1
|
Takahashi M, Sakai S, Takahashi K, Hosokawa M. Species Differences in Carboxylesterases Among Humans, Cynomolgus Monkeys, and Mice in the Hydrolysis of Atorvastatin Derivatives. Biopharm Drug Dispos 2025; 46:49-57. [PMID: 40128100 DOI: 10.1002/bdd.70003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 02/26/2025] [Accepted: 03/10/2025] [Indexed: 03/26/2025]
Abstract
Nonclinical trials are crucial for assessing pharmaceutical efficacy and safety prior to clinical trials. However, disparities in drug metabolism between humans and animals complicate extrapolating animal data to humans. Variability in drug-metabolizing enzymes, such as carboxylesterases (CESs), contributes to differences in drug kinetics. This study aimed to explore species disparities in CES substrate specificity among humans (hCES1), mice (mCES1), and cynomolgus monkeys (mfCES1) using diverse atorvastatin ester derivatives. This study measured hydrolysis rates of 30 atorvastatin derivatives. Metabolites were identified via HPLC with an internal standard, measuring rates per unit time and enzyme amount. Enzyme metabolic activity was compared using hydrolysis rates. The structure of the alkoxy group resulted in differences ranging from approximately half to 8.97-fold between hCES1 and mCES1 and differences ranging from similar to 15.82-fold between hCES1 and mfCES1. Caution is warranted when extrapolating animal data to humans, especially for esters with diverse structures. Our focus on the alkoxy group structure highlights its impact on hydrolysis rates. Further investigation into species differences among CES enzymes is essential for accurate translational research.
Collapse
Affiliation(s)
- Masato Takahashi
- Graduate School of Pharmaceutical Sciences, Chiba Institute of Science, Chiba, Japan
| | - Sachiko Sakai
- Graduate School of Pharmaceutical Sciences, Chiba Institute of Science, Chiba, Japan
| | - Kohei Takahashi
- Graduate School of Pharmaceutical Sciences, Chiba Institute of Science, Chiba, Japan
| | - Masakiyo Hosokawa
- Graduate School of Pharmaceutical Sciences, Chiba Institute of Science, Chiba, Japan
| |
Collapse
|
2
|
Yan Q, Wang Q. Exploring the Characters of Non-Coding RNAs in Spermatogenesis and Male Infertility. Int J Mol Sci 2025; 26:1128. [PMID: 39940895 PMCID: PMC11817410 DOI: 10.3390/ijms26031128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 01/18/2025] [Accepted: 01/26/2025] [Indexed: 02/16/2025] Open
Abstract
Infertility is a widespread clinical problem that affects human reproduction and species persistence worldwide. Around 40-70% of cases are due to male reproductive defects. Functional spermatogenesis (sperm production through several coordinated events) is at the heart of male fertility. Non-coding RNAs (ncRNAs) are the primary regulators of gene expression, controlling extensive critical cellular processes, for example proliferation, differentiation, apoptosis, and reproduction. Due to advancements in high-throughput sequencing tools, many studies have revealed that ncRNAs are widely expressed in germ cells, meiosis, spermatogenesis, sperm fertility, early post-fertilization development, and male infertility. The present review examines the biology and function of ncRNAs, including microRNAs, circular RNAs, and long ncRNAs, in spermatogenesis, their correlation with infertility, and their potential as biomarkers for sperm quality and fertility. The function of ncRNA in Sertoli cells (SCs) and Leydig cells (LCs) is also outlined throughout this study, because spermatogenesis requires testicular somatic cells to be involved in testicular development and male fertility. Meanwhile, the future development of ncRNAs for the clinical treatment of male infertility is also anticipated and discussed.
Collapse
Affiliation(s)
- Qiu Yan
- College of Veterinary Medicine, Gansu Agriculture University, Lanzhou 730070, China;
- Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou 730070, China
| | - Qi Wang
- College of Veterinary Medicine, Gansu Agriculture University, Lanzhou 730070, China;
- Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou 730070, China
| |
Collapse
|
3
|
Romeo-Cardeillac C, Trovero MF, Radío S, Smircich P, Rodríguez-Casuriaga R, Geisinger A, Sotelo-Silveira J. Uncovering a multitude of stage-specific splice variants and putative protein isoforms generated along mouse spermatogenesis. BMC Genomics 2024; 25:295. [PMID: 38509455 PMCID: PMC10953240 DOI: 10.1186/s12864-024-10170-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 02/28/2024] [Indexed: 03/22/2024] Open
Abstract
BACKGROUND Mammalian testis is a highly complex and heterogeneous tissue. This complexity, which mostly derives from spermatogenic cells, is reflected at the transcriptional level, with the largest number of tissue-specific genes and long noncoding RNAs (lncRNAs) compared to other tissues, and one of the highest rates of alternative splicing. Although it is known that adequate alternative-splicing patterns and stage-specific isoforms are critical for successful spermatogenesis, so far only a very limited number of reports have addressed a detailed study of alternative splicing and isoforms along the different spermatogenic stages. RESULTS In the present work, using highly purified stage-specific testicular cell populations, we detected 33,002 transcripts expressed throughout mouse spermatogenesis not annotated so far. These include both splice variants of already annotated genes, and of hitherto unannotated genes. Using conservative criteria, we uncovered 13,471 spermatogenic lncRNAs, which reflects the still incomplete annotation of lncRNAs. A distinctive feature of lncRNAs was their lower number of splice variants compared to protein-coding ones, adding to the conclusion that lncRNAs are, in general, less complex than mRNAs. Besides, we identified 2,794 unannotated transcripts with high coding potential (including some arising from yet unannotated genes), many of which encode unnoticed putative testis-specific proteins. Some of the most interesting coding splice variants were chosen, and validated through RT-PCR. Remarkably, the largest number of stage-specific unannotated transcripts are expressed during early meiotic prophase stages, whose study has been scarcely addressed in former transcriptomic analyses. CONCLUSIONS We detected a high number of yet unannotated genes and alternatively spliced transcripts along mouse spermatogenesis, hence showing that the transcriptomic diversity of the testis is considerably higher than previously reported. This is especially prominent for specific, underrepresented stages such as those of early meiotic prophase, and its unveiling may constitute a step towards the understanding of their key events.
Collapse
Affiliation(s)
- Carlos Romeo-Cardeillac
- Laboratory of Molecular Biology of Reproduction, Department of Molecular Biology, Instituto de Investigaciones Biológicas Clemente Estable (IIBCE), 11,600, Montevideo, Uruguay
- Department of Genomics, IIBCE, 11,600, Montevideo, Uruguay
| | - María Fernanda Trovero
- Laboratory of Molecular Biology of Reproduction, Department of Molecular Biology, Instituto de Investigaciones Biológicas Clemente Estable (IIBCE), 11,600, Montevideo, Uruguay
- Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Santiago Radío
- Department of Genomics, IIBCE, 11,600, Montevideo, Uruguay
| | - Pablo Smircich
- Department of Genomics, IIBCE, 11,600, Montevideo, Uruguay
| | - Rosana Rodríguez-Casuriaga
- Laboratory of Molecular Biology of Reproduction, Department of Molecular Biology, Instituto de Investigaciones Biológicas Clemente Estable (IIBCE), 11,600, Montevideo, Uruguay
| | - Adriana Geisinger
- Laboratory of Molecular Biology of Reproduction, Department of Molecular Biology, Instituto de Investigaciones Biológicas Clemente Estable (IIBCE), 11,600, Montevideo, Uruguay.
- Biochemistry-Molecular Biology, Facultad de Ciencias, Universidad de la República (UdelaR), 11,400, Montevideo, Uruguay.
| | - José Sotelo-Silveira
- Department of Genomics, IIBCE, 11,600, Montevideo, Uruguay.
- Department of Cell and Molecular Biology, Facultad de Ciencias, UdelaR, 11,400, Montevideo, Uruguay.
| |
Collapse
|
4
|
Xiong B, Jiang Y, Wang Y, Han X, Zhang C, Zhong R, Ge W, Han B, Ge Z, Huang G, Yin S, Shen W, Sun Q, Sun Z, Zhao Y, Zhang H. LncRNA8276 primes cell-cell adhesion for regulation of spermatogenesis. Andrology 2022; 10:1687-1701. [PMID: 36116016 DOI: 10.1111/andr.13298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 08/23/2022] [Accepted: 09/12/2022] [Indexed: 11/29/2022]
Abstract
BACKGROUND Human sperm concentration and motility have dropped dramatically (50%) in the past few decades, and environmental factors are involved in this decline. Long non-coding RNAs (lncRNA) have been discovered to be involved in many cellular processes including spermatogenesis. OBJECTIVE This investigation aimed to explore the role of lncRNA8276 in murine spermatogenesis. MATERIALS AND METHODS The expression of lncRNA8276 was modified by knockdown or overexpression in mouse testes and spermatogonial stem cells (C18-4 cell line). Sperm quality was determined in the F0 and F1 generations of mice. Furthermore, the underlying mechanisms were studied through gene expression and/or protein expression of spermatogenesis-related genes and cell junction-related genes by different methods. RESULTS In the current investigation, we discovered that sperm lncRNA8276 was decreased by NH3 /H2 S in three generations (F0, F1, and F2) of mouse sperm. In vivo testicular knockdown of lncRNA8276 led to a decline in sperm concentration and motility in both F0 (muF0) and F1 (muF1) generations Moreover, knockdown lncRNA8276 decreased the gene and protein levels of important genes related to cell-cell junctions and spermatogenesis. The data were further confirmed in mouse spermatogonia stem cell line C18-4 cells through knockdown of lncRNA8276. DISCUSSION AND CONCLUSION Our study suggests that lncRNA8276 may be involved in cell-cell junction formation in the mouse testis to regulate spermatogenesis. It may be a target for the modification of spermatogenesis and male fertility, or male contraception. This investigation offers a potential therapeutic strategy for male infertility.
Collapse
Affiliation(s)
- Bohui Xiong
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, P. R. China
| | - Yue Jiang
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, P. R. China
| | - Yandi Wang
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, P. R. China
| | - Xiao Han
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, P. R. China
| | - Cong Zhang
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, P. R. China
| | - Ruqing Zhong
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, P. R. China
| | - Wei Ge
- College of Life Sciences, Qingdao Agricultural University, Qingdao, P. R. China
| | - Baoquan Han
- Urology Department, Peking University Shenzhen Hospital, Shenzhen, P. R. China
| | - Zhaojia Ge
- College of Life Sciences, Qingdao Agricultural University, Qingdao, P. R. China
| | - Gui'an Huang
- College of Life Sciences, Qingdao Agricultural University, Qingdao, P. R. China
| | - Shen Yin
- College of Life Sciences, Qingdao Agricultural University, Qingdao, P. R. China
| | - Wei Shen
- College of Life Sciences, Qingdao Agricultural University, Qingdao, P. R. China
| | - Qingyuang Sun
- Fertility Preservation Lab, Reproductive Medicine Center, Guangdong Second Provincial General Hospital, Guangzhou, P. R. China
| | - Zhongyi Sun
- Urology Department, Shenzhen University General Hospital, Shenzhen, P. R. China
| | - Yong Zhao
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, P. R. China
| | - Hongfu Zhang
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, P. R. China
| |
Collapse
|
5
|
He C, Wang K, Gao Y, Wang C, Li L, Liao Y, Hu K, Liang M. Roles of Noncoding RNA in Reproduction. Front Genet 2021; 12:777510. [PMID: 34956326 PMCID: PMC8695933 DOI: 10.3389/fgene.2021.777510] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 11/18/2021] [Indexed: 12/17/2022] Open
Abstract
The World Health Organization predicts that infertility will be the third major health threat after cancer and cardiovascular disease, and will become a hot topic in medical research. Studies have shown that epigenetic changes are an important component of gametogenesis and related reproductive diseases. Epigenetic regulation of noncoding RNA (ncRNA) is appropriate and is a research hotspot in the biomedical field; these include long noncoding RNA (lncRNA), microRNA (miRNA), and PIWI-interacting RNA (piRNA). As vital members of the intracellular gene regulatory network, they affect various life activities of cells. LncRNA functions as a molecular bait, molecular signal and molecular scaffold in the body through molecular guidance. miRNAs are critical regulators of gene expression; they mainly control the stability or translation of their target mRNA after transcription. piRNA functions mainly through silencing genomic transposable elements and the post-transcriptional regulation of mRNAs in animal germ cells. Current studies have shown that these ncRNAs also play significant roles in the reproductive system and are involved in the regulation of essential cellular events in spermatogenesis and follicular development. The abnormal expression of ncRNA is closely linked to testicular germ cell tumors, poly cystic ovary syndrome and other diseases. This paper briefly presents the research on the reproductive process and reproductive diseases involving ncRNAs.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Ke Hu
- School of Life Science, Bengbu Medical College, Bengbu, China
| | - Meng Liang
- School of Life Science, Bengbu Medical College, Bengbu, China
| |
Collapse
|
6
|
Wu C, Wang C, Zhai B, Zhao Y, Zhao Z, Yuan Z, Zhang M, Tian K, Fu X. Study of microRNA Expression Profile in Different Regions of Ram Epididymis. Reprod Domest Anim 2021; 56:1209-1219. [PMID: 34169586 DOI: 10.1111/rda.13978] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 06/01/2021] [Indexed: 11/29/2022]
Abstract
The regional expression of epididymal genes provides a guarantee for sperm maturation. As a class of endogenous non-coding small RNAs, microRNAs (miRNAs) play an important role in spermatogenesis, maturation and fertilization. Currently, the regulatory role of miRNA in the epididymis is poorly understood. Here, transcriptome sequencing was used to analyse miRNA expression profiles in three regions of the epididymis of rams, including caput, corpus and cauda. The results showed that there were 13 known miRNAs between the caput and corpus controls, 29 between the caput and cauda and 22 differences between the corpus and cauda. Based on the analysis of miRNA target genes by GO and KEGG, a negative regulation network of miRNA-mRNA was constructed in which let-7, miR-541-5p, miR-133b and miR-150 may play an important regulatory role in the maturation regulation of ram epididymal sperm. This research provides a reference for studying the regulation mechanism of sperm maturation in male epididymis and improving semen quality and male reproductive performance.
Collapse
Affiliation(s)
- Cuiling Wu
- College of Animal Science, Xinjiang Agricultural University, Urumqi, China.,Branch of Animal Husbandry, Jilin Academy of Agricultural Sciences, Gongzhuling, China.,Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Chunxin Wang
- Branch of Animal Husbandry, Jilin Academy of Agricultural Sciences, Gongzhuling, China
| | - Bo Zhai
- Branch of Animal Husbandry, Jilin Academy of Agricultural Sciences, Gongzhuling, China
| | - Yunhui Zhao
- Branch of Animal Husbandry, Jilin Academy of Agricultural Sciences, Gongzhuling, China
| | - Zhuo Zhao
- Branch of Animal Husbandry, Jilin Academy of Agricultural Sciences, Gongzhuling, China
| | - Zhiyu Yuan
- Branch of Animal Husbandry, Jilin Academy of Agricultural Sciences, Gongzhuling, China
| | - Mingxin Zhang
- Branch of Animal Husbandry, Jilin Academy of Agricultural Sciences, Gongzhuling, China
| | - Kechuan Tian
- Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Xuefeng Fu
- Key Laboratory of Genetics Breeding and Reproduction of Xinjiang Wool sheep & Cashmere-goat, Institute of Animal Science, Xinjiang Academy of Animal Sciences, Urumqi, China
| |
Collapse
|
7
|
Özbek M, Hitit M, Kaya A, Jousan FD, Memili E. Sperm Functional Genome Associated With Bull Fertility. Front Vet Sci 2021; 8:610888. [PMID: 34250055 PMCID: PMC8262648 DOI: 10.3389/fvets.2021.610888] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Accepted: 05/05/2021] [Indexed: 01/08/2023] Open
Abstract
Bull fertility is an important economic trait in sustainable cattle production, as infertile or subfertile bulls give rise to large economic losses. Current methods to assess bull fertility are tedious and not totally accurate. The massive collection of functional data analyses, including genomics, proteomics, metabolomics, transcriptomics, and epigenomics, helps researchers generate extensive knowledge to better understand the unraveling physiological mechanisms underlying subpar male fertility. This review focuses on the sperm phenomes of the functional genome and epigenome that are associated with bull fertility. Findings from multiple sources were integrated to generate new knowledge that is transferable to applied andrology. Diverse methods encompassing analyses of molecular and cellular dynamics in the fertility-associated molecules and conventional sperm parameters can be considered an effective approach to determine bull fertility for efficient and sustainable cattle production. In addition to gene expression information, we also provide methodological information, which is important for the rigor and reliability of the studies. Fertility is a complex trait influenced by several factors and has low heritability, although heritability of scrotal circumference is high and that it is a known fertility maker. There is a need for new knowledge on the expression levels and functions of sperm RNA, proteins, and metabolites. The new knowledge can shed light on additional fertility markers that can be used in combination with scrotal circumference to predict the fertility of breeding bulls. This review provides a comprehensive review of sperm functional characteristics or phenotypes associated with bull fertility.
Collapse
Affiliation(s)
- Memmet Özbek
- Department of Histology and Embryology, Faculty of Veterinary Medicine, Burdur Mehmet Akif Ersoy University, Burdur, Turkey
| | - Mustafa Hitit
- Department of Genetics, Faculty of Veterinary Medicine, Kastamonu University, Kastamonu, Turkey
| | - Abdullah Kaya
- Department of Artificial Insemination and Reproduction, Faculty of Veterinary Medicine, Selcuk University, Konya, Turkey
| | - Frank Dean Jousan
- Department of Animal and Dairy Sciences, Mississippi State University, Starkville, MS, United States
| | - Erdogan Memili
- Department of Animal and Dairy Sciences, Mississippi State University, Starkville, MS, United States
| |
Collapse
|
8
|
Ozkocer SE, Konac E. The current perspective on genetic and epigenetic factors in sperm maturation in the epididymis. Andrologia 2021; 53:e13989. [PMID: 33491190 DOI: 10.1111/and.13989] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 01/07/2021] [Accepted: 01/08/2021] [Indexed: 12/11/2022] Open
Abstract
Male infertility affects approximately 30% of infertile couples. As spermatozoa mature in the epididymal lumen, their potential for mobility increases, and their protein, lipid and small RNA (sRNA) content changes, whereas capacitation and fertilisation take place in the female reproductive tract. Both of the latter processes are affected by maturation, because impaired maturation causes premature capacitation and fertilization. The epididymis produces a suitable environment for sperm maturation via ion transport, vesicle secretion and protein matrix formation. The microenvironment for sperm maturation varies in three broad segments: the caput, the corpus and the cauda epididymis. Epididymosomes transfer proteins, lipids and sRNAs from the epididymal epithelium to spermatozoa and genetic alterations of epididymal genes can lead to decreased sperm motility, morphological abnormalities of spermatozoa and subfertility. Genetic factors are involved in all aetiological categories in male infertility. However, studies conducted on the genes involved in epididymal functions are limited. The sRNA content of spermatozoa changes during epididymal migration, and these sRNAs play a role in embryo development and epigenetic inheritance. This review aims to clarify the role of the epididymal epithelium in the maturation of spermatozoa in light of the current molecular genomic knowledge.
Collapse
Affiliation(s)
- Suheyla Esra Ozkocer
- Faculty of Medicine, Department of Medical Biology and Genetics, Gazi University, Besevler, Ankara, Turkey.,Faculty of Medicine, Department of Histology and Embryology, Gazi University, Besevler, Ankara, Turkey
| | - Ece Konac
- Faculty of Medicine, Department of Medical Biology and Genetics, Gazi University, Besevler, Ankara, Turkey
| |
Collapse
|
9
|
Agarwal A, Baskaran S, Parekh N, Cho CL, Henkel R, Vij S, Arafa M, Panner Selvam MK, Shah R. Male infertility. Lancet 2021; 397:319-333. [PMID: 33308486 DOI: 10.1016/s0140-6736(20)32667-2] [Citation(s) in RCA: 595] [Impact Index Per Article: 148.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 08/13/2020] [Accepted: 08/19/2020] [Indexed: 02/06/2023]
Abstract
It is estimated that infertility affects 8-12% of couples globally, with a male factor being a primary or contributing cause in approximately 50% of couples. Causes of male subfertility vary highly, but can be related to congenital, acquired, or idiopathic factors that impair spermatogenesis. Many health conditions can affect male fertility, which underscores the need for a thorough evaluation of patients to identify treatable or reversible lifestyle factors or medical conditions. Although semen analysis remains the cornerstone for evaluating male infertility, advanced diagnostic tests to investigate sperm quality and function have been developed to improve diagnosis and management. The use of assisted reproductive techniques has also substantially improved the ability of couples with infertility to have biological children. This Seminar aims to provide a comprehensive overview of the assessment and management of men with infertility, along with current controversies and future endeavours.
Collapse
Affiliation(s)
- Ashok Agarwal
- American Center for Reproductive Medicine, Cleveland Clinic, Cleveland, OH, USA.
| | - Saradha Baskaran
- American Center for Reproductive Medicine, Cleveland Clinic, Cleveland, OH, USA
| | - Neel Parekh
- Department of Urology, Cleveland Clinic, Cleveland, OH, USA
| | - Chak-Lam Cho
- SH Ho Urology Center, Department of Surgery, Chinese University of Hong Kong, Hong Kong
| | - Ralf Henkel
- American Center for Reproductive Medicine, Cleveland Clinic, Cleveland, OH, USA; Department of Medical Bioscience, University of Western Cape, Bellville, South Africa; Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Sarah Vij
- Department of Urology, Cleveland Clinic, Cleveland, OH, USA
| | - Mohamed Arafa
- Male Infertility Unit, Urology Department, Hamad Medical Corporation, Doha, Qatar; Andrology Department, Cairo University, Cairo, Egypt
| | | | - Rupin Shah
- Department of Urology, Lilavati Hospital and Research Center, Mumbai, India
| |
Collapse
|
10
|
Joshi M, Rajender S. Long non-coding RNAs (lncRNAs) in spermatogenesis and male infertility. Reprod Biol Endocrinol 2020; 18:103. [PMID: 33126901 PMCID: PMC7599102 DOI: 10.1186/s12958-020-00660-6] [Citation(s) in RCA: 87] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 10/21/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Long non-coding RNAs (lncRNAs) have a size of more than 200 bp and are known to regulate a host of crucial cellular processes like proliferation, differentiation and apoptosis by regulating gene expression. While small noncoding RNAs (ncRNAs) such as miRNAs, siRNAs, Piwi-interacting RNAs have been extensively studied in male germ cell development, the role of lncRNAs in spermatogenesis remains largely unknown. OBJECTIVE In this article, we have reviewed the biology and role of lncRNAs in spermatogenesis along with the tools available for data analysis. RESULTS AND CONCLUSIONS Till date, three microarray and four RNA-seq studies have been undertaken to identify lncRNAs in mouse testes or germ cells. These studies were done on pre-natal, post-natal, adult testis, and different germ cells to identify lncRNAs regulating spermatogenesis. In case of humans, five RNA-seq studies on different germ cell populations, including two on sperm, were undertaken. We compared three studies on human germ cells to identify common lncRNAs and found 15 lncRNAs (LINC00635, LINC00521, LINC00174, LINC00654, LINC00710, LINC00226, LINC00326, LINC00494, LINC00535, LINC00616, LINC00662, LINC00668, LINC00467, LINC00608, and LINC00658) to show consistent differential expression across these studies. Some of the targets of these lncRNAs included CENPB, FAM98B, GOLGA6 family, RPGR, TPM2, GNB5, KCNQ10T1, TAZ, LIN28A, CDKN2B, CDKN2A, CDKN1A, CDKN1B, CDKN1C, EZH2, SUZ12, VEGFA genes. A lone study on human male infertility identified 9879 differentially expressed lncRNAs with three (lnc32058, lnc09522, and lnc98497) of them showing specific and high expression in immotile sperm in comparison to normal motile sperm. A few lncRNAs (Mrhl, Drm, Spga-lncRNAs, NLC1-C, HongrES2, Tsx, LncRNA-tcam1, Tug1, Tesra, AK015322, Gm2044, and LncRNA033862) have been functionally validated for their roles in spermatogenesis. Apart from rodents and humans, studies on sheep and bull have also identified lncRNAs potentially important for spermatogenesis. A number of these non-coding RNAs are strong candidates for further research on their roles in spermatogenesis.
Collapse
Affiliation(s)
- Meghali Joshi
- Division of Endocrinology, Central Drug Research Institute, Lucknow, UP, India
| | - Singh Rajender
- Division of Endocrinology, Central Drug Research Institute, Lucknow, UP, India.
| |
Collapse
|
11
|
Zuo Q, Jin J, Jin K, Zhou J, Sun C, Song J, Chen G, Zhang Y, Li B. P53 and H3K4me2 activate N6-methylated LncPGCAT-1 to regulate primordial germ cell formation via MAPK signaling. J Cell Physiol 2020; 235:9895-9909. [PMID: 32458486 DOI: 10.1002/jcp.29805] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 03/11/2020] [Accepted: 04/25/2020] [Indexed: 12/19/2022]
Abstract
Long noncoding RNAs (lncRNAs) participate in the formation of primordial germ cells (PGCs); however, the identity of the key lncRNAs and the molecular mechanisms responsible for the formation of PGCs remain unknown. Here, we identify a key candidate lncRNA (lncRNA PGC transcript-1, LncPGCAT-1) via RNA sequencing of embryonic stem cells, PGCs, and Spermatogonial stem cells (SSCs). Functional experiments confirmed that LncPGCAT-1 positively regulated the formation of PGCs by elevating the expression of Cvh and C-kit while downregulating the pluripotency(Nanog) in vitro and in vivo; PAS staining of genital ridges in vivo also showed that interference with LncPGCAT-1 can significantly reduce the number of PGCs in genital ridges, while overexpression of LncPGCAT-1 had the opposite result. The result of luciferase reporter assay combined with CHIP-qPCR showed that the expression of LncPGCAT-1 was promoted by the transcription factor P53 and high levels of H3K4me2. Mechanistically, the luciferase reporter assay confirmed that mitogen-activated protein kinase 1 (MAPK1) was the target gene of LncPGCAT-1 and gga-mir-1591. In the ceRNA system, high levels of N6 methylation of LncPGCAT-1 enhanced the adsorption capacity of LncPGCAT-1 for gga-mir-1591. Adsorption of gga-mir-1591 activated the MAPK1/ERK signaling cascade by relieving the gga-mir-1591-dependent inhibition of MAPK1 expression. Moreover, LncPGCAT-1 interacted with interleukin enhancer binding factor 3 (ILF3) to regulate the ubiquitination of P53 and phosphorylation of JNK. Interaction with ILF3 resulted in positive self-feedback regulation of LncPGCAT-1 and activation of JNK signaling, ultimately promoting PGC formation. Altogether, the study expands our knowledge of the function and molecular mechanisms of lncRNAs in PGC development.
Collapse
Affiliation(s)
- Qisheng Zuo
- Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, China
| | - Jing Jin
- Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, China
| | - Kai Jin
- Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, China
| | - Jing Zhou
- Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, China
| | - Changhua Sun
- Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, China
| | - Jiuzhou Song
- Department of Animal & Avian Sciences, University of Maryland, College Park, Maryland
| | - Guohong Chen
- Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, China
| | - Yani Zhang
- Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, China
| | - Bichun Li
- Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, China
| |
Collapse
|
12
|
Sahlu BW, Zhao S, Wang X, Umer S, Zou H, Huang J, Zhu H. Long noncoding RNAs: new insights in modulating mammalian spermatogenesis. J Anim Sci Biotechnol 2020; 11:16. [PMID: 32128162 PMCID: PMC7047388 DOI: 10.1186/s40104-019-0424-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Accepted: 12/30/2019] [Indexed: 12/12/2022] Open
Abstract
Spermatogenesis is a complex differentiating developmental process in which undifferentiated spermatogonial germ cells differentiate into spermatocytes, spermatids, and finally, to mature spermatozoa. This multistage developmental process of spermatogenesis involves the expression of many male germ cell-specific long noncoding RNAs (lncRNAs) and highly regulated and specific gene expression. LncRNAs are a recently discovered large class of noncoding cellular transcripts that are still relatively unexplored. Only a few of them have post-meiotic; however, lncRNAs are involved in many cellular biological processes. The expression of lncRNAs is biologically relevant in the highly dynamic and complex program of spermatogenesis and has become a research focus in recent genome studies. This review considers the important roles and novel regulatory functions whereby lncRNAs modulate mammalian spermatogenesis.
Collapse
Affiliation(s)
- Bahlibi Weldegebriall Sahlu
- 1Embryo Biotechnology and Reproduction Laboratory, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193 People's Republic of China.,Tigray Agricultural Research Institute, Mekelle Agricultural Research Center, Mekelle, Ethiopia
| | - Shanjiang Zhao
- 1Embryo Biotechnology and Reproduction Laboratory, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193 People's Republic of China
| | - Xiuge Wang
- 3Dairy Cattle Research Center, Shandong Academy of Agricultural Sciences, Jinan, 250131 People's Republic of China
| | - Saqib Umer
- 1Embryo Biotechnology and Reproduction Laboratory, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193 People's Republic of China
| | - Huiying Zou
- 1Embryo Biotechnology and Reproduction Laboratory, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193 People's Republic of China
| | - Jinming Huang
- 3Dairy Cattle Research Center, Shandong Academy of Agricultural Sciences, Jinan, 250131 People's Republic of China
| | - Huabin Zhu
- 1Embryo Biotechnology and Reproduction Laboratory, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193 People's Republic of China
| |
Collapse
|
13
|
La HM, Hobbs RM. Mechanisms regulating mammalian spermatogenesis and fertility recovery following germ cell depletion. Cell Mol Life Sci 2019; 76:4071-4102. [PMID: 31254043 PMCID: PMC11105665 DOI: 10.1007/s00018-019-03201-6] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 06/07/2019] [Accepted: 06/19/2019] [Indexed: 12/19/2022]
Abstract
Mammalian spermatogenesis is a highly complex multi-step process sustained by a population of mitotic germ cells with self-renewal potential known as spermatogonial stem cells (SSCs). The maintenance and regulation of SSC function are strictly dependent on a supportive niche that is composed of multiple cell types. A detailed appreciation of the molecular mechanisms underpinning SSC activity and fate is of fundamental importance for spermatogenesis and male fertility. However, different models of SSC identity and spermatogonial hierarchy have been proposed and recent studies indicate that cell populations supporting steady-state germline maintenance and regeneration following damage are distinct. Importantly, dynamic changes in niche properties may underlie the fate plasticity of spermatogonia evident during testis regeneration. While formation of spermatogenic colonies in germ-cell-depleted testis upon transplantation is a standard assay for SSCs, differentiation-primed spermatogonial fractions have transplantation potential and this assay provides readout of regenerative rather than steady-state stem cell capacity. The characterisation of spermatogonial populations with regenerative capacity is essential for the development of clinical applications aimed at restoring fertility in individuals following germline depletion by genotoxic treatments. This review will discuss regulatory mechanisms of SSCs in homeostatic and regenerative testis and the conservation of these mechanisms between rodent models and man.
Collapse
Affiliation(s)
- Hue M La
- Australian Regenerative Medicine Institute, Monash University, Melbourne, VIC, 3800, Australia
- Development and Stem Cells Program, Monash Biomedicine Discovery Institute and Department of Anatomy and Developmental Biology, Monash University, Melbourne, VIC, 3800, Australia
| | - Robin M Hobbs
- Australian Regenerative Medicine Institute, Monash University, Melbourne, VIC, 3800, Australia.
- Development and Stem Cells Program, Monash Biomedicine Discovery Institute and Department of Anatomy and Developmental Biology, Monash University, Melbourne, VIC, 3800, Australia.
| |
Collapse
|
14
|
Abstract
Infertility is an important reproductive health problem, and male infertility is especially important in more than half of infertility cases. Due to the importance of genetic factors in this condition, analysis of semen alone is not enough to recognize men with idiopathic infertility. A molecular non-invasive investigation is necessary to gain valuable information. Currently, microRNAs (miRNAs) are being used as non-invasive diagnostic biomarkers. miRNAs, single-stranded non-coding RNA molecules, act as post-transcriptional gene silencing regulators either by inhibition or repression of translation. Changes in the regulation of miRNAs have been investigated in several different types of male infertility, therefore the biological role of miRNA and gene targets has been defined. The purpose of this study was to review recent research on the altered expression of miRNA in semen, sperm, and testicular biopsy samples in infertile males with different types of unexplained infertility. Changes in miRNA regulation were investigated using microarray and the miRNA levels were confirmed by real-time qRT-PCR. This review explains why creating a non-invasive diagnostic method for male infertility is necessary and how changes in miRNA expression can be used as new diagnostic biomarkers in patients with differing spermatogenic and histopathologic injury.
Collapse
|
15
|
Gao Y, Li S, Lai Z, Zhou Z, Wu F, Huang Y, Lan X, Lei C, Chen H, Dang R. Analysis of Long Non-Coding RNA and mRNA Expression Profiling in Immature and Mature Bovine ( Bos taurus) Testes. Front Genet 2019; 10:646. [PMID: 31333723 PMCID: PMC6624472 DOI: 10.3389/fgene.2019.00646] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 06/18/2019] [Indexed: 01/08/2023] Open
Abstract
Testis development and spermatogenesis are strictly regulated by numbers of genes and non-coding genes. However, long non-coding RNAs (lncRNAs) as key regulators in multitudinous biological processes have not been systematically identified in bovine testes during sexual maturation. In this study, we comprehensively analyzed lncRNA and mRNA expression profiling of six bovine testes at 3 days after birth and 13 months by RNA sequencing. 23,735 lncRNAs and 22,118 mRNAs were identified, in which 540 lncRNAs (P-value < 0.05) and 3,525 mRNAs (P-adjust < 0.05) were significantly differentially expressed (DE) between two stages. Correspondingly, the results of RT-qPCR analysis showed well correlation with the transcriptome data. Moreover, GO and KEGG enrichment analyses showed that DE genes and target genes of DE lncRNAs were enriched in spermatogenesis. Furthermore, we constructed lncRNA–gene interaction networks; consequently, 15 DE lncRNAs and 12 cis-target genes were involved. The target genes (SPATA16, TCF21, ZPBP, PACRG, ATP8B3, COMP, ACE, and OSBP2) were found associated with bovine sexual maturation. In addition, the expression of lncRNAs and cis-target genes was detected in bovine Leydig cells, Sertoli cells, and spermatogonia. Our study identified and analyzed lncRNAs and mRNAs in testis tissues, suggesting that lncRNAs may regulate testis development and spermatogenesis. Our findings provided new insights for further investigation of biological function in bovine lncRNA.
Collapse
Affiliation(s)
- Yuan Gao
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Shipeng Li
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Zhenyu Lai
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Zihui Zhou
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Fei Wu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Yongzhen Huang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Xianyong Lan
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Chuzhao Lei
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Hong Chen
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Ruihua Dang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| |
Collapse
|
16
|
Chu C, Zhang YL, Yu L, Sharma S, Fei ZL, Drevet JR. Epididymal small non-coding RNA studies: progress over the past decade. Andrology 2019; 7:681-689. [PMID: 31044548 DOI: 10.1111/andr.12639] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 03/01/2019] [Accepted: 03/30/2019] [Indexed: 12/15/2022]
Abstract
BACKGROUND Small non-coding RNAs (sncRNAs) accomplish a huge variety of biological functions. Over the past decade, we have witnessed the substantial progress in the epididymal sncRNA studies. In the Epididymis 7, we had the true privilege of having a whole session to share our findings and exchange ideas on the epididymal sncRNA studies. OBJECTIVES This mini-review attempts to provide an overview of what is known about the sncRNAs in the mammalian epididymis and discuss the future directions in this field. METHODS We surveyed literature regarding the sncRNA studies in the mammalian epididymis, and integrated some of our unpublished findings as well. We focus on the progress in methodology and the advances in our understanding of the expression and functions of epididymal sncRNAs. RESULTS AND DISCUSSION The applications of high-throughput approaches have made great contributions in the discovery of new sncRNA species and profiling their dynamics in the epithelial cells, the passing spermatozoa, and the luminal environment. The diverse classes of epididymal sncRNAs exert important biological functions from the in situ regulation of epididymal gene expression to the epigenetic inheritance in the offspring. CONCLUSION Although still in its infancy, we believe that the research on epididymal sncRNAs will not only lead to a better understanding of their physiological and pathological functions, but also contribute to the whole landscape of the RNA field.
Collapse
Affiliation(s)
- C Chu
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA.,Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Y L Zhang
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - L Yu
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - S Sharma
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA.,Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Z L Fei
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - J R Drevet
- Genetics Reproduction & Development Laboratory, CNRS UMR 6293 - INSERM U1103 - Université Clermont Auvergne, Clermont-Ferrand, France
| |
Collapse
|
17
|
Huang X, Sun W, Yan Z, Shi H, Yang Q, Wang P, Li S, Liu L, Zhao S, Gun S. Integrative Analyses of Long Non-coding RNA and mRNA Involved in Piglet Ileum Immune Response to Clostridium perfringens Type C Infection. Front Cell Infect Microbiol 2019; 9:130. [PMID: 31114763 PMCID: PMC6503642 DOI: 10.3389/fcimb.2019.00130] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Accepted: 04/12/2019] [Indexed: 12/12/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) have been shown to play important roles in regulating host immune and inflammatory responses to bacterial infection. Infection with Clostridium perfringens (C. perfringens), a food-borne zoonotic pathogen, can lead to a series of inflammatory diseases in human and piglet, greatly challenging the healthy development of global pig industry. However, the roles of lncRNAs involved in piglet immune response against C. perfringens type C infection remain unknown. In this study, the regulatory functions of ileum lncRNAs and mRNAs were investigated in piglet immune response to C. perfringens type C infection among resistance (IR), susceptibility (IS) and sham-inoculation (control, IC) groups. A total of 480 lncRNAs and 3,669 mRNAs were significantly differentially expressed, the differentially expressed lncRNAs and mRNAs in the IR and IS groups were enriched in various pathways of ABC transporters, olfactory transduction, PPAR signaling pathway, chemokine signaling pathway and Toll-like receptor signaling pathway, involving in regulating piglet immune responses and resistance during infection. There were 212 lncRNAs and 505 target mRNAs found to have important association with C. perfringens infectious diseases, furthermore, 25 dysregulated lncRNAs corresponding to 13 immune-related target mRNAs were identified to play potential roles in defense against bacterial infection. In conclusion, the results improve our understanding on the characteristics of lncRNAs and mRNAs on regulating host immune response against C. perfringens type C infection, which will provide a reference for future research into exploring C. perfringens-related diseases in human.
Collapse
Affiliation(s)
- Xiaoyu Huang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Wenyang Sun
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Zunqiang Yan
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Hairen Shi
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Qiaoli Yang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Pengfei Wang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Shenggui Li
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Lixia Liu
- College of Life Science and Engineering, Northwest Minzu University, Lanzhou, China
| | - Shengguo Zhao
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Shuangbao Gun
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China.,Gansu Research Center for Swine Production Engineering and Technology, Lanzhou, China
| |
Collapse
|
18
|
Nixon B, De Iuliis GN, Dun MD, Zhou W, Trigg NA, Eamens AL. Profiling of epididymal small non-protein-coding RNAs. Andrology 2019; 7:669-680. [PMID: 31020794 DOI: 10.1111/andr.12640] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 02/04/2019] [Accepted: 03/30/2019] [Indexed: 12/21/2022]
Abstract
BACKGROUND Our understanding of epididymal physiology and function has been transformed over the three decades in which the International Meeting Series on the Epididymis has been hosted. This transformation has occurred along many fronts, but among the most significant advances has been the unexpected discovery of the diversity of small non-protein-coding RNAs (sRNAs) expressed in the epididymal epithelium and differentially accumulated in the luminal population of spermatozoa. OBJECTIVES Here we survey recent literature pertaining to profiling the sRNA landscape of the mammalian epididymis with the goal of demonstrating the contribution that these key regulatory elements, and their associated pathways, make to epididymal physiology and sperm maturation. RESULTS AND DISCUSSION High throughput sequencing strategies have fueled an unprecedented advance in our understanding of RNA biology. In the last decade, such high throughput profiling tools have been increasingly applied to study the mammalian epididymis, presaging the discovery of diverse classes of sRNA expressed along the length of the tract. Among the best studied sRNA classes are the microRNAs (miRNA), a sRNA species shown to act in concert with endocrine signals to fine-tune the segmental patterning of epididymal gene expression. In addition to performing this homeostatic role, epithelial cell-derived sRNAs also selectively accumulate into the epididymosomes and spermatozoa that occupy the duct lumen. This exciting discovery alludes to a novel form of intracellular communication that contributes to the establishment of the sperm epigenome and its modification under conditions of paternal stress. CONCLUSION Compelling literature has identified sRNAs as a crucial regulatory tier that allows the epididymis to fulfill its combined roles of sperm transport, maturation, and storage. Continued research in this emerging field will contribute to our growing understanding of the etiology of male factor infertility and potentially allow for the future design of rational therapeutic options for these individuals.
Collapse
Affiliation(s)
- B Nixon
- Priority Research Centre for Reproductive Science, School of Environmental and Life Sciences, The University of Newcastle, Callaghan, NSW, Australia.,Reproduction and Pregnancy Program, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| | - G N De Iuliis
- Priority Research Centre for Reproductive Science, School of Environmental and Life Sciences, The University of Newcastle, Callaghan, NSW, Australia.,Reproduction and Pregnancy Program, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| | - M D Dun
- Faculty of Health and Medicine, The University of Newcastle, Callaghan, NSW, Australia.,Cancer Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| | - W Zhou
- Priority Research Centre for Reproductive Science, School of Environmental and Life Sciences, The University of Newcastle, Callaghan, NSW, Australia.,Reproduction and Pregnancy Program, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| | - N A Trigg
- Priority Research Centre for Reproductive Science, School of Environmental and Life Sciences, The University of Newcastle, Callaghan, NSW, Australia.,Reproduction and Pregnancy Program, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| | - A L Eamens
- Priority Research Centre for Reproductive Science, School of Environmental and Life Sciences, The University of Newcastle, Callaghan, NSW, Australia
| |
Collapse
|
19
|
Kumar H, Srikanth K, Park W, Lee SH, Choi BH, Kim H, Kim YM, Cho ES, Kim JH, Lee JH, Jung JY, Go GW, Lee KT, Kim JM, Lee J, Lim D, Park JE. Transcriptome analysis to identify long non coding RNA (lncRNA) and characterize their functional role in back fat tissue of pig. Gene 2019; 703:71-82. [PMID: 30954676 DOI: 10.1016/j.gene.2019.04.014] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 03/08/2019] [Accepted: 04/03/2019] [Indexed: 12/12/2022]
Abstract
Long non coding RNAs (lncRNA) have been previously found to be involved in important cellular activities like epigenetics, implantation, cell growth etc. in pigs. However, comprehensive analysis of lncRNA in back fat tissues at different developmental stages in pigs is still lacking. In this study we conducted transcriptome analysis in the back fat tissue of a F1 crossbred Korean Native Pig (KNP) × Yorkshire Pig to identify lncRNA. We investigated their role in 16 pigs at two different growth stages; stage 1 (10 weeks, n = 8) and stage 2 (26 weeks, n = 8). After quality assessment of sequencing reads, we got a total of 1,641,165 assembled transcripts out of eight paired end read from each stage. Among them, 6808 lncRNA transcripts were identified by filtering on the basis of multiple parameters like read length ≥ 200 nucleotides, exon numbers ≥2, FPKM ≥0.5, coding potential score < 0 etc. PFAM and RFAM were used to filter out all possible protein coding genes and housekeeping RNAs respectively. A total of 103 lncRNAs and 1057 mRNAs were found to be differentially expressed (DE) between the two stages (|log2FC| > 2, q < 0.05). We also identified 306 genes located around 100 kb upstream and 234 genes downstream around these DE lncRNA transcripts. The expression of top eleven DE lncRNAs (COL4A6, LY7S, MYH2, OXCT1, SMPDL3A, TMEM182, TTC36, RFOOOO4, RFOOO15, RFOOO45, CADM2) had been validating by qRT-PCR. Pathway and GO terms analysis showed that, positive regulation of biosynthetic process, Wnt signaling pathway, cellular protein modification process, and positive regulation of nitrogen compound were differentially enriched. Our results suggested that, KEGG pathways such as protein digestion and absorption, Arrhythmogenic right ventricular cardiomyopathy (ARVC) to be significantly enriched in both DE lncRNAs as well as DE mRNAs and involved in back fat tissues development. It also suggests that, identified lncRNAs are involved in regulation of important adipose tissues development pathways.
Collapse
Affiliation(s)
- Himansu Kumar
- Animal Genomics and Bioinformatics Division, National Institute of Animal Science, RDA, Wanju 55365, Republic of Korea
| | - Krishnamoorthy Srikanth
- Animal Genomics and Bioinformatics Division, National Institute of Animal Science, RDA, Wanju 55365, Republic of Korea
| | - Woncheol Park
- Animal Genomics and Bioinformatics Division, National Institute of Animal Science, RDA, Wanju 55365, Republic of Korea
| | - Seung-Hoon Lee
- Animal Genomics and Bioinformatics Division, National Institute of Animal Science, RDA, Wanju 55365, Republic of Korea
| | - Bong-Hwan Choi
- Animal Genomics and Bioinformatics Division, National Institute of Animal Science, RDA, Wanju 55365, Republic of Korea
| | - Hana Kim
- Animal Genomics and Bioinformatics Division, National Institute of Animal Science, RDA, Wanju 55365, Republic of Korea
| | - Yong-Min Kim
- Swine Science Division, National Institute of Animal Science, RDA, Cheonan 31000, Republic of Korea
| | - Eun-Seok Cho
- Swine Science Division, National Institute of Animal Science, RDA, Cheonan 31000, Republic of Korea
| | - Jin Hyoung Kim
- Animal Products Research and Development Division, National Institute of Animal Science, RDA, Wanju 55365, Republic of Korea
| | - Jang Hee Lee
- Department of Companion Animal, Seoul Hoseo Occupational Training College, Seoul 07583, Republic of Korea
| | - Ji Yeon Jung
- Department of Food and Nutrition, Hanyang University, Seoul 04763, Republic of Korea
| | - Gwang-Woong Go
- Department of Food and Nutrition, Hanyang University, Seoul 04763, Republic of Korea
| | - Kyung-Tai Lee
- Animal Genetics and Breeding Division, National Institute of Animal Science, RDA, Cheonan 31000, Republic of Korea
| | - Jun-Mo Kim
- Department of Animal Science and Technology, Chung-Ang University, Anseong 17546, Republic of Korea
| | - Jungjae Lee
- Jung P& C Institute, Inc., 1504 U-Tower, Yongin-si, Gyeonggi-do 16950, Republic of Korea
| | - Dajeong Lim
- Animal Genomics and Bioinformatics Division, National Institute of Animal Science, RDA, Wanju 55365, Republic of Korea.
| | - Jong-Eun Park
- Animal Genomics and Bioinformatics Division, National Institute of Animal Science, RDA, Wanju 55365, Republic of Korea.
| |
Collapse
|
20
|
Long noncoding RNA and mRNA expression profiles following igf3 knockdown in common carp, Cyprinus carpio. Sci Data 2019; 6:190024. [PMID: 30778253 PMCID: PMC6380219 DOI: 10.1038/sdata.2019.24] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Accepted: 01/11/2019] [Indexed: 12/20/2022] Open
Abstract
As a novel IGF system member, igf3 plays an important role in gonadal development of teleost fish. Although studies have reported the unusual expression of igf3 in fish gonad, whether the igf3 affects the expression of long noncoding RNAs (lncRNAs) in gonad remains unknown. In this study, an igf3 knockdown common carp (Cyprinus carpio) model was established by RNA interference. Then RNA sequencing of C. carpio gonad after igf3 knockdown was performed. A total of 327,169,410 and 306,305,018 clean reads were identified from control and igf3-dsRNA interference group, respectively. After a stringent filtering, RNA-seq yielded 14199 lncRNA and 106932 mRNA transcripts with 124 and 353 differentially expressed lncRNAs and mRNAs. Our dataset provides an extensive resource for understanding the potential regulatory molecular mechanism of igf3 in early stage of gonadal development in C. carpio.
Collapse
|
21
|
Integrated analysis of mRNAs and long noncoding RNAs in the semen from Holstein bulls with high and low sperm motility. Sci Rep 2019; 9:2092. [PMID: 30765858 PMCID: PMC6376035 DOI: 10.1038/s41598-018-38462-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Accepted: 12/28/2018] [Indexed: 02/06/2023] Open
Abstract
Sperm motility is the main index used to assess the quality of bull semen. It may also be used to evaluate the fertility potential of bulls. Protein-coding mRNA and long noncoding RNA (lncRNA) participate in the regulation of spermatogenesis. Here, we employed strand-specific RNA sequencing to profile the semen transcriptome (mRNA and lncRNA) of six paired full-sibling Holstein bulls with divergent sperm motility and to determine the functions of mRNA and lncRNA in sperm motility. Among 20,875 protein-encoding genes detected in semen, 19 were differentially expressed between the high sperm motility group (H: H1, H2, and H3) and low sperm motility group (L: L1, L2, and L3). Of the 11,561 lncRNAs identified in sperm, 2,517 were differentially expressed between the H and L groups. We found that TCONS_00041733 lncRNA targets the node gene EFNA1 (ephrin A1), involved in male reproductive physiology. Our study provides a global mRNA and lncRNA transcriptome of bull semen, as well as novel insights into the regulation of neighboring protein coding by lncRNAs and the influence of mRNAs on sperm motility.
Collapse
|
22
|
Dhanoa JK, Sethi RS, Verma R, Arora JS, Mukhopadhyay CS. Long non-coding RNA: its evolutionary relics and biological implications in mammals: a review. JOURNAL OF ANIMAL SCIENCE AND TECHNOLOGY 2018; 60:25. [PMID: 30386629 PMCID: PMC6201556 DOI: 10.1186/s40781-018-0183-7] [Citation(s) in RCA: 172] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Accepted: 10/05/2018] [Indexed: 02/08/2023]
Abstract
The central dogma of gene expression propounds that DNA is transcribed to mRNA and finally gets translated into protein. Only 2–3% of the genomic DNA is transcribed to protein-coding mRNA. Interestingly, only a further minuscule part of genomic DNA encodes for long non-coding RNAs (lncRNAs) which are characteristically more than 200 nucleotides long and can be transcribed from both protein-coding (e.g. H19 and TUG1) as well as non-coding DNA by RNA polymerase II. The lncRNAs do not have open reading frames (with some exceptions), 3`-untranslated regions (3’-UTRs) and necessarily these RNAs lack any translation-termination regions, however, these can be spliced, capped and polyadenylated as mRNA molecules. The flexibility of lncRNAs confers them specific 3D-conformations that eventually enable the lncRNAs to interact with proteins, DNA or other RNA molecules via base pairing or by forming networks. The lncRNAs play a major role in gene regulation, cell differentiation, cancer cell invasion and metastasis and chromatin remodeling. Deregulation of lncRNA is also responsible for numerous diseases in mammals. Various studies have revealed their significance as biomarkers for prognosis and diagnosis of cancer. The aim of this review is to overview the salient features, evolution, biogenesis and biological importance of these molecules in the mammalian system.
Collapse
Affiliation(s)
- Jasdeep Kaur Dhanoa
- School of Animal Biotechnology, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, Punjab India
| | - Ram Saran Sethi
- School of Animal Biotechnology, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, Punjab India
| | - Ramneek Verma
- School of Animal Biotechnology, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, Punjab India
| | - Jaspreet Singh Arora
- School of Animal Biotechnology, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, Punjab India
| | - Chandra Sekhar Mukhopadhyay
- School of Animal Biotechnology, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, Punjab India
| |
Collapse
|
23
|
Ran MX, Li Y, Zhang Y, Liang K, Ren YN, Zhang M, Zhou GB, Zhou YM, Wu K, Wang CD, Huang Y, Luo B, Qazi IH, Zhang HM, Zeng CJ. Transcriptome Sequencing Reveals the Differentially Expressed lncRNAs and mRNAs Involved in Cryoinjuries in Frozen-Thawed Giant Panda ( Ailuropoda melanoleuca) Sperm. Int J Mol Sci 2018; 19:ijms19103066. [PMID: 30297640 PMCID: PMC6212861 DOI: 10.3390/ijms19103066] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 10/03/2018] [Accepted: 10/05/2018] [Indexed: 02/06/2023] Open
Abstract
Sperm cryopreservation and artificial insemination are important methods for giant panda breeding and preservation of extant genetic diversity. Lower conception rates limit the use of artificial insemination with frozen-thawed giant panda sperm, due to the lack of understanding of the cryodamaging or cryoinjuring mechanisms in cryopreservation. Long non-coding RNAs (lncRNAs) are involved in regulating spermatogenesis. However, their roles during cryopreservation remain largely unexplored. Therefore, this study aimed to identify differentially expressed lncRNAs and mRNAs associated with cryodamage or freeze tolerance in frozen-thawed sperm through high throughput sequencing. A total of 61.05 Gb clean reads and 22,774 lncRNA transcripts were obtained. From the sequencing results, 1477 significantly up-regulated and 1,396 significantly down-regulated lncRNA transcripts from fresh and frozen-thawed sperm of giant panda were identified. GO and KEGG showed that the significantly dysregulated lncRNAs and mRNAs were mainly involved in regulating responses to cold stress and apoptosis, such as the integral component of membrane, calcium transport, and various signaling pathways including PI3K-Akt, p53 and cAMP. Our work is the first systematic profiling of lncRNA and mRNA in fresh and frozen-thawed giant panda sperm, and provides valuableinsights into the potential mechanism of cryodamage in sperm.
Collapse
Affiliation(s)
- Ming-Xia Ran
- College of Animal Sciences and Technology, Sichuan Agricultural University, Chengdu 611130, Sichuan, China.
| | - Yuan Li
- College of Animal Sciences and Technology, Sichuan Agricultural University, Chengdu 611130, Sichuan, China.
| | - Yan Zhang
- College of Animal Sciences and Technology, Sichuan Agricultural University, Chengdu 611130, Sichuan, China.
| | - Kai Liang
- College of Animal Sciences and Technology, Sichuan Agricultural University, Chengdu 611130, Sichuan, China.
| | - Ying-Nan Ren
- College of Animal Sciences and Technology, Sichuan Agricultural University, Chengdu 611130, Sichuan, China.
| | - Ming Zhang
- College of Animal Sciences and Technology, Sichuan Agricultural University, Chengdu 611130, Sichuan, China.
| | - Guang-Bin Zhou
- College of Animal Sciences and Technology, Sichuan Agricultural University, Chengdu 611130, Sichuan, China.
| | - Ying-Min Zhou
- China Conservation and Research Center for the Giant Panda, Wolong 473000, China.
| | - Kai Wu
- China Conservation and Research Center for the Giant Panda, Wolong 473000, China.
| | - Cheng-Dong Wang
- China Conservation and Research Center for the Giant Panda, Wolong 473000, China.
| | - Yan Huang
- China Conservation and Research Center for the Giant Panda, Wolong 473000, China.
| | - Bo Luo
- China Conservation and Research Center for the Giant Panda, Wolong 473000, China.
| | - Izhar Hyder Qazi
- College of Animal Sciences and Technology, Sichuan Agricultural University, Chengdu 611130, Sichuan, China.
- Department of Veterinary Anatomy & Histology, Faculty of Bio-Sciences, Shaheed Benazir Bhutto University of Veterinary and Animal Sciences, Sakrand 67210, Pakistan.
| | - He-Min Zhang
- China Conservation and Research Center for the Giant Panda, Wolong 473000, China.
| | - Chang-Jun Zeng
- College of Animal Sciences and Technology, Sichuan Agricultural University, Chengdu 611130, Sichuan, China.
| |
Collapse
|
24
|
Yang C, Gao X, Ye J, Ding J, Liu Y, Liu H, Li X, Zhang Y, Zhou J, Huang W, Fang F, Ling Y. The interaction between DNA methylation and long non-coding RNA during the onset of puberty in goats. Reprod Domest Anim 2018; 53:1287-1297. [PMID: 29981216 DOI: 10.1111/rda.13246] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Accepted: 05/29/2018] [Indexed: 01/17/2023]
Abstract
Epigenetics plays an important role in controlling female puberty. Both DNA methylation and long non-coding RNAs (lncRNA) regulate the initiation of puberty by affecting the expression of genes related to puberty. While recent studies have indicated that DNA methylation of lncRNA represses the expression of lncRNA, its role in regulating puberty remains unclear. To explore the mechanism between DNA methylation and lncRNAs during puberty onset, we performed whole-genome bisulphite sequencing (WGBS) and RNA-sequencing (RNA-seq). We found that DNA methylation was inversely correlated to gene expression levels during puberty. Methylation levels gradually decreased near the transcription initiation site and were present at high levels in the exon, intron and 3' untranslated regions. In the promoter, lncRNA expression was negatively related to DNA methylation. We reported hypermethylation in the gene body and downstream of the lncRNA compared with upstream regions. In GO and KEGG analyses, we found enriched target genes of lncRNA, XLOC_960044 and XLOC_767346. During puberty, methylation of these genes increased while expression decreased. Our study indicates that DNA methylation of the promoter is negatively correlated with lncRNA during puberty onset, and methylation regulates the initiation of puberty via lncRNA, which provides new insight into the epigenetic mechanism of puberty onset.
Collapse
Affiliation(s)
- Chen Yang
- Anhui Provincial Laboratory of Animal Genetic Resources Protection and Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, China.,Anhui Provincial Laboratory for Local Livestock and Poultry Genetic Resource Conservation and Bio-Breeding, Hefei, China.,Department of Animal Veterinary Science, College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Xiaoxiao Gao
- Anhui Provincial Laboratory of Animal Genetic Resources Protection and Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, China.,Anhui Provincial Laboratory for Local Livestock and Poultry Genetic Resource Conservation and Bio-Breeding, Hefei, China.,Department of Animal Veterinary Science, College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Jing Ye
- Anhui Provincial Laboratory of Animal Genetic Resources Protection and Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, China.,Anhui Provincial Laboratory for Local Livestock and Poultry Genetic Resource Conservation and Bio-Breeding, Hefei, China.,Department of Animal Veterinary Science, College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Jianping Ding
- Anhui Provincial Laboratory of Animal Genetic Resources Protection and Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, China.,Anhui Provincial Laboratory for Local Livestock and Poultry Genetic Resource Conservation and Bio-Breeding, Hefei, China.,Department of Animal Veterinary Science, College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Ya Liu
- Anhui Provincial Laboratory of Animal Genetic Resources Protection and Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, China.,Anhui Provincial Laboratory for Local Livestock and Poultry Genetic Resource Conservation and Bio-Breeding, Hefei, China.,Department of Animal Veterinary Science, College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Hongyu Liu
- Anhui Provincial Laboratory of Animal Genetic Resources Protection and Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, China.,Anhui Provincial Laboratory for Local Livestock and Poultry Genetic Resource Conservation and Bio-Breeding, Hefei, China.,Department of Animal Veterinary Science, College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Xiumei Li
- Anhui Provincial Laboratory of Animal Genetic Resources Protection and Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, China.,Anhui Provincial Laboratory for Local Livestock and Poultry Genetic Resource Conservation and Bio-Breeding, Hefei, China.,Department of Animal Veterinary Science, College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Yunhai Zhang
- Anhui Provincial Laboratory of Animal Genetic Resources Protection and Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, China.,Anhui Provincial Laboratory for Local Livestock and Poultry Genetic Resource Conservation and Bio-Breeding, Hefei, China.,Department of Animal Veterinary Science, College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Jie Zhou
- Anhui Provincial Laboratory of Animal Genetic Resources Protection and Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, China.,Department of Animal Veterinary Science, College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Weiping Huang
- Anhui Provincial Laboratory of Animal Genetic Resources Protection and Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, China.,Anhui Provincial Laboratory for Local Livestock and Poultry Genetic Resource Conservation and Bio-Breeding, Hefei, China.,Department of Animal Veterinary Science, College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Fugui Fang
- Anhui Provincial Laboratory of Animal Genetic Resources Protection and Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, China.,Anhui Provincial Laboratory for Local Livestock and Poultry Genetic Resource Conservation and Bio-Breeding, Hefei, China.,Department of Animal Veterinary Science, College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Yinghui Ling
- Anhui Provincial Laboratory of Animal Genetic Resources Protection and Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, China.,Anhui Provincial Laboratory for Local Livestock and Poultry Genetic Resource Conservation and Bio-Breeding, Hefei, China.,Department of Animal Veterinary Science, College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| |
Collapse
|
25
|
Xu H, Chen Y, Dong X, Wang X. Serum Exosomal Long Noncoding RNAs ENSG00000258332.1 and LINC00635 for the Diagnosis and Prognosis of Hepatocellular Carcinoma. Cancer Epidemiol Biomarkers Prev 2018; 27:710-716. [PMID: 29650788 DOI: 10.1158/1055-9965.epi-17-0770] [Citation(s) in RCA: 124] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Revised: 12/09/2017] [Accepted: 04/02/2018] [Indexed: 12/18/2022] Open
Abstract
Background: Increasing studies suggest that long noncoding RNAs (lncRNAs) are involved in carcinogenesis of human cancers and might be used as diagnostic biomarkers for cancers.Methods: A total of 301 participants were recruited in the first part of the study, including a hepatocellular carcinoma (HCC) group (n = 60), liver cirrhosis (LC) group (n = 85), chronic hepatitis B (CHB) group (n = 96), and healthy subjects (n = 60). In the second part, we collected 55 HCC patients, 60 CHB patients, and 60 healthy subjects as an independent cohort to validate the ability of the experiential lncRNAs for identifying HCC from CHB. A commercial kit was used to isolate serum exosomes and total RNA. The relative levels of lnRNAs and GAPDH mRNA were measured with TaqMan PCR.Results: The results showed that the levels of ENSG00000258332.1 and LINC00635 in the HCC group were significantly higher than those in the other groups (all P < 0.05). A high ENSG00000258332.1 level in HCC was associated with portal vein tumor emboli, lymph node metastasis, TNM stage, and overall survival (OS; all P < 0.05), and a high LINC00635 level was related to lymph node metastasis, TNM stage, and OS (all P < 0.05). ENSG00000258332.1 discriminated HCC from CHB, gaining an area under the ROC curve (AUC) of 0.719 (cutoff value of 1.345); LINC00635 gained an AUC of 0.750 (cutoff value of 1.690). Furthermore, the AUC for the combination of the 2 lncRNAs and serum AFP (cutoff value of 20 μg/L) was 0.894. The abilities of the 2 lncRNAs for identifying HCC from CHB were validated by an independent cohort.Conclusions: The results suggested that the combination of serum exosomal ENSG00000258332.1, LINC00635, and AFP may be a valuable assay in diagnosis and prognosis of HCC.Impact: Our data will shed light on exosomal lncRNAs as biomarkers for HCC. Cancer Epidemiol Biomarkers Prev; 27(6); 710-6. ©2018 AACR.
Collapse
Affiliation(s)
- Hong Xu
- Department of Laboratory Medicine, Hangzhou First People's Hospital, Hangzhou, China
| | - Yueming Chen
- Department of Laboratory Medicine, Hangzhou First People's Hospital, Hangzhou, China.
| | - Xueyan Dong
- Department of Laboratory Medicine, Hangzhou First People's Hospital, Hangzhou, China
| | - Xianjun Wang
- Department of Laboratory Medicine, Hangzhou First People's Hospital, Hangzhou, China
| |
Collapse
|
26
|
Gao X, Ye J, Yang C, Luo L, Liu Y, Ding J, Zhang Y, Ling Y, Huang W, Zhang X, Zhang K, Li X, Zhou J, Fang F, Cao Z. RNA-seq analysis of lncRNA-controlled developmental gene expression during puberty in goat & rat. BMC Genet 2018; 19:19. [PMID: 29609543 PMCID: PMC5879571 DOI: 10.1186/s12863-018-0608-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2017] [Accepted: 03/22/2018] [Indexed: 12/19/2022] Open
Abstract
Background Puberty is a pivotal stage in female animal development, and marks the onset of reproductive capability. However, little is known about the function of lncRNAs (long noncoding RNAs) in puberty. Therefore, RNA-seq analysis were performed between goats and rats to clarify the roles of lncRNAs and mRNAs in the onset of puberty. Results In the present study, the length of lncRNAs, the length of the open reading frame and the exon count were compared between the two species. Furthermore, functional annotation analysis based on Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Ontology (GO) analysis of lncRNAs target genes and differentially expressed mRNA demonstrated the significantly enriched terms, such as AMPK signaling pathway, oxytocin signaling pathway, insulin secretion as well as pheromone receptor activity, and some other signaling pathways which were involved in the regulation of female puberty. Moreover, our results of siRNA interference in vitro showed the candidate lncRNA XLOC_446331 may play a crucial role in regulating female puberty. Conclusion In conclusion, the RNA-seq analysis between goat and rat provide novel candidate regulators for genetic and molecular studies on female puberty. Electronic supplementary material The online version of this article (10.1186/s12863-018-0608-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Xiaoxiao Gao
- Anhui Provincial Laboratory of Animal Genetic Resources Protection and Breeding, College of Animal Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei, 230036, Anhui, China
| | - Jing Ye
- Anhui Provincial Laboratory of Animal Genetic Resources Protection and Breeding, College of Animal Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei, 230036, Anhui, China.,Anhui Provincial Laboratory for Local Livestock and Poultry Genetic Resource Conservation and Bio-Breeding, 130 Changjiang West Road, Hefei, 230036, Anhui, China.,Department of Animal Veterinary Science, College of Animal Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei, 230036, Anhui, China
| | - Chen Yang
- Anhui Provincial Laboratory of Animal Genetic Resources Protection and Breeding, College of Animal Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei, 230036, Anhui, China
| | - Lei Luo
- Anhui Provincial Laboratory of Animal Genetic Resources Protection and Breeding, College of Animal Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei, 230036, Anhui, China
| | - Ya Liu
- Anhui Provincial Laboratory of Animal Genetic Resources Protection and Breeding, College of Animal Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei, 230036, Anhui, China.,Anhui Provincial Laboratory for Local Livestock and Poultry Genetic Resource Conservation and Bio-Breeding, 130 Changjiang West Road, Hefei, 230036, Anhui, China.,Department of Animal Veterinary Science, College of Animal Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei, 230036, Anhui, China
| | - Jianping Ding
- Anhui Provincial Laboratory of Animal Genetic Resources Protection and Breeding, College of Animal Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei, 230036, Anhui, China.,Anhui Provincial Laboratory for Local Livestock and Poultry Genetic Resource Conservation and Bio-Breeding, 130 Changjiang West Road, Hefei, 230036, Anhui, China.,Department of Animal Veterinary Science, College of Animal Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei, 230036, Anhui, China
| | - Yunhai Zhang
- Anhui Provincial Laboratory of Animal Genetic Resources Protection and Breeding, College of Animal Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei, 230036, Anhui, China.,Anhui Provincial Laboratory for Local Livestock and Poultry Genetic Resource Conservation and Bio-Breeding, 130 Changjiang West Road, Hefei, 230036, Anhui, China.,Department of Animal Veterinary Science, College of Animal Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei, 230036, Anhui, China
| | - Yinghui Ling
- Anhui Provincial Laboratory of Animal Genetic Resources Protection and Breeding, College of Animal Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei, 230036, Anhui, China.,Anhui Provincial Laboratory for Local Livestock and Poultry Genetic Resource Conservation and Bio-Breeding, 130 Changjiang West Road, Hefei, 230036, Anhui, China.,Department of Animal Veterinary Science, College of Animal Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei, 230036, Anhui, China
| | - Weiping Huang
- Anhui Provincial Laboratory of Animal Genetic Resources Protection and Breeding, College of Animal Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei, 230036, Anhui, China.,Anhui Provincial Laboratory for Local Livestock and Poultry Genetic Resource Conservation and Bio-Breeding, 130 Changjiang West Road, Hefei, 230036, Anhui, China.,Department of Animal Veterinary Science, College of Animal Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei, 230036, Anhui, China
| | - Xiaorong Zhang
- Anhui Provincial Laboratory of Animal Genetic Resources Protection and Breeding, College of Animal Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei, 230036, Anhui, China.,Anhui Provincial Laboratory for Local Livestock and Poultry Genetic Resource Conservation and Bio-Breeding, 130 Changjiang West Road, Hefei, 230036, Anhui, China.,Department of Animal Veterinary Science, College of Animal Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei, 230036, Anhui, China
| | - Kaifa Zhang
- Anhui Provincial Laboratory of Animal Genetic Resources Protection and Breeding, College of Animal Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei, 230036, Anhui, China
| | - Xiumei Li
- Anhui Provincial Laboratory of Animal Genetic Resources Protection and Breeding, College of Animal Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei, 230036, Anhui, China.,Anhui Provincial Laboratory for Local Livestock and Poultry Genetic Resource Conservation and Bio-Breeding, 130 Changjiang West Road, Hefei, 230036, Anhui, China.,Department of Animal Veterinary Science, College of Animal Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei, 230036, Anhui, China
| | - Jie Zhou
- Anhui Provincial Laboratory of Animal Genetic Resources Protection and Breeding, College of Animal Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei, 230036, Anhui, China.,Department of Animal Veterinary Science, College of Animal Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei, 230036, Anhui, China
| | - Fugui Fang
- Anhui Provincial Laboratory of Animal Genetic Resources Protection and Breeding, College of Animal Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei, 230036, Anhui, China. .,Anhui Provincial Laboratory for Local Livestock and Poultry Genetic Resource Conservation and Bio-Breeding, 130 Changjiang West Road, Hefei, 230036, Anhui, China. .,Department of Animal Veterinary Science, College of Animal Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei, 230036, Anhui, China.
| | - Zubing Cao
- Anhui Provincial Laboratory of Animal Genetic Resources Protection and Breeding, College of Animal Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei, 230036, Anhui, China. .,Anhui Provincial Laboratory for Local Livestock and Poultry Genetic Resource Conservation and Bio-Breeding, 130 Changjiang West Road, Hefei, 230036, Anhui, China. .,Department of Animal Veterinary Science, College of Animal Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei, 230036, Anhui, China.
| |
Collapse
|
27
|
Liu KS, Li TP, Ton H, Mao XD, Chen YJ. Advances of Long Noncoding RNAs-mediated Regulation in Reproduction. Chin Med J (Engl) 2018; 131:226-234. [PMID: 29336373 PMCID: PMC5776855 DOI: 10.4103/0366-6999.222337] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Indexed: 01/28/2023] Open
Abstract
OBJECTIVE Advances in genomics and molecular biology have led to the discovery of a large group of uncharacterized long noncoding RNAs (lncRNAs). Emerging evidence indicated that many lncRNAs function in multiple biological processes and its dysregulation often causes diseases. Recent studies suggested that almost all regulatory lncRNAs interact with biological macromolecules such as DNA, RNA, and protein. LncRNAs regulate gene expression mainly on three levels, including epigenetic modification, transcription, and posttranscription, through DNA methylation, histone modification, and chromatin remodeling. LncRNAs can also affect the development of diseases and therefore be used to diagnose and treat diseases. With new sequencing and microarray techniques, hundreds of lncRNAs involved in reproductive disorders have been identified, but their functions in these disorders are undefined. DATA SOURCES This review was based on articles published in PubMed databases up to July 10, 2017, with the following keywords: "long noncoding RNAs", "LncRNA", "placentation", and "reproductive diseases". STUDY SELECTION Original articles and reviews on the topics were selected. RESULTS LncRNAs widely participate in various physiological and pathological processes as a new class of important regulatory factors. In spermatogenesis, spermatocytes divide and differentiate into mature spermatozoa. The whole process is elaborately regulated by the expression of phase-specific genes that involve many strains of lncRNAs. Literature showed that lncRNA in reproductive cumulus cells may contribute to the regulation of oocyte maturation, fertilization, and embryo development. CONCLUSIONS LncRNA has been found to play a role in the development of reproduction. Meanwhile, we reviewed the studies on how lncRNAs participate in reproductive disorders, which provides a basis for the study of lncRNA in reproduction regulation.
Collapse
Affiliation(s)
- Kang-Sheng Liu
- Department of Clinical Laboratory, State Key Laboratory of Reproductive Medicine, Nanjing Obstetrics and Gynecology Hospital Affiliated to Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Tai-Ping Li
- Department of Pharmacy, The Affiliated Friendship Plastic Surgery Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Hua Ton
- Department of Obstetrics and Gynecology, State Key Laboratory of Reproductive Medicine, Nanjing Obstetrics and Gynecology Hospital Affiliated to Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Xiao-Dong Mao
- Department of Endocrinology, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210028, China
| | - Ya-Jun Chen
- Department of Clinical Laboratory, State Key Laboratory of Reproductive Medicine, Nanjing Obstetrics and Gynecology Hospital Affiliated to Nanjing Medical University, Nanjing, Jiangsu 210029, China
| |
Collapse
|
28
|
Liu K, Mao X, Chen Y, Li T, Ton H. Regulatory role of long non-coding RNAs during reproductive disease. Am J Transl Res 2018; 10:1-12. [PMID: 29422989 PMCID: PMC5801342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Accepted: 12/25/2017] [Indexed: 06/08/2023]
Abstract
Long non-coding RNA (lncRNA) is a group of RNAs with broad biogenesis, which are longer than 200 nt and highly conserved in their secondary and tertiary structures. lncRNA that broadly participates in varied physiological processes in organisms has abundant biological function and can regulate expression of target genes at transcriptional, post-transcriptional and epigenetic levels. LncRNAs can also affect the development of diseases, and therefore be used to diagnose and treat diseases. With new sequencing and microarray techniques, hundreds of lncRNAs involved in reproductive disorders have been identified, but their functions in these disorders are undefined. In this paper, we reviewed the studies on how lncRNAs participate in the development of reproductive disorders, hoping our outcome can instruct the future study and provide new biomarkers and therapies for reproductive disorders.
Collapse
Affiliation(s)
- Kangsheng Liu
- Department of Clinical Laboratory, State Key Laboratory of Reproductive Medicine, The Affiliated Obstetrics and Gynecology Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care HospitalNanjing 210029, Jiangsu, China
| | - Xiaodong Mao
- Department of Endocrinology, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese MedicineNanjing 210028, Jiangsu, China
| | - Yajun Chen
- Department of Clinical Laboratory, The Affiliated Obstetrics and Gynecology Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care HospitalNanjing 210029, Jiangsu, China
| | - Taiping Li
- Department of Pharmacy, The Affiliated Friendship Plastic Surgery Hospital of Nanjing Medical UniversityNanjing 210029, Jiangsu, China
| | - Hua Ton
- Department of Obstetrics and Gynecology, State Key Laboratory of Reproductive Medicine, The Affiliated Obstetrics and Gynecology Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care HospitalNanjing 210029, Jiangsu, China
| |
Collapse
|
29
|
Weng B, Ran M, Chen B, He C, Dong L, Peng F. Genome-wide analysis of long non-coding RNAs and their role in postnatal porcine testis development. Genomics 2017; 109:446-456. [PMID: 28746831 DOI: 10.1016/j.ygeno.2017.07.001] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Revised: 07/16/2017] [Accepted: 07/17/2017] [Indexed: 12/21/2022]
Abstract
A comprehensive and systematic understanding of the roles of lncRNAs in the postnatal development of the pig testis has still not been achieved. In the present study, we obtained more than one billion clean reads and identified 15,528 lncRNA transcripts; these transcripts included 5032 known and 10,496 novel porcine lncRNA transcripts and corresponded to 10,041 lncRNA genes. Pairwise comparisons identified 449 known and 324 novel lncRNAs that showed differential expression patterns. GO and KEGG pathway enrichment analyses revealed that the targeted genes were involved in metabolic pathways regulating testis development and spermatogenesis, such as the TGF-beta pathway, the PI3K-Akt pathway, the Wnt/β-catenin pathway, and the AMPK pathway. Using this information, we predicted some lncRNAs and coding gene pairs were predicted that may function in testis development and spermatogenesis; these are listed in detail. This study has provided the most comprehensive catalog to date of lncRNAs in the postnatal pig testis and will aid our understanding of their functional roles in testis development and spermatogenesis.
Collapse
Affiliation(s)
- Bo Weng
- College of Animal Science and Technology, Hunan Agriculture University, Hunan, Changsha 410128, China; Hunan Provincial Key Laboratory for Genetic Improvement of Domestic Animal, Changsha 410128, China
| | - Maoliang Ran
- College of Animal Science and Technology, Hunan Agriculture University, Hunan, Changsha 410128, China; Hunan Provincial Key Laboratory for Genetic Improvement of Domestic Animal, Changsha 410128, China
| | - Bin Chen
- College of Animal Science and Technology, Hunan Agriculture University, Hunan, Changsha 410128, China; Hunan Provincial Key Laboratory for Genetic Improvement of Domestic Animal, Changsha 410128, China.
| | - Changqing He
- College of Animal Science and Technology, Hunan Agriculture University, Hunan, Changsha 410128, China; Hunan Provincial Key Laboratory for Genetic Improvement of Domestic Animal, Changsha 410128, China
| | - Lianhua Dong
- College of Animal Science and Technology, Hunan Agriculture University, Hunan, Changsha 410128, China; Hunan Provincial Key Laboratory for Genetic Improvement of Domestic Animal, Changsha 410128, China
| | - Fuzhi Peng
- College of Animal Science and Technology, Hunan Agriculture University, Hunan, Changsha 410128, China; Hunan Provincial Key Laboratory for Genetic Improvement of Domestic Animal, Changsha 410128, China
| |
Collapse
|
30
|
Long noncoding RNA expression profile changes associated with dietary energy in the sheep testis during sexual maturation. Sci Rep 2017; 7:5180. [PMID: 28701734 PMCID: PMC5507887 DOI: 10.1038/s41598-017-05443-5] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Accepted: 05/30/2017] [Indexed: 02/07/2023] Open
Abstract
Spermatogenesis can be affected by nutrition, which operates through normal physiological processes by changing the testicular mass and hormone levels profoundly. However, little is known regarding how testis development is regulated by long noncoding RNA (lncRNA). In this study, we investigated the effects of high-grain (HG) feeding on testis development during sexual maturation mediated by lncRNA. The HG diet group showed an increase in growth hormone (GH), insulin-like growth factor-1 (IGF-1) and testosterone (T) levels, and in the number of sperm in the seminiferous tubules compared with the hay-fed group (p
< 0.05). Moreover, we found 59 differentially expressed (DE) lncRNAs and 229 DE mRNAs in sheep testis between the two groups. qRT-PCR results of 20 randomly selected DE lncRNAs and mRNAs were also consistent with the RNA-seq data. Through functional enrichment analysis and lncRNA-mRNA interaction network analysis, we screened several lncRNAs that may be enriched for male reproduction such as spermatogenesis, sperm motility, steroid hormones, MAPK and ErbB signaling pathways. This study provides a first insight into the development of the testis with HG feeding in sheep and shows that these changes are associated with alterations in lncRNA expression.
Collapse
|
31
|
Hu K, Zhang J, Liang M. LncRNA AK015322 promotes proliferation of spermatogonial stem cell C18-4 by acting as a decoy for microRNA-19b-3p. In Vitro Cell Dev Biol Anim 2016; 53:277-284. [PMID: 27822884 DOI: 10.1007/s11626-016-0102-5] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Accepted: 09/27/2016] [Indexed: 01/07/2023]
Abstract
Long noncoding RNAs (lncRNAs) have been reported to play important roles in male reproduction. In our previous research, we studied the expression profile of lncRNAs in mouse male germ cells including spermatogonial stem cell, type A spermatogonia, pachytene spermatocyte, and round spermatid by microarray method, which showed that testis-enriched lncRNA AK015322 is highly expressed in spermatogonial stem cell. In this study, we found that AK015322 promotes proliferation of mouse spermatogonial stem cell line C18-4 in vitro. Furthermore, bioinformatic analysis, real-time PCR, and luciferase assay validated that AK015322 serves as a decoy of microRNA-19b-3p (miR-19b-3p), antagonizes its function, and attenuates the repression of its endogenous target transcriptional factor Ets-variant 5 (ETV5) which was a pivotal gene for spermatogonial stem cell self-renewal. Taken together, our results suggest that a variety of lncRNAs may regulate male reproduction through serving as competing-endogenous RNAs to modulate the function of germ cells.
Collapse
Affiliation(s)
- Ke Hu
- Department of Biology, Bengbu Medical College, Bengbu, Anhui, People's Republic of China
| | - Jing Zhang
- Department of Biology, Bengbu Medical College, Bengbu, Anhui, People's Republic of China
| | - Meng Liang
- Department of Biology, Bengbu Medical College, Bengbu, Anhui, People's Republic of China.
| |
Collapse
|
32
|
Wen K, Yang L, Xiong T, Di C, Ma D, Wu M, Xue Z, Zhang X, Long L, Zhang W, Zhang J, Bi X, Dai J, Zhang Q, Lu ZJ, Gao G. Critical roles of long noncoding RNAs in Drosophila spermatogenesis. Genome Res 2016; 26:1233-44. [PMID: 27516619 PMCID: PMC5052038 DOI: 10.1101/gr.199547.115] [Citation(s) in RCA: 122] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Accepted: 07/12/2016] [Indexed: 12/26/2022]
Abstract
Long noncoding RNAs (lncRNAs), a recently discovered class of cellular RNAs, play important roles in the regulation of many cellular developmental processes. Although lncRNAs have been systematically identified in various systems, most of them have not been functionally characterized in vivo in animal models. In this study, we identified 128 testis-specific Drosophila lncRNAs and knocked out 105 of them using an optimized three-component CRISPR/Cas9 system. Among the lncRNA knockouts, 33 (31%) exhibited a partial or complete loss of male fertility, accompanied by visual developmental defects in late spermatogenesis. In addition, six knockouts were fully or partially rescued by transgenes in a trans configuration, indicating that those lncRNAs primarily work in trans. Furthermore, gene expression profiles for five lncRNA mutants revealed that testis-specific lncRNAs regulate global gene expression, orchestrating late male germ cell differentiation. Compared with coding genes, the testis-specific lncRNAs evolved much faster. Moreover, lncRNAs of greater functional importance exhibited higher sequence conservation, suggesting that they are under constant evolutionary selection. Collectively, our results reveal critical functions of rapidly evolving testis-specific lncRNAs in late Drosophila spermatogenesis.
Collapse
Affiliation(s)
- Kejia Wen
- MOE Key Laboratory of Bioinformatics, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Lijuan Yang
- MOE Key Laboratory of Bioinformatics, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China; College of Animal Science, Tarim University, Xinjiang 843300, China
| | - Tuanlin Xiong
- MOE Key Laboratory of Bioinformatics, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Chao Di
- MOE Key Laboratory of Bioinformatics, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Danhui Ma
- MOE Key Laboratory of Bioinformatics, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Menghua Wu
- MOE Key Laboratory of Bioinformatics, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Zhaoyu Xue
- MOE Key Laboratory of Bioinformatics, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Xuedi Zhang
- MOE Key Laboratory of Bioinformatics, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Li Long
- MOE Key Laboratory of Bioinformatics, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Weimin Zhang
- MOE Key Laboratory of Bioinformatics, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Jiaying Zhang
- MOE Key Laboratory of Bioinformatics, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Xiaolin Bi
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian 116044, China
| | - Junbiao Dai
- MOE Key Laboratory of Bioinformatics, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China; Center for Synthetic and Systems Biology, Tsinghua University, Beijing 100084, China
| | - Qiangfeng Zhang
- MOE Key Laboratory of Bioinformatics, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China; Center for Synthetic and Systems Biology, Tsinghua University, Beijing 100084, China; Beijing Advanced Innovation Center for Structural Biology, Tsinghua University, Beijing 100084, China
| | - Zhi John Lu
- MOE Key Laboratory of Bioinformatics, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China; Center for Synthetic and Systems Biology, Tsinghua University, Beijing 100084, China
| | - Guanjun Gao
- MOE Key Laboratory of Bioinformatics, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China; Center for Synthetic and Systems Biology, Tsinghua University, Beijing 100084, China
| |
Collapse
|
33
|
LncRNA, a new component of expanding RNA-protein regulatory network important for animal sperm development. Semin Cell Dev Biol 2016; 59:110-117. [PMID: 27345292 DOI: 10.1016/j.semcdb.2016.06.013] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Revised: 06/17/2016] [Accepted: 06/20/2016] [Indexed: 12/18/2022]
Abstract
Spermatogenesis is one of the fundamental processes of sexual reproduction, present in almost all metazoan animals. Like many other reproductive traits, developmental features and traits of spermatogenesis are under strong selective pressure to change, both at morphological and underlying molecular levels. Yet evidence suggests that some fundamental features of spermatogenesis may be ancient and conserved among metazoan species. Identifying the underlying conserved molecular mechanisms could reveal core components of metazoan spermatogenic machinery and provide novel insight into causes of human infertility. Conserved RNA-binding proteins and their interacting RNA network emerge to be a common theme important for animal sperm development. We review research on the recent addition to the RNA family - Long non-coding RNA (lncRNA) and its roles in spermatogenesis in the context of the expanding RNA-protein network.
Collapse
|
34
|
Lei Q, Li C, Zuo Z, Huang C, Cheng H, Zhou R. Evolutionary Insights into RNA trans-Splicing in Vertebrates. Genome Biol Evol 2016; 8:562-77. [PMID: 26966239 PMCID: PMC4824033 DOI: 10.1093/gbe/evw025] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Pre-RNA splicing is an essential step in generating mature mRNA. RNA trans-splicing combines two separate pre-mRNA molecules to form a chimeric non-co-linear RNA, which may exert a function distinct from its original molecules. Trans-spliced RNAs may encode novel proteins or serve as noncoding or regulatory RNAs. These novel RNAs not only increase the complexity of the proteome but also provide new regulatory mechanisms for gene expression. An increasing amount of evidence indicates that trans-splicing occurs frequently in both physiological and pathological processes. In addition, mRNA reprogramming based on trans-splicing has been successfully applied in RNA-based therapies for human genetic diseases. Nevertheless, clarifying the extent and evolution of trans-splicing in vertebrates and developing detection methods for trans-splicing remain challenging. In this review, we summarize previous research, highlight recent advances in trans-splicing, and discuss possible splicing mechanisms and functions from an evolutionary viewpoint.
Collapse
Affiliation(s)
- Quan Lei
- Department of Genetics, College of Life Sciences, Wuhan University, P.R. China
| | - Cong Li
- Department of Genetics, College of Life Sciences, Wuhan University, P.R. China
| | - Zhixiang Zuo
- Department of Genetics, College of Life Sciences, Wuhan University, P.R. China
| | - Chunhua Huang
- Department of Cell Biology, College of Life Sciences, Wuhan University, P.R. China
| | - Hanhua Cheng
- Department of Cell Biology, College of Life Sciences, Wuhan University, P.R. China
| | - Rongjia Zhou
- Department of Genetics, College of Life Sciences, Wuhan University, P.R. China
| |
Collapse
|
35
|
Non-coding RNA in Spermatogenesis and Epididymal Maturation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 886:95-120. [PMID: 26659489 DOI: 10.1007/978-94-017-7417-8_6] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Testicular germ and somatic cells express many classes of small ncRNAs, including Dicer-independent PIWI-interacting RNAs, Dicer-dependent miRNAs, and endogenous small interfering RNA. Several studies have identified ncRNAs that are highly, exclusively, or preferentially expressed in the testis and epididymis in specific germ and somatic cell types. Temporal and spatial expression of proteins is a key requirement of successful spermatogenesis and large-scale gene transcription occurs in two key stages, just prior to transcriptional quiescence in meiosis and then during spermiogenesis just prior to nuclear silencing in elongating spermatids. More than 60 % of these transcripts are then stockpiled for subsequent translation. In this capacity ncRNAs may act to interpret and transduce cellular signals to either maintain the undifferentiated stem cell population and/or drive cell differentiation during spermatogenesis and epididymal maturation. The assignation of specific roles to the majority of ncRNA species implicated as having a role in spermatogenesis and epididymal function will underpin fundamental understanding of normal and disease states in humans such as infertility and the development of germ cell tumours.
Collapse
|
36
|
Ru YF, Xue HM, Ni ZM, Xia D, Zhou YC, Zhang YL. An epididymis-specific carboxyl esterase CES5A is required for sperm capacitation and male fertility in the rat. Asian J Androl 2015; 17:292-7. [PMID: 25475668 PMCID: PMC4650488 DOI: 10.4103/1008-682x.143314] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Despite the fact that the phenomenon of capacitation was discovered over half century ago and much progress has been made in identifying sperm events involved in capacitation, few specific molecules of epididymal origin have been identified as being directly involved in this process in vivo. Previously, our group cloned and characterized a carboxyl esterase gene Ces5a in the rat epididymis. The CES5A protein is mainly expressed in the corpus and cauda epididymidis and secreted into the corresponding lumens. Here, we report the function of CES5A in sperm maturation. By local injection of Lentivirus-mediated siRNA in the CES5A-expressing region of the rat epididymis, Ces5a-knockdown animal models were created. These animals exhibited an inhibited sperm capacitation and a reduction in male fertility. These results suggest that CES5A plays an important role in sperm maturation and male fertility.
Collapse
Affiliation(s)
| | | | | | | | - Yu-Chuan Zhou
- Shanghai Key Laboratory of Molecular Andrology, State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institute for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Yong-Lian Zhang
- Shanghai Key Laboratory of Molecular Andrology, State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institute for Biological Sciences, Chinese Academy of Sciences; Shanghai Institute of Planned Parenthood Research, Shanghai, China
| |
Collapse
|
37
|
Salas-Huetos A, Blanco J, Vidal F, Godo A, Grossmann M, Pons MC, F-Fernández S, Garrido N, Anton E. Spermatozoa from patients with seminal alterations exhibit a differential micro-ribonucleic acid profile. Fertil Steril 2015; 104:591-601. [DOI: 10.1016/j.fertnstert.2015.06.015] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Revised: 05/22/2015] [Accepted: 06/15/2015] [Indexed: 01/03/2023]
|
38
|
Next Generation Sequencing Analysis Reveals Segmental Patterns of microRNA Expression in Mouse Epididymal Epithelial Cells. PLoS One 2015; 10:e0135605. [PMID: 26270822 PMCID: PMC4535982 DOI: 10.1371/journal.pone.0135605] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Accepted: 07/23/2015] [Indexed: 02/04/2023] Open
Abstract
The functional maturation of mammalian spermatozoa is accomplished as the cells descend through the highly specialized microenvironment of the epididymis. This dynamic environment is, in turn, created by the combined secretory and absorptive activity of the surrounding epithelium and displays an extraordinary level of regionalization. Although the regulatory network responsible for spatial coordination of epididymal function remains unclear, recent evidence has highlighted a novel role for the RNA interference pathway. Indeed, as noncanonical regulators of gene expression, small noncoding RNAs have emerged as key elements of the circuitry involved in regulating epididymal function and hence sperm maturation. Herein we have employed next generation sequencing technology to profile the genome-wide miRNA signatures of mouse epididymal cells and characterize segmental patterns of expression. An impressive profile of some 370 miRNAs were detected in the mouse epididymis, with a subset of these specifically identified within the epithelial cells that line the tubule (218). A majority of the latter miRNAs (75%) were detected at equivalent levels along the entire length of the mouse epididymis. We did however identify a small cohort of miRNAs that displayed highly regionalized patterns of expression, including miR-204-5p and miR-196b-5p, which were down- and up-regulated by approximately 39- and 45-fold between the caput/caudal regions, respectively. In addition we identified 79 miRNAs (representing ~ 21% of all miRNAs) as displaying conserved expression within all regions of the mouse, rat and human epididymal tissue. These included 8/14 members of let-7 family of miRNAs that have been widely implicated in the control of androgen signaling and the repression of cell proliferation and oncogenic pathways. Overall these data provide novel insights into the sophistication of the miRNA network that regulates the function of the male reproductive tract.
Collapse
|
39
|
Comparative transcript profiling of gene expression of fresh and frozen-thawed bull sperm. Theriogenology 2014; 83:504-11. [PMID: 25459024 DOI: 10.1016/j.theriogenology.2014.10.015] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2014] [Revised: 10/09/2014] [Accepted: 10/10/2014] [Indexed: 11/21/2022]
Abstract
Although frozen semen is widely used commercially in the cattle breeding industry, the resultant pregnancy rate is lower than that produced using fresh semen. Cryodamage is a major problem in semen cryopreservation; it causes changes to sperm transcripts that may influence sperm function and motility. We used suppression subtractive hybridization technology to establish a complementary DNA subtractive library, and combined microarray technology and sequence homology analysis to screen and analyze differentially expressed genes in the library, comparing fresh sperm with the frozen-thawed sperm of nine bulls. Overall, 19 positive differentially expressed unigenes were identified using microarray data and Significance Analysis of Microarrays software (|score (d)| ≥ 2, fold change > 1, and false discovery rate < 0.05). Of 15 differentially expressed unigenes exhibited high sequence homology (E-value ≤ 1 × 10(-3)), 12 were upregulated in frozen-thawed sperm, the remaining 3 were upregulated in fresh sperm, and 4 other clones were identified as unknown because of incomplete sequences or because there was no significant sequence homology (E-value > 1E(-03)) and were considered novel genes. The expression of five of these genes-RPL31, PRKCE, PAPSS2, PLP1, and R1G7-was verified by quantitative real-time reverse transcription-polymerase chain reaction. There was a significant differential expression of the RPL31 gene (P < 0.05). Our preliminary results provide an overview of differentially expressed transcripts between fresh and frozen-thawed sperm of Holstein bulls.
Collapse
|
40
|
Chen X, Yue Y, He Y, Zhu H, Hao H, Zhao X, Qin T, Wang D. Identification and characterization of genes differentially expressed in X and Y sperm using suppression subtractive hybridization and cDNA microarray. Mol Reprod Dev 2014; 81:908-17. [PMID: 25223630 DOI: 10.1002/mrd.22386] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Accepted: 07/29/2014] [Indexed: 11/09/2022]
Abstract
Differential expression of genes leads to variations in the phenotypes of X and Y sperm, although some differentially expressed gene products are shared through intercellular bridges. Genes differentially expressed in bovine X and Y sperm were identified by a combination of suppression subtractive hybridization (SSH), cDNA microarray, and sequence-homology analysis. Microarray data and Significance Analysis of Microarrays software were used to identify 31 differentially expressed genes, only four of which were previously identified. These genes are involved in fundamental life processes of mature sperm, and may be associated with the differences between X and Y sperm since 27 versus 4 were upregulated in X versus Y sperm, respectively. The levels of expression of seven genes-including the known genes UTY, DPH3, CYTB, and ISCU, and the unknown genes X + Y contig 41, X + Y contig 18, and Y + X contig 16-were validated by quantitative real-time PCR, and some genes were clearly differentially expressed by X and Y sperm, despite the presence of intercellular bridges among spermatids. These results provide a theoretical basis for research on gene expression during sperm development, as well as on sex control at the level of sperm.
Collapse
Affiliation(s)
- Xiaoli Chen
- The Key Laboratory for Farm Animal Genetic Resources and Utilization of Ministry of Agriculture of China, Institute of Animal Science, Chinese Academy of Agriculture Sciences, Beijing, China
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Shen C, Zhong N. Long non-coding RNAs: the epigenetic regulators involved in the pathogenesis of reproductive disorder. Am J Reprod Immunol 2014; 73:95-108. [PMID: 25220834 DOI: 10.1111/aji.12315] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Accepted: 08/06/2014] [Indexed: 12/22/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) are long single-stranded RNAs without translation potential. LncRNAs function in regulating epigenetic and cellular processes through various mechanisms. Nowadays, rapidly growing evidence has shown that abnormally expressed lncRNAs were involved in various inflammation-related states or diseases. Abnormal inflammation responses contribute to reproductive pathology and play vital roles in developing most disorders of the female reproductive system. In this review, we discussed the history of ncRNAs including lncRNAs, methodologies for lncRNA identification, mechanisms of lncRNA expression and regulation and mainly discussed the expression and function of lncRNAs in the female reproductive system with special focus on the inflammation and infection pathway. By analyzing the present available studies of lncRNA transcripts within the reproductive system and the current understanding of the biology of lncRNAs, we have suggested the important diagnostic and therapeutic roles of lncRNAs in the etiology of reproductive disorders.
Collapse
Affiliation(s)
- Chen Shen
- Peking University Center of Medical Genetics, Beijing, China
| | | |
Collapse
|
42
|
Luk ACS, Chan WY, Rennert OM, Lee TL. Long noncoding RNAs in spermatogenesis: insights from recent high-throughput transcriptome studies. Reproduction 2014; 147:R131-41. [PMID: 24713396 DOI: 10.1530/rep-13-0594] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Spermatogenesis is a complex developmental process in which undifferentiated spermatogonia are differentiated into spermatocytes and spermatids through two rounds of meiotic division and finally giving rise to mature spermatozoa (sperm). These processes involve many testis- or male germ cell-specific gene products that undergo strict developmental regulations. As a result, identifying critical, regulatory genes controlling spermatogenesis provide the clues not only to the regulatory mechanism of spermatogenesis at the molecular level, but also to the identification of candidate genes for infertility or contraceptives development. Despite the biological importance in male germ cell development, the underlying mechanisms of stage-specific gene regulation and cellular transition during spermatogenesis remain largely elusive. Previous genomic studies on transcriptome profiling were largely limited to protein-coding genes. Importantly, protein-coding genes only account for a small percentage of transcriptome; the majority are noncoding transcripts that do not translate into proteins. Although small noncoding RNAs (ncRNAs) such as microRNAs, siRNAs, and Piwi-interacting RNAs are extensively investigated in male germ cell development, the role of long ncRNAs (lncRNAs), commonly defined as ncRNAs longer than 200 bp, is relatively unexplored. Herein, we summarize recent transcriptome studies on spermatogenesis and show examples that a subset of noncoding transcript population, known as lncRNAs, constitutes a novel regulatory target in spermatogenesis.
Collapse
Affiliation(s)
- Alfred Chun-Shui Luk
- School of Biomedical Sciences, Room 622A, Lo Kwee-Seong Integrated Biomedical Sciences Building, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | | | | | | |
Collapse
|
43
|
Hoffmann S, Otto C, Doose G, Tanzer A, Langenberger D, Christ S, Kunz M, Holdt LM, Teupser D, Hackermüller J, Stadler PF. A multi-split mapping algorithm for circular RNA, splicing, trans-splicing and fusion detection. Genome Biol 2014; 15:R34. [PMID: 24512684 PMCID: PMC4056463 DOI: 10.1186/gb-2014-15-2-r34] [Citation(s) in RCA: 205] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2013] [Accepted: 02/10/2014] [Indexed: 11/25/2022] Open
Abstract
Numerous high-throughput sequencing studies have focused on detecting conventionally spliced mRNAs in RNA-seq data. However, non-standard RNAs arising through gene fusion, circularization or trans-splicing are often neglected. We introduce a novel, unbiased algorithm to detect splice junctions from single-end cDNA sequences. In contrast to other methods, our approach accommodates multi-junction structures. Our method compares favorably with competing tools for conventionally spliced mRNAs and, with a gain of up to 40% of recall, systematically outperforms them on reads with multiple splits, trans-splicing and circular products. The algorithm is integrated into our mapping tool segemehl (http://www.bioinf.uni-leipzig.de/Software/segemehl/).
Collapse
Affiliation(s)
- Steve Hoffmann
- Junior Research Group Transcriptome Bioinformatics, Leipzig University, Haertelstrasse 16-18, Leipzig, Germany
- Interdisciplinary Center for Bioinformatics and Bioinformatics Group, University Leipzig, Haertelstrasse 16-18, Leipzig, Germany
- LIFE Research Center for Civilization Diseases, Leipzig University
| | - Christian Otto
- Junior Research Group Transcriptome Bioinformatics, Leipzig University, Haertelstrasse 16-18, Leipzig, Germany
- Interdisciplinary Center for Bioinformatics and Bioinformatics Group, University Leipzig, Haertelstrasse 16-18, Leipzig, Germany
- LIFE Research Center for Civilization Diseases, Leipzig University
| | - Gero Doose
- Junior Research Group Transcriptome Bioinformatics, Leipzig University, Haertelstrasse 16-18, Leipzig, Germany
- Interdisciplinary Center for Bioinformatics and Bioinformatics Group, University Leipzig, Haertelstrasse 16-18, Leipzig, Germany
- LIFE Research Center for Civilization Diseases, Leipzig University
| | - Andrea Tanzer
- Department of Theoretical Chemistry, University of Vienna, Währinger Strasse 17, Vienna, Austria
| | - David Langenberger
- Junior Research Group Transcriptome Bioinformatics, Leipzig University, Haertelstrasse 16-18, Leipzig, Germany
- Interdisciplinary Center for Bioinformatics and Bioinformatics Group, University Leipzig, Haertelstrasse 16-18, Leipzig, Germany
- LIFE Research Center for Civilization Diseases, Leipzig University
| | - Sabina Christ
- RNomics Group, Fraunhofer Institute for Cell Therapy and Immunology – IZI, Perlickstrasse 1, Leipzig, Germany
| | - Manfred Kunz
- Department of Dermatology, Venerology and Allergology, Leipzig University, Philipp-Rosenthal-Strasse 23, Leipzig, Germany
| | - Lesca M Holdt
- LIFE Research Center for Civilization Diseases, Leipzig University
- Institute of Laboratory Medicine, Ludwig Maximilian University, Marchioninistrasse 15, Munich, Germany
| | - Daniel Teupser
- LIFE Research Center for Civilization Diseases, Leipzig University
- Institute of Laboratory Medicine, Ludwig Maximilian University, Marchioninistrasse 15, Munich, Germany
| | - Jörg Hackermüller
- Interdisciplinary Center for Bioinformatics and Bioinformatics Group, University Leipzig, Haertelstrasse 16-18, Leipzig, Germany
- RNomics Group, Fraunhofer Institute for Cell Therapy and Immunology – IZI, Perlickstrasse 1, Leipzig, Germany
- Young Investigators Group Bioinformatics and Transcriptomics, Department of Proteomics, Helmholtz Centre for Environmental Research – UFZ, Permoserstrasse 15, Leipzig, Germany
| | - Peter F Stadler
- Junior Research Group Transcriptome Bioinformatics, Leipzig University, Haertelstrasse 16-18, Leipzig, Germany
- Interdisciplinary Center for Bioinformatics and Bioinformatics Group, University Leipzig, Haertelstrasse 16-18, Leipzig, Germany
- LIFE Research Center for Civilization Diseases, Leipzig University
- Department of Theoretical Chemistry, University of Vienna, Währinger Strasse 17, Vienna, Austria
- Max Planck Institute for Mathematics in the Sciences, Inselstrasse 22, Leipzig, Germany
- Center for non-coding RNA in Technology and Health, University of Copenhagen, Grønnegårdsvej 3, Frederiksberg, Denmark
- Santa Fe Institute, 1399 Hyde Park Road, Santa Fe, NM, USA
| |
Collapse
|
44
|
Li X, Ni M, Zhang C, Ma W, Zhang Y. A convenient system for highly specific and sensitive detection of miRNA expression. RNA (NEW YORK, N.Y.) 2014; 20:252-259. [PMID: 24345394 PMCID: PMC3895276 DOI: 10.1261/rna.040220.113] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2013] [Accepted: 10/20/2013] [Indexed: 05/20/2023]
Abstract
Since the first miRNA was discovered in 1993, miRNAs have become a hotspot for biological research. In order to feed this demand, a robust method is required to detect miRNA gene expression. Development of a detection method is more difficult for miRNAs than for long RNAs, such as mRNA, owing to their small size. Existing methods have limitations; thus, new methods are required. We describe a new system for detecting miRNA expression, which can distinguish miRNA from its precursor and has single-nucleotide resolution. It has single molecule and multiplex detection potential. It may be performed as a polymerase chain reaction (PCR) method, a blotting method, or a macroarray method according to the analyst's preference. This personalized system provides a convenient tool for the detection of miRNA gene expression.
Collapse
Affiliation(s)
- Xiangqi Li
- Shanghai Key Laboratory for Molecular Andrology, State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Shanghai 200031, China
- Shanghai Institute of Planned Parenthood Research, Shanghai 200032, China
| | - Minjie Ni
- Shanghai Key Laboratory for Molecular Andrology, State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Shanghai 200031, China
| | - Chaobao Zhang
- Shanghai Key Laboratory for Molecular Andrology, State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Shanghai 200031, China
- School of Biology and Pharmaceutical Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Wubin Ma
- Shanghai Key Laboratory for Molecular Andrology, State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Shanghai 200031, China
| | - Yonglian Zhang
- Shanghai Key Laboratory for Molecular Andrology, State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Shanghai 200031, China
- Shanghai Institute of Planned Parenthood Research, Shanghai 200032, China
| |
Collapse
|
45
|
Li X, Ni M, Zhang C, Ma W, Zhang Y. A convenient system for highly specific and sensitive detection of miRNA expression. RNA (NEW YORK, N.Y.) 2014; 20:252-259. [PMID: 24345394 PMCID: PMC3895276 DOI: 10.1261/rna.040220.113,] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 05/23/2013] [Accepted: 10/20/2013] [Indexed: 12/10/2024]
Abstract
Since the first miRNA was discovered in 1993, miRNAs have become a hotspot for biological research. In order to feed this demand, a robust method is required to detect miRNA gene expression. Development of a detection method is more difficult for miRNAs than for long RNAs, such as mRNA, owing to their small size. Existing methods have limitations; thus, new methods are required. We describe a new system for detecting miRNA expression, which can distinguish miRNA from its precursor and has single-nucleotide resolution. It has single molecule and multiplex detection potential. It may be performed as a polymerase chain reaction (PCR) method, a blotting method, or a macroarray method according to the analyst's preference. This personalized system provides a convenient tool for the detection of miRNA gene expression.
Collapse
Affiliation(s)
- Xiangqi Li
- Shanghai Key Laboratory for Molecular Andrology, State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Shanghai 200031, China
- Shanghai Institute of Planned Parenthood Research, Shanghai 200032, China
| | - Minjie Ni
- Shanghai Key Laboratory for Molecular Andrology, State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Shanghai 200031, China
| | - Chaobao Zhang
- Shanghai Key Laboratory for Molecular Andrology, State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Shanghai 200031, China
- School of Biology and Pharmaceutical Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Wubin Ma
- Shanghai Key Laboratory for Molecular Andrology, State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Shanghai 200031, China
| | - Yonglian Zhang
- Shanghai Key Laboratory for Molecular Andrology, State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Shanghai 200031, China
- Shanghai Institute of Planned Parenthood Research, Shanghai 200032, China
| |
Collapse
|
46
|
Assessment of therapeutic efficacy of miR-126 with contrast-enhanced ultrasound in preeclampsia rats. Placenta 2013; 35:23-9. [PMID: 24239158 DOI: 10.1016/j.placenta.2013.10.017] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2013] [Revised: 10/20/2013] [Accepted: 10/28/2013] [Indexed: 12/31/2022]
Abstract
Preeclampsia is a pregnancy-specific syndrome characterized by high blood pressure and proteinuria, which has a pathophysiology of insufficient placental blood perfusion. MicroRNA-126 (miR-126), an angiogenesis-related miRNA, has been proved to play a significant role in endothelial cells response to ischemia in vitro and in vivo. However, whether miR-126 has therapeutic potential in vasculogenesis of preeclampsia placenta remains uncertain. In this study, we focused our attention on this unsolved problem. First, we established the preeclampsia animal model and over-expressed miR-126 in vivo using a specific agomir. Then we described the effects of miR-126 on placental vasculogenesis in preeclampsia rats, including the evaluation of placental blood perfusion using microbubbles-assisted contrast-enhanced ultrasonography (CEUS), placental histology, immunohistochemistry and pregnancy outcome. Finally, we investigated the possible target gene and pathway that miR-126 modulates. Together, our results showed that preeclampsia animal with over-expressed miR-126 had higher pup weight, placenta weight and proportion of live pups. Quantification of uteroplacental perfusion by CEUS and CD34 staining of placental tissue revealed that blood volume and microvessel density increased in miR-126 treated group. MiR-126 was related to PIK3R2 down-regulation and Akt activation within placenta, which had impacts on vascularization of placenta. Therefore, miR-126 may be an efficient gene therapy to promote angiogenesis and blood perfusion in preeclampsia placenta.
Collapse
|