1
|
Takito J, Nonaka N. Formation of Membrane Domains via Actin Waves: A Fundamental Principle in the Generation of Dynamic Structures in Phagocytes. Int J Mol Sci 2025; 26:4759. [PMID: 40429901 PMCID: PMC12111861 DOI: 10.3390/ijms26104759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2025] [Revised: 05/04/2025] [Accepted: 05/07/2025] [Indexed: 05/29/2025] Open
Abstract
Phagocytes carry out their functions by organizing new subcellular structures. During phagocytosis, macrophages internalize and degrade pathogens and apoptotic cells by forming the phagocytic cup and phagosome. Osteoclasts resorb bone by forming the sealing zone and ruffled border at the ventral membrane. This review explores the organizational principles of these dynamic structures. In in vitro frustrated phagocytosis, specifically 2D phagocytosis by macrophages, the activation of the Fcγ receptor generates multiple self-organized waves containing F-actin, Arp2/3, and phosphoinositides. The propagation of these circular actin waves segregates the inside from the outside, leading to the compartmentalization of the ventral membrane. As the actin wave passes, cortical actin is disrupted, and membrane remodeling occurs within the wave, creating a new membrane domain with high exocytic activity. These processes mirror the formation of the constriction zone in the phagocytic cup and phagosome during 3D phagocytosis. A similar mechanism may also contribute to the formation of the sealing zone and ruffled border in osteoclasts. Based on these observations, we propose that dynamic structures formed from actin waves are organized through the fractal integration of self-organized, oscillatory substructures, with F-actin treadmilling fueling their formation and maintenance.
Collapse
Affiliation(s)
- Jiro Takito
- Department of Oral Anatomy, School of Dentistry, Showa Medical University, 1-5-8 Hatanodai, Shinagawa, Tokyo 142-8555, Japan;
| | | |
Collapse
|
2
|
Abubaker-Sharif B, Banerjee T, Devreotes PN, Iglesias PA. Learning stochastic reaction-diffusion models from limited data using spatiotemporal features. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.10.02.616367. [PMID: 40161695 PMCID: PMC11952355 DOI: 10.1101/2024.10.02.616367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Pattern-forming stochastic systems arise throughout biology, with dynamic molecular waves observed in biochemical networks regulating critical cellular processes. Modeling these reaction-diffusion systems using handcrafted stochastic partial differential equations (PDEs) requires extensive trial-and-error tuning. Data-driven approaches for improved modeling are needed but have been hindered by data scarcity and noise. Here, we present a solution to the inverse problem of learning stochastic reaction-diffusion models from limited data by optimizing two spatiotemporal features: (1) stochastic dynamics and (2) spatiotemporal patterns. Combined with sparsity enforcement, this method identifies novel activator-inhibitor models with interpretable structure. We demonstrate robust learning from simulations of excitable systems with varying data scarcity, as well as noisy live-cell imaging data with low temporal resolution and a single observed biomolecule. This generalizable approach to learning governing stochastic PDEs enhances our ability to model and understand complex spatiotemporal systems from limited, real-world data.
Collapse
Affiliation(s)
- Bedri Abubaker-Sharif
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, 21205, USA
- Department of Cell Biology and Center for Cell Dynamics, Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Tatsat Banerjee
- Department of Cell Biology and Center for Cell Dynamics, Johns Hopkins University, Baltimore, MD, 21205, USA
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Peter N. Devreotes
- Department of Cell Biology and Center for Cell Dynamics, Johns Hopkins University, Baltimore, MD, 21205, USA
- Department of Biological Chemistry, Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Pablo A. Iglesias
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, 21205, USA
- Department of Cell Biology and Center for Cell Dynamics, Johns Hopkins University, Baltimore, MD, 21205, USA
- Department of Electrical and Computer Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA
| |
Collapse
|
3
|
De la Fuente IM, Cortes JM, Malaina I, Pérez-Yarza G, Martinez L, López JI, Fedetz M, Carrasco-Pujante J. The main sources of molecular organization in the cell. Atlas of self-organized and self-regulated dynamic biostructures. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2025; 195:167-191. [PMID: 39805422 DOI: 10.1016/j.pbiomolbio.2025.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Accepted: 01/10/2025] [Indexed: 01/16/2025]
Abstract
One of the most important goals of contemporary biology is to understand the principles of the molecular order underlying the complex dynamic architecture of cells. Here, we present an overview of the main driving forces involved in the cellular molecular complexity and in the emergent functional dynamic structures, spanning from the most basic molecular organization levels to the complex emergent integrative systemic behaviors. First, we address the molecular information processing which is essential in many complex fundamental mechanisms such as the epigenetic memory, alternative splicing, regulation of transcriptional system, and the adequate self-regulatory adaptation to the extracellular environment. Next, we approach the biochemical self-organization, which is central to understand the emergency of metabolic rhythms, circadian oscillations, and spatial traveling waves. Such a complex behavior is also fundamental to understand the temporal compartmentalization of the cellular metabolism and the dynamic regulation of many physiological activities. Numerous examples of biochemical self-organization are considered here, which show that practically all the main physiological processes in the cell exhibit this type of dynamic molecular organization. Finally, we focus on the biochemical self-assembly which, at a primary level of organization, is a basic but important mechanism for the order in the cell allowing biomolecules in a disorganized state to form complex aggregates necessary for a plethora of essential structures and physiological functions. In total, more than 500 references have been compiled in this review. Due to these main sources of order, systemic functional structures emerge in the cell, driving the metabolic functionality towards the biological complexity.
Collapse
Affiliation(s)
- Ildefonso M De la Fuente
- Department of Mathematics, Faculty of Science and Technology, University of the Basque Country, UPV/EHU, Leioa, 48940, Spain.
| | - Jesus M Cortes
- Department of Cell Biology and Histology, Faculty of Medicine and Nursing, University of the Basque Country, UPV/EHU, Leioa, 48940, Spain; Biobizkaia Health Research Institute, Barakaldo, 48903, Spain; IKERBASQUE: The Basque Foundation for Science, Bilbao, Spain
| | - Iker Malaina
- Department of Mathematics, Faculty of Science and Technology, University of the Basque Country, UPV/EHU, Leioa, 48940, Spain
| | - Gorka Pérez-Yarza
- Department of Cell Biology and Histology, Faculty of Medicine and Nursing, University of the Basque Country, UPV/EHU, Leioa, 48940, Spain
| | - Luis Martinez
- Department of Mathematics, Faculty of Science and Technology, University of the Basque Country, UPV/EHU, Leioa, 48940, Spain
| | - José I López
- Biobizkaia Health Research Institute, Barakaldo, 48903, Spain
| | - Maria Fedetz
- Department of Cell Biology and Immunology, Institute of Parasitology and Biomedicine "López-Neyra", CSIC, Granada, 18016, Spain
| | - Jose Carrasco-Pujante
- Department of Cell Biology and Histology, Faculty of Medicine and Nursing, University of the Basque Country, UPV/EHU, Leioa, 48940, Spain
| |
Collapse
|
4
|
Bement WM, Goryachev AB, Miller AL, von Dassow G. Patterning of the cell cortex by Rho GTPases. Nat Rev Mol Cell Biol 2024; 25:290-308. [PMID: 38172611 DOI: 10.1038/s41580-023-00682-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/20/2023] [Indexed: 01/05/2024]
Abstract
The Rho GTPases - RHOA, RAC1 and CDC42 - are small GTP binding proteins that regulate basic biological processes such as cell locomotion, cell division and morphogenesis by promoting cytoskeleton-based changes in the cell cortex. This regulation results from active (GTP-bound) Rho GTPases stimulating target proteins that, in turn, promote actin assembly and myosin 2-based contraction to organize the cortex. This basic regulatory scheme, well supported by in vitro studies, led to the natural assumption that Rho GTPases function in vivo in an essentially linear matter, with a given process being initiated by GTPase activation and terminated by GTPase inactivation. However, a growing body of evidence based on live cell imaging, modelling and experimental manipulation indicates that Rho GTPase activation and inactivation are often tightly coupled in space and time via signalling circuits and networks based on positive and negative feedback. In this Review, we present and discuss this evidence, and we address one of the fundamental consequences of coupled activation and inactivation: the ability of the Rho GTPases to self-organize, that is, direct their own transition from states of low order to states of high order. We discuss how Rho GTPase self-organization results in the formation of diverse spatiotemporal cortical patterns such as static clusters, oscillatory pulses, travelling wave trains and ring-like waves. Finally, we discuss the advantages of Rho GTPase self-organization and pattern formation for cell function.
Collapse
Affiliation(s)
- William M Bement
- Center for Quantitative Cell Imaging, Department of Integrative Biology, University of Wisconsin-Madison, Madison, WI, USA.
| | - Andrew B Goryachev
- Center for Engineering Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, UK.
| | - Ann L Miller
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, USA.
| | | |
Collapse
|
5
|
Mandal T, Biswas A, Ghosh T, Manikandan S, Kundu A, Banerjee A, Mitra D, Sinha B. Mechano-regulation by clathrin pit-formation and passive cholesterol-dependent tubules during de-adhesion. Cell Mol Life Sci 2024; 81:43. [PMID: 38217571 PMCID: PMC10787898 DOI: 10.1007/s00018-023-05072-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 11/10/2023] [Accepted: 11/30/2023] [Indexed: 01/15/2024]
Abstract
Adherent cells ensure membrane homeostasis during de-adhesion by various mechanisms, including endocytosis. Although mechano-chemical feedbacks involved in this process have been studied, the step-by-step build-up and resolution of the mechanical changes by endocytosis are poorly understood. To investigate this, we studied the de-adhesion of HeLa cells using a combination of interference reflection microscopy, optical trapping and fluorescence experiments. We found that de-adhesion enhanced membrane height fluctuations of the basal membrane in the presence of an intact cortex. A reduction in the tether force was also noted at the apical side. However, membrane fluctuations reveal phases of an initial drop in effective tension followed by saturation. The area fractions of early (Rab5-labelled) and recycling (Rab4-labelled) endosomes, as well as transferrin-labelled pits close to the basal plasma membrane, also transiently increased. On blocking dynamin-dependent scission of endocytic pits, the regulation of fluctuations was not blocked, but knocking down AP2-dependent pit formation stopped the tension recovery. Interestingly, the regulation could not be suppressed by ATP or cholesterol depletion individually but was arrested by depleting both. The data strongly supports Clathrin and AP2-dependent pit-formation to be central to the reduction in fluctuations confirmed by super-resolution microscopy. Furthermore, we propose that cholesterol-dependent pits spontaneously regulate tension under ATP-depleted conditions.
Collapse
Affiliation(s)
- Tithi Mandal
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Nadia, Mohanpur, 741246, India
| | - Arikta Biswas
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Nadia, Mohanpur, 741246, India
- Mechanobiology Institute, National University of Singapore, 5A Engineering Drive 1, Singapore, 117411, Singapore
| | - Tanmoy Ghosh
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Nadia, Mohanpur, 741246, India
| | - Sreekanth Manikandan
- NORDITA, KTH Royal Institute of Technology and Stockholm University, Roslagstullsbacken 23, 10691, Stockholm, Sweden
| | - Avijit Kundu
- Department of Physical Sciences, Indian Institute of Science Education and Research Kolkata, Nadia, Mohanpur, 741246, India
- Experimental Physics I, Universität Bayreuth, Universitätsstraße 30, 95447, Bayreuth, Germany
| | - Ayan Banerjee
- Department of Physical Sciences, Indian Institute of Science Education and Research Kolkata, Nadia, Mohanpur, 741246, India
| | - Dhrubaditya Mitra
- NORDITA, KTH Royal Institute of Technology and Stockholm University, Roslagstullsbacken 23, 10691, Stockholm, Sweden
| | - Bidisha Sinha
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Nadia, Mohanpur, 741246, India.
| |
Collapse
|
6
|
Sáenz-de-Santa-María I, Henderson JM, Pepe A, Zurzolo C. Identification and Characterization of Tunneling Nanotubes for Intercellular Trafficking. Curr Protoc 2023; 3:e939. [PMID: 37994667 DOI: 10.1002/cpz1.939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2023]
Abstract
Tunneling nanotubes (TNTs) are thin membranous channels providing a direct cytoplasmic connection between remote cells. They are commonly observed in different cell cultures and increasing evidence supports their role in intercellular communication, and pathogen and amyloid protein transfer. However, the study of TNTs presents several pitfalls (e.g., difficulty in preserving such delicate structures, possible confusion with other protrusions, structural and functional heterogeneity, etc.) and therefore requires thoroughly designed approaches. The methods described in this protocol represent a guideline for the characterization of TNTs (or TNT-like structures) in cell culture. Specifically, optimized protocols to (1) identify TNTs and the cytoskeletal elements present inside them; (2) evaluate TNT frequency in cell culture; (3) unambiguously distinguish them from other cellular connections or protrusions; (4) monitor their formation in living cells; (5) characterize TNTs by a micropatterning approach; and (6) investigate TNT ultrastructure by cryo-EM are provided. Finally, this article describes how to assess TNT-mediated cell-to-cell transfer of cellular components, which is a fundamental criterion for identifying functional TNTs. © 2023 Wiley Periodicals LLC. Basic Protocol 1: Identification of tunneling nanotubes Alternate Protocol 1: Identifying the cytoskeletal elements present in tunneling nanotubes Alternate Protocol 2: Distinguishing tunneling nanotubes from intercellular bridges formed during cell division Basic Protocol 2: Deciphering tunneling nanotube formation and lifetime by live fluorescent microscopy Alternate Protocol 3: Deciphering tunneling nanotube formation using a live-compatible dye Basic Protocol 3: Assessing tunneling nanotubes functionality in intercellular transfer Alternate Protocol 4: Flow cytometry approach to quantify the rate of vesicle or mitochondria transfer Support Protocol: Controls to support TNT-mediated transfer Basic Protocol 4: Studies of tunneling nanotubes by cell micropatterning Basic Protocol 5: Characterization of the ultrastructure of tunneling nanotubes by cryo-EM.
Collapse
Affiliation(s)
- Inés Sáenz-de-Santa-María
- Unité de Trafic Membranaire et Pathogénèse, Département de Biologie Cellulaire et Infection, Institut Pasteur, CNRS UMR3691, Paris, France
| | - J Michael Henderson
- Unité de Trafic Membranaire et Pathogénèse, Département de Biologie Cellulaire et Infection, Institut Pasteur, CNRS UMR3691, Paris, France
| | - Anna Pepe
- Unité de Trafic Membranaire et Pathogénèse, Département de Biologie Cellulaire et Infection, Institut Pasteur, CNRS UMR3691, Paris, France
| | - Chiara Zurzolo
- Unité de Trafic Membranaire et Pathogénèse, Département de Biologie Cellulaire et Infection, Institut Pasteur, CNRS UMR3691, Paris, France
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| |
Collapse
|
7
|
Beta C, Edelstein-Keshet L, Gov N, Yochelis A. From actin waves to mechanism and back: How theory aids biological understanding. eLife 2023; 12:e87181. [PMID: 37428017 DOI: 10.7554/elife.87181] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 06/01/2023] [Indexed: 07/11/2023] Open
Abstract
Actin dynamics in cell motility, division, and phagocytosis is regulated by complex factors with multiple feedback loops, often leading to emergent dynamic patterns in the form of propagating waves of actin polymerization activity that are poorly understood. Many in the actin wave community have attempted to discern the underlying mechanisms using experiments and/or mathematical models and theory. Here, we survey methods and hypotheses for actin waves based on signaling networks, mechano-chemical effects, and transport characteristics, with examples drawn from Dictyostelium discoideum, human neutrophils, Caenorhabditis elegans, and Xenopus laevis oocytes. While experimentalists focus on the details of molecular components, theorists pose a central question of universality: Are there generic, model-independent, underlying principles, or just boundless cell-specific details? We argue that mathematical methods are equally important for understanding the emergence, evolution, and persistence of actin waves and conclude with a few challenges for future studies.
Collapse
Affiliation(s)
- Carsten Beta
- Institute of Physics and Astronomy, University of Potsdam, Potsdam, Germany
| | | | - Nir Gov
- Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot, Israel
| | - Arik Yochelis
- Swiss Institute for Dryland Environmental and Energy Research, Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus, Midreshet Ben-Gurion, Israel
- Department of Physics, Ben-Gurion University of the Negev, Be'er Sheva, Israel
| |
Collapse
|
8
|
Sakamoto R, Banerjee DS, Yadav V, Chen S, Gardel ML, Sykes C, Banerjee S, Murrell MP. Membrane tension induces F-actin reorganization and flow in a biomimetic model cortex. Commun Biol 2023; 6:325. [PMID: 36973388 PMCID: PMC10043271 DOI: 10.1038/s42003-023-04684-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Accepted: 03/07/2023] [Indexed: 03/28/2023] Open
Abstract
The accumulation and transmission of mechanical stresses in the cell cortex and membrane determines the mechanics of cell shape and coordinates essential physical behaviors, from cell polarization to cell migration. However, the extent that the membrane and cytoskeleton each contribute to the transmission of mechanical stresses to coordinate diverse behaviors is unclear. Here, we reconstitute a minimal model of the actomyosin cortex within liposomes that adheres, spreads and ultimately ruptures on a surface. During spreading, accumulated adhesion-induced (passive) stresses within the membrane drive changes in the spatial assembly of actin. By contrast, during rupture, accumulated myosin-induced (active) stresses within the cortex determine the rate of pore opening. Thus, in the same system, devoid of biochemical regulation, the membrane and cortex can each play a passive or active role in the generation and transmission of mechanical stress, and their relative roles drive diverse biomimetic physical behaviors.
Collapse
Affiliation(s)
- Ryota Sakamoto
- Department of Biomedical Engineering, Yale University, 10 Hillhouse Avenue, New Haven, CT, USA
- Systems Biology Institute, 850 West Campus Drive, West Haven, CT, USA
| | - Deb Sankar Banerjee
- Department of Physics, Carnegie Mellon University, Pittsburgh, PA, 15213, USA
| | - Vikrant Yadav
- Department of Biomedical Engineering, Yale University, 10 Hillhouse Avenue, New Haven, CT, USA
- Systems Biology Institute, 850 West Campus Drive, West Haven, CT, USA
| | - Sheng Chen
- Department of Biomedical Engineering, Yale University, 10 Hillhouse Avenue, New Haven, CT, USA
- Systems Biology Institute, 850 West Campus Drive, West Haven, CT, USA
| | - Margaret L Gardel
- Department of Physics, University of Chicago, Chicago, IL, 60637, USA
- James Franck Institute, University of Chicago, Chicago, IL, 60637, USA
- Institute for Biophysical Sciences and Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, 60637, USA
| | - Cecile Sykes
- Laboratoire de Physique, l'Ecole Normale Supérieure, Paris, France
| | - Shiladitya Banerjee
- Department of Physics, Carnegie Mellon University, Pittsburgh, PA, 15213, USA
| | - Michael P Murrell
- Department of Biomedical Engineering, Yale University, 10 Hillhouse Avenue, New Haven, CT, USA.
- Systems Biology Institute, 850 West Campus Drive, West Haven, CT, USA.
- Department of Physics, Yale University, 217 Prospect Street, New Haven, CT, USA.
| |
Collapse
|
9
|
Mavrakis M, Juanes MA. The compass to follow: Focal adhesion turnover. Curr Opin Cell Biol 2023; 80:102152. [PMID: 36796142 DOI: 10.1016/j.ceb.2023.102152] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 01/09/2023] [Accepted: 01/14/2023] [Indexed: 02/16/2023]
Abstract
How cells move is a fundamental biological question. The directionality of adherent migrating cells depends on the assembly and disassembly (turnover) of focal adhesions (FAs). FAs are micron-sized actin-based structures that link cells to the extracellular matrix. Traditionally, microtubules have been considered key to triggering FA turnover. Through the years, advancements in biochemistry, biophysics, and bioimaging tools have been invaluable for many research groups to unravel a variety of mechanisms and molecular players that contribute to FA turnover, beyond microtubules. Here, we discuss recent discoveries of key molecular players that affect the dynamics and organization of the actin cytoskeleton to enable timely FA turnover and consequently proper directed cell migration.
Collapse
Affiliation(s)
- Manos Mavrakis
- Institut Fresnel, CNRS, Aix-Marseille Univ, Centrale Marseille, 13013 Marseille, France
| | - M Angeles Juanes
- School of Health and Life Science, Teesside University, Middlesbrough, TS1 3BX, United Kingdom; National Horizons Centre, Teesside University, Darlington DL1 1HG, United Kingdom; Centro de Investigación Príncipe Felipe, Valencia, 46012, Spain.
| |
Collapse
|
10
|
Swider ZT, Michaud A, Leda M, Landino J, Goryachev AB, Bement WM. Cell cycle and developmental control of cortical excitability in Xenopus laevis. Mol Biol Cell 2022; 33:ar73. [PMID: 35594176 PMCID: PMC9635278 DOI: 10.1091/mbc.e22-01-0025] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Interest in cortical excitability—the ability of the cell cortex to generate traveling waves of protein activity—has grown considerably over the past 20 years. Attributing biological functions to cortical excitability requires an understanding of the natural behavior of excitable waves and the ability to accurately quantify wave properties. Here we have investigated and quantified the onset of cortical excitability in Xenopus laevis eggs and embryos and the changes in cortical excitability throughout early development. We found that cortical excitability begins to manifest shortly after egg activation. Further, we identified a close relationship between wave properties—such as wave frequency and amplitude—and cell cycle progression as well as cell size. Finally, we identified quantitative differences between cortical excitability in the cleavage furrow relative to nonfurrow cortical excitability and showed that these wave regimes are mutually exclusive.
Collapse
Affiliation(s)
- Zachary T Swider
- Cellular and Molecular Biology Graduate Program, University of Wisconsin-Madison Madison, WI 53706.,Center for Quantitative Cell Imaging, University of Wisconsin-Madison Madison, WI 53706
| | - Ani Michaud
- Cellular and Molecular Biology Graduate Program, University of Wisconsin-Madison Madison, WI 53706.,Center for Quantitative Cell Imaging, University of Wisconsin-Madison Madison, WI 53706
| | - Marcin Leda
- Centre for Synthetic and Systems Biology, University of Edinburgh, Edinburgh EH9 3BF, UK
| | - Jennifer Landino
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan-Ann Arbor, Ann Arbor, MI 48109
| | - Andrew B Goryachev
- Centre for Synthetic and Systems Biology, University of Edinburgh, Edinburgh EH9 3BF, UK
| | - William M Bement
- Cellular and Molecular Biology Graduate Program, University of Wisconsin-Madison Madison, WI 53706.,Center for Quantitative Cell Imaging, University of Wisconsin-Madison Madison, WI 53706.,Department of Integrative Biology, University of Wisconsin-Madison Madison, WI 53706
| |
Collapse
|
11
|
Matsui T. Calcium wave propagation during cell extrusion. Curr Opin Cell Biol 2022; 76:102083. [PMID: 35487153 DOI: 10.1016/j.ceb.2022.102083] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 02/25/2022] [Accepted: 03/29/2022] [Indexed: 12/24/2022]
Abstract
Oncogenically transformed or apoptotic cells are removed from epithelial sheets by cell-cell communication between the transformed/apoptotic cells (extruding cells) and the nearest neighboring cells. Cell extrusion is driven by actomyosin contraction and lamellipodial crawling of the nearest neighboring cells. Recent studies have found that distal cell communication also plays a role in cell extrusion. Specifically, distal cells located 3-16 cells away from the extruding cell are coordinated by calcium waves and collectively migrate toward the extruding cell to initiate cell extrusion. Here, I describe how calcium waves are generated and contribute to the extrusion of cells in mammals and zebrafish.
Collapse
Affiliation(s)
- Takaaki Matsui
- Division of Biological Science, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0192, Japan.
| |
Collapse
|
12
|
Microtopographical guidance of macropinocytic signaling patches. Proc Natl Acad Sci U S A 2021; 118:2110281118. [PMID: 34876521 PMCID: PMC8685668 DOI: 10.1073/pnas.2110281118] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/25/2021] [Indexed: 12/28/2022] Open
Abstract
Morphologies of amoebae and immune cells are highly deformable and dynamic, which facilitates migration in various terrains, as well as ingestion of extracellular solutes and particles. It remains largely unexplored whether and how the underlying membrane protrusions are triggered and guided by the geometry of the surface in contact. In this study, we show that in Dictyostelium, the precursor of a structure called macropinocytic cup, which has been thought to be a constitutive process for the uptake of extracellular fluid, is triggered by micrometer-scale surface features. Imaging analysis and computational simulations demonstrate how the topographical dependence of the self-organizing dynamics supports efficient guidance and capturing of the membrane protrusion and hence movement of an entire cell along such surface features. In fast-moving cells such as amoeba and immune cells, dendritic actin filaments are spatiotemporally regulated to shape large-scale plasma membrane protrusions. Despite their importance in migration, as well as in particle and liquid ingestion, how their dynamics are affected by micrometer-scale features of the contact surface is still poorly understood. Here, through quantitative image analysis of Dictyostelium on microfabricated surfaces, we show that there is a distinct mode of topographical guidance directed by the macropinocytic membrane cup. Unlike other topographical guidance known to date that depends on nanometer-scale curvature sensing protein or stress fibers, the macropinocytic membrane cup is driven by the Ras/PI3K/F-actin signaling patch and its dependency on the micrometer-scale topographical features, namely PI3K/F-actin–independent accumulation of Ras-GTP at the convex curved surface, PI3K-dependent patch propagation along the convex edge, and its actomyosin-dependent constriction at the concave edge. Mathematical model simulations demonstrate that the topographically dependent initiation, in combination with the mutually defining patch patterning and the membrane deformation, gives rise to the topographical guidance. Our results suggest that the macropinocytic cup is a self-enclosing structure that can support liquid ingestion by default; however, in the presence of structured surfaces, it is directed to faithfully trace bent and bifurcating ridges for particle ingestion and cell guidance.
Collapse
|
13
|
Ghabache E, Cao Y, Miao Y, Groisman A, Devreotes PN, Rappel W. Coupling traction force patterns and actomyosin wave dynamics reveals mechanics of cell motion. Mol Syst Biol 2021; 17:e10505. [PMID: 34898015 PMCID: PMC8666840 DOI: 10.15252/msb.202110505] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 11/18/2021] [Accepted: 11/19/2021] [Indexed: 11/13/2022] Open
Abstract
Motile cells can use and switch between different modes of migration. Here, we use traction force microscopy and fluorescent labeling of actin and myosin to quantify and correlate traction force patterns and cytoskeletal distributions in Dictyostelium discoideum cells that move and switch between keratocyte-like fan-shaped, oscillatory, and amoeboid modes. We find that the wave dynamics of the cytoskeletal components critically determine the traction force pattern, cell morphology, and migration mode. Furthermore, we find that fan-shaped cells can exhibit two different propulsion mechanisms, each with a distinct traction force pattern. Finally, the traction force patterns can be recapitulated using a computational model, which uses the experimentally determined spatiotemporal distributions of actin and myosin forces and a viscous cytoskeletal network. Our results suggest that cell motion can be generated by friction between the flow of this network and the substrate.
Collapse
Affiliation(s)
| | - Yuansheng Cao
- Department of PhysicsUniversity of California, San DiegoLa JollaCAUSA
| | - Yuchuan Miao
- Department of Cell BiologySchool of MedicineJohns Hopkins UniversityBaltimoreMDUSA
| | - Alex Groisman
- Department of PhysicsUniversity of California, San DiegoLa JollaCAUSA
| | - Peter N Devreotes
- Department of Cell BiologySchool of MedicineJohns Hopkins UniversityBaltimoreMDUSA
| | - Wouter‐Jan Rappel
- Department of PhysicsUniversity of California, San DiegoLa JollaCAUSA
| |
Collapse
|
14
|
Avila Ponce de León MA, Félix B, Othmer HG. A phosphoinositide-based model of actin waves in frustrated phagocytosis. J Theor Biol 2021; 527:110764. [PMID: 34029577 DOI: 10.1016/j.jtbi.2021.110764] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 05/05/2021] [Accepted: 05/07/2021] [Indexed: 12/21/2022]
Abstract
Phagocytosis is a complex process by which phagocytes such as lymphocytes or macrophages engulf and destroy foreign bodies called pathogens in a tissue. The process is triggered by the detection of antibodies that trigger signaling mechanisms that control the changes of the cellular cytoskeleton needed for engulfment of the pathogen. A mathematical model of the entire process would be extremely complicated, because the signaling and cytoskeletal changes produce large mechanical deformations of the cell. Recent experiments have used a confinement technique that leads to a process called frustrated phagocytosis, in which the membrane does not deform, but rather, signaling triggers actin waves that propagate along the boundary of the cell. This eliminates the large-scale deformations and facilitates modeling of the wave dynamics. Herein we develop a model of the actin dynamics observed in frustrated phagocytosis and show that it can replicate the experimental observations. We identify the key components that control the actin waves and make a number of experimentally-testable predictions. In particular, we predict that diffusion coefficients of membrane-bound species must be larger behind the wavefront to replicate the internal structure of the waves. Our model is a first step toward a more complete model of phagocytosis, and provides insights into circular dorsal ruffles as well.
Collapse
Affiliation(s)
| | - Bryan Félix
- School of Mathematics, University of Minnesota, Minneapolis, MN, USA
| | - Hans G Othmer
- School of Mathematics, University of Minnesota, Minneapolis, MN, USA.
| |
Collapse
|
15
|
Li W, Sancho A, Chung WL, Vinik Y, Groll J, Zick Y, Medalia O, Bershadsky AD, Geiger B. Differential cellular responses to adhesive interactions with galectin-8- and fibronectin-coated substrates. J Cell Sci 2021; 134:jcs252221. [PMID: 33722978 PMCID: PMC8106957 DOI: 10.1242/jcs.252221] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Accepted: 03/03/2021] [Indexed: 12/16/2022] Open
Abstract
The mechanisms underlying the cellular response to extracellular matrices (ECMs) that consist of multiple adhesive ligands are still poorly understood. Here, we address this topic by monitoring specific cellular responses to two different extracellular adhesion molecules - the main integrin ligand fibronectin and galectin-8, a lectin that binds β-galactoside residues - as well as to mixtures of the two proteins. Compared with cell spreading on fibronectin, cell spreading on galectin-8-coated substrates resulted in increased projected cell area, more-pronounced extension of filopodia and, yet, the inability to form focal adhesions and stress fibers. These differences can be partially reversed by experimental manipulations of small G-proteins of the Rho family and their downstream targets, such as formins, the Arp2/3 complex and Rho kinase. We also show that the physical adhesion of cells to galectin-8 was stronger than adhesion to fibronectin. Notably, galectin-8 and fibronectin differently regulate cell spreading and focal adhesion formation, yet act synergistically to upregulate the number and length of filopodia. The physiological significance of the coherent cellular response to a molecularly complex matrix is discussed. This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Wenhong Li
- Department of Immunology, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Ana Sancho
- Department of Functional Materials in Medicine and Dentistry and Bavarian Polymer Institute, University of Würzburg, Würzburg, 97070, Germany
- Department of Automatic Control and Systems Engineering, University of the Basque Country UPV/EHU, San Sebastian, 20018, Spain
| | - Wen-Lu Chung
- Department of Biochemistry, University of Zurich, Zurich, CH-8057, Switzerland
| | - Yaron Vinik
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Jürgen Groll
- Department of Functional Materials in Medicine and Dentistry and Bavarian Polymer Institute, University of Würzburg, Würzburg, 97070, Germany
| | - Yehiel Zick
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Ohad Medalia
- Department of Biochemistry, University of Zurich, Zurich, CH-8057, Switzerland
| | - Alexander D. Bershadsky
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, 7610001, Israel
- Mechanobiology Institute, National University of Singapore, 117411 Singapore
| | - Benjamin Geiger
- Department of Immunology, Weizmann Institute of Science, Rehovot, 7610001, Israel
| |
Collapse
|
16
|
An Excitable Ras/PI3K/ERK Signaling Network Controls Migration and Oncogenic Transformation in Epithelial Cells. Dev Cell 2020; 54:608-623.e5. [PMID: 32877650 DOI: 10.1016/j.devcel.2020.08.001] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 04/30/2020] [Accepted: 07/30/2020] [Indexed: 02/06/2023]
Abstract
The Ras/PI3K/extracellular signal-regulated kinases (ERK) signaling network plays fundamental roles in cell growth, survival, and migration and is frequently activated in cancer. Here, we show that the activities of the signaling network propagate as coordinated waves, biased by growth factor, which drive actin-based protrusions in human epithelial cells. The network exhibits hallmarks of biochemical excitability: the annihilation of oppositely directed waves, all-or-none responsiveness, and refractoriness. Abrupt perturbations to Ras, PI(4,5)P2, PI(3,4)P2, ERK, and TORC2 alter the threshold, observations that define positive and negative feedback loops within the network. Oncogenic transformation dramatically increases the wave activity, the frequency of ERK pulses, and the sensitivity to EGF stimuli. Wave activity was progressively enhanced across a series of increasingly metastatic breast cancer cell lines. The view that oncogenic transformation is a shift to a lower threshold of excitable Ras/PI3K/ERK network, caused by various combinations of genetic insults, can facilitate the assessment of cancer severity and effectiveness of interventions.
Collapse
|
17
|
Pal DS, Li X, Banerjee T, Miao Y, Devreotes PN. The excitable signal transduction networks: movers and shapers of eukaryotic cell migration. THE INTERNATIONAL JOURNAL OF DEVELOPMENTAL BIOLOGY 2020; 63:407-416. [PMID: 31840779 DOI: 10.1387/ijdb.190265pd] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
In response to a variety of external cues, eukaryotic cells display varied migratory modes to perform their physiological functions during development and in the adult. Aberrations in cell migration result in embryonic defects and cancer metastasis. The molecular components involved in cell migration are remarkably conserved between the social amoeba Dictyostelium and mammalian cells. This makes the amoeba an excellent model system for studies of eukaryotic cell migration. These migration-associated components can be grouped into three networks: input, signal transduction and cytoskeletal. In migrating cells, signal transduction events such as Ras or PI3K activity occur at the protrusion tips, referred to as 'front', whereas events such as dissociation of PTEN from these regions are referred to as 'back'. Asymmetric distribution of such front and back events is crucial for establishing polarity and guiding cell migration. The triggering of these signaling events displays properties of biochemical excitability including all-or-nothing responsiveness to suprathreshold stimuli, refractoriness, and wave propagation. These signal transduction waves originate from a point and propagate towards the edge of the cell, thereby driving cytoskeletal activity and cellular protrusions. Any change in the threshold for network activation alters the range of the propagating waves and the size of cellular protrusions which gives rise to various migratory modes in cells. Thus, this review highlights excitable signal transduction networks as key players for coordinating cytoskeletal activities to drive cell migration in all eukaryotes.
Collapse
Affiliation(s)
- Dhiman S Pal
- Department of Cell Biology and Center for Cell Dynamics, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | | | | | | | | |
Collapse
|
18
|
York-Andersen AH, Hu Q, Wood BW, Wolfner MF, Weil TT. A calcium-mediated actin redistribution at egg activation in Drosophila. Mol Reprod Dev 2019; 87:293-304. [PMID: 31880382 PMCID: PMC7044060 DOI: 10.1002/mrd.23311] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 12/12/2019] [Indexed: 12/24/2022]
Abstract
Egg activation is the essential process in which mature oocytes gain the competency to proceed into embryonic development. Many events of egg activation are conserved, including an initial rise of intracellular calcium. In some species, such as echinoderms and mammals, changes in the actin cytoskeleton occur around the time of fertilization and egg activation. However, the interplay between calcium and actin during egg activation remains unclear. Here, we use imaging, genetics, pharmacological treatment, and physical manipulation to elucidate the relationship between calcium and actin in living Drosophila eggs. We show that, before egg activation, actin is smoothly distributed between ridges in the cortex of the dehydrated mature oocytes. At the onset of egg activation, we observe actin spreading out as the egg swells though the intake of fluid. We show that a relaxed actin cytoskeleton is required for the intracellular rise of calcium to initiate and propagate. Once the swelling is complete and the calcium wave is traversing the egg, it leads to a reorganization of actin in a wavelike manner. After the calcium wave, the actin cytoskeleton has an even distribution of foci at the cortex. Together, our data show that calcium resets the actin cytoskeleton at egg activation, a model that we propose to be likely conserved in other species.
Collapse
Affiliation(s)
| | - Qinan Hu
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York
| | - Benjamin W Wood
- Department of Zoology, University of Cambridge, Cambridge, UK
| | - Mariana F Wolfner
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York
| | - Timothy T Weil
- Department of Zoology, University of Cambridge, Cambridge, UK
| |
Collapse
|
19
|
Abstract
Actin polymerization is essential for cells to migrate, as well as for various cell biological processes such as cytokinesis and vesicle traffic. This brief review describes the mechanisms underlying its different roles and recent advances in our understanding. Actin usually requires "nuclei"-preformed actin filaments-to start polymerizing, but, once initiated, polymerization continues constitutively. The field therefore has a strong focus on nucleators, in particular the Arp2/3 complex and formins. These have different functions, are controlled by contrasting mechanisms, and generate alternate geometries of actin networks. The Arp2/3 complex functions only when activated by nucleation-promoting factors such as WASP, Scar/WAVE, WASH, and WHAMM and when binding to a pre-existing filament. Formins can be individually active but are usually autoinhibited. Each is controlled by different mechanisms and is involved in different biological roles. We also describe the processes leading to actin disassembly and their regulation and conclude with four questions whose answers are important for understanding actin dynamics but are currently unanswered.
Collapse
Affiliation(s)
- Simona Buracco
- Institute of Cancer Sciences, University of Glasgow, Bearsden, G61 1BD, UK
| | - Sophie Claydon
- Institute of Cancer Sciences, University of Glasgow, Bearsden, G61 1BD, UK
| | - Robert Insall
- Institute of Cancer Sciences, University of Glasgow, Bearsden, G61 1BD, UK
| |
Collapse
|
20
|
Cao Y, Ghabache E, Rappel WJ. Plasticity of cell migration resulting from mechanochemical coupling. eLife 2019; 8:e48478. [PMID: 31625907 PMCID: PMC6799977 DOI: 10.7554/elife.48478] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 10/02/2019] [Indexed: 01/07/2023] Open
Abstract
Eukaryotic cells can migrate using different modes, ranging from amoeboid-like, during which actin filled protrusions come and go, to keratocyte-like, characterized by a stable morphology and persistent motion. How cells can switch between these modes is not well understood but waves of signaling events are thought to play an important role in these transitions. Here we present a simple two-component biochemical reaction-diffusion model based on relaxation oscillators and couple this to a model for the mechanics of cell deformations. Different migration modes, including amoeboid-like and keratocyte-like, naturally emerge through transitions determined by interactions between biochemical traveling waves, cell mechanics and morphology. The model predictions are explicitly verified by systematically reducing the protrusive force of the actin network in experiments using Dictyostelium discoideum cells. Our results indicate the importance of coupling signaling events to cell mechanics and morphology and may be applicable in a wide variety of cell motility systems.
Collapse
Affiliation(s)
- Yuansheng Cao
- Department of PhysicsUniversity of California, San DiegoLa JollaUnited States
| | - Elisabeth Ghabache
- Department of PhysicsUniversity of California, San DiegoLa JollaUnited States
| | - Wouter-Jan Rappel
- Department of PhysicsUniversity of California, San DiegoLa JollaUnited States
| |
Collapse
|
21
|
The Architecture of Traveling Actin Waves Revealed by Cryo-Electron Tomography. Structure 2019; 27:1211-1223.e5. [PMID: 31230946 DOI: 10.1016/j.str.2019.05.009] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 04/12/2019] [Accepted: 05/17/2019] [Indexed: 02/06/2023]
Abstract
Actin waves are dynamic supramolecular structures involved in cell migration, cytokinesis, adhesion, and neurogenesis. Although wave-like propagation of actin networks is a widespread phenomenon, the actin architecture underlying wave propagation remained unknown. In situ cryo-electron tomography of Dictyostelium cells unveils the wave architecture and provides evidence for wave progression by de novo actin nucleation. Subtomogram averaging reveals the structure of Arp2/3 complex-mediated branch junctions in their native state, and enables quantitative analysis of the 3D organization of branching within the waves. We find an excess of branches directed toward the substrate-attached membrane, and tent-like structures at sites of branch clustering. Fluorescence imaging shows that Arp2/3 clusters follow accumulation of the elongation factor VASP. We propose that filament growth toward the membrane lifts up the actin network as the wave propagates, until depolymerization of oblique filaments at the back causes the collapse of horizontal filaments into a compact layer.
Collapse
|
22
|
Kalappurakkal JM, Anilkumar AA, Patra C, van Zanten TS, Sheetz MP, Mayor S. Integrin Mechano-chemical Signaling Generates Plasma Membrane Nanodomains that Promote Cell Spreading. Cell 2019; 177:1738-1756.e23. [PMID: 31104842 PMCID: PMC6879320 DOI: 10.1016/j.cell.2019.04.037] [Citation(s) in RCA: 90] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Revised: 11/15/2018] [Accepted: 04/17/2019] [Indexed: 01/19/2023]
Abstract
Glycosylphosphatidylinositol-anchored proteins (GPI-APs) are a major class of lipid-anchored plasma membrane proteins. GPI-APs form nanoclusters generated by cortical acto-myosin activity. While our understanding of the physical principles governing this process is emerging, the molecular machinery and functional relevance of GPI-AP nanoclustering are unknown. Here, we first show that a membrane receptor signaling pathway directs nanocluster formation. Arg-Gly-Asp motif-containing ligands bound to the β1-integrin receptor activate src and focal adhesion kinases, resulting in RhoA signaling. This cascade triggers actin-nucleation via specific formins, which, along with myosin activity, drive the nanoclustering of membrane proteins with actin-binding domains. Concurrently, talin-mediated activation of the mechano-transducer vinculin is required for the coupling of the acto-myosin machinery to inner-leaflet lipids, thereby generating GPI-AP nanoclusters. Second, we show that these nanoclusters are functional; disruption of their formation either in GPI-anchor remodeling mutants or in vinculin mutants impairs cell spreading and migration, hallmarks of integrin function.
Collapse
Affiliation(s)
- Joseph Mathew Kalappurakkal
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bellary Road, Bangalore, India
| | - Anupama Ambika Anilkumar
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bellary Road, Bangalore, India; St. Johns Research Institute, Bangalore, India
| | - Chandrima Patra
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bellary Road, Bangalore, India
| | - Thomas S van Zanten
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bellary Road, Bangalore, India
| | - Michael P Sheetz
- Mechanobiology Institute, National University of Singapore, Singapore, Singapore
| | - Satyajit Mayor
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bellary Road, Bangalore, India; Institute for Stem Cell Biology and Regenerative Medicine, Bellary Road, Bangalore, India.
| |
Collapse
|
23
|
Biswas A, Kashyap P, Datta S, Sengupta T, Sinha B. Cholesterol Depletion by MβCD Enhances Cell Membrane Tension and Its Variations-Reducing Integrity. Biophys J 2019; 116:1456-1468. [PMID: 30979551 PMCID: PMC6486507 DOI: 10.1016/j.bpj.2019.03.016] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 01/22/2019] [Accepted: 03/14/2019] [Indexed: 11/23/2022] Open
Abstract
Cholesterol depletion by methyl-β-cyclodextrin (MβCD) remodels the plasma membrane’s mechanics in cells and its interactions with the underlying cytoskeleton, whereas in red blood cells, it is also known to cause lysis. Currently it’s unclear if MβCD alters membrane tension or only enhances membrane-cytoskeleton interactions—and how this relates to cell lysis. We map membrane height fluctuations in single cells and observe that MβCD reduces temporal fluctuations robustly but flattens spatial membrane undulations only slightly. Utilizing models explicitly incorporating membrane confinement besides other viscoelastic factors, we estimate membrane mechanical parameters from the fluctuations’ frequency spectrum. This helps us conclude that MβCD enhances membrane tension and does so even on ATP-depleted cell membranes where this occurs despite reduction in confinement. Additionally, on cholesterol depletion, cell membranes display higher intracellular heterogeneity in the amplitude of spatial undulations and membrane tension. MβCD also has a strong impact on the cell membrane’s tenacity to mechanical stress, making cells strongly prone to rupture on hypo-osmotic shock with larger rupture diameters—an effect not hindered by actomyosin perturbations. Our study thus demonstrates that cholesterol depletion increases membrane tension and its variability, making cells prone to rupture independent of the cytoskeletal state of the cell.
Collapse
Affiliation(s)
- Arikta Biswas
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal, India
| | - Purba Kashyap
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal, India
| | - Sanchari Datta
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal, India
| | - Titas Sengupta
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal, India
| | - Bidisha Sinha
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal, India.
| |
Collapse
|
24
|
Saha S, Nagy TL, Weiner OD. Joining forces: crosstalk between biochemical signalling and physical forces orchestrates cellular polarity and dynamics. Philos Trans R Soc Lond B Biol Sci 2019; 373:rstb.2017.0145. [PMID: 29632270 DOI: 10.1098/rstb.2017.0145] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/30/2017] [Indexed: 12/11/2022] Open
Abstract
Dynamic processes like cell migration and morphogenesis emerge from the self-organized interaction between signalling and cytoskeletal rearrangements. How are these molecular to sub-cellular scale processes integrated to enable cell-wide responses? A growing body of recent studies suggest that forces generated by cytoskeletal dynamics and motor activity at the cellular or tissue scale can organize processes ranging from cell movement, polarity and division to the coordination of responses across fields of cells. To do so, forces not only act mechanically but also engage with biochemical signalling. Here, we review recent advances in our understanding of this dynamic crosstalk between biochemical signalling, self-organized cortical actomyosin dynamics and physical forces with a special focus on the role of membrane tension in integrating cellular motility.This article is part of the theme issue 'Self-organization in cell biology'.
Collapse
Affiliation(s)
- Suvrajit Saha
- Cardiovascular Research Institute, University of California, San Francisco, CA 94158, USA
| | - Tamas L Nagy
- Cardiovascular Research Institute, University of California, San Francisco, CA 94158, USA.,Biological and Medical Informatics Graduate Program, University of California, San Francisco, CA 94158, USA
| | - Orion D Weiner
- Cardiovascular Research Institute, University of California, San Francisco, CA 94158, USA .,Department of Biochemistry and Biophysics, University of California, San Francisco, CA 94158, USA
| |
Collapse
|
25
|
Miao Y, Bhattacharya S, Banerjee T, Abubaker-Sharif B, Long Y, Inoue T, Iglesias PA, Devreotes PN. Wave patterns organize cellular protrusions and control cortical dynamics. Mol Syst Biol 2019; 15:e8585. [PMID: 30858181 PMCID: PMC6413885 DOI: 10.15252/msb.20188585] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 01/31/2019] [Accepted: 02/04/2019] [Indexed: 02/06/2023] Open
Abstract
Cellular protrusions are typically considered as distinct structures associated with specific regulators. However, we found that these regulators coordinately localize as propagating cortical waves, suggesting a common underlying mechanism. These molecular events fell into two excitable networks, the signal transduction network STEN and the cytoskeletal network CEN with different wave substructures. Computational studies using a coupled-network model reproduced these features and showed that the morphology and kinetics of the waves depended on strengths of feedback loops. Chemically induced dimerization at multiple nodes produced distinct, coordinated alterations in patterns of other network components. Taken together, these studies indicate: STEN positive feedback is mediated by mutual inhibition between Ras/Rap and PIP2, while negative feedback depends on delayed PKB activation; PKBs link STEN to CEN; CEN includes positive feedback between Rac and F-actin, and exerts fast positive and slow negative feedbacks to STEN The alterations produced protrusions resembling filopodia, ruffles, pseudopodia, or lamellipodia, suggesting that these structures arise from a common regulatory mechanism and that the overall state of the STEN-CEN system determines cellular morphology.
Collapse
Affiliation(s)
- Yuchuan Miao
- Department of Biological Chemistry, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
- Department of Cell Biology and Center for Cell Dynamics, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Sayak Bhattacharya
- Department of Electrical and Computer Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Tatsat Banerjee
- Department of Cell Biology and Center for Cell Dynamics, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
- Department of Chemical and Biomolecular Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Bedri Abubaker-Sharif
- Department of Cell Biology and Center for Cell Dynamics, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Yu Long
- Department of Cell Biology and Center for Cell Dynamics, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Takanari Inoue
- Department of Cell Biology and Center for Cell Dynamics, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Pablo A Iglesias
- Department of Cell Biology and Center for Cell Dynamics, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
- Department of Electrical and Computer Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Peter N Devreotes
- Department of Cell Biology and Center for Cell Dynamics, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|
26
|
Zhang Y, Nichols EL, Zellmer AM, Guldner IH, Kankel C, Zhang S, Howard SS, Smith CJ. Generating intravital super-resolution movies with conventional microscopy reveals actin dynamics that construct pioneer axons. Development 2019; 146:dev.171512. [PMID: 30760484 PMCID: PMC6432666 DOI: 10.1242/dev.171512] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Accepted: 02/04/2019] [Indexed: 01/06/2023]
Abstract
Super-resolution microscopy is broadening our in-depth understanding of cellular structure. However, super-resolution approaches are limited, for numerous reasons, from utilization in longer-term intravital imaging. We devised a combinatorial imaging technique that combines deconvolution with stepwise optical saturation microscopy (DeSOS) to circumvent this issue and image cells in their native physiological environment. Other than a traditional confocal or two-photon microscope, this approach requires no additional hardware. Here, we provide an open-access application to obtain DeSOS images from conventional microscope images obtained at low excitation powers. We show that DeSOS can be used in time-lapse imaging to generate super-resolution movies in zebrafish. DeSOS was also validated in live mice. These movies uncover that actin structures dynamically remodel to produce a single pioneer axon in a ‘top-down’ scaffolding event. Further, we identify an F-actin population – stable base clusters – that orchestrate that scaffolding event. We then identify that activation of Rac1 in pioneer axons destabilizes stable base clusters and disrupts pioneer axon formation. The ease of acquisition and processing with this approach provides a universal technique for biologists to answer questions in living animals. Summary: Actin dynamics are examined in zebrafish axons using DeSOS, a new super-resolution technique combining deconvolution with stepwise optical saturation microscopy that allows detailed intravital imaging of cells in their native environments.
Collapse
Affiliation(s)
- Yide Zhang
- Department of Electrical Engineering, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Evan L Nichols
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, USA.,Center for Stem Cells and Regenerative Medicine, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Abigail M Zellmer
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Ian H Guldner
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, USA.,Mike and Josie Harper Cancer Research Institute, University of Notre Dame, Notre Dame, IN 46556, USA.,Indiana University Melvin and Bren Simon Cancer Center, Indianapolis, IN 46202, USA
| | - Cody Kankel
- Center for Research Computing. University of Notre Dame, Notre Dame, IN 46556, USA
| | - Siyuan Zhang
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, USA.,Mike and Josie Harper Cancer Research Institute, University of Notre Dame, Notre Dame, IN 46556, USA.,Indiana University Melvin and Bren Simon Cancer Center, Indianapolis, IN 46202, USA
| | - Scott S Howard
- Department of Electrical Engineering, University of Notre Dame, Notre Dame, IN 46556, USA .,Mike and Josie Harper Cancer Research Institute, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Cody J Smith
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, USA .,Center for Stem Cells and Regenerative Medicine, University of Notre Dame, Notre Dame, IN 46556, USA
| |
Collapse
|
27
|
Zhang K, Lyu W, Yu J, Koleske AJ. Abl2 is recruited to ventral actin waves through cytoskeletal interactions to promote lamellipodium extension. Mol Biol Cell 2018; 29:2863-2873. [PMID: 30256707 PMCID: PMC6249870 DOI: 10.1091/mbc.e18-01-0044] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 08/28/2018] [Accepted: 09/19/2018] [Indexed: 01/05/2023] Open
Abstract
Abl family nonreceptor tyrosine kinases regulate changes in cell shape and migration. Abl2 localizes to dynamic actin-rich protrusions, such as lamellipodia in fibroblasts and dendritic spines in neurons. Abl2 interactions with cortactin, an actin filament stabilizer, are crucial for the formation and stability of actin-rich structures, but Abl2:cortactin-positive structures have not been characterized with high spatiotemporal resolution in cells. Using total internal reflection fluorescence microscopy, we demonstrate that Abl2 colocalizes with cortactin at wave-like structures within lamellum and lamellipodium tips. Abl2 and cortactin within waves are focal and transient, extend to the outer edge of lamella, and serve as the base for lamellipodia protrusions. Abl2-positive foci colocalize with integrin β3 and paxillin, adhesive markers of the lamellum-lamellipodium interface. Cortactin-positive waves still form in Abl2 knockout cells, but the lamellipodium size is significantly reduced. This deficiency is restored following Abl2 reexpression. Complementation analyses revealed that the Abl2 C-terminal half, which contains domains that bind actin and microtubules, is necessary and sufficient for recruitment to the wave-like structures and to support normal lamellipodium size, while the kinase domain-containing N-terminal half does not impact lamellipodium size. Together, this work demonstrates that Abl2 is recruited with cortactin to actin waves through cytoskeletal interactions to promote lamellipodium extension.
Collapse
Affiliation(s)
- Ke Zhang
- Department of Cell Biology, Yale University, New Haven, CT 06520
| | - Wanqing Lyu
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520
| | - Ji Yu
- Department of Genetics and Developmental Biology, University of Connecticut Health Center, Farmington, CT 06030
| | - Anthony J. Koleske
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520
- Department of Neuroscience, Yale University, New Haven, CT 06520
| |
Collapse
|
28
|
Nalbant P, Dehmelt L. Exploratory cell dynamics: a sense of touch for cells? Biol Chem 2018; 399:809-819. [DOI: 10.1515/hsz-2017-0341] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Accepted: 04/06/2018] [Indexed: 01/28/2023]
Abstract
Abstract
Cells need to process multifaceted external cues to steer their dynamic behavior. To efficiently perform this task, cells implement several exploratory mechanisms to actively sample their environment. In particular, cells can use exploratory actin-based cell protrusions and contractions to engage and squeeze the environment and to actively probe its chemical and mechanical properties. Multiple excitable signal networks were identified that can generate local activity pulses to control these exploratory processes. Such excitable signal networks offer particularly efficient mechanisms to process chemical or mechanical signals to steer dynamic cell behavior, such as directional migration, tissue morphogenesis and cell fate decisions.
Collapse
Affiliation(s)
- Perihan Nalbant
- Department of Molecular Cell Biology , Center for Medical Biotechnology , University of Duisburg-Essen, Universitätsstrasse 2 , D-45141 Essen , Germany
| | - Leif Dehmelt
- Department of Systemic Cell Biology , Max Planck Institute of Molecular Physiology, and Dortmund University of Technology, Faculty of Chemistry and Chemical Biology , Otto-Hahn-Str. 4a , D-44227 Dortmund , Germany
| |
Collapse
|
29
|
Insight from the maximal activation of the signal transduction excitable network in Dictyostelium discoideum. Proc Natl Acad Sci U S A 2018; 115:E3722-E3730. [PMID: 29602807 PMCID: PMC5910810 DOI: 10.1073/pnas.1710480115] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Cell migration requires the coordination of an excitable signal transduction network involving Ras and PI3K pathways with cytoskeletal activity. We show that expressing activated Ras GTPase-family proteins in cells lacking PTEN or other mutations which increase cellular protrusiveness transforms cells into a persistently activated state. Leading- and trailing-edge markers were found exclusively at the cell perimeter and the cytosol, respectively, of the dramatically flattened cells. In addition, the lifetimes of dynamic actin puncta were increased where they overlapped with actin waves, suggesting a mechanism for the coupling between these two networks. All of these phenotypes could be reversed by inhibiting signal transduction. Strikingly, maintaining cells in this state of constant activation led to a form of cell death by catastrophic fragmentation. These findings provide insight into the feedback loops that control excitability of the signal transduction network, which drives migration.
Collapse
|
30
|
Wu Z, Su M, Tong C, Wu M, Liu J. Membrane shape-mediated wave propagation of cortical protein dynamics. Nat Commun 2018; 9:136. [PMID: 29321558 PMCID: PMC5762918 DOI: 10.1038/s41467-017-02469-1] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Accepted: 12/01/2017] [Indexed: 11/15/2022] Open
Abstract
Immune cells exhibit stimulation-dependent traveling waves in the cortex, much faster than typical cortical actin waves. These waves reflect rhythmic assembly of both actin machinery and peripheral membrane proteins such as F-BAR domain-containing proteins. Combining theory and experiments, we develop a mechanochemical feedback model involving membrane shape changes and F-BAR proteins that render the cortex an interesting dynamical system. We show that such cortical dynamics manifests itself as ultrafast traveling waves of cortical proteins, in which the curvature sensitivity-driven feedback always constrains protein lateral diffusion in wave propagation. The resulting protein wave propagation mainly reflects the spatial gradient in the timing of local protein recruitment from cytoplasm. We provide evidence that membrane undulations accompany these protein waves and potentiate their propagation. Therefore, membrane shape change and protein curvature sensitivity may have underappreciated roles in setting high-speed cortical signal transduction rhythms. Traveling waves in the cell cortex can propagate much faster than actin waves, and the mechanism is unknown. Here the authors propose a mechanochemical feedback model for traveling waves that incorporates membrane shape changes and recruitment of F-BAR proteins that enables fast wave propagation.
Collapse
Affiliation(s)
- Zhanghan Wu
- Biochemistry and Biophysics Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Maohan Su
- Department of Biological Sciences, Centre for Bioimaging Sciences, Mechanobiology Institute, National University of Singapore, Singapore, 117557, Singapore
| | - Cheesan Tong
- Department of Biological Sciences, Centre for Bioimaging Sciences, Mechanobiology Institute, National University of Singapore, Singapore, 117557, Singapore
| | - Min Wu
- Department of Biological Sciences, Centre for Bioimaging Sciences, Mechanobiology Institute, National University of Singapore, Singapore, 117557, Singapore.
| | - Jian Liu
- Biochemistry and Biophysics Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, 20892, USA.
| |
Collapse
|
31
|
Abundant Focal Adhesion Kinase Causes Aberrant Neuronal Migration Via Its Phosphorylation at Tyr925. J Mol Neurosci 2017; 64:102-110. [DOI: 10.1007/s12031-017-1010-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Accepted: 11/28/2017] [Indexed: 01/10/2023]
|
32
|
Graessl M, Koch J, Calderon A, Kamps D, Banerjee S, Mazel T, Schulze N, Jungkurth JK, Patwardhan R, Solouk D, Hampe N, Hoffmann B, Dehmelt L, Nalbant P. An excitable Rho GTPase signaling network generates dynamic subcellular contraction patterns. J Cell Biol 2017; 216:4271-4285. [PMID: 29055010 PMCID: PMC5716289 DOI: 10.1083/jcb.201706052] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2017] [Revised: 08/25/2017] [Accepted: 09/08/2017] [Indexed: 12/22/2022] Open
Abstract
Rho GTPase-based signaling networks control cellular dynamics by coordinating protrusions and retractions in space and time. Here, we reveal a signaling network that generates pulses and propagating waves of cell contractions. These dynamic patterns emerge via self-organization from an activator-inhibitor network, in which the small GTPase Rho amplifies its activity by recruiting its activator, the guanine nucleotide exchange factor GEF-H1. Rho also inhibits itself by local recruitment of actomyosin and the associated RhoGAP Myo9b. This network structure enables spontaneous, self-limiting patterns of subcellular contractility that can explore mechanical cues in the extracellular environment. Indeed, actomyosin pulse frequency in cells is altered by matrix elasticity, showing that coupling of contractility pulses to environmental deformations modulates network dynamics. Thus, our study reveals a mechanism that integrates intracellular biochemical and extracellular mechanical signals into subcellular activity patterns to control cellular contractility dynamics.
Collapse
Affiliation(s)
- Melanie Graessl
- Department of Molecular Cell Biology, Center for Medical Biotechnology, University of Duisburg-Essen, Essen, Germany
| | - Johannes Koch
- Department of Molecular Cell Biology, Center for Medical Biotechnology, University of Duisburg-Essen, Essen, Germany
| | - Abram Calderon
- Department of Systemic Cell Biology, Max Planck Institute of Molecular Physiology and Fakultät für Chemie und Chemische Biologie, TU Dortmund University, Dortmund, Germany
| | - Dominic Kamps
- Department of Molecular Cell Biology, Center for Medical Biotechnology, University of Duisburg-Essen, Essen, Germany
- Department of Systemic Cell Biology, Max Planck Institute of Molecular Physiology and Fakultät für Chemie und Chemische Biologie, TU Dortmund University, Dortmund, Germany
| | - Soumya Banerjee
- Department of Systemic Cell Biology, Max Planck Institute of Molecular Physiology and Fakultät für Chemie und Chemische Biologie, TU Dortmund University, Dortmund, Germany
| | - Tomáš Mazel
- Department of Systemic Cell Biology, Max Planck Institute of Molecular Physiology and Fakultät für Chemie und Chemische Biologie, TU Dortmund University, Dortmund, Germany
| | - Nina Schulze
- Department of Molecular Cell Biology, Center for Medical Biotechnology, University of Duisburg-Essen, Essen, Germany
| | - Jana Kathrin Jungkurth
- Department of Molecular Cell Biology, Center for Medical Biotechnology, University of Duisburg-Essen, Essen, Germany
- Department of Systemic Cell Biology, Max Planck Institute of Molecular Physiology and Fakultät für Chemie und Chemische Biologie, TU Dortmund University, Dortmund, Germany
| | - Rutuja Patwardhan
- Department of Molecular Cell Biology, Center for Medical Biotechnology, University of Duisburg-Essen, Essen, Germany
| | - Djamschid Solouk
- Department of Systemic Cell Biology, Max Planck Institute of Molecular Physiology and Fakultät für Chemie und Chemische Biologie, TU Dortmund University, Dortmund, Germany
| | - Nico Hampe
- Institute of Complex Systems, Forschungszentrum Jülich, Jülich, Germany
| | - Bernd Hoffmann
- Institute of Complex Systems, Forschungszentrum Jülich, Jülich, Germany
| | - Leif Dehmelt
- Department of Systemic Cell Biology, Max Planck Institute of Molecular Physiology and Fakultät für Chemie und Chemische Biologie, TU Dortmund University, Dortmund, Germany
| | - Perihan Nalbant
- Department of Molecular Cell Biology, Center for Medical Biotechnology, University of Duisburg-Essen, Essen, Germany
| |
Collapse
|
33
|
Devreotes PN, Bhattacharya S, Edwards M, Iglesias PA, Lampert T, Miao Y. Excitable Signal Transduction Networks in Directed Cell Migration. Annu Rev Cell Dev Biol 2017; 33:103-125. [PMID: 28793794 DOI: 10.1146/annurev-cellbio-100616-060739] [Citation(s) in RCA: 122] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Although directed migration of eukaryotic cells may have evolved to escape nutrient depletion, it has been adopted for an extensive range of physiological events during development and in the adult organism. The subversion of these movements results in disease, such as cancer. Mechanisms of propulsion and sensing are extremely diverse, but most eukaryotic cells move by extending actin-filled protrusions termed macropinosomes, pseudopodia, or lamellipodia or by extension of blebs. In addition to motility, directed migration involves polarity and directional sensing. The hundreds of gene products involved in these processes are organized into networks of parallel and interconnected pathways. Many of these components are activated or inhibited coordinately with stimulation and on each spontaneously extended protrusion. Moreover, these networks display hallmarks of excitability, including all-or-nothing responsiveness and wave propagation. Cellular protrusions result from signal transduction waves that propagate outwardly from an origin and drive cytoskeletal activity. The range of the propagating waves and hence the size of the protrusions can be altered by lowering or raising the threshold for network activation, with larger and wider protrusions favoring gliding or oscillatory behavior over amoeboid migration. Here, we evaluate the variety of models of excitable networks controlling directed migration and outline critical tests. We also discuss the utility of this emerging view in producing cell migration and in integrating the various extrinsic cues that direct migration.
Collapse
Affiliation(s)
- Peter N Devreotes
- Department of Cell Biology, School of Medicine, Johns Hopkins University, Baltimore, Maryland 21205;
| | - Sayak Bhattacharya
- Department of Electrical and Computer Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, Maryland 21218
| | - Marc Edwards
- Department of Cell Biology, School of Medicine, Johns Hopkins University, Baltimore, Maryland 21205;
| | - Pablo A Iglesias
- Department of Cell Biology, School of Medicine, Johns Hopkins University, Baltimore, Maryland 21205; .,Department of Electrical and Computer Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, Maryland 21218
| | - Thomas Lampert
- Department of Cell Biology, School of Medicine, Johns Hopkins University, Baltimore, Maryland 21205;
| | - Yuchuan Miao
- Department of Cell Biology, School of Medicine, Johns Hopkins University, Baltimore, Maryland 21205;
| |
Collapse
|
34
|
Takito J, Otsuka H, Inoue S, Kawashima T, Nakamura M. Symmetrical retrograde actin flow in the actin fusion structure is involved in osteoclast fusion. Biol Open 2017; 6:1104-1114. [PMID: 28711870 PMCID: PMC5550915 DOI: 10.1242/bio.025460] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
The aim of this study was to elucidate the role of the zipper-like structure (ZLS), a podosome-related structure that transiently appears at the cell contact zone, in osteoclast fusion. Live-cell imaging of osteoclasts derived from RAW264.7 cells transfected with EGFP-actin revealed consistent symmetrical retrograde actin flow in the ZLS, but not in the podosome cluster, the podosome ring or the podosome belt. Confocal imaging showed that the distributions of F-actin, vinculin, paxillin and zyxin in the ZLS were different from those in the podosome belt. Thick actin filament bundles running outside the ZLS appeared to recruit non-muscle myosin IIA. The F-actin-rich domain of the ZLS contained actin-related protein 2/3 complex (Arp2/3). Inhibition of Arp2/3 activity disorganized the ZLS, disrupted actin flow, deteriorated cell-cell adhesion and inhibited osteoclast hypermultinucleation. In contrast, ML-7, an inhibitor of myosin light chain kinase, had little effect on the structure of ZLS and promoted osteoclast hypermultinucleation. These results reveal a link between actin flow in the ZLS and osteoclast fusion. Osteoclast fusion was promoted by branched actin elongation and negatively regulated by actomyosin contraction. Summary: Multinucleated osteoclasts form a podosome-derived fusion structure during cell fusion. Juxtaposition of fusion partner cells is probably maintained via force generated by symmetrical retrograde actin flow in the fusion structure.
Collapse
Affiliation(s)
- Jiro Takito
- Department of Oral Anatomy and Developmental Biology, School of Dentistry, Showa University, 1-5-8 Hatanodai, Shinagawa, Tokyo 142-8555, Japan
| | - Hirotada Otsuka
- Department of Oral Anatomy and Developmental Biology, School of Dentistry, Showa University, 1-5-8 Hatanodai, Shinagawa, Tokyo 142-8555, Japan
| | - Satoshi Inoue
- Department of Oral Anatomy and Developmental Biology, School of Dentistry, Showa University, 1-5-8 Hatanodai, Shinagawa, Tokyo 142-8555, Japan
| | - Tsubasa Kawashima
- Department of Paediatric Dentistry, School of Dentistry, Showa University, 1-5-8 Hatanodai, Shinagawa, Tokyo 142-8555, Japan
| | - Masanori Nakamura
- Department of Oral Anatomy and Developmental Biology, School of Dentistry, Showa University, 1-5-8 Hatanodai, Shinagawa, Tokyo 142-8555, Japan
| |
Collapse
|
35
|
Actin Waves: Origin of Cell Polarization and Migration? Trends Cell Biol 2017; 27:515-526. [DOI: 10.1016/j.tcb.2017.02.003] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Revised: 01/26/2017] [Accepted: 02/07/2017] [Indexed: 01/22/2023]
|
36
|
Miao Y, Bhattacharya S, Edwards M, Cai H, Inoue T, Iglesias PA, Devreotes PN. Altering the threshold of an excitable signal transduction network changes cell migratory modes. Nat Cell Biol 2017; 19:329-340. [PMID: 28346441 PMCID: PMC5394931 DOI: 10.1038/ncb3495] [Citation(s) in RCA: 90] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Accepted: 02/22/2017] [Indexed: 12/18/2022]
Abstract
The diverse migratory modes displayed by different cell types are generally believed to be idiosyncratic. Here we show that the migratory behavior of Dictyostelium was switched from amoeboid to keratocyte-like and oscillatory modes by synthetically decreasing PIP2 levels or increasing Ras/Rap-related activities. The perturbations at these key nodes of an excitable signal transduction network initiated a causal chain of events: The threshold for network activation was lowered, the speed and range of propagating waves of signal transduction activity increased, actin driven cellular protrusions expanded and, consequently, the cell migratory mode transitions ensued. Conversely, innately keratocyte-like and oscillatory cells were promptly converted to amoeboid by inhibition of Ras effectors with restoration of directed migration. We use computational analysis to explain how thresholds control cell migration and discuss the architecture of the signal transduction network that gives rise to excitability.
Collapse
Affiliation(s)
- Yuchuan Miao
- Department of Biological Chemistry, School of Medicine, Johns Hopkins University, Baltimore, Maryland 21205, USA
| | - Sayak Bhattacharya
- Department of Electrical and Computer Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, Maryland 21205, USA
| | - Marc Edwards
- Department of Cell Biology and Center for Cell Dynamics, School of Medicine, Johns Hopkins University, Baltimore, Maryland 21205, USA
| | - Huaqing Cai
- State Key Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Takanari Inoue
- Department of Cell Biology and Center for Cell Dynamics, School of Medicine, Johns Hopkins University, Baltimore, Maryland 21205, USA
| | - Pablo A Iglesias
- Department of Electrical and Computer Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, Maryland 21205, USA.,Department of Cell Biology and Center for Cell Dynamics, School of Medicine, Johns Hopkins University, Baltimore, Maryland 21205, USA
| | - Peter N Devreotes
- Department of Cell Biology and Center for Cell Dynamics, School of Medicine, Johns Hopkins University, Baltimore, Maryland 21205, USA
| |
Collapse
|
37
|
Meddens MBM, Pandzic E, Slotman JA, Guillet D, Joosten B, Mennens S, Paardekooper LM, Houtsmuller AB, van den Dries K, Wiseman PW, Cambi A. Actomyosin-dependent dynamic spatial patterns of cytoskeletal components drive mesoscale podosome organization. Nat Commun 2016; 7:13127. [PMID: 27721497 PMCID: PMC5062568 DOI: 10.1038/ncomms13127] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Accepted: 09/05/2016] [Indexed: 12/28/2022] Open
Abstract
Podosomes are cytoskeletal structures crucial for cell protrusion and matrix remodelling in osteoclasts, activated endothelial cells, macrophages and dendritic cells. In these cells, hundreds of podosomes are spatially organized in diversely shaped clusters. Although we and others established individual podosomes as micron-sized mechanosensing protrusive units, the exact scope and spatiotemporal organization of podosome clustering remain elusive. By integrating a newly developed extension of Spatiotemporal Image Correlation Spectroscopy with novel image analysis, we demonstrate that F-actin, vinculin and talin exhibit directional and correlated flow patterns throughout podosome clusters. Pattern formation and magnitude depend on the cluster actomyosin machinery. Indeed, nanoscopy reveals myosin IIA-decorated actin filaments interconnecting multiple proximal podosomes. Extending well-beyond podosome nearest neighbours, the actomyosin-dependent dynamic spatial patterns reveal a previously unappreciated mesoscale connectivity throughout the podosome clusters. This directional transport and continuous redistribution of podosome components provides a mechanistic explanation of how podosome clusters function as coordinated mechanosensory area.
Collapse
Affiliation(s)
- Marjolein B M Meddens
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Geert Grooteplein Zuid 26-28, 6525 GA Nijmegen, The Netherlands
| | - Elvis Pandzic
- Departments of Physics and Chemistry, McGill University Otto Maass (OM) Chemistry Building, 801 Sherbrooke Street West, Montreal, Quebec, Canada H3A 0B8
| | - Johan A Slotman
- Department of Pathology, Josephine Nefkens Institute, Erasmus MC, 3000 CA Rotterdam, The Netherlands
| | - Dominique Guillet
- Departments of Physics and Chemistry, McGill University Otto Maass (OM) Chemistry Building, 801 Sherbrooke Street West, Montreal, Quebec, Canada H3A 0B8
| | - Ben Joosten
- Department of Cell Biology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Geert Grooteplein Zuid 26-28, 6525 GA Nijmegen, The Netherlands
| | - Svenja Mennens
- Department of Cell Biology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Geert Grooteplein Zuid 26-28, 6525 GA Nijmegen, The Netherlands
| | - Laurent M Paardekooper
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Geert Grooteplein Zuid 26-28, 6525 GA Nijmegen, The Netherlands
| | - Adriaan B Houtsmuller
- Department of Pathology, Josephine Nefkens Institute, Erasmus MC, 3000 CA Rotterdam, The Netherlands
| | - Koen van den Dries
- Department of Cell Biology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Geert Grooteplein Zuid 26-28, 6525 GA Nijmegen, The Netherlands
| | - Paul W Wiseman
- Departments of Physics and Chemistry, McGill University Otto Maass (OM) Chemistry Building, 801 Sherbrooke Street West, Montreal, Quebec, Canada H3A 0B8
| | - Alessandra Cambi
- Department of Cell Biology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Geert Grooteplein Zuid 26-28, 6525 GA Nijmegen, The Netherlands
| |
Collapse
|
38
|
Quantitative comparison of cancer and normal cell adhesion using organosilane monolayer templates: an experimental study on the anti-adhesion effect of green-tea catechins. In Vitro Cell Dev Biol Anim 2016; 52:799-805. [DOI: 10.1007/s11626-016-0049-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Accepted: 04/22/2016] [Indexed: 10/21/2022]
|
39
|
Masters TA, Sheetz MP, Gauthier NC. F-actin waves, actin cortex disassembly and focal exocytosis driven by actin-phosphoinositide positive feedback. Cytoskeleton (Hoboken) 2016; 73:180-96. [PMID: 26915738 DOI: 10.1002/cm.21287] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Revised: 02/11/2016] [Accepted: 02/18/2016] [Indexed: 12/29/2022]
Abstract
Actin polymerization is controlled by the phosphoinositide composition of the plasma membrane. However, the molecular mechanisms underlying the spatiotemporal regulation of actin network organization over extended length scales are still unclear. To observe phosphoinositide-dependent cytoskeletal dynamics we combined the model system of frustrated phagocytosis, total internal reflection microscopy and manipulation of the buffer tonicity. We found that macrophages interacting with IgG-coated glass substrates formed circular F-actin waves on their ventral surface enclosing a region of plasma membrane devoid of cortical actin. Plasma membrane free of actin cortex was strongly depleted of PI(4,5)P2 , but enriched in PI(3,4)P2 and displayed a fivefold increase in exocytosis. Wave formation could be promoted by application of a hypotonic shock. The actin waves were characteristic of a bistable wavefront at the boundary between the regions of membrane containing and lacking cortical actin. Phosphoinositide modifiers and RhoGTPase activities dramatically redistributed with respect to the wavefronts, which often exhibited spatial oscillations. Perturbation of either lipid or actin cytoskeleton-related pathways led to rapid loss of both the polarized lipid distribution and the wavefront. As waves travelled over the plasma membrane, wavefront actin was seen to rapidly polymerize and depolymerize at pre-existing clusters of FcγRIIA, coincident with rapid changes in lipid composition. Thus the potential of receptors to support rapid F-actin polymerization appears to depend acutely on the local concentrations of multiple lipid species. We propose that interdependence through positive feedback from the cytoskeleton to lipid modifiers leads to coordinated local cortex remodeling, focal exocytosis, and organizes extended actin networks.
Collapse
Affiliation(s)
- Thomas A Masters
- Mechanobiology Institute, National University of Singapore, 5A Engineering Drive 1, Singapore, 117411, Singapore
| | - Michael P Sheetz
- Mechanobiology Institute, National University of Singapore, 5A Engineering Drive 1, Singapore, 117411, Singapore.,Department of Biological Sciences, Columbia University, New York, New York, 10027
| | - Nils C Gauthier
- Mechanobiology Institute, National University of Singapore, 5A Engineering Drive 1, Singapore, 117411, Singapore
| |
Collapse
|
40
|
Schaufler V, Czichos-Medda H, Hirschfeld-Warnecken V, Neubauer S, Rechenmacher F, Medda R, Kessler H, Geiger B, Spatz JP, Cavalcanti-Adam EA. Selective binding and lateral clustering of α5β1 and αvβ3 integrins: Unraveling the spatial requirements for cell spreading and focal adhesion assembly. Cell Adh Migr 2016; 10:505-515. [PMID: 27003228 PMCID: PMC5079398 DOI: 10.1080/19336918.2016.1163453] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Coordination of the specific functions of α5β1 and αvβ3 integrins is crucial for the precise regulation of cell adhesion, spreading and migration, yet the contribution of differential integrin-specific crosstalk to these processes remains unclear. To determine the specific functions of αvβ3 and α5β1 integrins, we used nanoarrays of gold particles presenting immobilized, integrin-selective peptidomimetic ligands. Integrin binding to the peptidomimetics is highly selective, and cells can spread on both ligands. However, spreading is faster and the projected cell area is greater on α5β1 ligand; both depend on ligand spacing. Quantitative analysis of adhesion plaques shows that focal adhesion size is increased in cells adhering to αvβ3 ligand at 30 and 60 nm spacings. Analysis of αvβ3 and α5β1 integrin clusters indicates that fibrillar adhesions are more prominent in cells adhering to α5β1 ligand, while clusters are mostly localized at the cell margins in cells adhering to αvβ3 ligand. αvβ3 integrin clusters are more pronounced on αvβ3 ligand, though they can also be detected in cells adhering to α5β1 ligand. Furthermore, α5β1 integrin clusters are present in cells adhering to α5β1 ligand, and often colocalize with αvβ3 clusters. Taken together, these findings indicate that the activation of αvβ3 integrin by ligand binding is dispensable for initial adhesion and spreading, but essential to formation of stable focal adhesions.
Collapse
Affiliation(s)
- Viktoria Schaufler
- a Department of New Materials and Biosystems , Max Planck Institute for Intelligent Systems , Stuttgart , Germany.,b Department of Biophysical Chemistry , Institute of Physical Chemistry, University of Heidelberg , Heidelberg , Germany
| | - Helmi Czichos-Medda
- a Department of New Materials and Biosystems , Max Planck Institute for Intelligent Systems , Stuttgart , Germany.,b Department of Biophysical Chemistry , Institute of Physical Chemistry, University of Heidelberg , Heidelberg , Germany
| | - Vera Hirschfeld-Warnecken
- a Department of New Materials and Biosystems , Max Planck Institute for Intelligent Systems , Stuttgart , Germany.,b Department of Biophysical Chemistry , Institute of Physical Chemistry, University of Heidelberg , Heidelberg , Germany
| | - Stefanie Neubauer
- c Institute for Advanced Study and Center for Integrated Protein Science , Department of Chemistry, Technical University Munich , Garching , Germany
| | - Florian Rechenmacher
- c Institute for Advanced Study and Center for Integrated Protein Science , Department of Chemistry, Technical University Munich , Garching , Germany
| | - Rebecca Medda
- a Department of New Materials and Biosystems , Max Planck Institute for Intelligent Systems , Stuttgart , Germany.,b Department of Biophysical Chemistry , Institute of Physical Chemistry, University of Heidelberg , Heidelberg , Germany
| | - Horst Kessler
- c Institute for Advanced Study and Center for Integrated Protein Science , Department of Chemistry, Technical University Munich , Garching , Germany
| | - Benjamin Geiger
- d Department of Molecular Cell Biology , Weizmann Institute of Science , Rehovot , Israel
| | - Joachim P Spatz
- a Department of New Materials and Biosystems , Max Planck Institute for Intelligent Systems , Stuttgart , Germany.,b Department of Biophysical Chemistry , Institute of Physical Chemistry, University of Heidelberg , Heidelberg , Germany
| | - E Ada Cavalcanti-Adam
- a Department of New Materials and Biosystems , Max Planck Institute for Intelligent Systems , Stuttgart , Germany.,b Department of Biophysical Chemistry , Institute of Physical Chemistry, University of Heidelberg , Heidelberg , Germany
| |
Collapse
|
41
|
Gβ Regulates Coupling between Actin Oscillators for Cell Polarity and Directional Migration. PLoS Biol 2016; 14:e1002381. [PMID: 26890004 PMCID: PMC4758609 DOI: 10.1371/journal.pbio.1002381] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Accepted: 01/15/2016] [Indexed: 02/03/2023] Open
Abstract
For directional movement, eukaryotic cells depend on the proper organization of their actin cytoskeleton. This engine of motility is made up of highly dynamic nonequilibrium actin structures such as flashes, oscillations, and traveling waves. In Dictyostelium, oscillatory actin foci interact with signals such as Ras and phosphatidylinositol 3,4,5-trisphosphate (PIP3) to form protrusions. However, how signaling cues tame actin dynamics to produce a pseudopod and guide cellular motility is a critical open question in eukaryotic chemotaxis. Here, we demonstrate that the strength of coupling between individual actin oscillators controls cell polarization and directional movement. We implement an inducible sequestration system to inactivate the heterotrimeric G protein subunit Gβ and find that this acute perturbation triggers persistent, high-amplitude cortical oscillations of F-actin. Actin oscillators that are normally weakly coupled to one another in wild-type cells become strongly synchronized following acute inactivation of Gβ. This global coupling impairs sensing of internal cues during spontaneous polarization and sensing of external cues during directional motility. A simple mathematical model of coupled actin oscillators reveals the importance of appropriate coupling strength for chemotaxis: moderate coupling can increase sensitivity to noisy inputs. Taken together, our data suggest that Gβ regulates the strength of coupling between actin oscillators for efficient polarity and directional migration. As these observations are only possible following acute inhibition of Gβ and are masked by slow compensation in genetic knockouts, our work also shows that acute loss-of-function approaches can complement and extend the reach of classical genetics in Dictyostelium and likely other systems as well. Coupling of individual oscillators regulates biological functions ranging from crickets chirping in unison to the coordination of pacemaker cells of the heart. This study finds that a similar concept—coupling between actin oscillators—is at work within single slime mold cells to establish polarity and guide their direction of migration. The actin cytoskeleton of motile cells is comprised of highly dynamic structures. Recently, small oscillating actin foci have been discovered around the periphery of Dictyostelium cells. These oscillators are thought to enable pseudopod formation, but how their dynamics are regulated for this is unknown. Here, we demonstrate that the strength of coupling between individual actin oscillators controls cell polarization and directional movement. Actin oscillators are weakly coupled to one another in wild-type cells, but they become strongly synchronized after acute inactivation of the signaling protein Gβ. This global coupling impairs sensing of internal cues during spontaneous polarization and sensing of external cues during directional motility. Supported by a mathematical model, our data suggest that wild-type cells are tuned to an optimal coupling strength for patterning by upstream cues. These observations are only possible following acute inhibition of Gβ, which highlights the value of revisiting classical mutants with acute loss-of-function perturbations.
Collapse
|
42
|
Guetta-Terrier C, Monzo P, Zhu J, Long H, Venkatraman L, Zhou Y, Wang P, Chew SY, Mogilner A, Ladoux B, Gauthier NC. Protrusive waves guide 3D cell migration along nanofibers. J Cell Biol 2016; 211:683-701. [PMID: 26553933 PMCID: PMC4639865 DOI: 10.1083/jcb.201501106] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Reductionist approaches based on 3D fibers reveal that single-cell migration along fibers is driven by lateral actin-based waves for various cell types. In vivo, cells migrate on complex three-dimensional (3D) fibrous matrices, which has made investigation of the key molecular and physical mechanisms that drive cell migration difficult. Using reductionist approaches based on 3D electrospun fibers, we report for various cell types that single-cell migration along fibronectin-coated nanofibers is associated with lateral actin-based waves. These cyclical waves have a fin-like shape and propagate up to several hundred micrometers from the cell body, extending the leading edge and promoting highly persistent directional movement. Cells generate these waves through balanced activation of the Rac1/N-WASP/Arp2/3 and Rho/formins pathways. The waves originate from one major adhesion site at leading end of the cell body, which is linked through actomyosin contractility to another site at the back of the cell, allowing force generation, matrix deformation and cell translocation. By combining experimental and modeling data, we demonstrate that cell migration in a fibrous environment requires the formation and propagation of dynamic, actin based fin-like protrusions.
Collapse
Affiliation(s)
| | - Pascale Monzo
- Mechanobiology Institute, National University of Singapore, Singapore 117411
| | - Jie Zhu
- Cellular and Molecular Physiology, Yale University, New Haven, CT 06520
| | - Hongyan Long
- School of Chemical & Biomedical Engineering, Nanyang Technological University, Singapore 637459
| | - Lakshmi Venkatraman
- Mechanobiology Institute, National University of Singapore, Singapore 117411
| | - Yue Zhou
- Cardiovascular Research Institute, National University Health System, Singapore 119228 Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597
| | - PeiPei Wang
- Cardiovascular Research Institute, National University Health System, Singapore 119228 Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597
| | - Sing Yian Chew
- School of Chemical & Biomedical Engineering, Nanyang Technological University, Singapore 637459 Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 308232
| | - Alexander Mogilner
- Courant Institute and Department of Biology, New York University, New York, NY 10012
| | - Benoit Ladoux
- Mechanobiology Institute, National University of Singapore, Singapore 117411 Institut Jacques Monod, Centre National de la Recherche Scientifique UMR 7592 and Université Paris Diderot, 75013 Paris, France
| | - Nils C Gauthier
- Mechanobiology Institute, National University of Singapore, Singapore 117411
| |
Collapse
|
43
|
Katz ZB, English BP, Lionnet T, Yoon YJ, Monnier N, Ovryn B, Bathe M, Singer RH. Mapping translation 'hot-spots' in live cells by tracking single molecules of mRNA and ribosomes. eLife 2016; 5. [PMID: 26760529 PMCID: PMC4764586 DOI: 10.7554/elife.10415] [Citation(s) in RCA: 98] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Accepted: 12/29/2015] [Indexed: 11/13/2022] Open
Abstract
Messenger RNA localization is important for cell motility by local protein translation. However, while single mRNAs can be imaged and their movements tracked in single cells, it has not yet been possible to determine whether these mRNAs are actively translating. Therefore, we imaged single β-actin mRNAs tagged with MS2 stem loops colocalizing with labeled ribosomes to determine when polysomes formed. A dataset of tracking information consisting of thousands of trajectories per cell demonstrated that mRNAs co-moving with ribosomes have significantly different diffusion properties from non-translating mRNAs that were exposed to translation inhibitors. These data indicate that ribosome load changes mRNA movement and therefore highly translating mRNAs move slower. Importantly, β-actin mRNA near focal adhesions exhibited sub-diffusive corralled movement characteristic of increased translation. This method can identify where ribosomes become engaged for local protein production and how spatial regulation of mRNA-protein interactions mediates cell directionality.
Collapse
Affiliation(s)
- Zachary B Katz
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, New York, United States.,Salk Institute for Biological Studies, La Jolla, United States
| | - Brian P English
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, New York, United States.,Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - Timothée Lionnet
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - Young J Yoon
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, New York, United States
| | - Nilah Monnier
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, United States
| | - Ben Ovryn
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, New York, United States
| | - Mark Bathe
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, United States
| | - Robert H Singer
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, New York, United States.,Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| |
Collapse
|
44
|
Ingaramo M, York AG, Andrade EJ, Rainey K, Patterson GH. Two-photon-like microscopy with orders-of-magnitude lower illumination intensity via two-step fluorescence. Nat Commun 2015; 6:8184. [PMID: 26333365 PMCID: PMC4559865 DOI: 10.1038/ncomms9184] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Accepted: 07/24/2015] [Indexed: 11/10/2022] Open
Abstract
We describe two-step fluorescence microscopy, a new approach to non-linear imaging based on positive reversible photoswitchable fluorescent probes. The protein Padron approximates ideal two-step fluorescent behaviour: it equilibrates to an inactive state, converts to an active state under blue light, and blue light also excites this active state to fluoresce. Both activation and excitation are linear processes, but the total fluorescent signal is quadratic, proportional to the square of the illumination dose. Here, we use Padron's quadratic non-linearity to demonstrate the principle of two-step microscopy, similar in principle to two-photon microscopy but with orders-of-magnitude better cross-section. As with two-photon, quadratic non-linearity from two-step fluorescence improves resolution and reduces unwanted out-of-focus excitation, and is compatible with structured illumination microscopy. We also show two-step and two-photon imaging can be combined to give quartic non-linearity, further improving imaging in challenging samples. With further improvements, two-step fluorophores could replace conventional fluorophores for many imaging applications.
Collapse
Affiliation(s)
- Maria Ingaramo
- National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Andrew G York
- National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Eric J Andrade
- National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Kristin Rainey
- National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - George H Patterson
- National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland 20892, USA
| |
Collapse
|
45
|
Kroon J, in 't Veld LS, Buijs JT, Cheung H, van der Horst G, van der Pluijm G. Glycogen synthase kinase-3β inhibition depletes the population of prostate cancer stem/progenitor-like cells and attenuates metastatic growth. Oncotarget 2015; 5:8986-94. [PMID: 25344861 PMCID: PMC4253412 DOI: 10.18632/oncotarget.1510] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Cancer cells with stem or progenitor properties play a pivotal role in the initiation, recurrence and metastatic potential of solid tumors, including those of the human prostate. Cancer stem cells are generally more resistant to conventional therapies thus requiring the characterization of key pathways involved in the formation and/or maintenance of this malignant cellular subpopulation. To this end, we identified Glycogen Synthase Kinase-3β (GSK-3β) as a crucial kinase for the maintenance of prostate cancer stem/progenitor-like cells and pharmacologic inhibition of GSK-3β dramatically decreased the size of this cellular subpopulation. This was paralleled by impaired clonogenicity, decreased migratory potential and dramatic morphological changes. In line with our in vitro observations, treatment with a GSK-3β inhibitor leads to a complete loss of tumorigenicity and a decrease in metastatic potential in preclinical in vivo models. These observed anti-tumor effects appear to be largely Wnt-independent as simultaneous Wnt inhibition does not reverse the observed antitumor effects of GSK-3β blockage. We found that GSK-3β activity is linked to cytoskeletal protein F-actin and inhibition of GSK-3β leads to disturbance of F-actin polymerization. This may underlie the dramatic effects of GSK-3β inhibition on prostate cancer migration. Furthermore, GSK-3β inhibition led to strongly decreased expression of several integrin types including the cancer stem cell-associated α2β1 integrin. Taken together, our mechanistic observations highlight the importance of GSK-3β activity in prostate cancer stemness and may facilitate the development of novel therapy for advanced prostate cancer.
Collapse
Affiliation(s)
- Jan Kroon
- Department of Urology, Leiden University Medical Center, Leiden, the Netherlands
| | - Lars S in 't Veld
- Department of Urology, Leiden University Medical Center, Leiden, the Netherlands
| | - Jeroen T Buijs
- Department of Urology, Leiden University Medical Center, Leiden, the Netherlands
| | - Henry Cheung
- Department of Urology, Leiden University Medical Center, Leiden, the Netherlands
| | | | - Gabri van der Pluijm
- Department of Urology, Leiden University Medical Center, Leiden, the Netherlands
| |
Collapse
|
46
|
Abstract
SUMMARY Stimuli that promote cell migration, such as chemokines, cytokines, and growth factors in metazoans and cyclic AMP in Dictyostelium, activate signaling pathways that control organization of the actin cytoskeleton and adhesion complexes. The Rho-family GTPases are a key convergence point of these pathways. Their effectors include actin regulators such as formins, members of the WASP/WAVE family and the Arp2/3 complex, and the myosin II motor protein. Pathways that link to the Rho GTPases include Ras GTPases, TorC2, and PI3K. Many of the molecules involved form gradients within cells, which define the front and rear of migrating cells, and are also established in related cellular behaviors such as neuronal growth cone extension and cytokinesis. The signaling molecules that regulate migration can be integrated to provide a model of network function. The network displays biochemical excitability seen as spontaneous waves of activation that propagate along the cell cortex. These events coordinate cell movement and can be biased by external cues to bring about directed migration.
Collapse
Affiliation(s)
- Peter Devreotes
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | - Alan Rick Horwitz
- Department of Cell Biology, University of Virginia School of Medicine, Charlottesville, Virginia 22908
| |
Collapse
|
47
|
Actin Migration Driven by Directional Assembly and Disassembly of Membrane-Anchored Actin Filaments. Cell Rep 2015; 12:648-60. [DOI: 10.1016/j.celrep.2015.06.048] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Revised: 05/18/2015] [Accepted: 06/11/2015] [Indexed: 11/24/2022] Open
|
48
|
Sackmann E. How actin/myosin crosstalks guide the adhesion, locomotion and polarization of cells. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2015; 1853:3132-42. [PMID: 26119326 DOI: 10.1016/j.bbamcr.2015.06.012] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Revised: 06/17/2015] [Accepted: 06/18/2015] [Indexed: 01/09/2023]
Abstract
Cell-tissue-tissue interaction is determined by specific short range forces between cell adhesion molecules (CAMs) and ligands of the tissue, long range repulsion forces mediated by cell surface grafted macromolecules and adhesion-induced elastic stresses in the cell envelope. This interplay of forces triggers the rapid random clustering of tightly coupled linkers. By coupling of actin gel patches to the intracellular domains of the CAMs, these clusters can grow in a secondary process resulting in the formation of functional adhesion microdomains (ADs). The ADs can act as biochemical steering centers by recruiting and activating functional proteins, such as GTPases and associated regulating proteins, through electrostatic-hydrophobic forces with cationic lipid domains that act as attractive centers. First, I summarize physical concepts of cell adhesion revealed by studies of biomimetic systems. Then I describe the role of the adhesion domains as biochemical signaling platforms and force transmission centers promoting cellular protrusions, in terms of a shell string model of cells. Protrusion forces are generated by actin gelation triggered by molecular machines (focal adhesion kinase (FAK), Src-kinases and associated adaptors) which assemble around newly formed integrin clusters. They recruit and activate the GTPases Rac-1 and actin gelation promoters to charged membrane domains via electrostatic-hydrophobic forces. The cell front is pushed forward in a cyclic and stepwise manner and the step-width is determined by the dynamics antagonistic interplay between Rac-1 and RhoA. The global cell polarization in the direction of motion is mediated by the actin-microtubule (MT) crosstalk at adhesion domains. Supramolecular actin-MT assemblies at the front help to promote actin polymerization. At the rear they regulate the dismantling of the ADs through the Ca(++)-mediated activation of the protease calpain and trigger their disruption by RhoA mediated contraction via stress fibers. This article is part of a Special Issue entitled: Mechanobiology.
Collapse
Affiliation(s)
- Erich Sackmann
- Technical University Munich, Germany; Physics Department E22/E27, James Franck Str., D85747 Garching, Germany.
| |
Collapse
|
49
|
Skau CT, Plotnikov SV, Doyle AD, Waterman CM. Inverted formin 2 in focal adhesions promotes dorsal stress fiber and fibrillar adhesion formation to drive extracellular matrix assembly. Proc Natl Acad Sci U S A 2015; 112:E2447-56. [PMID: 25918420 PMCID: PMC4434736 DOI: 10.1073/pnas.1505035112] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Actin filaments and integrin-based focal adhesions (FAs) form integrated systems that mediate dynamic cell interactions with their environment or other cells during migration, the immune response, and tissue morphogenesis. How adhesion-associated actin structures obtain their functional specificity is unclear. Here we show that the formin-family actin nucleator, inverted formin 2 (INF2), localizes specifically to FAs and dorsal stress fibers (SFs) in fibroblasts. High-resolution fluorescence microscopy and manipulation of INF2 levels in cells indicate that INF2 plays a critical role at the SF-FA junction by promoting actin polymerization via free barbed end generation and centripetal elongation of an FA-associated actin bundle to form dorsal SF. INF2 assembles into FAs during maturation rather than during their initial generation, and once there, acts to promote rapid FA elongation and maturation into tensin-containing fibrillar FAs in the cell center. We show that INF2 is required for fibroblasts to organize fibronectin into matrix fibers and ultimately 3D matrices. Collectively our results indicate an important role for the formin INF2 in specifying the function of fibrillar FAs through its ability to generate dorsal SFs. Thus, dorsal SFs and fibrillar FAs form a specific class of integrated adhesion-associated actin structure in fibroblasts that mediates generation and remodeling of ECM.
Collapse
Affiliation(s)
- Colleen T Skau
- Cell Biology and Physiology Center, National Heart Lung and Blood Institute, and
| | - Sergey V Plotnikov
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada M5S 3G5
| | - Andrew D Doyle
- Cell Biology Section, Laboratory of Cell and Developmental Biology, National Institute of Dental and Craniofacial Research, NIH, Bethesda, MD 20892; and
| | - Clare M Waterman
- Cell Biology and Physiology Center, National Heart Lung and Blood Institute, and
| |
Collapse
|
50
|
ARF6 promotes the formation of Rac1 and WAVE-dependent ventral F-actin rosettes in breast cancer cells in response to epidermal growth factor. PLoS One 2015; 10:e0121747. [PMID: 25799492 PMCID: PMC4370635 DOI: 10.1371/journal.pone.0121747] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Accepted: 02/03/2015] [Indexed: 12/19/2022] Open
Abstract
Coordination between actin cytoskeleton assembly and localized polarization of intracellular trafficking routes is crucial for cancer cell migration. ARF6 has been implicated in the endocytic recycling of surface receptors and membrane components and in actin cytoskeleton remodeling. Here we show that overexpression of an ARF6 fast-cycling mutant in MDA-MB-231 breast cancer-derived cells to mimick ARF6 hyperactivation observed in invasive breast tumors induced a striking rearrangement of the actin cytoskeleton at the ventral cell surface. This phenotype consisted in the formation of dynamic actin-based podosome rosette-like structures expanding outward as wave positive for F-actin and actin cytoskeleton regulatory components including cortactin, Arp2/3 and SCAR/WAVE complexes and upstream Rac1 regulator. Ventral rosette-like structures were similarly induced in MDA-MB-231 cells in response to epidermal growth factor (EGF) stimulation and to Rac1 hyperactivation. In addition, interference with ARF6 expression attenuated activation and plasma membrane targeting of Rac1 in response to EGF treatment. Our data suggest a role for ARF6 in linking EGF-receptor signaling to Rac1 recruitment and activation at the plasma membrane to promote breast cancer cell directed migration.
Collapse
|