1
|
Moreira Gabriel E, Dias J, Caballero RE, Salinas TW, Nayrac M, Filali-Mouhim A, Chartrand-Lefebvre C, Routy JP, Durand M, El-Far M, Tremblay C, Ancuta P. Novel Immunological Markers of Intestinal Impairment Indicative of HIV-1 Status and/or Subclinical Atherosclerosis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.22.624885. [PMID: 39651272 PMCID: PMC11623515 DOI: 10.1101/2024.11.22.624885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2024]
Abstract
Antiretroviral therapy (ART) controls HIV-1 replication in people with HIV-1 (PWH), but immunological restauration at mucosal barrier surfaces is not achieved. This fuels microbial translocation, chronic immune activation, and increased comorbidities, including cardiovascular disease (CVD). Here, we sought to identify novel markers of mucosal barrier impairment in the blood to predict the HIV and/or CVD status. Flow cytometry was used to characterize CD326/EpCAM + intestinal epithelial cells (IEC); CD4 + T-cells; CD8 + and CD4 + intraepithelial lymphocytes (IELs); and subsets of CD4 + T-cells expressing Th17 (CCR6) and gut-homing (Itgβ7) markers. To this aim, we collected peripheral blood mononuclear cells (PBMCs) from 42 ART-treated PWH (HIV + ) and 40 uninfected participants (HIV - ) from the Canadian HIV and Aging Cohort Study (CHACS). Both groups were categorized based on the presence of coronary atherosclerotic plaques measured by CT scan angiography as total plaque volume (TPV, mm 3 ). Our findings associate the HIV-1 status with increased frequencies of circulating CD326 + IEC; CD326 + CD4 + T-cells with activated (CD69 + HLA-DR + ) and gut-homing (ItgαE + CCR6 + CCR9 + ) phenotypes, CCR6 + Itgβ7 - CD4 + T-cells; and decreased frequencies of CD8 + IELs. Logistic regression analyses confirmed the predictive capacity of the above cellular markers regarding HIV status. Spearman correlation revealed a positive correlation between TPV and CCR6 + Itgβ7 - and CCR6 + Itgβ7 + CD4 + T-cell frequencies.Together, these results highlighted significant immune dysregulation and persistent mucosal barrier alterations despite effective viral suppression by ART and linked the abundance of CCR6 + Itgβ7 + and CCR6 + Itgβ7 - CD4 + T-cells to increased atherosclerotic plaque burden. Thus, strategies targeting the gut-immune axis restoration may reduce CVD onset and improve long-term health outcomes in PWH.
Collapse
|
2
|
Al-Talib M, Dimonte S, Humphreys IR. Mucosal T-cell responses to chronic viral infections: Implications for vaccine design. Cell Mol Immunol 2024; 21:982-998. [PMID: 38459243 PMCID: PMC11364786 DOI: 10.1038/s41423-024-01140-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 01/31/2024] [Indexed: 03/10/2024] Open
Abstract
Mucosal surfaces that line the respiratory, gastrointestinal and genitourinary tracts are the major interfaces between the immune system and the environment. Their unique immunological landscape is characterized by the necessity of balancing tolerance to commensal microorganisms and other innocuous exposures against protection from pathogenic threats such as viruses. Numerous pathogenic viruses, including herpesviruses and retroviruses, exploit this environment to establish chronic infection. Effector and regulatory T-cell populations, including effector and resident memory T cells, play instrumental roles in mediating the transition from acute to chronic infection, where a degree of viral replication is tolerated to minimize immunopathology. Persistent antigen exposure during chronic viral infection leads to the evolution and divergence of these responses. In this review, we discuss advances in the understanding of mucosal T-cell immunity during chronic viral infections and how features of T-cell responses develop in different chronic viral infections of the mucosa. We consider how insights into T-cell immunity at mucosal surfaces could inform vaccine strategies: not only to protect hosts from chronic viral infections but also to exploit viruses that can persist within mucosal surfaces as vaccine vectors.
Collapse
Affiliation(s)
- Mohammed Al-Talib
- Systems Immunity University Research Institute/Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, CF14 4XN, UK
- Bristol Medical School, University of Bristol, 5 Tyndall Avenue, Bristol, BS8 1UD, UK
| | - Sandra Dimonte
- Systems Immunity University Research Institute/Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, CF14 4XN, UK
| | - Ian R Humphreys
- Systems Immunity University Research Institute/Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, CF14 4XN, UK.
| |
Collapse
|
3
|
Balachandran H, Kroll K, Terry K, Manickam C, Jones R, Woolley G, Hayes T, Martinot AJ, Sharma A, Lewis M, Jost S, Reeves RK. NK cells modulate in vivo control of SARS-CoV-2 replication and suppression of lung damage. PLoS Pathog 2024; 20:e1012439. [PMID: 39133756 PMCID: PMC11341101 DOI: 10.1371/journal.ppat.1012439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 08/22/2024] [Accepted: 07/22/2024] [Indexed: 08/18/2024] Open
Abstract
Natural killer (NK) cells play a critical role in virus control. However, it has remained largely unclear whether NK cell mobilization in SARS-CoV-2 infections is beneficial or pathologic. To address this deficit, we employed a validated experimental NK cell depletion non-human primate (NHP) model with SARS-CoV-2 Delta variant B.1.617.2 challenge. Viral loads (VL), NK cell numbers, activation, proliferation, and functional measures were evaluated in blood and tissues. In non-depleted (control) animals, infection rapidly induced NK cell expansion, activation, and increased tissue trafficking associated with VL. Strikingly, we report that experimental NK cell depletion leads to higher VL, longer duration of viral shedding, significantly increased levels of pro-inflammatory cytokines in the lungs, and overt lung damage. Overall, we find the first significant and conclusive evidence for NK cell-mediated control of SARS-CoV-2 virus replication and disease pathology. These data indicate that adjunct therapies for infection could largely benefit from NK cell-targeted approaches.
Collapse
Affiliation(s)
- Harikrishnan Balachandran
- Division of Innate and Comparative Immunology, Center for Human Systems Immunology, Duke University School of Medicine, Durham, North Carolina, United States of America
| | - Kyle Kroll
- Division of Innate and Comparative Immunology, Center for Human Systems Immunology, Duke University School of Medicine, Durham, North Carolina, United States of America
| | - Karen Terry
- Division of Innate and Comparative Immunology, Center for Human Systems Immunology, Duke University School of Medicine, Durham, North Carolina, United States of America
| | - Cordelia Manickam
- Division of Innate and Comparative Immunology, Center for Human Systems Immunology, Duke University School of Medicine, Durham, North Carolina, United States of America
| | - Rhianna Jones
- Division of Innate and Comparative Immunology, Center for Human Systems Immunology, Duke University School of Medicine, Durham, North Carolina, United States of America
| | - Griffin Woolley
- Division of Innate and Comparative Immunology, Center for Human Systems Immunology, Duke University School of Medicine, Durham, North Carolina, United States of America
| | - Tammy Hayes
- Department of Infectious Diseases and Global Health, Cummings School of Veterinary Medicine at Tufts University, North Grafton, Massachusetts, United States of America
| | - Amanda J. Martinot
- Department of Infectious Diseases and Global Health, Cummings School of Veterinary Medicine at Tufts University, North Grafton, Massachusetts, United States of America
| | - Ankur Sharma
- BIOQUAL, Inc., Rockville, Maryland, United States of America
| | - Mark Lewis
- BIOQUAL, Inc., Rockville, Maryland, United States of America
| | - Stephanie Jost
- Division of Innate and Comparative Immunology, Center for Human Systems Immunology, Duke University School of Medicine, Durham, North Carolina, United States of America
| | - R. Keith Reeves
- Division of Innate and Comparative Immunology, Center for Human Systems Immunology, Duke University School of Medicine, Durham, North Carolina, United States of America
- Department of Surgery, Duke University School of Medicine, Durham, North Carolina, United States of America
| |
Collapse
|
4
|
Hua S, Latha K, Marlin R, Benmeziane K, Bossevot L, Langlois S, Relouzat F, Dereuddre-Bosquet N, Le Grand R, Cavarelli M. Intestinal immunological events of acute and resolved SARS-CoV-2 infection in non-human primates. Mucosal Immunol 2024; 17:25-40. [PMID: 37827377 DOI: 10.1016/j.mucimm.2023.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 09/27/2023] [Accepted: 10/04/2023] [Indexed: 10/14/2023]
Abstract
SARS-CoV-2 infection has been associated with intestinal mucosal barrier damage, leading to microbial and endotoxin translocation, heightened inflammatory responses, and aggravated disease outcomes. This study aimed to investigate the immunological mechanisms associated with impaired intestinal barrier function. We conducted a comprehensive analysis of gut damage and inflammation markers and phenotypic characterization of myeloid and lymphoid populations in the ileum and colon of SARS-CoV-2-exposed macaques during both the acute and resolved infection phases. Our findings revealed a significant accumulation of terminally differentiated and activated CD4+ and CD8+ T cells, along with memory B cells, within the gastrointestinal tract up to 43 days after exposure to SARS-CoV-2. This robust infection-induced immune response was accompanied by a notable depletion of plasmacytoid dendritic cells, myeloid dendritic cells, and macrophages, particularly affecting the colon during the resolved infection phase. Additionally, we identified a population of CX3CR1Low inflammatory macrophages associated with intestinal damage during active viral replication. Elevated levels of immune activation and gut damage markers, and perturbation of macrophage homeostasis, persisted even after the resolution of the infection, suggesting potential long-term clinical sequelae. These findings enhance our understanding of gastrointestinal immune pathology following SARS-CoV-2 infection and provide valuable information for developing and testing medical countermeasures.
Collapse
Affiliation(s)
- Stéphane Hua
- Université Paris-Saclay, Inserm, CEA, Center for Immunology of Viral, Auto-immune, Hematological and Bacterial diseases (IMVA-HB/IDMIT), Fontenay-aux-Roses & Le Kremlin-Bicêtre, France
| | - Krishna Latha
- Université Paris-Saclay, Inserm, CEA, Center for Immunology of Viral, Auto-immune, Hematological and Bacterial diseases (IMVA-HB/IDMIT), Fontenay-aux-Roses & Le Kremlin-Bicêtre, France
| | - Romain Marlin
- Université Paris-Saclay, Inserm, CEA, Center for Immunology of Viral, Auto-immune, Hematological and Bacterial diseases (IMVA-HB/IDMIT), Fontenay-aux-Roses & Le Kremlin-Bicêtre, France
| | - Keltouma Benmeziane
- Université Paris-Saclay, Inserm, CEA, Center for Immunology of Viral, Auto-immune, Hematological and Bacterial diseases (IMVA-HB/IDMIT), Fontenay-aux-Roses & Le Kremlin-Bicêtre, France
| | - Laetitia Bossevot
- Université Paris-Saclay, Inserm, CEA, Center for Immunology of Viral, Auto-immune, Hematological and Bacterial diseases (IMVA-HB/IDMIT), Fontenay-aux-Roses & Le Kremlin-Bicêtre, France
| | - Sébastien Langlois
- Université Paris-Saclay, Inserm, CEA, Center for Immunology of Viral, Auto-immune, Hematological and Bacterial diseases (IMVA-HB/IDMIT), Fontenay-aux-Roses & Le Kremlin-Bicêtre, France
| | - Francis Relouzat
- Université Paris-Saclay, Inserm, CEA, Center for Immunology of Viral, Auto-immune, Hematological and Bacterial diseases (IMVA-HB/IDMIT), Fontenay-aux-Roses & Le Kremlin-Bicêtre, France
| | - Nathalie Dereuddre-Bosquet
- Université Paris-Saclay, Inserm, CEA, Center for Immunology of Viral, Auto-immune, Hematological and Bacterial diseases (IMVA-HB/IDMIT), Fontenay-aux-Roses & Le Kremlin-Bicêtre, France
| | - Roger Le Grand
- Université Paris-Saclay, Inserm, CEA, Center for Immunology of Viral, Auto-immune, Hematological and Bacterial diseases (IMVA-HB/IDMIT), Fontenay-aux-Roses & Le Kremlin-Bicêtre, France
| | - Mariangela Cavarelli
- Université Paris-Saclay, Inserm, CEA, Center for Immunology of Viral, Auto-immune, Hematological and Bacterial diseases (IMVA-HB/IDMIT), Fontenay-aux-Roses & Le Kremlin-Bicêtre, France.
| |
Collapse
|
5
|
Systemic and Intestinal Viral Reservoirs in CD4+ T Cell Subsets in Primary SIV Infection. Viruses 2021; 13:v13122398. [PMID: 34960667 PMCID: PMC8704255 DOI: 10.3390/v13122398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 11/18/2021] [Accepted: 11/25/2021] [Indexed: 11/17/2022] Open
Abstract
The HIV reservoir size in target CD4+ T cells during primary infection remains unknown. Here, we sorted peripheral and intestinal CD4+ T cells and quantified the levels of cell-associated SIV RNA and DNA in rhesus macaques within days of SIVmac251 inoculation. As a major target cell of HIV/SIV, CD4+ T cells in both tissues contained a large amount of SIV RNA and DNA at day 8–13 post-SIV infection, in which productive SIV RNA highly correlated with the levels of cell-associated SIV DNA. Memory CD4+ T cells had much higher viral RNA and DNA than naïve subsets, yet memory CD4+ T cells co-expressing CCR5 had no significant reservoir size compared with those that were CCR5-negative in blood and intestine. Collectively, memory CD4+ T cells appear to be the major targets for primary infection, and viral reservoirs are equally distributed in systemic and lymphoid compartments in acutely SIV-infected macaques.
Collapse
|
6
|
Suphaphiphat K, Bernard-Stoecklin S, Gommet C, Delache B, Dereuddre-Bosquet N, Kent SJ, Wines BD, Hogarth PM, Le Grand R, Cavarelli M. Innate and Adaptive Anti-SIV Responses in Macaque Semen: Implications for Infectivity and Risk of Transmission. Front Immunol 2020; 11:850. [PMID: 32528466 PMCID: PMC7247827 DOI: 10.3389/fimmu.2020.00850] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 04/14/2020] [Indexed: 12/16/2022] Open
Abstract
HIV-1 infection is transmitted primarily by sexual exposure, with semen being the principal contaminated fluid. However, HIV-specific immune response in semen has been understudied. We investigated specific parameters of the innate, cellular, and humoral immune response that may affect semen infectivity in macaques infected with SIVmac251. Serial semen levels of cytokines and chemokines, SIV-specific antibodies, neutralization, and FcγR-mediated functions and SIV-specific T-cell responses were assessed and compared to systemic responses across 53 cynomolgus macaques. SIV infection induced an overall inflammatory state in the semen. Several pro-inflammatory molecules correlated with SIV virus levels. Effector CD8+ T cells were expanded in semen upon infection. SIV-specific CD8+ T-cells that expressed multiple effector molecules (IFN-γ+MIP-1β+TNF+/-) were induced in the semen of a subset of SIV-infected macaques, but this did not correlate with local viral control. SIV-specific IgG, commonly capable of engaging the FcγRIIIa receptor, was detected in most semen samples although this positively correlated with seminal viral load. Several inflammatory immune responses in semen develop in the context of higher levels of SIV seminal plasma viremia. These inflammatory immune responses could play a role in viral transmission and should be considered in the development of preventive and prophylactic vaccines.
Collapse
Affiliation(s)
- Karunasinee Suphaphiphat
- CEA-Université Paris Sud-INSERM U1184, “Immunology of Viral Infections and Auto-Immune Diseases”, IDMIT Department, IBFJ, Fontenay-aux-Roses, France
| | - Sibylle Bernard-Stoecklin
- CEA-Université Paris Sud-INSERM U1184, “Immunology of Viral Infections and Auto-Immune Diseases”, IDMIT Department, IBFJ, Fontenay-aux-Roses, France
| | - Céline Gommet
- CEA-Université Paris Sud-INSERM U1184, “Immunology of Viral Infections and Auto-Immune Diseases”, IDMIT Department, IBFJ, Fontenay-aux-Roses, France
| | - Benoit Delache
- CEA-Université Paris Sud-INSERM U1184, “Immunology of Viral Infections and Auto-Immune Diseases”, IDMIT Department, IBFJ, Fontenay-aux-Roses, France
| | - Nathalie Dereuddre-Bosquet
- CEA-Université Paris Sud-INSERM U1184, “Immunology of Viral Infections and Auto-Immune Diseases”, IDMIT Department, IBFJ, Fontenay-aux-Roses, France
| | - Stephen J. Kent
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia
- Melbourne Sexual Health Centre and Department of Infectious Diseases, Alfred Hospital and Central Clinical School, Monash University, Melbourne, VIC, Australia
- ARC Centre for Excellence in Convergent Bio-Nano Science and Technology, University of Melbourne, Parkville, VIC, Australia
| | - Bruce D. Wines
- Immune Therapies Group, Burnet Institute, Melbourne, VIC, Australia
- Department of Clinical Pathology, University of Melbourne, Melbourne, VIC, Australia
- Department of Immunology and Pathology, Monash University, Melbourne, VIC, Australia
| | - P. Mark Hogarth
- Immune Therapies Group, Burnet Institute, Melbourne, VIC, Australia
- Department of Clinical Pathology, University of Melbourne, Melbourne, VIC, Australia
- Department of Immunology and Pathology, Monash University, Melbourne, VIC, Australia
| | - Roger Le Grand
- CEA-Université Paris Sud-INSERM U1184, “Immunology of Viral Infections and Auto-Immune Diseases”, IDMIT Department, IBFJ, Fontenay-aux-Roses, France
| | - Mariangela Cavarelli
- CEA-Université Paris Sud-INSERM U1184, “Immunology of Viral Infections and Auto-Immune Diseases”, IDMIT Department, IBFJ, Fontenay-aux-Roses, France
| |
Collapse
|
7
|
Cantero-Pérez J, Grau-Expósito J, Serra-Peinado C, Rosero DA, Luque-Ballesteros L, Astorga-Gamaza A, Castellví J, Sanhueza T, Tapia G, Lloveras B, Fernández MA, Prado JG, Solé-Sedeno JM, Tarrats A, Lecumberri C, Mañalich-Barrachina L, Centeno-Mediavilla C, Falcó V, Buzon MJ, Genescà M. Resident memory T cells are a cellular reservoir for HIV in the cervical mucosa. Nat Commun 2019; 10:4739. [PMID: 31628331 PMCID: PMC6802119 DOI: 10.1038/s41467-019-12732-2] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Accepted: 09/30/2019] [Indexed: 11/09/2022] Open
Abstract
HIV viral reservoirs are established very early during infection. Resident memory T cells (TRM) are present in tissues such as the lower female genital tract, but the contribution of this subset of cells to the pathogenesis and persistence of HIV remains unclear. Here, we show that cervical CD4+TRM display a unique repertoire of clusters of differentiation, with enrichment of several molecules associated with HIV infection susceptibility, longevity and self-renewing capacities. These protein profiles are enriched in a fraction of CD4+TRM expressing CD32. Cervical explant models show that CD4+TRM preferentially support HIV infection and harbor more viral DNA and protein than non-TRM. Importantly, cervical tissue from ART-suppressed HIV+ women contain high levels of viral DNA and RNA, being the TRM fraction the principal contributor. These results recognize the lower female genital tract as an HIV sanctuary and identify CD4+TRM as primary targets of HIV infection and viral persistence. Thus, strategies towards an HIV cure will need to consider TRM phenotypes, which are widely distributed in tissues.
Collapse
Affiliation(s)
- Jon Cantero-Pérez
- Infectious Diseases Department, Hospital Universitari Vall d'Hebron, Institut de Recerca (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Judith Grau-Expósito
- Infectious Diseases Department, Hospital Universitari Vall d'Hebron, Institut de Recerca (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Carla Serra-Peinado
- Infectious Diseases Department, Hospital Universitari Vall d'Hebron, Institut de Recerca (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Daniela A Rosero
- Infectious Diseases Department, Hospital Universitari Vall d'Hebron, Institut de Recerca (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Laura Luque-Ballesteros
- Infectious Diseases Department, Hospital Universitari Vall d'Hebron, Institut de Recerca (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Antonio Astorga-Gamaza
- Infectious Diseases Department, Hospital Universitari Vall d'Hebron, Institut de Recerca (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Josep Castellví
- Pathology Department, Hospital Universitari Vall d'Hebron, UAB, Barcelona, Spain
| | - Tamara Sanhueza
- Pathology Department, Hospital Universitari Germans Trias i Pujol, Badalona, Barcelona, Spain
| | - Gustavo Tapia
- Pathology Department, Hospital Universitari Germans Trias i Pujol, Badalona, Barcelona, Spain
| | - Belen Lloveras
- Pathology Department, Hospital del Mar, Parc de Salut Mar, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Marco A Fernández
- Flow Cytometry Facility, Institut d'Investigació en Ciències de la Salut Germans Trias i Pujol, Badalona, Spain
| | - Julia G Prado
- AIDS Research Institute IrsiCaixa, Institut d'Investigació en Ciències de la Salut Germans Trias i Pujol, Universitat Autònoma de Barcelona, Badalona, Spain
| | - Josep M Solé-Sedeno
- Obstetrics and Gynecology Department, Hospital del Mar, Parc de Salut Mar, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Antoni Tarrats
- Department of Obstetrics and Gynecology, Hospital Universitari Germans Trias i Pujol, Badalona, Barcelona, Spain
| | - Carla Lecumberri
- Department of Obstetrics and Gynecology, Hospital Universitari Germans Trias i Pujol, Badalona, Barcelona, Spain
| | - Laura Mañalich-Barrachina
- Department of Obstetrics and Gynecology, Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Cristina Centeno-Mediavilla
- Department of Obstetrics and Gynecology, Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Vicenç Falcó
- Infectious Diseases Department, Hospital Universitari Vall d'Hebron, Institut de Recerca (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Maria J Buzon
- Infectious Diseases Department, Hospital Universitari Vall d'Hebron, Institut de Recerca (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain.
| | - Meritxell Genescà
- Infectious Diseases Department, Hospital Universitari Vall d'Hebron, Institut de Recerca (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain.
| |
Collapse
|
8
|
Miller CJ, Veazey RS. T Cells in the Female Reproductive Tract Can Both Block and Facilitate HIV Transmission. ACTA ACUST UNITED AC 2019; 15:36-40. [PMID: 31431806 DOI: 10.2174/1573395514666180807113928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Because HIV is sexually transmitted, there is considerable interest in defining the nature of anti-HIV immunity in the female reproductive tract (FRT) and in developing ways to elicit antiviral immunity in the FRT through vaccination. Although it is assumed that the mucosal immune system of the FRT is of central importance for protection against sexually transmitted diseases, including HIV, this arm of the immune system has only recently been studied. Here we provide a brief review of the role of T cells in the FRT in blocking and facilitating HIV transmission.
Collapse
Affiliation(s)
- Christopher J Miller
- Professor of Pathology, Microbiology, and Immunology, Center for Comparative Medicine.,California National Primate Research Center, University of California, Davis, Davis, Ca, 95616
| | - Ronald S Veazey
- Professor of Pathology and Laboratory Medicine, Tulane University School of Medicine.,Division of Comparative Pathology, Tulane National Primate Research Center, Covington, LA 70433
| |
Collapse
|
9
|
Buggert M, Japp AS, Betts MR. Everything in its right place: resident memory CD8+ T cell immunosurveillance of HIV infection. Curr Opin HIV AIDS 2019; 14:93-99. [PMID: 30520744 DOI: 10.1097/coh.0000000000000523] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
PURPOSE OF REVIEW To introduce emerging concepts in tissue resident CD8 T cell immunosurveillance and their relevance to control HIV infection. RECENT FINDINGS It is well appreciated that HIV preferentially infects and persists in CD4 T cells located in gut and in lymphoid tissue, yet the majority of known immunological correlates of HIV control are derived from peripheral blood. Instead, tissue-based immunological surveillance likely dictates the course of infection. Recent studies have established that nonrecirculating resident memory CD4 and CD8 T cells can be found in virtually every human tissue. These cells bear a transcriptional profile of tissue retention and immediate effector function, suggesting a pivotal role in protective immunity. Resident memory CD8 T cells specific for HIV have been found in higher numbers in sites of HIV persistence (gut and lymph nodes), and are inversely associated with HIV viral titers. These findings, along with previous studies on tissue-derived cells now known to include resident memory cells, shed new light on the compartmentalization of the immune response against HIV and its correlates of protection. SUMMARY Resident memory CD8 T cells represent a critical unexplored component of immune surveillance in the setting of HIV infection. Understanding the induction, dynamics, and functional properties of HIV-specific resident memory T cells in relevant tissues will better inform efforts in the treatment, control, and potential cure of HIV infection.
Collapse
Affiliation(s)
- Marcus Buggert
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Medicine Huddinge, Center for Infectious Medicine, Karolinska University Hospital Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Alberto Sada Japp
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Michael R Betts
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
10
|
Veazey RS. Intestinal CD4 Depletion in HIV / SIV Infection. CURRENT IMMUNOLOGY REVIEWS 2019; 15:76-91. [PMID: 31431807 PMCID: PMC6701936 DOI: 10.2174/1573395514666180605083448] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Revised: 04/12/2018] [Accepted: 05/18/2018] [Indexed: 12/28/2022]
Abstract
Among the most significant findings in the pathogenesis of HIV infection was the discovery that almost total depletion of intestinal CD4+ T cells occurs rapidly after SIV or HIV infection, regardless of the route of exposure, and long before CD4+ T cell losses occur in blood or lymph nodes. Since these seminal discoveries, we have learned much about mucosal and systemic CD4+ T cells, and found several key differences between the circulating and intestinal CD4+ T cell subsets, both in phenotype, relative proportions, and functional capabilities. Further, specific subsets of CD4+ T cells are selectively targeted and eliminated first, especially cells critically important for initiating primary immune responses, and for maintenance of mucosal integrity (Th1, Th17, and Th22 cells). This simultaneously results in loss of innate immune responses, and loss of mucosal integrity, resulting in mucosal, and systemic immune activation that drives proliferation and activation of new target cells throughout the course of infection. The propensity for the SIV/HIV to infect and efficiently replicate in specific cells also permits viral persistence, as the mucosal and systemic activation that ensues continues to damage mucosal barriers, resulting in continued influx of target cells to maintain viral replication. Finally, infection and elimination of recently activated and proliferating CD4+ T cells, and infection and dysregulation of Tfh and other key CD4+ T cell results in hyperactive, yet non-protective immune responses that support active viral replication and evolution, and thus persistence in host tissue reservoirs, all of which continue to challenge our efforts to design effective vaccine or cure strategies.
Collapse
Affiliation(s)
- Ronald S. Veazey
- Division of Comparative Pathology, Tulane National Primate Research Center, Covington, LA
- Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, New Orleans, LA, USA
| |
Collapse
|
11
|
Pan D, Das A, Srivastav SK, Traina-Dorge V, Didier PJ, Pahar B. Lack of T-cell-mediated IL-2 and TNFα production is linked to decreased CD58 expression in intestinal tissue during acute simian immunodeficiency virus infection. J Gen Virol 2018; 100:26-34. [PMID: 30480508 DOI: 10.1099/jgv.0.001181] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
For an effective T-cell activation and response, co-stimulation is required in addition to the antigen-specific signal from their antigen receptors. The CD2/CD58 interaction is considered as one of the most important T-cell co-stimulatory pathways for T-cell activation and proliferation, and its role in regulating intestinal T-cell function in acute and chronic SIV -infected macaques is poorly documented. Here, we demonstrated a significant reduction of CD58 expression in both T- and B-cell populations during acute SIV infection along with high plasma viral load and a loss of intestinal CD4+ T cells compared to SIV-uninfected control macaques. The reduction of CD58 expression in T cells was correlated with the reduced expression of T-cell-mediated IL-2 and TNFα production. Together, these results indicate that reduction in the CD2/CD58 interaction pathway in mucosal lymphocytes might play a crucial role in mucosal T-cell dysfunction during acute SIV/HIV infection.
Collapse
Affiliation(s)
- Diganta Pan
- 1Division of Comparative Pathology, Covington, Louisiana
| | - Arpita Das
- 2Division of Microbiology, Tulane National Primate Research Center, Covington, Louisiana, USA
| | - Sudesh K Srivastav
- 3Department of Biostatistics and Bioinformatics, Tulane University, New Orleans, Louisiana, USA
| | - Vicki Traina-Dorge
- 2Division of Microbiology, Tulane National Primate Research Center, Covington, Louisiana, USA
| | - Peter J Didier
- 1Division of Comparative Pathology, Covington, Louisiana
| | - Bapi Pahar
- 1Division of Comparative Pathology, Covington, Louisiana
| |
Collapse
|
12
|
Veazey RS, Lackner AA. Nonhuman Primate Models and Understanding the Pathogenesis of HIV Infection and AIDS. ILAR J 2017; 58:160-171. [PMID: 29228218 PMCID: PMC5886333 DOI: 10.1093/ilar/ilx032] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Revised: 11/01/2017] [Accepted: 11/04/2017] [Indexed: 12/16/2022] Open
Abstract
Research using nonhuman primates (NHPs) as models for human immunodeficiency virus (HIV) infection and acquired immunodeficiency syndrome (AIDS) has resulted in tremendous achievements not only in the prevention and treatment of HIV, but also in biomedical research more broadly. Once considered a death sentence, HIV infection is now fairly well controlled with combination antiretroviral treatments, almost all of which were first tested for efficacy and safety in nonhuman primates or other laboratory animals. Research in NHP has led to "dogma changing" discoveries in immunology, infectious disease, and even our own genetics. We now know that many of our genes are retroviral remnants, or developed in response to archaic HIV-like retroviral infections. Early studies involving blood from HIV patients and in experiments in cultured tissues contributed to confusion regarding the cause of AIDS and impeded progress in the development of effective interventions. Research on the many retroviruses of different NHP species have broadened our understanding of human immunology and perhaps even our origins and evolution as a species. In combination with recent advances in molecular biology and computational analytics, research in NHPs has unique potential for discoveries that will directly lead to new cures for old human and animal diseases, including HIV/AIDS.
Collapse
Affiliation(s)
- Ronald S Veazey
- Ronald S. Veazey, DVM, PhD, is chair of the Division of Comparative Pathology at the Tulane National Primate Research Center and professor in the Department of Pathology and Laboratory Medicine at the Tulane University School of Medicine. Dr. Andrew Lackner, DVM, PhD is director of the Tulane National Primate Research Center and professor of the Department of Microbiology and Pathology and Laboratory Medicine at the Tulane University School of Medicine
| | - Andrew A Lackner
- Ronald S. Veazey, DVM, PhD, is chair of the Division of Comparative Pathology at the Tulane National Primate Research Center and professor in the Department of Pathology and Laboratory Medicine at the Tulane University School of Medicine. Dr. Andrew Lackner, DVM, PhD is director of the Tulane National Primate Research Center and professor of the Department of Microbiology and Pathology and Laboratory Medicine at the Tulane University School of Medicine
| |
Collapse
|
13
|
Lukic J, Jancic I, Mirkovic N, Bufan B, Djokic J, Milenkovic M, Begovic J, Strahinic I, Lozo J. Lactococcus lactis and Lactobacillus salivarius differently modulate early immunological response of Wistar rats co-administered with Listeria monocytogenes. Benef Microbes 2017; 8:809-822. [PMID: 28856909 DOI: 10.3920/bm2017.0007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
In the light of the increasing resistance of bacterial pathogens to antibiotics, one of the main global strategies in applied science is development of alternative treatments, which would be safe both for the host and from the environmental perspective. Accordingly, the aim of this study was to test whether two lactic acid bacteria (LAB) strains, Lactococcus lactis BGBU1-4 and Lactobacillus salivarius BGHO1, could be applied as safe supplements for Listeria infection. Two major research objectives were set: to compare the effects of BGBU1-4 and BGHO1 on early immune response in gut tissue of Wistar rats co-administered with Listeria monocytogenes ATCC19111 and next, to test how this applies to their usage as therapeutics in acute ATCC19111 infection. Intestinal villi (IV), Peyer's patches (PP) and mesenteric lymph nodes (MLN) were used for the analysis. The results showed that BGHO1 increased the mRNA expression of innate immune markers CD14, interleukin (IL)-1β and tumour necrosis factor (TNF)-α in PP and IV, and, in parallel, caused a decrease of listeriolysin O (LLO) mRNA expression in same tissues. In MLN of BGHO1 treated rats, LLO expression was increased, along with an increase of the expression of OX-62 mRNA and CD69, pointing to the activation of adaptive immunity. On the other hand, in BGBU1-4 treated rats, there was no reduction of LLO mRNA expression and no induction of innate immunity markers in intestinal tissue. Additionally, CD14 and IL-1β, as well as LLO, but not OX-62 mRNA and CD69 expression, were elevated in MLN of BGBU1-4 treated rats. However, when applied therapeutically, both, BGBU1-4 and BGHO1, lowered Listeria count in spleens of infected rats. Our results not only reveal the potential of LAB to ameliorate Listeria infections, but suggest different immunological effects of two different LAB strains, both of which could be effective in Listeria elimination.
Collapse
Affiliation(s)
- J Lukic
- 1 Laboratory for Molecular Microbiology, Institute of Molecular Genetics and Genetic Engineering (IMGGE), University of Belgrade, Vojvode Stepe 444a, 11010 Belgrade, Serbia
| | - I Jancic
- 2 Faculty of Pharmacy, University of Belgrade, Vojvode Stepe 450, 11010 Belgrade, Serbia
| | - N Mirkovic
- 1 Laboratory for Molecular Microbiology, Institute of Molecular Genetics and Genetic Engineering (IMGGE), University of Belgrade, Vojvode Stepe 444a, 11010 Belgrade, Serbia
| | - B Bufan
- 2 Faculty of Pharmacy, University of Belgrade, Vojvode Stepe 450, 11010 Belgrade, Serbia
| | - J Djokic
- 1 Laboratory for Molecular Microbiology, Institute of Molecular Genetics and Genetic Engineering (IMGGE), University of Belgrade, Vojvode Stepe 444a, 11010 Belgrade, Serbia
| | - M Milenkovic
- 2 Faculty of Pharmacy, University of Belgrade, Vojvode Stepe 450, 11010 Belgrade, Serbia
| | - J Begovic
- 1 Laboratory for Molecular Microbiology, Institute of Molecular Genetics and Genetic Engineering (IMGGE), University of Belgrade, Vojvode Stepe 444a, 11010 Belgrade, Serbia
| | - I Strahinic
- 1 Laboratory for Molecular Microbiology, Institute of Molecular Genetics and Genetic Engineering (IMGGE), University of Belgrade, Vojvode Stepe 444a, 11010 Belgrade, Serbia
| | - J Lozo
- 1 Laboratory for Molecular Microbiology, Institute of Molecular Genetics and Genetic Engineering (IMGGE), University of Belgrade, Vojvode Stepe 444a, 11010 Belgrade, Serbia.,3 Faculty of Biology, University of Belgrade, Studentski trg 16, 11000 Belgrade, Serbia
| |
Collapse
|
14
|
Williams DW, Engle EL, Shirk EN, Queen SE, Gama L, Mankowski JL, Zink MC, Clements JE. Splenic Damage during SIV Infection: Role of T-Cell Depletion and Macrophage Polarization and Infection. THE AMERICAN JOURNAL OF PATHOLOGY 2016; 186:2068-2087. [PMID: 27322772 DOI: 10.1016/j.ajpath.2016.03.019] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Revised: 03/04/2016] [Accepted: 03/25/2016] [Indexed: 12/31/2022]
Abstract
The effects of HIV infection on spleen and its cellular subsets have not been fully characterized, particularly for macrophages in which diverse populations exist. We used an accelerated SIV-infected macaque model to examine longitudinal effects on T-cell and macrophage populations and their susceptibilities to infection. Substantial lymphoid depletion occurred, characterized by follicular burn out and a loss of CD3 T lymphocytes, which was associated with cellular activation and transient dysregulations in CD4/CD8 ratios and memory effector populations. In contrast, the loss of CD68 and CD163(+)CD68(+) macrophages and increase in CD163 cells was irreversible, which began during acute infection and persisted until terminal disease. Mac387 macrophages and monocytes were transiently recruited into spleen, but were not sufficient to mitigate the changes in macrophage subsets. Type I interferon, M2 polarizing genes, and chemokine-chemokine receptor signaling were up-regulated in spleen and drove macrophage alterations. SIV-infected T cells were numerous within the white pulp during acute infection, but were rarely observed thereafter. CD68, CD163, and Mac387 macrophages were highly infected, which primarily occurred in the red pulp independent of T cells. Few macrophages underwent apoptosis, indicating that they are a long-lasting target for HIV/SIV. Our results identify macrophages as an important contributor to HIV/SIV infection in spleen and in promoting morphologic changes through the loss of specific macrophage subsets that mediate splenic organization.
Collapse
Affiliation(s)
- Dionna W Williams
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Elizabeth L Engle
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Erin N Shirk
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Suzanne E Queen
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Lucio Gama
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Joseph L Mankowski
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, Maryland; Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - M Christine Zink
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, Maryland; Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Janice E Clements
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, Maryland; Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland.
| |
Collapse
|
15
|
Longitudinal Examination of the Intestinal Lamina Propria Cellular Compartment of Simian Immunodeficiency Virus-Infected Rhesus Macaques Provides Broader and Deeper Insights into the Link between Aberrant MicroRNA Expression and Persistent Immune Activation. J Virol 2016; 90:5003-5019. [PMID: 26937033 DOI: 10.1128/jvi.00189-16] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Accepted: 03/02/2016] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Chronic immune activation/inflammation driven by factors like microbial translocation is a key determinant of human immunodeficiency virus/simian immunodeficiency virus (HIV/SIV) disease progression. Although extensive research on inflammation has focused on studying protein regulators, increasing evidence suggests a critical role for microRNAs (miRNAs) in regulating several aspects of the immune/inflammatory response and immune cell proliferation, differentiation, and activation. To understand their immunoregulatory role, we profiled miRNA expression sequentially in intestinal lamina propria leukocytes (LPLs) of eight macaques before and at 21, 90, and 180 days postinfection (dpi). At 21 dpi, ∼20 and 9 miRNAs were up- and downregulated, respectively. However, at 90 dpi (n = 60) and 180 dpi (n = 44), ≥75% of miRNAs showed decreased expression. Notably, the T-cell activation-associated miR-15b, miR-142-3p, miR-142-5p, and miR-150 expression was significantly downregulated at 90 and 180 dpi. Out of ∼10 downregulated miRNAs predicted to regulate CD69, we confirmed miR-92a to directly target CD69. Interestingly, the SIV-induced miR-190b expression was elevated at all time points. Additionally, elevated lipopolysaccharide (LPS)-responsive miR-146b-5p expression at 180 dpi was confirmed in primary intestinal macrophages following LPS treatment in vitro Further, reporter and overexpression assays validated IRAK1 (interleukin-1 receptor 1 kinase) as a direct miR-150 target. Furthermore, IRAK1 protein levels were markedly elevated in intestinal LPLs and epithelium. Finally, blockade of CD8(+) T-cell activation/proliferation with delta-9 tetrahydrocannabinol (Δ(9)-THC) significantly prevented miR-150 downregulation and IRAK1 upregulation. Our findings suggest that miR-150 downregulation during T-cell activation disrupts the translational control of IRAK1, facilitating persistent gastrointestinal (GI) inflammation. Finally, the ability of Δ(9)-THC to block the miR-150-IRAK1 regulatory cascade highlights the potential of cannabinoids to inhibit persistent inflammation/immune activation in HIV/SIV infection. IMPORTANCE Persistent GI tract disease/inflammation is a cardinal feature of HIV/SIV infection. Increasing evidence points to a critical role for miRNAs in controlling several aspects of the immune/inflammatory response. Here, we show significant dysregulation of miRNA expression exclusively in the intestinal lamina propria cellular compartment through the course of SIV infection. Specifically, the study identified miRNA signatures associated with key pathogenic events, such as viral replication, T-cell activation, and microbial translocation. The T-cell-enriched miR-150 showed significant downregulation throughout SIV infection and was confirmed to target IRAK1, a critical signal-transducing component of the IL-1 receptor and TLR signaling pathways. Reduced miR-150 expression was associated with markedly elevated IRAK1 expression in the intestines of chronically SIV-infected macaques. Finally, Δ(9)-THC-mediated blockade of CD8(+) T-cell activation in vitro significantly inhibited miR-150 downregulation and IRAK1 upregulation, suggesting its potential for targeted immune modulation in HIV infection.
Collapse
|
16
|
Shen C, Xu H, Alvarez X, Lackner AA, Veazey RS, Wang X. Reduced expression of CD27 by collagenase treatment: implications for interpreting b cell data in tissues. PLoS One 2015; 10:e0116667. [PMID: 25756877 PMCID: PMC4355594 DOI: 10.1371/journal.pone.0116667] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Accepted: 12/11/2014] [Indexed: 01/28/2023] Open
Abstract
Surface markers have been used to identify distinct cell subpopulations and to delineate various stages of maturation or activation of lymphocytes. In particular CD27 is used for delineation of naïve and memory B cell populations, and is readily detected by flow cytometry. We here used flow cytometry to examine the expression of CD27 on lymphocytes isolated from various tissues of rhesus macaques, and found its expression was consistently low to absent on intestinal cell suspensions. However, immunohistochemistry revealed abundant CD27+ cells in intestinal tissue sections. Further investigation showed the marked loss of CD27 expression on processed intestinal cells was due to collagenase digestion of intestinal tissues, yet CD27 expression was recoverable within hours of cell isolation. By combining confocal microscopy, we confirmed that only a fraction of B cells express CD27, in contrast to expression on all T cells from tissues examined including the gut. Taken together, our results suggest that CD27 may be a memory marker for B cells, but not for T cells, since essentially all CD3 T cells expressed CD27. In summary, it is important to consider the influence of isolation procedures on cell surface expression of phenotypic markers, especially when examining tissue-resident lymphocytes by flow cytometry.
Collapse
Affiliation(s)
- Chanjuan Shen
- Division of Comparative Pathology, Tulane National Primate Research Center, Covington, Louisiana, United States of America
| | - Huanbin Xu
- Division of Comparative Pathology, Tulane National Primate Research Center, Covington, Louisiana, United States of America
| | - Xavier Alvarez
- Division of Comparative Pathology, Tulane National Primate Research Center, Covington, Louisiana, United States of America
| | - Andrew A. Lackner
- Division of Comparative Pathology, Tulane National Primate Research Center, Covington, Louisiana, United States of America
| | - Ronald S. Veazey
- Division of Comparative Pathology, Tulane National Primate Research Center, Covington, Louisiana, United States of America
| | - Xiaolei Wang
- Division of Comparative Pathology, Tulane National Primate Research Center, Covington, Louisiana, United States of America
- * E-mail:
| |
Collapse
|
17
|
Xie H, Chen D, Li L, Yu X, Wu C, Gu H, Tang X, Peng A, Huang J. Immune response of γδT cells in Schistosome japonicum-infected C57BL/6 mouse liver. Parasite Immunol 2015; 36:658-67. [PMID: 25130072 DOI: 10.1111/pim.12135] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Accepted: 07/29/2014] [Indexed: 12/22/2022]
Abstract
Systematic evaluation of the role of γδT cells during the Schistosoma japonicum infection has not been reported, despite the fact that γδT cells contribute to many infectious diseases in innate immunity. Therefore, the aim of this study was to observe the properties of γδT cells in the liver of C57BL/6 mice infected by S. japonicum. In this report, using immuno-fluorescent histological analysis, γδT cells were found around hepatic granulomatous. Moreover, the flow cytometry results revealed that the percentage of hepatic γδT cells increased significantly after S. japonicum infection. More interestingly, a subset of CD3(-)γδTCR(+) cells were found and markedly increased after infection. Furthermore, expression of activation markers (CD25 and CD69) and cytokine profiles were detected in these hepatic CD3(+)γδTCR(+) and CD3(-)γδTCR(+) cells. The significantly higher level of CD69, IL-4 and IL-17 were observed in CD3(+)γδTCR(+) cells after infection, suggesting that CD3(+)γδTCR(+) cells instead of CD3(-)γδTCR(+) cells might play a predominant role during the infection. Finally, our results indicated that the expression of NKG2D on CD3(+)γδTCR(+) cells was higher than that on CD3(-)γδTCR(+) cells. Collectively, γδT cells could play an important role in the liver of C57BL/6 mouse during japonicum infection.
Collapse
Affiliation(s)
- H Xie
- Functional Experiment Centre, Guangzhou Medical University, Guangzhou, China
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Couturier J, Hutchison AT, Medina MA, Gingaras C, Urvil P, Yu X, Nguyen C, Mahale P, Lin L, Kozinetz CA, Schmitz JE, Kimata JT, Savidge TC, Lewis DE. HIV replication in conjunction with granzyme B production by CCR5+ memory CD4 T cells: Implications for bystander cell and tissue pathologies. Virology 2014; 462-463:175-88. [PMID: 24999042 DOI: 10.1016/j.virol.2014.06.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2013] [Revised: 02/26/2014] [Accepted: 06/09/2014] [Indexed: 12/22/2022]
Abstract
Granzyme B (GrzB) is expressed by activated T cells and mediates cellular apoptosis. GrzB also acts as an extracellular protease involved in tissue degradation. We hypothesized that GrzB production from activated memory CD4 T cells may be associated with HIV pathogenesis. We found that stimulated memory CD4 T cells (via costimulation, cytokines, and TLR ligands) concomitantly produced GrzB and HIV. Both GrzB and HIV expression were mainly restricted to CCR5-expressing memory CD4+CD45RO+ T cells, including Th1 and Th17 subsets. Activated memory CD4 T cells also mediated tissue damage, such as disruption of intestinal epithelial monolayers. In non-human primates, CD4 T cells of rhesus macaques (pathogenic SIV hosts) expressed higher GrzB compared to African green monkeys (non-pathogenic SIV hosts). These results suggest that GrzB from CCR5+ memory CD4 T cells may have a role in cellular and tissue pathologies during HIV infection.
Collapse
Affiliation(s)
- Jacob Couturier
- Division of Infectious Diseases, Department of Internal Medicine, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Alexander T Hutchison
- Division of Infectious Diseases, Department of Internal Medicine, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Miguel A Medina
- Division of Infectious Diseases, Department of Internal Medicine, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Cosmina Gingaras
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Petri Urvil
- Texas Children׳s Microbiome Center, Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX, USA
| | - Xiaoying Yu
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Chi Nguyen
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Parag Mahale
- Division of Infectious Diseases, Department of Internal Medicine, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Lin Lin
- Division of Infectious Diseases, Department of Internal Medicine, University of Texas Health Science Center at Houston, Houston, TX, USA
| | | | - Joern E Schmitz
- Center for Virology and Vaccine Research, Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Jason T Kimata
- Department of Molecular Virology & Microbiology, Baylor College of Medicine, Houston, TX, USA
| | - Tor C Savidge
- Texas Children׳s Microbiome Center, Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX, USA
| | - Dorothy E Lewis
- Division of Infectious Diseases, Department of Internal Medicine, University of Texas Health Science Center at Houston, Houston, TX, USA.
| |
Collapse
|
19
|
Liu A, Yang Y, Liu L, Meng Z, Li L, Qiu C, Xu J, Zhang X. Differential compartmentalization of HIV-targeting immune cells in inner and outer foreskin tissue. PLoS One 2014; 9:e85176. [PMID: 24454812 PMCID: PMC3893184 DOI: 10.1371/journal.pone.0085176] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2013] [Accepted: 11/22/2013] [Indexed: 11/18/2022] Open
Abstract
Ex vivo foreskin models have demonstrated that inner foreskin is more susceptible to HIV-1 infection than outer foreskin. In the present study we characterized the compartition of HIV-1 target cells and quantified these cells in the epidermis and dermis of inner and outer foreskins using immunohistochemistry and flow cytometry. Our data showed that the epidermis of the inner foreskin was more enriched with CD4+ T cells and Langerhans cells (LCs), with the co-expression of CCR5 and α4β7 receptors, than the outer foreskin. Interestingly, the vast majority of CD4+ T cells and LCs expressed CCR5, but not CXCR4, indicating that the inner foreskin might capture and transmit R5-tropic HIV strains more efficiently. In addition, lymphoid aggregates, composed of T cells, macrophages and dendritic cells (DCs) in the dermis, were closer to the epithelial surface in the inner foreskin than in the outer foreskin. As dendritic cells are able to capture and pass HIV particles to susceptible target cells, HIV may be able to more efficiently infect the inner foreskin by hijacking the augmented immune communication pathways in this tissue. After the inoculation of HIV-1 particles in a foreskin explant culture model, the level of p24 antigen in the supernatant from the inner foreskin was slightly higher than that from the outer foreskin, although this difference was not significant. The present study is the first to employ both CCR5 and α4β7 to identify HIV target cells in the foreskin. Our data demonstrated that the inner foreskin was more enriched with HIV target immune cells than the outer foreskin, and this tissue was structured for efficient communication among immune cells that may promote HIV transmission and replication. In addition, our data suggests the R5-tropism of HIV sexual transmission is likely shaped through the inherent receptor composition on HIV target cells in the mucosa.
Collapse
Affiliation(s)
- Aiping Liu
- Shanghai Public Health Clinical Center and Institutes of Biomedical Sciences, Key Laboratory of Medical Molecular Virology, Shanghai Medical College of Fudan University, Shanghai, China
| | - Yu Yang
- Shanghai Public Health Clinical Center and Institutes of Biomedical Sciences, Key Laboratory of Medical Molecular Virology, Shanghai Medical College of Fudan University, Shanghai, China
| | - Lu Liu
- Shanghai Public Health Clinical Center and Institutes of Biomedical Sciences, Key Laboratory of Medical Molecular Virology, Shanghai Medical College of Fudan University, Shanghai, China
| | - Zhefeng Meng
- Shanghai Public Health Clinical Center and Institutes of Biomedical Sciences, Key Laboratory of Medical Molecular Virology, Shanghai Medical College of Fudan University, Shanghai, China
| | - Liangzhu Li
- Shanghai Public Health Clinical Center and Institutes of Biomedical Sciences, Key Laboratory of Medical Molecular Virology, Shanghai Medical College of Fudan University, Shanghai, China
| | - Chao Qiu
- Shanghai Public Health Clinical Center and Institutes of Biomedical Sciences, Key Laboratory of Medical Molecular Virology, Shanghai Medical College of Fudan University, Shanghai, China
| | - Jianqing Xu
- Shanghai Public Health Clinical Center and Institutes of Biomedical Sciences, Key Laboratory of Medical Molecular Virology, Shanghai Medical College of Fudan University, Shanghai, China
- * E-mail: (JX); (XZ)
| | - Xiaoyan Zhang
- Shanghai Public Health Clinical Center and Institutes of Biomedical Sciences, Key Laboratory of Medical Molecular Virology, Shanghai Medical College of Fudan University, Shanghai, China
- * E-mail: (JX); (XZ)
| |
Collapse
|
20
|
Cheng HY, Wu R, Gebre AK, Hanna RN, Smith DJ, Parks JS, Ley K, Hedrick CC. Increased cholesterol content in gammadelta (γδ) T lymphocytes differentially regulates their activation. PLoS One 2013; 8:e63746. [PMID: 23704936 PMCID: PMC3660587 DOI: 10.1371/journal.pone.0063746] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2013] [Accepted: 04/04/2013] [Indexed: 11/18/2022] Open
Abstract
Gammadelta (γδ) T lymphocytes respond quickly upon antigen encounter to produce a cytokine response. In this study, we sought to understand how functions of γδ T cells are differentially regulated compared to αβ T cells. We found that cholesterol, an integral component of the plasma membrane and a regulator of TCR signaling, is increased in γδ T cells compared to αβ T cells, and modulates their function. Higher levels of activation markers, and increased lipid raft content in γδ cells suggest that γδ T cells are more activated. Cholesterol depletion effectively decreased lipid raft formation and activation of γδ T cells, indicating that increased cholesterol content contributes to the hyper-activated phenotype of γδ T cells, possibly through enhanced clustering of TCR signals in lipid rafts. TCR stimulation assays and western blotting revealed that instead of a lower TCR threshold, enhanced TCR signaling through ERK1/2 activation is likely the cause for high cholesterol-induced rapid activation and proliferation in γδ T cells. Our data indicate that cholesterol metabolism is differentially regulated in γδ T cells. The high intracellular cholesterol content leads to enhanced TCR signaling and increases activation and proliferation of γδ T cells.
Collapse
Affiliation(s)
- Hsin-Yuan Cheng
- Division of Inflammation Biology, La Jolla Institute for Allergy & Immunology, La Jolla, California, United States of America
| | - Runpei Wu
- Division of Inflammation Biology, La Jolla Institute for Allergy & Immunology, La Jolla, California, United States of America
| | - Abraham K. Gebre
- Department of Pathology/Lipid Sciences, Wake Forest School of Medicine, Winston-Salem, North Carolina, United States of America
| | - Richard N. Hanna
- Division of Inflammation Biology, La Jolla Institute for Allergy & Immunology, La Jolla, California, United States of America
| | - Dan J. Smith
- Targeson, Inc., San Diego, California, United States of America
| | - John S. Parks
- Department of Pathology/Lipid Sciences, Wake Forest School of Medicine, Winston-Salem, North Carolina, United States of America
| | - Klaus Ley
- Division of Inflammation Biology, La Jolla Institute for Allergy & Immunology, La Jolla, California, United States of America
| | - Catherine C. Hedrick
- Division of Inflammation Biology, La Jolla Institute for Allergy & Immunology, La Jolla, California, United States of America
- * E-mail:
| |
Collapse
|
21
|
Moreau M, Le Tortorec A, Deleage C, Brown C, Denis H, Satie AP, Bourry O, Deureuddre-Bosquet N, Roques P, Le Grand R, Dejucq-Rainsford N. Impact of short-term HAART initiated during the chronic stage or shortly post-exposure on SIV infection of male genital organs. PLoS One 2012; 7:e37348. [PMID: 22615988 PMCID: PMC3355136 DOI: 10.1371/journal.pone.0037348] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2012] [Accepted: 04/18/2012] [Indexed: 11/18/2022] Open
Abstract
Background The male genital tract is suspected to constitute a viral sanctuary as persistent HIV shedding is found in the semen of a subset of HIV-infected men receiving effective antiretroviral therapy (HAART). The origin of this persistent shedding is currently unknown. Phylogenetic studies indicated that HIV in semen from untreated men arises from local sources and/or passive diffusion from the blood. We previously demonstrated in human and macaque low levels and localized infection of several semen-producing organs by HIV/SIV. Using a macaque model, this study investigates the impact of short term HAART (2–4 weeks) initiated either during the asymptomatic chronic stage or 4 h post-intravenous inoculation of SIVmac251 on the infection of male genital organs. Methodology/Principal Findings Short term HAART during the chronic stage decreased blood viral load. No major impact of HAART was observed on SIV DNA levels in male genital organs using a sensitive nested PCR assay. Using in situ hybridization, SIV RNA+ cells were detected in all male genital tract organs from untreated and treated animals with undetectable blood viral load following HAART. Infected CD68+ myeloid cells and CD3+ T lymphocytes were detected pre- and post-HAART. In contrast, short term HAART initiated 4 h post-SIV exposure led to a drastic decrease of the male genital tissues infection, although it failed to prevent systemic infection. In both cases, HAART tended to decrease the number of CD3+ T cells in the male organs. Conclusions Our results indicate that the established infection of male genital organs is not greatly impacted by short term HAART, whereas the same treatment during pre-acute phase of the infection efficiently impairs viral dissemination to the male genital tract. Further investigations are now needed to determine whether infection of male genital organs is responsible for long term persistent HIV shedding in semen despite HAART.
Collapse
Affiliation(s)
- Marina Moreau
- INSERM U1085-IRSET, Université de Rennes 1, Institut Fédératif de Recherche 140, Rennes, France.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|