Wachsmuth L, Hebbelmann L, Prade J, Kohnert LC, Lambers H, Lüttjohann A, Budde T, Hess A, Faber C. Epilepsy-related functional brain network alterations are already present at an early age in the GAERS rat model of genetic absence epilepsy. Front Neurol 2024; 15:1355862. [PMID: 38529038 PMCID: PMC10961455 DOI: 10.3389/fneur.2024.1355862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 02/16/2024] [Indexed: 03/27/2024] Open
Abstract
Introduction Genetic Absence Epilepsy Rats from Strasbourg (GAERS) represent a model of genetic generalized epilepsy. The present longitudinal study in GAERS and age-matched non-epileptic controls (NEC) aimed to characterize the epileptic brain network using two functional measures, resting state-functional magnetic resonance imaging (rs-fMRI) and manganese-enhanced MRI (MEMRI) combined with morphometry, and to investigate potential brain network alterations, following long-term seizure activity. Methods Repeated rs-fMRI measurements at 9.4 T between 3 and 8 months of age were combined with MEMRI at the final time point of the study. We used graph theory analysis to infer community structure and global and local network parameters from rs-fMRI data and compared them to brain region-wise manganese accumulation patterns and deformation-based morphometry (DBM). Results Functional connectivity (FC) was generally higher in GAERS when compared to NEC. Global network parameters and community structure were similar in NEC and GAERS, suggesting efficiently functioning networks in both strains. No progressive FC changes were observed in epileptic animals. Network-based statistics (NBS) revealed stronger FC within the cortical community, including regions of association and sensorimotor cortex, and with basal ganglia and limbic regions in GAERS, irrespective of age. Higher manganese accumulation in GAERS than in NEC was observed at 8 months of age, consistent with higher overall rs-FC, particularly in sensorimotor cortex and association cortex regions. Functional measures showed less similarity in subcortical regions. Whole brain volumes of 8 months-old GAERS were higher when compared to age-matched NEC, and DBM revealed increased volumes of several association and sensorimotor cortex regions and of the thalamus. Discussion rs-fMRI, MEMRI, and volumetric data collectively suggest the significance of cortical networks in GAERS, which correlates with an increased fronto-central connectivity in childhood absence epilepsy (CAE). Our findings also verify involvement of basal ganglia and limbic regions. Epilepsy-related network alterations are already present in juvenile animals. Consequently, this early condition seems to play a greater role in dynamic brain function than chronic absence seizures.
Collapse
Affiliation(s)
- Lydia Wachsmuth
- Clinic of Radiology, University of Münster, Münster, Germany
| | - Leo Hebbelmann
- Clinic of Radiology, University of Münster, Münster, Germany
| | - Jutta Prade
- Department of Experimental and Clinical Pharmacology and Toxicology, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Laura C. Kohnert
- Department of Experimental and Clinical Pharmacology and Toxicology, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | | | | | - Thomas Budde
- Institute of Physiology I, University of Münster, Münster, Germany
| | - Andreas Hess
- Department of Experimental and Clinical Pharmacology and Toxicology, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
- Department of Neuroradiology, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
- FAU NeW – Research Center for New Bioactive Compounds, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Cornelius Faber
- Clinic of Radiology, University of Münster, Münster, Germany
| |
Collapse
|
7
|
Hsu LM, Cerri DH, Lee SH, Shnitko TA, Carelli RM, Shih YYI. Intrinsic Functional Connectivity between the Anterior Insular and Retrosplenial Cortex as a Moderator and Consequence of Cocaine Self-Administration in Rats. J Neurosci 2024; 44:e1452232023. [PMID: 38233216 PMCID: PMC10869158 DOI: 10.1523/jneurosci.1452-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 12/21/2023] [Accepted: 12/22/2023] [Indexed: 01/19/2024] Open
Abstract
While functional brain imaging studies in humans suggest that chronic cocaine use alters functional connectivity (FC) within and between key large-scale brain networks, including the default mode network (DMN), the salience network (SN), and the central executive network (CEN), cross-sectional studies in humans are challenging to obtain brain FC prior to cocaine use. Such information is critical to reveal the relationship between individual's brain FC and the subsequent development of cocaine dependence and brain changes during abstinence. Here, we performed a longitudinal study examining functional magnetic resonance imaging (fMRI) data in male rats (n = 7), acquired before cocaine self-administration (baseline), on 1 d of abstinence following 10 d of cocaine self-administration, and again after 30 d of experimenter-imposed abstinence. Using repeated-measures analysis of variance (ANOVA) with network-based statistics (NBS), significant connectivity changes were found between anterior insular cortex (AI) of the SN, retrosplenial cortex (RSC) of the DMN, somatosensory cortex, and caudate-putamen (CPu), with AI-RSC FC showing the most robust changes between baseline and 1 d of abstinence. Additionally, the level of escalated cocaine intake is associated with AI-RSC and AI-CPu FC changes between 1 d and 30 d of abstinence; further, the subjects' AI-RSC FC prior to cocaine intake is a significant moderator for the AI-RSC changes during abstinence. These results provide novel insights into the roles of AI-RSC FC before and after cocaine intake and suggest this circuit to be a potential target to modulate large-scale network and associated behavioral changes in cocaine use disorders.
Collapse
Affiliation(s)
- Li-Ming Hsu
- Center for Animal Magnetic Resonance Imaging, The University of North Carolina at Chapel Hill, Chapel Hill 27599, North Carolina
- Biomedical Research Imaging Center, The University of North Carolina at Chapel Hill, Chapel Hill 27599, North Carolina
- Departments of Neurology, The University of North Carolina at Chapel Hill, Chapel Hill 27599, North Carolina
| | - Domenic H Cerri
- Center for Animal Magnetic Resonance Imaging, The University of North Carolina at Chapel Hill, Chapel Hill 27599, North Carolina
- Biomedical Research Imaging Center, The University of North Carolina at Chapel Hill, Chapel Hill 27599, North Carolina
- Departments of Neurology, The University of North Carolina at Chapel Hill, Chapel Hill 27599, North Carolina
| | - Sung-Ho Lee
- Center for Animal Magnetic Resonance Imaging, The University of North Carolina at Chapel Hill, Chapel Hill 27599, North Carolina
- Biomedical Research Imaging Center, The University of North Carolina at Chapel Hill, Chapel Hill 27599, North Carolina
- Departments of Neurology, The University of North Carolina at Chapel Hill, Chapel Hill 27599, North Carolina
| | - Tatiana A Shnitko
- Center for Animal Magnetic Resonance Imaging, The University of North Carolina at Chapel Hill, Chapel Hill 27599, North Carolina
- Biomedical Research Imaging Center, The University of North Carolina at Chapel Hill, Chapel Hill 27599, North Carolina
- Departments of Neurology, The University of North Carolina at Chapel Hill, Chapel Hill 27599, North Carolina
| | - Regina M Carelli
- Psychology and Neuroscience, The University of North Carolina at Chapel Hill, Chapel Hill 27599, North Carolina
| | - Yen-Yu Ian Shih
- Center for Animal Magnetic Resonance Imaging, The University of North Carolina at Chapel Hill, Chapel Hill 27599, North Carolina
- Biomedical Research Imaging Center, The University of North Carolina at Chapel Hill, Chapel Hill 27599, North Carolina
- Departments of Neurology, The University of North Carolina at Chapel Hill, Chapel Hill 27599, North Carolina
| |
Collapse
|
8
|
Mandino F, Vujic S, Grandjean J, Lake EMR. Where do we stand on fMRI in awake mice? Cereb Cortex 2024; 34:bhad478. [PMID: 38100331 PMCID: PMC10793583 DOI: 10.1093/cercor/bhad478] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 11/17/2023] [Accepted: 11/18/2023] [Indexed: 12/17/2023] Open
Abstract
Imaging awake animals is quickly gaining traction in neuroscience as it offers a means to eliminate the confounding effects of anesthesia, difficulties of inter-species translation (when humans are typically imaged while awake), and the inability to investigate the full range of brain and behavioral states in unconscious animals. In this systematic review, we focus on the development of awake mouse blood oxygen level dependent functional magnetic resonance imaging (fMRI). Mice are widely used in research due to their fast-breeding cycle, genetic malleability, and low cost. Functional MRI yields whole-brain coverage and can be performed on both humans and animal models making it an ideal modality for comparing study findings across species. We provide an analysis of 30 articles (years 2011-2022) identified through a systematic literature search. Our conclusions include that head-posts are favorable, acclimation training for 10-14 d is likely ample under certain conditions, stress has been poorly characterized, and more standardization is needed to accelerate progress. For context, an overview of awake rat fMRI studies is also included. We make recommendations that will benefit a wide range of neuroscience applications.
Collapse
Affiliation(s)
- Francesca Mandino
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT 06520, United States
| | - Stella Vujic
- Department of Computer Science, Yale University, New Haven, CT 06520, United States
| | - Joanes Grandjean
- Donders Institute for Brain, Behaviour, and Cognition, Radboud University, Nijmegen, The Netherlands
- Department for Medical Imaging, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Evelyn M R Lake
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT 06520, United States
- Department of Biomedical Engineering, Yale University, New Haven, CT 06520, United States
| |
Collapse
|
9
|
Millevert C, Vidas-Guscic N, Vanherp L, Jonckers E, Verhoye M, Staelens S, Bertoglio D, Weckhuysen S. Resting-State Functional MRI and PET Imaging as Noninvasive Tools to Study (Ab)Normal Neurodevelopment in Humans and Rodents. J Neurosci 2023; 43:8275-8293. [PMID: 38073598 PMCID: PMC10711730 DOI: 10.1523/jneurosci.1043-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 06/09/2023] [Accepted: 09/13/2023] [Indexed: 12/18/2023] Open
Abstract
Neurodevelopmental disorders (NDDs) are a group of complex neurologic and psychiatric disorders. Functional and molecular imaging techniques, such as resting-state functional magnetic resonance imaging (rs-fMRI) and positron emission tomography (PET), can be used to measure network activity noninvasively and longitudinally during maturation in both humans and rodent models. Here, we review the current knowledge on rs-fMRI and PET biomarkers in the study of normal and abnormal neurodevelopment, including intellectual disability (ID; with/without epilepsy), autism spectrum disorder (ASD), and attention deficit hyperactivity disorder (ADHD), in humans and rodent models from birth until adulthood, and evaluate the cross-species translational value of the imaging biomarkers. To date, only a few isolated studies have used rs-fMRI or PET to study (abnormal) neurodevelopment in rodents during infancy, the critical period of neurodevelopment. Further work to explore the feasibility of performing functional imaging studies in infant rodent models is essential, as rs-fMRI and PET imaging in transgenic rodent models of NDDs are powerful techniques for studying disease pathogenesis, developing noninvasive preclinical imaging biomarkers of neurodevelopmental dysfunction, and evaluating treatment-response in disease-specific models.
Collapse
Affiliation(s)
- Charissa Millevert
- Applied & Translational Neurogenomics Group, Vlaams Instituut voor Biotechnology (VIB) Center for Molecular Neurology, VIB, Antwerp 2610, Belgium
- Department of Neurology, University Hospital of Antwerp, Antwerp 2610, Belgium
- µNEURO Research Centre of Excellence, University of Antwerp, Antwerp 2610, Belgium
| | - Nicholas Vidas-Guscic
- Bio-Imaging Lab, University of Antwerp, Antwerp 2610, Belgium
- µNEURO Research Centre of Excellence, University of Antwerp, Antwerp 2610, Belgium
| | - Liesbeth Vanherp
- µNEURO Research Centre of Excellence, University of Antwerp, Antwerp 2610, Belgium
| | - Elisabeth Jonckers
- Bio-Imaging Lab, University of Antwerp, Antwerp 2610, Belgium
- µNEURO Research Centre of Excellence, University of Antwerp, Antwerp 2610, Belgium
| | - Marleen Verhoye
- Bio-Imaging Lab, University of Antwerp, Antwerp 2610, Belgium
- µNEURO Research Centre of Excellence, University of Antwerp, Antwerp 2610, Belgium
| | - Steven Staelens
- Molecular Imaging Center Antwerp (MICA), University of Antwerp, Antwerp 2610, Belgium
- µNEURO Research Centre of Excellence, University of Antwerp, Antwerp 2610, Belgium
| | - Daniele Bertoglio
- Bio-Imaging Lab, University of Antwerp, Antwerp 2610, Belgium
- Molecular Imaging Center Antwerp (MICA), University of Antwerp, Antwerp 2610, Belgium
- µNEURO Research Centre of Excellence, University of Antwerp, Antwerp 2610, Belgium
| | - Sarah Weckhuysen
- Applied & Translational Neurogenomics Group, Vlaams Instituut voor Biotechnology (VIB) Center for Molecular Neurology, VIB, Antwerp 2610, Belgium
- Department of Neurology, University Hospital of Antwerp, Antwerp 2610, Belgium
- µNEURO Research Centre of Excellence, University of Antwerp, Antwerp 2610, Belgium
- Translational Neurosciences, Faculty of Medicine and Health Science, University of Antwerp, Antwerp 2610, Belgium
| |
Collapse
|
10
|
Poplawsky AJ, Cover C, Reddy S, Chishti HB, Vazquez A, Fukuda M. Odor-evoked layer-specific fMRI activities in the awake mouse olfactory bulb. Neuroimage 2023; 274:120121. [PMID: 37080347 PMCID: PMC10240534 DOI: 10.1016/j.neuroimage.2023.120121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 03/22/2023] [Accepted: 04/17/2023] [Indexed: 04/22/2023] Open
Abstract
Awake rodent fMRI is increasingly common over the use of anesthesia since it permits behavioral paradigms and does not confound normal brain function or neurovascular coupling. It is well established that adequate acclimation to the loud fMRI environment and head fixation reduces stress in the rodents and allows for whole brain imaging with little contamination from motion. However, it is unknown whether high-resolution fMRI with increased susceptibility to motion and lower sensitivity can measure small, but spatially discrete, activations in awake mice. To examine this, we used contrast-enhanced cerebral blood volume-weighted (CBVw) fMRI in the mouse olfactory bulb for its enhanced sensitivity and neural specificity. We determined that activation patterns in the glomerular layer to four different odors were spatially distinct and were consistent with previously established histological patterns. In addition, odor-evoked laminar activations were greatest in superficial layers that decreased with laminar depth, similar to previous observations. Interestingly, the fMRI response strengths in the granule cell layer were greater in awake mice than our previous anesthetized rat studies, suggesting that feedback neural activities were intact with wakefulness. We finally determined that fMRI signal changes to repeated odor exposure (i.e., olfactory adaptation) attenuated relatively more in the feedback granule cell layer compared to the input glomerular layer, which is consistent with prior observations. We, therefore, conclude that high-resolution CBVw fMRI can measure odor-specific activation patterns and distinguish changes in laminar activity of head and body restrained awake mice.
Collapse
Affiliation(s)
- Alexander John Poplawsky
- Department of Radiology, University of Pittsburgh, McGowan Institute for Regenerative Medicine Building, 3025 E. Carson St., rm. 159, Pittsburgh, PA, 15203, United States.
| | - Christopher Cover
- Department of Radiology, University of Pittsburgh, McGowan Institute for Regenerative Medicine Building, 3025 E. Carson St., rm. 159, Pittsburgh, PA, 15203, United States; Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, United States
| | - Sujatha Reddy
- Department of Radiology, University of Pittsburgh, McGowan Institute for Regenerative Medicine Building, 3025 E. Carson St., rm. 159, Pittsburgh, PA, 15203, United States
| | - Harris B Chishti
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, United States
| | - Alberto Vazquez
- Department of Radiology, University of Pittsburgh, McGowan Institute for Regenerative Medicine Building, 3025 E. Carson St., rm. 159, Pittsburgh, PA, 15203, United States; Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, United States
| | - Mitsuhiro Fukuda
- Department of Radiology, University of Pittsburgh, McGowan Institute for Regenerative Medicine Building, 3025 E. Carson St., rm. 159, Pittsburgh, PA, 15203, United States
| |
Collapse
|
11
|
Obrecht M, Zurbruegg S, Accart N, Lambert C, Doelemeyer A, Ledermann B, Beckmann N. Magnetic resonance imaging and ultrasound elastography in the context of preclinical pharmacological research: significance for the 3R principles. Front Pharmacol 2023; 14:1177421. [PMID: 37448960 PMCID: PMC10337591 DOI: 10.3389/fphar.2023.1177421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 06/16/2023] [Indexed: 07/18/2023] Open
Abstract
The 3Rs principles-reduction, refinement, replacement-are at the core of preclinical research within drug discovery, which still relies to a great extent on the availability of models of disease in animals. Minimizing their distress, reducing their number as well as searching for means to replace them in experimental studies are constant objectives in this area. Due to its non-invasive character in vivo imaging supports these efforts by enabling repeated longitudinal assessments in each animal which serves as its own control, thereby enabling to reduce considerably the animal utilization in the experiments. The repetitive monitoring of pathology progression and the effects of therapy becomes feasible by assessment of quantitative biomarkers. Moreover, imaging has translational prospects by facilitating the comparison of studies performed in small rodents and humans. Also, learnings from the clinic may be potentially back-translated to preclinical settings and therefore contribute to refining animal investigations. By concentrating on activities around the application of magnetic resonance imaging (MRI) and ultrasound elastography to small rodent models of disease, we aim to illustrate how in vivo imaging contributes primarily to reduction and refinement in the context of pharmacological research.
Collapse
Affiliation(s)
- Michael Obrecht
- Diseases of Aging and Regenerative Medicines, Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Stefan Zurbruegg
- Neurosciences Department, Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Nathalie Accart
- Diseases of Aging and Regenerative Medicines, Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Christian Lambert
- Diseases of Aging and Regenerative Medicines, Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Arno Doelemeyer
- Diseases of Aging and Regenerative Medicines, Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Birgit Ledermann
- 3Rs Leader, Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Nicolau Beckmann
- Diseases of Aging and Regenerative Medicines, Novartis Institutes for BioMedical Research, Basel, Switzerland
| |
Collapse
|
12
|
Wang H, Zhao H, Li C, Dong J, Zhao J, Yue H, Lai Y, Zhao L, Wang H, Zhang J, Xu X, Yao B, Zhou H, Nie B, Du X, Peng R. Disrupted Topological Organization of Brain Network in Rats with Spatial Memory Impairments Induced by Acute Microwave Radiation. Brain Sci 2023; 13:1006. [PMID: 37508937 PMCID: PMC10377161 DOI: 10.3390/brainsci13071006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 06/18/2023] [Accepted: 06/26/2023] [Indexed: 07/30/2023] Open
Abstract
Previous studies have suggested that microwave (MW) radiation with certain parameters can induce spatial memory deficits. However, the effect of MW on the topological organization of the brain network is still unknown. This work aimed to investigate the topological organization of the brain network in rats with spatial memory impairments induced by acute microwave (MW) radiation. The Morris water maze (MWM) test and resting-state functional magnetic resonance imaging were performed to estimate the spatial memory ability and brain network topological organization of the rats after MW exposure. Compared with the sham group, the rats exposed to 30 mW/cm2 1.5 GHz MW radiation exhibited a significantly decreased normalized clustering coefficient (γ) (p = 0.002) 1 d after the exposure and a prolonged average escape latency (AEL) (p = 0.014) 3 d after the exposure. Moreover, after 10 mW/cm2 1.5 GHz MW radiation, a significantly decreased γ (p = 0.003) was also observed in the rats, without any changes in AEL. In contrast, no adverse effects on AEL or topological parameters were observed after 9.375 GHz MW radiation. In conclusion, the rats with spatial memory deficits induced by MW radiation exhibited disruptions in the topological organization of the brain network. Moreover, these topological organization disruptions emerged earlier than behavioral symptom onset and could even be found in the rats without a decline in the performance of the spatial memory task. Therefore, it is possible to use the topological parameters of the brain network as early and sensitive indicators of the spatial memory impairments induced by acute MW radiation.
Collapse
Affiliation(s)
- Haoyu Wang
- Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Haixia Zhao
- Beijing Institute of Radiation Medicine, Beijing 100850, China
- College of Education, Hebei University, Baoding 071002, China
| | - Chunfang Li
- Beijing Institute of Radiation Medicine, Beijing 100850, China
- Department of Radiology, The First Medical Center, Chinese PLA General Hospital, Beijing 100853, China
| | - Ji Dong
- Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Jianghao Zhao
- Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Hanlin Yue
- Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Yunfei Lai
- Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Li Zhao
- Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Hui Wang
- Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Jing Zhang
- Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Xinping Xu
- Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Binwei Yao
- Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Hongmei Zhou
- Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Binbin Nie
- Beijing Engineering Research Center of Radiographic Techniques and Equipment, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Xiumin Du
- College of Education, Hebei University, Baoding 071002, China
| | - Ruiyun Peng
- Beijing Institute of Radiation Medicine, Beijing 100850, China
| |
Collapse
|
13
|
Dai T, Seewoo BJ, Hennessy LA, Bolland SJ, Rosenow T, Rodger J. Identifying reproducible resting state networks and functional connectivity alterations following chronic restraint stress in anaesthetized rats. Front Neurosci 2023; 17:1151525. [PMID: 37284657 PMCID: PMC10239969 DOI: 10.3389/fnins.2023.1151525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 04/27/2023] [Indexed: 06/08/2023] Open
Abstract
Background Resting-state functional MRI (rs-fMRI) in rodent models have the potential to bridge invasive experiments and observational human studies, increasing our understanding of functional alterations in the brains of patients with depression. A major limitation in current rodent rs-fMRI studies is that there has been no consensus on healthy baseline resting-state networks (RSNs) that are reproducible in rodents. Therefore, the present study aimed to construct reproducible RSNs in a large dataset of healthy rats and then evaluate functional connectivity changes within and between these RSNs following a chronic restraint stress (CRS) model within the same animals. Methods A combined MRI dataset of 109 Sprague Dawley rats at baseline and after two weeks of CRS, collected during four separate experiments conducted by our lab in 2019 and 2020, was re-analysed. The mICA and gRAICAR toolbox were first applied to detect optimal and reproducible ICA components and then a hierarchical clustering algorithm (FSLNets) was applied to construct reproducible RSNs. Ridge-regularized partial correlation (FSLNets) was used to evaluate the changes in the direct connection between and within identified networks in the same animals following CRS. Results Four large-scale networks in anesthetised rats were identified: the DMN-like, spatial attention-limbic, corpus striatum, and autonomic network, which are homologous across species. CRS decreased the anticorrelation between DMN-like and autonomic network. CRS decreased the correlation between amygdala and a functional complex (nucleus accumbens and ventral pallidum) in the right hemisphere within the corpus striatum network. However, a high individual variability in the functional connectivity before and after CRS within RSNs was observed. Conclusion The functional connectivity changes detected in rodents following CRS differ from reported functional connectivity alterations in patients with depression. A simple interpretation of this difference is that the rodent response to CRS does not reflect the complexity of depression as it is experienced by humans. Nonetheless, the high inter-subject variability of functional connectivity within networks suggests that rats demonstrate different neural phenotypes, like humans. Therefore, future efforts in classifying neural phenotypes in rodents might improve the sensitivity and translational impact of models used to address aetiology and treatment of psychiatric conditions including depression.
Collapse
Affiliation(s)
- Twain Dai
- School of Biological Sciences, University of Western Australia, Perth, WA, Australia
- Perron Institute for Neurological and Translational Science, University of Western Australia, Perth, WA, Australia
| | - Bhedita J. Seewoo
- School of Biological Sciences, University of Western Australia, Perth, WA, Australia
- Minderoo Foundation, Perth, WA, Australia
| | - Lauren A. Hennessy
- School of Biological Sciences, University of Western Australia, Perth, WA, Australia
- Perron Institute for Neurological and Translational Science, University of Western Australia, Perth, WA, Australia
| | - Samuel J. Bolland
- School of Biological Sciences, University of Western Australia, Perth, WA, Australia
- Perron Institute for Neurological and Translational Science, University of Western Australia, Perth, WA, Australia
| | - Tim Rosenow
- Centre for Microscopy, Characterisation and Analysis, Research Infrastructure Centres, University of Western Australia, Perth, WA, Australia
| | - Jennifer Rodger
- School of Biological Sciences, University of Western Australia, Perth, WA, Australia
- Perron Institute for Neurological and Translational Science, University of Western Australia, Perth, WA, Australia
| |
Collapse
|
14
|
Yassin W, de Moura FB, Withey SL, Cao L, Kangas BD, Bergman J, Kohut SJ. Resting state networks of awake adolescent and adult squirrel monkeys using ultra-high field (9.4T) functional magnetic resonance imaging. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.08.523000. [PMID: 36711620 PMCID: PMC9881954 DOI: 10.1101/2023.01.08.523000] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Resting state networks (RSNs) are increasingly forwarded as candidate biomarkers for neuropsychiatric disorders. Such biomarkers may provide objective measures for evaluating novel therapeutic interventions in nonhuman primates often used in translational neuroimaging research. This study aimed to characterize the RSNs of awake squirrel monkeys and compare the characteristics of those networks in adolescent and adult subjects. Twenty-seven squirrel monkeys ( n =12 adolescents [6 male/6 female] ∼2.5 years and n =15 adults [7 male/8 female] ∼9.5 years) were gradually acclimated to awake scanning procedures; whole-brain fMRI images were acquired with a 9.4 Tesla scanner. Group level independent component (IC) analysis (30 ICs) with dual regression was used to detect and compare RSNs. Twenty ICs corresponding to physiologically meaningful networks representing a range of neural functions, including motor, sensory, reward (e.g., basal ganglia), and cognitive processes were identified in both adolescent and adult monkeys. Significant age-related differences between the adult and adolescent subjects (adult > adolescent) were found in two networks of interest: (1) the right upper occipital region with an OFC IC and (2) the left temporal cortex, bilateral visual areas, and cerebellum with the cingulate IC. These results demonstrate that squirrel monkey RSNs are stable and consistent with RSNs previously identified in humans, rodents, and other nonhuman primate species. These data also identify several networks in adolescence that are conserved and others that may change into adulthood. Significance Statement Functional magnetic resonance imaging procedures have revealed important information about how the brain is modified by experimental manipulations, disease states, and aging throughout the lifespan. Preclinical neuroimaging, especially in nonhuman primates, has become a frequently used means to answer targeted questions related to brain resting-state functional connectivity. The present study characterized resting state networks (RSNs) in adult and adolescent squirrel monkeys; twenty RSNs corresponding to networks representing a range of neural functions were identified. The RSNs identified here can be utilized in future studies examining the effects of experimental manipulations on brain connectivity in squirrel monkeys. These data also may be useful for comparative analysis with other primate species to provide an evolutionary perspective for understanding brain function and organization.
Collapse
|
15
|
Combining CRISPR-Cas9 and brain imaging to study the link from genes to molecules to networks. Proc Natl Acad Sci U S A 2022; 119:e2122552119. [PMID: 36161926 DOI: 10.1073/pnas.2122552119] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Receptors, transporters, and ion channels are important targets for therapy development in neurological diseases, but their mechanistic role in pathogenesis is often poorly understood. Gene editing and in vivo imaging approaches will help to identify the molecular and functional role of these targets and the consequence of their regional dysfunction on the whole-brain level. We combine CRISPR-Cas9 gene editing with in vivo positron emission tomography (PET) and functional MRI (fMRI) to investigate the direct link between genes, molecules, and the brain connectome. The extensive knowledge of the Slc18a2 gene encoding the vesicular monoamine transporter (VMAT2), involved in the storage and release of dopamine, makes it an excellent target for studying the gene network relationships while structurally preserving neuronal integrity and function. We edited the Slc18a2 in the substantia nigra pars compacta of adult rats and used in vivo molecular imaging besides behavioral, histological, and biochemical assessments to characterize the CRISPR-Cas9-mediated VMAT2 knockdown. Simultaneous PET/fMRI was performed to investigate molecular and functional brain alterations. We found that stage-specific adaptations of brain functional connectivity follow the selective impairment of presynaptic dopamine storage and release. Our study reveals that recruiting different brain networks is an early response to the dopaminergic dysfunction preceding neuronal cell loss. Our combinatorial approach is a tool to investigate the impact of specific genes on brain molecular and functional dynamics, which will help to develop tailored therapies for normalizing brain function.
Collapse
|
16
|
Beloate LN, Zhang N. Connecting the dots between cell populations, whole-brain activity, and behavior. NEUROPHOTONICS 2022; 9:032208. [PMID: 35350137 PMCID: PMC8957372 DOI: 10.1117/1.nph.9.3.032208] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Accepted: 02/25/2022] [Indexed: 06/14/2023]
Abstract
Simultaneously manipulating and monitoring both microscopic and macroscopic brain activity in vivo and identifying the linkage to behavior are powerful tools in neuroscience research. These capabilities have been realized with the recent technical advances of optogenetics and its combination with fMRI, here termed "opto-fMRI." Opto-fMRI allows for targeted brain region-, cell-type-, or projection-specific manipulation and targetedCa 2 + activity measurement to be linked with global brain signaling and behavior. We cover the history, technical advances, applications, and important considerations of opto-fMRI in anesthetized and awake rodents and the future directions of the combined techniques in neuroscience and neuroimaging.
Collapse
Affiliation(s)
- Lauren N. Beloate
- Pennsylvania State University, Department of Biomedical Engineering, Pennsylvania, United States
| | - Nanyin Zhang
- Pennsylvania State University, Department of Biomedical Engineering, Pennsylvania, United States
- Pennsylvania State University, Huck Institutes of the Life Sciences, Pennsylvania, United States
| |
Collapse
|
17
|
Lam YS, Liu XX, Ke Y, Yung WH. Edge-based network analysis reveals frequency-specific network dynamics in aberrant anxiogenic processing in rats. Netw Neurosci 2022; 6:816-833. [PMID: 36605411 PMCID: PMC9810363 DOI: 10.1162/netn_a_00251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Accepted: 04/10/2022] [Indexed: 01/07/2023] Open
Abstract
Uncovering interactions between edges of brain networks can reveal the organizational principle of the networks and also their dysregulations underlying aberrant behaviours such as in neuropsychiatric diseases. In this study, we looked into the applicability of edge-based network analysis in uncovering possible network mechanisms of aberrant anxiogenic processing. Utilizing a rat model of prodromal Parkinson's disease we examined how a dorsomedial striatum-tied associative network (DSAN) may mediate context-based anxiogenic behaviour. Following dopamine depletion in the dorsomedial striatum, an exaggerated bottom-up signalling (posterior parietal-hippocampal-retrosplenial to anterior prefrontal-cingulate-amygdala regions) and gradient specific to the theta frequency in this network was observed. This change was accompanied by increased anxiety behaviour of the animals. By employing an edge-based approach in correlating informational flow (phase transfer entropy) with functional connectivity of all edges of this network, we further explore how the abnormal bottom-up signalling might be explained by alterations to the informational flow-connectivity motifs in the network. Our results demonstrate usage of edge-based network analysis in revealing concurrent informational processing and functional organization dynamics across multiple pathways in a brain network. This approach in unveiling network abnormalities and its impact on behavioural outcomes would be useful in probing the network basis of neuropsychiatric conditions.
Collapse
Affiliation(s)
- Yin-Shing Lam
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong
- Gerald Choa Neuroscience Centre, The Chinese University of Hong Kong, Hong Kong
| | - Xiu-Xiu Liu
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong
- Gerald Choa Neuroscience Centre, The Chinese University of Hong Kong, Hong Kong
| | - Ya Ke
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong
- Gerald Choa Neuroscience Centre, The Chinese University of Hong Kong, Hong Kong
| | - Wing-Ho Yung
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong
- Gerald Choa Neuroscience Centre, The Chinese University of Hong Kong, Hong Kong
| |
Collapse
|
18
|
Dvořáková L, Stenroos P, Paasonen E, Salo RA, Paasonen J, Gröhn O. Light sedation with short habituation time for large-scale functional magnetic resonance imaging studies in rats. NMR IN BIOMEDICINE 2022; 35:e4679. [PMID: 34961988 PMCID: PMC9285600 DOI: 10.1002/nbm.4679] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 12/14/2021] [Accepted: 12/15/2021] [Indexed: 06/14/2023]
Abstract
Traditionally, preclinical resting state functional magnetic resonance imaging (fMRI) studies have been performed in anesthetized animals. Nevertheless, as anesthesia affects the functional connectivity (FC) in the brain, there has been a growing interest in imaging in the awake state. Obviously, awake imaging requires resource- and time-consuming habituation prior to data acquisition to reduce the stress and motion of the animals. Light sedation has been a less widely exploited alternative for awake imaging, requiring shorter habituation times, while still reducing the effect of anesthesia. Here, we imaged 102 rats under light sedation and 10 awake animals to conduct an FC analysis. We established an automated data-processing pipeline suitable for both groups. Additionally, the same pipeline was used on data obtained from an openly available awake rat database (289 measurements in 90 rats). The FC pattern in the light sedation measurements closely resembled the corresponding patterns in both onsite and offsite awake datasets. However, fewer datasets had to be excluded due to movement in rats with light sedation. The temporal analysis of FC in the lightly sedated group indicated a lingering effect of anesthesia that stabilized after the first 5 min. In summary, our results indicate that the light sedation protocol is a valid alternative for large-scale studies where awake protocols may become prohibitively resource-demanding, as it provides similar results to awake imaging, preserves more scans, and requires shorter habituation times. The large amount of fMRI data obtained in this work are openly available for further analyses.
Collapse
Affiliation(s)
- Lenka Dvořáková
- A. I. V. Institute for Molecular SciencesUniversity of Eastern FinlandKuopioFinland
| | - Petteri Stenroos
- A. I. V. Institute for Molecular SciencesUniversity of Eastern FinlandKuopioFinland
- Grenoble Institut des NeurosciencesUniversité Grenoble AlpesGrenobleFrance
| | - Ekaterina Paasonen
- A. I. V. Institute for Molecular SciencesUniversity of Eastern FinlandKuopioFinland
| | - Raimo A. Salo
- A. I. V. Institute for Molecular SciencesUniversity of Eastern FinlandKuopioFinland
| | - Jaakko Paasonen
- A. I. V. Institute for Molecular SciencesUniversity of Eastern FinlandKuopioFinland
| | - Olli Gröhn
- A. I. V. Institute for Molecular SciencesUniversity of Eastern FinlandKuopioFinland
| |
Collapse
|
19
|
Pérez-Ramírez Ú, López-Madrona VJ, Pérez-Segura A, Pallarés V, Moreno A, Ciccocioppo R, Hyytiä P, Sommer WH, Moratal D, Canals S. Brain Network Allostasis after Chronic Alcohol Drinking Is Characterized by Functional Dedifferentiation and Narrowing. J Neurosci 2022; 42:4401-4413. [PMID: 35437279 PMCID: PMC9145238 DOI: 10.1523/jneurosci.0389-21.2022] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 03/25/2022] [Accepted: 03/30/2022] [Indexed: 11/21/2022] Open
Abstract
Alcohol use disorder (AUD) causes complex alterations in the brain that are poorly understood. The heterogeneity of drinking patterns and the high incidence of comorbid factors compromise mechanistic investigations in AUD patients. Here we used male Marchigian Sardinian alcohol-preferring (msP) rats, a well established animal model of chronic alcohol drinking, and a combination of longitudinal resting-state fMRI and manganese-enhanced MRI to provide objective measurements of brain connectivity and activity, respectively. We found that 1 month of chronic alcohol drinking changed the correlation between resting-state networks. The change was not homogeneous, resulting in the reorganization of pairwise interactions and a shift in the equilibrium of functional connections. We identified two fundamentally different forms of network reorganization. First is functional dedifferentiation, which is defined as a regional increase in neuronal activity and overall correlation, with a concomitant decrease in preferential connectivity between specific networks. Through this mechanism, occipital cortical areas lost their specific interaction with sensory-insular cortex, striatal, and sensorimotor networks. Second is functional narrowing, which is defined as an increase in neuronal activity and preferential connectivity between specific brain networks. Functional narrowing strengthened the interaction between striatal and prefrontocortical networks, involving the anterior insular, cingulate, orbitofrontal, prelimbic, and infralimbic cortices. Importantly, these two types of alterations persisted after alcohol discontinuation, suggesting that dedifferentiation and functional narrowing rendered persistent network states. Our results support the idea that chronic alcohol drinking, albeit at moderate intoxicating levels, induces an allostatic change in the brain functional connectivity that propagates into early abstinence.SIGNIFICANCE STATEMENT Excessive consumption of alcohol is positioned among the top five risk factors for disease and disability. Despite this priority, the transformations that the nervous system undergoes from an alcohol-naive state to a pathologic alcohol drinking are not well understood. In our study, we use an animal model with proven translational validity to study this transformation longitudinally. The results show that shortly after chronic alcohol consumption there is an increase in redundant activity shared by brain structures, and the specific communication shrinks to a set of pathways. This functional dedifferentiation and narrowing are not reversed immediately after alcohol withdrawal but persist during early abstinence. We causally link chronic alcohol drinking with an early and abstinence-persistent retuning of the functional equilibrium of the brain.
Collapse
Affiliation(s)
- Úrsula Pérez-Ramírez
- Center for Biomaterials and Tissue Engineering, Universitat Politècnica de València, E-46022 Valencia, Spain
| | - Víctor J López-Madrona
- Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas, Universidad Miguel Hernández, 03550 Sant Joan d'Alacant, Spain
| | - Andrés Pérez-Segura
- Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas, Universidad Miguel Hernández, 03550 Sant Joan d'Alacant, Spain
| | - Vicente Pallarés
- Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas, Universidad Miguel Hernández, 03550 Sant Joan d'Alacant, Spain
| | - Andrea Moreno
- Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas, Universidad Miguel Hernández, 03550 Sant Joan d'Alacant, Spain
| | | | - Petri Hyytiä
- Department of Pharmacology, Faculty of Medicine, University of Helsinki, 00014 Helsinki, Finland
| | - Wolfgang H Sommer
- Institute of Psychopharmacology, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, 68159 Mannheim, Germany
| | - David Moratal
- Center for Biomaterials and Tissue Engineering, Universitat Politècnica de València, E-46022 Valencia, Spain
| | - Santiago Canals
- Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas, Universidad Miguel Hernández, 03550 Sant Joan d'Alacant, Spain
| |
Collapse
|
20
|
Paasonen J, Stenroos P, Laakso H, Pirttimäki T, Paasonen E, Salo RA, Tanila H, Idiyatullin D, Garwood M, Michaeli S, Mangia S, Gröhn O. Whole-brain studies of spontaneous behavior in head-fixed rats enabled by zero echo time MB-SWIFT fMRI. Neuroimage 2022; 250:118924. [PMID: 35065267 PMCID: PMC9464759 DOI: 10.1016/j.neuroimage.2022.118924] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 12/22/2021] [Accepted: 01/18/2022] [Indexed: 11/21/2022] Open
Abstract
Understanding the link between the brain activity and behavior is a key challenge in modern neuroscience. Behavioral neuroscience, however, lacks tools to record whole-brain activity in complex behavioral settings. Here we demonstrate that a novel Multi-Band SWeep Imaging with Fourier Transformation (MB-SWIFT) functional magnetic resonance imaging (fMRI) approach enables whole-brain studies in spontaneously behaving head-fixed rats. First, we show anatomically relevant functional parcellation. Second, we show sensory, motor, exploration, and stress-related brain activity in relevant networks during corresponding spontaneous behavior. Third, we show odor-induced activation of olfactory system with high correlation between the fMRI and behavioral responses. We conclude that the applied methodology enables novel behavioral study designs in rodents focusing on tasks, cognition, emotions, physical exercise, and social interaction. Importantly, novel zero echo time and large bandwidth approaches, such as MB-SWIFT, can be applied for human behavioral studies, allowing more freedom as body movement is dramatically less restricting factor.
Collapse
Affiliation(s)
- Jaakko Paasonen
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Petteri Stenroos
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland; Institute of Neuroscience, Grenoble, France
| | - Hanne Laakso
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Tiina Pirttimäki
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Ekaterina Paasonen
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Raimo A Salo
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Heikki Tanila
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Djaudat Idiyatullin
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, USA
| | - Michael Garwood
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, USA
| | - Shalom Michaeli
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, USA
| | - Silvia Mangia
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, USA
| | - Olli Gröhn
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland.
| |
Collapse
|
21
|
Ferris CF. Applications in Awake Animal Magnetic Resonance Imaging. Front Neurosci 2022; 16:854377. [PMID: 35450017 PMCID: PMC9017993 DOI: 10.3389/fnins.2022.854377] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 03/09/2022] [Indexed: 12/16/2022] Open
Abstract
There are numerous publications on methods and applications for awake functional MRI across different species, e.g., voles, rabbits, cats, dogs, and rhesus macaques. Each of these species, most obviously rhesus monkey, have general or unique attributes that provide a better understanding of the human condition. However, much of the work today is done on rodents. The growing number of small bore (≤30 cm) high field systems 7T- 11.7T favor the use of small animals. To that point, this review is primarily focused on rodents and their many applications in awake function MRI. Applications include, pharmacological MRI, drugs of abuse, sensory evoked stimuli, brain disorders, pain, social behavior, and fear.
Collapse
|
22
|
Jiang Y, Liu D, Zhang X, Liu H, Zhang C, Zhang J. Modulation of the rat hippocampal-cortex network and episodic-like memory performance following entorhinal cortex stimulation. CNS Neurosci Ther 2022; 28:448-457. [PMID: 34964261 PMCID: PMC8841309 DOI: 10.1111/cns.13795] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 12/12/2021] [Accepted: 12/14/2021] [Indexed: 12/22/2022] Open
Abstract
AIMS Entorhinal cortex (EC) deep brain stimulation (DBS) has shown a memory enhancement effect. However, its brain network modulation mechanisms remain unclear. The present study aimed to investigate the functional connectivity in the rat hippocampal-cortex network and episodic-like memory performance following EC-DBS. METHODS 7.0 T functional MRI (fMRI) scans and episodic-like memory tests were performed 3 days and 28 days after EC-DBS in healthy rats. The fMRI data processing was focused on the power spectra, functional connectivity, and causality relationships in the hippocampal-cortex network. In addition, the exploration ratio for each object and the discrimination ratio of the "when" and "where" factors were calculated in the behavioral tests. RESULTS EC-DBS increased the power spectra and the functional connectivity in the prefrontal- and hippocampal-related networks 3 days after stimulation and recovered 4 weeks later. Both networks exhibited a strengthened connection with the EC after EC-DBS. Further seed-based functional connectivity comparisons showed increased connectivity among the prefrontal cortex, hippocampus and EC, especially on the ipsilateral side of DBS. The dentate gyrus is a hub region closely related to both the EC and the prefrontal cortex and receives information flow from both. Moreover, acute EC-DBS also enhanced the discrimination ratio of the "where" factor in the episodic-like memory test on Day 3. CONCLUSION EC-DBS caused a reversible modulation effect on functional connectivity in the hippocampal-cortex network and episodic-like memory performance.
Collapse
Affiliation(s)
- Yin Jiang
- Department of Functional NeurosurgeryBeijing Neurosurgical InstituteCapital Medical UniversityBeijingChina
- Beijing Key Laboratory of NeurostimulationBeijingChina
| | - De‐Feng Liu
- Department of Functional NeurosurgeryBeijing Tiantan HospitalCapital Medical UniversityBeijingChina
| | - Xin Zhang
- Department of Functional NeurosurgeryBeijing Neurosurgical InstituteCapital Medical UniversityBeijingChina
| | - Huan‐Guang Liu
- Department of Functional NeurosurgeryBeijing Tiantan HospitalCapital Medical UniversityBeijingChina
| | - Chao Zhang
- Department of Functional NeurosurgeryBeijing Tiantan HospitalCapital Medical UniversityBeijingChina
| | - Jian‐Guo Zhang
- Department of Functional NeurosurgeryBeijing Neurosurgical InstituteCapital Medical UniversityBeijingChina
- Beijing Key Laboratory of NeurostimulationBeijingChina
- Department of Functional NeurosurgeryBeijing Tiantan HospitalCapital Medical UniversityBeijingChina
| |
Collapse
|
23
|
Lee SH, Broadwater MA, Ban W, Wang TWW, Kim HJ, Dumas JS, Vetreno RP, Herman MA, Morrow AL, Besheer J, Kash TL, Boettiger CA, Robinson DL, Crews FT, Shih YYI. An isotropic EPI database and analytical pipelines for rat brain resting-state fMRI. Neuroimage 2021; 243:118541. [PMID: 34478824 PMCID: PMC8561231 DOI: 10.1016/j.neuroimage.2021.118541] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 08/08/2021] [Accepted: 08/30/2021] [Indexed: 12/24/2022] Open
Abstract
Resting-state functional magnetic resonance imaging (fMRI) has drastically expanded the scope of brain research by advancing our knowledge about the topologies, dynamics, and interspecies translatability of functional brain networks. Several databases have been developed and shared in accordance with recent key initiatives in the rodent fMRI community to enhance the transparency, reproducibility, and interpretability of data acquired at various sites. Despite these pioneering efforts, one notable challenge preventing efficient standardization in the field is the customary choice of anisotropic echo planar imaging (EPI) schemes with limited spatial coverage. Imaging with anisotropic resolution and/or reduced brain coverage has significant shortcomings including reduced registration accuracy and increased deviation in brain feature detection. Here we proposed a high-spatial-resolution (0.4 mm), isotropic, whole-brain EPI protocol for the rat brain using a horizontal slicing scheme that can maintain a functionally relevant repetition time (TR), avoid high gradient duty cycles, and offer unequivocal whole-brain coverage. Using this protocol, we acquired resting-state EPI fMRI data from 87 healthy rats under the widely used dexmedetomidine sedation supplemented with low-dose isoflurane on a 9.4 T MRI system. We developed an EPI template that closely approximates the Paxinos and Watson's rat brain coordinate system and demonstrated its ability to improve the accuracy of group-level approaches and streamline fMRI data pre-processing. Using this database, we employed a multi-scale dictionary-learning approach to identify reliable spatiotemporal features representing rat brain intrinsic activity. Subsequently, we performed k-means clustering on those features to obtain spatially discrete, functional regions of interest (ROIs). Using Euclidean-based hierarchical clustering and modularity-based partitioning, we identified the topological organizations of the rat brain. Additionally, the identified group-level FC network appeared robust across strains and sexes. The "triple-network" commonly adapted in human fMRI were resembled in the rat brain. Through this work, we disseminate raw and pre-processed isotropic EPI data, a rat brain EPI template, as well as identified functional ROIs and networks in standardized rat brain coordinates. We also make our analytical pipelines and scripts publicly available, with the hope of facilitating rat brain resting-state fMRI study standardization.
Collapse
Affiliation(s)
- Sung-Ho Lee
- Center for Animal MRI, University of North Carolina, Chapel Hill, NC, USA,Biomedical Research Imaging Center, University of North Carolina, Chapel Hill, NC, USA,Department of Neurology, University of North Carolina, Chapel Hill, NC, USA,Bowles Center for Alcohol Studies University of North Carolina, Chapel Hill, NC, USA,Corresponding authors at: Center for Animal MRI, 125 Mason Farm Road, CB# 7513, University of North Carolina, Chapel Hill, NC 27599, USA. (S.-H. Lee), (Y.-Y.I. Shih)
| | - Margaret A. Broadwater
- Center for Animal MRI, University of North Carolina, Chapel Hill, NC, USA,Biomedical Research Imaging Center, University of North Carolina, Chapel Hill, NC, USA,Department of Neurology, University of North Carolina, Chapel Hill, NC, USA,Bowles Center for Alcohol Studies University of North Carolina, Chapel Hill, NC, USA
| | - Woomi Ban
- Center for Animal MRI, University of North Carolina, Chapel Hill, NC, USA,Biomedical Research Imaging Center, University of North Carolina, Chapel Hill, NC, USA
| | - Tzu-Wen Winnie Wang
- Center for Animal MRI, University of North Carolina, Chapel Hill, NC, USA,Biomedical Research Imaging Center, University of North Carolina, Chapel Hill, NC, USA
| | - Hyeon-Joong Kim
- Center for Animal MRI, University of North Carolina, Chapel Hill, NC, USA,Biomedical Research Imaging Center, University of North Carolina, Chapel Hill, NC, USA,Department of Neurology, University of North Carolina, Chapel Hill, NC, USA
| | - Jaiden Seongmi Dumas
- Center for Animal MRI, University of North Carolina, Chapel Hill, NC, USA,Department of Neurology, University of North Carolina, Chapel Hill, NC, USA,Department of Quantitative Biology, University of North Carolina, Chapel Hill, NC, USA
| | - Ryan P. Vetreno
- Bowles Center for Alcohol Studies University of North Carolina, Chapel Hill, NC, USA,Department of Pharmacology, University of North Carolina, Chapel Hill, NC, USA
| | - Melissa A. Herman
- Bowles Center for Alcohol Studies University of North Carolina, Chapel Hill, NC, USA,Department of Pharmacology, University of North Carolina, Chapel Hill, NC, USA
| | - A. Leslie Morrow
- Bowles Center for Alcohol Studies University of North Carolina, Chapel Hill, NC, USA,Department of Psychiatry, University of North Carolina, Chapel Hill, NC, USA,Department of Pharmacology, University of North Carolina, Chapel Hill, NC, USA
| | - Joyce Besheer
- Bowles Center for Alcohol Studies University of North Carolina, Chapel Hill, NC, USA,Department of Psychiatry, University of North Carolina, Chapel Hill, NC, USA
| | - Thomas L. Kash
- Bowles Center for Alcohol Studies University of North Carolina, Chapel Hill, NC, USA,Department of Pharmacology, University of North Carolina, Chapel Hill, NC, USA
| | - Charlotte A. Boettiger
- Bowles Center for Alcohol Studies University of North Carolina, Chapel Hill, NC, USA,Department of Psychiatry, University of North Carolina, Chapel Hill, NC, USA,Department of Psychology and Neuroscience, University of North Carolina, Chapel Hill, NC, USA
| | - Donita L. Robinson
- Bowles Center for Alcohol Studies University of North Carolina, Chapel Hill, NC, USA,Department of Psychiatry, University of North Carolina, Chapel Hill, NC, USA
| | - Fulton T. Crews
- Bowles Center for Alcohol Studies University of North Carolina, Chapel Hill, NC, USA,Department of Psychiatry, University of North Carolina, Chapel Hill, NC, USA,Department of Pharmacology, University of North Carolina, Chapel Hill, NC, USA
| | - Yen-Yu Ian Shih
- Center for Animal MRI, University of North Carolina, Chapel Hill, NC, USA,Biomedical Research Imaging Center, University of North Carolina, Chapel Hill, NC, USA,Department of Neurology, University of North Carolina, Chapel Hill, NC, USA,Bowles Center for Alcohol Studies University of North Carolina, Chapel Hill, NC, USA,Corresponding authors at: Center for Animal MRI, 125 Mason Farm Road, CB# 7513, University of North Carolina, Chapel Hill, NC 27599, USA. (S.-H. Lee), (Y.-Y.I. Shih)
| |
Collapse
|
24
|
Ionescu TM, Amend M, Hafiz R, Biswal BB, Wehrl HF, Herfert K, Pichler BJ. Elucidating the complementarity of resting-state networks derived from dynamic [ 18F]FDG and hemodynamic fluctuations using simultaneous small-animal PET/MRI. Neuroimage 2021; 236:118045. [PMID: 33848625 PMCID: PMC8339191 DOI: 10.1016/j.neuroimage.2021.118045] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 03/15/2021] [Accepted: 04/04/2021] [Indexed: 12/02/2022] Open
Abstract
Functional connectivity (FC) and resting-state network (RSN) analyses using functional magnetic resonance imaging (fMRI) have evolved into a growing field of research and have provided useful biomarkers for the assessment of brain function in neurological disorders. However, the underlying mechanisms of the blood oxygen level-dependant (BOLD) signal are not fully resolved due to its inherent complexity. In contrast, [18F]fluorodeoxyglucose positron emission tomography ([18F]FDG-PET) has been shown to provide a more direct measure of local synaptic activity and may have additional value for the readout and interpretation of brain connectivity. We performed an RSN analysis from simultaneously acquired PET/fMRI data on a single-subject level to directly compare fMRI and [18F]FDG-PET-derived networks during the resting state. Simultaneous [18F]FDG-PET/fMRI scans were performed in 30 rats. Pairwise correlation analysis, as well as independent component analysis (ICA), were used to compare the readouts of both methods. We identified three RSNs with a high degree of similarity between PET and fMRI-derived readouts: the default-mode-like network (DMN), the basal ganglia network and the cerebellar-midbrain network. Overall, [18F]FDG connectivity indicated increased integration between different, often distant, brain areas compared to the results indicated by the more segregated fMRI-derived FC. Additionally, several networks exclusive to either modality were observed using ICA. These networks included mainly bilateral cortical networks of a limited spatial extent for fMRI and more spatially widespread networks for [18F]FDG-PET, often involving several subcortical areas. This is the first study using simultaneous PET/fMRI to report RSNs subject-wise from dynamic [18F]FDG tracer delivery and BOLD fluctuations with both independent component analysis (ICA) and pairwise correlation analysis in small animals. Our findings support previous studies, which show a close link between local synaptic glucose consumption and BOLD-fMRI-derived FC. However, several brain regions were exclusively attributed to either [18F]FDG or BOLD-derived networks underlining the complementarity of this hybrid imaging approach, which may contribute to the understanding of brain functional organization and could be of interest for future clinical applications.
Collapse
Affiliation(s)
- Tudor M Ionescu
- Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, Eberhard Karls University Tuebingen, Tuebingen, Germany
| | - Mario Amend
- Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, Eberhard Karls University Tuebingen, Tuebingen, Germany
| | - Rakibul Hafiz
- Department of Biomedical Engineering, New Jersey Institute of Technology, University Heights, Newark, NJ, United States
| | - Bharat B Biswal
- Department of Biomedical Engineering, New Jersey Institute of Technology, University Heights, Newark, NJ, United States
| | - Hans F Wehrl
- Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, Eberhard Karls University Tuebingen, Tuebingen, Germany
| | - Kristina Herfert
- Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, Eberhard Karls University Tuebingen, Tuebingen, Germany
| | - Bernd J Pichler
- Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, Eberhard Karls University Tuebingen, Tuebingen, Germany.
| |
Collapse
|
25
|
McQuail JA, Dunn AR, Stern Y, Barnes CA, Kempermann G, Rapp PR, Kaczorowski CC, Foster TC. Cognitive Reserve in Model Systems for Mechanistic Discovery: The Importance of Longitudinal Studies. Front Aging Neurosci 2021; 12:607685. [PMID: 33551788 PMCID: PMC7859530 DOI: 10.3389/fnagi.2020.607685] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 12/30/2020] [Indexed: 12/14/2022] Open
Abstract
The goal of this review article is to provide a resource for longitudinal studies, using animal models, directed at understanding and modifying the relationship between cognition and brain structure and function throughout life. We propose that forthcoming longitudinal studies will build upon a wealth of knowledge gleaned from prior cross-sectional designs to identify early predictors of variability in cognitive function during aging, and characterize fundamental neurobiological mechanisms that underlie the vulnerability to, and the trajectory of, cognitive decline. Finally, we present examples of biological measures that may differentiate mechanisms of the cognitive reserve at the molecular, cellular, and network level.
Collapse
Affiliation(s)
- Joseph A. McQuail
- Department of Pharmacology, Physiology and Neuroscience, University of South Carolina School of Medicine, Columbia, SC, United States
| | - Amy R. Dunn
- The Jackson Laboratory, Bar Harbor, ME, United States
| | - Yaakov Stern
- Cognitive Neuroscience Division, Department of Neurology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, United States
| | - Carol A. Barnes
- Departments of Psychology and Neuroscience, University of Arizona, Tucson, AZ, United States
- Evelyn F. McKnight Brain Institute, University of Arizona, Tucson, AZ, United States
| | - Gerd Kempermann
- CRTD—Center for Regenerative Therapies Dresden, Technische Universität Dresden, Dresden, Germany
- German Center for Neurodegenerative Diseases (DZNE), Helmholtz Association of German Research Centers (HZ), Dresden, Germany
| | - Peter R. Rapp
- Laboratory of Behavioral Neuroscience, Neurocognitive Aging Section, National Institute on Aging, Baltimore, MD, United States
| | | | - Thomas C. Foster
- Department of Neuroscience, McKnight Brain Institute, University of Florida, Gainesville, FL, United States
- Genetics and Genomics Program, University of Florida, Gainesville, FL, United States
| |
Collapse
|
26
|
Whitesell JD, Liska A, Coletta L, Hirokawa KE, Bohn P, Williford A, Groblewski PA, Graddis N, Kuan L, Knox JE, Ho A, Wakeman W, Nicovich PR, Nguyen TN, van Velthoven CTJ, Garren E, Fong O, Naeemi M, Henry AM, Dee N, Smith KA, Levi B, Feng D, Ng L, Tasic B, Zeng H, Mihalas S, Gozzi A, Harris JA. Regional, Layer, and Cell-Type-Specific Connectivity of the Mouse Default Mode Network. Neuron 2020; 109:545-559.e8. [PMID: 33290731 PMCID: PMC8150331 DOI: 10.1016/j.neuron.2020.11.011] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 10/08/2020] [Accepted: 11/13/2020] [Indexed: 12/28/2022]
Abstract
The evolutionarily conserved default mode network (DMN) is a distributed set of brain regions coactivated during resting states that is vulnerable to brain disorders. How disease affects the DMN is unknown, but detailed anatomical descriptions could provide clues. Mice offer an opportunity to investigate structural connectivity of the DMN across spatial scales with cell-type resolution. We co-registered maps from functional magnetic resonance imaging and axonal tracing experiments into the 3D Allen mouse brain reference atlas. We find that the mouse DMN consists of preferentially interconnected cortical regions. As a population, DMN layer 2/3 (L2/3) neurons project almost exclusively to other DMN regions, whereas L5 neurons project in and out of the DMN. In the retrosplenial cortex, a core DMN region, we identify two L5 projection types differentiated by in- or out-DMN targets, laminar position, and gene expression. These results provide a multi-scale description of the anatomical correlates of the mouse DMN. Mouse resting-state default mode network anatomy described at high resolution in 3D Systematic axon tracing shows cortical DMN regions are preferentially interconnected Layer 2/3 DMN neurons project mostly in the DMN; layer 5 neurons project in and out Retrosplenial cortex contains distinct types of in- and out-DMN projection neurons
Collapse
Affiliation(s)
| | - Adam Liska
- Functional Neuroimaging Laboratory, Istituto Italiano di Tecnologia, Center for Neuroscience and Cognitive Systems @ UniTn, 38068 Rovereto, Italy; DeepMind, London EC4A 3TW, UK
| | - Ludovico Coletta
- Functional Neuroimaging Laboratory, Istituto Italiano di Tecnologia, Center for Neuroscience and Cognitive Systems @ UniTn, 38068 Rovereto, Italy; Center for Mind/Brain Sciences (CIMeC), University of Trento, 38068 Rovereto, Italy
| | | | - Phillip Bohn
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | - Ali Williford
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | | | - Nile Graddis
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | - Leonard Kuan
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | - Joseph E Knox
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | - Anh Ho
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | - Wayne Wakeman
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | | | | | | | - Emma Garren
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | - Olivia Fong
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | - Maitham Naeemi
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | - Alex M Henry
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | - Nick Dee
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | | | - Boaz Levi
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | - David Feng
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | - Lydia Ng
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | - Bosiljka Tasic
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | - Hongkui Zeng
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | - Stefan Mihalas
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | - Alessandro Gozzi
- Functional Neuroimaging Laboratory, Istituto Italiano di Tecnologia, Center for Neuroscience and Cognitive Systems @ UniTn, 38068 Rovereto, Italy
| | - Julie A Harris
- Allen Institute for Brain Science, Seattle, WA 98109, USA.
| |
Collapse
|
27
|
Drobyshevsky A, Miller MJ, Li L, Dixon CJ, Venkatasubramanian PN, Wyrwicz AM, Aksenov DP. Behavior and Regional Cortical BOLD Signal Fluctuations Are Altered in Adult Rabbits After Neonatal Volatile Anesthetic Exposure. Front Neurosci 2020; 14:571486. [PMID: 33192256 PMCID: PMC7645165 DOI: 10.3389/fnins.2020.571486] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 09/25/2020] [Indexed: 12/26/2022] Open
Abstract
Neonatal and infant exposure to volatile anesthetics has been associated with long-term learning, memory, and behavioral deficits. Although early anesthesia exposure has been linked to a number of underlying structural abnormalities, functional changes associated with these impairments remain poorly understood. To investigate the relationship between functional alteration in neuronal circuits and learning deficiency, resting state functional MRI (rsfMRI) connectivity was examined in adolescent rabbits exposed to general anesthesia as neonates (1 MAC isoflurane for 2 h on postnatal days P8, P11, and P14) and unanesthetized controls before and after training with a trace eyeblink classical conditioning (ECC) paradigm. Long-range connectivity was measured between several key regions of interest (ROIs), including primary and secondary somatosensory cortices, thalamus, hippocampus, and cingulate. In addition, metrics of regional BOLD fluctuation amplitudes and coherence, amplitude of low-frequency fluctuation (ALFF), fractional ALFF (fALFF), and regional homogeneity (ReHo) were calculated. Our results showed that the trace ECC learning rate was significantly lower in the anesthesia-exposed group. No anesthesia-related changes in long-range connectivity, fALFF, or ReHo were found between any ROIs. However, ALFF was significantly higher in anesthesia-exposed rabbits in the primary and secondary somatosensory cortices, and ALFF in those areas was a significant predictor of the learning performance for trace ECC. The absence of anesthesia-related changes in long-range thalamocortical connectivity indicates that functional thalamocortical input is not affected. Higher ALFF in the somatosensory cortex may indicate the developmental disruption of cortical neuronal circuits after neonatal anesthesia exposure, including excessive neuronal synchronization that may underlie the observed cognitive deficits.
Collapse
Affiliation(s)
- Alexander Drobyshevsky
- Department of Pediatrics, NorthShore University HealthSystem, Evanston, IL, United States
| | - Mike J Miller
- Department of Radiology, NorthShore University HealthSystem, Evanston, IL, United States
| | - Limin Li
- Department of Radiology, NorthShore University HealthSystem, Evanston, IL, United States
| | - Conor J Dixon
- Department of Radiology, NorthShore University HealthSystem, Evanston, IL, United States
| | | | - Alice M Wyrwicz
- Department of Radiology, NorthShore University HealthSystem, Evanston, IL, United States
| | - Daniil P Aksenov
- Department of Radiology, NorthShore University HealthSystem, Evanston, IL, United States
| |
Collapse
|
28
|
Increased wiring cost during development is driven by long-range cortical, but not subcortical connections. Neuroimage 2020; 225:117463. [PMID: 33075559 PMCID: PMC7812615 DOI: 10.1016/j.neuroimage.2020.117463] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 10/05/2020] [Accepted: 10/09/2020] [Indexed: 12/31/2022] Open
Abstract
The brain undergoes a protracted, metabolically expensive maturation process from childhood to adulthood. Therefore, it is crucial to understand how network cost is distributed among different brain systems as the brain matures. To address this issue, here we examined developmental changes in wiring cost and brain network topology using resting-state functional magnetic resonance imaging (rsfMRI) data longitudinally collected in awake rats from the juvenile age to adulthood. We found that the wiring cost increased in the vast majority of cortical connections but decreased in most subcortico-subcortical connections. Importantly, the developmental increase in wiring cost was dominantly driven by long-range cortical, but not subcortical connections, which was consistent with more pronounced increase in network integration in the cortical network. These results collectively indicate that there is a non-uniform distribution of network cost as the brain matures, and network resource is dominantly consumed for the development of the cortex, but not subcortex from the juvenile age to adulthood.
Collapse
|
29
|
Xing XX, Hua XY, Zheng MX, Ma ZZ, Huo BB, Wu JJ, Ma SJ, Ma J, Xu JG. Intra and inter: Alterations in functional brain resting-state networks after peripheral nerve injury. Brain Behav 2020; 10:e01747. [PMID: 32657022 PMCID: PMC7507705 DOI: 10.1002/brb3.1747] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Revised: 05/18/2020] [Accepted: 06/04/2020] [Indexed: 12/16/2022] Open
Abstract
INTRODUCTION Numerous treatments suggest that brain plasticity changes after peripheral nerve injury (PNI), and most studies examining functional magnetic resonance imaging focused on abnormal changes in specific brain regions. However, it is the large-scale interaction of neuronal networks instead of isolated brain regions contributed to the functional recovery after PNI. In the present study, we examined the intra- and internetworks alterations between the related functional resting-state networks (RSNs) in a sciatic nerve injury rat model. METHODS Ninety-six female rats were divided into a control and model group. Unilateral sciatic nerve transection and direct anastomosis were performed in the latter group. We used an independent component analysis (ICA) algorithm to observe the changes in RSNs and assessed functional connectivity between different networks using the functional networks connectivity (FNC) toolbox. RESULTS Six RSNs related to PNI were identified, including the basal ganglia network (BGN), sensorimotor network (SMN), salience network (SN), interoceptive network (IN), cerebellar network (CN), and default mode network (DMN). The model group showed significant changes in whole-brain FC changes within these resting-state networks (RSNs), but four of these RSNs exhibited a conspicuous decrease. The interalterations performed that significantly decreased FNC existed between the BGN and SMN, BGN and IN, and BGN and DMN (p < .05, corrected). A significant increase in FNC existed between DMN and CN and between CN and SN (p < .05, corrected). CONCLUSION The results showed the large-scale functional reorganization at the network level after PNI. This evidence reveals new implications to the pathophysiological mechanisms in brain plasticity of PNI.
Collapse
Affiliation(s)
- Xiang-Xin Xing
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xu-Yun Hua
- Department of Traumatology and Orthopedics, Yueyang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Yangzhi Rehabilitation Hospital, Tongji University, Shanghai, China
| | - Mou-Xiong Zheng
- Department of Traumatology and Orthopedics, Yueyang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zhen-Zhen Ma
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Bei-Bei Huo
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jia-Jia Wu
- Center of Rehabilitation Medicine, Yueyang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Shu-Jie Ma
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jie Ma
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jian-Guang Xu
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Center of Rehabilitation Medicine, Yueyang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
30
|
Kim MJ, Yum MS, Jo Y, Lee M, Kim EJ, Shim WH, Ko TS. Delayed Functional Networks Development and Altered Fast Oscillation Dynamics in a Rat Model of Cortical Malformation. Front Neurosci 2020; 14:711. [PMID: 32973422 PMCID: PMC7461924 DOI: 10.3389/fnins.2020.00711] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 06/12/2020] [Indexed: 11/13/2022] Open
Abstract
Malformations of cortical development (MCD) is associated with a wide range of developmental delay and drug resistant epilepsy in children. By using resting-state functional magnetic resonance imaging (RS-fMRI) and event-related spectral perturbation (ERSP) of cortical electroencephalography (EEG) data, we tried to investigate the neural changes of spatiotemporal functional connectivity (FC) and fast oscillation (FO) dynamics in a rat model of methylazoxymethanol (MAM)-induced MCD. A total of 28 infant rats with prenatal exposure to MAM and those of age matched 28 controls with prenatal saline exposure were used. RS-fMRI were acquired at postnatal day 15 (P15) and 29 (P29), and correlation coefficient analysis of eleven region of interests (ROI) was done to find the differences of functional networks between four groups. Two hour-cortical EEGs were also recorded at P15 and P29 and the ERSP of gamma (30–80 Hz) and ripples (80–200 Hz) were analyzed. The rats with MCD showed significantly delayed development of superior colliculus-brainstem network compared to control rats at P15. In contrast to marked maturation of default mode network (DMN) in controls from P15 to P29, there was no clear development in MCD rats. The MCD rats showed significantly higher cortical gamma and ripples-ERSP at P15 and lower cortical ripples-ERSP at P29 than those of control rats. This study demonstrated delayed development of FC and altered cortical FO dynamics in rats with malformed brain. The results should be further investigated in terms of the epileptogenesis and cognitive dysfunction in patients with MCD.
Collapse
Affiliation(s)
- Min-Jee Kim
- Department of Pediatrics, Asan Medical Center Children's Hospital, University of Ulsan College of Medicine, Seoul, South Korea
| | - Mi-Sun Yum
- Department of Pediatrics, Asan Medical Center Children's Hospital, University of Ulsan College of Medicine, Seoul, South Korea
| | - Youngheun Jo
- Department of Radiology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Minyoung Lee
- Department of Pediatrics, Asan Medical Center Children's Hospital, University of Ulsan College of Medicine, Seoul, South Korea
| | - Eun-Jin Kim
- Department of Pediatrics, Asan Medical Center Children's Hospital, University of Ulsan College of Medicine, Seoul, South Korea
| | - Woo-Hyun Shim
- Department of Radiology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Tae-Sung Ko
- Department of Pediatrics, Asan Medical Center Children's Hospital, University of Ulsan College of Medicine, Seoul, South Korea
| |
Collapse
|
31
|
Validation of Chronic Restraint Stress Model in Young Adult Rats for the Study of Depression Using Longitudinal Multimodal MR Imaging. eNeuro 2020; 7:ENEURO.0113-20.2020. [PMID: 32669346 PMCID: PMC7396811 DOI: 10.1523/eneuro.0113-20.2020] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 06/15/2020] [Accepted: 07/03/2020] [Indexed: 12/25/2022] Open
Abstract
Prior research suggests that the neurobiological underpinnings of depression include aberrant brain functional connectivity, neurometabolite levels, and hippocampal volume. Chronic restraint stress (CRS) depression model in rats has been shown to elicit behavioral, gene expression, protein, functional connectivity, and hippocampal volume changes similar to those in human depression. However, no study to date has examined the association between behavioral changes and brain changes within the same animals. This study specifically addressed the correlation between the outcomes of behavioral tests and multiple 9.4 T magnetic resonance imaging (MRI) modalities in the CRS model using data collected longitudinally in the same animals. CRS involved placing young adult male Sprague Dawley rats in individual transparent tubes for 2.5 h daily over 13 d. Elevated plus maze (EPM) and forced swim tests (FSTs) confirmed the presence of anxiety-like and depression-like behaviors, respectively, postrestraint. Resting-state functional MRI (rs-fMRI) data revealed hypoconnectivity within the salience and interoceptive networks and hyperconnectivity of several brain regions to the cingulate cortex. Proton magnetic resonance spectroscopy revealed decreased sensorimotor cortical glutamate (Glu), glutamine (Gln), and combined Glu-Gln (Glx) levels. Volumetric analysis of T2-weighted images revealed decreased hippocampal volume. Importantly, these changes parallel those found in human depression, suggesting that the CRS rodent model has utility for translational studies and novel intervention development for depression.
Collapse
|
32
|
Abstract
Migraine is a debilitating condition; however, the pharmacological effects on central nervous system networks after successful therapy are poorly understood. Defining this neurocircuitry is critical to our understanding of the disorder and for the development of antimigraine drugs. Using an established inflammatory soup model of migraine-like pathophysiology (N = 12) compared with sham synthetic interstitial fluid migraine induction (N = 12), our aim was to evaluate changes in network-level functional connectivity after sumatriptan-naproxen infusion in awake, conscious rodents (Sprague-Dawley rats). Sumatriptan-naproxen infusion functional magnetic resonance imaging data were analyzed using an independent component analysis approach. Whole-brain analysis yielded significant between-group (inflammatory soup vs synthetic interstitial fluid) alterations in functional connectivity across the cerebellar, default mode, basal ganglia, autonomic, and salience networks. These results demonstrate the large-scale antimigraine effects of sumatriptan-naproxen co-administration after dural sensitization.
Collapse
|
33
|
Aedo-Jury F, Schwalm M, Hamzehpour L, Stroh A. Brain states govern the spatio-temporal dynamics of resting-state functional connectivity. eLife 2020; 9:53186. [PMID: 32568067 PMCID: PMC7329332 DOI: 10.7554/elife.53186] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 06/18/2020] [Indexed: 01/08/2023] Open
Abstract
Previously, using simultaneous resting-state functional magnetic resonance imaging (fMRI) and photometry-based neuronal calcium recordings in the anesthetized rat, we identified blood oxygenation level-dependent (BOLD) responses directly related to slow calcium waves, revealing a cortex-wide and spatially organized correlate of locally recorded neuronal activity (Schwalm et al., 2017). Here, using the same techniques, we investigate two distinct cortical activity states: persistent activity, in which compartmentalized network dynamics were observed; and slow wave activity, dominated by a cortex-wide BOLD component, suggesting a strong functional coupling of inter-cortical activity. During slow wave activity, we find a correlation between the occurring slow wave events and the strength of functional connectivity between different cortical areas. These findings suggest that down-up transitions of neuronal excitability can drive cortex-wide functional connectivity. This study provides further evidence that changes in functional connectivity are dependent on the brain's current state, directly linked to the generation of slow waves.
Collapse
Affiliation(s)
- Felipe Aedo-Jury
- Institute of Pathophysiology, University Medical Center Mainz, Mainz, Germany.,Leibniz Institute for Resilience Research, Mainz, Germany
| | - Miriam Schwalm
- Institute of Pathophysiology, University Medical Center Mainz, Mainz, Germany.,Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, United States
| | - Lara Hamzehpour
- Institute of Pathophysiology, University Medical Center Mainz, Mainz, Germany
| | - Albrecht Stroh
- Institute of Pathophysiology, University Medical Center Mainz, Mainz, Germany.,Leibniz Institute for Resilience Research, Mainz, Germany
| |
Collapse
|
34
|
An analytical workflow for seed-based correlation and independent component analysis in interventional resting-state fMRI studies. Neurosci Res 2020; 165:26-37. [PMID: 32464181 DOI: 10.1016/j.neures.2020.05.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 05/08/2020] [Accepted: 05/18/2020] [Indexed: 12/12/2022]
Abstract
Resting-state functional MRI (rs-fMRI) is a task-free method of detecting spatially distinct brain regions with correlated activity, which form organised networks known as resting-state networks (RSNs). The two most widely used methods for analysing RSN connectivity are seed-based correlation analysis (SCA) and independent component analysis (ICA) but there is no established workflow of the optimal combination of analytical steps and how to execute them. Rodent rs-fMRI data from our previous longitudinal brain stimulation studies were used to investigate these two methods using FSL. Specifically, we examined: (1) RSN identification and group comparisons in ICA, (2) ICA-based denoising compared to nuisance signal regression in SCA, and (3) seed selection in SCA. In ICA, using a baseline-only template resulted in greater functional connectivity within RSNs and more sensitive detection of group differences than when an average pre/post stimulation template was used. In SCA, the use of an ICA-based denoising method in the preprocessing of rs-fMRI data and the use of seeds from individual functional connectivity maps in running group comparisons increased the sensitivity of detecting group differences by preventing the reduction in signals of interest. Accordingly, when analysing animal and human rs-fMRI data, we infer that the use of baseline-only templates in ICA and ICA-based denoising and individualised seeds in SCA will improve the reliability of results and comparability across rs-fMRI studies.
Collapse
|
35
|
Christiaen E, Goossens MG, Descamps B, Larsen LE, Boon P, Raedt R, Vanhove C. Dynamic functional connectivity and graph theory metrics in a rat model of temporal lobe epilepsy reveal a preference for brain states with a lower functional connectivity, segregation and integration. Neurobiol Dis 2020; 139:104808. [PMID: 32087287 DOI: 10.1016/j.nbd.2020.104808] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 01/21/2020] [Accepted: 02/18/2020] [Indexed: 12/14/2022] Open
Abstract
Epilepsy is a neurological disorder characterized by recurrent epileptic seizures. The involvement of abnormal functional brain networks in the development of epilepsy and its comorbidities has been demonstrated by electrophysiological and neuroimaging studies in patients with epilepsy. This longitudinal study investigated changes in dynamic functional connectivity (dFC) and network topology during the development of epilepsy using the intraperitoneal kainic acid (IPKA) rat model of temporal lobe epilepsy (TLE). Resting state functional magnetic resonance images (rsfMRI) of 20 IPKA animals and 7 healthy control animals were acquired before and 1, 3, 6, 10 and 16 weeks after status epilepticus (SE) under medetomidine anaesthesia using a 7 T MRI system. Starting from 17 weeks post-SE, hippocampal EEG was recorded to determine the mean daily seizure frequency of each animal. Dynamic FC was assessed by calculating the correlation matrices between fMRI time series of predefined regions of interest within a sliding window of 50 s using a step length of 2 s. The matrices were classified into 6 FC states, each characterized by a correlation matrix, using k-means clustering. In addition, several time-variable graph theoretical network metrics were calculated from the time-varying correlation matrices and classified into 6 states of functional network topology, each characterized by a combination of network metrics. Our results showed that FC states with a lower mean functional connectivity, lower segregation and integration occurred more often in IPKA animals compared to control animals. Functional connectivity also became less variable during epileptogenesis. In addition, average daily seizure frequency was positively correlated with percentage dwell time (i.e. how often a state occurs) in states with high mean functional connectivity, high segregation and integration, and with the number of transitions between states, while negatively correlated with percentage dwell time in states with a low mean functional connectivity, low segregation and low integration. This indicates that animals that dwell in states of higher functional connectivity, higher segregation and higher integration, and that switch more often between states, have more seizures.
Collapse
Affiliation(s)
- Emma Christiaen
- MEDISIP, Department of Electronics and Information Systems, Ghent University, Ghent, Belgium.
| | | | - Benedicte Descamps
- MEDISIP, Department of Electronics and Information Systems, Ghent University, Ghent, Belgium
| | - Lars E Larsen
- MEDISIP, Department of Electronics and Information Systems, Ghent University, Ghent, Belgium; 4Brain Team, Department of Head and Skin, Ghent University, Ghent, Belgium
| | - Paul Boon
- 4Brain Team, Department of Head and Skin, Ghent University, Ghent, Belgium
| | - Robrecht Raedt
- 4Brain Team, Department of Head and Skin, Ghent University, Ghent, Belgium
| | - Christian Vanhove
- MEDISIP, Department of Electronics and Information Systems, Ghent University, Ghent, Belgium
| |
Collapse
|
36
|
Paasonen J, Laakso H, Pirttimäki T, Stenroos P, Salo RA, Zhurakovskaya E, Lehto LJ, Tanila H, Garwood M, Michaeli S, Idiyatullin D, Mangia S, Gröhn O. Multi-band SWIFT enables quiet and artefact-free EEG-fMRI and awake fMRI studies in rat. Neuroimage 2019; 206:116338. [PMID: 31730923 PMCID: PMC7008094 DOI: 10.1016/j.neuroimage.2019.116338] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 10/18/2019] [Accepted: 11/04/2019] [Indexed: 12/11/2022] Open
Abstract
Functional magnetic resonance imaging (fMRI) studies in animal models provide invaluable information regarding normal and abnormal brain function, especially when combined with complementary stimulation and recording techniques. The echo planar imaging (EPI) pulse sequence is the most common choice for fMRI investigations, but it has several shortcomings. EPI is one of the loudest sequences and very prone to movement and susceptibility-induced artefacts, making it suboptimal for awake imaging. Additionally, the fast gradient-switching of EPI induces disrupting currents in simultaneous electrophysiological recordings. Therefore, we investigated whether the unique features of Multi-Band SWeep Imaging with Fourier Transformation (MB-SWIFT) overcome these issues at a high 9.4 T magnetic field, making it a potential alternative to EPI. MB-SWIFT had 32-dB and 20-dB lower peak and average sound pressure levels, respectively, than EPI with typical fMRI parameters. Body movements had little to no effect on MB-SWIFT images or functional connectivity analyses, whereas they severely affected EPI data. The minimal gradient steps of MB-SWIFT induced significantly lower currents in simultaneous electrophysiological recordings than EPI, and there were no electrode-induced distortions in MB-SWIFT images. An independent component analysis of the awake rat functional connectivity data obtained with MB-SWIFT resulted in near whole-brain level functional parcellation, and simultaneous electrophysiological and fMRI measurements in isoflurane-anesthetized rats indicated that MB-SWIFT signal is tightly linked to neuronal resting-state activity. Therefore, we conclude that the MB-SWIFT sequence is a robust preclinical brain mapping tool that can overcome many of the drawbacks of conventional EPI fMRI at high magnetic fields.
Collapse
Affiliation(s)
- Jaakko Paasonen
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Hanne Laakso
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland; Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN, USA
| | - Tiina Pirttimäki
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland; Department of Psychology, University of Jyväskyla, Jyväskyla, Finland
| | - Petteri Stenroos
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Raimo A Salo
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Ekaterina Zhurakovskaya
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland; Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN, USA
| | - Lauri J Lehto
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland; Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN, USA
| | - Heikki Tanila
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Michael Garwood
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN, USA
| | - Shalom Michaeli
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN, USA
| | - Djaudat Idiyatullin
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN, USA
| | - Silvia Mangia
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN, USA
| | - Olli Gröhn
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland.
| |
Collapse
|
37
|
Grandjean J, Canella C, Anckaerts C, Ayrancı G, Bougacha S, Bienert T, Buehlmann D, Coletta L, Gallino D, Gass N, Garin CM, Nadkarni NA, Hübner NS, Karatas M, Komaki Y, Kreitz S, Mandino F, Mechling AE, Sato C, Sauer K, Shah D, Strobelt S, Takata N, Wank I, Wu T, Yahata N, Yeow LY, Yee Y, Aoki I, Chakravarty MM, Chang WT, Dhenain M, von Elverfeldt D, Harsan LA, Hess A, Jiang T, Keliris GA, Lerch JP, Meyer-Lindenberg A, Okano H, Rudin M, Sartorius A, Van der Linden A, Verhoye M, Weber-Fahr W, Wenderoth N, Zerbi V, Gozzi A. Common functional networks in the mouse brain revealed by multi-centre resting-state fMRI analysis. Neuroimage 2019; 205:116278. [PMID: 31614221 DOI: 10.1016/j.neuroimage.2019.116278] [Citation(s) in RCA: 125] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 10/04/2019] [Accepted: 10/11/2019] [Indexed: 01/07/2023] Open
Abstract
Preclinical applications of resting-state functional magnetic resonance imaging (rsfMRI) offer the possibility to non-invasively probe whole-brain network dynamics and to investigate the determinants of altered network signatures observed in human studies. Mouse rsfMRI has been increasingly adopted by numerous laboratories worldwide. Here we describe a multi-centre comparison of 17 mouse rsfMRI datasets via a common image processing and analysis pipeline. Despite prominent cross-laboratory differences in equipment and imaging procedures, we report the reproducible identification of several large-scale resting-state networks (RSN), including a mouse default-mode network, in the majority of datasets. A combination of factors was associated with enhanced reproducibility in functional connectivity parameter estimation, including animal handling procedures and equipment performance. RSN spatial specificity was enhanced in datasets acquired at higher field strength, with cryoprobes, in ventilated animals, and under medetomidine-isoflurane combination sedation. Our work describes a set of representative RSNs in the mouse brain and highlights key experimental parameters that can critically guide the design and analysis of future rodent rsfMRI investigations.
Collapse
Affiliation(s)
- Joanes Grandjean
- Singapore Bioimaging Consortium, Agency for Science, Technology and Research, 11 Biopolis Way, 138667, Singapore.
| | - Carola Canella
- Functional Neuroimaging Laboratory, Istituto Italiano di Tecnologia, Centre for Neuroscience and Cognitive Systems @ UNITN, 38068, Rovereto, Italy; CIMeC, Centre for Mind/Brain Sciences, University of Trento, 38068, Rovereto, Italy
| | - Cynthia Anckaerts
- Bio-Imaging Lab, University of Antwerp, CDE, Universiteitsplein 1, 2610, Antwerp, Belgium
| | - Gülebru Ayrancı
- Douglas Mental Health University Institute, McGill University, Montreal, Quebec, Canada
| | - Salma Bougacha
- Commissariat à l'Énergie Atomique et Aux Énergies Alternatives (CEA), Direction de la Recherche Fondamentale (DRF), Institut François Jacob, MIRCen, Fontenay-aux-roses, France; Centre National de la Recherche Scientifique (CNRS), Université Paris-Sud, Université Paris-Saclay UMR 9199, Neurodegenerative Diseases Laboratory, Fontenay-aux-Roses, France
| | - Thomas Bienert
- Department of Radiology, Medical Physics, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Killianstr. 5a, 79106, Freiburg, Germany; BrainLinks-BrainTools Cluster of Excellence, University of Freiburg, Georges-Köhler-Allee 80, 79110, Freiburg, Germany
| | - David Buehlmann
- Institute for Biomedical Engineering, University and ETH Zürich, Wolfgang-Pauli-Str. 27, 8093, Zürich, Switzerland
| | - Ludovico Coletta
- Functional Neuroimaging Laboratory, Istituto Italiano di Tecnologia, Centre for Neuroscience and Cognitive Systems @ UNITN, 38068, Rovereto, Italy; CIMeC, Centre for Mind/Brain Sciences, University of Trento, 38068, Rovereto, Italy
| | - Daniel Gallino
- Douglas Mental Health University Institute, McGill University, Montreal, Quebec, Canada
| | - Natalia Gass
- Department of Neuroimaging, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Clément M Garin
- Commissariat à l'Énergie Atomique et Aux Énergies Alternatives (CEA), Direction de la Recherche Fondamentale (DRF), Institut François Jacob, MIRCen, Fontenay-aux-roses, France; Centre National de la Recherche Scientifique (CNRS), Université Paris-Sud, Université Paris-Saclay UMR 9199, Neurodegenerative Diseases Laboratory, Fontenay-aux-Roses, France
| | - Nachiket Abhay Nadkarni
- Commissariat à l'Énergie Atomique et Aux Énergies Alternatives (CEA), Direction de la Recherche Fondamentale (DRF), Institut François Jacob, MIRCen, Fontenay-aux-roses, France; Centre National de la Recherche Scientifique (CNRS), Université Paris-Sud, Université Paris-Saclay UMR 9199, Neurodegenerative Diseases Laboratory, Fontenay-aux-Roses, France
| | - Neele S Hübner
- Department of Radiology, Medical Physics, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Killianstr. 5a, 79106, Freiburg, Germany; BrainLinks-BrainTools Cluster of Excellence, University of Freiburg, Georges-Köhler-Allee 80, 79110, Freiburg, Germany
| | - Meltem Karatas
- Department of Radiology, Medical Physics, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Killianstr. 5a, 79106, Freiburg, Germany; The Engineering Science, Computer Science and Imaging Laboratory (ICube), Department of Biophysics and Nuclear Medicine, University of Strasbourg and University Hospital of Strasbourg, 67000, Strasbourg, France
| | - Yuji Komaki
- Central Institute for Experimental Animals (CIEA), 3-25-12, Tonomachi, Kawasaki, Kanagawa, 210-0821, Japan; Department of Physiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku, Tokyo, 160-8582, Japan
| | - Silke Kreitz
- Institute of Experimental and Clinical Pharmacology and Toxicology, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Fahrstraße 17, 91054, Erlangen, Germany
| | - Francesca Mandino
- Singapore Bioimaging Consortium, Agency for Science, Technology and Research, 11 Biopolis Way, 138667, Singapore; Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom
| | - Anna E Mechling
- Department of Radiology, Medical Physics, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Killianstr. 5a, 79106, Freiburg, Germany; BrainLinks-BrainTools Cluster of Excellence, University of Freiburg, Georges-Köhler-Allee 80, 79110, Freiburg, Germany
| | - Chika Sato
- Functional and Molecular Imaging Team, Department of Molecular Imaging and Theranostics, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Anagawa 4-9-1, Inage, Chiba-city, Chiba, 263-8555, Japan
| | - Katja Sauer
- Institute of Experimental and Clinical Pharmacology and Toxicology, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Fahrstraße 17, 91054, Erlangen, Germany
| | - Disha Shah
- Bio-Imaging Lab, University of Antwerp, CDE, Universiteitsplein 1, 2610, Antwerp, Belgium; Laboratory for the Research of Neurodegenerative Diseases, VIB Center for Brain and Disease Research, KU Leuven, O&N4 Herestraat 49 Box 602, 3000, Leuven, Belgium
| | - Sandra Strobelt
- Institute of Experimental and Clinical Pharmacology and Toxicology, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Fahrstraße 17, 91054, Erlangen, Germany
| | - Norio Takata
- Central Institute for Experimental Animals (CIEA), 3-25-12, Tonomachi, Kawasaki, Kanagawa, 210-0821, Japan; Department of Neuropsychiatry, Keio University School of Medicine, 35 Shinanomachi, Shinjuku, Tokyo, 160-8582, Japan
| | - Isabel Wank
- Institute of Experimental and Clinical Pharmacology and Toxicology, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Fahrstraße 17, 91054, Erlangen, Germany
| | - Tong Wu
- Queensland Brain Institute, The University of Queensland, Brisbane, Queensland, Australia; Centre for Medical Image Computing, Department of Computer Science, & Max Planck University College London Centre for Computational Psychiatry and Ageing Research, University College London, London, UK; Computational, Cognitive and Clinical Imaging Lab, Division of Brain Sciences, Department of Medicine, Imperial College London, W12 0NN, UK; UK DRI Centre for Care Research and Technology, Imperial College London, W12 0NN, UK
| | - Noriaki Yahata
- Functional and Molecular Imaging Team, Department of Molecular Imaging and Theranostics, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Anagawa 4-9-1, Inage, Chiba-city, Chiba, 263-8555, Japan
| | - Ling Yun Yeow
- Singapore Bioimaging Consortium, Agency for Science, Technology and Research, 11 Biopolis Way, 138667, Singapore
| | - Yohan Yee
- Hospital for Sick Children and Department of Medical Biophysics, The University of Toronto, Toronto, Ontario, Canada
| | - Ichio Aoki
- Functional and Molecular Imaging Team, Department of Molecular Imaging and Theranostics, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Anagawa 4-9-1, Inage, Chiba-city, Chiba, 263-8555, Japan
| | - M Mallar Chakravarty
- Douglas Mental Health University Institute, McGill University, Montreal, Quebec, Canada; Department of Psychiatry, McGill University, Montreal, Quebec, Canada; Department of Biological and Biomedical Engineering, McGill University, Montreal, Quebec, Canada
| | - Wei-Tang Chang
- Singapore Bioimaging Consortium, Agency for Science, Technology and Research, 11 Biopolis Way, 138667, Singapore
| | - Marc Dhenain
- Commissariat à l'Énergie Atomique et Aux Énergies Alternatives (CEA), Direction de la Recherche Fondamentale (DRF), Institut François Jacob, MIRCen, Fontenay-aux-roses, France; Centre National de la Recherche Scientifique (CNRS), Université Paris-Sud, Université Paris-Saclay UMR 9199, Neurodegenerative Diseases Laboratory, Fontenay-aux-Roses, France
| | - Dominik von Elverfeldt
- Department of Radiology, Medical Physics, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Killianstr. 5a, 79106, Freiburg, Germany; BrainLinks-BrainTools Cluster of Excellence, University of Freiburg, Georges-Köhler-Allee 80, 79110, Freiburg, Germany
| | - Laura-Adela Harsan
- The Engineering Science, Computer Science and Imaging Laboratory (ICube), Department of Biophysics and Nuclear Medicine, University of Strasbourg and University Hospital of Strasbourg, 67000, Strasbourg, France
| | - Andreas Hess
- Institute of Experimental and Clinical Pharmacology and Toxicology, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Fahrstraße 17, 91054, Erlangen, Germany
| | - Tianzi Jiang
- Queensland Brain Institute, The University of Queensland, Brisbane, Queensland, Australia; Brainnetome Center & National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China
| | - Georgios A Keliris
- Bio-Imaging Lab, University of Antwerp, CDE, Universiteitsplein 1, 2610, Antwerp, Belgium
| | - Jason P Lerch
- Hospital for Sick Children and Department of Medical Biophysics, The University of Toronto, Toronto, Ontario, Canada; Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford, OX3 9DU, UK
| | - Andreas Meyer-Lindenberg
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Germany
| | - Hideyuki Okano
- Department of Physiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku, Tokyo, 160-8582, Japan; Laboratory for Marmoset Neural Architecture, RIKEN Brain Science Institute, Wako, Saitama, 351-0198, Japan
| | - Markus Rudin
- Institute for Biomedical Engineering, University and ETH Zürich, Wolfgang-Pauli-Str. 27, 8093, Zürich, Switzerland; Institute of Pharmacology and Toxicology, University of Zürich, Winterthurerstrasse 190, 8057, Zürich, Switzerland; Neuroscience Center Zürich, ETH Zürich and University of Zürich, Zürich, Switzerland
| | - Alexander Sartorius
- Department of Neuroimaging, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Annemie Van der Linden
- Bio-Imaging Lab, University of Antwerp, CDE, Universiteitsplein 1, 2610, Antwerp, Belgium
| | - Marleen Verhoye
- Bio-Imaging Lab, University of Antwerp, CDE, Universiteitsplein 1, 2610, Antwerp, Belgium
| | - Wolfgang Weber-Fahr
- Department of Neuroimaging, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Nicole Wenderoth
- Neural Control of Movement Lab, Department of Health Sciences and Technology, ETH Zürich, Winterthurerstrasse 190, 8057, Zurich, Switzerland; Neuroscience Center Zürich, ETH Zürich and University of Zürich, Zürich, Switzerland
| | - Valerio Zerbi
- Neural Control of Movement Lab, Department of Health Sciences and Technology, ETH Zürich, Winterthurerstrasse 190, 8057, Zurich, Switzerland; Neuroscience Center Zürich, ETH Zürich and University of Zürich, Zürich, Switzerland
| | - Alessandro Gozzi
- Functional Neuroimaging Laboratory, Istituto Italiano di Tecnologia, Centre for Neuroscience and Cognitive Systems @ UNITN, 38068, Rovereto, Italy
| |
Collapse
|
38
|
Alterations in the functional brain network in a rat model of epileptogenesis: A longitudinal resting state fMRI study. Neuroimage 2019; 202:116144. [PMID: 31473355 DOI: 10.1016/j.neuroimage.2019.116144] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 08/13/2019] [Accepted: 08/28/2019] [Indexed: 11/21/2022] Open
Abstract
Epilepsy is a neurological disorder characterized by recurrent epileptic seizures. Electrophysiological and neuroimaging studies in patients with epilepsy suggest that abnormal functional brain networks play a role in the development of epilepsy, i.e. epileptogenesis, resulting in the generation of spontaneous seizures and cognitive impairment. In this longitudinal study, we investigated changes in functional brain networks during epileptogenesis in the intraperitoneal kainic acid (IPKA) rat model of temporal lobe epilepsy (TLE) using resting state functional magnetic resonance imaging (rsfMRI) and graph theory. Additionally, we investigated whether these changes are related to the frequency of occurrence of spontaneous epileptic seizures in the chronic phase of epilepsy. Using a 7T MRI system, rsfMRI images were acquired under medetomidine anaesthesia before and 1, 3, 6, 10 and 16 weeks after status epilepticus (SE) induction in 20 IPKA animals and 7 healthy control animals. To obtain a functional network, correlation between fMRI time series of 38 regions of interest (ROIs) was calculated. Then, several graph theoretical network measures were calculated to describe and quantify the network changes. At least 17 weeks post-SE, IPKA animals were implanted with electrodes in the left and right dorsal hippocampus, EEG was measured for 7 consecutive days and spontaneous seizures were counted. Our results show that correlation coefficients of fMRI time series shift to lower values during epileptogenesis, indicating weaker whole brain network connections. Segregation and integration in the functional brain network also decrease, indicating a lower local interconnectivity and a lower overall communication efficiency. Secondly, this study demonstrates that the largest decrease in functional connectivity is observed for the retrosplenial cortex. Finally, post-SE changes in functional connectivity, segregation and integration are correlated with seizure frequency in the IPKA rat model.
Collapse
|
39
|
Amend M, Ionescu TM, Di X, Pichler BJ, Biswal BB, Wehrl HF. Functional resting-state brain connectivity is accompanied by dynamic correlations of application-dependent [ 18F]FDG PET-tracer fluctuations. Neuroimage 2019; 196:161-172. [PMID: 30981858 PMCID: PMC10673660 DOI: 10.1016/j.neuroimage.2019.04.034] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 03/27/2019] [Accepted: 04/09/2019] [Indexed: 12/22/2022] Open
Abstract
Brain function is characterized by a convolution of various biochemical and physiological processes, raising the interest whether resting-state functional connectivity derived from hemodynamic scales shows underlying metabolic synchronies. Increasing evidence suggests that metabolic connectivity based on glucose consumption associated PET recordings may serve as a marker of cognitive functions and neuropathologies. However, to what extent fMRI-derived resting-state brain connectivity can also be characterized based on dynamic fluctuations of glucose metabolism and how metabolic connectivity is influenced by [18F]FDG pharmacokinetics remains unsolved. Simultaneous PET/MRI measurements were performed in a total of 26 healthy male Lewis rats. Simultaneously to resting-state fMRI scans, one cohort (n = 15) received classical bolus [18F]FDG injections and dynamic PET images were recorded. In a second cohort (n = 11) [18F]FDG was constantly infused over the entire functional PET/MRI scans. Resting-state fMRI and [18F]FDG-PET connectivity was evaluated using a graph-theory based correlation approach and compared on whole-brain level and for a default-mode network-like structure. Further, pharmacokinetic and tracer uptake influences on [18F]FDG-PET connectivity results were investigated based on the different PET protocols. By integrating simultaneous resting-state fMRI and dynamic [18F]FDG-PET measurements in the rat brain, we identified homotopic correlations between both modalities, suggesting an underlying synchrony between hemodynamic processes and glucose consumption. Furthermore, the presence of the prominent resting-state default-mode network-like structure was not only depicted on a functional scale but also from dynamic fluctuations of [18F]FDG. In addition, the present findings demonstrated strong pharmacokinetic and tracer uptake dependencies of [18F]FDG-PET connectivity outcomes. This study highlights the application of dynamic [18F]FDG-PET to study cognitive brain functions and to decode underlying brain networks in the resting-state. Thereby, PET-derived connectivity outcomes indicated strong dependencies on tracer application regimens and subsequent time-varying tracer pharmacokinetics.
Collapse
Affiliation(s)
- Mario Amend
- Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, Eberhard Karls University Tuebingen, Germany.
| | - Tudor M Ionescu
- Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, Eberhard Karls University Tuebingen, Germany
| | - Xin Di
- Department of Biomedical Engineering, New Jersey Institute of Technology, University Heights, Newark, NJ, USA
| | - Bernd J Pichler
- Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, Eberhard Karls University Tuebingen, Germany
| | - Bharat B Biswal
- Department of Biomedical Engineering, New Jersey Institute of Technology, University Heights, Newark, NJ, USA
| | - Hans F Wehrl
- Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, Eberhard Karls University Tuebingen, Germany
| |
Collapse
|
40
|
Frequency-specific effects of low-intensity rTMS can persist for up to 2 weeks post-stimulation: A longitudinal rs-fMRI/MRS study in rats. Brain Stimul 2019; 12:1526-1536. [PMID: 31296402 DOI: 10.1016/j.brs.2019.06.028] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 06/23/2019] [Accepted: 06/26/2019] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Evidence suggests that repetitive transcranial magnetic stimulation (rTMS), a non-invasive neuromodulation technique, alters resting brain activity. Despite anecdotal evidence that rTMS effects wear off, there are no reports of longitudinal studies, even in humans, mapping the therapeutic duration of rTMS effects. OBJECTIVE Here, we investigated the longitudinal effects of repeated low-intensity rTMS (LI-rTMS) on healthy rodent resting-state networks (RSNs) using resting-state functional MRI (rs-fMRI) and on sensorimotor cortical neurometabolite levels using proton magnetic resonance spectroscopy (MRS). METHODS Sprague-Dawley rats received 10 min LI-rTMS daily for 15 days (10 Hz or 1 Hz stimulation, n = 9 per group). MRI data were acquired at baseline, after seven days and after 14 days of daily stimulation and at two more timepoints up to three weeks post-cessation of daily stimulation. RESULTS 10 Hz stimulation increased RSN connectivity and GABA, glutamine, and glutamate levels. 1 Hz stimulation had opposite but subtler effects, resulting in decreased RSN connectivity and glutamine levels. The induced changes decreased to baseline levels within seven days following stimulation cessation in the 10 Hz group but were sustained for at least 14 days in the 1 Hz group. CONCLUSION Overall, our study provides evidence of long-term frequency-specific effects of LI-rTMS. Additionally, the transient connectivity changes following 10 Hz stimulation suggest that current treatment protocols involving this frequency may require ongoing "top-up" stimulation sessions to maintain therapeutic effects.
Collapse
|
41
|
Mussio CA, Harte SE, Borszcz GS. Regional Differences Within the Anterior Cingulate Cortex in the Generation Versus Suppression of Pain Affect in Rats. THE JOURNAL OF PAIN 2019; 21:121-134. [PMID: 31201992 DOI: 10.1016/j.jpain.2019.06.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Revised: 05/22/2019] [Accepted: 06/02/2019] [Indexed: 01/08/2023]
Abstract
The anterior cingulate cortex (ACC) modulates emotional responses to pain. Whereas, the caudal ACC (cACC) promotes expression of pain affect, the rostral ACC (rACC) contributes to its suppression. Both subdivisions receive glutamatergic innervation, and the present study evaluated the contribution of N-methyl-d-aspartic acid (NMDA) receptors within these subdivisions to rats' expression of pain affect. Vocalizations that follow a brief noxious tail shock (vocalization afterdischarges, VAD) are a validated rodent model of pain affect. The threshold current for eliciting VAD was increased in a dose-dependent manner by injecting NMDA into the rACC, but performance (latency, amplitude, and duration) at threshold was not altered. Alternately, the threshold current for eliciting VAD was not altered following injection of NMDA into the cACC, but its amplitude and duration at threshold were increased in a dose-dependent manner. These effects were limited to Cg1 of the rACC and cACC, and blocked by pretreatment of the ACC with the NMDA receptor antagonist d-2-amino-5-phosphonovalerate. These findings demonstrate that NMDA receptor agonism within the cACC and rACC either increases or decreases emotional responses to noxious stimulation, respectively. PERSPECTIVE: NMDA receptor activation of the rostral and caudal ACC respectively inhibited or enhanced rats' emotional response to pain. These findings mirror those obtained from human neuroimaging studies; thereby, supporting the use of this model system in evaluating the contribution of ACC to pain affect.
Collapse
Affiliation(s)
- Casey A Mussio
- Behavioral and Cognitive Neuroscience Program, Department of Psychology, Wayne State University, Detroit, Michigan
| | - Steven E Harte
- Chronic Pain and Fatigue Research Center, Department of Anesthesiology, University of Michigan, Ann Arbor, Michigan
| | - George S Borszcz
- Behavioral and Cognitive Neuroscience Program, Department of Psychology, Wayne State University, Detroit, Michigan.
| |
Collapse
|
42
|
Greven CU, Lionetti F, Booth C, Aron EN, Fox E, Schendan HE, Pluess M, Bruining H, Acevedo B, Bijttebier P, Homberg J. Sensory Processing Sensitivity in the context of Environmental Sensitivity: A critical review and development of research agenda. Neurosci Biobehav Rev 2019; 98:287-305. [DOI: 10.1016/j.neubiorev.2019.01.009] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2018] [Revised: 01/08/2019] [Accepted: 01/08/2019] [Indexed: 12/18/2022]
|
43
|
Stenroos P, Paasonen J, Salo RA, Jokivarsi K, Shatillo A, Tanila H, Gröhn O. Awake Rat Brain Functional Magnetic Resonance Imaging Using Standard Radio Frequency Coils and a 3D Printed Restraint Kit. Front Neurosci 2018; 12:548. [PMID: 30177870 PMCID: PMC6109636 DOI: 10.3389/fnins.2018.00548] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Accepted: 07/20/2018] [Indexed: 11/13/2022] Open
Abstract
Functional magnetic resonance imaging (fMRI) is a powerful noninvasive tool for studying spontaneous resting state functional connectivity (RSFC) in laboratory animals. Brain function can be significantly affected by generally used anesthetics, however, rendering the need for awake imaging. Only a few different awake animal habituation protocols have been presented, and there is a critical need for practical and improved low-stress techniques. Here we demonstrate a novel restraint approach for awake rat RSFC studies. Our custom-made 3D printed restraint kit is compatible with a standard Bruker Biospin MRI rat bed, rat brain receiver coil, and volume transmitter coil. We also implemented a progressive habituation protocol aiming to minimize the stress experienced by the rats, and compared RSFC between awake, lightly sedated, and isoflurane-anesthetized rats. Our results demonstrated that the 3D printed restraint kit was suitable for RSFC studies of awake rats. During the short 4-day habituation period, the plasma corticosterone concentration, movement, and heart rate, which were measured as stress indicators, decreased significantly, indicating adaptation to the restraint protocol. Additionally, 10 days after the awake MRI session, rats exhibited no signs of depression or anxiety based on open-field and sucrose preference behavioral tests. The RSFC data revealed significant changes in the thalamo-cortical and cortico-cortical networks between the awake, lightly sedated, and anesthetized groups, emphasizing the need for awake imaging. The present work demonstrates the feasibility of our custom-made 3D printed restraint kit. Using this kit, we found that isoflurane markedly affected brain connectivity compared with that in awake rats, and that the effect was less pronounced, but still significant, when light isoflurane sedation was used instead.
Collapse
Affiliation(s)
- Petteri Stenroos
- Kuopio Biomedical Imaging Unit, A.I.V. Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Jaakko Paasonen
- Kuopio Biomedical Imaging Unit, A.I.V. Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Raimo A Salo
- Kuopio Biomedical Imaging Unit, A.I.V. Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Kimmo Jokivarsi
- Kuopio Biomedical Imaging Unit, A.I.V. Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Artem Shatillo
- Charles River Discovery Research Services Finland Oy, Kuopio, Finland
| | - Heikki Tanila
- Kuopio Biomedical Imaging Unit, A.I.V. Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Olli Gröhn
- Kuopio Biomedical Imaging Unit, A.I.V. Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| |
Collapse
|
44
|
Jiang Y, Han CL, Liu HG, Wang X, Zhang X, Meng FG, Zhang JG. Abnormal hippocampal functional network and related memory impairment in pilocarpine-treated rats. Epilepsia 2018; 59:1785-1795. [PMID: 30073661 DOI: 10.1111/epi.14523] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Accepted: 07/09/2018] [Indexed: 01/14/2023]
Affiliation(s)
- Yin Jiang
- Department of Functional Neurosurgery; Beijing Neurosurgical Institute; Capital Medical University; Beijing China
- Beijing Key Laboratory of Neurostimulation; Beijing China
| | - Chun-Lei Han
- Department of Functional Neurosurgery; Beijing Neurosurgical Institute; Capital Medical University; Beijing China
| | - Huan-Guang Liu
- Beijing Key Laboratory of Neurostimulation; Beijing China
- Department of Functional Neurosurgery; Beijing Tiantan Hospital; Capital Medical University; Beijing China
| | - Xiu Wang
- Department of Functional Neurosurgery; Beijing Tiantan Hospital; Capital Medical University; Beijing China
| | - Xin Zhang
- Department of Functional Neurosurgery; Beijing Neurosurgical Institute; Capital Medical University; Beijing China
- Beijing Key Laboratory of Neurostimulation; Beijing China
| | - Fan-Gang Meng
- Department of Functional Neurosurgery; Beijing Neurosurgical Institute; Capital Medical University; Beijing China
- Beijing Key Laboratory of Neurostimulation; Beijing China
| | - Jian-Guo Zhang
- Department of Functional Neurosurgery; Beijing Neurosurgical Institute; Capital Medical University; Beijing China
- Beijing Key Laboratory of Neurostimulation; Beijing China
- Department of Functional Neurosurgery; Beijing Tiantan Hospital; Capital Medical University; Beijing China
| |
Collapse
|
45
|
Todd N, Zhang Y, Arcaro M, Becerra L, Borsook D, Livingstone M, McDannold N. Focused ultrasound induced opening of the blood-brain barrier disrupts inter-hemispheric resting state functional connectivity in the rat brain. Neuroimage 2018; 178:414-422. [PMID: 29852281 DOI: 10.1016/j.neuroimage.2018.05.063] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 05/10/2018] [Accepted: 05/25/2018] [Indexed: 12/18/2022] Open
Abstract
Focused ultrasound (FUS) is a technology capable of delivering therapeutic levels of energy through the intact skull to a tightly localized brain region. Combining the FUS pressure wave with intravenously injected microbubbles creates forces on blood vessel walls that open the blood-brain barrier (BBB). This noninvasive and localized opening of the BBB allows for targeted delivery of pharmacological agents into the brain for use in therapeutic development. It is possible to use FUS power levels such that the BBB is opened without damaging local tissues. However, open questions remain related to the effects that FUS-induced BBB opening has on brain function including local physiology and vascular hemodynamics. We evaluated the effects that FUS-induced BBB opening has on resting state functional magnetic resonance imaging (rs-fMRI) metrics. Data from rs-fMRI was acquired in rats that underwent sham FUS BBB vs. FUS BBB opening targeted to the right primary somatosensory cortex hindlimb region (S1HL). FUS BBB opening reduced the functional connectivity between the right S1HL and other sensorimotor regions, including statistically significant reduction of connectivity to the homologous region in the left hemisphere (left S1HL). The effect was observed in all three metrics analyzed: functional connectivity between anatomically defined regions, whole brain voxel-wise correlation maps based on anatomical seeds, and spatial patterns from independent component analysis. Connectivity metrics for other regions where the BBB was not perturbed were not affected. While it is not clear whether the effect is vascular or neuronal in origin, these results suggest that even safe levels of FUS BBB opening have an effect on the physiological processes that drive the signals measured by BOLD fMRI. As such these effects must be accounted for when carrying out studies using fMRI to evaluate the effects of pharmacological agents delivered via FUS-induced BBB opening.
Collapse
Affiliation(s)
- Nick Todd
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, United States; Center for Pain and the Brain, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, United States.
| | - Yongzhi Zhang
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, United States
| | - Michael Arcaro
- Department of Neurobiology, Harvard Medical School, Boston, MA, 02115, USA
| | - Lino Becerra
- Center for Pain and the Brain, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, United States
| | - David Borsook
- Center for Pain and the Brain, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, United States; Department of Anesthesia, Perioperative, and Pain Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, United States
| | | | - Nathan McDannold
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, United States
| |
Collapse
|
46
|
Kreitz S, de Celis Alonso B, Uder M, Hess A. A New Analysis of Resting State Connectivity and Graph Theory Reveals Distinctive Short-Term Modulations due to Whisker Stimulation in Rats. Front Neurosci 2018; 12:334. [PMID: 29875622 PMCID: PMC5974228 DOI: 10.3389/fnins.2018.00334] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Accepted: 04/30/2018] [Indexed: 12/25/2022] Open
Abstract
Resting state (RS) connectivity has been increasingly studied in healthy and diseased brains in humans and animals. This paper presents a new method to analyze RS data from fMRI that combines multiple seed correlation analysis with graph-theory (MSRA). We characterize and evaluate this new method in relation to two other graph-theoretical methods and ICA. The graph-theoretical methods calculate cross-correlations of regional average time-courses, one using seed regions of the same size (SRCC) and the other using whole brain structure regions (RCCA). We evaluated the reproducibility, power, and capacity of these methods to characterize short-term RS modulation to unilateral physiological whisker stimulation in rats. Graph-theoretical networks found with the MSRA approach were highly reproducible, and their communities showed large overlaps with ICA components. Additionally, MSRA was the only one of all tested methods that had the power to detect significant RS modulations induced by whisker stimulation that are controlled by family-wise error rate (FWE). Compared to the reduced resting state network connectivity during task performance, these modulations implied decreased connectivity strength in the bilateral sensorimotor and entorhinal cortex. Additionally, the contralateral ventromedial thalamus (part of the barrel field related lemniscal pathway) and the hypothalamus showed reduced connectivity. Enhanced connectivity was observed in the amygdala, especially the contralateral basolateral amygdala (involved in emotional learning processes). In conclusion, MSRA is a powerful analytical approach that can reliably detect tiny modulations of RS connectivity. It shows a great promise as a method for studying RS dynamics in healthy and pathological conditions.
Collapse
Affiliation(s)
- Silke Kreitz
- Institute of Experimental and Clinical Pharmacology and Toxicology, FAU Erlangen-Nuremberg, Erlangen, Germany.,Department of Radiology, University Hospital Erlangen, FAU Erlangen-Nuremberg, Erlangen, Germany
| | - Benito de Celis Alonso
- Faculty of Mathematical & Physical Sciences, Benemerita Universidad Autonoma de Puebla, Puebla, Mexico
| | - Michael Uder
- Department of Radiology, University Hospital Erlangen, FAU Erlangen-Nuremberg, Erlangen, Germany
| | - Andreas Hess
- Institute of Experimental and Clinical Pharmacology and Toxicology, FAU Erlangen-Nuremberg, Erlangen, Germany
| |
Collapse
|
47
|
Ma Z, Ma Y, Zhang N. Development of brain-wide connectivity architecture in awake rats. Neuroimage 2018; 176:380-389. [PMID: 29738909 DOI: 10.1016/j.neuroimage.2018.05.009] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Accepted: 05/02/2018] [Indexed: 12/13/2022] Open
Abstract
Childhood and adolescence are both critical developmental periods, evidenced by complex neurophysiological changes the brain undergoes and high occurrence rates of neuropsychiatric disorders during these periods. Despite substantial progress in elucidating the developmental trajectories of individual neural circuits, our knowledge of developmental changes of whole-brain connectivity architecture in animals is sparse. To fill this gap, here we longitudinally acquired rsfMRI data in awake rats during five developmental stages from juvenile to adulthood. We found that the maturation timelines of brain circuits were heterogeneous and system specific. Functional connectivity (FC) tended to decrease in subcortical circuits, but increase in cortical circuits during development. In addition, the developing brain exhibited hemispheric functional specialization, evidenced by reduced inter-hemispheric FC between homotopic regions, and lower similarity of region-to-region FC patterns between the two hemispheres. Finally, we showed that whole-brain network development was characterized by reduced clustering (i.e. local communication) but increased integration (distant communication). Taken together, the present study has systematically characterized the development of brain-wide connectivity architecture from juvenile to adulthood in awake rats. It also serves as a critical reference point for understanding circuit- and network-level changes in animal models of brain development-related disorders. Furthermore, FC data during brain development in awake rodents contain high translational value and can shed light onto comparative neuroanatomy.
Collapse
Affiliation(s)
- Zilu Ma
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA 16802, USA
| | - Yuncong Ma
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA 16802, USA
| | - Nanyin Zhang
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA 16802, USA.
| |
Collapse
|
48
|
Carmichael O, Schwarz AJ, Chatham CH, Scott D, Turner JA, Upadhyay J, Coimbra A, Goodman JA, Baumgartner R, English BA, Apolzan JW, Shankapal P, Hawkins KR. The role of fMRI in drug development. Drug Discov Today 2018; 23:333-348. [PMID: 29154758 PMCID: PMC5931333 DOI: 10.1016/j.drudis.2017.11.012] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Revised: 10/19/2017] [Accepted: 11/13/2017] [Indexed: 12/17/2022]
Abstract
Functional magnetic resonance imaging (fMRI) has been known for over a decade to have the potential to greatly enhance the process of developing novel therapeutic drugs for prevalent health conditions. However, the use of fMRI in drug development continues to be relatively limited because of a variety of technical, biological, and strategic barriers that continue to limit progress. Here, we briefly review the roles that fMRI can have in the drug development process and the requirements it must meet to be useful in this setting. We then provide an update on our current understanding of the strengths and limitations of fMRI as a tool for drug developers and recommend activities to enhance its utility.
Collapse
Affiliation(s)
- Owen Carmichael
- Pennington Biomedical Research Center, Baton Rouge, LA, USA.
| | | | - Christopher H Chatham
- Translational Medicine Neuroscience and Biomarkers, Roche Innovation Center, Basel, Switzerland
| | | | - Jessica A Turner
- Psychology Department & Neuroscience Institute, Georgia State University, Atlanta, GA, USA
| | | | | | | | - Richard Baumgartner
- Biostatistics and Research Decision Sciences (BARDS), Merck & Co., Inc., Kenilworth, NJ, USA
| | | | - John W Apolzan
- Pennington Biomedical Research Center, Baton Rouge, LA, USA
| | | | | |
Collapse
|
49
|
Upadhyay J, Geber C, Hargreaves R, Birklein F, Borsook D. A critical evaluation of validity and utility of translational imaging in pain and analgesia: Utilizing functional imaging to enhance the process. Neurosci Biobehav Rev 2018; 84:407-423. [PMID: 28807753 PMCID: PMC5729102 DOI: 10.1016/j.neubiorev.2017.08.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Revised: 05/22/2017] [Accepted: 08/04/2017] [Indexed: 02/07/2023]
Abstract
Assessing clinical pain and metrics related to function or quality of life predominantly relies on patient reported subjective measures. These outcome measures are generally not applicable to the preclinical setting where early signs pointing to analgesic value of a therapy are sought, thus introducing difficulties in animal to human translation in pain research. Evaluating brain function in patients and respective animal model(s) has the potential to characterize mechanisms associated with pain or pain-related phenotypes and thereby provide a means of laboratory to clinic translation. This review summarizes the progress made towards understanding of brain function in clinical and preclinical pain states elucidated using an imaging approach as well as the current level of validity of translational pain imaging. We hypothesize that neuroimaging can describe the central representation of pain or pain phenotypes and yields a basis for the development and selection of clinically relevant animal assays. This approach may increase the probability of finding meaningful new analgesics that can help satisfy the significant unmet medical needs of patients.
Collapse
Affiliation(s)
| | - Christian Geber
- Department of Neurology, University Medical Centre Mainz, Mainz, Germany; DRK Schmerz-Zentrum Mainz, Mainz, Germany
| | - Richard Hargreaves
- Center for Pain and the Brain, United States; Department of Anesthesiology, Perioperative and Pain Medicine, Boston Children's Hospital, Boston Harvard Medical School, Boston, MA 02115, United States
| | - Frank Birklein
- Department of Neurology, University Medical Centre Mainz, Mainz, Germany
| | - David Borsook
- Center for Pain and the Brain, United States; Department of Anesthesiology, Perioperative and Pain Medicine, Boston Children's Hospital, Boston Harvard Medical School, Boston, MA 02115, United States.
| |
Collapse
|
50
|
Bajic D, Craig MM, Mongerson CRL, Borsook D, Becerra L. Identifying Rodent Resting-State Brain Networks with Independent Component Analysis. Front Neurosci 2017; 11:685. [PMID: 29311770 PMCID: PMC5733053 DOI: 10.3389/fnins.2017.00685] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Accepted: 11/22/2017] [Indexed: 01/08/2023] Open
Abstract
Rodent models have opened the door to a better understanding of the neurobiology of brain disorders and increased our ability to evaluate novel treatments. Resting-state functional magnetic resonance imaging (rs-fMRI) allows for in vivo exploration of large-scale brain networks with high spatial resolution. Its application in rodents affords researchers a powerful translational tool to directly assess/explore the effects of various pharmacological, lesion, and/or disease states on known neural circuits within highly controlled settings. Integration of animal and human research at the molecular-, systems-, and behavioral-levels using diverse neuroimaging techniques empowers more robust interrogations of abnormal/ pathological processes, critical for evolving our understanding of neuroscience. We present a comprehensive protocol to evaluate resting-state brain networks using Independent Component Analysis (ICA) in rodent model. Specifically, we begin with a brief review of the physiological basis for rs-fMRI technique and overview of rs-fMRI studies in rodents to date, following which we provide a robust step-by-step approach for rs-fMRI investigation including data collection, computational preprocessing, and brain network analysis. Pipelines are interwoven with underlying theory behind each step and summarized methodological considerations, such as alternative methods available and current consensus in the literature for optimal results. The presented protocol is designed in such a way that investigators without previous knowledge in the field can implement the analysis and obtain viable results that reliably detect significant differences in functional connectivity between experimental groups. Our goal is to empower researchers to implement rs-fMRI in their respective fields by incorporating technical considerations to date into a workable methodological framework.
Collapse
Affiliation(s)
- Dusica Bajic
- Department of Anesthesiology, Perioperative and Pain Medicine, Boston Children's Hospital, Boston, MA, United States.,Center for Pain and the Brain, Boston Children's Hospital, Boston, MA, United States.,Department of Anaesthesia, Harvard Medical School, Harvard University, Boston, MA, United States
| | - Michael M Craig
- Department of Anesthesiology, Perioperative and Pain Medicine, Boston Children's Hospital, Boston, MA, United States.,Center for Pain and the Brain, Boston Children's Hospital, Boston, MA, United States
| | - Chandler R L Mongerson
- Department of Anesthesiology, Perioperative and Pain Medicine, Boston Children's Hospital, Boston, MA, United States.,Center for Pain and the Brain, Boston Children's Hospital, Boston, MA, United States
| | - David Borsook
- Department of Anesthesiology, Perioperative and Pain Medicine, Boston Children's Hospital, Boston, MA, United States.,Center for Pain and the Brain, Boston Children's Hospital, Boston, MA, United States.,Department of Anaesthesia, Harvard Medical School, Harvard University, Boston, MA, United States
| | - Lino Becerra
- Department of Anesthesiology, Perioperative and Pain Medicine, Boston Children's Hospital, Boston, MA, United States.,Center for Pain and the Brain, Boston Children's Hospital, Boston, MA, United States.,Department of Anaesthesia, Harvard Medical School, Harvard University, Boston, MA, United States
| |
Collapse
|