1
|
Syed F, Ballew O, Lee CC, Rana J, Krishnan P, Castela A, Weaver SA, Chalasani NS, Thomaidou SF, Demine S, Chang G, Coomans de Brachène A, Alvelos MI, Vazquez EM, Marselli L, Orr K, Felton JL, Liu J, Kaddis JS, Marchetti P, Zaldumbide A, Scheuner D, Eizirik DL, Evans-Molina C. Pharmacological inhibition of tyrosine protein-kinase 2 reduces islet inflammation and delays type 1 diabetes onset in mice. EBioMedicine 2025:105734. [PMID: 40335415 DOI: 10.1016/j.ebiom.2025.105734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 02/20/2025] [Accepted: 04/14/2025] [Indexed: 05/09/2025] Open
Abstract
BACKGROUND Tyrosine protein-kinase 2 (TYK2) mediates inflammatory signalling through multiple cytokines, including interferon-α (IFNα), interleukin (IL)-12, and IL-23. TYK2 missense mutations protect against type 1 diabetes (T1D), and inhibition of TYK2 shows promise in other autoimmune conditions. METHODS We evaluated the effects of specific TYK2 inhibitors (TYK2is) in pre-clinical models of T1D, including human β cells, cadaveric islets, iPSC-derived islets, and mouse models. FINDINGS In vitro studies showed that TYK2is prevented IFNα-induced β cell HLA class I up-regulation, endoplasmic reticulum stress, and chemokine production. In co-culture studies, pre-treatment of β cells with TYK2i prevented IFNα-induced antigenic peptide presentation and alloreactive and autoreactive T cell degranulation. In vivo administration of BMS-986202 in two mouse models of T1D (RIP-LCMV-GP and NOD mice) reduced systemic and tissue-localised inflammation, prevented β cell death, and delayed T1D onset. Transcriptional phenotyping of pancreatic islets, pancreatic lymph nodes, and spleen highlighted a role for TYK2 inhibition in modulating signalling pathways associated with inflammation, translational control, stress signalling, secretory function, immunity, and diabetes. Additionally, TYK2i treatment changed the composition of innate and adaptive immune cell populations in the blood and disease target tissues. INTERPRETATION These findings indicate that TYK2i has beneficial effects on both the immune and endocrine compartments in models of T1D, thus supporting a path forward for testing TYK2is in human T1D. FUNDING This work was supported by the National Institutes of Health (NIH), Veteran Affairs (VA), Breakthrough T1D, and gifts from the Sigma Beta Sorority, the Ball Brothers Foundation, and the George and Frances Ball Foundation.
Collapse
Affiliation(s)
- Farooq Syed
- Indiana University School of Medicine, Indianapolis, IN, USA; Center for Diabetes and Metabolic Diseases, Indiana University School of Medicine, Indianapolis, IN, USA; Department of Pediatrics and the Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA; Department of Diabetes-Immunology, Arthur Riggs Diabetes & Metabolism Research Institute, City of Hope, Duarte, CA, USA
| | - Olivia Ballew
- Indiana Biosciences Research Institute, Indianapolis, IN, USA
| | - Chih-Chun Lee
- Indiana University School of Medicine, Indianapolis, IN, USA; Center for Diabetes and Metabolic Diseases, Indiana University School of Medicine, Indianapolis, IN, USA; Department of Pediatrics and the Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Jyoti Rana
- Indiana University School of Medicine, Indianapolis, IN, USA; Department of Pediatrics and the Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Preethi Krishnan
- Indiana University School of Medicine, Indianapolis, IN, USA; Center for Diabetes and Metabolic Diseases, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Angela Castela
- ULB Center for Diabetes Research, Medical Faculty, Université Libre de Bruxelles, Brussels, Belgium
| | - Staci A Weaver
- Indiana University School of Medicine, Indianapolis, IN, USA; Center for Diabetes and Metabolic Diseases, Indiana University School of Medicine, Indianapolis, IN, USA; Department of Pediatrics and the Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA; Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, USA
| | | | - Sofia F Thomaidou
- Department of Cell and Chemical Biology, Leiden University Medical Center, the Netherlands
| | - Stephane Demine
- Indiana Biosciences Research Institute, Indianapolis, IN, USA
| | - Garrick Chang
- Department of Physics, Indiana University Indianapolis, Indianapolis, IN, USA
| | | | - Maria Ines Alvelos
- ULB Center for Diabetes Research, Medical Faculty, Université Libre de Bruxelles, Brussels, Belgium
| | - Eugenia Martin Vazquez
- ULB Center for Diabetes Research, Medical Faculty, Université Libre de Bruxelles, Brussels, Belgium
| | - Lorella Marselli
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Kara Orr
- Indiana University School of Medicine, Indianapolis, IN, USA; Center for Diabetes and Metabolic Diseases, Indiana University School of Medicine, Indianapolis, IN, USA; Department of Pediatrics and the Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Jamie L Felton
- Indiana University School of Medicine, Indianapolis, IN, USA; Center for Diabetes and Metabolic Diseases, Indiana University School of Medicine, Indianapolis, IN, USA; Department of Pediatrics and the Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Jing Liu
- Department of Physics and Astronomy, Purdue University, West Lafayette, IN, USA
| | - John S Kaddis
- Department of Diabetes and Cancer Discovery Science, Arthur Riggs Diabetes & Metabolism Research Institute, City of Hope, Duarte, CA, USA
| | - Piero Marchetti
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Arnaud Zaldumbide
- Department of Cell and Chemical Biology, Leiden University Medical Center, the Netherlands
| | | | - Decio L Eizirik
- ULB Center for Diabetes Research, Medical Faculty, Université Libre de Bruxelles, Brussels, Belgium.
| | - Carmella Evans-Molina
- Indiana University School of Medicine, Indianapolis, IN, USA; Center for Diabetes and Metabolic Diseases, Indiana University School of Medicine, Indianapolis, IN, USA; Department of Pediatrics and the Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA; Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA; Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, USA; Richard L. Roudebush VA Medical Center, Indianapolis, IN, USA.
| |
Collapse
|
2
|
Syed F, Ballew O, Lee CC, Rana J, Krishnan P, Castela A, Weaver SA, Chalasani NS, Thomaidou SF, Demine S, Chang G, Coomans de Brachène A, Alvelos MI, Marselli L, Orr K, Felton JL, Liu J, Marchetti P, Zaldumbide A, Scheuner D, Eizirik DL, Evans-Molina C. Pharmacological inhibition of tyrosine protein-kinase 2 reduces islet inflammation and delays type 1 diabetes onset in mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.20.585925. [PMID: 38766166 PMCID: PMC11100605 DOI: 10.1101/2024.03.20.585925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Tyrosine protein-kinase 2 (TYK2), a member of the Janus kinase family, mediates inflammatory signaling through multiple cytokines, including interferon-α (IFNα), interleukin (IL)-12, and IL-23. Missense mutations in TYK2 are associated with protection against type 1 diabetes (T1D), and inhibition of TYK2 shows promise in the management of other autoimmune conditions. Here, we evaluated the effects of specific TYK2 inhibitors (TYK2is) in pre-clinical models of T1D. First, human β cells, cadaveric donor islets, and iPSC-derived islets were treated in vitro with IFNα in combination with a small molecule TYK2i (BMS-986165 or a related molecule BMS-986202). TYK2 inhibition prevented IFNα-induced β cell HLA class I up-regulation, endoplasmic reticulum stress, and chemokine production. In co-culture studies, pre-treatment of β cells with a TYK2i prevented IFNα-induced activation of T cells targeting an epitope of insulin. In vivo administration of BMS-986202 in two mouse models of T1D (RIP-LCMV-GP mice and NOD mice) reduced systemic and tissue-localized inflammation, prevented β cell death, and delayed T1D onset. Transcriptional phenotyping of pancreatic islets, pancreatic lymph nodes (PLN), and spleen during early disease pathogenesis highlighted a role for TYK2 inhibition in modulating signaling pathways associated with inflammation, translational control, stress signaling, secretory function, immunity, and diabetes. Additionally, TYK2i treatment changed the composition of innate and adaptive immune cell populations in the blood and disease target tissues, resulting in an immune phenotype with a diminished capacity for β cell destruction. Overall, these findings indicate that TYK2i has beneficial effects in both the immune and endocrine compartments in models of T1D, thus supporting a path forward for testing TYK2 inhibitors in human T1D.
Collapse
Affiliation(s)
- Farooq Syed
- Indiana University School of Medicine, Indianapolis, Indiana, USA
- Center for Diabetes and Metabolic Diseases, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Pediatrics and the Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Olivia Ballew
- Indiana Biosciences Research Institute, Indianapolis, IN, USA
| | - Chih-Chun Lee
- Indiana University School of Medicine, Indianapolis, Indiana, USA
- Center for Diabetes and Metabolic Diseases, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Pediatrics and the Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Jyoti Rana
- Indiana University School of Medicine, Indianapolis, Indiana, USA
- Department of Pediatrics and the Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Preethi Krishnan
- Indiana University School of Medicine, Indianapolis, Indiana, USA
- Center for Diabetes and Metabolic Diseases, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Angela Castela
- ULB Center for Diabetes Research, Medical Faculty, Université Libre de Bruxelles, Brussels, Belgium
| | - Staci A. Weaver
- Indiana University School of Medicine, Indianapolis, Indiana, USA
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, USA
| | | | - Sofia F. Thomaidou
- Department of Cell and Chemical Biology, Leiden University Medical Center, The Netherlands
| | - Stephane Demine
- Indiana Biosciences Research Institute, Indianapolis, IN, USA
| | - Garrick Chang
- Department of Physics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, USA
| | | | - Maria Ines Alvelos
- ULB Center for Diabetes Research, Medical Faculty, Université Libre de Bruxelles, Brussels, Belgium
| | - Lorella Marselli
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Kara Orr
- Indiana University School of Medicine, Indianapolis, Indiana, USA
- Center for Diabetes and Metabolic Diseases, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Pediatrics and the Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Jamie L. Felton
- Indiana University School of Medicine, Indianapolis, Indiana, USA
- Center for Diabetes and Metabolic Diseases, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Pediatrics and the Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Jing Liu
- Department of Physics and Astronomy, Purdue University, West Lafayette, IN, USA
| | - Piero Marchetti
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Arnaud Zaldumbide
- Department of Cell and Chemical Biology, Leiden University Medical Center, The Netherlands
| | | | - Decio L. Eizirik
- ULB Center for Diabetes Research, Medical Faculty, Université Libre de Bruxelles, Brussels, Belgium
| | - Carmella Evans-Molina
- Indiana University School of Medicine, Indianapolis, Indiana, USA
- Center for Diabetes and Metabolic Diseases, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Pediatrics and the Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, USA
- Richard L. Roudebush VA Medical Center, Indianapolis, IN, USA
| |
Collapse
|
3
|
Morello G, La Cognata V, Guarnaccia M, D’Agata V, Cavallaro S. Cracking the Code of Neuronal Cell Fate. Cells 2023; 12:1057. [PMID: 37048129 PMCID: PMC10093029 DOI: 10.3390/cells12071057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/27/2023] [Accepted: 03/29/2023] [Indexed: 04/03/2023] Open
Abstract
Transcriptional regulation is fundamental to most biological processes and reverse-engineering programs can be used to decipher the underlying programs. In this review, we describe how genomics is offering a systems biology-based perspective of the intricate and temporally coordinated transcriptional programs that control neuronal apoptosis and survival. In addition to providing a new standpoint in human pathology focused on the regulatory program, cracking the code of neuronal cell fate may offer innovative therapeutic approaches focused on downstream targets and regulatory networks. Similar to computers, where faults often arise from a software bug, neuronal fate may critically depend on its transcription program. Thus, cracking the code of neuronal life or death may help finding a patch for neurodegeneration and cancer.
Collapse
Affiliation(s)
- Giovanna Morello
- Institute for Biomedical Research and Innovation, National Research Council (CNR-IRIB), 95126 Catania, Italy
| | - Valentina La Cognata
- Institute for Biomedical Research and Innovation, National Research Council (CNR-IRIB), 95126 Catania, Italy
| | - Maria Guarnaccia
- Institute for Biomedical Research and Innovation, National Research Council (CNR-IRIB), 95126 Catania, Italy
| | - Velia D’Agata
- Section of Human Anatomy and Histology, Department of Biomedical and Biotechnological Sciences, University of Catania, 95124 Catania, Italy
| | - Sebastiano Cavallaro
- Institute for Biomedical Research and Innovation, National Research Council (CNR-IRIB), 95126 Catania, Italy
| |
Collapse
|
4
|
Perez-Serna AA, Dos Santos RS, Ripoll C, Nadal A, Eizirik DL, Marroqui L. BCL-XL Overexpression Protects Pancreatic β-Cells against Cytokine- and Palmitate-Induced Apoptosis. Int J Mol Sci 2023; 24:5657. [PMID: 36982731 PMCID: PMC10056015 DOI: 10.3390/ijms24065657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 03/08/2023] [Accepted: 03/10/2023] [Indexed: 03/18/2023] Open
Abstract
Diabetes is a chronic disease that affects glucose metabolism, either by autoimmune-driven β-cell loss or by the progressive loss of β-cell function, due to continued metabolic stresses. Although both α- and β-cells are exposed to the same stressors, such as proinflammatory cytokines and saturated free fatty acids (e.g., palmitate), only α-cells survive. We previously reported that the abundant expression of BCL-XL, an anti-apoptotic member of the BCL-2 family of proteins, is part of the α-cell defense mechanism against palmitate-induced cell death. Here, we investigated whether BCL-XL overexpression could protect β-cells against the apoptosis induced by proinflammatory and metabolic insults. For this purpose, BCL-XL was overexpressed in two β-cell lines-namely, rat insulinoma-derived INS-1E and human insulin-producing EndoC-βH1 cells-using adenoviral vectors. We observed that the BCL-XL overexpression in INS-1E cells was slightly reduced in intracellular Ca2+ responses and glucose-stimulated insulin secretion, whereas these effects were not observed in the human EndoC-βH1 cells. In INS-1E cells, BCL-XL overexpression partially decreased cytokine- and palmitate-induced β-cell apoptosis (around 40% protection). On the other hand, the overexpression of BCL-XL markedly protected EndoC-βH1 cells against the apoptosis triggered by these insults (>80% protection). Analysis of the expression of endoplasmic reticulum (ER) stress markers suggests that resistance to the cytokine and palmitate conferred by BCL-XL overexpression might be, at least in part, due to the alleviation of ER stress. Altogether, our data indicate that BCL-XL plays a dual role in β-cells, participating both in cellular processes related to β-cell physiology and in fostering survival against pro-apoptotic insults.
Collapse
Affiliation(s)
- Atenea A. Perez-Serna
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández de Elche, 03202 Elche, Alicante, Spain
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas, Instituto de Salud Carlos III, Spain
| | - Reinaldo S. Dos Santos
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández de Elche, 03202 Elche, Alicante, Spain
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas, Instituto de Salud Carlos III, Spain
| | - Cristina Ripoll
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández de Elche, 03202 Elche, Alicante, Spain
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas, Instituto de Salud Carlos III, Spain
| | - Angel Nadal
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández de Elche, 03202 Elche, Alicante, Spain
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas, Instituto de Salud Carlos III, Spain
| | - Decio L. Eizirik
- ULB Center for Diabetes Research, Medical Faculty, Université Libre de Bruxelles, 1070 Brussels, Belgium
| | - Laura Marroqui
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández de Elche, 03202 Elche, Alicante, Spain
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas, Instituto de Salud Carlos III, Spain
| |
Collapse
|
5
|
Coomans de Brachène A, Scoubeau C, Musuaya AE, Costa-Junior JM, Castela A, Carpentier J, Faoro V, Klass M, Cnop M, Eizirik DL. Exercise as a non-pharmacological intervention to protect pancreatic beta cells in individuals with type 1 and type 2 diabetes. Diabetologia 2023; 66:450-460. [PMID: 36401627 PMCID: PMC9676790 DOI: 10.1007/s00125-022-05837-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 10/06/2022] [Indexed: 11/21/2022]
Abstract
AIMS/HYPOTHESIS Diabetes is characterised by progressive loss of functional pancreatic beta cells. None of the therapeutic agents used to treat diabetes arrest this process; preventing beta cell loss remains a major unmet need. We have previously shown that serum from eight young healthy male participants who exercised for 8 weeks protected human islets and insulin-producing EndoC-βH1 cells from apoptosis induced by proinflammatory cytokines or the endoplasmic reticulum (ER) stressor thapsigargin. Whether this protective effect is influenced by sex, age, training modality, ancestry or diabetes is unknown. METHODS We enrolled 82 individuals, male or female, non-diabetic or diabetic, from different origins, in different supervised training protocols for 8-12 weeks (including training at home during the COVID-19 pandemic). EndoC-βH1 cells were treated with 'exercised' serum or with the exerkine clusterin to ascertain cytoprotection from ER stress. RESULTS The exercise interventions were effective and improved [Formula: see text] values in both younger and older, non-obese and obese, non-diabetic and diabetic participants. Serum obtained after training conferred significant beta cell protection (28% to 35% protection after 4 and 8 weeks of training, respectively) from severe ER stress-induced apoptosis. Cytoprotection was not affected by the type of exercise training or participant age, sex, BMI or ancestry, and persisted for up to 2 months after the end of the training programme. Serum from exercised participants with type 1 or type 2 diabetes was similarly protective. Clusterin reproduced the beneficial effects of exercised sera. CONCLUSIONS/INTERPRETATION These data uncover the unexpected potential to preserve beta cell health by exercise training, opening a new avenue to prevent or slow diabetes progression through humoral muscle-beta cell crosstalk.
Collapse
Affiliation(s)
| | - Corentin Scoubeau
- Laboratory for Biometry and Exercise Nutrition, Université Libre de Bruxelles, Brussels, Belgium
| | - Anyïshai E Musuaya
- ULB Center for Diabetes Research, Medical Faculty, Université Libre de Bruxelles, Brussels, Belgium
| | - Jose Maria Costa-Junior
- ULB Center for Diabetes Research, Medical Faculty, Université Libre de Bruxelles, Brussels, Belgium
| | - Angela Castela
- ULB Center for Diabetes Research, Medical Faculty, Université Libre de Bruxelles, Brussels, Belgium
| | - Julie Carpentier
- Laboratory for Biometry and Exercise Nutrition, Université Libre de Bruxelles, Brussels, Belgium
| | - Vitalie Faoro
- Cardiopulmonary Exercise Laboratory, Université Libre de Bruxelles, Brussels, Belgium
| | - Malgorzata Klass
- Laboratory for Biometry and Exercise Nutrition, Université Libre de Bruxelles, Brussels, Belgium
- Laboratory of Applied Biology and Research Unit in Applied Neurophysiology, Université Libre de Bruxelles, Brussels, Belgium
| | - Miriam Cnop
- ULB Center for Diabetes Research, Medical Faculty, Université Libre de Bruxelles, Brussels, Belgium
- Division of Endocrinology, Erasmus Hospital, Université Libre de Bruxelles, Brussels, Belgium
| | - Decio L Eizirik
- ULB Center for Diabetes Research, Medical Faculty, Université Libre de Bruxelles, Brussels, Belgium
| |
Collapse
|
6
|
House JS, Gray S, Owen JR, Jima DD, Smart RC, Hall JR. C/EBPβ deficiency enhances the keratinocyte innate immune response to direct activators of cytosolic pattern recognition receptors. Innate Immun 2023; 29:14-24. [PMID: 37094088 PMCID: PMC10164275 DOI: 10.1177/17534259231162192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 01/10/2023] [Accepted: 02/08/2023] [Indexed: 04/26/2023] Open
Abstract
The skin is the first line of defense to cutaneous microbes and viruses, and epidermal keratinocytes play a critical role in preventing infection by viruses and pathogens through activation of the type I interferon (IFN) response. Using RNAseq analysis, here we report that the conditional deletion of C/EBPβ transcription factor in mouse epidermis (CKOβ mice) resulted in the upregulation of IFNβ and numerous keratinocyte interferon-stimulated genes (ISGs). The expression of cytosolic pattern recognition receptors (cPRRs), that recognize viral RNA and DNA, were significantly increased, and enriched in the RNAseq data set. cPRRs stimulate a type I IFN response that can trigger cell death to eliminate infected cells. To determine if the observed increases in cPRRs had functional consequences, we transfected CKOβ primary keratinocytes with the pathogen and viral mimics poly(I:C) (dsRNA) or poly(dA:dT) (synthetic B-DNA) that directly activate PRRs. Transfected CKOβ primary keratinocytes displayed an amplified type I IFN response which was accompanied by increased activation of IRF3, enhanced ISG expression, enhanced activation of caspase-8, caspase-3 and increased apoptosis. Our results identify C/EBPβ as a critical repressor of the keratinocyte type I IFN response, and demonstrates that the loss of C/EBPβ primes keratinocytes to the activation of cytosolic PRRs by pathogen RNA and DNA to induce cell death mediated by caspase-8 and caspase-3.
Collapse
Affiliation(s)
- John S. House
- Center of Human Health and the Environment, North Carolina State University, Raleigh, NC, 27695, USA
- Toxicology Graduate Program, North Carolina State University, Raleigh, NC, 27695, USA
- Biostatistics and Computational Biology Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, Durham, NC 27709, USA
| | - Sophia Gray
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, 27695, USA
| | - Jennifer R. Owen
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, 27695, USA
| | - Dereje D. Jima
- Center of Human Health and the Environment, North Carolina State University, Raleigh, NC, 27695, USA
- Bioinformatics Research Center, North Carolina State University, Raleigh, NC, 27695, USA
| | - Robert C. Smart
- Center of Human Health and the Environment, North Carolina State University, Raleigh, NC, 27695, USA
- Toxicology Graduate Program, North Carolina State University, Raleigh, NC, 27695, USA
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, 27695, USA
| | - Jonathan R. Hall
- Center of Human Health and the Environment, North Carolina State University, Raleigh, NC, 27695, USA
- Toxicology Graduate Program, North Carolina State University, Raleigh, NC, 27695, USA
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, 27695, USA
| |
Collapse
|
7
|
Shrestha S, Erikson G, Lyon J, Spigelman AF, Bautista A, Manning Fox JE, dos Santos C, Shokhirev M, Cartailler JP, Hetzer MW, MacDonald PE, Arrojo e Drigo R. Aging compromises human islet beta cell function and identity by decreasing transcription factor activity and inducing ER stress. SCIENCE ADVANCES 2022; 8:eabo3932. [PMID: 36197983 PMCID: PMC9534504 DOI: 10.1126/sciadv.abo3932] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 08/17/2022] [Indexed: 05/02/2023]
Abstract
Pancreatic islet beta cells are essential for maintaining glucose homeostasis. To understand the impact of aging on beta cells, we performed meta-analysis of single-cell RNA sequencing datasets, transcription factor (TF) regulon analysis, high-resolution confocal microscopy, and measured insulin secretion from nondiabetic donors spanning most of the human life span. This revealed the range of molecular and functional changes that occur during beta cell aging, including the transcriptional deregulation that associates with cellular immaturity and reorganization of beta cell TF networks, increased gene transcription rates, and reduced glucose-stimulated insulin release. These alterations associate with activation of endoplasmic reticulum (ER) stress and autophagy pathways. We propose that a chronic state of ER stress undermines old beta cell structure function to increase the risk of beta cell failure and type 2 diabetes onset as humans age.
Collapse
Affiliation(s)
- Shristi Shrestha
- Creative Data Solutions, Vanderbilt Center for Stem Cell Biology, Nashville, TN 37232, USA
| | - Galina Erikson
- Integrative Genomics and Bioinformatics Core, Salk Institute of Biological Studies, La Jolla, CA 92037, USA
| | - James Lyon
- Department of Pharmacology and Alberta Diabetes Institute, University of Alberta, Edmonton, Alberta T6G2E1, Canada
| | - Aliya F. Spigelman
- Department of Pharmacology and Alberta Diabetes Institute, University of Alberta, Edmonton, Alberta T6G2E1, Canada
| | - Austin Bautista
- Department of Pharmacology and Alberta Diabetes Institute, University of Alberta, Edmonton, Alberta T6G2E1, Canada
| | - Jocelyn E. Manning Fox
- Department of Pharmacology and Alberta Diabetes Institute, University of Alberta, Edmonton, Alberta T6G2E1, Canada
| | - Cristiane dos Santos
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN 37232, USA
| | - Maxim Shokhirev
- Integrative Genomics and Bioinformatics Core, Salk Institute of Biological Studies, La Jolla, CA 92037, USA
| | | | - Martin W. Hetzer
- Molecular and Cell Biology Laboratory, Salk Institute of Biological Studies, La Jolla, CA 92037, USA
| | - Patrick E. MacDonald
- Department of Pharmacology and Alberta Diabetes Institute, University of Alberta, Edmonton, Alberta T6G2E1, Canada
| | - Rafael Arrojo e Drigo
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN 37232, USA
| |
Collapse
|
8
|
Castaneda AB, Petty LE, Scholz M, Jansen R, Weiss S, Zhang X, Schramm K, Beutner F, Kirsten H, Schminke U, Hwang SJ, Marzi C, Dhana K, Seldenrijk A, Krohn K, Homuth G, Wolf P, Peters MJ, Dörr M, Peters A, van Meurs JBJ, Uitterlinden AG, Kavousi M, Levy D, Herder C, van Grootheest G, Waldenberger M, Meisinger C, Rathmann W, Thiery J, Polak J, Koenig W, Seissler J, Bis JC, Franceshini N, Giambartolomei C, Hofman A, Franco OH, Penninx BWJH, Prokisch H, Völzke H, Loeffler M, O'Donnell CJ, Below JE, Dehghan A, de Vries PS. Associations of carotid intima media thickness with gene expression in whole blood and genetically predicted gene expression across 48 tissues. Hum Mol Genet 2022; 31:1171-1182. [PMID: 34788810 PMCID: PMC8976428 DOI: 10.1093/hmg/ddab236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 06/11/2021] [Accepted: 08/11/2021] [Indexed: 11/13/2022] Open
Abstract
Carotid intima media thickness (cIMT) is a biomarker of subclinical atherosclerosis and a predictor of future cardiovascular events. Identifying associations between gene expression levels and cIMT may provide insight to atherosclerosis etiology. Here, we use two approaches to identify associations between mRNA levels and cIMT: differential gene expression analysis in whole blood and S-PrediXcan. We used microarrays to measure genome-wide whole blood mRNA levels of 5647 European individuals from four studies. We examined the association of mRNA levels with cIMT adjusted for various potential confounders. Significant associations were tested for replication in three studies totaling 3943 participants. Next, we applied S-PrediXcan to summary statistics from a cIMT genome-wide association study (GWAS) of 71 128 individuals to estimate the association between genetically determined mRNA levels and cIMT and replicated these analyses using S-PrediXcan on an independent GWAS on cIMT that included 22 179 individuals from the UK Biobank. mRNA levels of TNFAIP3, CEBPD and METRNL were inversely associated with cIMT, but these associations were not significant in the replication analysis. S-PrediXcan identified associations between cIMT and genetically determined mRNA levels for 36 genes, of which six were significant in the replication analysis, including TLN2, which had not been previously reported for cIMT. There was weak correlation between our results using differential gene expression analysis and S-PrediXcan. Differential expression analysis and S-PrediXcan represent complementary approaches for the discovery of associations between phenotypes and gene expression. Using these approaches, we prioritize TNFAIP3, CEBPD, METRNL and TLN2 as new candidate genes whose differential expression might modulate cIMT.
Collapse
Affiliation(s)
- Andy B Castaneda
- Human Genetics Center, Department of Epidemiology, Human Genetics, and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Lauren E Petty
- Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Markus Scholz
- Institute for Medical Informatics, Statistics and Epidemiology, University of Leipzig, Leipzig, Germany.,LIFE Research Center of Civilization Diseases, University of Leipzig, Leipzig, Germany
| | - Rick Jansen
- Department of Psychiatry, VU University Medical Center, Amsterdam, the Netherlands
| | - Stefan Weiss
- Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Germany.,DZHK (German Center for Cardiovascular Research), partner site Greifswald, Greifswald, Germany
| | - Xiaoling Zhang
- Department of Medicine, Boston University School of Medicine, Boston, MA, USA.,Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA.,The Framingham Heart Study, Framingham, MA, USA
| | - Katharina Schramm
- Institute of Neurogenomics, Helmholz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany.,Institute of Human Genetics, Technical University Munich, Munich, Germany
| | | | - Holger Kirsten
- Institute for Medical Informatics, Statistics and Epidemiology, University of Leipzig, Leipzig, Germany.,LIFE Research Center of Civilization Diseases, University of Leipzig, Leipzig, Germany
| | - Ulf Schminke
- Department of Neurology, University Medicine Greifswald, Greifswald, Germany
| | - Shih-Jen Hwang
- The Framingham Heart Study, Framingham, MA, USA.,Population Sciences Branch, Division of Intramural Research, National Heart, Lung and Blood Institute, Bethesda, MD, USA
| | - Carola Marzi
- Institute of Epidemiology, Helmholz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany.,German Center for Diabetes Research (DZD e.V.), Neuherberg, Germany
| | - Klodian Dhana
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam, the Netherlands.,Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Adrie Seldenrijk
- Department of Psychiatry, VU University Medical Center, Amsterdam, the Netherlands
| | - Knut Krohn
- Interdisciplinary Center of Clinical Research, University of Leipzig, Leipzig, Germany
| | - Georg Homuth
- Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| | - Petra Wolf
- Institute of Neurogenomics, Helmholz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany.,Institute of Human Genetics, Technical University Munich, Munich, Germany
| | - Marjolein J Peters
- Department of Internal Medicine, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Marcus Dörr
- DZHK (German Center for Cardiovascular Research), partner site Greifswald, Greifswald, Germany.,Department of Internal Medicine B, University Medicine Greifswald, Greifswald, Germany
| | - Annette Peters
- Institute of Epidemiology, Helmholz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany
| | - Joyce B J van Meurs
- Department of Internal Medicine, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - André G Uitterlinden
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam, the Netherlands.,Department of Internal Medicine, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Maryam Kavousi
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Daniel Levy
- The Framingham Heart Study, Framingham, MA, USA.,Population Sciences Branch, Division of Intramural Research, National Heart, Lung and Blood Institute, Bethesda, MD, USA
| | - Christian Herder
- Institute of Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, Germany.,German Center for Diabetes Research (DZD e.V.), München-Neuherberg, Germany.,Division of Endocrinology and Diabetology, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | | | - Melanie Waldenberger
- Institute of Epidemiology, Helmholz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany
| | - Christa Meisinger
- Institute of Epidemiology, Helmholz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany.,Chair of Epidemiology, Ludwig-Maximilians-Universität München, UNIKA-T Augsburg, Augsburg, Germany
| | - Wolfgang Rathmann
- Institute of Biometrics and Epidemiology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Joachim Thiery
- LIFE Research Center of Civilization Diseases, University of Leipzig, Leipzig, Germany.,Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University of Leipzig, Leipzig, Germany
| | - Joseph Polak
- Tufts University School of Medicine, Boston, MA, USA
| | - Wolfgang Koenig
- Deutsches Herzzentrum München, Technische Universität München, Munich, Germany.,DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, Munich, Germany.,Department of Internal Medicine II-Cardiology, University of Ulm Medical Center, Ulm, Germany
| | - Jochen Seissler
- Diabetes Center, Diabetes Research Group, Medizinische Klinik und Poliklinik IV, Ludwig-Maximilians-Universität, Munich, Germany
| | - Joshua C Bis
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Nora Franceshini
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC, USA
| | | | | | - Albert Hofman
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam, the Netherlands.,Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Oscar H Franco
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam, the Netherlands.,Institute of Social and Preventive Medicine, University of Bern, Switzerland
| | - Brenda W J H Penninx
- Department of Psychiatry, VU University Medical Center, Amsterdam, the Netherlands
| | - Holger Prokisch
- Institute of Neurogenomics, Helmholz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany.,Institute of Human Genetics, Technical University Munich, Munich, Germany
| | - Henry Völzke
- DZHK (German Center for Cardiovascular Research), partner site Greifswald, Greifswald, Germany.,Institute of Community Medicine, University Medicine Greifswald, Greifswald, Germany
| | - Markus Loeffler
- Institute for Medical Informatics, Statistics and Epidemiology, University of Leipzig, Leipzig, Germany.,LIFE Research Center of Civilization Diseases, University of Leipzig, Leipzig, Germany
| | - Christopher J O'Donnell
- The Framingham Heart Study, Framingham, MA, USA.,Cardiology Section, Department of Medicine, Boston Veteran's Administration Healthcare and Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Jennifer E Below
- Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Abbas Dehghan
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam, the Netherlands.,Department of Epidemiology and Biostatistics, Imperial College London, London, UK.,MRC-PHE Centre for Environment and Health, School of Public Health, Imperial College London, Norfolk Place, London, UK.,UK Dementia Research Institute at Imperial College London, Burlington Danes Building, Hammersmith Hospital, Du Cane Road, London W12 0NN UK
| | - Paul S de Vries
- Human Genetics Center, Department of Epidemiology, Human Genetics, and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, USA.,Department of Epidemiology, Erasmus University Medical Center, Rotterdam, the Netherlands
| |
Collapse
|
9
|
Scoville DW, Jetten AM. GLIS3: A Critical Transcription Factor in Islet β-Cell Generation. Cells 2021; 10:cells10123471. [PMID: 34943978 PMCID: PMC8700524 DOI: 10.3390/cells10123471] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 11/23/2021] [Accepted: 12/06/2021] [Indexed: 11/22/2022] Open
Abstract
Understanding of pancreatic islet biology has greatly increased over the past few decades based in part on an increased understanding of the transcription factors that guide this process. One such transcription factor that has been increasingly tied to both β-cell development and the development of diabetes in humans is GLIS3. Genetic deletion of GLIS3 in mice and humans induces neonatal diabetes, while single nucleotide polymorphisms (SNPs) in GLIS3 have been associated with both Type 1 and Type 2 diabetes. As a significant progress has been made in understanding some of GLIS3’s roles in pancreas development and diabetes, we sought to compare current knowledge on GLIS3 within the pancreas to that of other islet enriched transcription factors. While GLIS3 appears to regulate similar genes and pathways to other transcription factors, its unique roles in β-cell development and maturation make it a key target for future studies and therapy.
Collapse
|
10
|
Morello G, Villari A, Spampinato AG, La Cognata V, Guarnaccia M, Gentile G, Ciotti MT, Calissano P, D’Agata V, Severini C, Cavallaro S. Transcriptional Profiles of Cell Fate Transitions Reveal Early Drivers of Neuronal Apoptosis and Survival. Cells 2021; 10:3238. [PMID: 34831459 PMCID: PMC8620386 DOI: 10.3390/cells10113238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 11/12/2021] [Accepted: 11/17/2021] [Indexed: 11/23/2022] Open
Abstract
Neuronal apoptosis and survival are regulated at the transcriptional level. To identify key genes and upstream regulators primarily responsible for these processes, we overlayed the temporal transcriptome of cerebellar granule neurons following induction of apoptosis and their rescue by three different neurotrophic factors. We identified a core set of 175 genes showing opposite expression trends at the intersection of apoptosis and survival. Their functional annotations and expression signatures significantly correlated to neurological, psychiatric and oncological disorders. Transcription regulatory network analysis revealed the action of nine upstream transcription factors, converging pro-apoptosis and pro-survival-inducing signals in a highly interconnected functionally and temporally ordered manner. Five of these transcription factors are potential drug targets. Transcriptome-based computational drug repurposing produced a list of drug candidates that may revert the apoptotic core set signature. Besides elucidating early drivers of neuronal apoptosis and survival, our systems biology-based perspective paves the way to innovative pharmacology focused on upstream targets and regulatory networks.
Collapse
Affiliation(s)
- Giovanna Morello
- Institute for Biomedical Research and Innovation, National Research Council (IRIB-CNR), Via Paolo Gaifami, 18, 95125 Catania, Italy; (G.M.); (A.V.); (A.G.S.); (V.L.C.); (M.G.); (G.G.)
| | - Ambra Villari
- Institute for Biomedical Research and Innovation, National Research Council (IRIB-CNR), Via Paolo Gaifami, 18, 95125 Catania, Italy; (G.M.); (A.V.); (A.G.S.); (V.L.C.); (M.G.); (G.G.)
| | - Antonio Gianmaria Spampinato
- Institute for Biomedical Research and Innovation, National Research Council (IRIB-CNR), Via Paolo Gaifami, 18, 95125 Catania, Italy; (G.M.); (A.V.); (A.G.S.); (V.L.C.); (M.G.); (G.G.)
| | - Valentina La Cognata
- Institute for Biomedical Research and Innovation, National Research Council (IRIB-CNR), Via Paolo Gaifami, 18, 95125 Catania, Italy; (G.M.); (A.V.); (A.G.S.); (V.L.C.); (M.G.); (G.G.)
| | - Maria Guarnaccia
- Institute for Biomedical Research and Innovation, National Research Council (IRIB-CNR), Via Paolo Gaifami, 18, 95125 Catania, Italy; (G.M.); (A.V.); (A.G.S.); (V.L.C.); (M.G.); (G.G.)
| | - Giulia Gentile
- Institute for Biomedical Research and Innovation, National Research Council (IRIB-CNR), Via Paolo Gaifami, 18, 95125 Catania, Italy; (G.M.); (A.V.); (A.G.S.); (V.L.C.); (M.G.); (G.G.)
| | - Maria Teresa Ciotti
- Institute of Biochemistry and Cell Biology, National Research Council (IBBC-CNR), Via E. Ramarini, 32, Monterotondo Scalo, 00015 Rome, Italy; (M.T.C.); (C.S.)
| | - Pietro Calissano
- European Brain Research Institute (EBRI Foundation), Viale Regina Elena, 295, 00161 Rome, Italy;
| | - Velia D’Agata
- Department of Biomedical and Biotechnological Sciences, Section of Human Anatomy and Histology, University of Catania, Via Santa Sofia, 87, 95123 Catania, Italy;
| | - Cinzia Severini
- Institute of Biochemistry and Cell Biology, National Research Council (IBBC-CNR), Via E. Ramarini, 32, Monterotondo Scalo, 00015 Rome, Italy; (M.T.C.); (C.S.)
| | - Sebastiano Cavallaro
- Institute for Biomedical Research and Innovation, National Research Council (IRIB-CNR), Via Paolo Gaifami, 18, 95125 Catania, Italy; (G.M.); (A.V.); (A.G.S.); (V.L.C.); (M.G.); (G.G.)
| |
Collapse
|
11
|
Ullmann T, Luckhardt S, Wolf M, Parnham MJ, Resch E. High-Throughput Screening for CEBPD-Modulating Compounds in THP-1-Derived Reporter Macrophages Identifies Anti-Inflammatory HDAC and BET Inhibitors. Int J Mol Sci 2021; 22:ijms22063022. [PMID: 33809617 PMCID: PMC8002291 DOI: 10.3390/ijms22063022] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 03/07/2021] [Accepted: 03/11/2021] [Indexed: 12/25/2022] Open
Abstract
This study aimed to identify alternative anti-inflammatory compounds that modulate the activity of a relevant transcription factor, CCAAT/enhancer binding protein delta (C/EBPδ). C/EBPδ is a master regulator of inflammatory responses in macrophages (Mϕ) and is mainly regulated at the level of CEBPD gene transcription initiation. To screen for CEBPD-modulating compounds, we generated a THP-1-derived reporter cell line stably expressing secreted alkaline phosphatase (SEAP) under control of the defined CEBPD promoter (CEBPD::SEAP). A high-throughput screening of LOPAC®1280 and ENZO®774 libraries on LPS- and IFN-γ-activated THP-1 reporter Mϕ identified four epigenetically active hits: two bromodomain and extraterminal domain (BET) inhibitors, I-BET151 and Ro 11-1464, as well as two histone deacetylase (HDAC) inhibitors, SAHA and TSA. All four hits markedly and reproducibly upregulated SEAP secretion and CEBPD::SEAP mRNA expression, confirming screening assay reliability. Whereas BET inhibitors also upregulated the mRNA expression of the endogenous CEBPD, HDAC inhibitors completely abolished it. All hits displayed anti-inflammatory activity through the suppression of IL-6 and CCL2 gene expression. However, I-BET151 and HDAC inhibitors simultaneously upregulated the mRNA expression of pro-inflammatory IL-1ß. The modulation of CEBPD gene expression shown in this study contributes to our understanding of inflammatory responses in Mϕ and may offer an approach to therapy for inflammation-driven disorders.
Collapse
Affiliation(s)
- Tatjana Ullmann
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Theodor-Stern-Kai 7, 60596 Frankfurt am Main, Germany; (S.L.); (M.J.P.); (E.R.)
- Correspondence:
| | - Sonja Luckhardt
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Theodor-Stern-Kai 7, 60596 Frankfurt am Main, Germany; (S.L.); (M.J.P.); (E.R.)
| | - Markus Wolf
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Schnackenburgallee 114, 22525 Hamburg, Germany;
| | - Michael J. Parnham
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Theodor-Stern-Kai 7, 60596 Frankfurt am Main, Germany; (S.L.); (M.J.P.); (E.R.)
- EpiEndo Pharmaceuticals ehf, Eiðistorg 13-15, 170 Seltjarnarnes, Iceland
| | - Eduard Resch
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Theodor-Stern-Kai 7, 60596 Frankfurt am Main, Germany; (S.L.); (M.J.P.); (E.R.)
| |
Collapse
|
12
|
Wu W, He S, Shen Y, Zhang J, Wan Y, Tang X, Liu S, Yao X. Natural Product Luteolin Rescues THAP-Induced Pancreatic β-Cell Dysfunction through HNF4α Pathway. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2020; 48:1435-1454. [PMID: 32907363 DOI: 10.1142/s0192415x20500706] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Endoplasmic reticulum stress (ER stress) plays a main role in pancreatic [Formula: see text]-cell dysfunction and death because of intracellular Ca[Formula: see text] turbulence and inflammation activation. Although several drugs are targeting pancreatic [Formula: see text]-cell to improve [Formula: see text]-cell function, there still lacks agents to alleviate [Formula: see text]-cell ER stress conditions. Therefore we used thapsigargin (THAP) or high glucose (HG) to induce ER stress in [Formula: see text]-cell and aimed to screen natural molecules against ER stress-induced [Formula: see text]-cell dysfunction. Through screening the Traditional Chinese drug library ([Formula: see text] molecules), luteolin was finally discovered to improve [Formula: see text]-cell function. Cellular viability results indicated luteolin reduced the THAP or HG-induced [Formula: see text]-cell death and apoptosis through MTT and flow cytometry assay. Moreover, luteolin improved [Formula: see text]-cell insulin secretion ability under ER stress conditions. Also ER stress-induced intracellular Ca[Formula: see text] turbulence and inflammation activation were inhibited by luteolin treatment. Mechanically, luteolin inhibited HNF4[Formula: see text] signaling, which was induced by ER stress. Moreover, luteolin reduced the transcriptional level of HNF4[Formula: see text] downstream gene, such as Asnk4b and HNF1[Formula: see text]. Conversely HNF4[Formula: see text] knockdown abolished the effect of luteolin on [Formula: see text]-cell using siRNA. These results suggested the protective effect of luteolin on [Formula: see text]-cell was through HNF4[Formula: see text]/Asnk4b pathway. In conclusion, our study discovered that luteolin improved [Formula: see text]-cell function and disclosed the underlying mechanism of luteolin on [Formula: see text]-cell, suggesting luteolin is a promising agent against pancreatic dysfunction.
Collapse
Affiliation(s)
- Wenyu Wu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, P. R. China
| | - Shijun He
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of New Drug Screening, Guangzhou Key Laboratory of Drug Research for Emerging Virus Prevention and Treatment, School of Pharmaceutical Sciences, Southern, Medical University, Guangzhou 510515, P. R. China
| | - Yuli Shen
- Nephrology Department, Longgang District People's Hospital of Shenzhen, Shenzhen 518172, P. R. China
| | - Jiawen Zhang
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of New Drug Screening, Guangzhou Key Laboratory of Drug Research for Emerging Virus Prevention and Treatment, School of Pharmaceutical Sciences, Southern, Medical University, Guangzhou 510515, P. R. China
| | - Yihong Wan
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of New Drug Screening, Guangzhou Key Laboratory of Drug Research for Emerging Virus Prevention and Treatment, School of Pharmaceutical Sciences, Southern, Medical University, Guangzhou 510515, P. R. China
| | - Xiaodong Tang
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of New Drug Screening, Guangzhou Key Laboratory of Drug Research for Emerging Virus Prevention and Treatment, School of Pharmaceutical Sciences, Southern, Medical University, Guangzhou 510515, P. R. China
| | - Shuwen Liu
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of New Drug Screening, Guangzhou Key Laboratory of Drug Research for Emerging Virus Prevention and Treatment, School of Pharmaceutical Sciences, Southern, Medical University, Guangzhou 510515, P. R. China.,Center of Pharmacy, Nanhai Hospital, Southern Medical University, Foshan 510080, P. R. China
| | - Xingang Yao
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of New Drug Screening, Guangzhou Key Laboratory of Drug Research for Emerging Virus Prevention and Treatment, School of Pharmaceutical Sciences, Southern, Medical University, Guangzhou 510515, P. R. China.,Center of Clinical Pharmacy, Nanfang Hospital, Southern Medical University, Guangzhou 510515, P. R. China
| |
Collapse
|
13
|
Lee HS, Vancamelbeke M, Verstockt S, Wilms T, Verstockt B, Sabino J, Ferrante M, Vermeire S, Cleynen I. Molecular Changes in the Non-Inflamed Terminal Ileum of Patients with Ulcerative Colitis. Cells 2020; 9:cells9081793. [PMID: 32731480 PMCID: PMC7464680 DOI: 10.3390/cells9081793] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 07/22/2020] [Accepted: 07/24/2020] [Indexed: 12/19/2022] Open
Abstract
Ulcerative colitis is a chronic inflammatory disease confined to the colon. Although the etiopathogenesis remains unknown, small bowel dysfunctions like histological and permeability alterations have been described in ulcerative colitis. We evaluated the molecular gene signature in the non-inflamed terminal ileum of 36 ulcerative colitis patients (7 active, with Mayo endoscopic subscore ≥2, and 29 inactive) as compared to 15 non-inflammatory bowel disease controls. Differential gene expression analysis with DESeq2 showed distinct expression patterns depending on disease activity and maximal disease extent. We found 84 dysregulated genes in patients with active extensive colitis and 20 in inactive extensive colitis, compared to controls. There was an overlap of 5 genes: REG1B, REG1A, MUC4, GRAMD2, and CASP10. In patients with left-sided colitis, ileal gene expression levels were similar to controls. Based on gene co-expression analysis, ileal changes in active ulcerative colitis patients were related to immune functions. The ileal changes in the inactive ulcerative colitis subjects converged into the maintenance of the intestinal barrier through increased mitochondrial function and dampened immune functions. In conclusion, we identified molecular changes in the non-inflamed ileum of ulcerative colitis that are dependent on colonic inflammation.
Collapse
Affiliation(s)
- Ho-Su Lee
- Laboratory of Complex Genetics, Department of Human Genetics, KU Leuven, 3000 Leuven, Belgium; (H.-S.L.); (S.V.); (T.W.)
- Department of Biochemistry and Molecular Biology, University of Ulsan College of Medicine, Seoul 05505, Korea
| | - Maaike Vancamelbeke
- Translational Research Center for Gastrointestinal Disorders (TARGID), Department Chronic Diseases, Metabolism & Ageing (CHROMETA), KU Leuven, 3000 Leuven, Belgium; (M.V.); (B.V.); (J.S.); (M.F.); (S.V.)
| | - Sare Verstockt
- Laboratory of Complex Genetics, Department of Human Genetics, KU Leuven, 3000 Leuven, Belgium; (H.-S.L.); (S.V.); (T.W.)
| | - Tom Wilms
- Laboratory of Complex Genetics, Department of Human Genetics, KU Leuven, 3000 Leuven, Belgium; (H.-S.L.); (S.V.); (T.W.)
| | - Bram Verstockt
- Translational Research Center for Gastrointestinal Disorders (TARGID), Department Chronic Diseases, Metabolism & Ageing (CHROMETA), KU Leuven, 3000 Leuven, Belgium; (M.V.); (B.V.); (J.S.); (M.F.); (S.V.)
- Department of Gastroenterology and Hepatology, University Hospitals Leuven, KU Leuven, 3000 Leuven, Belgium
| | - João Sabino
- Translational Research Center for Gastrointestinal Disorders (TARGID), Department Chronic Diseases, Metabolism & Ageing (CHROMETA), KU Leuven, 3000 Leuven, Belgium; (M.V.); (B.V.); (J.S.); (M.F.); (S.V.)
- Department of Gastroenterology and Hepatology, University Hospitals Leuven, KU Leuven, 3000 Leuven, Belgium
| | - Marc Ferrante
- Translational Research Center for Gastrointestinal Disorders (TARGID), Department Chronic Diseases, Metabolism & Ageing (CHROMETA), KU Leuven, 3000 Leuven, Belgium; (M.V.); (B.V.); (J.S.); (M.F.); (S.V.)
- Department of Gastroenterology and Hepatology, University Hospitals Leuven, KU Leuven, 3000 Leuven, Belgium
| | - Séverine Vermeire
- Translational Research Center for Gastrointestinal Disorders (TARGID), Department Chronic Diseases, Metabolism & Ageing (CHROMETA), KU Leuven, 3000 Leuven, Belgium; (M.V.); (B.V.); (J.S.); (M.F.); (S.V.)
- Department of Gastroenterology and Hepatology, University Hospitals Leuven, KU Leuven, 3000 Leuven, Belgium
| | - Isabelle Cleynen
- Laboratory of Complex Genetics, Department of Human Genetics, KU Leuven, 3000 Leuven, Belgium; (H.-S.L.); (S.V.); (T.W.)
- Correspondence: ; Tel.: +32-1637-7480
| |
Collapse
|
14
|
Marrelli MT, Wang Z, Huang J, Brotto M. The skeletal muscles of mice infected with Plasmodium berghei and Plasmodium chabaudi reveal a crosstalk between lipid mediators and gene expression. Malar J 2020; 19:254. [PMID: 32664933 PMCID: PMC7362477 DOI: 10.1186/s12936-020-03332-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 07/09/2020] [Indexed: 11/21/2022] Open
Abstract
Background Malaria is one of the most prevalent infectious disease in the world with 3.2 billion humans at risk. Malaria causes splenomegaly and damage in other organs including skeletal muscles. Skeletal muscles comprise nearly 50% of the human body and are largely responsible for the regulation and modulation of overall metabolism. It is essential to understand how malaria damages muscles in order to develop effective preventive measures and/or treatments. Using a pre-clinical animal model, the potential molecular mechanisms of Plasmodium infection affecting skeletal muscles of mice were investigated. Methods Mouse Signal Transduction Pathway Finder PCR Array was used to monitor gene expression changes of 10 essential signalling pathways in skeletal muscles from mice infected with Plasmodium berghei and Plasmodium chabaudi. Then, a new targeted-lipidomic approach using liquid chromatography with tandem mass spectrometry (LC–MS/MS) to profile 158 lipid signalling mediators (LMs), mostly eicosanoids derived from arachidonic acid (AA), eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), was applied. Finally, 16 key LMs directly associated with inflammation, oxidative stress, and tissue healing in skeletal muscles, were quantified. Results The results showed that the expression of key genes altered by Plasmodium infection is associated with inflammation, oxidative stress, and atrophy. In support to gene profiling results, lipidomics revealed higher concentrations of LMs in skeletal muscles directly related to inflammatory responses, while on the levels of LMs crucial in resolving inflammation and tissue repair reduced significantly. Conclusion The results provide new insights into the molecular mechanisms of malaria-induced muscle damage and revealed a potential mechanism modulating inflammation in malarial muscles. These pre-clinical studies should help with future clinical studies in humans aimed at monitoring of disease progression and development of specific interventions for the prevention and mitigation of long-term chronic effects on skeletal muscle function.
Collapse
Affiliation(s)
- Mauro Toledo Marrelli
- Department of Epidemiology, School of Public Health, University of São Paulo, Avenida Dr. Arnaldo 715, São Paulo, SP, 01246-904, Brazil. .,Bone-Muscle Research Center, College of Nursing and Health Innovation, University of Texas-Arlington, 655 W. Mitchell Street, Arlington, TX, 76010, USA.
| | - Zhiying Wang
- Bone-Muscle Research Center, College of Nursing and Health Innovation, University of Texas-Arlington, 655 W. Mitchell Street, Arlington, TX, 76010, USA
| | - Jian Huang
- Bone-Muscle Research Center, College of Nursing and Health Innovation, University of Texas-Arlington, 655 W. Mitchell Street, Arlington, TX, 76010, USA
| | - Marco Brotto
- Bone-Muscle Research Center, College of Nursing and Health Innovation, University of Texas-Arlington, 655 W. Mitchell Street, Arlington, TX, 76010, USA
| |
Collapse
|
15
|
Altered Transcription Factor Binding and Gene Bivalency in Islets of Intrauterine Growth Retarded Rats. Cells 2020; 9:cells9061435. [PMID: 32527043 PMCID: PMC7348746 DOI: 10.3390/cells9061435] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 05/30/2020] [Accepted: 06/04/2020] [Indexed: 12/16/2022] Open
Abstract
Intrauterine growth retardation (IUGR), which induces epigenetic modifications and permanent changes in gene expression, has been associated with the development of type 2 diabetes. Using a rat model of IUGR, we performed ChIP-Seq to identify and map genome-wide histone modifications and gene dysregulation in islets from 2- and 10-week rats. IUGR induced significant changes in the enrichment of H3K4me3, H3K27me3, and H3K27Ac marks in both 2-wk and 10-wk islets, which were correlated with expression changes of multiple genes critical for islet function in IUGR islets. ChIP-Seq analysis showed that IUGR-induced histone mark changes were enriched at critical transcription factor binding motifs, such as C/EBPs, Ets1, Bcl6, Thrb, Ebf1, Sox9, and Mitf. These transcription factors were also identified as top upstream regulators in our previously published transcriptome study. In addition, our ChIP-seq data revealed more than 1000 potential bivalent genes as identified by enrichment of both H3K4me3 and H3K27me3. The poised state of many potential bivalent genes was altered by IUGR, particularly Acod1, Fgf21, Serpina11, Cdh16, Lrrc27, and Lrrc66, key islet genes. Collectively, our findings suggest alterations of histone modification in key transcription factors and genes that may contribute to long-term gene dysregulation and an abnormal islet phenotype in IUGR rats.
Collapse
|
16
|
Rosado-Olivieri EA, Aigha II, Kenty JH, Melton DA. Identification of a LIF-Responsive, Replication-Competent Subpopulation of Human β Cells. Cell Metab 2020; 31:327-338.e6. [PMID: 31928884 DOI: 10.1016/j.cmet.2019.12.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 10/03/2019] [Accepted: 12/16/2019] [Indexed: 10/25/2022]
Abstract
The beta (β)-cell mass formed during embryogenesis is amplified by cell replication during fetal and early postnatal development. Thereafter, β cells become functionally mature, and their mass is maintained by a low rate of replication. For those few β cells that replicate in adult life, it is not known how replication is initiated nor whether this occurs in a specialized subset of β cells. We capitalized on a YAP overexpression system to induce replication of stem-cell-derived β cells and, by single-cell RNA sequencing, identified an upregulation of the leukemia inhibitory factor (LIF) pathway. Activation of the LIF pathway induces replication of human β cells in vitro and in vivo. The expression of the LIF receptor is restricted to a subset of transcriptionally distinct human β cells with increased proliferative capacity. This study delineates novel genetic networks that control the replication of LIF-responsive, replication-competent human β cells.
Collapse
Affiliation(s)
- Edwin A Rosado-Olivieri
- Department of Stem Cell and Regenerative Biology, Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138, USA
| | - Idil I Aigha
- Department of Stem Cell and Regenerative Biology, Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138, USA; College of Health & Life Sciences, Hamad Bin Khalifa University, Qatar Foundation, Education City, Doha, Qatar; Diabetes Research Center, Qatar Biomedical Research Institute, Hamad Bin Khalifa University, Qatar Foundation, Education City, Doha, Qatar
| | - Jennifer H Kenty
- Department of Stem Cell and Regenerative Biology, Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138, USA
| | - Douglas A Melton
- Department of Stem Cell and Regenerative Biology, Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138, USA.
| |
Collapse
|
17
|
Tu LN, Timms AE, Kibiryeva N, Bittel D, Pastuszko A, Nigam V, Pastuszko P. Transcriptome profiling reveals activation of inflammation and apoptosis in the neonatal striatum after deep hypothermic circulatory arrest. J Thorac Cardiovasc Surg 2019; 158:882-890.e4. [DOI: 10.1016/j.jtcvs.2019.02.091] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 02/08/2019] [Accepted: 02/22/2019] [Indexed: 01/06/2023]
|
18
|
Jozawa H, Inoue-Yamauchi A, Arimura S, Yamanashi Y. Loss of C/EBPδ enhances apoptosis of intestinal epithelial cells and exacerbates experimental colitis in mice. Genes Cells 2019; 24:619-626. [PMID: 31233664 DOI: 10.1111/gtc.12711] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2019] [Revised: 06/08/2019] [Accepted: 06/19/2019] [Indexed: 01/01/2023]
Abstract
Inflammatory bowel diseases (IBDs) are characterized by chronic inflammation involving intestinal tissue damage, which include ulcerative colitis and Crohn's disease as major entities. Accumulating evidence suggests that excessive apoptosis of intestinal epithelial cells (IECs) contributes to the development of IBD. It was recently reported that the transcription factor CCAAT/enhancer-binding protein delta (C/EBPδ) is involved in inflammation; however, its role in colitis remains unclear. Here, we found that C/EBPδ knockout mice showed enhanced susceptibility to dextran sodium sulfate (DSS)-induced colitis, a mouse model of IBD, which was associated with severe colonic inflammation and mucosal damage with increased IEC apoptosis. Additionally, DSS stimulation induced increased expression of pro-apoptotic BH3-only protein Bim in the colon of C/EBPδ knockout mice. Collectively, our findings demonstrate that C/EBPδ plays an essential role in suppressing DSS-induced colitis, likely by attenuating IEC apoptosis.
Collapse
Affiliation(s)
- Hiroki Jozawa
- Division of Genetics, Department of Cancer Biology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Akane Inoue-Yamauchi
- Division of Genetics, Department of Cancer Biology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Sumimasa Arimura
- Division of Genetics, Department of Cancer Biology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Yuji Yamanashi
- Division of Genetics, Department of Cancer Biology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
19
|
Miani M, Elvira B, Gurzov EN. Sweet Killing in Obesity and Diabetes: The Metabolic Role of the BH3-only Protein BIM. J Mol Biol 2018; 430:3041-3050. [DOI: 10.1016/j.jmb.2018.07.022] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 07/10/2018] [Accepted: 07/16/2018] [Indexed: 02/06/2023]
|
20
|
Shih YL, Hung FM, Lee CH, Yeh MY, Lee MH, Lu HF, Chen YL, Liu JY, Chung JG. Fisetin Induces Apoptosis of HSC3 Human Oral Cancer Cells Through Endoplasmic Reticulum Stress and Dysfunction of Mitochondria-mediated Signaling Pathways. ACTA ACUST UNITED AC 2018; 31:1103-1114. [PMID: 29102932 DOI: 10.21873/invivo.11176] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Revised: 09/08/2017] [Accepted: 09/14/2017] [Indexed: 12/21/2022]
Abstract
BACKGROUND/AIM Oral cancer has been reported to be one of the major cancer-related diseases in human populations and the treatment of oral cancer is still unsatisfied. Fisetin, is a flavonoid from plants and has several biological activities such as antioxidant, anti-inflammatory and anticancer function, but its cytotoxicity in human oral cancer cells is unknown. In the present study, we investigated fisetin-induced cytotoxic effects on HSC3 human oral cancer cells in vitro. Materials and Methods/Results: We used flow cytometric assay to show fisetin induced apoptotic cell death through increased reactive oxygen species and Ca2+, but reduced the mitochondrial membrane potential and increased caspase-8, -9 and -3 activities in HSC3 cells. Furthermore, we also used 4' 6-diamidino-2-phenylindole staining to show that fisetin induced chromatin condensation (apoptotic cell death), and Comet assay to show that fisetin induced DNA damage in HSC3 cells. Western blotting was used to examine the levels of apoptotic-associated protein and results indicated that fisetin increased expression of pro-apoptotic proteins such as B-cell lymphoma 2 (BCL2) antagonist/killer (BAK) and BCL2-associated X (BAX) but reduced that of anti-apoptotic protein such as BCL2 and BCL-x, and increased the cleaved forms of caspase-3, -8 and -9, and cytochrome c, apoptosis-inducing factor (AIF) and endonuclease G (ENDO G) in HSC3 cells. Confocal microscopy showed that fisetin increased the release of cytochrome c, AIF and ENDO G from mitochondria into the cytoplasm. CONCLUSION Based on these observations, we suggest that fisetin induces apoptotic cell death through endoplasmic reticulum stress- and mitochondria-dependent pathways.
Collapse
Affiliation(s)
- Yung-Luen Shih
- Department of Pathology and Laboratory Medicine, Shin Kong Wu Ho-Su Memorial Hospital, Taipei, Taiwan, R.O.C.,School of Medical Laboratory Science and Biotechnology, Taipei Medical University, Taipei, Taiwan, R.O.C.,School of Medicine, College of Medicine, Fu-Jen Catholic University, New Taipei City, Taiwan, R.O.C
| | - Fang-Ming Hung
- Department of Surgical Intensive Care Unit, Far Eastern Memorial Hospital, New Taipei, Taiwan, R.O.C
| | - Ching-Hsiao Lee
- Department of Medical Technology, Jen-Teh Junior College of Medicine, Nursing and Management, Miaoli County, Taiwan, R.O.C
| | - Ming-Yang Yeh
- Department of Medical Education and Research, Cheng Hsin General Hospital, Taipei, Taiwan, R.O.C
| | - Mei-Hui Lee
- Department of Genetic Counseling Center, Changhua Christian Hospital, Changhua, Taiwan, R.O.C
| | - Hsu-Feng Lu
- Department of Restaurant, Hotel and Institutional Management, Fu-Jen Catholic University, New Taipei City, Taiwan, R.O.C.,Department of Clinical Pathology, Cheng Hsin General Hospital, Taipei, Taiwan, R.O.C
| | - Yung-Liang Chen
- Department of Medical Laboratory Science and Biotechnology, Yuanpei University, Hsinchu, Taiwan, R.O.C
| | - Jia-You Liu
- Department of Clinical Pathology, Cheng Hsin General Hospital, Taipei, Taiwan, R.O.C.
| | - Jing-Gung Chung
- Department of Biological Science and Technology, China Medical University, Taichung, Taiwan, R.O.C.
| |
Collapse
|
21
|
Fujii R, Friedman ER, Richards J, Tsang KY, Heery CR, Schlom J, Hodge JW. Enhanced killing of chordoma cells by antibody-dependent cell-mediated cytotoxicity employing the novel anti-PD-L1 antibody avelumab. Oncotarget 2018; 7:33498-511. [PMID: 27172898 PMCID: PMC5085098 DOI: 10.18632/oncotarget.9256] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Accepted: 04/26/2016] [Indexed: 12/31/2022] Open
Abstract
Chordoma, a rare bone tumor derived from the notochord, has been shown to be resistant to conventional therapies. Checkpoint inhibition has shown great promise in immune-mediated therapy of diverse cancers. The anti-PD-L1 mAb avelumab is unique among checkpoint inhibitors in that it is a fully human IgG1 capable of mediating antibody-dependent cell-mediated cytotoxicity (ADCC) of PD-L1-expressing tumor cells. Here, we investigated avelumab as a potential therapy for chordoma. We examined 4 chordoma cell lines, first for expression of PD-L1, and in vitro for ADCC killing using NK cells and avelumab. PD-L1 expression was markedly upregulated by IFN-γ in all 4 chordoma cell lines, which significantly increased sensitivity to ADCC. Brachyury is a transcription factor that is uniformly expressed in chordoma. Clinical trials are ongoing in which chordoma patients are treated with brachyury-specific vaccines. Co-incubating chordoma cells with brachyury-specific CD8+ T cells resulted in significant upregulation of PD-L1 on the tumor cells, mediated by the CD8+ T cells' IFN-γ production, and increased sensitivity of chordoma cells to avelumab-mediated ADCC. Residential cancer stem cell subpopulations of chordoma cells were also killed by avelumab-mediated ADCC to the same degree as non-cancer stem cell populations. These findings suggest that as a monotherapy for chordoma, avelumab may enable endogenous NK cells, while in combination with T-cell immunotherapy, such as a vaccine, avelumab may enhance NK-cell killing of chordoma cells via ADCC.
Collapse
Affiliation(s)
- Rika Fujii
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Eitan R Friedman
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Jacob Richards
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Kwong Y Tsang
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Christopher R Heery
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Jeffrey Schlom
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - James W Hodge
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
22
|
Hogan NT, Whalen MB, Stolze LK, Hadeli NK, Lam MT, Springstead JR, Glass CK, Romanoski CE. Transcriptional networks specifying homeostatic and inflammatory programs of gene expression in human aortic endothelial cells. eLife 2017; 6. [PMID: 28585919 PMCID: PMC5461113 DOI: 10.7554/elife.22536] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Accepted: 05/22/2017] [Indexed: 12/30/2022] Open
Abstract
Endothelial cells (ECs) are critical determinants of vascular homeostasis and inflammation, but transcriptional mechanisms specifying their identities and functional states remain poorly understood. Here, we report a genome-wide assessment of regulatory landscapes of primary human aortic endothelial cells (HAECs) under basal and activated conditions, enabling inference of transcription factor networks that direct homeostatic and pro-inflammatory programs. We demonstrate that 43% of detected enhancers are EC-specific and contain SNPs associated to cardiovascular disease and hypertension. We provide evidence that AP1, ETS, and GATA transcription factors play key roles in HAEC transcription by co-binding enhancers associated with EC-specific genes. We further demonstrate that exposure of HAECs to oxidized phospholipids or pro-inflammatory cytokines results in signal-specific alterations in enhancer landscapes and associate with coordinated binding of CEBPD, IRF1, and NFκB. Collectively, these findings identify cis-regulatory elements and corresponding trans-acting factors that contribute to EC identity and their specific responses to pro-inflammatory stimuli. DOI:http://dx.doi.org/10.7554/eLife.22536.001
Collapse
Affiliation(s)
- Nicholas T Hogan
- Department of Cellular and Molecular Medicine, University of California, San Diego, San Diego, United States
| | - Michael B Whalen
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, United States
| | - Lindsey K Stolze
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, United States
| | - Nizar K Hadeli
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, United States
| | - Michael T Lam
- Department of Cellular and Molecular Medicine, University of California, San Diego, San Diego, United States
| | - James R Springstead
- Department of Chemical and Paper Engineering, University of Western Michigan, Kalamazoo, United States
| | - Christopher K Glass
- Department of Cellular and Molecular Medicine, University of California, San Diego, San Diego, United States
| | - Casey E Romanoski
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, United States
| |
Collapse
|
23
|
Lee SH, Cunha D, Piermarocchi C, Paternostro G, Pinkerton A, Ladriere L, Marchetti P, Eizirik DL, Cnop M, Levine F. High-throughput screening and bioinformatic analysis to ascertain compounds that prevent saturated fatty acid-induced β-cell apoptosis. Biochem Pharmacol 2017; 138:140-149. [PMID: 28522407 DOI: 10.1016/j.bcp.2017.05.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Accepted: 05/11/2017] [Indexed: 02/07/2023]
Abstract
Pancreatic β-cell lipotoxicity is a central feature of the pathogenesis of type 2 diabetes. To study the mechanism by which fatty acids cause β-cell death and develop novel approaches to prevent it, a high-throughput screen on the β-cell line INS1 was carried out. The cells were exposed to palmitate to induce cell death and compounds that reversed palmitate-induced cytotoxicity were ascertained. Hits from the screen were analyzed by an increasingly more stringent testing funnel, ending with studies on primary human islets treated with palmitate. MAP4K4 inhibitors, which were not part of the screening libraries but were ascertained by a bioinformatics analysis, and the endocannabinoid anandamide were effective at inhibiting palmitate-induced apoptosis in INS1 cells as well as primary rat and human islets. These targets could serve as the starting point for the development of therapeutics for type 2 diabetes.
Collapse
Affiliation(s)
- Seung-Hee Lee
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Daniel Cunha
- ULB Center for Diabetes Research, Medical Faculty, Université Libre de Bruxelles (ULB), 808 Route de Lennik, B-1070 Brussels, Belgium
| | - Carlo Piermarocchi
- Department of Physics and Astronomy, Michigan State University, East Lansing, MI 48824, USA
| | | | - Anthony Pinkerton
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Laurence Ladriere
- ULB Center for Diabetes Research, Medical Faculty, Université Libre de Bruxelles (ULB), 808 Route de Lennik, B-1070 Brussels, Belgium
| | - Piero Marchetti
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Decio L Eizirik
- ULB Center for Diabetes Research, Medical Faculty, Université Libre de Bruxelles (ULB), 808 Route de Lennik, B-1070 Brussels, Belgium
| | - Miriam Cnop
- ULB Center for Diabetes Research, Medical Faculty, Université Libre de Bruxelles (ULB), 808 Route de Lennik, B-1070 Brussels, Belgium; Division of Endocrinology, Erasmus Hospital, Université Libre de Bruxelles (ULB), B-1070 Brussels, Belgium
| | - Fred Levine
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA.
| |
Collapse
|
24
|
Rodriguez-Agirretxe I, Garcia I, Soria J, Suarez TM, Acera A. Custom RT-qPCR-array for glaucoma filtering surgery prognosis. PLoS One 2017; 12:e0174559. [PMID: 28358901 PMCID: PMC5373565 DOI: 10.1371/journal.pone.0174559] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2016] [Accepted: 03/11/2017] [Indexed: 12/27/2022] Open
Abstract
Excessive subconjunctival scarring is the main reason of failure of glaucoma filtration surgery. We analyzed conjunctival and systemic gene expression patterns after non penetrating deep sclerectomy (NPDS). To find expression patterns related to surgical failure and their correlation with the clinical outcomes. This study consisted of two consecutive stages. The first was a prospective analysis of wound-healing gene expression profile of six patients after NPDS. Conjunctival samples and peripheral blood samples were collected before and 15, 90,180, and 360 days after surgery. In the second stage, we conducted a retrospective analysis correlating the late conjunctival gene expression and the outcome of the NPDS for 11 patients. We developed a RT-qPCR Array for 88 key genes associated to wound healing. RT-qPCR Array analysis of conjunctiva samples showed statistically significant differences in 29/88 genes in the early stages after surgery, 20/88 genes between 90 and 180 days after surgery, and only 2/88 genes one year after surgery. In the blood samples, the most important changes occurred in 12/88 genes in the first 15 days after surgery. Correspondence analyses (COA) revealed significant differences between the expression of 20/88 genes in patients with surgical success and failure one year after surgery. Different expression patterns of mediators of the bleb wound healing were identified. Examination of such patterns might be used in surgery prognosis. RT-qPCR Array provides a powerful tool for investigation of differential gene expression wound healing after glaucoma surgery.
Collapse
Affiliation(s)
- Iñaki Rodriguez-Agirretxe
- Instituto Clínico Quirúrgico de Oftalmología, Bilbao, Spain
- Hospital Universitario Donostia, San Sebastian, Spain
| | | | | | | | | |
Collapse
|
25
|
Hwang JS, Kwon MY, Kim KH, Lee Y, Lyoo IK, Kim JE, Oh ES, Han IO. Lipopolysaccharide (LPS)-stimulated iNOS Induction Is Increased by Glucosamine under Normal Glucose Conditions but Is Inhibited by Glucosamine under High Glucose Conditions in Macrophage Cells. J Biol Chem 2016; 292:1724-1736. [PMID: 27927986 DOI: 10.1074/jbc.m116.737940] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Revised: 11/29/2016] [Indexed: 12/26/2022] Open
Abstract
We investigated the regulatory effect of glucosamine (GlcN) for the production of nitric oxide (NO) and expression of inducible NO synthase (iNOS) under various glucose conditions in macrophage cells. At normal glucose concentrations, GlcN dose dependently increased LPS-stimulated production of NO/iNOS. However, GlcN suppressed NO/iNOS production under high glucose culture conditions. Moreover, GlcN suppressed LPS-induced up-regulation of COX-2, IL-6, and TNF-α mRNAs under 25 mm glucose conditions yet did not inhibit up-regulation under 5 mm glucose conditions. Glucose itself dose dependently increased LPS-induced iNOS expression. LPS-induced MAPK and IκB-α phosphorylation did not significantly differ at normal and high glucose conditions. The activity of LPS-induced nuclear factor-κB (NF-κB) and DNA binding of c-Rel to the iNOS promoter were inhibited under high glucose conditions in comparison with no significant changes under normal glucose conditions. In addition, we found that the LPS-induced increase in O-GlcNAcylation as well as DNA binding of c-Rel to the iNOS promoter were further increased by GlcN under normal glucose conditions. However, both O-GlcNAcylation and DNA binding of c-Rel decreased under high glucose conditions. The NF-κB inhibitor, pyrrolidine dithiocarbamate, inhibited LPS-induced iNOS expression under high glucose conditions but it did not influence iNOS induction under normal glucose conditions. In addition, pyrrolidine dithiocarbamate inhibited NF-κB DNA binding and c-Rel O-GlcNAcylation only under high glucose conditions. By blocking transcription with actinomycin D, we found that stability of LPS-induced iNOS mRNA was increased by GlcN under normal glucose conditions. These results suggest that GlcN regulates inflammation by sensing energy states of normal and fuel excess.
Collapse
Affiliation(s)
- Ji-Sun Hwang
- From the Department of Physiology and Biophysics, College of Medicine, Inha University, Incheon 22212, Korea
| | - Mi-Youn Kwon
- From the Department of Physiology and Biophysics, College of Medicine, Inha University, Incheon 22212, Korea
| | - Kyung-Hong Kim
- From the Department of Physiology and Biophysics, College of Medicine, Inha University, Incheon 22212, Korea
| | - Yunkyoung Lee
- the Department of Brain and Cognitive Sciences, Ewha Brain Institute, College of Pharmacy, Ewha Womans University, Seoul 03760, Korea
| | - In Kyoon Lyoo
- the Department of Brain and Cognitive Sciences, Ewha Brain Institute, College of Pharmacy, Ewha Womans University, Seoul 03760, Korea
| | - Jieun E Kim
- the Department of Brain and Cognitive Sciences, Ewha Brain Institute, College of Pharmacy, Ewha Womans University, Seoul 03760, Korea
| | - Eok-Soo Oh
- the Department of Life Sciences, The Research Center for Cellular Homeostasis, Ewha Womans University, Seoul 03760, Korea
| | - Inn-Oc Han
- From the Department of Physiology and Biophysics, College of Medicine, Inha University, Incheon 22212, Korea.
| |
Collapse
|
26
|
Kaminski HJ, Himuro K, Alshaikh J, Gong B, Cheng G, Kusner LL. Differential RNA Expression Profile of Skeletal Muscle Induced by Experimental Autoimmune Myasthenia Gravis in Rats. Front Physiol 2016; 7:524. [PMID: 27891095 PMCID: PMC5102901 DOI: 10.3389/fphys.2016.00524] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Accepted: 10/24/2016] [Indexed: 01/14/2023] Open
Abstract
The differential susceptibility of skeletal muscle by myasthenia gravis (MG) is not well understood. We utilized RNA expression profiling of extraocular muscle (EOM), diaphragm (DIA), and extensor digitorum (EDL) of rats with experimental autoimmune MG (EAMG) to evaluate the hypothesis that muscles respond differentially to injury produced by EAMG. EAMG was induced in female Lewis rats by immunization with acetylcholine receptor purified from the electric organ of the Torpedo. Six weeks later after rats had developed weakness and serum antibodies directed against the AChR, animals underwent euthanasia and RNA profiling performed on DIA, EDL, and EOM. Profiling results were validated by qPCR. Across the three muscles between the experiment and control groups, 359 probes (1.16%) with greater than 2-fold changes in expression in 7 of 9 series pairwise comparisons from 31,090 probes were identified with approximately two-thirds being increased. The three muscles shared 16 genes with increased expression and 6 reduced expression. Functional annotation demonstrated that these common expression changes fell predominantly into categories of metabolism, stress response, and signaling. Evaluation of specific gene function indicated that EAMG led to a change to oxidative metabolism. Genes related to muscle regeneration and suppression of immune response were activated. Evidence of a differential immune response among muscles was not evident. Each muscle had a distinct RNA profile but with commonality in gene categories expressed that are focused on muscle repair, moderation of inflammation, and oxidative metabolism.
Collapse
Affiliation(s)
- Henry J Kaminski
- Department of Neurology, George Washington University Washington, DC, USA
| | - Keiichi Himuro
- Department of Neurology, Graduate School of Medicine, Chiba University Chiba, Japan
| | - Jumana Alshaikh
- Department of Neurology, George Washington University Washington, DC, USA
| | - Bendi Gong
- Department of Pediatrics, Washington University St. Louis, MO, USA
| | - Georgiana Cheng
- Department of Pathobiology, Cleveland Clinic Cleveland, OH, USA
| | - Linda L Kusner
- Pharmacology and Physiology, George Washington University Washington, DC, USA
| |
Collapse
|
27
|
Banerjee S, Aykin-Burns N, Krager KJ, Shah SK, Melnyk SB, Hauer-Jensen M, Pawar SA. Loss of C/EBPδ enhances IR-induced cell death by promoting oxidative stress and mitochondrial dysfunction. Free Radic Biol Med 2016; 99:296-307. [PMID: 27554969 PMCID: PMC5673253 DOI: 10.1016/j.freeradbiomed.2016.08.022] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Revised: 07/26/2016] [Accepted: 08/17/2016] [Indexed: 01/01/2023]
Abstract
Exposure of cells to ionizing radiation (IR) generates reactive oxygen species (ROS). This results in increased oxidative stress and DNA double strand breaks (DSBs) which are the two underlying mechanisms by which IR causes cell/tissue injury. Cells that are deficient or impaired in the cellular antioxidant response are susceptible to IR-induced apoptosis. The transcription factor CCAAT enhancer binding protein delta (Cebpd, C/EBPδ) has been implicated in the regulation of oxidative stress, DNA damage response, genomic stability and inflammation. We previously reported that Cebpd-deficient mice are sensitive to IR and display intestinal and hematopoietic injury, however the underlying mechanism is not known. In this study, we investigated whether an impaired ability to detoxify IR-induced ROS was the underlying cause of the increased radiosensitivity of Cebpd-deficient cells. We found that Cebpd-knockout (KO) mouse embryonic fibroblasts (MEFs) expressed elevated levels of ROS, both at basal levels and after exposure to gamma radiation which correlated with increased apoptosis, and decreased clonogenic survival. Pre-treatment of wild type (WT) and KO MEFs with polyethylene glycol-conjugated Cu-Zn superoxide dismutase (PEG-SOD) and catalase (PEG-CAT) combination prior to irradiation showed a partial rescue of clonogenic survival, thus demonstrating a role for increased intracellular oxidants in promoting IR-induced cell death. Analysis of mitochondrial bioenergetics revealed that irradiated KO MEFs showed significant reductions in basal, adenosine triphosphate (ATP)-linked, maximal respiration and reserved respiratory capacity and decrease in intracellular ATP levels compared to WT MEFs indicating they display mitochondrial dysfunction. KO MEFs expressed significantly lower levels of the cellular antioxidant glutathione (GSH) and its precursor- cysteine as well as methionine. In addition to its antioxidant function, GSH plays an important role in detoxification of lipid peroxidation products such as 4-hydroxynonenal (4-HNE). The reduced GSH levels observed in KO MEFs correlated with elevated levels of 4-HNE protein adducts in irradiated KO MEFs compared to respective WT MEFs. We further showed that pre-treatment with the GSH precursor, N-acetyl L-cysteine (NAC) prior to irradiation showed a significant reduction of IR-induced cell death and increases in GSH levels, which contributed to the overall increase in clonogenic survival of KO MEFs. In contrast, pre-treatment with the GSH synthesis inhibitor- buthionine sulfoximine (BSO) further reduced the clonogenic survival of irradiated KO MEFs. This study demonstrates a novel role for C/EBPδ in protection from basal as well as IR-induced oxidative stress and mitochondrial dysfunction thus promoting post-radiation survival.
Collapse
Affiliation(s)
- Sudip Banerjee
- Division of Radiation Health, Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, AR 72205, United States
| | - Nukhet Aykin-Burns
- Division of Radiation Health, Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, AR 72205, United States
| | - Kimberly J Krager
- Division of Radiation Health, Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, AR 72205, United States
| | - Sumit K Shah
- Division of Radiation Health, Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, AR 72205, United States
| | - Stepan B Melnyk
- Arkansas Children's Hospital Research Institute, Little Rock, AR 72205, United States
| | - Martin Hauer-Jensen
- Division of Radiation Health, Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, AR 72205, United States; Surgical Services, Central Arkansas Veterans Healthcare System, Little Rock, AR 72205, United States
| | - Snehalata A Pawar
- Division of Radiation Health, Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, AR 72205, United States.
| |
Collapse
|
28
|
Santin I, Dos Santos RS, Eizirik DL. Pancreatic Beta Cell Survival and Signaling Pathways: Effects of Type 1 Diabetes-Associated Genetic Variants. Methods Mol Biol 2016; 1433:21-54. [PMID: 26936771 DOI: 10.1007/7651_2015_291] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Type 1 diabetes (T1D) is a complex autoimmune disease in which pancreatic beta cells are specifically destroyed by the immune system. The disease has an important genetic component and more than 50 loci across the genome have been associated with risk of developing T1D. The molecular mechanisms by which these putative T1D candidate genes modulate disease risk, however, remain poorly characterized and little is known about their effects in pancreatic beta cells. Functional studies in in vitro models of pancreatic beta cells, based on techniques to inhibit or overexpress T1D candidate genes, allow the functional characterization of several T1D candidate genes. This requires a multistage procedure comprising two major steps, namely accurate selection of genes of potential interest and then in vitro and/or in vivo mechanistic approaches to characterize their role in pancreatic beta cell dysfunction and death in T1D. This chapter details the methods and settings used by our groups to characterize the role of T1D candidate genes on pancreatic beta cell survival and signaling pathways, with particular focus on potentially relevant pathways in the pathogenesis of T1D, i.e., inflammation and innate immune responses, apoptosis, beta cell metabolism and function.
Collapse
Affiliation(s)
- Izortze Santin
- ULB Center for Diabetes Research, Medical Faculty, Université Libre de Bruxelles (ULB), Brussels, Belgium.
- Endocrinology and Diabetes Research Group, BioCruces Health Research Institute, CIBERDEM, Spain.
| | - Reinaldo S Dos Santos
- ULB Center for Diabetes Research, Medical Faculty, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Decio L Eizirik
- ULB Center for Diabetes Research, Medical Faculty, Université Libre de Bruxelles (ULB), Brussels, Belgium
| |
Collapse
|
29
|
Assayag-Asherie N, Sever D, Bogdani M, Johnson P, Weiss T, Ginzberg A, Perles S, Weiss L, Sebban LE, Turley EA, Okon E, Raz I, Naor D. Can CD44 Be a Mediator of Cell Destruction? The Challenge of Type 1 Diabetes. PLoS One 2015; 10:e0143589. [PMID: 26624007 PMCID: PMC4666674 DOI: 10.1371/journal.pone.0143589] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2014] [Accepted: 11/06/2015] [Indexed: 01/09/2023] Open
Abstract
CD44 is a multi-functional receptor with multiple of isoforms engaged in modulation of cell trafficking and transmission of apoptotic signals. We have previously shown that injection of anti-CD44 antibody into NOD mice induced resistance to type 1 diabetes (T1D). In this communication we describe our efforts to understand the mechanism underlying this effect. We found that CD44-deficient NOD mice develop stronger resistance to T1D than wild-type littermates. This effect is not explained by the involvement of CD44 in cell migration, because CD44-deficient inflammatory cells surprisingly had greater invasive potential than the corresponding wild type cells, probably owing to molecular redundancy. We have previously reported and we show here again that CD44 expression and hyaluronic acid (HA, the principal ligand for CD44) accumulation are detected in pancreatic islets of diabetic NOD mice, but not of non-diabetic DBA/1 mice. Expression of CD44 on insulin-secreting β cells renders them susceptible to the autoimmune attack, and is associated with a diminution in β-cells function (e.g., less insulin production and/or insulin secretion) and possibly also with an enhanced apoptosis rate. The diabetes-supportive effect of CD44 expression on β cells was assessed by the TUNEL assay and further strengthened by functional assays exhibiting increased nitric oxide release, reduced insulin secretion after glucose stimulation and decreased insulin content in β cells. All these parameters could not be detected in CD44-deficient islets. We further suggest that HA-binding to CD44-expressing β cells is implicated in β-cell demise. Altogether, these data agree with the concept that CD44 is a receptor capable of modulating cell fate. This finding is important for other pathologies (e.g., cancer, neurodegenerative diseases) in which CD44 and HA appear to be implicated.
Collapse
Affiliation(s)
- Nathalie Assayag-Asherie
- The Lautenberg Center for Immunology and Cancer Research, IMRIC, The Hebrew University-Hadassah Medical School, Jerusalem 91120, Israel
| | - Dror Sever
- Department of Endocrinology, Hadassah University Hospital, Ein Kerem, Jerusalem 91120, Israel
| | - Marika Bogdani
- Matrix Biology Program, Benaroya Research Institute, Seattle, WA, United States of America
| | - Pamela Johnson
- Matrix Biology Program, Benaroya Research Institute, Seattle, WA, United States of America
| | - Talya Weiss
- The Lautenberg Center for Immunology and Cancer Research, IMRIC, The Hebrew University-Hadassah Medical School, Jerusalem 91120, Israel
| | - Ariel Ginzberg
- The Lautenberg Center for Immunology and Cancer Research, IMRIC, The Hebrew University-Hadassah Medical School, Jerusalem 91120, Israel
| | - Sharon Perles
- The Lautenberg Center for Immunology and Cancer Research, IMRIC, The Hebrew University-Hadassah Medical School, Jerusalem 91120, Israel
| | - Lola Weiss
- Department of Bone Marrow Transplantation and Cancer Immunotherapy, Hadassah University Hospital Ein Kerem, Hebrew University, Jerusalem, 91120 Israel
| | - Lora Eshkar Sebban
- The Lautenberg Center for Immunology and Cancer Research, IMRIC, The Hebrew University-Hadassah Medical School, Jerusalem 91120, Israel
| | - Eva A. Turley
- London Regional Cancer Center, University of Western Ontario, London, ON, Canada
| | | | - Itamar Raz
- Diabetes Unit, Hadassah University Hospital, PO Box 12000, Jerusalem 91120, Israel
| | - David Naor
- The Lautenberg Center for Immunology and Cancer Research, IMRIC, The Hebrew University-Hadassah Medical School, Jerusalem 91120, Israel
- * E-mail:
| |
Collapse
|
30
|
Chen BL, Sheu ML, Tsai KS, Lan KC, Guan SS, Wu CT, Chen LP, Hung KY, Huang JW, Chiang CK, Liu SH. CCAAT-Enhancer-Binding Protein Homologous Protein Deficiency Attenuates Oxidative Stress and Renal Ischemia-Reperfusion Injury. Antioxid Redox Signal 2015; 23:1233-45. [PMID: 25178318 DOI: 10.1089/ars.2013.5768] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
AIMS Renal ischemia-reperfusion (I/R) is a major cause of acute renal failure. The mechanisms of I/R injury include endoplasmic reticulum (ER) stress, inflammatory responses, hypoxia, and generation of reactive oxygen species (ROS). CCAAT/enhancer-binding protein (C/EBP) homologous protein (CHOP) is involved in the ER stress signaling pathways. CHOP is a transcription factor and a major mediator of ER stress-induced apoptosis. However, the role of CHOP in renal I/R injury is still undefined. Here, we investigated whether CHOP could regulate I/R-induced renal injury using CHOP-knockout mice and cultured renal tubular cells as models. RESULTS In CHOP-knockout mice, loss of renal function induced by I/R was prevented. Renal proximal tubule damage was induced by I/R in wild-type mice; however, the degree of alteration was significantly less in CHOP-knockout mice. CHOP deficiency also decreased the I/R-induced activation of caspase-3 and -8, apoptosis, and lipid peroxidation, whereas the activity of endogenous antioxidants increased. In an in vitro I/R model, small interfering RNA targeting CHOP significantly reversed increases in H2O2 formation, inflammatory signals, and apoptotic signals, while enhancing the activity of endogenous antioxidants in renal tubular cells. INNOVATION To the best of our knowledge, this is the first study which demonstrates that CHOP deficiency attenuates oxidative stress and I/R-induced acute renal injury both in vitro and in vivo. CONCLUSION These findings suggest that CHOP regulates not only apoptosis-related signaling but also ROS formation and inflammation in renal tubular cells during I/R. CHOP may play an important role in the pathophysiology of I/R-induced renal injury.
Collapse
Affiliation(s)
- Bo Lin Chen
- 1 Institute of Toxicology, College of Medicine, National Taiwan University , Taipei, Taiwan
| | - Meei Ling Sheu
- 2 Institute of Biomedical Sciences, National Chung Hsing University , Taichung, Taiwan
| | - Keh Sung Tsai
- 3 Department of Laboratory Medicine, College of Medicine, National Taiwan University , Taipei, Taiwan
| | - Kuo Cheng Lan
- 4 Department of Emergency Medicine, National Defense Medical Center, Tri-Service General Hospital , Taipei, Taiwan
| | - Siao Syun Guan
- 1 Institute of Toxicology, College of Medicine, National Taiwan University , Taipei, Taiwan
| | - Cheng Tien Wu
- 1 Institute of Toxicology, College of Medicine, National Taiwan University , Taipei, Taiwan
| | - Li Ping Chen
- 5 Department of Dentistry, Taipei Chang Gang Memorial Hospital, Chang Gang University , Taipei, Taiwan
| | - Kuan Yu Hung
- 6 Department of Internal Medicine, National Taiwan University Hospital, National Taiwan University College of Medicine , Taipei, Taiwan
| | - Jenq Wen Huang
- 6 Department of Internal Medicine, National Taiwan University Hospital, National Taiwan University College of Medicine , Taipei, Taiwan
| | - Chih Kang Chiang
- 1 Institute of Toxicology, College of Medicine, National Taiwan University , Taipei, Taiwan .,7 Department of Integrated Diagnostics and Therapeutics, College of Medicine and Hospital, National Taiwan University , Taipei, Taiwan
| | - Shing Hwa Liu
- 1 Institute of Toxicology, College of Medicine, National Taiwan University , Taipei, Taiwan .,8 Department of Medical Research, China Medical University Hospital, China Medical University , Taichung, Taiwan .,9 Department of Pediatrics, National Taiwan University Hospital , Taipei, Taiwan
| |
Collapse
|
31
|
Brozzi F, Nardelli TR, Lopes M, Millard I, Barthson J, Igoillo-Esteve M, Grieco FA, Villate O, Oliveira JM, Casimir M, Bugliani M, Engin F, Hotamisligil GS, Marchetti P, Eizirik DL. Cytokines induce endoplasmic reticulum stress in human, rat and mouse beta cells via different mechanisms. Diabetologia 2015; 58:2307-16. [PMID: 26099855 DOI: 10.1007/s00125-015-3669-6] [Citation(s) in RCA: 164] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Accepted: 05/29/2015] [Indexed: 01/01/2023]
Abstract
AIMS/HYPOTHESIS Proinflammatory cytokines contribute to beta cell damage in type 1 diabetes in part through activation of endoplasmic reticulum (ER) stress. In rat beta cells, cytokine-induced ER stress involves NO production and consequent inhibition of the ER Ca(2+) transporting ATPase sarco/endoplasmic reticulum Ca(2+) pump 2 (SERCA2B). However, the mechanisms by which cytokines induce ER stress and apoptosis in mouse and human pancreatic beta cells remain unclear. The purpose of this study is to elucidate the role of ER stress on cytokine-induced beta cell apoptosis in these three species and thus solve ongoing controversies in the field. METHODS Rat and mouse insulin-producing cells, human pancreatic islets and human EndoC-βH1 cells were exposed to the cytokines IL-1β, TNF-α and IFN-γ, with or without NO inhibition. A global comparison of cytokine-modulated gene expression in human, mouse and rat beta cells was also performed. The chemical chaperone tauroursodeoxycholic acid (TUDCA) and suppression of C/EBP homologous protein (CHOP) were used to assess the role of ER stress in cytokine-induced apoptosis of human beta cells. RESULTS NO plays a key role in cytokine-induced ER stress in rat islets, but not in mouse or human islets. Bioinformatics analysis indicated greater similarity between human and mouse than between human and rat global gene expression after cytokine exposure. The chemical chaperone TUDCA and suppression of CHOP or c-Jun N-terminal kinase (JNK) protected human beta cells against cytokine-induced apoptosis. CONCLUSIONS/INTERPRETATION These observations clarify previous results that were discrepant owing to the use of islets from different species, and confirm that cytokine-induced ER stress contributes to human beta cell death, at least in part via JNK activation.
Collapse
Affiliation(s)
- Flora Brozzi
- ULB-Center for Diabetes Research, Universitè Libre de Bruxelles (ULB), Route de Lennik, 808-CP618, 1070, Brussels, Belgium
| | - Tarlliza R Nardelli
- ULB-Center for Diabetes Research, Universitè Libre de Bruxelles (ULB), Route de Lennik, 808-CP618, 1070, Brussels, Belgium
| | - Miguel Lopes
- ULB-Center for Diabetes Research, Universitè Libre de Bruxelles (ULB), Route de Lennik, 808-CP618, 1070, Brussels, Belgium
| | - Isabelle Millard
- ULB-Center for Diabetes Research, Universitè Libre de Bruxelles (ULB), Route de Lennik, 808-CP618, 1070, Brussels, Belgium
| | - Jenny Barthson
- ULB-Center for Diabetes Research, Universitè Libre de Bruxelles (ULB), Route de Lennik, 808-CP618, 1070, Brussels, Belgium
| | - Mariana Igoillo-Esteve
- ULB-Center for Diabetes Research, Universitè Libre de Bruxelles (ULB), Route de Lennik, 808-CP618, 1070, Brussels, Belgium
| | - Fabio A Grieco
- ULB-Center for Diabetes Research, Universitè Libre de Bruxelles (ULB), Route de Lennik, 808-CP618, 1070, Brussels, Belgium
| | - Olatz Villate
- ULB-Center for Diabetes Research, Universitè Libre de Bruxelles (ULB), Route de Lennik, 808-CP618, 1070, Brussels, Belgium
| | - Joana M Oliveira
- ULB-Center for Diabetes Research, Universitè Libre de Bruxelles (ULB), Route de Lennik, 808-CP618, 1070, Brussels, Belgium
| | - Marina Casimir
- ULB-Center for Diabetes Research, Universitè Libre de Bruxelles (ULB), Route de Lennik, 808-CP618, 1070, Brussels, Belgium
| | - Marco Bugliani
- Department of Clinical and Experimental Medicine, Islet Laboratory, University of Pisa, Pisa, Italy
| | - Feyza Engin
- Department of Biomolecular Chemistry, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, 53706, USA
| | - Gökhan S Hotamisligil
- Department of Genetics and Complex Diseases, Sabri Ülker Center, Harvard School of Public Health, Boston, MA, 02115, USA
| | - Piero Marchetti
- Department of Clinical and Experimental Medicine, Islet Laboratory, University of Pisa, Pisa, Italy
| | - Decio L Eizirik
- ULB-Center for Diabetes Research, Universitè Libre de Bruxelles (ULB), Route de Lennik, 808-CP618, 1070, Brussels, Belgium.
| |
Collapse
|
32
|
Lutzenberger M, Burwinkel M, Riemer C, Bode V, Baier M. Ablation of CCAAT/Enhancer-Binding Protein Delta (C/EBPD): Increased Plaque Burden in a Murine Alzheimer's Disease Model. PLoS One 2015; 10:e0134228. [PMID: 26230261 PMCID: PMC4521790 DOI: 10.1371/journal.pone.0134228] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2014] [Accepted: 07/07/2015] [Indexed: 11/18/2022] Open
Abstract
Alzheimer's disease (AD) and prion diseases carry a significant inflammatory component. The astrocytic overexpression of CCAAT/enhancer-binding protein delta (C/EBPD) in prion- and AD-affected brain tissue prompted us to study the role of this transcription factor in murine model systems of these diseases. Ablation of C/EBPD had neither in the AD model (APP/PS1double transgenic mice) nor in the prion model (scrapie-infected C57BL/6 mice) an influence on overt clinical symptoms. Moreover, the absence of C/EBPD did not affect the extent of the disease-related gliosis. However, C/EBPD-deficient APP/PS1 double transgenic mice displayed significantly increased amyloid beta (Abeta) plaque burdens while amyloid precursor protein (APP) expression and expression of genes involved in beta amyloid transport and turnover remained unchanged. Gene expression analysis in mixed glia cultures demonstrated a strong dependency of complement component C3 on the presence of C/EBPD. Accordingly, C3 mRNA levels were significantly lower in brain tissue of C/EBPD-deficient mice. Vice versa, C3 expression in U-373 MG cells increased upon transfection with a C/EBPD expression vector. Taken together, our data indicate that a C/EBPD-deficiency leads to increased Abeta plaque burden in AD model mice. Furthermore, as shown in vivo and in vitro, C/EBPD is an important driver of the expression of acute phase response genes like C3 in the amyloid-affected CNS.
Collapse
Affiliation(s)
- Manuel Lutzenberger
- Research Group Proteinopathies/Neurodegenerative Diseases, Centre for Biological Threats and Special Pathogens (ZBS6), Robert Koch-Institut, Berlin, Germany
| | - Michael Burwinkel
- Research Group Proteinopathies/Neurodegenerative Diseases, Centre for Biological Threats and Special Pathogens (ZBS6), Robert Koch-Institut, Berlin, Germany
- * E-mail:
| | - Constanze Riemer
- Research Group Proteinopathies/Neurodegenerative Diseases, Centre for Biological Threats and Special Pathogens (ZBS6), Robert Koch-Institut, Berlin, Germany
| | - Victoria Bode
- Research Group Proteinopathies/Neurodegenerative Diseases, Centre for Biological Threats and Special Pathogens (ZBS6), Robert Koch-Institut, Berlin, Germany
| | - Michael Baier
- Research Group Proteinopathies/Neurodegenerative Diseases, Centre for Biological Threats and Special Pathogens (ZBS6), Robert Koch-Institut, Berlin, Germany
| |
Collapse
|
33
|
An anti-inflammatory role for C/EBPδ in human brain pericytes. Sci Rep 2015; 5:12132. [PMID: 26166618 PMCID: PMC4499812 DOI: 10.1038/srep12132] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Accepted: 06/01/2015] [Indexed: 01/19/2023] Open
Abstract
Neuroinflammation contributes to the pathogenesis of several neurological disorders and pericytes are implicated in brain inflammatory processes. Cellular inflammatory responses are orchestrated by transcription factors but information on transcriptional control in pericytes is lacking. Because the transcription factor CCAAT/enhancer binding protein delta (C/EBPδ) is induced in a number of inflammatory brain disorders, we sought to investigate its role in regulating pericyte immune responses. Our results reveal that C/EBPδ is induced in a concentration- and time-dependent fashion in human brain pericytes by interleukin-1β (IL-1β). To investigate the function of the induced C/EBPδ in pericytes we used siRNA to knockdown IL-1β-induced C/EBPδ expression. C/EBPδ knockdown enhanced IL-1β-induced production of intracellular adhesion molecule-1 (ICAM-1), interleukin-8, monocyte chemoattractant protein-1 (MCP-1) and IL-1β, whilst attenuating cyclooxygenase-2 and superoxide dismutase-2 gene expression. Altered ICAM-1 and MCP-1 protein expression were confirmed by cytometric bead array and immunocytochemistry. Our results show that knock-down of C/EBPδ expression in pericytes following immune stimulation increased chemokine and adhesion molecule expression, thus modifying the human brain pericyte inflammatory response. The induction of C/EBPδ following immune stimulation may act to limit infiltration of peripheral immune cells, thereby preventing further inflammatory responses in the brain.
Collapse
|
34
|
Reynolds LM, Ding J, Taylor JR, Lohman K, Soranzo N, de la Fuente A, Liu TF, Johnson C, Barr RG, Register TC, Donohue KM, Talor MV, Cihakova D, Gu C, Divers J, Siscovick D, Burke G, Post W, Shea S, Jacobs DR, Hoeschele I, McCall CE, Kritchevsky SB, Herrington D, Tracy RP, Liu Y. Transcriptomic profiles of aging in purified human immune cells. BMC Genomics 2015; 16:333. [PMID: 25898983 PMCID: PMC4417516 DOI: 10.1186/s12864-015-1522-4] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Accepted: 04/10/2015] [Indexed: 01/08/2023] Open
Abstract
Background Transcriptomic studies hold great potential towards understanding the human aging process. Previous transcriptomic studies have identified many genes with age-associated expression levels; however, small samples sizes and mixed cell types often make these results difficult to interpret. Results Using transcriptomic profiles in CD14+ monocytes from 1,264 participants of the Multi-Ethnic Study of Atherosclerosis (aged 55–94 years), we identified 2,704 genes differentially expressed with chronological age (false discovery rate, FDR ≤ 0.001). We further identified six networks of co-expressed genes that included prominent genes from three pathways: protein synthesis (particularly mitochondrial ribosomal genes), oxidative phosphorylation, and autophagy, with expression patterns suggesting these pathways decline with age. Expression of several chromatin remodeler and transcriptional modifier genes strongly correlated with expression of oxidative phosphorylation and ribosomal protein synthesis genes. 17% of genes with age-associated expression harbored CpG sites whose degree of methylation significantly mediated the relationship between age and gene expression (p < 0.05). Lastly, 15 genes with age-associated expression were also associated (FDR ≤ 0.01) with pulse pressure independent of chronological age. Comparing transcriptomic profiles of CD14+ monocytes to CD4+ T cells from a subset (n = 423) of the population, we identified 30 age-associated (FDR < 0.01) genes in common, while larger sets of differentially expressed genes were unique to either T cells (188 genes) or monocytes (383 genes). At the pathway level, a decline in ribosomal protein synthesis machinery gene expression with age was detectable in both cell types. Conclusions An overall decline in expression of ribosomal protein synthesis genes with age was detected in CD14+ monocytes and CD4+ T cells, demonstrating that some patterns of aging are likely shared between different cell types. Our findings also support cell-specific effects of age on gene expression, illustrating the importance of using purified cell samples for future transcriptomic studies. Longitudinal work is required to establish the relationship between identified age-associated genes/pathways and aging-related diseases. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-1522-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Lindsay M Reynolds
- Department of Epidemiology and Prevention, Division of Public Health Sciences, Wake Forest School of Medicine, Winston-Salem, North Carolina, 27157, USA.
| | - Jingzhong Ding
- Department of Internal Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina, 27157, USA.
| | - Jackson R Taylor
- Department of Gerontology and Geriatric Medicine, J. Paul Sticht Center on Aging, Wake Forest School of Medicine, Winston-Salem, North Carolina, 27157, USA.
| | - Kurt Lohman
- Department of Biostatistical Sciences, Division of Public Health Sciences, Wake Forest School of Medicine, Winston-Salem, North Carolina, 27157, USA.
| | | | - Alberto de la Fuente
- FBN, Leibniz Institute for Farm Animal Biology, Genetics and Biometry, Mecklenburg-Vorpommern, Germany.
| | - Tie Fu Liu
- Department of Internal Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina, 27157, USA.
| | - Craig Johnson
- Departments of Medicine and Epidemiology, Cardiovascular Health Research Unit, University of Washington, Seattle, Washington, 98115, USA.
| | - R Graham Barr
- Departments of Medicine and Epidemiology, Columbia University, New York, New York, 10032, USA.
| | - Thomas C Register
- Department of Pathology, Wake Forest School of Medicine, Winston-Salem, North Carolina, 27157, USA.
| | - Kathleen M Donohue
- Departments of Medicine and Epidemiology, Columbia University, New York, New York, 10032, USA.
| | - Monica V Talor
- Department of Pathology, Johns Hopkins University, Baltimore, Maryland, 21205, USA.
| | - Daniela Cihakova
- Department of Pathology, Johns Hopkins University, Baltimore, Maryland, 21205, USA.
| | - Charles Gu
- Division of Biostatistics, Washington University School of Medicine, St. Louis, Missouri, 63110, USA.
| | - Jasmin Divers
- Department of Biostatistical Sciences, Division of Public Health Sciences, Wake Forest School of Medicine, Winston-Salem, North Carolina, 27157, USA.
| | - David Siscovick
- New York Academy of Medicine, New York, New York, 10029, USA.
| | - Gregory Burke
- Department of Epidemiology and Prevention, Division of Public Health Sciences, Wake Forest School of Medicine, Winston-Salem, North Carolina, 27157, USA.
| | - Wendy Post
- Department of Pathology, Johns Hopkins University, Baltimore, Maryland, 21205, USA.
| | - Steven Shea
- Departments of Medicine and Epidemiology, Columbia University, New York, New York, 10032, USA.
| | - David R Jacobs
- Division of Epidemiology and Community Health, School of Public Health, University of Minnesota, Minneapolis, Minnesota, 55454, USA.
| | - Ina Hoeschele
- Virginia Bioinformatics Institute, Virginia Tech, Blacksburg, Virginia, 24061, USA.
| | - Charles E McCall
- Department of Internal Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina, 27157, USA. .,Department of Molecular Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina, 27157, USA.
| | - Stephen B Kritchevsky
- Department of Internal Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina, 27157, USA. .,Department of Gerontology and Geriatric Medicine, J. Paul Sticht Center on Aging, Wake Forest School of Medicine, Winston-Salem, North Carolina, 27157, USA.
| | - David Herrington
- Department of Internal Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina, 27157, USA.
| | - Russell P Tracy
- Department of Pathology, University of Vermont, Colchester, Vermont, 05446, USA.
| | - Yongmei Liu
- Department of Epidemiology and Prevention, Division of Public Health Sciences, Wake Forest School of Medicine, Winston-Salem, North Carolina, 27157, USA.
| |
Collapse
|
35
|
Brozzi F, Gerlo S, Grieco FA, Nardelli TR, Lievens S, Gysemans C, Marselli L, Marchetti P, Mathieu C, Tavernier J, Eizirik DL. A combined "omics" approach identifies N-Myc interactor as a novel cytokine-induced regulator of IRE1 protein and c-Jun N-terminal kinase in pancreatic beta cells. J Biol Chem 2015; 289:20677-93. [PMID: 24936061 DOI: 10.1074/jbc.m114.568808] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Type 1 diabetes is an autoimmune disease with a strong inflammatory component. The cytokines interleukin-1β and interferon-γ contribute to beta cell apoptosis in type 1 diabetes. These cytokines induce endoplasmic reticulum stress and the unfolded protein response (UPR), contributing to the loss of beta cells. IRE1α, one of the UPR mediators, triggers insulin degradation and inflammation in beta cells and is critical for the transition from "physiological" to "pathological" UPR. The mechanisms regulating inositol-requiring protein 1α (IRE1α) activation and its signaling for beta cell "adaptation," "stress response," or "apoptosis" remain to be clarified. To address these questions, we combined mammalian protein-protein interaction trap-based IRE1α interactome and functional genomic analysis of human and rodent beta cells exposed to pro-inflammatory cytokines to identify novel cytokine-induced regulators of IRE1α. Based on this approach, we identified N-Myc interactor (NMI) as an IRE1α-interacting/modulator protein in rodent and human pancreatic beta cells. An increased expression of NMI was detected in islets from nonobese diabetic mice with insulitis and in rodent or human beta cells exposed in vitro to the pro-inflammatory cytokines interleukin-1β and interferon-γ. Detailed mechanistic studies demonstrated that NMI negatively modulates IRE1α-dependent activation of JNK and apoptosis in rodent and human pancreatic beta cells. In conclusion, by using a combined omics approach, we identified NMI induction as a novel negative feedback mechanism that decreases IRE1α-dependent activation of JNK and apoptosis in cytokine-exposed beta cells
Collapse
|
36
|
Vasu S, Moffett RC, McClenaghan NH, Flatt PR. Responses of GLP1-secreting L-cells to cytotoxicity resemble pancreatic β-cells but not α-cells. J Mol Endocrinol 2015; 54:91-104. [PMID: 25527608 DOI: 10.1530/jme-14-0214] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Little is known about responses of intestinal L-cells to chemical or cytokine-mediated attack and how these compare with pancreatic β- or α-cells. Administration of streptozotocin to mice induced severe diabetes, islet lymphocytic infiltration, increased α-cell proliferation and decreased numbers of β- and L-cells. In vitro, streptozotocin and cytokines reduced cell viability with higher lethal dose 50 values for α-TC1 cells. mRNA expression of Glut2 was lower and Cat was greater in GLUTag and α-TC1 cells compared with MIN6 cells. Cytotoxins affected the transcription of genes involved in secretion in GLUTag and MIN6 cells. They are also involved in upregulation of antioxidant defence enzymes, transcription of NfκB and Nos2, and production of nitrite in all cell types. Cytotoxin-induced DNA damage and apoptosis were apparent in all cells, but α-TC1 cells were less severely affected. Thus, responses of GLP1-secreting L-cells to cytotoxicity resemble β-cells, whereas α-cells are resistant due to differences in the expression of genes involved in cytotoxicity or antioxidant defence.
Collapse
Affiliation(s)
- Srividya Vasu
- SAAD Centre for Pharmacy and DiabetesUniversity of Ulster, Cromore Road, Coleraine BT52 1SA, Northern Ireland, UK
| | - R Charlotte Moffett
- SAAD Centre for Pharmacy and DiabetesUniversity of Ulster, Cromore Road, Coleraine BT52 1SA, Northern Ireland, UK
| | - Neville H McClenaghan
- SAAD Centre for Pharmacy and DiabetesUniversity of Ulster, Cromore Road, Coleraine BT52 1SA, Northern Ireland, UK
| | - Peter R Flatt
- SAAD Centre for Pharmacy and DiabetesUniversity of Ulster, Cromore Road, Coleraine BT52 1SA, Northern Ireland, UK
| |
Collapse
|
37
|
Ko CY, Chang WC, Wang JM. Biological roles of CCAAT/Enhancer-binding protein delta during inflammation. J Biomed Sci 2015; 22:6. [PMID: 25591788 PMCID: PMC4318212 DOI: 10.1186/s12929-014-0110-2] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Accepted: 12/25/2014] [Indexed: 01/13/2023] Open
Abstract
CCAAT/enhancer-binding protein delta (CEBPD) belongs to the CCAAT/enhancer-binding protein family, and these proteins function as transcription factors in many biological processes, including cell differentiation, motility, growth arrest, proliferation, cell death, metabolism and immune responses. The functional diversity of CEBPD depends, in part, on the cell type and cellular context, which indicates that CEBPD could interpret a variety of cues to adjust cellular responses in specific situations. Here, we review the regulation of the CEBPD gene and its function in response to inflammatory stimuli. We also address its effects in inflammation-related diseases through a discussion of its recently discovered downstream targets. Regarding to the previous discoveries and new insights in inflammation-associated diseases, suggesting CEBPD could also be a central gene in inflammation. Importantly, the results of this study indicate that the investigation of CEBPD could open a new avenue to help better understand the inflammatory response.
Collapse
Affiliation(s)
- Chiung-Yuan Ko
- Program for Neural Regenerative Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei, 11031, Taiwan. .,Center for Neurotrauma and Neuroregeneration, Taipei Medical University, Taipei, 11031, Taiwan.
| | - Wen-Chang Chang
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, 11031, Taiwan.
| | - Ju-Ming Wang
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, 11031, Taiwan. .,Institute of Bioinformatics and Biosignal Transduction, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan, 70101, Taiwan. .,Infectious Disease and Signaling Research Center, National Cheng Kung University, Tainan, 70101, Taiwan. .,Center of Molecular Inflammation, National Cheng Kung University, Tainan, 70101, Taiwan.
| |
Collapse
|
38
|
Diaz-Ganete A, Baena-Nieto G, Lomas-Romero IM, Lopez-Acosta JF, Cozar-Castellano I, Medina F, Segundo C, Lechuga-Sancho AM. Ghrelin's Effects on Proinflammatory Cytokine Mediated Apoptosis and Their Impact on β-Cell Functionality. Int J Endocrinol 2015; 2015:235727. [PMID: 26257781 PMCID: PMC4519548 DOI: 10.1155/2015/235727] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Revised: 06/05/2015] [Accepted: 06/18/2015] [Indexed: 02/07/2023] Open
Abstract
Ghrelin is a peptidic hormone, which stimulates cell proliferation and inhibits apoptosis in several tissues, including pancreas. In preclinical stage of type 1 diabetes, proinflammatory cytokines generate a destructive environment for β-cells known as insulitis, which results in loss of β-cell mass and impaired insulin secretion, leading to diabetes. Our aim was to demonstrate that ghrelin could preserve β-cell viability, turnover rate, and insulin secretion acting as a counter balance of cytokines. In the present work we reproduced proinflammatory milieu found in insulitis stage by treating murine cell line INS-1E and rat islets with a cytokine cocktail including IL-1β, IFNγ, and TNFα and/or ghrelin. Several proteins involved in survival pathways (ERK 1/2 and Akt/PKB) and apoptosis (caspases and Bcl-2 protein family and endoplasmic reticulum stress markers) as well as insulin secretion were analyzed. Our results show that ghrelin alone has no remarkable effects on β-cells in basal conditions, but interestingly it activates cell survival pathways, downregulates apoptotic mediators and endoplasmic reticulum stress, and restores insulin secretion in response to glucose when beta-cells are cytokine-exposed. These data suggest a potential role of ghrelin in preventing or slowing down the transition from a preclinical to clinically established diabetes by ameliorating the effects of insulitis on β-cells.
Collapse
Affiliation(s)
| | - Gloria Baena-Nieto
- Research Unit, Puerta del Mar University Hospital, 11009 Cadiz, Spain
- Department of Endocrinology and Nutrition, Jerez de la Frontera General Hospital, 11407 Jerez de la Frontera, Spain
| | - Isabel M. Lomas-Romero
- Research Unit, Puerta del Mar University Hospital, 11009 Cadiz, Spain
- Andalusian Cellular Reprogramming Laboratory, 41092 Sevilla, Spain
| | - Jose Francisco Lopez-Acosta
- Research Unit, Puerta del Mar University Hospital, 11009 Cadiz, Spain
- Genetics and Molecular Biology Research Institute, University of Valladolid-CSIC, 47003 Valladolid, Spain
| | - Irene Cozar-Castellano
- Genetics and Molecular Biology Research Institute, University of Valladolid-CSIC, 47003 Valladolid, Spain
| | - Francisco Medina
- Research Unit, Puerta del Mar University Hospital, 11009 Cadiz, Spain
- Salus Infirmorum Faculty of Nursing, Cadiz University, 11001 Cadiz, Spain
| | - Carmen Segundo
- Research Unit, Puerta del Mar University Hospital, 11009 Cadiz, Spain
- Salus Infirmorum Faculty of Nursing, Cadiz University, 11001 Cadiz, Spain
- *Carmen Segundo: and
| | - Alfonso M. Lechuga-Sancho
- Research Unit, Puerta del Mar University Hospital, 11009 Cadiz, Spain
- Department of Maternal and Pediatric Medicine and Radiology, Pediatrics Unit, Puerta del Mar University Hospital, 11009 Cadiz, Spain
- *Alfonso M. Lechuga-Sancho:
| |
Collapse
|
39
|
Liu J, Li J, Li H, Li A, Liu B, Han L. A comprehensive analysis of candidate genes and pathways in pancreatic cancer. Tumour Biol 2014; 36:1849-57. [PMID: 25409614 DOI: 10.1007/s13277-014-2787-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2014] [Accepted: 10/29/2014] [Indexed: 12/16/2022] Open
Abstract
The study aimed to dissect the molecular mechanism of pancreatic cancer by a range of bioinformatics approaches. Three microarray datasets (GSE32676, GSE21654, and GSE14245) were downloaded from Gene Expression Omnibus database. Differentially expressed genes (DEGs) with logarithm of fold change (|logFC|) >0.585 and p value <0.05 were identified between pancreatic cancer samples and normal controls. Transcription factors (TFs) were selected from the DEGs based on TRASFAC database. Gene ontology and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analyses were performed for the DEGs using The Database for Annotation, Visualization and Integrated Discovery (p value <0.05), followed by construction of protein-protein interaction (PPI) network using Search Tool for the Retrieval of Interacting Genes software. Latent pathway identification analysis was applied to analyze the DEGs-related pathways crosstalk and the pathways with high weight value were included in the pathway crosstalk network using Cytoscape. Sixty-five DEGs were screened out. CCAAT/enhancer-binding protein delta (CEBPD), FBJ osteosarcoma oncogene B (FOSB), Stratifin (SFN), Krüppel-like factor 5 (KLF5), Pentraxin 3 (PTX3), and nuclear receptor subfamily 4, group A, member 3 (NR4A3) were important TFs. Interleukin-6 (IL-6) was the hub node of the PPI network. DEGs were significantly enriched in NOD-like receptor signaling pathway which was primarily interacted with inflammation and immune related pathways (cytosolic DNA-sensing, hematopoietic cell lineage, intestinal immune network for IgA production and chemokine pathways). The study suggested CEBPD, FOSB, SFN, KLF5, PTX3, NR4A3, IL-6, and NOD-like receptor pathways were involved in pancreatic cancer.
Collapse
Affiliation(s)
- Jie Liu
- Department of general surgery, The First Affiliated Hospital of Harbin Medical University, No.23, Youzheng Street, Nangang District, Harbin, 150001, China
| | | | | | | | | | | |
Collapse
|
40
|
Villate O, Turatsinze JV, Mascali LG, Grieco FA, Nogueira TC, Cunha DA, Nardelli TR, Sammeth M, Salunkhe VA, Esguerra JLS, Eliasson L, Marselli L, Marchetti P, Eizirik DL. Nova1 is a master regulator of alternative splicing in pancreatic beta cells. Nucleic Acids Res 2014; 42:11818-30. [PMID: 25249621 PMCID: PMC4191425 DOI: 10.1093/nar/gku861] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Alternative splicing (AS) is a fundamental mechanism for the regulation of gene expression. It affects more than 90% of human genes but its role in the regulation of pancreatic beta cells, the producers of insulin, remains unknown. Our recently published data indicated that the ‘neuron-specific’ Nova1 splicing factor is expressed in pancreatic beta cells. We have presently coupled specific knockdown (KD) of Nova1 with RNA-sequencing to determine all splice variants and downstream pathways regulated by this protein in beta cells. Nova1 KD altered the splicing of nearly 5000 transcripts. Pathway analysis indicated that these genes are involved in exocytosis, apoptosis, insulin receptor signaling, splicing and transcription. In line with these findings, Nova1 silencing inhibited insulin secretion and induced apoptosis basally and after cytokine treatment in rodent and human beta cells. These observations identify a novel layer of regulation of beta cell function, namely AS controlled by key splicing regulators such as Nova1.
Collapse
Affiliation(s)
- Olatz Villate
- ULB Center for Diabetes Research, Medical Faculty, Université Libre de Bruxelles, Brussels (ULB) B-1070, Belgium
| | - Jean-Valery Turatsinze
- ULB Center for Diabetes Research, Medical Faculty, Université Libre de Bruxelles, Brussels (ULB) B-1070, Belgium
| | - Loriana G Mascali
- ULB Center for Diabetes Research, Medical Faculty, Université Libre de Bruxelles, Brussels (ULB) B-1070, Belgium
| | - Fabio A Grieco
- ULB Center for Diabetes Research, Medical Faculty, Université Libre de Bruxelles, Brussels (ULB) B-1070, Belgium
| | - Tatiane C Nogueira
- ULB Center for Diabetes Research, Medical Faculty, Université Libre de Bruxelles, Brussels (ULB) B-1070, Belgium
| | - Daniel A Cunha
- ULB Center for Diabetes Research, Medical Faculty, Université Libre de Bruxelles, Brussels (ULB) B-1070, Belgium
| | - Tarlliza R Nardelli
- ULB Center for Diabetes Research, Medical Faculty, Université Libre de Bruxelles, Brussels (ULB) B-1070, Belgium
| | - Michael Sammeth
- Laboratório Nacional de Computação Científica (LNCC), Petrópolis Rio de Janeiro, 25651-076, Brazil
| | - Vishal A Salunkhe
- Lund University Diabetes Centre, Unit of Islet cell Exocytosis, Department of Clinical Sciences Malmö, Lund University, CRC 91-11, Jan Waldenströms gata 35, 205 02 Malmö, Sweden
| | - Jonathan L S Esguerra
- Lund University Diabetes Centre, Unit of Islet cell Exocytosis, Department of Clinical Sciences Malmö, Lund University, CRC 91-11, Jan Waldenströms gata 35, 205 02 Malmö, Sweden
| | - Lena Eliasson
- Lund University Diabetes Centre, Unit of Islet cell Exocytosis, Department of Clinical Sciences Malmö, Lund University, CRC 91-11, Jan Waldenströms gata 35, 205 02 Malmö, Sweden
| | - Lorella Marselli
- Department of Clinical and Experimental Medicine, Pancreatic Islet Cell Laboratory, University of Pisa, Pisa, 56126, Italy
| | - Piero Marchetti
- Department of Clinical and Experimental Medicine, Pancreatic Islet Cell Laboratory, University of Pisa, Pisa, 56126, Italy
| | - Decio L Eizirik
- ULB Center for Diabetes Research, Medical Faculty, Université Libre de Bruxelles, Brussels (ULB) B-1070, Belgium
| |
Collapse
|
41
|
Jaramillo M, Mathew S, Mamiya H, Goh SK, Banerjee I. Endothelial cells mediate islet-specific maturation of human embryonic stem cell-derived pancreatic progenitor cells. Tissue Eng Part A 2014; 21:14-25. [PMID: 24943736 DOI: 10.1089/ten.tea.2014.0013] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
It is well recognized that in vitro differentiation of embryonic stem cells (ESC) can be best achieved by closely recapitulating the in vivo developmental niche. Thus, implementation of directed differentiation strategies has yielded encouraging results in the area of pancreatic islet differentiation. These strategies have concentrated on direct addition of chemical signals, however, other aspect of the developmental niche are yet to be explored. During development, pancreatic progenitor (PP) cells grow as an epithelial sheet, which aggregates with endothelial cells (ECs) during the final stages of maturation. Several findings suggest that the interactions with EC play a role in pancreatic development. In this study, we recapitulated this phenomenon in an in vitro environment by maturing the human ESC (hESC)-derived PP cells in close contact with ECs. We find that co-culture with different ECs (but not fibroblast) alone results in pancreatic islet-specific differentiation of hESC-derived PP cells even in the absence of additional chemical induction. The differentiated cells responded to exogenous glucose levels by enhanced C-peptide synthesis. The co-culture system aligned well with endocrine development as determined by comprehensive analysis of involved signaling pathways. By recapitulating cell-cell interaction aspects of the developmental niche we achieved a differentiation model that aligns closely with islet organogenesis.
Collapse
Affiliation(s)
- Maria Jaramillo
- 1 Department of Bioengineering, University of Pittsburgh, Pittsburgh , Pennsylvania
| | | | | | | | | |
Collapse
|
42
|
Nunemaker CS, Chung HG, Verrilli GM, Corbin KL, Upadhye A, Sharma PR. Increased serum CXCL1 and CXCL5 are linked to obesity, hyperglycemia, and impaired islet function. J Endocrinol 2014; 222:267-76. [PMID: 24928936 PMCID: PMC4135511 DOI: 10.1530/joe-14-0126] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Proinflammatory cytokines are thought to play a significant role in the pathogenesis of type 2 diabetes (T2D) and are elevated in the circulation even before the onset of the disease. However, the full complement of cytokines involved in the development of T2D is not known. In this study, 32 serum cytokines were measured from diabetes-prone BKS.Cg-m+/+Lepr(db)/J (db/db) mice and heterozygous age-matched control mice at 5 weeks (non-diabetic/non-obese), 6-7 weeks (transitional-to-diabetes), or 11 weeks (hyperglycemic/obese) and then correlated with body weight, blood glucose, and fat content. Among these 32 cytokines, C-X-C motif ligand 1 (CXCL1) showed the greatest increase (+78%) in serum levels between db/db mice that were hyperglycemic (blood glucose: 519±23 mg/dl, n=6) and those that were non-hyperglycemic (193±13 mg/dl, n=8). Similarly, increased CXCL1 (+68%) and CXCL5 (+40%) were associated with increased obesity in db/db mice; note that these effects could not be entirely separated from age. We then examined whether islets could be a source of these chemokines. Exposure to cytokines mimicking low-grade systemic inflammation (10 pg/ml IL1β+20 pg/ml IL6) for 48 h upregulated islet CXCL1 expression by 53±3-fold and CXCL5 expression by 83±10-fold (n=4, P<0.001). Finally, overnight treatment with the combination of CXCL1 and CXCL5 at serum levels was sufficient to produce a significant decrease in the peak calcium response to glucose stimulation, suggesting reduced islet function. Our findings demonstrated that CXCL1 and CXCL5 i) are increased in the circulation with the onset of T2D, ii) are produced by islets under stress, and iii) synergistically affect islet function, suggesting that these chemokines participate in the pathogenesis of T2D.
Collapse
Affiliation(s)
- Craig S Nunemaker
- Division of Endocrinology and MetabolismDepartment of MedicineDepartment of Biomedical EngineeringDepartment of BiologyUniversity of Virginia, PO Box 801413, Charlottesville, Virginia 22908, USA
| | - H Grace Chung
- Division of Endocrinology and MetabolismDepartment of MedicineDepartment of Biomedical EngineeringDepartment of BiologyUniversity of Virginia, PO Box 801413, Charlottesville, Virginia 22908, USADivision of Endocrinology and MetabolismDepartment of MedicineDepartment of Biomedical EngineeringDepartment of BiologyUniversity of Virginia, PO Box 801413, Charlottesville, Virginia 22908, USA
| | - Gretchen M Verrilli
- Division of Endocrinology and MetabolismDepartment of MedicineDepartment of Biomedical EngineeringDepartment of BiologyUniversity of Virginia, PO Box 801413, Charlottesville, Virginia 22908, USADivision of Endocrinology and MetabolismDepartment of MedicineDepartment of Biomedical EngineeringDepartment of BiologyUniversity of Virginia, PO Box 801413, Charlottesville, Virginia 22908, USA
| | - Kathryn L Corbin
- Division of Endocrinology and MetabolismDepartment of MedicineDepartment of Biomedical EngineeringDepartment of BiologyUniversity of Virginia, PO Box 801413, Charlottesville, Virginia 22908, USA
| | - Aditi Upadhye
- Division of Endocrinology and MetabolismDepartment of MedicineDepartment of Biomedical EngineeringDepartment of BiologyUniversity of Virginia, PO Box 801413, Charlottesville, Virginia 22908, USA
| | - Poonam R Sharma
- Division of Endocrinology and MetabolismDepartment of MedicineDepartment of Biomedical EngineeringDepartment of BiologyUniversity of Virginia, PO Box 801413, Charlottesville, Virginia 22908, USA
| |
Collapse
|
43
|
Barbagallo D, Condorelli AG, Piro S, Parrinello N, Fløyel T, Ragusa M, Rabuazzo AM, Størling J, Purrello F, Di Pietro C, Purrello M. CEBPA exerts a specific and biologically important proapoptotic role in pancreatic β cells through its downstream network targets. Mol Biol Cell 2014; 25:2333-41. [PMID: 24943845 PMCID: PMC4142607 DOI: 10.1091/mbc.e14-02-0703] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Transcription factor CEBPA has been widely studied for its involvement in hematopoietic cell differentiation and causal role in hematological malignancies. It is shown for the first time that CEBPA also has a causal role in cytokine-induced apoptosis of pancreas β cells. Transcription factor CEBPA has been widely studied for its involvement in hematopoietic cell differentiation and causal role in hematological malignancies. We demonstrate here that it also performs a causal role in cytokine-induced apoptosis of pancreas β cells. Treatment of two mouse pancreatic α and β cell lines (αTC1-6 and βTC1) with proinflammatory cytokines IL-1β, IFN-γ, and TNF-α at doses that specifically induce apoptosis of βTC1 significantly increased the amount of mRNA and protein encoded by Cebpa and its proapoptotic targets, Arl6ip5 and Tnfrsf10b, in βTC1 but not in αTC1-6. Cebpa knockdown in βTC1 significantly decreased cytokine-induced apoptosis, together with the amount of Arl6ip5 and Tnfrsf10b. Analysis of the network comprising CEBPA, its targets, their first interactants, and proteins encoded by genes known to regulate cytokine-induced apoptosis in pancreatic β cells (genes from the apoptotic machinery and from MAPK and NFkB pathways) revealed that CEBPA, ARL6IP5, TNFRSF10B, TRAF2, and UBC are the top five central nodes. In silico analysis further suggests TRAF2 as trait d'union node between CEBPA and the NFkB pathway. Our results strongly suggest that Cebpa is a key regulator within the apoptotic network activated in pancreatic β cells during insulitis, and Arl6ip5, Tnfrsf10b, Traf2, and Ubc are key executioners of this program.
Collapse
Affiliation(s)
- Davide Barbagallo
- Unit of Molecular, Genome and Complex Systems BioMedicine, Department "Gian Filippo Ingrassia," University of Catania, Catania 95123, Italy
| | - Angelo Giuseppe Condorelli
- Unit of Molecular, Genome and Complex Systems BioMedicine, Department "Gian Filippo Ingrassia," University of Catania, Catania 95123, Italy
| | - Salvatore Piro
- Department of Molecular and Clinic BioMedicine, University of Catania, Catania 95122, Italy
| | - Nunziatina Parrinello
- Department of Molecular and Clinic BioMedicine, University of Catania, Catania 95122, Italy
| | - Tina Fløyel
- Copenhagen Diabetes Research Center (DIRECT), Herlev University Hospital, 2730 Herlev, Denmark
| | - Marco Ragusa
- Unit of Molecular, Genome and Complex Systems BioMedicine, Department "Gian Filippo Ingrassia," University of Catania, Catania 95123, Italy
| | - Agata Maria Rabuazzo
- Department of Molecular and Clinic BioMedicine, University of Catania, Catania 95122, Italy
| | - Joachim Størling
- Copenhagen Diabetes Research Center (DIRECT), Herlev University Hospital, 2730 Herlev, Denmark
| | - Francesco Purrello
- Department of Molecular and Clinic BioMedicine, University of Catania, Catania 95122, Italy
| | - Cinzia Di Pietro
- Unit of Molecular, Genome and Complex Systems BioMedicine, Department "Gian Filippo Ingrassia," University of Catania, Catania 95123, Italy
| | - Michele Purrello
- Unit of Molecular, Genome and Complex Systems BioMedicine, Department "Gian Filippo Ingrassia," University of Catania, Catania 95123, Italy
| |
Collapse
|
44
|
Pawar SA, Shao L, Chang J, Wang W, Pathak R, Zhu X, Wang J, Hendrickson H, Boerma M, Sterneck E, Zhou D, Hauer-Jensen M. C/EBPδ deficiency sensitizes mice to ionizing radiation-induced hematopoietic and intestinal injury. PLoS One 2014; 9:e94967. [PMID: 24747529 PMCID: PMC3991713 DOI: 10.1371/journal.pone.0094967] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Accepted: 03/21/2014] [Indexed: 12/20/2022] Open
Abstract
Knowledge of the mechanisms involved in the radiation response is critical for developing interventions to mitigate radiation-induced injury to normal tissues. Exposure to radiation leads to increased oxidative stress, DNA-damage, genomic instability and inflammation. The transcription factor CCAAT/enhancer binding protein delta (Cebpd; C/EBPδ is implicated in regulation of these same processes, but its role in radiation response is not known. We investigated the role of C/EBPδ in radiation-induced hematopoietic and intestinal injury using a Cebpd knockout mouse model. Cebpd−/− mice showed increased lethality at 7.4 and 8.5 Gy total-body irradiation (TBI), compared to Cebpd+/+ mice. Two weeks after a 6 Gy dose of TBI, Cebpd−/− mice showed decreased recovery of white blood cells, neutrophils, platelets, myeloid cells and bone marrow mononuclear cells, decreased colony-forming ability of bone marrow progenitor cells, and increased apoptosis of hematopoietic progenitor and stem cells compared to Cebpd+/+ controls. Cebpd−/− mice exhibited a significant dose-dependent decrease in intestinal crypt survival and in plasma citrulline levels compared to Cebpd+/+ mice after exposure to radiation. This was accompanied by significantly decreased expression of γ-H2AX in Cebpd−/− intestinal crypts and villi at 1 h post-TBI, increased mitotic index at 24 h post-TBI, and increase in apoptosis in intestinal crypts and stromal cells of Cebpd−/− compared to Cebpd+/+ mice at 4 h post-irradiation. This study uncovers a novel biological function for C/EBPδ in promoting the response to radiation-induced DNA-damage and in protecting hematopoietic and intestinal tissues from radiation-induced injury.
Collapse
Affiliation(s)
- Snehalata A. Pawar
- Division of Radiation Health, Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States of America
- * E-mail:
| | - Lijian Shao
- Division of Radiation Health, Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States of America
| | - Jianhui Chang
- Division of Radiation Health, Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States of America
| | - Wenze Wang
- Division of Radiation Health, Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States of America
| | - Rupak Pathak
- Division of Radiation Health, Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States of America
| | - Xiaoyan Zhu
- Division of Radiation Health, Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States of America
| | - Junru Wang
- Division of Radiation Health, Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States of America
| | - Howard Hendrickson
- Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States of America
| | - Marjan Boerma
- Division of Radiation Health, Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States of America
| | - Esta Sterneck
- Center for Cancer Research, National Cancer Institute, Frederick, Maryland, United States of America
| | - Daohong Zhou
- Division of Radiation Health, Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States of America
| | - Martin Hauer-Jensen
- Division of Radiation Health, Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States of America
- Surgical Service, Central Arkansas Veterans Healthcare System, Little Rock, Arkansas, United States of America
| |
Collapse
|
45
|
Grieco FA, Moore F, Vigneron F, Santin I, Villate O, Marselli L, Rondas D, Korf H, Overbergh L, Dotta F, Marchetti P, Mathieu C, Eizirik DL. IL-17A increases the expression of proinflammatory chemokines in human pancreatic islets. Diabetologia 2014; 57:502-11. [PMID: 24352375 DOI: 10.1007/s00125-013-3135-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2013] [Accepted: 11/15/2013] [Indexed: 01/05/2023]
Abstract
AIMS/HYPOTHESIS Cytotoxic T cells and macrophages contribute to beta cell destruction in type 1 diabetes at least in part through the production of cytokines such as IL-1β, IFN-γ and TNF-α. We have recently shown the IL-17 pathway to be activated in circulating T cells and pancreatic islets of type 1 diabetes patients. Here, we studied whether IL-17A upregulates the production of chemokines by human pancreatic islets, thus contributing to the build-up of insulitis. METHODS Human islets (from 18 donors), INS-1E cells and islets from wild-type and Stat1 knockout mice were studied. Dispersed islet cells were left untreated, or were treated with IL-17A alone or together with IL-1β+IFN-γ or TNF-α+IFN-γ. RNA interference was used to knock down signal transducer and activator of transcription 1 (STAT1). Chemokine expression was assessed by quantitative RT-PCR, ELISA and histology. Cell viability was evaluated with nuclear dyes. RESULTS IL-17A augmented IL-1β+IFN-γ- and TNF-α+IFN-γ-induced chemokine mRNA and protein expression, and apoptosis in human islets. Beta cells were at least in part the source of chemokine production. Knockdown of STAT1 in human islets prevented cytokine- or IL-17A+cytokine-induced apoptosis and the expression of particular chemokines, e.g. chemokine (C-X-C motif) ligands 9 and 10. Similar observations were made in islets isolated from Stat1 knockout mice. CONCLUSIONS/INTERPRETATION Our findings indicate that IL-17A exacerbates proinflammatory chemokine expression and secretion by human islets exposed to cytokines. This suggests that IL-17A contributes to the pathogenesis of type 1 diabetes by two mechanisms, namely the exacerbation of beta cell apoptosis and increased local production of chemokines, thus potentially aggravating insulitis.
Collapse
Affiliation(s)
- Fabio A Grieco
- Laboratory of Experimental Medicine, Université Libre de Bruxelles (ULB), Route de Lennik, 808 - CP618, 1070, Brussels, Belgium
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Shin ES, Huang Q, Gurel Z, Palenski TL, Zaitoun I, Sorenson CM, Sheibani N. STAT1-mediated Bim expression promotes the apoptosis of retinal pericytes under high glucose conditions. Cell Death Dis 2014; 5:e986. [PMID: 24407239 PMCID: PMC4040686 DOI: 10.1038/cddis.2013.517] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2013] [Revised: 11/13/2013] [Accepted: 11/20/2013] [Indexed: 12/17/2022]
Abstract
Hyperglycemia impacts different vascular cell functions and promotes the development and progression of various vasculopathies including diabetic retinopathy. Although the increased rate of apoptosis in pericytes (PCs) has been linked to increased oxidative stress and activation of protein kinase C-δ (PKC-δ) and SHP-1 (Src homology region 2 domain-containing phosphatase-1) tyrosine phosphatase during diabetes, the detailed mechanisms require further elucidation. Here we show that the rate of apoptosis and expression of proapoptotic protein Bim were increased in the retinal PCs of diabetic Akita/+ mice and mouse retinal PCs cultured under high glucose conditions. Increased Bim expression in retinal PCs under high glucose conditions required the sustained activation of signal transducer and activator of transcription 1 (STAT1) through production of inflammatory cytokines. PCs cultured under high glucose conditions also exhibited increased oxidative stress and diminished migration. Inhibition of oxidative stress, PKC-δ or Rho-associated protein kinase I/II was sufficient to protect PCs against apoptosis under high glucose conditions. Furthermore, PCs deficient in Bim expression were protected from high glucose-mediated increased oxidative stress and apoptosis. However, only inhibition of PKC-δ lowered Bim levels. N-acetylcysteine did not affect STAT1 levels, suggesting that oxidative stress is downstream of Bim. PCs cultured under high glucose conditions disrupted capillary morphogenesis of retinal endothelial cells (ECs) in coculture experiments. In addition, conditioned medium prepared from PCs under high glucose conditions attenuated EC migration. Taken together, our results indicate that Bim has a pivotal role in the dysfunction of retinal PCs under high glucose conditions by increasing oxidative stress and death of PCs.
Collapse
Affiliation(s)
- E S Shin
- Department of Ophthalmology and Visual Sciences, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792, USA
| | - Q Huang
- 1] Department of Ophthalmology and Visual Sciences, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792, USA [2]
| | - Z Gurel
- Department of Ophthalmology and Visual Sciences, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792, USA
| | - T L Palenski
- Department of Ophthalmology and Visual Sciences, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792, USA
| | - I Zaitoun
- Department of Ophthalmology and Visual Sciences, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792, USA
| | - C M Sorenson
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792, USA
| | - N Sheibani
- 1] Department of Ophthalmology and Visual Sciences, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792, USA [2] Mcpherson Eye Research Institute, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792, USA
| |
Collapse
|
47
|
Balamurugan K, Sterneck E. The many faces of C/EBPδ and their relevance for inflammation and cancer. Int J Biol Sci 2013; 9:917-33. [PMID: 24155666 PMCID: PMC3805898 DOI: 10.7150/ijbs.7224] [Citation(s) in RCA: 132] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2013] [Accepted: 08/27/2013] [Indexed: 12/29/2022] Open
Abstract
The CCAAT/enhancer binding protein delta (CEBPD, C/EBPδ) is a transcription factor that modulates many biological processes including cell differentiation, motility, growth arrest, proliferation, and cell death. The diversity of C/EBPδ's functions depends in part on the cell type and cellular context and can have opposing outcomes. For example, C/EBPδ promotes inflammatory signaling, but it can also inhibit pro-inflammatory pathways, and in a mouse model of mammary tumorigenesis, C/EBPδ reduces tumor incidence but promotes tumor metastasis. This review highlights the multifaceted nature of C/EBPδ's functions, with an emphasis on pathways that are relevant for cancer and inflammation, and illustrates how C/EBPδ emerged from the shadow of its family members as a fascinating “jack of all trades.” Our current knowledge on C/EBPδ indicates that, rather than being essential for a specific cellular process, C/EBPδ helps to interpret a variety of cues in a cell-type and context-dependent manner, to adjust cellular functions to specific situations. Therefore, insights into the roles and mechanisms of C/EBPδ signaling can lead to a better understanding of how the integration of different signaling pathways dictates normal and pathological cell functions and physiology.
Collapse
Affiliation(s)
- Kuppusamy Balamurugan
- Laboratory of Cell and Developmental Signaling, Center for Cancer Research, National Cancer Institute, Frederick, MD-21702-1201, U.S.A
| | | |
Collapse
|
48
|
Miani M, Barthson J, Colli ML, Brozzi F, Cnop M, Eizirik DL. Endoplasmic reticulum stress sensitizes pancreatic beta cells to interleukin-1β-induced apoptosis via Bim/A1 imbalance. Cell Death Dis 2013; 4:e701. [PMID: 23828564 PMCID: PMC3730410 DOI: 10.1038/cddis.2013.236] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2013] [Revised: 05/10/2013] [Accepted: 05/29/2013] [Indexed: 02/07/2023]
Abstract
We have recently shown that the crosstalk between mild endoplasmic reticulum (ER) stress and low concentrations of the pro-inflammatory cytokine interleukin (IL)-1β exacerbates beta cell inflammatory responses via the IRE1α/XBP1 pathway. We presently investigated whether mild ER stress also sensitizes beta cells to cytokine-induced apoptosis. Cyclopiazonic acid (CPA)-induced ER stress enhanced the IL-1β apoptosis in INS-1E and primary rat beta cells. This was not prevented by XBP1 knockdown (KD), indicating the dissociation between the pathways leading to inflammation and cell death. Analysis of the role of pro- and anti-apoptotic proteins in cytokine-induced apoptosis indicated a central role for the pro-apoptotic BH3 (Bcl-2 homology 3)-only protein Bim (Bcl-2-interacting mediator of cell death), which was counteracted by four anti-apoptotic Bcl-2 (B-cell lymphoma-2) proteins, namely Bcl-2, Bcl-XL, Mcl-1 and A1. CPA+IL-1β-induced beta cell apoptosis was accompanied by increased expression of Bim, particularly the most pro-apoptotic variant, small isoform of Bim (BimS), and decreased expression of A1. Bim silencing protected against CPA+IL-1β-induced apoptosis, whereas A1 KD aggravated cell death. Bim inhibition protected against cell death caused by A1 silencing under all conditions studied. In conclusion, mild ER stress predisposes beta cells to the pro-apoptotic effects of IL-1β by disrupting the balance between pro- and anti-apoptotic Bcl-2 proteins. These findings link ER stress to exacerbated apoptosis during islet inflammation and provide potential mechanistic targets for beta cell protection, namely downregulation of Bim and upregulation of A1.
Collapse
Affiliation(s)
- M Miani
- Laboratory of Experimental Medicine, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | | | | | | | | | | |
Collapse
|
49
|
GLIS3, a susceptibility gene for type 1 and type 2 diabetes, modulates pancreatic beta cell apoptosis via regulation of a splice variant of the BH3-only protein Bim. PLoS Genet 2013; 9:e1003532. [PMID: 23737756 PMCID: PMC3667755 DOI: 10.1371/journal.pgen.1003532] [Citation(s) in RCA: 133] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2012] [Accepted: 04/12/2013] [Indexed: 12/19/2022] Open
Abstract
Mutations in human Gli-similar (GLIS) 3 protein cause neonatal diabetes. The GLIS3 gene region has also been identified as a susceptibility risk locus for both type 1 and type 2 diabetes. GLIS3 plays a role in the generation of pancreatic beta cells and in insulin gene expression, but there is no information on the role of this gene on beta cell viability and/or susceptibility to immune- and metabolic-induced stress. GLIS3 knockdown (KD) in INS-1E cells, primary FACS-purified rat beta cells, and human islet cells decreased expression of MafA, Ins2, and Glut2 and inhibited glucose oxidation and insulin secretion, confirming the role of this transcription factor for the beta cell differentiated phenotype. GLIS3 KD increased beta cell apoptosis basally and sensitized the cells to death induced by pro-inflammatory cytokines (interleukin 1β + interferon-γ) or palmitate, agents that may contribute to beta cell loss in respectively type 1 and 2 diabetes. The increased cell death was due to activation of the intrinsic (mitochondrial) pathway of apoptosis, as indicated by cytochrome c release to the cytosol, Bax translocation to the mitochondria and activation of caspases 9 and 3. Analysis of the pathways implicated in beta cell apoptosis following GLIS3 KD indicated modulation of alternative splicing of the pro-apoptotic BH3-only protein Bim, favouring expression of the pro-death variant BimS via inhibition of the splicing factor SRp55. KD of Bim abrogated the pro-apoptotic effect of GLIS3 loss of function alone or in combination with cytokines or palmitate. The present data suggest that altered expression of the candidate gene GLIS3 may contribute to both type 1 and 2 type diabetes by favouring beta cell apoptosis. This is mediated by alternative splicing of the pro-apoptotic protein Bim and exacerbated formation of the most pro-apoptotic variant BimS. Pancreatic beta cell dysfunction and death is a central event in the pathogenesis of diabetes. Genome-wide association studies have identified a large number of associations between specific loci and the two main forms of diabetes, namely type 1 and type 2 diabetes, but the mechanisms by which these candidate genes predispose to diabetes remain to be clarified. The GLIS3 gene region has been identified as a susceptibility risk locus for both type 1 and type 2 diabetes—it is actually the only locus showing association with both forms of diabetes and the regulation of blood glucose. We show that decreased expression of GLIS3 may contribute to diabetes by favouring beta cell apoptosis. This is mediated by the mitochondrial pathway of apoptosis, activated via alternative splicing (a process by which exons are joined in multiple ways, leading to the generation of several proteins by a single gene) of the pro-apoptotic protein Bim, which favours formation of the most pro-apoptotic variant. The present data provides the first evidence that a susceptibility gene for diabetes may contribute to disease via regulation of alternative splicing of a pro-apoptotic gene in pancreatic beta cells.
Collapse
|
50
|
Momi N, Kaur S, Krishn SR, Batra SK. Discovering the route from inflammation to pancreatic cancer. MINERVA GASTROENTERO 2012; 58:283-297. [PMID: 23207606 PMCID: PMC3556910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
Pancreatic cancer (PC) remains a complex malignancy with the worst prognosis, lack of early diagnostic symptoms and resistance to conventional chemo- and radiotherapies. A better understanding of the etiology and early developmental events of PC requires profound attention. The evolution of fully blown PC from initial pancreatic injury is a multi-factorial phenomenon with a series of sequential events. The initial acute infection or tissue damage triggers inflammation that, in conjunction with innate immunity, establishes a state of homeostasis to limit harm to the body. Recurrent pancreatic injuries due to genetic susceptibility, smoking, unhealthy diet, and alcohol abuse induces a pro-inflammatory milieu, consisting of various types of immune cells, cytokines, chemokines, growth factors and restructured extracellular matrix, leading to prolonged inflammatory/chronic conditions. Cells having sustained DNA damage and/or mutagenic assault take advantage of this prolonged inflammatory response and aid in the initiation and development of neoplastic/fibrotic events. Eventually, many tumor-stromal interactions result in a chaotic environment accompanied by a loss of immune surveillance and repair response, thereby leading to PC. A better understanding of the inflammatory markers defining this "injury-inflammation-cancer" pathway would help to identify novel molecular targets for early screening and therapeutic intervention for this lethal malignancy.
Collapse
Affiliation(s)
- N Momi
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | | | | | | |
Collapse
|