1
|
Berlin A, Messinger JD, Balaratnasingam C, Mendis R, Ferrara D, Freund KB, Curcio CA. Imaging Histology Correlations of Intraretinal Fluid in Neovascular Age-Related Macular Degeneration. Transl Vis Sci Technol 2023; 12:13. [PMID: 37943552 PMCID: PMC10637202 DOI: 10.1167/tvst.12.11.13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Accepted: 10/04/2023] [Indexed: 11/10/2023] Open
Abstract
Purpose Fluid presence and dynamism is central to the diagnosis and management of neovascular age-related macular degeneration. On optical coherence tomography (OCT), some hyporeflective spaces arise through vascular permeability (exudation) and others arise through degeneration (transudation). Herein we determined whether the histological appearance of fluid manifested this heterogeneity. Methods Two eyes of a White woman in her 90s with anti-vascular endothelial growth factor treated bilateral type 3 neovascularization secondary to age-related macular degeneration were osmicated, prepared for submicrometer epoxy resin sections, and correlated to eye-tracked spectral domain OCT. Examples of intraretinal tissue fluid were sought among similarly prepared donor eyes with fibrovascular scars, in a web-based age-related macular degeneration histopathology resource. Fluid stain intensity was quantified in reference to Bruch's membrane and the empty glass slide. Results Exudative fluid by OCT was slightly reflective and dynamically responded to anti-vascular endothelial growth factor. On histology, this fluid stained moderately, possessed a smooth and homogenous texture, and contained blood cells and fibrin. Nonexudative fluid in degenerative cysts and in outer retinal tubulation was minimally reflective on OCT and did not respond to anti-vascular endothelial growth factor. By histology, this fluid stained lightly, possessed a finely granular texture, and contained mainly tissue debris. Quantification supported the qualitative impressions of fluid stain density. Cells containing retinal pigment epithelium organelles localized to both fluid types. Conclusions High-resolution histology of osmicated tissue can distinguish between exudative and nonexudative fluid, some of which is transudative. Translational Relevance OCT and histological features of different fluid types can inform clinical decision-making and assist in the interpretation of newly available automated fluid detection algorithms.
Collapse
Affiliation(s)
- Andreas Berlin
- Department of Ophthalmology and Visual Sciences, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
- Department of Ophthalmology, University Hospital Würzburg, Würzburg, Germany
| | - Jeffrey D. Messinger
- Department of Ophthalmology and Visual Sciences, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Chandrakumar Balaratnasingam
- Centre for Ophthalmology and Visual Science, University of Western Australia, Perth, Australia
- Lions Eye Institute, Nedlands, Western Australia, Australia
- Department of Ophthalmology, Sir Charles Gairdner Hospital, Western Australia, Australia
| | | | | | - K. Bailey Freund
- Vitreous Retina Macula Consultants of New York, New York, NY, USA
- Department of Ophthalmology, New York University Grossman School of Medicine, New York, NY, USA
| | - Christine A. Curcio
- Department of Ophthalmology and Visual Sciences, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|
2
|
Sadikan MZ, Abdul Nasir NA, Bakar NS, Iezhitsa I, Agarwal R. Tocotrienol-rich fraction reduces retinal inflammation and angiogenesis in rats with streptozotocin-induced diabetes. BMC Complement Med Ther 2023; 23:179. [PMID: 37268913 DOI: 10.1186/s12906-023-04005-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 05/20/2023] [Indexed: 06/04/2023] Open
Abstract
BACKGROUND Diabetic retinopathy (DR) is the second commonest microvascular complication of diabetes mellitus. It is characterized by chronic inflammation and angiogenesis. Palm oil-derived tocotrienol-rich fraction (TRF), a substance with anti-inflammatory and anti-angiogenic properties, may provide protection against DR development. Therefore, in this study, we investigated the effect of TRF on retinal vascular and morphological changes in diabetic rats. The effects of TRF on the retinal expression of inflammatory and angiogenic markers were also studied in the streptozotocin (STZ)-induced diabetic rats. METHODS Male Sprague Dawley rats weighing 200-250 g were grouped into normal rats (N) and diabetic rats. Diabetes was induced by intraperitoneal injection of streptozotocin (55 mg/kg body weight) whereas N similarly received citrate buffer. STZ-injected rats with blood glucose of more than 20 mmol/L were considered diabetic and were divided into vehicle-treated (DV) and TRF-treated (DT) groups. N and DV received vehicle, whereas DT received TRF (100 mg/kg body weight) via oral gavage once daily for 12 weeks. Fundus images were captured at week 0 (baseline), week 6 and week 12 post-STZ induction to estimate vascular diameters. At the end of experimental period, rats were euthanized, and retinal tissues were collected for morphometric analysis and measurement of NFκB, phospho-NFκB (Ser536), HIF-1α using immunohistochemistry (IHC) and enzyme-linked immunosorbent assay (ELISA). Retinal inflammatory and angiogenic cytokines expression were measured by ELISA and real-time quantitative PCR. RESULTS TRF preserved the retinal layer thickness (GCL, IPL, INL and OR; p < 0.05) and retinal venous diameter (p < 0.001). TRF also lowered the retinal NFκB activation (p < 0.05) as well as expressions of IL-1β, IL-6, TNF-α, IFN-γ, iNOS and MCP-1 (p < 0.05) compared to vehicle-treated diabetic rats. Moreover, TRF also reduced retinal expression of VEGF (p < 0.001), IGF-1 (p < 0.001) and HIF-1α (p < 0.05) compared to vehicle-treated rats with diabetes. CONCLUSION Oral TRF provided protection against retinal inflammation and angiogenesis in rats with STZ-induced diabetes by suppressing the expression of the markers of retinal inflammation and angiogenesis.
Collapse
Affiliation(s)
- Muhammad Zulfiqah Sadikan
- Department of Pharmacology, Faculty of Medicine, Manipal University College Malaysia (MUCM), Bukit Baru, 75150, Melaka, Malaysia
- Centre for Neuroscience Research (NeuRon), Faculty of Medicine, Universiti Teknologi MARA, Sungai Buloh Campus, 47000, Sungai Buloh, Selangor, Malaysia
| | - Nurul Alimah Abdul Nasir
- Centre for Neuroscience Research (NeuRon), Faculty of Medicine, Universiti Teknologi MARA, Sungai Buloh Campus, 47000, Sungai Buloh, Selangor, Malaysia.
| | - Nor Salmah Bakar
- Department of Pathology, Faculty of Medicine, Universiti Teknologi MARA, Sungai Buloh Campus, 47000, Sungai Buloh, Selangor, Malaysia
| | - Igor Iezhitsa
- School of Medicine, International Medical University, Bukit Jalil, 57000, Kuala Lumpur, Malaysia
- Department of Pharmacology and Bioinformatics, Volgograd State Medical University, Pavshikh Bortsov sq. 1, Volgograd, 400131, Russia
| | - Renu Agarwal
- School of Medicine, International Medical University, Bukit Jalil, 57000, Kuala Lumpur, Malaysia
| |
Collapse
|
3
|
Padovani-Claudio DA, Ramos CJ, Capozzi ME, Penn JS. Elucidating glial responses to products of diabetes-associated systemic dyshomeostasis. Prog Retin Eye Res 2023; 94:101151. [PMID: 37028118 PMCID: PMC10683564 DOI: 10.1016/j.preteyeres.2022.101151] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 11/21/2022] [Accepted: 11/22/2022] [Indexed: 04/08/2023]
Abstract
Diabetic retinopathy (DR) is a leading cause of blindness in working age adults. DR has non-proliferative stages, characterized in part by retinal neuroinflammation and ischemia, and proliferative stages, characterized by retinal angiogenesis. Several systemic factors, including poor glycemic control, hypertension, and hyperlipidemia, increase the risk of DR progression to vision-threatening stages. Identification of cellular or molecular targets in early DR events could allow more prompt interventions pre-empting DR progression to vision-threatening stages. Glia mediate homeostasis and repair. They contribute to immune surveillance and defense, cytokine and growth factor production and secretion, ion and neurotransmitter balance, neuroprotection, and, potentially, regeneration. Therefore, it is likely that glia orchestrate events throughout the development and progression of retinopathy. Understanding glial responses to products of diabetes-associated systemic dyshomeostasis may reveal novel insights into the pathophysiology of DR and guide the development of novel therapies for this potentially blinding condition. In this article, first, we review normal glial functions and their putative roles in the development of DR. We then describe glial transcriptome alterations in response to systemic circulating factors that are upregulated in patients with diabetes and diabetes-related comorbidities; namely glucose in hyperglycemia, angiotensin II in hypertension, and the free fatty acid palmitic acid in hyperlipidemia. Finally, we discuss potential benefits and challenges associated with studying glia as targets of DR therapeutic interventions. In vitro stimulation of glia with glucose, angiotensin II and palmitic acid suggests that: 1) astrocytes may be more responsive than other glia to these products of systemic dyshomeostasis; 2) the effects of hyperglycemia on glia are likely to be largely osmotic; 3) fatty acid accumulation may compound DR pathophysiology by promoting predominantly proinflammatory and proangiogenic transcriptional alterations of macro and microglia; and 4) cell-targeted therapies may offer safer and more effective avenues for DR treatment as they may circumvent the complication of pleiotropism in retinal cell responses. Although several molecules previously implicated in DR pathophysiology are validated in this review, some less explored molecules emerge as potential therapeutic targets. Whereas much is known regarding glial cell activation, future studies characterizing the role of glia in DR and how their activation is regulated and sustained (independently or as part of retinal cell networks) may help elucidate mechanisms of DR pathogenesis and identify novel drug targets for this blinding disease.
Collapse
Affiliation(s)
- Dolly Ann Padovani-Claudio
- Department of Ophthalmology and Visual Sciences, Vanderbilt University School of Medicine, B3321A Medical Center North, 1161 21st Avenue South, Nashville, TN, 37232-0011, USA.
| | - Carla J Ramos
- Department of Ophthalmology and Visual Sciences, Vanderbilt University School of Medicine, AA1324 Medical Center North, 1161 21st Avenue South, Nashville, TN, 37232-0011, USA.
| | - Megan E Capozzi
- Duke Molecular Physiology Institute, Duke University School of Medicine, 300 North Duke Street, Durham, NC, 27701, USA.
| | - John S Penn
- Department of Ophthalmology and Visual Sciences, Vanderbilt University School of Medicine, B3307 Medical Center North, 1161 21st Avenue South, Nashville, TN, 37232-0011, USA.
| |
Collapse
|
4
|
Tonade D, Kern TS. Photoreceptor cells and RPE contribute to the development of diabetic retinopathy. Prog Retin Eye Res 2021; 83:100919. [PMID: 33188897 PMCID: PMC8113320 DOI: 10.1016/j.preteyeres.2020.100919] [Citation(s) in RCA: 111] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 10/27/2020] [Accepted: 10/31/2020] [Indexed: 12/26/2022]
Abstract
Diabetic retinopathy (DR) is a leading cause of blindness. It has long been regarded as vascular disease, but work in the past years has shown abnormalities also in the neural retina. Unfortunately, research on the vascular and neural abnormalities have remained largely separate, instead of being integrated into a comprehensive view of DR that includes both the neural and vascular components. Recent evidence suggests that the most predominant neural cell in the retina (photoreceptors) and the adjacent retinal pigment epithelium (RPE) play an important role in the development of vascular lesions characteristic of DR. This review summarizes evidence that the outer retina is altered in diabetes, and that photoreceptors and RPE contribute to retinal vascular alterations in the early stages of the retinopathy. The possible molecular mechanisms by which cells of the outer retina might contribute to retinal vascular damage in diabetes also are discussed. Diabetes-induced alterations in the outer retina represent a novel therapeutic target to inhibit DR.
Collapse
Affiliation(s)
- Deoye Tonade
- Department of Pharmacology, Case Western Reserve University, Cleveland, OH, USA
| | - Timothy S Kern
- Department of Pharmacology, Case Western Reserve University, Cleveland, OH, USA; Veterans Administration Medical Center Research Service, Cleveland, OH, USA; Gavin Herbert Eye Institute, University of California Irvine, Irvine, CA, USA; Veterans Administration Medical Center Research Service, Long Beach, CA, USA.
| |
Collapse
|
5
|
Muir ER, Pan X, Donaldson PJ, Vaghefi E, Jiang Z, Sellitto C, White TW. Multi-parametric MRI of the physiology and optics of the in-vivo mouse lens. Magn Reson Imaging 2020; 70:145-154. [PMID: 32380160 DOI: 10.1016/j.mri.2020.04.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 03/30/2020] [Accepted: 04/19/2020] [Indexed: 02/07/2023]
Abstract
The optics of the ocular lens are determined by its geometry (shape and volume) and its inherent gradient of refractive index (water to protein ratio), which are in turn maintained by unique cellular physiology known as the lens internal microcirculation system. Previously, magnetic resonance imaging (MRI) has been used on ex vivo organ cultured bovine lenses to show that pharmacological perturbations to this microcirculation system disrupt ionic and fluid homeostasis and overall lens optics. In this study, we have optimised in vivo MRI protocols for use on wild-type and transgenic mouse models so that the effects of genetically perturbing the lens microcirculation system on lens properties can be studied. In vivo MRI protocols and post-analysis methods for studying the mouse lens were optimised and used to measure the lens geometry, diffusion, T1 and T2, as well as the refractive index (n) calculated from T2, in wild-type mice and the genetically modified Cx50KI46 mouse. In this animal line, gap junctional coupling in the lens is increased by knocking in the gap junction protein Cx46 into the Cx50 locus. Relative to wild-type mice, Cx50KI46 mice showed significantly reduced lens size and radius of curvature, increased T1 and T2 values, and decreased n in the lens nucleus, which was consistent with the developmental and functional changes characterised previously in this lens model. These proof of principle experiments show that in vivo MRI can be applied to transgenic mouse models to gain mechanistic insights into the relationship between lens physiology and optics, and in the future suggest that longitudinal studies can be performed to determine how this relationship is altered by age in mouse models of cataract.
Collapse
Affiliation(s)
- Eric R Muir
- Department of Radiology, School of Medicine, Stony Brook University, Stony Brook, NY, USA
| | - Xingzheng Pan
- School of Optometry and Vision Science, New Zealand National Eye Centre, University of Auckland, New Zealand
| | - Paul J Donaldson
- School of Optometry and Vision Science, New Zealand National Eye Centre, University of Auckland, New Zealand; Department of Physiology, School of Medical Sciences, University of Auckland, New Zealand
| | - Ehsan Vaghefi
- School of Optometry and Vision Science, New Zealand National Eye Centre, University of Auckland, New Zealand
| | - Zhao Jiang
- Department of Radiology, School of Medicine, Stony Brook University, Stony Brook, NY, USA
| | - Caterina Sellitto
- Department of Physiology & Biophysics, School of Medicine, Stony Brook University, Stony Brook, NY, USA
| | - Thomas W White
- Department of Physiology & Biophysics, School of Medicine, Stony Brook University, Stony Brook, NY, USA.
| |
Collapse
|
6
|
Liu H, Lessieur EM, Saadane A, Lindstrom SI, Taylor PR, Kern TS. Neutrophil elastase contributes to the pathological vascular permeability characteristic of diabetic retinopathy. Diabetologia 2019; 62:2365-2374. [PMID: 31612267 PMCID: PMC6866660 DOI: 10.1007/s00125-019-04998-4] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2019] [Accepted: 07/31/2019] [Indexed: 12/22/2022]
Abstract
AIMS/HYPOTHESIS Levels of neutrophil elastase, a serine protease secreted by neutrophils, are elevated in diabetes. The purpose of this study was to determine whether neutrophil elastase (NE) contributes to the diabetes-induced increase in retinal vascular permeability in mice with streptozotocin-induced diabetes, and, if so, to investigate the potential role of IL-17 in this process. METHODS In vivo, diabetes was induced in neutrophil elastase-deficient (Elane-/-), Il-17a-/- and wild-type mice. After 8 months of diabetes, Elane-/- mice and wild-type age-matched control mice were injected with FITC-BSA. Fluorescence microscopy was used to assess leakage of FITC-BSA from the retinal vasculature into the neural retina. The level of NE in Il-17a-/- diabetic retina and sera were determined by ELISA. In vitro, the effect of NE on the permeability and viability of human retinal endothelial cells and the expression of junction proteins and adhesion molecules were studied. RESULTS Eight months of diabetes resulted in increased retinal vascular permeability and levels of NE in retina and plasma of wild-type animals. All of these abnormalities were significantly inhibited in mice lacking the elastase. The diabetes-induced increase in NE was inhibited in mice lacking IL-17. In vitro, NE increased retinal endothelial cell permeability, which was partially inhibited by a myeloid differentiation primary response 88 (MyD88) inhibitor, NF-κB inhibitor, and protease-activated receptor (PAR)2 inhibitor. NE degraded vascular endothelial-cadherin (VE-cadherin) in a concentration-dependent manner. CONCLUSIONS/INTERPRETATION IL-17 regulates NE expression in diabetes. NE contributes to vascular leakage in diabetic retinopathy, partially through activation of MyD88, NF-κB and PAR2 and degradation of VE-cadherin.
Collapse
Affiliation(s)
- Haitao Liu
- Department of Biology, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
- Department of Ophthalmology, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, 116011, People's Republic of China
| | - Emma M Lessieur
- Center for Translational Vision Research, Department of Ophthalmology, Gavin Herbert Eye Institute, School of Medicine, University of California-Irvine, 829 Health Sciences Rd. Gillespie Neuroscience Research Facility, Room 2107, Irvine, CA, 92697, USA
| | - Aicha Saadane
- Center for Translational Vision Research, Department of Ophthalmology, Gavin Herbert Eye Institute, School of Medicine, University of California-Irvine, 829 Health Sciences Rd. Gillespie Neuroscience Research Facility, Room 2107, Irvine, CA, 92697, USA
| | - Sarah I Lindstrom
- Department of Ophthalmology and Visual Sciences, Case Western Reserve University, Cleveland, OH, USA
| | - Patricia R Taylor
- Department of Ophthalmology and Visual Sciences, Case Western Reserve University, Cleveland, OH, USA
- Veterans Administration Medical Center Research Service 151, Cleveland, OH, USA
| | - Timothy S Kern
- Center for Translational Vision Research, Department of Ophthalmology, Gavin Herbert Eye Institute, School of Medicine, University of California-Irvine, 829 Health Sciences Rd. Gillespie Neuroscience Research Facility, Room 2107, Irvine, CA, 92697, USA.
- Veterans Administration Medical Center Research Service 151, Cleveland, OH, USA.
- Veterans Administration Medical Center Research Service, Long Beach, CA, USA.
| |
Collapse
|
7
|
Berkowitz BA, Podolsky RH, Qian H, Li Y, Jiang K, Nellissery J, Swaroop A, Roberts R. Mitochondrial Respiration in Outer Retina Contributes to Light-Evoked Increase in Hydration In Vivo. Invest Ophthalmol Vis Sci 2019; 59:5957-5964. [PMID: 30551203 PMCID: PMC6296210 DOI: 10.1167/iovs.18-25682] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Purpose To test the hypothesis that mitochondrial respiration contributes to local changes in hydration involved in phototransduction-driven expansion of outer retina, as measured by structural responses on optical coherence tomography (OCT) and diffusion magnetic resonance imaging (MRI). Methods Oxygen consumption rate and mitochondrial reserve capacity of freshly isolated C57BL/6 and 129S6/SvEvTac mouse retina were measured using a Seahorse Extracellular Flux Analyzer. Light-stimulated outer retina layer water content was determined by proton density MRI, structure and thickness by ultrahigh-resolution OCT, and water mobility by diffusion MRI. Results Compared with C57BL/6 mice, 129S6/SvEvTac retina demonstrated a less robust mitochondrial respiratory basal level, with a higher reserve capacity and lower oxygen consumption in the light, suggesting a relatively lower production of water. C57BL/6 mice showed a light-triggered surge in water content of outer retina in vivo as well as an increase in hyporeflective bands, thickness, and water mobility. In contrast, light did not evoke augmented hydration in this region or an increase in hyporeflective bands or water mobility in the 129S6/SvEvTac outer retina. Nonetheless, we observed a significant but small increase in outer retinal thickness. Conclusions These studies suggest that respiratory-controlled hydration in healthy retina is linked with a localized light-evoked expansion of the posterior retina in vivo and may serve as a useful biomarker of the function of photoreceptor/retinal pigment epithelium complex.
Collapse
Affiliation(s)
- Bruce A Berkowitz
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, Detroit, Michigan, United States
| | - Robert H Podolsky
- Beaumont Research Institute, Beaumont Health, Royal Oak, Michigan, United States
| | - Haohua Qian
- Visual Function Core National Eye Institute, National Institutes of Health, Bethesda, Maryland, United States
| | - Yichao Li
- Visual Function Core National Eye Institute, National Institutes of Health, Bethesda, Maryland, United States
| | - Ke Jiang
- Neurobiology-Neurodegeneration and Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, Maryland, United States
| | - Jacob Nellissery
- Neurobiology-Neurodegeneration and Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, Maryland, United States
| | - Anand Swaroop
- Neurobiology-Neurodegeneration and Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, Maryland, United States
| | - Robin Roberts
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, Detroit, Michigan, United States
| |
Collapse
|
8
|
Orduña Ríos M, Noguez Imm R, Hernández Godínez NM, Bautista Cortes AM, López Escalante DD, Liedtke W, Martínez Torres A, Concha L, Thébault S. TRPV4 inhibition prevents increased water diffusion and blood-retina barrier breakdown in the retina of streptozotocin-induced diabetic mice. PLoS One 2019; 14:e0212158. [PMID: 31048895 PMCID: PMC6497373 DOI: 10.1371/journal.pone.0212158] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 04/09/2019] [Indexed: 01/02/2023] Open
Abstract
A better understanding of the molecular and cellular mechanisms involved in retinal hydro-mineral homeostasis imbalance during diabetic macular edema (DME) is needed to gain insights into retinal (patho-)physiology that will help elaborate innovative therapies with lower health care costs. Transient receptor potential cation channel subfamily vanilloid member 4 (TRPV4) plays an intricate role in homeostatic processes that needs to be deciphered in normal and diabetic retina. Based on previous findings showing that TRPV4 antagonists resolve blood-retina barrier (BRB) breakdown in diabetic rats, we evaluated whether TRPV4 channel inhibition prevents and reverts retinal edema in streptozotocin(STZ)-induced diabetic mice. We assessed retinal edema using common metrics, including retinal morphology/thickness (histology) and BRB integrity (albumin-associated tracer), and also by quantifying water mobility through apparent diffusion coefficient (ADC) measures. ADC was measured by diffusion-weighted magnetic resonance imaging (DW-MRI), acquired ex vivo at 4 weeks after STZ injection in diabetes and control groups. DWI images were also used to assess retinal thickness. TRPV4 was genetically ablated or pharmacologically inhibited as follows: left eyes were used as vehicle control and right eyes were intravitreally injected with TRPV4-selective antagonist GSK2193874, 24 h before the end of the 4 weeks of diabetes. Histological data show that retinal thickness was similar in nondiabetic and diabetic wt groups but increased in diabetic Trpv4-/- mice. In contrast, DWI shows retinal thinning in diabetic wt mice that was absent in diabetic Trpv4-/- mice. Disorganized outer nuclear layer was observed in diabetic wt but not in diabetic Trpv4-/- retinas. We further demonstrate increased water diffusion, increased distances between photoreceptor nuclei, reduced nuclear area in all nuclear layers, and BRB hyperpermeability, in diabetic wt mice, effects that were absent in diabetic Trpv4-/- mice. Retinas of diabetic mice treated with PBS showed increased water diffusion that was not normalized by GSK2193874. ADC maps in nondiabetic Trpv4-/- mouse retinas showed restricted diffusion. Our data provide evidence that water diffusion is increased in diabetic mouse retinas and that TRPV4 function contributes to retinal hydro-mineral homeostasis and structure under control conditions, and to the development of BRB breakdown and increased water diffusion in the retina under diabetes conditions. A single intravitreous injection of TRPV4 antagonist is however not sufficient to revert these alterations in diabetic mouse retinas.
Collapse
Affiliation(s)
- Maricruz Orduña Ríos
- Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Campus UNAM-Juriquilla, Querétaro, México
| | - Ramsés Noguez Imm
- Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Campus UNAM-Juriquilla, Querétaro, México
| | | | - Ana María Bautista Cortes
- Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Campus UNAM-Juriquilla, Querétaro, México
| | | | - Wolfgang Liedtke
- Department of Medicine and Neurobiology, Center for Translational Neuroscience, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Atáulfo Martínez Torres
- Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Campus UNAM-Juriquilla, Querétaro, México
| | - Luis Concha
- Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Campus UNAM-Juriquilla, Querétaro, México
| | - Stéphanie Thébault
- Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Campus UNAM-Juriquilla, Querétaro, México
- * E-mail:
| |
Collapse
|
9
|
Selner AN, Derafshi Z, Kunzer BE, Hetling JR. Three-Dimensional Model of Electroretinogram Field Potentials in the Rat Eye. IEEE Trans Biomed Eng 2018; 65:2781-2789. [PMID: 29993425 DOI: 10.1109/tbme.2018.2816591] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
OBJECTIVE The information derived from the electroretinogram (ERG), especially with regard to local areas of retinal dysfunction or therapeutic rescue, can be enhanced by an increased understanding of the relationship between local retinal current sources and local ERG potentials measured at the cornea. A critical step in this direction is the development of a robust bioelectric field model of the ERG. METHODS A finite-element model was created to simulate ERG potentials at the cornea resulting from physiologically relevant transretinal currents. A magnetic resonance image of a rat eye was segmented to define all major ocular structures, tissues were assigned conductivity values from the literature. The model was optimized to multi-electrode ERG (meERG) data recorded in healthy rat eyes, and validated with meERG data from eyes with experimental lesions in peripheral retina. RESULTS Following optimization, the simulated distribution of corneal potentials was in good agreement with measured values; residual error was comparable to the average difference of individual eyes from the measured mean. The model predicted the corneal potential distribution for eight eyes with experimental lesions with similar accuracy, and a measure of pre- to post-lesion changes in corneal potential distribution was well correlated with the location of the lesion. CONCLUSION An eye model with high anatomical accuracy was successfully validated against a robust dataset. SIGNIFICANCE This model can now be used for optimization of ERG electrode design, and to support functional mapping of the retina from meERG data via solving the inverse bioelectric source problem.
Collapse
|
10
|
Neurodegeneration in diabetic retinopathy: Potential for novel therapies. Vision Res 2017; 139:82-92. [PMID: 28988945 DOI: 10.1016/j.visres.2017.06.014] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Revised: 06/12/2017] [Accepted: 06/14/2017] [Indexed: 11/20/2022]
Abstract
The complex pathology of diabetic retinopathy (DR) affects both vascular and neural tissue. The characteristics of neurodegeneration are well-described in animal models but have more recently been confirmed in the clinical setting, mostly by using non-invasive imaging approaches such as spectral domain optical coherence tomography (SD-OCT). The most frequent observations report loss of tissue in the nerve fiber layer and inner plexiform layer, confirming earlier findings from animal models. In several cases the reduction in inner retinal layers is reported in patients with little evidence of vascular lesions or macular edema, suggesting that degenerative loss of neural tissue in the inner retina can occur after relatively short durations of diabetes. Animal studies also suggest that neurodegeneration leading to retinal thinning is not limited to cell death and tissue loss but also includes changes in neuronal morphology, reduced synaptic protein expression and alterations in neurotransmission, including changes in expression of neurotransmitter receptors as well as neurotransmitter release, reuptake and metabolism. The concept of neurodegeneration as an early component of DR introduces the possibility to explore alternative therapies to prevent the onset of vision loss, including neuroprotective therapies and drugs targeting individual neurotransmitter systems, as well as more general neuroprotective approaches to preserve the integrity of the neural retina. In this review we consider some of the evidence for progressive retinal neurodegeneration in diabetes, and explore potential neuroprotective therapies.
Collapse
|
11
|
Kleinwort KJH, Amann B, Hauck SM, Hirmer S, Blutke A, Renner S, Uhl PB, Lutterberg K, Sekundo W, Wolf E, Deeg CA. Retinopathy with central oedema in an INS C94Y transgenic pig model of long-term diabetes. Diabetologia 2017; 60:1541-1549. [PMID: 28480495 DOI: 10.1007/s00125-017-4290-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Accepted: 03/29/2017] [Indexed: 12/20/2022]
Abstract
AIMS/HYPOTHESIS Diabetic retinopathy is a severe complication of diabetes mellitus that often leads to blindness. Because the pathophysiology of diabetic retinopathy is not fully understood and novel therapeutic interventions require testing, there is a need for reliable animal models that mimic all the complications of diabetic retinopathy. Pig eyes share important anatomical and physiological similarities with human eyes. Previous studies have demonstrated that INS C94Y transgenic pigs develop a stable diabetic phenotype and ocular alterations such as cataracts. The aim of this study was to conduct an in-depth analysis of pathological changes in retinas from INS C94Y pigs exposed to hyperglycaemia for more than 2 years, representing a chronic diabetic condition. METHODS Eyes from six INS C94Ypigs and six age-matched control littermates were analysed via histology and immunohistochemistry. For histological analyses of retinal (layer) thickness, sections were stained with H&E or Mallory's trichrome. For comparison of protein expression patterns and vessel courses, sections were stained with different antibodies in immunohistochemistry. Observed lesions were compared with reported pathologies in human diabetic retinopathy. RESULTS INS C94Ypigs developed several signs of diabetic retinopathy similar to those seen in humans, such as intraretinal microvascular abnormalities, symptoms of proliferative diabetic retinopathy and central retinal oedema in a region that is cone rich, like the human macula. CONCLUSIONS/INTERPRETATION The INS C94Ypig is an interesting model for studying the pathophysiology of diabetic retinopathy and for testing novel therapeutic strategies.
Collapse
Affiliation(s)
- Kristina J H Kleinwort
- Institute of Animal Physiology, Department of Veterinary Sciences, LMU Munich, Munich, Germany
| | - Barbara Amann
- Institute of Animal Physiology, Department of Veterinary Sciences, LMU Munich, Munich, Germany
| | - Stefanie M Hauck
- Research Unit Protein Science, Helmholtz Zentrum München, German Research Centre for Environmental Health GmbH, Munich, Germany
- German Centre for Diabetes Research (DZD), Neuherberg, Germany
| | - Sieglinde Hirmer
- Institute of Animal Physiology, Department of Veterinary Sciences, LMU Munich, Munich, Germany
| | - Andreas Blutke
- Institute of Veterinary Pathology, Centre for Clinical Veterinary Medicine, LMU Munich, Munich, Germany
| | - Simone Renner
- German Centre for Diabetes Research (DZD), Neuherberg, Germany
- Molecular Animal Breeding and Biotechnology, Gene Centre, LMU Munich, Munich, Germany
| | - Patrizia B Uhl
- Institute of Animal Physiology, Department of Veterinary Sciences, LMU Munich, Munich, Germany
| | - Karina Lutterberg
- Institute of Animal Physiology, Department of Veterinary Sciences, LMU Munich, Munich, Germany
| | - Walter Sekundo
- Department of Ophthalmology, Philipps University of Marburg, Marburg, Germany
| | - Eckhard Wolf
- German Centre for Diabetes Research (DZD), Neuherberg, Germany
- Molecular Animal Breeding and Biotechnology, Gene Centre, LMU Munich, Munich, Germany
| | - Cornelia A Deeg
- Experimental Ophthalmology, Philipps University of Marburg, Baldingerstrasse, D-35033, Marburg, Germany.
| |
Collapse
|
12
|
Tarchick MJ, Bassiri P, Rohwer RM, Samuels IS. Early Functional and Morphologic Abnormalities in the Diabetic Nyxnob Mouse Retina. Invest Ophthalmol Vis Sci 2017; 57:3496-508. [PMID: 27367517 PMCID: PMC4961059 DOI: 10.1167/iovs.15-18775] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Purpose The electroretinogram c-wave is generated by the summation of the positive polarity hyperpolarization of the apical RPE membrane and a negative polarity slow PIII response of Müller glia cells. Therefore, the c-wave reduction noted in prior studies of mouse models of diabetes could reflect a reduction in the RPE component or an increase in slow PIII. The present study used a genetic approach to distinguish between these two alternatives. Methods Nyxnob mice lack the ERG b-wave, revealing the early phase of slow PIII. To visualize changes in slow PIII due to diabetes, Nyxnob mice were given streptozotocin (STZ) injections to induce diabetes or received vehicle as a control. After 1, 2, and 4 weeks of sustained hyperglycemia (>250 mg/dL), standard strobe flash ERG and dc-ERG testing were conducted. Histological analysis of the retina was performed. Results A reduced c-wave was noted at the 1 week time point, and persisted at later time points. In comparison, slow PIII amplitudes were unaffected after 1 week of hyperglycemia, but were significantly reduced in STZ mice at the 2-week time point. The decrease in amplitude occurred before any identifiable decrease to the a-wave. At the later time point, the a-wave became involved, although the slow PIII reductions were more pronounced. Morphological abnormalities in the RPE, including increased thickness and altered melanosome distribution, were identified in diabetic animals. Conclusions Because the c-wave and slow PIII were both reduced, these results demonstrated that diabetes-induced reductions to the c-wave cannot be attributed to an early increase in the Müller glia-derived potassium conductance. Furthermore, because the a-wave, slow PIII and c-wave reductions were not equivalent, and varied in their onset, the reductions cannot reflect the same mechanism, such as a change in membrane resistance. The presence of small changes to RPE architecture indicate that the c-wave reductions present in diabetic mice likely represents a primary change in the RPE induced by hyperglycemia.
Collapse
Affiliation(s)
- Matthew J Tarchick
- Louis Stokes Cleveland VA Medical Center, Cleveland, Ohio, United States 2Cole Eye Institute, Cleveland Clinic, Cleveland, Ohio, United States
| | - Parastoo Bassiri
- Cole Eye Institute, Cleveland Clinic, Cleveland, Ohio, United States
| | - Rebecca M Rohwer
- Cole Eye Institute, Cleveland Clinic, Cleveland, Ohio, United States
| | - Ivy S Samuels
- Louis Stokes Cleveland VA Medical Center, Cleveland, Ohio, United States 2Cole Eye Institute, Cleveland Clinic, Cleveland, Ohio, United States
| |
Collapse
|
13
|
Kancherla S, Kohler WJ, van der Merwe Y, Chan KC. In Vivo Evaluation of the Visual Pathway in Streptozotocin-Induced Diabetes by Diffusion Tensor MRI and Contrast Enhanced MRI. PLoS One 2016; 11:e0165169. [PMID: 27768755 PMCID: PMC5074510 DOI: 10.1371/journal.pone.0165169] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Accepted: 10/07/2016] [Indexed: 02/07/2023] Open
Abstract
Visual function has been shown to deteriorate prior to the onset of retinopathy in some diabetic patients and experimental animal models. This suggests the involvement of the brain's visual system in the early stages of diabetes. In this study, we tested this hypothesis by examining the integrity of the visual pathway in a diabetic rat model using in vivo multi-modal magnetic resonance imaging (MRI). Ten-week-old Sprague-Dawley rats were divided into an experimental diabetic group by intraperitoneal injection of 65 mg/kg streptozotocin in 0.01 M citric acid, and a sham control group by intraperitoneal injection of citric acid only. One month later, diffusion tensor MRI (DTI) was performed to examine the white matter integrity in the brain, followed by chromium-enhanced MRI of retinal integrity and manganese-enhanced MRI of anterograde manganese transport along the visual pathway. Prior to MRI experiments, the streptozotocin-induced diabetic rats showed significantly smaller weight gain and higher blood glucose level than the control rats. DTI revealed significantly lower fractional anisotropy and higher radial diffusivity in the prechiasmatic optic nerve of the diabetic rats compared to the control rats. No apparent difference was observed in the axial diffusivity of the optic nerve, the chromium enhancement in the retina, or the manganese enhancement in the lateral geniculate nucleus and superior colliculus between groups. Our results suggest that streptozotocin-induced diabetes leads to early injury in the optic nerve when no substantial change in retinal integrity or anterograde transport along the visual pathways was observed in MRI using contrast agent enhancement. DTI may be a useful tool for detecting and monitoring early pathophysiological changes in the visual system of experimental diabetes non-invasively.
Collapse
Affiliation(s)
- Swarupa Kancherla
- NeuroImaging Laboratory, University of Pittsburgh, Pittsburgh, PA, United States of America
- UPMC Eye Center, Ophthalmology and Visual Science Research Center, Department of Ophthalmology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States of America
| | - William J. Kohler
- NeuroImaging Laboratory, University of Pittsburgh, Pittsburgh, PA, United States of America
- UPMC Eye Center, Ophthalmology and Visual Science Research Center, Department of Ophthalmology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States of America
| | - Yolandi van der Merwe
- NeuroImaging Laboratory, University of Pittsburgh, Pittsburgh, PA, United States of America
- UPMC Eye Center, Ophthalmology and Visual Science Research Center, Department of Ophthalmology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States of America
- Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA, United States of America
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, United States of America
- Louis J. Fox Center for Vision Restoration, University of Pittsburgh, Pittsburgh, PA, United States of America
| | - Kevin C. Chan
- NeuroImaging Laboratory, University of Pittsburgh, Pittsburgh, PA, United States of America
- UPMC Eye Center, Ophthalmology and Visual Science Research Center, Department of Ophthalmology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States of America
- Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA, United States of America
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, United States of America
- Louis J. Fox Center for Vision Restoration, University of Pittsburgh, Pittsburgh, PA, United States of America
- Center for the Neural Basis of Cognition, University of Pittsburgh and Carnegie Mellon University, Pittsburgh, PA, United States of America
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Hong Kong, China
- * E-mail:
| |
Collapse
|
14
|
Chen X, Wang K, Xu W, Ma Q, Chen M, Du L, Mo M, Wang Y, Shen J. Discovery of Potent and Orally Active Lipoprotein-Associated Phospholipase A2 (Lp-PLA2) Inhibitors as a Potential Therapy for Diabetic Macular Edema. J Med Chem 2016; 59:2674-87. [PMID: 26927682 DOI: 10.1021/acs.jmedchem.5b01930] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Lipoprotein-associated phospholipase A2 (Lp-PLA2) is considered to be a promising therapeutic target for several inflammation-associated diseases. Herein, we describe the discovery of a series of pyrimidone derivatives as Lp-PLA2 inhibitors. Systematic structural modifications led to the identification of several pyrimidone compounds with promising in vitro inhibitory potency and pharmacokinetic properties. Compound 14c, selected for in vivo evaluation, demonstrated decent pharmacokinetic profiles and robust inhibitory potency against Lp-PLA2 in Sprague-Dawley (SD) rats. Furthermore, 14c significantly inhibited retinal thickening in STZ-induced diabetic SD rats as a model of diabetic macular edema (DME) after oral dosing for 4 weeks. Taken together, these results suggested that 14c can serve as a valuable lead in the search for new Lp-PLA2 inhibitors for prevention and/or treatment of DME.
Collapse
Affiliation(s)
- Xinde Chen
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences , 555 Zuchongzhi Road, Shanghai 201203, China
| | - Kai Wang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences , 555 Zuchongzhi Road, Shanghai 201203, China
| | - Wenwei Xu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences , 555 Zuchongzhi Road, Shanghai 201203, China
| | - Quanxin Ma
- Laboratory Animal Research Center, Zhejiang Chinese Medical University , Hangzhou 310053, China
| | - Minli Chen
- Laboratory Animal Research Center, Zhejiang Chinese Medical University , Hangzhou 310053, China
| | - Lili Du
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences , 555 Zuchongzhi Road, Shanghai 201203, China
| | - Mingguang Mo
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences , 555 Zuchongzhi Road, Shanghai 201203, China
| | - Yiping Wang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences , 555 Zuchongzhi Road, Shanghai 201203, China
| | - Jianhua Shen
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences , 555 Zuchongzhi Road, Shanghai 201203, China
| |
Collapse
|
15
|
Berkowitz BA, Murphy GG, Craft CM, Surmeier DJ, Roberts R. Genetic dissection of horizontal cell inhibitory signaling in mice in complete darkness in vivo. Invest Ophthalmol Vis Sci 2015; 56:3132-9. [PMID: 26024096 DOI: 10.1167/iovs.15-16581] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
PURPOSE To test the hypothesis that horizontal cell (HC) inhibitory signaling controls the degree to which rod cell membranes are depolarized as measured by the extent to which L-type calcium channels (LTCCs) are open in complete darkness in the mouse retina in vivo. METHODS Dark-adapted wild-type (wt), CACNA1F (Ca(v)1.4(-/-)), arrestin-1 (Arr1(-/-)), and CACNA1D (Ca(v)1.3(-/-)) C57Bl/6 mice were studied. Manganese-enhanced MRI (MEMRI) evaluated the extent that rod LTCCs are open as an index of loss of HC inhibitory signaling. Subgroups were pretreated with D-cis-diltiazem (DIL) at a dose that specifically antagonizes Ca(v)1.2 channels in vivo. RESULTS Knockout mice predicted to have impaired HC inhibitory signaling (Ca(v)1.4(-/-) or Arr1(-/-)) exhibited greater than normal rod manganese uptake; inner retinal uptake was also supernormal. Genetically knocking out a closely associated gene not expected to impact HC inhibitory signaling (CACNA1D) did not generate this phenotype. The Arr1(-/-) mice exhibited the largest rod uptake of manganese. Manganese-enhanced MRI of DIL-treated Arr1(-/-) mice suggested a greater number of operant LTCC subtypes (i.e., Ca(v)1.2, 1.3, and 1.4) in rods and inner retina than that in DIL-treated Ca(v)1.4(-/-) mice (i.e., Ca(v)1.3). The Ca(v)1.3(-/-) + DIL-treated mice exhibited evidence for a compensatory contribution from Ca(v)1.2 LTCCs. CONCLUSIONS The data suggest that loss of HC inhibitory signaling is the proximate cause leading to maximally open LTCCs in rods, and possibly inner retinal cells, in mice in total darkness in vivo, regardless of compensatory changes in LTCC subtype manifested in the mutant mice.
Collapse
Affiliation(s)
- Bruce A Berkowitz
- Department of Anatomy and Cell Biology Wayne State University School of Medicine, Detroit, Michigan, United States 2Department of Ophthalmology, Wayne State University School of Medicine, Detroit, Michigan, United States
| | - Geoffrey G Murphy
- University of Michigan Medical School, Molecular Behavioral Neuroscience Institute, Molecular and Integrative Physiology, Ann Arbor, Michigan, United States
| | - Cheryl Mae Craft
- Mary D. Allen Laboratory for Vision Research, USC Eye Institute, and Department of Ophthalmology and Department of Cell and Neurobiology, Keck School of Medicine of the University of Southern California, Los Angeles, California, United States
| | - D James Surmeier
- Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States
| | - Robin Roberts
- Department of Anatomy and Cell Biology Wayne State University School of Medicine, Detroit, Michigan, United States
| |
Collapse
|
16
|
Berkowitz BA, Bissig D, Roberts R. MRI of rod cell compartment-specific function in disease and treatment in vivo. Prog Retin Eye Res 2015; 51:90-106. [PMID: 26344734 DOI: 10.1016/j.preteyeres.2015.09.001] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Revised: 08/26/2015] [Accepted: 09/01/2015] [Indexed: 10/23/2022]
Abstract
Rod cell oxidative stress is a major pathogenic factor in retinal disease, such as diabetic retinopathy (DR) and retinitis pigmentosa (RP). Personalized, non-destructive, and targeted treatment for these diseases remains elusive since current imaging methods cannot analytically measure treatment efficacy against rod cell compartment-specific oxidative stress in vivo. Over the last decade, novel MRI-based approaches that address this technology gap have been developed. This review summarizes progress in the development of MRI since 2006 that enables earlier evaluation of the impact of disease on rod cell compartment-specific function and the efficacy of anti-oxidant treatment than is currently possible with other methods. Most of the new assays of rod cell compartment-specific function are based on endogenous contrast mechanisms, and this is expected to facilitate their translation into patients with DR and RP, and other oxidative stress-based retinal diseases.
Collapse
Affiliation(s)
- Bruce A Berkowitz
- Dept. of Anatomy and Cell Biology, Wayne State University School of Medicine, Detroit, MI, USA; Dept. Of Ophthalmology, Wayne State University School of Medicine, Detroit, MI, USA.
| | - David Bissig
- Dept. of Anatomy and Cell Biology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Robin Roberts
- Dept. Of Ophthalmology, Wayne State University School of Medicine, Detroit, MI, USA
| |
Collapse
|
17
|
Muir ER, Chandra SB, De La Garza BH, Velagapudi C, Abboud HE, Duong TQ. Layer-Specific Manganese-Enhanced MRI of the Diabetic Rat Retina in Light and Dark Adaptation at 11.7 Tesla. Invest Ophthalmol Vis Sci 2015; 56:4006-12. [PMID: 26098468 DOI: 10.1167/iovs.14-16128] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
PURPOSE To employ high-resolution manganese-enhanced MRI (MEMRI) to study abnormal calcium activity in different cell layers in streptozotocin-induced diabetic rat retinas, and to determine whether MEMRI detects changes at earlier time points than previously reported. METHODS Sprague-Dawley rats were studied 14 days (n = 8) and 30 days (n = 5) after streptozotocin (STZ) or vehicle (n = 7) injection. Manganese-enhanced MRI at 20 × 20 × 700 μm, in which contrast is based on manganese as a calcium analogue and an MRI contrast agent, was obtained in light and dark adaptation of the retina in the same animals in which one eye was covered and the fellow eye was not. The MEMRI activity encoding of the light and dark adaptation was achieved in awake conditions and imaged under anesthesia. RESULTS Manganese-enhanced MRI showed three layers, corresponding to the inner retina, outer retina, and the choroid. In normal animals, the outer retina showed higher MEMRI activity in dark compared to light; the inner retina displayed lower activity in dark compared to light; and the choroid showed no difference in activity. Manganese-enhanced MRI activity changed as early as 14 days after hyperglycemia and decreased with duration of hyperglycemia in the outer retina in dark relative to light adaptation. The choroid also had altered MEMRI activity at 14 days, which returned to normal by 30 days. No differences in MEMRI activity were detected in the inner retina. CONCLUSIONS Manganese-enhanced MRI detects progressive reduction in calcium activity with duration of hyperglycemia in the outer retina as early as 14 days after hyperglycemia, earlier than any other time point reported in the literature.
Collapse
Affiliation(s)
- Eric R Muir
- Research Imaging Institute, University of Texas Health Science Center, San Antonio, Texas, United States 2Departments of Ophthalmology, Radiology, and Physiology, University of Texas Health Science Center, San Antonio, Texas, United States
| | - Saurav B Chandra
- Research Imaging Institute, University of Texas Health Science Center, San Antonio, Texas, United States
| | - Bryan H De La Garza
- Research Imaging Institute, University of Texas Health Science Center, San Antonio, Texas, United States
| | - Chakradhar Velagapudi
- Department of Medicine, University of Texas Health Science Center, San Antonio, Texas, United States
| | - Hanna E Abboud
- Department of Medicine, University of Texas Health Science Center, San Antonio, Texas, United States
| | - Timothy Q Duong
- Research Imaging Institute, University of Texas Health Science Center, San Antonio, Texas, United States 2Departments of Ophthalmology, Radiology, and Physiology, University of Texas Health Science Center, San Antonio, Texas, United States 4South Texas Ve
| |
Collapse
|
18
|
Das A, McGuire PG, Rangasamy S. Diabetic Macular Edema: Pathophysiology and Novel Therapeutic Targets. Ophthalmology 2015; 122:1375-94. [PMID: 25935789 DOI: 10.1016/j.ophtha.2015.03.024] [Citation(s) in RCA: 386] [Impact Index Per Article: 38.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Revised: 02/23/2015] [Accepted: 03/17/2015] [Indexed: 12/15/2022] Open
Abstract
Diabetic macular edema (DME) is the major cause of vision loss in diabetic persons. Alteration of the blood-retinal barrier is the hallmark of this disease, characterized by pericyte loss and endothelial cell-cell junction breakdown. Recent animal and clinical studies strongly indicate that DME is an inflammatory disease. Multiple cytokines and chemokines are involved in the pathogenesis of DME, with multiple cellular involvement affecting the neurovascular unit. With the introduction of anti-vascular endothelial growth factor (VEGF) agents, the treatment of DME has been revolutionized, and the indication for laser therapy has been limited. However, the response to anti-VEGF drugs in DME is not as robust as in proliferative diabetic retinopathy, and many patients with DME do not show complete resolution of fluid despite multiple intravitreal injections. Potential novel therapies targeting molecules other than VEGF and using new drug-delivery systems currently are being developed and evaluated in clinical trials.
Collapse
Affiliation(s)
- Arup Das
- Department of Surgery/Ophthalmology, University of New Mexico School of Medicine, Albuquerque, New Mexico; New Mexico VA Health Care System, Albuquerque, New Mexico.
| | - Paul G McGuire
- Department of Cell Biology and Physiology, University of New Mexico School of Medicine, Albuquerque, New Mexico
| | | |
Collapse
|
19
|
|
20
|
Berkowitz BA, Grady EM, Khetarpal N, Patel A, Roberts R. Oxidative stress and light-evoked responses of the posterior segment in a mouse model of diabetic retinopathy. Invest Ophthalmol Vis Sci 2015; 56:606-15. [PMID: 25574049 PMCID: PMC4309313 DOI: 10.1167/iovs.14-15687] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Accepted: 12/12/2014] [Indexed: 11/24/2022] Open
Abstract
PURPOSE To test the hypothesis that in a mouse model of diabetic retinopathy, oxidative stress is linked with impaired light-evoked expansion of choroidal thickness and subretinal space (SRS). METHODS We examined nondiabetic mice (wild-type, wt) with and without administration of manganese, nondiabetic mice deficient in rod phototransduction (transducin alpha knockout; GNAT1(-/-)), and diabetic mice (untreated or treated with the antioxidant α-lipoic acid [LPA]). Magnetic resonance imaging (MRI) was used to measure light-evoked increases in choroidal thickness and the apparent diffusion coefficient (ADC) at 88% to 100% depth into the retina (i.e., the SRS layer). RESULTS Choroidal thickness values were similar (P > 0.05) between all untreated nondiabetic dark-adapted groups and increased significantly (P < 0.05) with light; this expansion was subnormal (P < 0.05) in both diabetic groups. Apparent diffusion coefficient values in the SRS layer robustly increased (P < 0.05) in a light duration-dependent manner, and this effect was independent of the presence of Mn(2+). The light-stimulated increase in ADC at the location of the SRS was absent in GNAT1(-/-) and diabetic mice (P > 0.05). In diabetic mice, the light-dependent increase in SRS ADC was significantly (P < 0.05) restored with LPA. CONCLUSIONS Apparent diffusion coefficient MRI is a sensitive method for evaluating choroid thickness and its light-evoked expansion together with phototransduction-dependent changes in the SRS layer in mice in vivo. Because ADC MRI exploits an endogenous contrast mechanism, its translational potential is promising; it can also be performed in concert with manganese-enhanced MRI (MEMRI). Our data support a link between diabetes-related oxidative stress and rod, but not choroidal, pathophysiology.
Collapse
Affiliation(s)
- Bruce A. Berkowitz
- Department of Anatomy and Cell Biology, Wayne State University, Detroit, Michigan, United States
- Department of Ophthalmology, Wayne State University, Detroit, Michigan, United States
| | - Edmund Michael Grady
- Department of Anatomy and Cell Biology, Wayne State University, Detroit, Michigan, United States
| | - Nikita Khetarpal
- Department of Anatomy and Cell Biology, Wayne State University, Detroit, Michigan, United States
| | - Akshar Patel
- Department of Anatomy and Cell Biology, Wayne State University, Detroit, Michigan, United States
| | - Robin Roberts
- Department of Anatomy and Cell Biology, Wayne State University, Detroit, Michigan, United States
| |
Collapse
|
21
|
Berkowitz BA, Gorgis J, Patel A, Baameur F, Gurevich VV, Craft CM, Kefalov VJ, Roberts R. Development of an MRI biomarker sensitive to tetrameric visual arrestin 1 and its reduction via light-evoked translocation in vivo. FASEB J 2014; 29:554-64. [PMID: 25351983 DOI: 10.1096/fj.14-254953] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Rod tetrameric arrestin 1 (tet-ARR1), stored in the outer nuclear layer/inner segments in the dark, modulates photoreceptor synaptic activity; light exposure stimulates a reduction via translocation to the outer segments for terminating G-protein coupled phototransduction signaling. Here, we test the hypothesis that intraretinal spin-lattice relaxation rate in the rotating frame (1/T1ρ), an endogenous MRI contrast mechanism, has high potential for evaluating rod tet-ARR1 and its reduction via translocation. Dark- and light-exposed mice (null for the ARR1 gene, overexpressing ARR1, diabetic, or wild type with or without treatment with Mn2+, a calcium channel probe) were studied using 1/T1ρ MRI. Immunohistochemistry and single-cell recordings of the retinas were also performed. In wild-type mice with or without treatment with Mn2+, 1/T1ρ of avascular outer retina (64% to 72% depth) was significantly (P < 0.05) greater in the dark than in the light; a significant (P < 0.05) but opposite pattern was noted in the inner retina (<50% depth). Light-evoked outer retina Δ1/T1ρ was absent in ARR1-null mice and supernormal in overexpressing mice. In diabetic mice, the outer retinal Δ1/T1ρ pattern suggested normal dark-to-light tet-ARR1 translocation and chromophore content, conclusions confirmed ex vivo. Light-stimulated Δ1/T1ρ in inner retina was linked to changes in blood volume. Our data support 1/T1ρ MRI for noninvasively assessing rod tet-ARR1 and its reduction via protein translocation, which can be combined with other metrics of retinal function in vivo.
Collapse
Affiliation(s)
- Bruce A Berkowitz
- Department of Anatomy and Cell Biology and Department of Ophthalmology, Wayne State University, Detroit, Michigan, USA;
| | | | | | - Faiza Baameur
- Department of Pharmacology, Vanderbilt University, Nashville, Tennessee, USA
| | - Vsevolod V Gurevich
- Department of Pharmacology, Vanderbilt University, Nashville, Tennessee, USA
| | - Cheryl M Craft
- Mary D. Allen Laboratory for Vision Research, USC Eye Institute, and Department of Ophthalmology and Department of Cell and Neurobiology, Keck School of Medicine of the University of Southern California, Los Angeles, California, USA; and
| | - Vladimir J Kefalov
- Department of Ophthalmology and Visual Sciences, Washington University in St. Louis, St. Louis, Missouri, USA
| | | |
Collapse
|
22
|
Fan Y, Liu K, Wang Q, Ruan Y, Ye W, Zhang Y. Exendin-4 alleviates retinal vascular leakage by protecting the blood-retinal barrier and reducing retinal vascular permeability in diabetic Goto-Kakizaki rats. Exp Eye Res 2014; 127:104-16. [PMID: 24910901 DOI: 10.1016/j.exer.2014.05.004] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2013] [Revised: 05/08/2014] [Accepted: 05/11/2014] [Indexed: 12/11/2022]
Abstract
The breakdown of the inner endothelial blood-retinal barrier (BRB) and subsequent retinal vascular leakage are the main causes of vision loss due to diabetic retinopathy (DR). Exendin-4 (E4) is a long-acting agonist of the glucagon-like peptide 1 hormone receptor (GLP-1R) that is widely used in clinics and has shown a neuroprotective effect. Our previous studies demonstrated the protective effect of E4 in early experimental DR; however, the molecular and cellular mechanisms that mediate this protective effect are not fully known. The BRB plays a key role in DR. We speculated that E4 may exert its protective effects on the BRB. To test this hypothesis, E4 (0.1 μg/2 μL/eye) or vehicle were intravitreally injected into diabetic Goto-Kakizaki(GK) rats and control animals. The results revealed that E4 significantly inhibited the reductions in electroretinogram (ERG) amplitudes in the GK rats, particularly in the b-wave and oscillatory potentials (OPs). E4 upregulated retinal GLP-1R expression and downregulated the expressions of placental growth factor (PLGF) and vascular endothelial growth factor (VEGF) via the ERK and AKT/PKB pathways. Decreases in tight junction protein (i.e., claudin-5 and occludin) expression and increases in Evans blue permeation (EBP) were inhibited by E4. Similar results were also found in primary rat Müller cells in high glucose concentration cultures in vitro. We conclude that E4 may protect the BRB from diabetic insults by decreasing PLGF and ICAM-1 expression and maintaining the integrity of the BRB. Thus, E4 treatment may be an effective therapeutic approach for DR.
Collapse
Affiliation(s)
- Yichao Fan
- Department of Ophthalmology, Huashan Hospital Affiliated to Fudan University, 12 Middle Wulumuqi Road, Shanghai, China
| | - Kun Liu
- Department of Ophthalmology, First People's Hospital of Shanghai Affiliated with Shanghai Jiaotong University, Shanghai, China
| | - Qingping Wang
- Department of Ophthalmology, Huashan Hospital Affiliated to Fudan University, 12 Middle Wulumuqi Road, Shanghai, China
| | - Yuanyuan Ruan
- Key Laboratory of Glycoconjugate Research, Ministry of Public Health, Shanghai Medical College of Fudan University, Shanghai, China; Department of Biochemistry and Molecular Biology, Shanghai Medical College of Fudan University, Shanghai, China
| | - Wen Ye
- Department of Ophthalmology, Huashan Hospital Affiliated to Fudan University, 12 Middle Wulumuqi Road, Shanghai, China.
| | - Yu Zhang
- Department of Ophthalmology, Huashan Hospital Affiliated to Fudan University, 12 Middle Wulumuqi Road, Shanghai, China.
| |
Collapse
|
23
|
Lin TH, Chiang CW, Trinkaus K, Spees WM, Sun P, Song SK. Manganese-enhanced MRI (MEMRI) via topical loading of Mn(2+) significantly impairs mouse visual acuity: a comparison with intravitreal injection. NMR IN BIOMEDICINE 2014; 27:390-398. [PMID: 24436112 PMCID: PMC3994194 DOI: 10.1002/nbm.3073] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2013] [Revised: 12/04/2013] [Accepted: 12/12/2013] [Indexed: 06/03/2023]
Abstract
Manganese-enhanced MRI (MEMRI) with topical loading of MnCl2 provides optic nerve enhancement comparable to that seen by intravitreal injection. However, the impact of this novel and non-invasive Mn(2+) loading method on visual function requires further assessments. The objective of this study is to determine the optimal topical Mn(2+) loading dosage for MEMRI and to assess visual function after MnCl2 loading. Intravitreal administration was performed to compare the two approaches of MnCl2 loading. Twenty-four hours after topical loading of 0, 0.5, 0.75, and 1 M MnCl2 , T1 -weighted, T2-weighted, diffusion tensor imaging and visual acuity (VA) assessments were performed to determine the best topical loading dosage for MEMRI measurements and to assess the integrity of retinas and optic nerves. Mice were perfusion fixed immediately after in vivo experiments for hematoxylin and eosin and immunohistochemistry staining. Topical loading of 1 M MnCl2 damaged the retinal photoreceptor layer with no detectable damage to retina ganglion cell layers or prechiasmatic optic nerves. For the topical loading, 0.75 M MnCl2 was required to see sufficient enhancement of the optic nerve. At this concentration the visual function was significantly affected, followed by a slow recovery. Intravitreal injection (0.25 μL of 0.2 M MnCl2 ) slightly affected VA, with full recovery a day later. To conclude, intravitreal MnCl2 injection provides more reproducible results with less adverse side-effects than topical loading.
Collapse
Affiliation(s)
- Tsen-Hsuan Lin
- Department of Physics, Washington University, St. Louis, MO, USA
| | | | | | | | | | | |
Collapse
|
24
|
Feng Y, Wang Y, Yang Z, Wu L, Hoffmann S, Wieland T, Gretz N, Hammes HP. Chronic hyperglycemia inhibits vasoregression in a transgenic model of retinal degeneration. Acta Diabetol 2014; 51:211-8. [PMID: 23771613 DOI: 10.1007/s00592-013-0488-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2013] [Accepted: 05/27/2013] [Indexed: 10/26/2022]
Abstract
Vasoregression characterizes diabetic retinopathy in animal models and in humans. We have recently demonstrated that vasoregression is earlier initiated in a rat model of ciliopathy-induced retinal neurodegeneration (TGR rat). The aim was to assess the balance between vasoregressive effects of chronic hyperglycemia and photoreceptor degeneration on adult vascular remodelling. The retinas were analyzed at 4 and 9 months after streptozotocin-induced diabetes. Neurodegeneration was determined by quantitation of cell numbers and retinal layer thickness. Vasoregression was assessed by quantitative retinal morphometry in retinal digest preparations. Retinal VEGF levels were measured by ELISA. Glial activation, expression and location of HSP27 and phosphorylated HSP27 were evaluated by immunofluorescence staining. Unexpectedly, the numbers of acellular capillaries were reduced at both time points and led to fewer intraretinal microvascular abnormalities in late stage diabetic TGR. Concomitantly, inner nuclear layers (INLs) in diabetic TGR rats were protected from cell loss at both time points. Consequently, glial activation was reduced, but VEGF level was increased in diabetic TGR retinas. Expressions of HSP27 were upregulated in glia cells in the preserved INL of diabetic TGR. Chronic hyperglycemia preserves the microvasculature in the retinal model of neurodegeneration. Cell preservation in the retinal INL was associated with protective gene regulation. Together, these data indicate that diabetes can induce vasoprotection, in which retinal glia can play a particular role.
Collapse
Affiliation(s)
- Y Feng
- 5th Medical Clinic, Faculty of Clinical Medicine, University of Heidelberg, Mannheim, Germany,
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Zhang J, Zhang X, Li H, Cui X, Guan X, Tang K, Jin C, Cheng M. Hyperglycaemia exerts deleterious effects on late endothelial progenitor cell secretion actions. Diab Vasc Dis Res 2013; 10:49-56. [PMID: 22561229 DOI: 10.1177/1479164112444639] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Endothelial progenitor cells (EPCs) play a fundamental role in tissue regeneration and vascular repair both by differentiating into endothelial cells and by secretion of vasoactive substances that promote angiogenesis and maintain vascular homeostasis. It has previously been shown that hyperglycaemia impairs early and late EPC functions, such as differentiation, proliferation and adhesion. However, its role in the regulation of the production of vasoactive substances in EPCs, especially in late EPCs, is less well defined. We investigated the effects of hyperglycaemia on the production of vasodilator, fibrinolytic and angiogenic growth factors, and also on the activity of superoxide dismutase (SOD) in late EPCs. For this purpose, late EPCs were incubated with different concentrations of D-glucose (5-40 mmol/L) for 24 hr. Levels of nitric oxide (NO), tissue plasminogen activator (t-PA), plasminogen activator inhibitor-1 (PAI-1), prostaglandin I(2) (PGI(2)), vascular endothelial growth factor (VEGF) and the activity of SOD were measured by enzyme-linked immunosorbent assay (ELISA). Under high glucose stress conditions, late EPCs exhibited lower levels of NO, t-PA, PAI-1, PGI(2) and VEGF compared to control medium (5 mmol/L glucose). Moreover, high glucose was also observed to decrease the activity of SOD in late EPCs. These results suggest that hyperglycaemia-induced impairment of late EPC secretion functions could contribute to the development of vascular disease in diabetes.
Collapse
Affiliation(s)
- Jie Zhang
- Weifang Medical College Medicine Research Center, Weifang, Shandong, 261053, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Bissig D, Berkowitz BA. Light-dependent changes in outer retinal water diffusion in rats in vivo. Mol Vis 2012; 18:2561-xxx. [PMID: 23129976 PMCID: PMC3482170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2012] [Accepted: 10/18/2012] [Indexed: 11/25/2022] Open
Abstract
PURPOSE To test the hypothesis that in rats, intraretinal light-dependent changes on diffusion-weighted magnetic resonance imaging (MRI) in vivo are consistent with known retinal layer-specific physiology. METHODS In male Sprague-Dawley rats, retinal morphology (thickness, extent, surface area, volume) and intraretinal profiles of the apparent diffusion coefficient (ADC, i.e., water mobility) parallel and perpendicular to the optic nerve were measured in vivo using quantitative MRI methods during light and dark stimulation. RESULTS The parallel ADC in the posterior half of the avascular, photoreceptor-dominated outer retina was significantly higher in light than dark, and this pattern was reversed (dark>light) in the anterior outer retina. The perpendicular ADC in the posterior outer retina was similar in light and dark, but was significantly higher in dark than light in the anterior outer retina. No light-dark changes in the inner retina were noted. CONCLUSIONS We identified light-dependent intraretinal diffusion changes that reflected established stimulation-based changes in outer retinal hydration. These findings are expected to motivate future applications of functional diffusion-based MRI in blinding disorders of the outer retina.
Collapse
Affiliation(s)
- David Bissig
- Department of Anatomy and Cell Biology, Wayne State University, Detroit, MI
| | - Bruce A. Berkowitz
- Department of Anatomy and Cell Biology, Wayne State University, Detroit, MI,Department of Ophthalmology, Wayne State University, Detroit, MI
| |
Collapse
|