1
|
Vinh DC. Human immunity to fungal infections. J Exp Med 2025; 222:e20241215. [PMID: 40232283 PMCID: PMC11998751 DOI: 10.1084/jem.20241215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 01/07/2025] [Accepted: 03/31/2025] [Indexed: 04/16/2025] Open
Abstract
Fungi increasingly threaten health globally. Mycoses range from life-threatening, often iatrogenic conditions, to enigmatic syndromes occurring without apparent immunosuppression. Despite some recent advances in antifungal drug development, complementary therapeutic strategies are essential for addressing these opportunistic pathogens. One promising avenue is leveraging host immunity to combat fungal infections; this necessitates deeper understanding of the molecular immunology of human fungal susceptibility to differentiate beneficial versus harmful immunopathological responses. Investigating human models of fungal diseases in natural settings, particularly through genetic immunodeficiencies and ethnographic-specific genetic vulnerabilities, reveals crucial immune pathways essential for fighting various yeasts and molds. This review highlights the diversity in intrinsic fungal susceptibility across individuals and populations, through genetic- and autoantibody-mediated processes, complementing previous principles learned from animal studies and iatrogenic contexts. Improved understanding of human immunity to fungal diseases will facilitate the development of host-directed immunotherapies and targeted public health interventions, paving the way for precision medicine in fungal disease management.
Collapse
Affiliation(s)
- Donald C. Vinh
- Department of Medicine (Division of Infectious Diseases), McGill University Health Center, Montreal, Canada
- Department of OptiLab (Division of Medical Microbiology, Division of Molecular Genetics-Immunology), McGill University Health Center, Montreal, Canada
- Department of Human Genetics, McGill University, Montreal, Canada
- Center of Reference for Genetic Research in Infection and Immunity, McGill University Health Center Research Institute, Montreal, Canada
| |
Collapse
|
2
|
Bender MJ, Lucas CL. Decoding Immunobiology Through Genetic Errors of Immunity. Annu Rev Immunol 2025; 43:285-311. [PMID: 39952637 DOI: 10.1146/annurev-immunol-082323-124920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2025]
Abstract
Throughout biology, the pursuit of genotype-phenotype relationships has provided foundational knowledge upon which new concepts and hypotheses are built. Genetic perturbation, whether occurring naturally or in experimental settings, is the mainstay of mechanistic dissection in biological systems. The unbiased discovery of causal genetic lesions via forward genetics in patients who have a rare disease elucidates a particularly impactful set of genotype-phenotype relationships. Here, we review the field of genetic errors of immunity, often termed inborn errors of immunity (IEIs), in a framework aimed at highlighting the powerful real-world immunology insights provided collectively and individually by these (approximately) 500 disorders. By conceptualizing essential immune functions in a model of the adaptive arsenal of rapid defenses, we organize IEIs based on immune circuits in which sensors, relays, and executioners cooperate to carry out pathogen clearance functions in an effective yet regulated manner. We review and discuss findings from IEIs that not only reinforce known immunology concepts but also offer surprising phenotypes, prompting an opportunity to refine our understanding of immune system function.
Collapse
Affiliation(s)
- Mackenzie J Bender
- Department of Immunobiology, Yale University, New Haven, Connecticut, USA;
| | - Carrie L Lucas
- Department of Immunobiology, Yale University, New Haven, Connecticut, USA;
| |
Collapse
|
3
|
Napiórkowska-Baran K, Doligalska A, Drozd M, Czarnowska M, Łaszczych D, Dolina M, Szymczak B, Schmidt O, Bartuzi Z. Management of a Patient with Cardiovascular Disease Should Include Assessment of Primary and Secondary Immunodeficiencies: Part 1-Primary Immunodeficiencies. Healthcare (Basel) 2024; 12:1976. [PMID: 39408156 PMCID: PMC11476293 DOI: 10.3390/healthcare12191976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 09/30/2024] [Accepted: 10/02/2024] [Indexed: 10/20/2024] Open
Abstract
BACKGROUND Cardiovascular diseases are some of the most prevalent chronic diseases that generate not only high social but also economic costs. It is becoming increasingly crucial to take into account inborn errors of immunity (IEIs, formerly known as primary immunodeficiencies (PIDs)) and secondary immunodeficiencies (SIDs) in the diagnostic and therapeutic management of cardiac patients. The number of diseases classified as IEIs is on the rise, with a current total of 485. It is essential to pay attention not only to already confirmed conditions but also to symptoms suggestive of immunodeficiencies. OBJECTIVES The aim of this article is to present IEIs with cardiovascular symptoms that may cause or exacerbate cardiovascular disease, as well as diagnostic and therapeutic procedures. RESULTS It is becoming increasingly evident that immunodeficiencies can be responsible for certain cardiovascular conditions, their hastened progression, and difficulties in their control. CONCLUSIONS Early detection of deficiencies improves not only the quality and longevity of patients, but also allows for better control of cardiovascular diseases and even prevention of their occurrence.
Collapse
Affiliation(s)
- Katarzyna Napiórkowska-Baran
- Department of Allergology, Clinical Immunology and Internal Diseases, Collegium Medicum Bydgoszcz, Nicolaus Copernicus University Torun, 85-067 Bydgoszcz, Poland;
| | - Agata Doligalska
- Student Research Club of Clinical Immunology, Department of Allergology, Clinical Immunology and Internal Diseases, Collegium Medicum Bydgoszcz, Nicolaus Copernicus University Torun, 85-067 Bydgoszcz, Poland; (A.D.); (M.D.); (M.C.); (D.Ł.); (M.D.); (B.S.); (O.S.)
| | - Magdalena Drozd
- Student Research Club of Clinical Immunology, Department of Allergology, Clinical Immunology and Internal Diseases, Collegium Medicum Bydgoszcz, Nicolaus Copernicus University Torun, 85-067 Bydgoszcz, Poland; (A.D.); (M.D.); (M.C.); (D.Ł.); (M.D.); (B.S.); (O.S.)
| | - Marta Czarnowska
- Student Research Club of Clinical Immunology, Department of Allergology, Clinical Immunology and Internal Diseases, Collegium Medicum Bydgoszcz, Nicolaus Copernicus University Torun, 85-067 Bydgoszcz, Poland; (A.D.); (M.D.); (M.C.); (D.Ł.); (M.D.); (B.S.); (O.S.)
| | - Dariusz Łaszczych
- Student Research Club of Clinical Immunology, Department of Allergology, Clinical Immunology and Internal Diseases, Collegium Medicum Bydgoszcz, Nicolaus Copernicus University Torun, 85-067 Bydgoszcz, Poland; (A.D.); (M.D.); (M.C.); (D.Ł.); (M.D.); (B.S.); (O.S.)
| | - Marcin Dolina
- Student Research Club of Clinical Immunology, Department of Allergology, Clinical Immunology and Internal Diseases, Collegium Medicum Bydgoszcz, Nicolaus Copernicus University Torun, 85-067 Bydgoszcz, Poland; (A.D.); (M.D.); (M.C.); (D.Ł.); (M.D.); (B.S.); (O.S.)
| | - Bartłomiej Szymczak
- Student Research Club of Clinical Immunology, Department of Allergology, Clinical Immunology and Internal Diseases, Collegium Medicum Bydgoszcz, Nicolaus Copernicus University Torun, 85-067 Bydgoszcz, Poland; (A.D.); (M.D.); (M.C.); (D.Ł.); (M.D.); (B.S.); (O.S.)
| | - Oskar Schmidt
- Student Research Club of Clinical Immunology, Department of Allergology, Clinical Immunology and Internal Diseases, Collegium Medicum Bydgoszcz, Nicolaus Copernicus University Torun, 85-067 Bydgoszcz, Poland; (A.D.); (M.D.); (M.C.); (D.Ł.); (M.D.); (B.S.); (O.S.)
| | - Zbigniew Bartuzi
- Department of Allergology, Clinical Immunology and Internal Diseases, Collegium Medicum Bydgoszcz, Nicolaus Copernicus University Torun, 85-067 Bydgoszcz, Poland;
| |
Collapse
|
4
|
Dotta L, Todaro F, Baronio M, Giacomelli M, Pinelli M, Giambarda M, Brognoli B, Greco S, Rota F, Cortesi M, Soresina A, Moratto D, Tomasi C, Ferraro RM, Giliani S, Badolato R. Patients with STAT1 Gain-of-function Mutations Display Increased Apoptosis which is Reversed by the JAK Inhibitor Ruxolitinib. J Clin Immunol 2024; 44:85. [PMID: 38578354 PMCID: PMC10997685 DOI: 10.1007/s10875-024-01684-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 03/04/2024] [Indexed: 04/06/2024]
Abstract
INTRODUCTION The signal transducer and activator of transcription (STAT1) gain-of-function (GOF) syndrome accounts for most cases of chronic mucocutaneous candidiasis but is characterized by a broader clinical phenotype that may include bacterial, viral, or invasive fungal infections, autoimmunity, autoinflammatory manifestations, vascular complications, or malignancies. The severity of lymphopenia may vary and influence the infectious morbidity. METHODS In our cohort of seven STAT1-GOF patients, we investigated the mechanisms that may determine T lymphopenia, we characterized the interferon gene signature (IGS) and analyzed the effect of ruxolitinib in reverting the immune dysregulation. RESULTS STAT1-GOF patients exhibited increased T lymphocyte apoptosis that was significantly augmented in both resting conditions and following stimulation with mitogens and IFNα, as evaluated by flow cytometry by Annexin V/ Propidium iodide assay. The JAK inhibitor ruxolitinib significantly reduced the IFNα-induced hyperphosphorylation of STAT1 and reverted the stimulation-induced T-cell apoptosis, in vitro. In two adult STAT1-GOF patients, the JAKinib treatment ameliorated chronic mucocutaneous candidiasis and lymphopenia. Most STAT1-GOF patients, particularly those who had autoimmunity, presented increased IGS that significantly decreased in the two patients during ruxolitinib treatment. CONCLUSION In STAT1-GOF patients, T lymphocyte apoptosis is increased, and T lymphopenia may determine higher risk of severe infections. The JAKinib target therapy should be evaluated to treat severe chronic candidiasis and lymphopenia, and to downregulate the IFNs in patients with autoinflammatory or autoimmune manifestations.
Collapse
Affiliation(s)
- Laura Dotta
- Department of Clinical and Experimental Sciences, Department of Pediatrics, University of Brescia, ASST Spedali Civili of Brescia, Brescia, Italy.
| | - Francesca Todaro
- Angelo Nocivelli Institute for Molecular Medicine, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Manuela Baronio
- Department of Clinical and Experimental Sciencies, University of Brescia, Brescia, Italy
| | - Mauro Giacomelli
- Angelo Nocivelli Institute for Molecular Medicine, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Marinella Pinelli
- Angelo Nocivelli Institute for Molecular Medicine, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Martina Giambarda
- Department of Pediatrics, ASST Spedali Civili of Brescia and University of Brescia, Brescia, Italy
| | - Beatrice Brognoli
- Department of Pediatrics, ASST Spedali Civili of Brescia and University of Brescia, Brescia, Italy
| | - Silvia Greco
- Department of Pediatrics, ASST Spedali Civili of Brescia and University of Brescia, Brescia, Italy
| | - Francesca Rota
- Department of Pediatrics, ASST Spedali Civili of Brescia and University of Brescia, Brescia, Italy
| | - Manuela Cortesi
- Department of Pediatrics, ASST Spedali Civili of Brescia and University of Brescia, Brescia, Italy
| | - Annarosa Soresina
- Department of Pediatrics, ASST Spedali Civili of Brescia and University of Brescia, Brescia, Italy
| | - Daniele Moratto
- Angelo Nocivelli Institute for Molecular Medicine, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Cesare Tomasi
- Department of Clinical and Experimental Sciences, Department of Pediatrics, University of Brescia, ASST Spedali Civili of Brescia, Brescia, Italy
| | - Rosalba Monica Ferraro
- Angelo Nocivelli Institute for Molecular Medicine, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Silvia Giliani
- Angelo Nocivelli Institute for Molecular Medicine, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Raffaele Badolato
- Department of Clinical and Experimental Sciences, Department of Pediatrics, University of Brescia, ASST Spedali Civili of Brescia, Brescia, Italy
| |
Collapse
|
5
|
Asano T, Noma K, Mizoguchi Y, Karakawa S, Okada S. Human STAT1 gain of function with chronic mucocutaneous candidiasis: A comprehensive review for strengthening the connection between bedside observations and laboratory research. Immunol Rev 2024; 322:81-97. [PMID: 38084635 DOI: 10.1111/imr.13300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 11/28/2023] [Accepted: 11/30/2023] [Indexed: 03/20/2024]
Abstract
Germline human heterozygous STAT1 gain-of-function (GOF) variants were first discovered a common cause of chronic mucocutaneous candidiasis (CMC) in 2011. Since then, numerous STAT1 GOF variants have been identified. A variety of clinical phenotypes, including fungal, viral, and bacterial infections, endocrine disorders, autoimmunity, malignancy, and aneurysms, have recently been revealed for STAT1 GOF variants, which has led to the expansion of the clinical spectrum associated with STAT1 GOF. Among this broad range of complications, it has been determined that invasive infections, aneurysms, and malignancies are poor prognostic factors for STAT1 GOF. The effectiveness of JAK inhibitors as a therapeutic option has been established, although further investigation of their long-term utility and side effects is needed. In contrast to the advancements in treatment options, the precise molecular mechanism underlying STAT1 GOF remains undetermined. Two primary hypotheses for this mechanism involve impaired STAT1 dephosphorylation and increased STAT1 protein levels, both of which are still controversial. A precise understanding of the molecular mechanism is essential for not only advancing diagnostics but also developing therapeutic interventions. Here, we provide a comprehensive review of STAT1 GOF with the aim of establishing a stronger connection between bedside observations and laboratory research.
Collapse
Affiliation(s)
- Takaki Asano
- Department of Pediatrics, Hiroshima University Graduate School of Biomedical and Health Science, Hiroshima, Japan
- Department of Genetics and Cell Biology, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima, Japan
| | - Kosuke Noma
- Department of Pediatrics, Hiroshima University Graduate School of Biomedical and Health Science, Hiroshima, Japan
| | - Yoko Mizoguchi
- Department of Pediatrics, Hiroshima University Graduate School of Biomedical and Health Science, Hiroshima, Japan
| | - Shuhei Karakawa
- Department of Pediatrics, Hiroshima University Graduate School of Biomedical and Health Science, Hiroshima, Japan
| | - Satoshi Okada
- Department of Pediatrics, Hiroshima University Graduate School of Biomedical and Health Science, Hiroshima, Japan
| |
Collapse
|
6
|
Hu Q, Bian Q, Rong D, Wang L, Song J, Huang HS, Zeng J, Mei J, Wang PY. JAK/STAT pathway: Extracellular signals, diseases, immunity, and therapeutic regimens. Front Bioeng Biotechnol 2023; 11:1110765. [PMID: 36911202 PMCID: PMC9995824 DOI: 10.3389/fbioe.2023.1110765] [Citation(s) in RCA: 117] [Impact Index Per Article: 58.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 02/13/2023] [Indexed: 02/25/2023] Open
Abstract
Janus kinase/signal transduction and transcription activation (JAK/STAT) pathways were originally thought to be intracellular signaling pathways that mediate cytokine signals in mammals. Existing studies show that the JAK/STAT pathway regulates the downstream signaling of numerous membrane proteins such as such as G-protein-associated receptors, integrins and so on. Mounting evidence shows that the JAK/STAT pathways play an important role in human disease pathology and pharmacological mechanism. The JAK/STAT pathways are related to aspects of all aspects of the immune system function, such as fighting infection, maintaining immune tolerance, strengthening barrier function, and cancer prevention, which are all important factors involved in immune response. In addition, the JAK/STAT pathways play an important role in extracellular mechanistic signaling and might be an important mediator of mechanistic signals that influence disease progression, immune environment. Therefore, it is important to understand the mechanism of the JAK/STAT pathways, which provides ideas for us to design more drugs targeting diseases based on the JAK/STAT pathway. In this review, we discuss the role of the JAK/STAT pathway in mechanistic signaling, disease progression, immune environment, and therapeutic targets.
Collapse
Affiliation(s)
- Qian Hu
- Department of Pharmacy, School of Medicine, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, China.,Oujiang Laboratory, Key Laboratory of Alzheimer's Disease of Zhejiang Province, Institute of Aging, Wenzhou Medical University, Wenzhou, China.,Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Pharmacogenetics, Institute of Clinical Pharmacology, Central South University, Changsha, China
| | - Qihui Bian
- Oujiang Laboratory, Key Laboratory of Alzheimer's Disease of Zhejiang Province, Institute of Aging, Wenzhou Medical University, Wenzhou, China
| | - Dingchao Rong
- Department of Orthopaedic Surgery, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Leiyun Wang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Pharmacogenetics, Institute of Clinical Pharmacology, Central South University, Changsha, China.,Department of Pharmacy, Wuhan First Hospital, Wuhan, China
| | - Jianan Song
- Oujiang Laboratory, Key Laboratory of Alzheimer's Disease of Zhejiang Province, Institute of Aging, Wenzhou Medical University, Wenzhou, China
| | - Hsuan-Shun Huang
- Department of Research, Center for Prevention and Therapy of Gynecological Cancers, Buddhist Tzu Chi General Hospital, Hualien, Taiwan
| | - Jun Zeng
- Department of Thoracic Surgery, Xiangya Hospital, Central South University, Changsha, China
| | - Jie Mei
- Oujiang Laboratory, Key Laboratory of Alzheimer's Disease of Zhejiang Province, Institute of Aging, Wenzhou Medical University, Wenzhou, China.,Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Pharmacogenetics, Institute of Clinical Pharmacology, Central South University, Changsha, China
| | - Peng-Yuan Wang
- Oujiang Laboratory, Key Laboratory of Alzheimer's Disease of Zhejiang Province, Institute of Aging, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
7
|
Bruno M, Davidson L, Koenen HJPM, van den Reek JMPA, van Cranenbroek B, de Jong EMGJ, van de Veerdonk FL, Kullberg BJ, Netea MG. Immunological effects of anti-IL-17/12/23 therapy in patients with psoriasis complicated by Candida infections. J Invest Dermatol 2022; 142:2929-2939.e8. [PMID: 35662644 DOI: 10.1016/j.jid.2022.05.1083] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 05/08/2022] [Accepted: 05/24/2022] [Indexed: 12/12/2022]
Abstract
Biologics that block the T-helper-17 pathway are very effective in the treatment of psoriasis and other inflammatory diseases. However, interleukin-17 is also crucial for antifungal host defense, and clinical trial data suggest an increase in the incidence of Candida infections during IL-17 inhibitor (IL-17i) therapy. We investigated the innate and adaptive immune responses of psoriasis patients with a history of skin and/or mucosal candidiasis during IL-17i or IL-12/23i therapy, comparing those responses to healthy controls. Psoriasis patients with IL-17i showed significantly lower CD4+Th1-like (CCR6-CXCR3+CCR4-) and Th1Th17-like (CD4+CCR6+CXCR3+CCR4-) cell percentages. Patient cells stimulated with Candida albicans produced significantly lower IL-6 in the IL-12/23i group and IL-1β production in the IL-17i group, while the release of TNF-α and ROS was similar between patients and controls. IFN-γ and IL-10 production in response to several stimuli after 7 days was particularly decreased in patients receiving IL-17i therapy. Finally, after stimulation with the polarizing cytokines IL-1β and IL-23, the Th17 cytokine response was significantly lower in the IL-17i patient group. These innate and adaptive immune response defects can diminish antifungal host immune response and thereby increase susceptibility to candidiasis in patients treated with IL-17i or IL-12/23i.
Collapse
Affiliation(s)
- Mariolina Bruno
- Radboud University Medical Center Center for Infectious Diseases (RCI), Department of Internal Medicine, Radboud University Medical Center, Nijmegen, the Netherlands; Department of Internal Medicine, Radboud University Medical Center, Nijmegen, the Netherlands.
| | - Linda Davidson
- Radboud University Medical Center Center for Infectious Diseases (RCI), Department of Internal Medicine, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Hans J P M Koenen
- Laboratory Medical Immunology, Radboud University Medical Center, the Netherlands
| | | | - Bram van Cranenbroek
- Laboratory Medical Immunology, Radboud University Medical Center, the Netherlands
| | - Elke M G J de Jong
- Department of Dermatology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Frank L van de Veerdonk
- Radboud University Medical Center Center for Infectious Diseases (RCI), Department of Internal Medicine, Radboud University Medical Center, Nijmegen, the Netherlands; Department of Internal Medicine, Radboud University Medical Center, Nijmegen, the Netherlands; Radboud Center for Infectious Disease (RCI), Radboud University Medical Center, Nijmegen, the Netherlands
| | - Bart-Jan Kullberg
- Radboud University Medical Center Center for Infectious Diseases (RCI), Department of Internal Medicine, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Mihai G Netea
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, the Netherlands; Radboud Center for Infectious Disease (RCI), Radboud University Medical Center, Nijmegen, the Netherlands; Department of Immunology and Metabolism, Life and Medical Sciences Institute (LIMES), University of Bonn, Bonn, Germany
| |
Collapse
|
8
|
Berthelot JM, Darrieutort-Laffite C, Trang C, Maugars Y, Le Goff B. Contribution of mycobiota to the pathogenesis of spondyloarthritis. Joint Bone Spine 2021; 88:105245. [PMID: 34166798 DOI: 10.1016/j.jbspin.2021.105245] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 06/09/2021] [Indexed: 12/18/2022]
Abstract
This review lists current evidences for a contribution of gut mycobiota to the pathogenesis of SpA and related conditions. Gut mycobiota has a small size as compared to bacterial microbiota, but an even greater inter- and intra-individual variability. Although most fungi (brought by food or air) are only transitory present, a core mycobiota of gut resident fungi exists, and interplays with bacteria in a complex manner. A dysbiosis of this gut mycobiota has been observed in Crohn's disease and sclerosing cholangitis, with decreased proportion of Saccharomyces cerevisiae and outgrowth of more pathogenic gut fungi. Fungal-induced lower number of commensal gut bacteria can promote translocation of some bacterial/fungal antigens through mucosae, and live fungi can also cross the epithelial border in Crohn's disease. This dysbiosis also lower the ability of bacteria to metabolize tryptophan into regulatory metabolites, consequently enhancing tryptophan metabolism within human cells, which might contribute to fatigue. Translocation of mycobiotal antigens like curdlan (beta-glucan), which plays a major role in the pathogenesis of SpA in the SGK mice, has been observed in humans. This translocation of fungal antigens in human SpA might account for the anti-Saccharomyces antibodies found in this setting. Contribution of fungal antigens to psoriasis and hidradenitis suppurativa would fit with the preferential homing of fungi in the skin area most involved in those conditions. Fungal antigens also possess autoimmune uveitis-promoting function. As genes associated with SpA (CARD9 and IL23R) strongly regulate the innate immune response against fungi, further studies on fungi contribution to SpA are needed.
Collapse
Affiliation(s)
- Jean-Marie Berthelot
- Service de rhumatologie, Hôtel-Dieu, CHU de Nantes, place Alexis-Ricordeau, 44093 Nantes cedex 01, France.
| | | | - Caroline Trang
- Service de gastro-entérologie, Hôtel-Dieu, CHU de Nantes, place Alexis-Ricordeau, 44093 Nantes cedex 01, France
| | - Yves Maugars
- Service de rhumatologie, Hôtel-Dieu, CHU de Nantes, place Alexis-Ricordeau, 44093 Nantes cedex 01, France
| | - Benoît Le Goff
- Service de rhumatologie, Hôtel-Dieu, CHU de Nantes, place Alexis-Ricordeau, 44093 Nantes cedex 01, France
| |
Collapse
|
9
|
Mizoguchi Y, Okada S. Inborn errors of STAT1 immunity. Curr Opin Immunol 2021; 72:59-64. [PMID: 33839590 DOI: 10.1016/j.coi.2021.02.009] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 02/27/2021] [Accepted: 02/27/2021] [Indexed: 02/01/2023]
Abstract
Signal transducer and activator of transcription 1 (STAT1) is a latent cytoplasmic transcription factor that is activated by multiple stimuli, including type I, II, and III interferons and interleukin-27. Inborn errors of human STAT1 immunity underlie 4 distinct disorders: autosomal recessive (AR) complete STAT1 deficiency, AR partial STAT1 deficiency, autosomal dominant (AD) STAT1 deficiency, and AD STAT1 gain-of-function. Each disease presents distinct clinical manifestations, excluding the difference in two AR STAT1 deficiencies, which are mainly explained by severity. This observation reflects the multiple and complex roles of STAT1 and how STAT1-mediated signaling is finely tuned in host immune systems.
Collapse
Affiliation(s)
- Yoko Mizoguchi
- Department of Pediatrics, Hiroshima University, Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
| | - Satoshi Okada
- Department of Pediatrics, Hiroshima University, Graduate School of Biomedical and Health Sciences, Hiroshima, Japan.
| |
Collapse
|
10
|
Sharma B, Nonzom S. Superficial mycoses, a matter of concern: Global and Indian scenario-an updated analysis. Mycoses 2021; 64:890-908. [PMID: 33665915 DOI: 10.1111/myc.13264] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 02/25/2021] [Accepted: 02/26/2021] [Indexed: 01/19/2023]
Abstract
Superficial mycoses of skin, nails and hair are among the common fungal infections. They are caused by dermatophytes, non-dermatophyte moulds, yeasts and yeast-like fungi. Such fungal infections are widespread all over the world and are predominant in tropical as well as subtropical regions. Environmental factors, such as warm, humid and pitiable hygienic conditions, are conducive for their growth and proliferation. Although it does not cause mortality, it is known to be associated with excessive morbidity which may be psychological or physical. This affects the quality of life of the infected individuals which leads to a negative impact on their occupational, emotional and social status. Such infections are increasing on a global scale and, therefore, are of serious concern worldwide. This review article covers the global and Indian scenario of superficial mycoses taking into account the historical background, aetiological agents, prevalence, cultural and environmental factors, risk factors, pathogenesis and hygienic practices for the prevention of superficial mycoses.
Collapse
Affiliation(s)
- Bharti Sharma
- Department of Botany, University of Jammu, Jammu, Jammu and Kashmir, India
| | - Skarma Nonzom
- Department of Botany, University of Jammu, Jammu, Jammu and Kashmir, India
| |
Collapse
|
11
|
Ostadi V, Sherkat R, Migaud M, Modaressadeghi SM, Casanova JL, Puel A, Nekooie-Marnany N, Ganjalikhani-Hakemi M. Functional analysis of two STAT1 gain-of-function mutations in two Iranian families with autosomal dominant chronic mucocutaneous candidiasis. Med Mycol 2021; 59:180-188. [PMID: 32526033 DOI: 10.1093/mmy/myaa043] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2019] [Revised: 01/31/2020] [Accepted: 05/09/2020] [Indexed: 02/05/2023] Open
Abstract
Candidiasis is characterized by susceptibility to recurrent or persistent infections caused by Candida spp., typically Candida albicans, of cutaneous and mucosal surfaces. In this report, function and frequency of Th17 cells as well as genetics of patients susceptible to mucocutaneous candidiasis were studied. For patients, T-cell proliferation tests in response to Candida antigen, Th17 cell proportions, and STAT1 phosphorylation were evaluated through flow cytometry. Expression of IL17A, IL17F and IL22 genes were measured by real-time quantitative PCR. At the same time, whole exome sequencing was performed for all patients. We identified two heterozygous substitutions, one: c.821G > A (p. R274Q) was found in a multiplex family with three individuals affected, the second one: c.812A > C (p. Q271P) was found in a sporadic case. Both mutations are located in the coiled-coil domain (CCD) of STAT1. The frequency of Th17 cells, IL17A, IL17F, and IL22 gene expression in patients' peripheral blood mononuclear cells (PBMCs), and T-cell proliferation to Candida antigens were significantly reduced in the patients as compared to healthy controls. An increased STAT1 phosphorylation was observed in patients' PBMCs upon interferon (IFN)-γ stimulation as compared to healthy controls. We report two different but neighboring heterozygous mutations, located in exon 10 of the STAT1 gene, in four Iranian patients with CMC, one of whom also had hypothyroidism. These mutations were associated with impaired T cell proliferation to Candida antigen, low Th17 cell proportions, and increased STAT1 phosphorylation upon IFN-γ. We suggest that interfering with STAT1 phosphorylation might be a promising way for potential therapeutic measurements for such patients.
Collapse
Affiliation(s)
- Vajiheh Ostadi
- Department of Immunology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Roya Sherkat
- Acquired Immunodeficiency Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Melanie Migaud
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Necker Medical School, INSERM U1163 and University Paris Descartes, Sorbonne Paris Cité, Imagine Institute, Paris, France, EU
| | | | - Jean-Laurent Casanova
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Necker Medical School, INSERM U1163 and University Paris Descartes, Sorbonne Paris Cité, Imagine Institute, Paris, France, EU
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, the Rockefeller University, New York, New York, USA
- Howard Hughes Medical Institute, New York, New York, USA
- Pediatric Hematology-Immunology Unit, Assistance Publique-Hôpitaux de Paris AP-HP, Necker Hospital for Sick Children, Paris, France, EU
| | - Anne Puel
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Necker Medical School, INSERM U1163 and University Paris Descartes, Sorbonne Paris Cité, Imagine Institute, Paris, France, EU
| | - Nioosha Nekooie-Marnany
- Acquired Immunodeficiency Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mazdak Ganjalikhani-Hakemi
- Department of Immunology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
- Acquired Immunodeficiency Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
12
|
Liu N, Zhao FY, Xu XJ. Hemophagocytic lymphohistiocytosis caused by STAT1 gain-of-function mutation is not driven by interferon-γ: A case report. World J Clin Cases 2020; 8:6130-6135. [PMID: 33344614 PMCID: PMC7723692 DOI: 10.12998/wjcc.v8.i23.6130] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 10/13/2020] [Accepted: 10/26/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Hemophagocytic lymphohistiocytosis (HLH) is a life-threatening hyper-inflammatory syndrome caused by many genetic defects. STAT1 is a DNA-binding factor that regulates gene transcription. HLH caused by STAT1 gain-of-function (GOF) mutations has rarely been reported and its clinical manifestations and mechanisms are not clearly defined.
CASE SUMMARY A 2-year-old boy presented to our hospital with recurrent fever for > 20 d. The patient had a personal history of persistent oral candidiasis and inoculation site infection during the past 2 years. Hepatosplenomegaly was noted. Complete blood cell count showed severe anemia, thrombocytopenia and neutropenia. Other laboratory tests showed liver dysfunction, hypertriglyceridemia and decreased fibrinogen. Hemophagocytosis was found in the bone marrow. Chest computed tomography showed a cavitary lesion. Tests for fungal infection were positive. Serum T helper (Th) 1/Th2 cytokine determination demonstrated moderately elevated levels of interleukin (IL)-6 and IL-10 with normal interferon (IFN)-γ concentration. Mycobacterium bovis was identified in bronchoalveolar lavage fluid by polymerase chain reaction. Genetic testing identified a heterozygous mutation of c.1154C>T causing a T385M amino acid substitution in STAT1. Despite antibacterial and antifungal therapy, the febrile disease was not controlled. The signs of HLH were relieved after HLH-94 protocol administration, except fever. Fever was not resolved until he received anti-tuberculosis therapy. Hematopoietic stem cell transplantation was refused and the patient died six months later due to severe pneumonia.
CONCLUSION Patients with STAT1 GOF mutation have broad clinical manifestations and may develop HLH. This form of HLH presents with normal IFN-γ level without cytokine storm.
Collapse
Affiliation(s)
- Nan Liu
- Department of Hematology-oncology, Children’s Hospital, Zhejiang University School of Medicine, Hangzhou 310003, Zhejiang Province, China
| | - Fen-Ying Zhao
- Department of Hematology-oncology, Children’s Hospital, Zhejiang University School of Medicine, Hangzhou 310003, Zhejiang Province, China
| | - Xiao-Jun Xu
- Department of Hematology-oncology, Children’s Hospital, Zhejiang University School of Medicine, Hangzhou 310003, Zhejiang Province, China
| |
Collapse
|
13
|
Liu N, Zhao FY, Xu XJ. Hemophagocytic lymphohistiocytosis caused by STAT1 gain-of-function mutation is not driven by interferon-γ: A case report. World J Clin Cases 2020. [DOI: 10.12998/wjcc.v8.i23.6123] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
|
14
|
Staab J, Schwämmle T, Meyer T. The pathogenic T387A missense mutation in the gene encoding signal transducer and activator of transcription 1 exhibits a differential gene expression profile. Mol Immunol 2020; 128:79-88. [PMID: 33096415 DOI: 10.1016/j.molimm.2020.10.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 10/07/2020] [Indexed: 11/17/2022]
Abstract
Heterozygous gain-of-function (GOF) mutations in the interferon-driven transcription factor STAT1 (signal transducer and activator of transcription 1) cause chronic mucocutaneous candidiasis (CMC). In this study, we characterized the molecular basis of a CMC-associated missense mutation by introducing a threonine-to-alanine exchange in the STAT1 DNA-binding domain at position 387. This substitution had previously been described in a CMC patient with suppurative eyelid infection and cutaneous abscesses, which are both unusual symptoms in this immunodeficiency. The STAT1-T387A mutant generated was compared to the wild-type protein and, in addition, to the missense mutant in the neighbouring position 386. Our results showed that the T387A mutant displayed distinct properties different from the wild-type molecule, namely elevated levels of tyrosine phosphorylation in conjunction with increased DNA-binding activity, hyperactive transcriptional regulation, and prolonged nuclear accumulation. The elevated tyrosine phosphorylation of the T387A mutant did not result in an increased mRNA production above the level of the wild-type molecule for all transcripts tested, indicating that the transcriptional activity of this mutant is largely gene-dependent. Nonetheless, these data demonstrate that the pathogenic T387A mutation associated with an atypical CMC symptomatology is biochemically similar to other well-characterized GOF mutants, while the H386A mutant was indistinguishable from the wild-type molecule. Our findings are in line with the assumption that the phenotype of this dominant STAT1 GOF mutation probably results from a disturbed shift in the equilibrium between the parallel and antiparallel dimer conformation, which is required for physiological gene activation.
Collapse
Affiliation(s)
- Julia Staab
- Department of Psychosomatic Medicine and Psychotherapy, University of Göttingen, Göttingen, Germany; German Center for Cardiovascular Research (DZHK), partner site Göttingen, Germany
| | - Till Schwämmle
- Department of Psychosomatic Medicine and Psychotherapy, University of Göttingen, Göttingen, Germany; Otto Warburg Laboratories, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Thomas Meyer
- Department of Psychosomatic Medicine and Psychotherapy, University of Göttingen, Göttingen, Germany; German Center for Cardiovascular Research (DZHK), partner site Göttingen, Germany.
| |
Collapse
|
15
|
Okada S, Asano T, Moriya K, Boisson-Dupuis S, Kobayashi M, Casanova JL, Puel A. Human STAT1 Gain-of-Function Heterozygous Mutations: Chronic Mucocutaneous Candidiasis and Type I Interferonopathy. J Clin Immunol 2020; 40:1065-1081. [PMID: 32852681 DOI: 10.1007/s10875-020-00847-x] [Citation(s) in RCA: 105] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 08/18/2020] [Indexed: 12/12/2022]
Abstract
Heterozygous gain-of-function (GOF) mutations in STAT1 in patients with chronic mucocutaneous candidiasis (CMC) and hypothyroidism were discovered in 2011. CMC is the recurrent or persistent mucocutaneous infection by Candida fungi, and hypothyroidism results from autoimmune thyroiditis. Patients with these diseases develop other infectious diseases, including viral, bacterial, and fungal diseases, and other autoimmune manifestations, including enterocolitis, immune cytopenia, endocrinopathies, and systemic lupus erythematosus. STAT1-GOF mutations are highly penetrant with a median age at onset of 1 year and often underlie an autosomal dominant trait. As many as 105 mutations at 72 residues, including 65 recurrent mutations, have already been reported in more than 400 patients worldwide. The GOF mechanism involves impaired dephosphorylation of STAT1 in the nucleus. Patient cells show enhanced STAT1-dependent responses to type I and II interferons (IFNs) and IL-27. This impairs Th17 cell development, which accounts for CMC. The pathogenesis of autoimmunity likely involves enhanced type I IFN responses, as in other type I interferonopathies. The pathogenesis of other infections, especially those caused by intramacrophagic bacteria and fungi, which are otherwise seen in patients with diminished type II IFN immunity, has remained mysterious. The cumulative survival rates of patients with and without severe disease (invasive infection, cancer, and/or symptomatic aneurysm) at 60 years of age are 31% and 87%, respectively. Severe autoimmunity also worsens the prognosis. The treatment of patients with STAT1-GOF mutations who suffer from severe infectious and autoimmune manifestations relies on hematopoietic stem cell transplantation and/or oral JAK inhibitors.
Collapse
Affiliation(s)
- Satoshi Okada
- Department of Pediatrics, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan.
| | - Takaki Asano
- Department of Pediatrics, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA
| | - Kunihiko Moriya
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM UMR1163, Necker Hospital for Sick Children, Paris, France
- Imagine Institute, University of Paris, Paris, France
| | - Stephanie Boisson-Dupuis
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM UMR1163, Necker Hospital for Sick Children, Paris, France
- Imagine Institute, University of Paris, Paris, France
| | - Masao Kobayashi
- Department of Pediatrics, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
| | - Jean-Laurent Casanova
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM UMR1163, Necker Hospital for Sick Children, Paris, France
- Imagine Institute, University of Paris, Paris, France
- Pediatric Hematology-Immunology Unit, Necker Hospital for Sick Children, Paris, France
- Howard Hughes Medical Institute, New York, NY, USA
| | - Anne Puel
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA.
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM UMR1163, Necker Hospital for Sick Children, Paris, France.
- Imagine Institute, University of Paris, Paris, France.
| |
Collapse
|
16
|
Zhang MR, Zhao F, Wang S, Lv S, Mou Y, Yao CL, Zhou Y, Li FQ. Molecular mechanism of azoles resistant Candida albicans in a patient with chronic mucocutaneous candidiasis. BMC Infect Dis 2020; 20:126. [PMID: 32046674 PMCID: PMC7014776 DOI: 10.1186/s12879-020-4856-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 02/06/2020] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND More and more azole-resistant strains emerged through the development of acquired resistance and an epidemiological shift towards inherently less susceptible species. The mechanisms of azoles resistance of Candida albicans is very complicated. In this study, we aim to investigate the mechanism of azole-resistant C. albicans isolated from the oral cavity of a patient with chronic mucocutaneous candidiasis (CMC). CASE PRESENTATION CMC diagnosis was given based on clinical manifestations, laboratory test findings and gene sequencing technique. Minimum inhibitory concentration (MIC) of the fungal isolate, obtained from oral cavity termed as CA-R, was obtained by in vitro anti-fungal drugs susceptibility test. To further investigate the resistant mechanisms, we verified the mutations of drug target genes (i.e. ERG11 and ERG3) by Sanger sequencing, and verified the over-expression of ERG11 and drug efflux genes (i.e. CDR1 and CDR2) by RT-PCR. A heterozygous mutation of c.1162A > G resulting in p.K388E was detected in STAT1 of the patient. The expression of CDR1 and CDR2 in CA-R was 4.28-fold and 5.25-fold higher than that of type strain SC5314, respectively. CONCLUSIONS Up-regulation of CDR1 and CDR2 was mainly responsible for the resistance of CA-R. For CMC or other immunodeficiency patients, drug resistance monitoring is necessary.
Collapse
Affiliation(s)
- Ming-Rui Zhang
- Department of Dermatology, the Second Hospital of Jilin University, No. 218, Ziqiang street, Nanguan district, Changchun, 130000, China
| | - Fei Zhao
- National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, State Key Laboratory of Infectious Disease Prevention and Control, Beijing, China
| | - Shuang Wang
- Department of Dermatology, the Second Hospital of Jilin University, No. 218, Ziqiang street, Nanguan district, Changchun, 130000, China
| | - Sha Lv
- Department of Dermatology, the Second Hospital of Jilin University, No. 218, Ziqiang street, Nanguan district, Changchun, 130000, China
| | - Yan Mou
- Department of Dermatology, the Second Hospital of Jilin University, No. 218, Ziqiang street, Nanguan district, Changchun, 130000, China
| | - Chun-Li Yao
- Department of Dermatology, the Second Hospital of Jilin University, No. 218, Ziqiang street, Nanguan district, Changchun, 130000, China
| | - Ying Zhou
- Department of Dermatology, the Second Hospital of Jilin University, No. 218, Ziqiang street, Nanguan district, Changchun, 130000, China
| | - Fu-Qiu Li
- Department of Dermatology, the Second Hospital of Jilin University, No. 218, Ziqiang street, Nanguan district, Changchun, 130000, China.
| |
Collapse
|
17
|
Chen X, Xu Q, Li X, Wang L, Yang L, Chen Z, Zeng T, Xue X, Xu T, Wang Y, Jia Y, Zhao Q, Wu J, Liang F, Tang X, Yang J, An Y, Zhao X. Molecular and Phenotypic Characterization of Nine Patients with STAT1 GOF Mutations in China. J Clin Immunol 2019; 40:82-95. [DOI: 10.1007/s10875-019-00688-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 09/02/2019] [Indexed: 11/25/2022]
|
18
|
A Human STAT1 Gain-of-Function Mutation Impairs CD8 + T Cell Responses against Gammaherpesvirus 68. J Virol 2019; 93:JVI.00307-19. [PMID: 31315996 DOI: 10.1128/jvi.00307-19] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Accepted: 07/05/2019] [Indexed: 01/14/2023] Open
Abstract
Autosomal dominant STAT1 mutations in humans have been associated with chronic mucocutaneous candidiasis (CMC), as well as with increased susceptibility to herpesvirus infections. Prior studies have focused on mucosal and Th17-mediated immunity against Candida, but mechanisms of impaired antiviral immunity have not previously been examined. To begin to explore the mechanisms of STAT1-associated immunodeficiency against herpesviruses, we generated heterozygous STAT1 R274W knock-in mice that have a frequently reported STAT1 mutation associated in humans with susceptibility to herpesvirus infections. In primary macrophages and fibroblasts, we found that STAT1 R274W had no appreciable effect on cell-intrinsic immunity against herpes simplex virus 1 (HSV-1) or gammaherpesvirus 68 (γHV68) infection. However, intraperitoneal inoculation of mice with γHV68 was associated with impaired control of infection at day 14 in STAT1 R274W mice compared with that in wild-type (WT) littermate control animals. Infection of STAT1 R274W mice was associated with paradoxically decreased expression of IFN-stimulated genes (ISGs) and gamma interferon (IFN-γ), likely secondary to defective CD4+ and CD8+ T cell responses, including diminished numbers of antigen-specific CD8+ T cells. Viral pathogenesis studies in WT and STAT1 R274W mixed bone marrow chimeric mice revealed that the presence of WT leukocytes was sufficient to limit infection and that antigen-specific STAT1 R274W CD8+ T cell responses were impaired even in the presence of WT leukocytes. Thus, in addition to regulating Th17 responses against Candida, a STAT1 gain-of-function mutant impedes antigen-specific T cell responses against a common gammaherpesvirus in mice.IMPORTANCE Mechanisms of immunodeficiency related to STAT1 gain of function have not been previously studied in an animal model of viral pathogenesis. Using virological and immunological techniques, we examined the immune response to γHV68 in heterozygous mice that have an autosomal dominant mutation in the STAT1 coiled-coil domain (STAT1 R274W). We observed impaired control of infection, which was associated with diminished production of gamma interferon (IFN-γ), fewer effector CD4+ and CD8+ T cells, and a reduction in the number of antigen-specific CD8+ T cells. These findings indicate that a STAT1 gain-of-function mutation limits production of antiviral T cells, likely contributing to immunodeficiency against herpesviruses.
Collapse
|
19
|
Laurence M, Benito-León J, Calon F. Malassezia and Parkinson's Disease. Front Neurol 2019; 10:758. [PMID: 31396143 PMCID: PMC6667642 DOI: 10.3389/fneur.2019.00758] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2018] [Accepted: 07/01/2019] [Indexed: 12/14/2022] Open
Abstract
Parkinson's disease (PD) is a common debilitating neurodegenerative disease caused by a loss of dopamine neurons in the substantia nigra within the central nervous system (CNS). The process leading to this neuronal loss is poorly understood. Seborrheic dermatitis (SD) is a common benign inflammatory condition of the skin which mainly affects lipid-rich regions of the head and trunk. SD is caused by over proliferation of the lipophilic fungus Malassezia. PD and SD are strongly associated. The increased PD risk following an SD diagnosis (OR = 1.69, 95% CI 1.36, 2.1; p < 0.001) reported by Tanner and colleagues remains unexplained. Malassezia were historically considered commensals confined to the skin. However, many recent studies report finding Malassezia in internal organs, including the CNS. This raises the possibility that Malassezia might be directly contributing to PD. Several lines of evidence support this hypothesis. AIDS is causally associated with both parkinsonism and SD, suggesting that weak T cell-mediated control of commensal microbes such as Malassezia might contribute to both. Genetic polymorphisms associated with PD (LRRK2, GBA, PINK1, SPG11, SNCA) increase availability of lipids within human cells, providing a suitable environment for Malassezia. Four LRRK2 polymorphisms which increase PD risk also increase Crohn's disease risk; Crohn's disease is strongly associated with an immune response against fungi, particularly Malassezia. Finally, Malassezia hypha formation and melanin synthesis are stimulated by L-DOPA, which could promote Malassezia invasiveness of dopamine neurons, and contribute to the accumulation of melanin in these neurons. Although Malassezia's presence in the substantia nigra remains to be confirmed, if Malassezia play a role in PD etiology, antifungal drugs should be tested as a possible therapeutic intervention.
Collapse
Affiliation(s)
| | - Julián Benito-León
- Department of Neurology, University Hospital "12 de Octubre", Madrid, Spain.,Department of Medicine, Faculty of Medicine, Complutense University, Madrid, Spain.,Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas, Madrid, Spain
| | - Frédéric Calon
- Faculty of Pharmacy, Université Laval, Quebec City, QC, Canada.,Neurosciences Unit, CHU de Québec-Université Laval Research Center, Quebec City, QC, Canada
| |
Collapse
|
20
|
Kaleviste E, Saare M, Leahy TR, Bondet V, Duffy D, Mogensen TH, Jørgensen SE, Nurm H, Ip W, Davies EG, Sauer S, Syvänen AC, Milani L, Peterson P, Kisand K. Interferon signature in patients with STAT1 gain-of-function mutation is epigenetically determined. Eur J Immunol 2019; 49:790-800. [PMID: 30801692 DOI: 10.1002/eji.201847955] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Revised: 01/15/2019] [Accepted: 02/22/2019] [Indexed: 01/08/2023]
Abstract
STAT1 gain-of-function (GOF) variants lead to defective Th17 cell development and chronic mucocutaneous candidiasis (CMC), but frequently also to autoimmunity. Stimulation of cells with STAT1 inducing cytokines like interferons (IFN) result in hyperphosphorylation and delayed dephosphorylation of GOF STAT1. However, the mechanism how the delayed dephosphorylation exactly causes the increased expression of STAT1-dependent genes, and how the intracellular signal transduction from cytokine receptors is affected, remains unknown. In this study we show that the circulating levels of IFN-α were not persistently elevated in STAT1 GOF patients. Nevertheless, the expression of interferon signature genes was evident even in the patient with low or undetectable serum IFN-α levels. Chromatin immunoprecipitation (ChIP) experiments revealed that the active chromatin mark trimethylation of lysine 4 of histone 3 (H3K4me3), was significantly enriched in areas associated with interferon-stimulated genes in STAT1 GOF cells in comparison to cells from healthy donors. This suggests that the chromatin binding of GOF STAT1 variant promotes epigenetic changes compatible with higher gene expression and elevated reactivity to type I interferons, and possibly predisposes for interferon-related autoimmunity. The results also suggest that epigenetic rewiring may be responsible for treatment failure of Janus kinase 1/2 (JAK1/2) inhibitors in certain patients.
Collapse
Affiliation(s)
- Epp Kaleviste
- Department of Biomedicine, Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Mario Saare
- Department of Biomedicine, Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Timothy Ronan Leahy
- Department of Paediatric Immunology and Infectious Diseases, Our Lady's Children's Hospital, Crumlin, Dublin, Ireland
| | - Vincent Bondet
- Immunobiology of Dendritic Cells Unit, Inserm U1223, Institut Pasteur, Paris, France
| | - Darragh Duffy
- Immunobiology of Dendritic Cells Unit, Inserm U1223, Institut Pasteur, Paris, France
| | - Trine H Mogensen
- Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark.,Department of Biomedicine, Aarhus University, Aarhus, Denmark.,Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | | | - Helke Nurm
- Department of emergency care and acute infections, Tallinn Children's Hospital, Tallinn, Estonia
| | - Winnie Ip
- Great Ormond Street Hospital & UCL Great Ormond Street Institute of Child Health, London, United Kingdom
| | - E Graham Davies
- Great Ormond Street Hospital & UCL Great Ormond Street Institute of Child Health, London, United Kingdom
| | - Sascha Sauer
- Otto Warburg Laboratory, Max Planck Institute for Molecular Genetics, Berlin, Germany.,Laboratory of Functional Genomics, Nutrigenomics and Systems Biology, Max-Delbrück-Center for Molecular Medicine (BIMSB/BIH), Berlin, Germany
| | - Ann-Christine Syvänen
- Department of Medical Sciences, Molecular Medicine and Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Lili Milani
- Estonian Genome Center, University of Tartu, Tartu, Estonia
| | - Pärt Peterson
- Department of Biomedicine, Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Kai Kisand
- Department of Biomedicine, Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
| |
Collapse
|
21
|
Mogensen TH. IRF and STAT Transcription Factors - From Basic Biology to Roles in Infection, Protective Immunity, and Primary Immunodeficiencies. Front Immunol 2019; 9:3047. [PMID: 30671054 PMCID: PMC6331453 DOI: 10.3389/fimmu.2018.03047] [Citation(s) in RCA: 147] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Accepted: 12/10/2018] [Indexed: 12/11/2022] Open
Abstract
The induction and action of type I interferon (IFN) is of fundamental importance in human immune defenses toward microbial pathogens, particularly viruses. Basic discoveries within the molecular and cellular signaling pathways regulating type I IFN induction and downstream actions have shown the essential role of the IFN regulatory factor (IRF) and the signal transducer and activator of transcription (STAT) families, respectively. However, the exact biological and immunological functions of these factors have been most clearly revealed through the study of inborn errors of immunity and the resultant infectious phenotypes in humans. The spectrum of human inborn errors of immunity caused by mutations in IRFs and STATs has proven very diverse. These diseases encompass herpes simplex encephalitis (HSE) and severe influenza in IRF3- and IRF7/IRF9 deficiency, respectively. They also include Mendelian susceptibility to mycobacterial infection (MSMD) in STAT1 deficiency, through disseminated measles infection associated with STAT2 deficiency, and finally staphylococcal abscesses and chronic mucocutaneous candidiasis (CMC) classically described with Hyper-IgE syndrome (HIES) in the case of STAT3 deficiency. More recently, increasing focus has been on aspects of autoimmunity and autoinflammation playing an important part in many primary immunodeficiency diseases (PID)s, as exemplified by STAT1 gain-of-function causing CMC and autoimmune thyroiditis, as well as a recently described autoinflammatory syndrome with hypogammaglobulinemia and lymphoproliferation as a result of STAT3 gain-of-function. Here I review the infectious, inflammatory, and autoimmune disorders arising from mutations in IRF and STAT transcription factors in humans, highlightning the underlying molecular mechanisms and immunopathogenesis as well as the clinical/therapeutic perspectives of these new insights.
Collapse
MESH Headings
- Autoimmunity
- Candidiasis, Chronic Mucocutaneous/genetics
- Candidiasis, Chronic Mucocutaneous/immunology
- Candidiasis, Chronic Mucocutaneous/metabolism
- Encephalitis, Herpes Simplex/genetics
- Encephalitis, Herpes Simplex/immunology
- Encephalitis, Herpes Simplex/metabolism
- Humans
- Immunity, Innate
- Influenza, Human/genetics
- Influenza, Human/immunology
- Influenza, Human/metabolism
- Interferon Regulatory Factors/genetics
- Interferon Regulatory Factors/immunology
- Interferon Regulatory Factors/metabolism
- Interferon Type I/immunology
- Interferon Type I/metabolism
- Janus Kinases/metabolism
- Job Syndrome/genetics
- Job Syndrome/immunology
- Job Syndrome/metabolism
- Mutation
- Mycobacterium Infections/genetics
- Mycobacterium Infections/immunology
- Mycobacterium Infections/metabolism
- Receptor, Interferon alpha-beta/metabolism
- STAT Transcription Factors/genetics
- STAT Transcription Factors/immunology
- STAT Transcription Factors/metabolism
Collapse
Affiliation(s)
- Trine H. Mogensen
- Department of Infectious diseases, Aarhus University Hospital, Aarhus, Denmark
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| |
Collapse
|
22
|
Niehues H, Rösler B, van der Krieken DA, van Vlijmen-Willems IMJJ, Rodijk-Olthuis D, Peppelman M, Schalkwijk J, van den Bogaard EHJ, Zeeuwen PLJM, van de Veerdonk FL. STAT1 gain-of-function compromises skin host defense in the context of IFN-γ signaling. J Allergy Clin Immunol 2018; 143:1626-1629.e5. [PMID: 30576757 DOI: 10.1016/j.jaci.2018.11.033] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 11/09/2018] [Accepted: 11/16/2018] [Indexed: 11/17/2022]
Affiliation(s)
- Hanna Niehues
- Department of Dermatology, Radboud University Medical Center, Radboud Institute for Molecular Life Sciences, Nijmegen, The Netherlands
| | - Berenice Rösler
- Department of Internal Medicine, Radboud University Medical Center, Radboud Center for Infectious Diseases, Nijmegen, The Netherlands
| | - Danique A van der Krieken
- Department of Dermatology, Radboud University Medical Center, Radboud Institute for Molecular Life Sciences, Nijmegen, The Netherlands
| | - Ivonne M J J van Vlijmen-Willems
- Department of Dermatology, Radboud University Medical Center, Radboud Institute for Molecular Life Sciences, Nijmegen, The Netherlands
| | - Diana Rodijk-Olthuis
- Department of Dermatology, Radboud University Medical Center, Radboud Institute for Molecular Life Sciences, Nijmegen, The Netherlands
| | - Malou Peppelman
- Department of Dermatology, Radboud University Medical Center, Radboud Institute for Molecular Life Sciences, Nijmegen, The Netherlands
| | - Joost Schalkwijk
- Department of Dermatology, Radboud University Medical Center, Radboud Institute for Molecular Life Sciences, Nijmegen, The Netherlands
| | - Ellen H J van den Bogaard
- Department of Dermatology, Radboud University Medical Center, Radboud Institute for Molecular Life Sciences, Nijmegen, The Netherlands
| | - Patrick L J M Zeeuwen
- Department of Dermatology, Radboud University Medical Center, Radboud Institute for Molecular Life Sciences, Nijmegen, The Netherlands
| | - Frank L van de Veerdonk
- Department of Internal Medicine, Radboud University Medical Center, Radboud Center for Infectious Diseases, Nijmegen, The Netherlands.
| |
Collapse
|
23
|
Nunes-Santos CDJ, Rosenzweig SD. Bacille Calmette-Guerin Complications in Newly Described Primary Immunodeficiency Diseases: 2010-2017. Front Immunol 2018; 9:1423. [PMID: 29988375 PMCID: PMC6023996 DOI: 10.3389/fimmu.2018.01423] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Accepted: 06/07/2018] [Indexed: 12/25/2022] Open
Abstract
Bacille Calmette–Guerin (BCG) vaccine is widely used as a prevention strategy against tuberculosis. BCG is a live vaccine, usually given early in life in most countries. While safe to most recipients, it poses a risk to immunocompromised patients. Several primary immunodeficiency diseases (PIDD) have been classically associated with complications related to BCG vaccine. However, a number of new inborn errors of immunity have been described lately in which little is known about adverse reactions following BCG vaccination. The aim of this review is to summarize the existing data on BCG-related complications in patients diagnosed with PIDD described since 2010. When BCG vaccination status or complications were not specifically addressed in those manuscripts, we directly contacted the corresponding authors for further clarification. We also analyzed data on other mycobacterial infections in these patients. Based on our analysis, around 8% of patients with gain-of-function mutations in STAT1 had mycobacterial infections, including localized complications in 3 and disseminated disease in 4 out of 19 BCG-vaccinated patients. Localized BCG reactions were also frequent in activated PI3Kδ syndrome type 1 (3/10) and type 2 (2/18) vaccinated children. Also, of note, no BCG-related complications have been described in either CTLA4 or LRBA protein-deficient patients; and not enough information on BCG-vaccinated NFKB1 or NFKB2-deficient patients was available to drive any conclusions about these diseases. Despite the high prevalence of environmental mycobacterial infections in GATA2-deficient patients, only one case of BCG reaction has been reported in a patient who developed disseminated disease. In conclusion, BCG complications could be expected in some particular, recently described PIDD and it remains a preventable risk factor for pediatric PIDD patients.
Collapse
Affiliation(s)
- Cristiane de Jesus Nunes-Santos
- Faculdade de Medicina, Instituto da Crianca, Universidade de São Paulo, São Paulo, Brazil.,Immunology Service, Department of Laboratory Medicine, NIH Clinical Center, National Institutes of Health (NIH), Bethesda, MD, United States
| | - Sergio D Rosenzweig
- Immunology Service, Department of Laboratory Medicine, NIH Clinical Center, National Institutes of Health (NIH), Bethesda, MD, United States
| |
Collapse
|
24
|
Carey B, Lambourne J, Porter S, Hodgson T. Chronic mucocutaneous candidiasis due to gain-of-function mutation in STAT1. Oral Dis 2018; 25:684-692. [PMID: 29702748 DOI: 10.1111/odi.12881] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Revised: 01/06/2018] [Accepted: 02/20/2018] [Indexed: 12/26/2022]
Abstract
Chronic mucocutaneous candidiasis (CMC) is a heterogenous group of primary immunodeficiency diseases characterised by susceptibility to chronic or recurrent superficial Candida infection of skin, nails and mucous membranes. Gain-of-function mutations in the STAT1 gene (STAT1-GOF) are the most common genetic aetiology for CMC, and mutation analysis should be considered. These mutations lead to defective responses in Type 1 and Type 17 helper T cells (Th1 and Th17), which, depending on the mutation, also predispose to infection with Staphylococci, Mycobacteria and Herpesviridae. We describe the clinical and genetic findings for three patients with CMC due to gain-of-function mutations in the STAT1 gene.
Collapse
Affiliation(s)
- Barbara Carey
- Oral Medicine Unit, UCLH NHS Foundation Trust, Eastman Dental Hospital, UCL Eastman Dental Institute, London, UK
| | - Jonathan Lambourne
- Department of Microbiology and Infectious Diseases, Barts Health NHS Trust, London, UK
| | - Stephen Porter
- Oral Medicine Unit, UCLH NHS Foundation Trust, Eastman Dental Hospital, UCL Eastman Dental Institute, London, UK
| | - Tim Hodgson
- Oral Medicine Unit, UCLH NHS Foundation Trust, Eastman Dental Hospital, UCL Eastman Dental Institute, London, UK
| |
Collapse
|
25
|
Ro T, Sood A, Kelly KJ, Morrell DS. What Is the Cause of the Chronic Erythematous Scaling Plaques on This 22-Month-Old Girl and Her Family? Clin Pediatr (Phila) 2018; 57:874-878. [PMID: 29084440 PMCID: PMC5985158 DOI: 10.1177/0009922817738347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Affiliation(s)
- Teresa Ro
- University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Amika Sood
- University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Kevin J. Kelly
- University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Dean S. Morrell
- University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
26
|
Thompson A, Orr SJ. Emerging IL-12 family cytokines in the fight against fungal infections. Cytokine 2018; 111:398-407. [PMID: 29793796 PMCID: PMC6299256 DOI: 10.1016/j.cyto.2018.05.019] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 05/17/2018] [Accepted: 05/19/2018] [Indexed: 01/28/2023]
Abstract
IL-12 and IL-23 have established roles during anti-fungal immunity. IL-27 promotes regulatory effector responses during fungal infections. IL-35 drives T cell differentiation to produce anti-inflammatory responses. Increasing evidence for IL-12 family cytokines in maintaining anti-fungal immune homeostasis.
Invasive fungal infections cause approximately 1.5 million deaths per year worldwide and are a growing threat to human health. Current anti-fungal therapies are often insufficient, therefore studies into host-pathogen interactions are critical for the development of novel therapies to improve mortality rates. Myeloid cells, such as macrophages and dendritic cells, express pattern recognition receptor (PRRs), which are important for fungal recognition. Engagement of these PRRs by fungal pathogens induces multiple cytokines, which in turn activate T effector responses. Interleukin (IL)-12 family members (IL-12p70, IL-23, IL-27 and IL-35) link innate immunity with the development of adaptive immunity and are also important for regulating T cell responses. IL-12 and IL-23 have established roles during anti-fungal immunity, whereas emerging roles for IL-27 and IL-35 have recently been reported. Here, we discuss the IL-12 family, focusing on IL-27 and IL-35 during anti-fungal immune responses to pathogens such as Candida and Aspergillus.
Collapse
Affiliation(s)
- Aiysha Thompson
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff CF14 4XN, Wales, United Kingdom
| | - Selinda J Orr
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff CF14 4XN, Wales, United Kingdom.
| |
Collapse
|
27
|
Laurence M, Asquith M, Rosenbaum JT. Spondyloarthritis, Acute Anterior Uveitis, and Fungi: Updating the Catterall-King Hypothesis. Front Med (Lausanne) 2018; 5:80. [PMID: 29675414 PMCID: PMC5895656 DOI: 10.3389/fmed.2018.00080] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Accepted: 03/09/2018] [Indexed: 12/12/2022] Open
Abstract
Spondyloarthritis is a common type of arthritis which affects mostly adults. It consists of idiopathic chronic inflammation of the spine, joints, eyes, skin, gut, and prostate. Inflammation is often asymptomatic, especially in the gut and prostate. The HLA-B*27 allele group, which presents intracellular peptides to CD8+ T cells, is by far the strongest risk factor for spondyloarthritis. The precise mechanisms and antigens remain unknown. In 1959, Catterall and King advanced a novel hypothesis explaining the etiology of spondyloarthritis: an as-yet-unrecognized sexually acquired microbe would be causing all spondyloarthritis types, including acute anterior uveitis. Recent studies suggest an unrecognized sexually acquired fungal infection may be involved in prostate cancer and perhaps multiple sclerosis. This warrants reanalyzing the Catterall-King hypothesis based on the current literature. In the last decade, many links between spondyloarthritis and fungal infections have been found. Antibodies against the fungal cell wall component mannan are elevated in spondyloarthritis. Functional polymorphisms in genes regulating the innate immune response against fungi have been associated with spondyloarthritis (CARD9 and IL23R). Psoriasis and inflammatory bowel disease, two common comorbidities of spondyloarthritis, are both strongly associated with fungi. Evidence reviewed here lends credence to the Catterall-King hypothesis and implicates a common fungal etiology in prostate cancer, benign prostatic hyperplasia, multiple sclerosis, psoriasis, inflammatory bowel disease, and spondyloarthritis. However, the evidence available at this time is insufficient to definitely confirm this hypothesis. Future studies investigating the microbiome in relation to these conditions should screen specimens for fungi in addition to bacteria. Future clinical studies of spondyloarthritis should consider antifungals which are effective in psoriasis and multiple sclerosis, such as dimethyl fumarate and nystatin.
Collapse
Affiliation(s)
| | - Mark Asquith
- Division of Arthritis and Rheumatic Diseases, Oregon Health & Science University, Portland, OR, United States
| | - James T Rosenbaum
- Department of Ophthalmology, Oregon Health and Science University, Portland, OR, United States.,Department of Medicine, Oregon Health and Science University, Portland, OR, United States.,Department of Cell Biology, Oregon Health and Science University, Portland, OR, United States.,Legacy Devers Eye Institute, Portland, OR, United States
| |
Collapse
|
28
|
Shiokawa M, Yamasaki S, Saijo S. C-type lectin receptors in anti-fungal immunity. Curr Opin Microbiol 2017; 40:123-130. [PMID: 29169147 DOI: 10.1016/j.mib.2017.11.004] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Revised: 10/31/2017] [Accepted: 11/03/2017] [Indexed: 01/02/2023]
Abstract
Host immune systems are constantly engaged with fungal pathogens which are common in environments as well as in healthy human skin and mucosa. C-type lectin receptors (CLRs) are expressed in myeloid cells and play central roles in host defenses against fungal infections by coordinating innate and adaptive immune systems. Upon ligand binding, CLRs stimulate cellular responses by inducing the production of cytokines and reactive oxygen species via the Syk/CARD9 signaling pathway, leading to fungal elimination. Due to identification and characterization of the CLRs, the underlying mechanisms of the anti-fungal immunity are being unveiled in the present decade. In this review, we focus on the anti-fungal activities of CLRs and summarize of current knowledge of the related expression profiles, modes of ligand recognition, and signaling cascades.
Collapse
Affiliation(s)
- Moe Shiokawa
- Division of Host Defense, Department of Molecular Immunology, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan; Division of Molecular Immunology, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Sho Yamasaki
- Division of Host Defense, Department of Molecular Immunology, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan; Division of Molecular Immunology, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan; Laboratory of Molecular Immunology, Immunology Frontier Research Center, Osaka University, Osaka, Japan; Division of Molecular Immunology, Medical Mycology Research Center, Chiba University, Chiba, Japan.
| | - Shinobu Saijo
- Division of Molecular Immunology, Medical Mycology Research Center, Chiba University, Chiba, Japan.
| |
Collapse
|
29
|
Veverka KK, Feldman SR. Chronic mucocutaneous candidiasis: what can we conclude about IL-17 antagonism? J DERMATOL TREAT 2017; 29:475-480. [PMID: 29076381 DOI: 10.1080/09546634.2017.1398396] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
PURPOSE IL-17 antagonists are effective for psoriasis in clinical trials, but long-term safety is not fully characterized. Since chronic mucocutaneous candidiasis (CMC) is caused by defects in the IL-17 pathway, CMC risk data have been touted as providing reassurance about the safety of IL-17 antagonism. METHODS We performed a literature review to identify patients with CMC and compared the prevalence of cancer in these patients to the reported 5-year prevalence. RESULTS There was a higher prevalence of oropharyngeal (2.5% vs. 0.028%; p < .0001) and esophageal cancer (1.9% vs. 0.013%; p < .0001) in patients with CMC. There were no reports of cancer in 31 patients with CMC caused by an isolated IL-17 deficiency (IL-17F, IL-17RA, IL17RC); however, a study would need over 1000 patients to detect even a 10-fold increase in the most common malignancy of CMC patients. CONCLUSIONS There is evidence that some forms of CMC are associated with an increase in cancer. While CMC is heterogeneous, our findings suggest that we cannot use CMC data to reassure patients on the long-term safety of IL-17 antagonists beyond the safety results from clinical trials, and perhaps caution should be taken with the development of candidiasis in patients taking these medications.
Collapse
Affiliation(s)
- Kevin K Veverka
- a Department of Dermatology Wake Forest School of Medicine , Winston-Salem , NC , USA
| | - Steven R Feldman
- a Department of Dermatology Wake Forest School of Medicine , Winston-Salem , NC , USA
| |
Collapse
|
30
|
Novel tools for primary immunodeficiency diagnosis: making a case for deep profiling. Curr Opin Allergy Clin Immunol 2017; 16:549-556. [PMID: 27749361 DOI: 10.1097/aci.0000000000000319] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE OF REVIEW This review gives an overview of the systems-immunology single-cell proteomic and transcriptomic approaches that can be applied to study primary immunodeficiency. It also introduces recent advances in multiparameter tissue imaging, which allows extensive immune phenotyping in disease-affected tissue. RECENT FINDINGS Mass cytometry is a variation of flow cytometry that uses rare earth metal isotopes instead of fluorophores as tags bound to antibodies, allowing simultaneous measurement of over 40 parameters per single-cell. Mass cytomety enables comprehensive single-cell immunophenotyping and functional assessments, capturing the complexity of the immune system, and the molecularly heterogeneous consequences of primary immunodeficiency defects. Protein epitopes and transcripts can be simultaneously detected allowing immunophenotype and gene expression evaluation in mixed cell populations. Multiplexed epitope imaging has the potential to provide extensive phenotypic characterization at the subcellular level, in the context of 3D tissue microenvironment. SUMMARY Mass cytometry and multiplexed epitope imaging can complement genetic methods in diagnosis and study of the pathogenesis of primary immunodeficiencies. The ability to understand the effect of a specific defect across multiple immune cell types and pathways, and in affected tissues, may provide new insight into tissue-specific disease pathogenesis and evaluate effects of therapeutic interventions.
Collapse
|
31
|
Koo S, Kejariwal D, Al-Shehri T, Dhar A, Lilic D. Oesophageal candidiasis and squamous cell cancer in patients with gain-of-function STAT1 gene mutation. United European Gastroenterol J 2017; 5:625-631. [PMID: 28815025 PMCID: PMC5548354 DOI: 10.1177/2050640616684404] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Accepted: 11/11/2016] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Oesophageal candidiasis is a common, usually self-limiting opportunistic infection, but long-term infection with Candida is known to predispose to oral and oesophageal squamous cell cancer (SCC). Permissive factors that lead to immune deficiencies can underlie persistent or recurring candidiasis, called chronic mucocutaneous candidiasis (CMC). Secondary immune deficiencies are most often due to human immunodeficiency virus (HIV) infection, antibiotic use and immunosuppressive treatment (steroids, chemotherapy). Inborn errors of the immune system (primary immune deficiencies) can present with isolated CMC known as CMC disease (CMCD), which is most often found in patients with autoimmune polyendocrinopathy syndrome type 1 (APS1)/APECED or in patients with an underlying gain-of-function STAT1 mutation (GOF-STAT1). OBJECTIVE To describe a new form of inherited/familial CMC with a high risk for developing squamous cell carcinoma of the oesophagus, due to a gain-of-function mutation in the STAT1 gene. METHODS AND RESULTS This report describes a family of patients with CMC with confirmed GOF-STAT1 mutation. These patients usually present with CMCD in childhood, have severe oral and oesophageal candidiasis accompanied by severe difficulty swallowing, chest pain, heartburn, and are at risk of developing oral and/or oesophageal SCC. This case series describes six patients in three generations of the same family, two of whom developed and died of SCC. We recommend regular endoscopic surveillance to detect early oesophageal neoplasia in patients with CMCD as well as urgent endoscopy in symptomatic patients. CONCLUSION CMC is not a well-recognised condition in gastroenterology practice and clinicians need to be aware of the genetics of the condition as well as the risk for oesophageal cancer so that they can counsel their patients and arrange surveillance appropriately.
Collapse
Affiliation(s)
- Sara Koo
- Departments of Gastroenterology and Clinical Immunology, County Durham and Darlington NHS Foundation Trust, County Durham, UK
| | - Deepak Kejariwal
- Departments of Gastroenterology and Clinical Immunology, County Durham and Darlington NHS Foundation Trust, County Durham, UK
| | - Tariq Al-Shehri
- Institute of Cellular Medicine, Newcastle University, Newcastle-upon-Tyne, UK
| | - Anjan Dhar
- Departments of Gastroenterology and Clinical Immunology, County Durham and Darlington NHS Foundation Trust, County Durham, UK
- Faculty of Medicine, Durham University, Stockton-on-Tees, UK
| | - Desa Lilic
- Departments of Gastroenterology and Clinical Immunology, County Durham and Darlington NHS Foundation Trust, County Durham, UK
- Institute of Cellular Medicine, Newcastle University, Newcastle-upon-Tyne, UK
| |
Collapse
|
32
|
Lee PP, Lau YL. Cellular and Molecular Defects Underlying Invasive Fungal Infections-Revelations from Endemic Mycoses. Front Immunol 2017; 8:735. [PMID: 28702025 PMCID: PMC5487386 DOI: 10.3389/fimmu.2017.00735] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Accepted: 06/09/2017] [Indexed: 01/29/2023] Open
Abstract
The global burden of fungal diseases has been increasing, as a result of the expanding number of susceptible individuals including people living with human immunodeficiency virus (HIV), hematopoietic stem cell or organ transplant recipients, patients with malignancies or immunological conditions receiving immunosuppressive treatment, premature neonates, and the elderly. Opportunistic fungal pathogens such as Aspergillus, Candida, Cryptococcus, Rhizopus, and Pneumocystis jiroveci are distributed worldwide and constitute the majority of invasive fungal infections (IFIs). Dimorphic fungi such as Histoplasma capsulatum, Coccidioides spp., Paracoccidioides spp., Blastomyces dermatiditis, Sporothrix schenckii, Talaromyces (Penicillium) marneffei, and Emmonsia spp. are geographically restricted to their respective habitats and cause endemic mycoses. Disseminated histoplasmosis, coccidioidomycosis, and T. marneffei infection are recognized as acquired immunodeficiency syndrome (AIDS)-defining conditions, while the rest also cause high rate of morbidities and mortalities in patients with HIV infection and other immunocompromised conditions. In the past decade, a growing number of monogenic immunodeficiency disorders causing increased susceptibility to fungal infections have been discovered. In particular, defects of the IL-12/IFN-γ pathway and T-helper 17-mediated response are associated with increased susceptibility to endemic mycoses. In this review, we put together the various forms of endemic mycoses on the map and take a journey around the world to examine how cellular and molecular defects of the immune system predispose to invasive endemic fungal infections, including primary immunodeficiencies, individuals with autoantibodies against interferon-γ, and those receiving biologic response modifiers. Though rare, these conditions provide importance insights to host defense mechanisms against endemic fungi, which can only be appreciated in unique climatic and geographical regions.
Collapse
Affiliation(s)
- Pamela P Lee
- LKS Faculty of Medicine, Department of Paediatrics and Adolescent Medicine, Queen Mary Hospital, The University of Hong Kong, Hong Kong, China
| | - Yu-Lung Lau
- LKS Faculty of Medicine, Department of Paediatrics and Adolescent Medicine, Queen Mary Hospital, The University of Hong Kong, Hong Kong, China.,Shenzhen Primary Immunodeficiencies Diagnostic and Therapeutic Laboratory, The University of Hong Kong-Shenzhen Hospital (HKU-SZH), Shenzhen, China
| |
Collapse
|
33
|
Interaction of Candida Species with the Skin. Microorganisms 2017; 5:microorganisms5020032. [PMID: 28590443 PMCID: PMC5488103 DOI: 10.3390/microorganisms5020032] [Citation(s) in RCA: 94] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Revised: 05/30/2017] [Accepted: 06/02/2017] [Indexed: 12/20/2022] Open
Abstract
The human skin is commonly colonized by diverse fungal species. Some Candida species, especially C. albicans, do not only reside on the skin surface as commensals, but also cause infections by growing into the colonized tissue. However, defense mechanisms at the skin barrier level are very efficient, involving residential non-immune and immune cells as well as immune cells specifically recruited to the site of infection. Therefore, the skin is an effective barrier against fungal infection. While most studies about commensal and pathogenic interaction of Candida species with host epithelia focus on the interaction with mucosal surfaces such as the vaginal and gastrointestinal epithelia, less is known about the mechanisms underlying Candida interaction with the skin. In this review, we focus on the ecology and molecular pathogenesis of Candida species on the skin and give an overview of defense mechanisms against C. albicans in this context. We also discuss new research avenues in dermal infection, including the involvement of neurons, fibroblasts, and commensal bacteria in both mouse and human model systems.
Collapse
|
34
|
Robinson RT, Huppler AR. The Goldilocks model of immune symbiosis with Mycobacteria and Candida colonizers. Cytokine 2017; 97:49-65. [PMID: 28570933 DOI: 10.1016/j.cyto.2017.05.015] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Revised: 05/15/2017] [Accepted: 05/17/2017] [Indexed: 12/12/2022]
Abstract
Mycobacteria and Candida species include significant human pathogens that can cause localized or disseminated infections. Although these organisms may appear to have little in common, several shared pathways of immune recognition and response are important for both control and infection-related pathology. In this article, we compare and contrast the innate and adaptive components of the immune system that pertain to these infections in humans and animal models. We also explore a relatively new concept in the mycobacterial field: biological commensalism. Similar to the well-established model of Candida infection, Mycobacteria species colonize their human hosts in equilibrium with the immune response. Perturbations in the immune response permit the progression to pathologic disease at the expense of the host. Understanding the immune factors required to maintain commensalism may aid with the development of diagnostic and treatment strategies for both categories of pathogens.
Collapse
Affiliation(s)
- Richard T Robinson
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI, USA.
| | - Anna R Huppler
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI, USA; Department of Pediatrics, Division of Infectious Disease, Medical College of Wisconsin, Children's Hospital and Health System, Children's Research Institute, Milwaukee, WI, USA.
| |
Collapse
|
35
|
Autosomal dominant gain of function STAT1 mutation and severe bronchiectasis. Respir Med 2017; 126:39-45. [PMID: 28427548 DOI: 10.1016/j.rmed.2017.03.018] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Revised: 03/16/2017] [Accepted: 03/21/2017] [Indexed: 12/19/2022]
Abstract
BACKGROUND In a substantial number of patients with non-cystic fibrosis (CF) bronchiectasis an etiology cannot be found. Various complex immunodeficiency syndromes account for a significant portion of these patients but the mechanism elucidating the predisposition for suppurative lung disease often remains unknown. OBJECTIVE To investigate the cause and mechanism predisposing a patient to severe bronchiectasis. METHODS A patient presenting with severe non-CF bronchiectasis was investigated. Whole exome analysis (WES) was performed and complemented by extensive immunophenotyping. RESULTS The genetic analysis revealed an autosomal dominant gain-of-function mutation (AD- GOF) in the signal transducer and activator of transcription 1 (STAT1) in the patient. STAT1 phosphorylation studies showed increased phosphorylation of STAT1 after stimulation with interferon γ (IFN-γ). Immunophenotyping showed normal counts of CD4 and CD8 T cells, B and NK cells, but a reduction of all memory B cells especially class switched memory B cells. Minor changes in the CD8 T cell subpopulations were seen. CONCLUSIONS Early use of WES in the investigation of non-CF bronchiectasis was highly advantageous. The degree of impairment in class-switched memory B cells may predispose patients with AD- GOF mutations in STAT1 to suppurative sinopulmonary disease.
Collapse
|
36
|
Halwani R, Sultana A, Vazquez-Tello A, Jamhawi A, Al-Masri AA, Al-Muhsen S. Th-17 regulatory cytokines IL-21, IL-23, and IL-6 enhance neutrophil production of IL-17 cytokines during asthma. J Asthma 2017. [PMID: 28635548 DOI: 10.1080/02770903.2017.1283696] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
BACKGROUND In a subset of severe asthma patients, chronic airway inflammation is associated with infiltration of neutrophils, Th-17 cells and elevated expression of Th-17-derived cytokines (e.g., interleukin [IL]-17, IL-21, IL-22). Peripheral neutrophils from allergic asthmatics are known to express higher IL-17 cytokine levels than those from healthy subjects, but the regulatory mechanisms involved are not well understood. We hypothesize that Th-17 regulatory cytokines could modulate IL-17 expression in neutrophils. METHODS Peripheral blood neutrophils isolated from asthmatics were stimulated with IL-21, IL-23, and IL-6 cytokines and their ability to produce IL-17A and IL-17F was determined relative to healthy controls. Signal transducer and activator of transcription 3 (STAT3) phosphorylation levels were measured in stimulated neutrophil using flow cytometry. The requirement for STAT3 phosphorylation was determined by blocking its activation using a specific chemical inhibitor. RESULTS Stimulating asthmatic neutrophils with IL-21, 23, and 6 enhanced the production of IL-17A and IL-17F at significantly higher levels comparatively to healthy controls. Stimulating neutrophils with IL-21, IL-23, and IL-6 cytokines enhanced STAT3 phosphorylation, in all cases. Interestingly, inhibiting STAT3 phosphorylation using a specific chemical inhibitor dramatically blocked the ability of neutrophils to produce IL-17, demonstrating that STAT3 activation is the major factor mediating IL-17 gene expression. CONCLUSIONS These findings suggest that neutrophil infiltration in lungs of severe asthmatics may represent an important source of pro-inflammatory IL-17A and -F cytokines, a production enhanced by Th-17 regulatory cytokines, and thus providing a feedback mechanism that sustains inflammation. Our results suggest that STAT3 pathway could be a potential target for regulating neutrophilic inflammation during severe asthma.
Collapse
Affiliation(s)
- Rabih Halwani
- a Department of Pediatrics, Prince Naif Center for Immunology Research, Asthma Research Chair , College of Medicine, King Saud University , Riyadh , Saudi Arabia
| | - Asma Sultana
- a Department of Pediatrics, Prince Naif Center for Immunology Research, Asthma Research Chair , College of Medicine, King Saud University , Riyadh , Saudi Arabia.,b Prince Naif Health Research Center , King Saud University , Riyadh , Saudi Arabia
| | - Alejandro Vazquez-Tello
- a Department of Pediatrics, Prince Naif Center for Immunology Research, Asthma Research Chair , College of Medicine, King Saud University , Riyadh , Saudi Arabia
| | - Amer Jamhawi
- a Department of Pediatrics, Prince Naif Center for Immunology Research, Asthma Research Chair , College of Medicine, King Saud University , Riyadh , Saudi Arabia
| | - Abeer A Al-Masri
- c Department of Physiology , Faculty of Medicine, King Saud University , Riyadh , Saudi Arabia
| | - Saleh Al-Muhsen
- a Department of Pediatrics, Prince Naif Center for Immunology Research, Asthma Research Chair , College of Medicine, King Saud University , Riyadh , Saudi Arabia
| |
Collapse
|
37
|
Tabellini G, Vairo D, Scomodon O, Tamassia N, Ferraro RM, Patrizi O, Gasperini S, Soresina A, Giardino G, Pignata C, Lougaris V, Plebani A, Dotta L, Cassatella MA, Parolini S, Badolato R. Impaired natural killer cell functions in patients with signal transducer and activator of transcription 1 (STAT1) gain-of-function mutations. J Allergy Clin Immunol 2017; 140:553-564.e4. [PMID: 28069426 DOI: 10.1016/j.jaci.2016.10.051] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Revised: 09/19/2016] [Accepted: 10/19/2016] [Indexed: 10/20/2022]
Abstract
BACKGROUND Gain-of-function (GOF) mutations affecting the coiled-coil domain or the DNA-binding domain of signal transducer and activator of transcription 1 (STAT1) cause chronic mucocutaneous candidiasis disease. This condition is characterized by fungal and bacterial infections caused by impaired generation of TH17 cells; meanwhile, some patients with chronic mucocutaneous candidiasis disease might also have viral or intracellular pathogen infections. OBJECTIVE We sought to investigate the effect of STAT1 GOF mutations on the functioning of natural killer (NK) cells. METHODS Because STAT1 is involved in the signaling response to several cytokines, we studied NK cell functional activities and STAT1 signaling in 8 patients with STAT1 GOF mutations. RESULTS Functional analysis of NK cells shows a significant impairment of cytolytic and degranulation activities in patients with STAT1 GOF mutations. Moreover, NK cells from these patients display lower production of IFN-γ in response to IL-15 and reduced proliferation after stimulation with IL-2 or IL-15, suggesting that STAT5 signaling is affected. In addition, signaling studies demonstrate that the increased phosphorylation of STAT1 in response to IFN-α is associated with detectable activation of STAT1 and increased STAT1 binding to the interferon-induced protein with tetratricopeptide repeats 1 (IFIT1) promoter in response to IL-15, whereas STAT5 phosphorylation and DNA binding to IL-2 receptor α (IL2RA) are reduced or not affected in response to the same cytokine. CONCLUSION These observations suggest that persistent activation of STAT1 might affect NK cell proliferation and functional activities.
Collapse
Affiliation(s)
- Giovanna Tabellini
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Donatella Vairo
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy; Institute of Molecular Medicine "Angelo Nocivelli," University of Brescia, Brescia, Italy
| | - Omar Scomodon
- Institute of Molecular Medicine "Angelo Nocivelli," University of Brescia, Brescia, Italy; Department of Experimental and Clinical Sciences, University of Brescia, Brescia, Italy
| | - Nicola Tamassia
- Department of Medicine, Section of General Pathology, School of Medicine, University of Verona, Verona, Italy
| | - Rosalba Monica Ferraro
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy; Institute of Molecular Medicine "Angelo Nocivelli," University of Brescia, Brescia, Italy
| | - Ornella Patrizi
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Sara Gasperini
- Department of Medicine, Section of General Pathology, School of Medicine, University of Verona, Verona, Italy
| | | | - Giuliana Giardino
- Department of Translational Medical Sciences, Federico II University of Naples, Naples, Italy
| | - Claudio Pignata
- Department of Translational Medical Sciences, Federico II University of Naples, Naples, Italy
| | - Vassilios Lougaris
- Institute of Molecular Medicine "Angelo Nocivelli," University of Brescia, Brescia, Italy; Department of Experimental and Clinical Sciences, University of Brescia, Brescia, Italy
| | - Alessandro Plebani
- Institute of Molecular Medicine "Angelo Nocivelli," University of Brescia, Brescia, Italy; Department of Experimental and Clinical Sciences, University of Brescia, Brescia, Italy
| | - Laura Dotta
- Institute of Molecular Medicine "Angelo Nocivelli," University of Brescia, Brescia, Italy; Department of Experimental and Clinical Sciences, University of Brescia, Brescia, Italy
| | - Marco A Cassatella
- Department of Medicine, Section of General Pathology, School of Medicine, University of Verona, Verona, Italy
| | - Silvia Parolini
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Raffaele Badolato
- Institute of Molecular Medicine "Angelo Nocivelli," University of Brescia, Brescia, Italy; Department of Experimental and Clinical Sciences, University of Brescia, Brescia, Italy.
| |
Collapse
|
38
|
Kagawa R, Fujiki R, Tsumura M, Sakata S, Nishimura S, Itan Y, Kong XF, Kato Z, Ohnishi H, Hirata O, Saito S, Ikeda M, El Baghdadi J, Bousfiha A, Fujiwara K, Oleastro M, Yancoski J, Perez L, Danielian S, Ailal F, Takada H, Hara T, Puel A, Boisson-Dupuis S, Bustamante J, Casanova JL, Ohara O, Okada S, Kobayashi M. Alanine-scanning mutagenesis of human signal transducer and activator of transcription 1 to estimate loss- or gain-of-function variants. J Allergy Clin Immunol 2016; 140:232-241. [PMID: 28011069 DOI: 10.1016/j.jaci.2016.09.035] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2016] [Revised: 08/29/2016] [Accepted: 09/23/2016] [Indexed: 11/17/2022]
Abstract
BACKGROUND Germline heterozygous mutations in human signal transducer and activator of transcription 1 (STAT1) can cause loss of function (LOF), as in patients with Mendelian susceptibility to mycobacterial diseases, or gain of function (GOF), as in patients with chronic mucocutaneous candidiasis. LOF and GOF mutations are equally rare and can affect the same domains of STAT1, especially the coiled-coil domain (CCD) and DNA-binding domain (DBD). Moreover, 6% of patients with chronic mucocutaneous candidiasis with a GOF STAT1 mutation have mycobacterial disease, obscuring the functional significance of the identified STAT1 mutations. Current computational approaches, such as combined annotation-dependent depletion, do not distinguish LOF and GOF variants. OBJECTIVE We estimated variations in the CCD/DBD of STAT1. METHODS We mutagenized 342 individual wild-type amino acids in the CCD/DBD (45.6% of full-length STAT1) to alanine and tested the mutants for STAT1 transcriptional activity. RESULTS Of these 342 mutants, 201 were neutral, 30 were LOF, and 111 were GOF mutations in a luciferase assay. This assay system correctly estimated all previously reported LOF mutations (100%) and slightly fewer GOF mutations (78.1%) in the CCD/DBD of STAT1. We found that GOF alanine mutants occurred at the interface of the antiparallel STAT1 dimer, suggesting that they destabilize this dimer. This assay also precisely predicted the effect of 2 hypomorphic and dominant negative mutations, E157K and G250E, in the CCD of STAT1 that we found in 2 unrelated patients with Mendelian susceptibility to mycobacterial diseases. CONCLUSION The systematic alanine-scanning assay is a useful tool to estimate the GOF or LOF status and the effect of heterozygous missense mutations in STAT1 identified in patients with severe infectious diseases, including mycobacterial and fungal diseases.
Collapse
Affiliation(s)
- Reiko Kagawa
- Department of Pediatrics, Hiroshima University Graduate School of Biomedical & Health Sciences, Hiroshima, Japan
| | - Ryoji Fujiki
- Department of Technology Development, Kazusa DNA Research Institute, Chiba, Japan
| | - Miyuki Tsumura
- Department of Pediatrics, Hiroshima University Graduate School of Biomedical & Health Sciences, Hiroshima, Japan
| | - Sonoko Sakata
- Department of Pediatrics, Hiroshima University Graduate School of Biomedical & Health Sciences, Hiroshima, Japan
| | - Shiho Nishimura
- Department of Pediatrics, Hiroshima University Graduate School of Biomedical & Health Sciences, Hiroshima, Japan
| | - Yuval Itan
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY
| | - Xiao-Fei Kong
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY
| | - Zenichiro Kato
- Department of Pediatrics, Graduate School of Medicine, Gifu University, Gifu, Japan; Structural Medicine, United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, Gifu, Japan
| | - Hidenori Ohnishi
- Department of Pediatrics, Graduate School of Medicine, Gifu University, Gifu, Japan
| | - Osamu Hirata
- Department of Pediatrics, Hiroshima University Graduate School of Biomedical & Health Sciences, Hiroshima, Japan
| | - Satoshi Saito
- Department of Pediatrics, Hiroshima University Graduate School of Biomedical & Health Sciences, Hiroshima, Japan
| | - Maiko Ikeda
- Department of Pediatrics, Okazaki City Hospital, Aichi, Japan
| | | | - Aziz Bousfiha
- Laboratory of Clinical Immunology, Inflammation and Allergy, Faculty of Medicine and Pharmacy, Hassan II University of Casablanca, Casablanca, Morocco; Clinical Immunology Unit, Department of Pediatric Infectious Diseases, Averroes University Hospital, Casablanca, Morocco
| | - Kaori Fujiwara
- Department of Pediatrics, National Hospital Organization Fukuyama Medical Center, Hiroshima, Japan
| | - Matias Oleastro
- Department of Immunology, "Juan Pedro Garrahan" National Hospital of Pediatrics, Buenos Aires, Argentina
| | - Judith Yancoski
- Department of Immunology, "Juan Pedro Garrahan" National Hospital of Pediatrics, Buenos Aires, Argentina
| | - Laura Perez
- Department of Immunology, "Juan Pedro Garrahan" National Hospital of Pediatrics, Buenos Aires, Argentina
| | - Silvia Danielian
- Department of Immunology, "Juan Pedro Garrahan" National Hospital of Pediatrics, Buenos Aires, Argentina
| | - Fatima Ailal
- Laboratory of Clinical Immunology, Inflammation and Allergy, Faculty of Medicine and Pharmacy, Hassan II University of Casablanca, Casablanca, Morocco; Clinical Immunology Unit, Department of Pediatric Infectious Diseases, Averroes University Hospital, Casablanca, Morocco
| | - Hidetoshi Takada
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Toshiro Hara
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Anne Puel
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY; Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France; Paris Descartes University, Sorbonne Paris Cité, Imagine Institute, Paris, France
| | - Stéphanie Boisson-Dupuis
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY; Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France; Paris Descartes University, Sorbonne Paris Cité, Imagine Institute, Paris, France
| | - Jacinta Bustamante
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY; Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France; Paris Descartes University, Sorbonne Paris Cité, Imagine Institute, Paris, France; Center for the Study of Primary Immunodeficiencies, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Jean-Laurent Casanova
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY; Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France; Paris Descartes University, Sorbonne Paris Cité, Imagine Institute, Paris, France; Pediatric Hematology-Immunology Unit, Assistance Publique-Hôpitaux de Paris, Necker Hospital for Sick Children, Paris, France; Howard Hughes Medical Institute, New York, NY
| | - Osamu Ohara
- Department of Technology Development, Kazusa DNA Research Institute, Chiba, Japan; Laboratory for Integrative Genomics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Satoshi Okada
- Department of Pediatrics, Hiroshima University Graduate School of Biomedical & Health Sciences, Hiroshima, Japan; St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY.
| | - Masao Kobayashi
- Department of Pediatrics, Hiroshima University Graduate School of Biomedical & Health Sciences, Hiroshima, Japan
| |
Collapse
|
39
|
Genetic, immunological, and clinical features of patients with bacterial and fungal infections due to inherited IL-17RA deficiency. Proc Natl Acad Sci U S A 2016; 113:E8277-E8285. [PMID: 27930337 DOI: 10.1073/pnas.1618300114] [Citation(s) in RCA: 126] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Chronic mucocutaneous candidiasis (CMC) is defined as recurrent or persistent infection of the skin, nails, and/or mucosae with commensal Candida species. The first genetic etiology of isolated CMC-autosomal recessive (AR) IL-17 receptor A (IL-17RA) deficiency-was reported in 2011, in a single patient. We report here 21 patients with complete AR IL-17RA deficiency, including this first patient. Each patient is homozygous for 1 of 12 different IL-17RA alleles, 8 of which create a premature stop codon upstream from the transmembrane domain and have been predicted and/or shown to prevent expression of the receptor on the surface of circulating leukocytes and dermal fibroblasts. Three other mutant alleles create a premature stop codon downstream from the transmembrane domain, one of which encodes a surface-expressed receptor. Finally, the only known missense allele (p.D387N) also encodes a surface-expressed receptor. All of the alleles tested abolish cellular responses to IL-17A and -17F homodimers and heterodimers in fibroblasts and to IL-17E/IL-25 in leukocytes. The patients are currently aged from 2 to 35 y and originate from 12 unrelated kindreds. All had their first CMC episode by 6 mo of age. Fourteen patients presented various forms of staphylococcal skin disease. Eight were also prone to various bacterial infections of the respiratory tract. Human IL-17RA is, thus, essential for mucocutaneous immunity to Candida and Staphylococcus, but otherwise largely redundant. A diagnosis of AR IL-17RA deficiency should be considered in children or adults with CMC, cutaneous staphylococcal disease, or both, even if IL-17RA is detected on the cell surface.
Collapse
|
40
|
Wang X, Zhang R, Wu W, Wang A, Wan Z, van de Veerdonk FL, Li R. New and recurrent STAT1 mutations in seven Chinese patients with chronic mucocutaneous candidiasis. Int J Dermatol 2016; 56:e30-e33. [PMID: 27808400 DOI: 10.1111/ijd.13427] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Revised: 05/09/2016] [Accepted: 06/29/2016] [Indexed: 12/17/2022]
Affiliation(s)
- Xiaowen Wang
- Department of Dermatology, Peking University First Hospital, Beijing, China
| | - Ruijun Zhang
- Department of Dermatology, Peking University First Hospital, Beijing, China
| | - Weiwei Wu
- Department of Dermatology, Peking University First Hospital, Beijing, China
| | - Aiping Wang
- Department of Dermatology, Peking University First Hospital, Beijing, China
| | - Zhe Wan
- Department of Dermatology, Peking University First Hospital, Beijing, China
| | - Frank L van de Veerdonk
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Ruoyu Li
- Department of Dermatology, Peking University First Hospital, Beijing, China
| |
Collapse
|
41
|
Wang X, van de Veerdonk FL, Netea MG. Basic Genetics and Immunology of Candida Infections. Infect Dis Clin North Am 2016; 30:85-102. [PMID: 26897063 DOI: 10.1016/j.idc.2015.10.010] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Candida infections can cause superficial and invasive disease. Several essential mechanisms underlying the pathogenesis of these infections were known for some time, such as neutropenia predisposing to invasive disease, and CD4 lymphopenia causing increased susceptibility to mucosal candidiasis. However, the development of novel genetic screening techniques has led to several new insights in the genetics and immunology of candida infections. This article highlights novel insights in the pathogenesis of mucocutaneous and invasive candidiasis that have been identified in recent years.
Collapse
Affiliation(s)
- Xiaowen Wang
- Department of Internal Medicine, Radboud University Medical Center, Geert Grooteplein Zuid 8, Nijmegen, 6525 GA, The Netherlands; Department of Dermatology, Peking University First Hospital, Xishiku Street 8, Xicheng District, Beijing 10034, China
| | - Frank L van de Veerdonk
- Department of Internal Medicine, Radboud University Medical Center, Geert Grooteplein Zuid 8, Nijmegen, 6525 GA, The Netherlands; Radboud Center for Infectious Diseases (RCI), Geert Grooteplein Zuid 8, Nijmegen, 6525 GA, The Netherlands
| | - Mihai G Netea
- Department of Internal Medicine, Radboud University Medical Center, Geert Grooteplein Zuid 8, Nijmegen, 6525 GA, The Netherlands; Radboud Center for Infectious Diseases (RCI), Geert Grooteplein Zuid 8, Nijmegen, 6525 GA, The Netherlands.
| |
Collapse
|
42
|
Abdel-Rahman SM. Genetic Predictors of Susceptibility to Dermatophytoses. Mycopathologia 2016; 182:67-76. [PMID: 27502504 DOI: 10.1007/s11046-016-0046-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2016] [Accepted: 07/27/2016] [Indexed: 12/27/2022]
Abstract
Countless observational studies conducted over the last century reveal that dermatophytes infect humans of every age, race, gender, and socioeconomic status with strikingly high rates. The curious disparity in dermatophyte infection patterns observed within and between populations has led countless investigators to explore whether genetics underlie a susceptibility to, or confer protection against, dermatophyte infections. This paper examines the data that offer a link between genetics and dermatophytoses and discusses the underlying mechanisms that support these observations.
Collapse
Affiliation(s)
- Susan M Abdel-Rahman
- UMKC School of Medicine, Kansas City, MO, USA. .,Section of Therapeutic Innovation, Children's Mercy Hospital, Kansas City, MO, USA. .,Division of Pediatric Clinical Pharmacology, Toxicology, and Therapeutic Innovation, Children's Mercy Hospitals and Clinics, 2401 Gillham Rd., Kansas City, MO, 64108, USA.
| |
Collapse
|
43
|
Heterozygous STAT1 gain-of-function mutations underlie an unexpectedly broad clinical phenotype. Blood 2016. [PMID: 27114460 DOI: 10.1182/blood-2015-11-679902.] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Since their discovery in patients with autosomal dominant (AD) chronic mucocutaneous candidiasis (CMC) in 2011, heterozygous STAT1 gain-of-function (GOF) mutations have increasingly been identified worldwide. The clinical spectrum associated with them needed to be delineated. We enrolled 274 patients from 167 kindreds originating from 40 countries from 5 continents. Demographic data, clinical features, immunological parameters, treatment, and outcome were recorded. The median age of the 274 patients was 22 years (range, 1-71 years); 98% of them had CMC, with a median age at onset of 1 year (range, 0-24 years). Patients often displayed bacterial (74%) infections, mostly because of Staphylococcus aureus (36%), including the respiratory tract and the skin in 47% and 28% of patients, respectively, and viral (38%) infections, mostly because of Herpesviridae (83%) and affecting the skin in 32% of patients. Invasive fungal infections (10%), mostly caused by Candida spp. (29%), and mycobacterial disease (6%) caused by Mycobacterium tuberculosis, environmental mycobacteria, or Bacille Calmette-Guérin vaccines were less common. Many patients had autoimmune manifestations (37%), including hypothyroidism (22%), type 1 diabetes (4%), blood cytopenia (4%), and systemic lupus erythematosus (2%). Invasive infections (25%), cerebral aneurysms (6%), and cancers (6%) were the strongest predictors of poor outcome. CMC persisted in 39% of the 202 patients receiving prolonged antifungal treatment. Circulating interleukin-17A-producing T-cell count was low for most (82%) but not all of the patients tested. STAT1 GOF mutations underlie AD CMC, as well as an unexpectedly wide range of other clinical features, including not only a variety of infectious and autoimmune diseases, but also cerebral aneurysms and carcinomas that confer a poor prognosis.
Collapse
|
44
|
Soltész B, Tóth B, Sarkadi AK, Erdős M, Maródi L. The Evolving View of IL-17-Mediated Immunity in Defense Against Mucocutaneous Candidiasis in Humans. Int Rev Immunol 2016; 34:348-63. [PMID: 26154078 DOI: 10.3109/08830185.2015.1049345] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The discovery of interleukin (IL)-17-mediated immunity has provided a robust framework upon which our current understanding of the mechanism involved in host defense against mucocutaneous candidiasis (CMC) has been built. Studies have shed light on how pattern recognition receptors expressed by innate immune cells recognize various components of Candida cell wall. Inborn errors of immunity affecting IL-17+ T cell differentiation have recently been defined, such as deficiencies of signal transducer and activator of transcription (STAT)3, STAT1, IL-12Rβ1 and IL-12p40, and caspase recruitment domain 9. Impaired receptor-ligand coupling was identified in patients with IL-17F and IL-17 receptor A (IL17RA) deficiency and autoimmune polyendocrine syndrome (APS) type 1. Mutation in the nuclear factor kappa B activator (ACT) 1 was described as a cause of impaired IL-17R-mediated signaling. CMC may be part of a complex clinical phenotype like in patients with deficiencies of STAT3, IL-12Rβ1/IL-12p40 and APS-1 or may be the only or dominant phenotypic manifestation of disease which is referred to as CMC disease. CMCD may result from deficiencies of STAT1, IL-17F, IL-17RA and ACT1. In this review we discuss how recent research on IL-17-mediated immunity shed light on host defense against mucocutaneous infection by Candida and how the discovery of various germ-line mutations and the characterization of associated clinical phenotypes have provided insights into the role of CD4+IL-17+ lymphocytes in the regulation of anticandidal defense of body surfaces.
Collapse
Affiliation(s)
- Beáta Soltész
- Department of Infectious Diseases and Pediatric Immunology, Faculty of Medicine, University of Debrecen , Debrecen , Hungary
| | | | | | | | | |
Collapse
|
45
|
Abstract
Autosomal dominant chronic mucocutaneous candidiasis (AD-CMC) is a rare and severe primary immunodeficiency that is characterized by mucocutaneous fungal infection, autoimmunity, cerebral aneurysms, and oropharyngeal and esophageal cancer. Recently, it was discovered that STAT1 mutations are responsible for AD-CMC. These mutations lead to the inability of STAT1 to be dephosphorylated, resulting in hyperphosphorylation, increased binding to the DNA, and gain of function (GOF) effects on STAT1 signaling. Furthermore, a characteristic feature of AD-CMC patients is deficiency in the T-helper 17 (Th17) responses, which is believed to be the immunological cause of the mucocutaneous fungal infection. No targeted treatment other than lifelong antifungal prophylaxis exists for AD-CMC. However, the discovery of the genetic and immunological defects makes it now possible to explore new treatment strategies. This review will discuss immunomodulatory treatment options that can be explored in patients with STAT1 GOF mutations.
Collapse
Affiliation(s)
- Frank L van de Veerdonk
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, The Netherlands; Radboud Center for Infectious Diseases (RCI), The Netherlands.
| | - Mihai G Netea
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, The Netherlands; Radboud Center for Infectious Diseases (RCI), The Netherlands
| |
Collapse
|
46
|
Heterozygous STAT1 gain-of-function mutations underlie an unexpectedly broad clinical phenotype. Blood 2016; 127:3154-64. [PMID: 27114460 DOI: 10.1182/blood-2015-11-679902] [Citation(s) in RCA: 400] [Impact Index Per Article: 44.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Accepted: 04/01/2016] [Indexed: 02/06/2023] Open
Abstract
Since their discovery in patients with autosomal dominant (AD) chronic mucocutaneous candidiasis (CMC) in 2011, heterozygous STAT1 gain-of-function (GOF) mutations have increasingly been identified worldwide. The clinical spectrum associated with them needed to be delineated. We enrolled 274 patients from 167 kindreds originating from 40 countries from 5 continents. Demographic data, clinical features, immunological parameters, treatment, and outcome were recorded. The median age of the 274 patients was 22 years (range, 1-71 years); 98% of them had CMC, with a median age at onset of 1 year (range, 0-24 years). Patients often displayed bacterial (74%) infections, mostly because of Staphylococcus aureus (36%), including the respiratory tract and the skin in 47% and 28% of patients, respectively, and viral (38%) infections, mostly because of Herpesviridae (83%) and affecting the skin in 32% of patients. Invasive fungal infections (10%), mostly caused by Candida spp. (29%), and mycobacterial disease (6%) caused by Mycobacterium tuberculosis, environmental mycobacteria, or Bacille Calmette-Guérin vaccines were less common. Many patients had autoimmune manifestations (37%), including hypothyroidism (22%), type 1 diabetes (4%), blood cytopenia (4%), and systemic lupus erythematosus (2%). Invasive infections (25%), cerebral aneurysms (6%), and cancers (6%) were the strongest predictors of poor outcome. CMC persisted in 39% of the 202 patients receiving prolonged antifungal treatment. Circulating interleukin-17A-producing T-cell count was low for most (82%) but not all of the patients tested. STAT1 GOF mutations underlie AD CMC, as well as an unexpectedly wide range of other clinical features, including not only a variety of infectious and autoimmune diseases, but also cerebral aneurysms and carcinomas that confer a poor prognosis.
Collapse
|
47
|
Martinez-Martinez L, Martinez-Saavedra MT, Fuentes-Prior P, Barnadas M, Rubiales MV, Noda J, Badell I, Rodríguez-Gallego C, de la Calle-Martin O. A novel gain-of-function STAT1 mutation resulting in basal phosphorylation of STAT1 and increased distal IFN-γ-mediated responses in chronic mucocutaneous candidiasis. Mol Immunol 2016; 68:597-605. [PMID: 26514428 DOI: 10.1016/j.molimm.2015.09.014] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Revised: 09/03/2015] [Accepted: 09/22/2015] [Indexed: 01/14/2023]
Abstract
Gain-of-function STAT1 mutations have recently been associated with autosomal dominant chronic mucocutaneous candidiasis (CMC). The purpose of this study was to characterize the three members of a non-consanguineous family, the father and his two sons, who presented with recurrent oral thrush and ocular candidiasis since early childhood. The three patients had reduced levels of IL-17-producing T cells. This reduction affected specifically IL-17(+)IFN-γ(-) T cells, because the levels of IL-17(+)IFN-γ(+) T cells were similar to controls. We found that PBMC (peripheral blood mononuclear cells) from the patients did not respond to Candida albicans ex vivo. Moreover, after polyclonal activation, patients' PBMC produced lower levels of IL-17 and IL-6 and higher levels of IL-4 than healthy controls. Genetic analyses showed that the three patients were heterozygous for a new mutation in STAT1 (c.894A>C, p.K298N) that affects a highly conserved residue of the coiled-coil domain of STAT1. STAT1 phosphorylation levels were significantly higher in patients' cells than in healthy controls, both in basal conditions and after IFN-γ stimulation, suggesting a permanent activation of STAT1. Cells from the patients also presented increased IFN-γ-mediated responses measured as MIG and IP-10 production. In conclusion, we report a novel gain-of-function mutation in the coiled-coil domain of STAT1, which increases STAT1 phosphorylation and impairs IL-17-mediated immunity. The mutation is responsible for CMC in this family with autosomal dominant inheritance of the disease.
Collapse
Affiliation(s)
- Laura Martinez-Martinez
- Department of Immunology, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, Spain
| | | | - Pablo Fuentes-Prior
- Molecular Basis of Disease, Institute for Biomedical Research, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| | - Maria Barnadas
- Department of Dermatology, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, Spain
| | - Maria Victoria Rubiales
- Department of Immunology, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, Spain
| | - Judith Noda
- Department of Immunology, Hospital de Gran Canaria Dr. Negrín, Las Palmas de Gran Canaria, Spain
| | - Isabel Badell
- Department of Pediatrics, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, Spain
| | - Carlos Rodríguez-Gallego
- Department of Immunology, Hospital Son Espases, Palma de Mallorca, Spain; Research Institute of Health Sciences (IdISPa), Palma de Mallorca, Spain
| | - Oscar de la Calle-Martin
- Department of Immunology, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, Spain.
| |
Collapse
|
48
|
Common variable immunodeficiency, impaired neurological development and reduced numbers of T regulatory cells in a 10-year-old boy with a STAT1 gain-of-function mutation. Gene 2016; 586:234-8. [PMID: 27063510 DOI: 10.1016/j.gene.2016.04.006] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Revised: 02/11/2016] [Accepted: 04/04/2016] [Indexed: 11/23/2022]
Abstract
Recently, gain-of-function (GOF) mutations in the gene encoding signal transducer and activator of transcription 1 (STAT1) have been associated with chronic mucocutaneous candidiasis (CMC). This case report describes a 10-year-old boy presenting with signs of common variable immunodeficiency (CVID), failure to thrive, impaired neurological development, and a history of recurrent mucocutaneous Candida infections. Sequencing of the STAT1 gene identified a heterozygous missense mutation in exon 7 encoding the STAT1 coiled-coil domain (c.514T>C, p.Phe172Leu). In addition to hypogammaglobulinemia with B-cell deficiency, and a low percentage of Th17 cells, immunological analysis of the patient revealed a marked depletion of forkhead-box P3(+)-expressing regulatory T cells (Tregs). In vitro stimulation of T cells from the patient with interferon-α (IFNα) and/or IFNɣ resulted in a significantly increased expression of STAT1-regulated target genes such as MIG1, IRF1, MX1, MCP1/CCL2, IFI-56K, and CXCL10 as compared to IFN-treated cells from a healthy control, while no IFNα/ɣ-mediated up-regulation of the FOXP3 gene was found. These data demonstrate that the STAT1 GOF mutation F172L, which results in impaired stability of the antiparallel STAT1 dimer conformation, is associated with inhibited Treg cell development and neurological symptoms.
Collapse
|
49
|
Höfs S, Mogavero S, Hube B. Interaction of Candida albicans with host cells: virulence factors, host defense, escape strategies, and the microbiota. J Microbiol 2016; 54:149-69. [DOI: 10.1007/s12275-016-5514-0] [Citation(s) in RCA: 115] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Revised: 11/03/2015] [Accepted: 11/07/2015] [Indexed: 12/20/2022]
|
50
|
Jones LL, Alli R, Li B, Geiger TL. Differential T Cell Cytokine Receptivity and Not Signal Quality Distinguishes IL-6 and IL-10 Signaling during Th17 Differentiation. THE JOURNAL OF IMMUNOLOGY 2016; 196:2973-85. [PMID: 26912317 DOI: 10.4049/jimmunol.1402953] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Accepted: 02/01/2016] [Indexed: 01/01/2023]
Abstract
How a large number of cytokines differentially signal through a small number of signal transduction pathways is not well resolved. This is particularly true for IL-6 and IL-10, which act primarily through STAT3 yet induce dissimilar transcriptional programs leading alternatively to pro- and anti-inflammatory effects. Kinetic differences in signaling, sustained to IL-10 and transient to IL-6, are critical to this in macrophages. T cells are also key targets of IL-6 and IL-10, yet how differential signaling in these cells leads to divergent cellular fates is unclear. We show that, unlike for macrophages, signal duration cannot explain the distinct effects of these cytokines in T cells. Rather, naive, activated, activated-rested, and memory CD4(+) T cells differentially express IL-6 and IL-10 receptors in an activation state-dependent manner, and this impacts downstream cytokine effects. We show a dominant role for STAT3 in IL-6-mediated Th17 subset maturation. IL-10 cannot support Th17 differentiation because of insufficient cytokine receptivity rather than signal quality. Enforced expression of IL-10Rα on naive T cells permits an IL-10-generated STAT3 signal equivalent to that of IL-6 and equally capable of promoting Th17 formation. Similarly, naive T cell IL-10Rα expression also allows IL-10 to mimic the effects of IL-6 on both Th1/Th2 skewing and Tfh cell differentiation. Our results demonstrate a key role for the regulation of receptor expression rather than signal quality or duration in differentiating the functional outcomes of IL-6 and IL-10 signaling, and identify distinct signaling properties of these cytokines in T cells compared with myeloid cells.
Collapse
Affiliation(s)
- Lindsay L Jones
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN 38105
| | - Rajshekhar Alli
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN 38105
| | - Bofeng Li
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN 38105
| | - Terrence L Geiger
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN 38105
| |
Collapse
|