1
|
Alnoaman H, Al-Kuraishy HM, Al-Gareeb AI, Turkistani A, Allam A, Alexiou A, Papadakis M, Batiha GES. Dysregulation of proBDNF/p75 NTR and BDNF/TrkB Signaling in Acute Ischemic Stroke: Different Sides of the Same Coins. Brain Res Bull 2025; 226:111338. [PMID: 40209946 DOI: 10.1016/j.brainresbull.2025.111338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 03/26/2025] [Accepted: 04/07/2025] [Indexed: 04/12/2025]
Abstract
Acute ischemic stroke (AIS) is a focal neurological deficit due to sudden occlusion of cerebral vessels in the brain. AIS-induced neuronal injury and associated excite-toxicity and neurodegeneration affect the synthesis and the release of different neurotrophic factors such as brain-derived neurotropic factor (BDNF) and its precursor proBDNF. Both BDNF and proBDNF act on the specific receptors with different neurological effects. BDNF activates tropomyosin receptor kinase B (TrkB) receptor results in promoting neuronal survival, synaptic plasticity, and neuronal growth. However, the proBDNF activates p75 neurotrophin receptor (p75NTR) and sortilin which attenuates synaptic plasticity and promotes neuronal apoptosis. Dysregulation of central and peripheral expression of proBDNF/BDNF is linked with the severity and clinical outcomes of AIS. Therefore, this review aims to discuss the alterations of proBDNF/BDNF signaling in AIS. Findings from the present review illustrated that proBDNF/p75NTR/sortilin signaling pathway is exaggerated whereas; BDNF-TrkB signaling is reduced in AIS leading to neuronal apoptosis. Therefore, activation of BDNF-TrkB signaling, and inhibition of proBDNF/p75NTR/sortilin signaling pathway could be a promising therapeutic strategy in the management of AIS.
Collapse
Affiliation(s)
- Hala Alnoaman
- Consultant family medicine, Ministry of health, Kingdom of Saudi Arabia.
| | - Hayder M Al-Kuraishy
- Department of Clinical Pharmacology and Medicine, College of Medicine, Mustansiriyah University, Baghdad 14132, Iraq.
| | - Ali I Al-Gareeb
- Head of Jabir Ibn, Hayyan Medical University, Al-Ameer Qu./Najaf-Iraq, Kufa PO.Box13, Iraq,.
| | - Areej Turkistani
- Department of pharmacology and toxicology, Collage of Medicine, Taif University,Taif 21944, Kingdom of Saudi Arabia.
| | - Albatoul Allam
- Department of Pharmacology and Toxicology, Faculty of Pharmacy (Girls), AL-Azhar University, Cairo, Egypt.
| | - Athanasios Alexiou
- University Centre for Research & Development, Chandigarh University, Mohali, India; Department of Science and Engineering, Novel Global Community Educational Foundation, Hebersham, New South Wales, Australia; Department of Research & Development, Funogen, Athens, Greece; Department of Research & Development, AFNP Med, Wien, Austria.
| | - Marios Papadakis
- Department of Surgery II, University Hospital Witten-Herdecke, University of Witten-Herdecke, Heusnerstrasse 40, Wuppertal, 42283, Germany.
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour, 22511, AlBeheira, Egypt.
| |
Collapse
|
2
|
Horak M, Fairweather D, Kokkonen P, Bednar D, Bienertova-Vasku J. Follistatin-like 1 and its paralogs in heart development and cardiovascular disease. Heart Fail Rev 2022; 27:2251-2265. [PMID: 35867287 PMCID: PMC11140762 DOI: 10.1007/s10741-022-10262-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/10/2022] [Indexed: 11/29/2022]
Abstract
Cardiovascular diseases (CVDs) are a group of disorders affecting the heart and blood vessels and a leading cause of death worldwide. Thus, there is a need to identify new cardiokines that may protect the heart from damage as reported in GBD 2017 Causes of Death Collaborators (2018) (The Lancet 392:1736-1788). Follistatin-like 1 (FSTL1) is a cardiokine that is highly expressed in the heart and released to the serum after cardiac injury where it is associated with CVD and predicts poor outcome. The action of FSTL1 likely depends not only on the tissue source but also post-translation modifications that are target tissue- and cell-specific. Animal studies examining the effect of FSTL1 in various models of heart disease have exploded over the past 15 years and primarily report a protective effect spanning from inhibiting inflammation via transforming growth factor, preventing remodeling and fibrosis to promoting angiogenesis and hypertrophy. A better understanding of FSTL1 and its homologs is needed to determine whether this protein could be a useful novel biomarker to predict poor outcome and death and whether it has therapeutic potential. The aim of this review is to provide a comprehensive description of the literature for this family of proteins in order to better understand their role in normal physiology and CVD.
Collapse
Affiliation(s)
- Martin Horak
- Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, Brno, 625 00, Czech Republic
- Research Centre for Toxic Compounds in the Environment, Faculty of Science, Masaryk University, Kamenice 5, Brno, 625 00, Czech Republic
| | - DeLisa Fairweather
- Department of Cardiovascular Medicine, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL, 32224, USA
| | - Piia Kokkonen
- Research Centre for Toxic Compounds in the Environment, Faculty of Science, Masaryk University, Kamenice 5, Brno, 625 00, Czech Republic
| | - David Bednar
- Research Centre for Toxic Compounds in the Environment, Faculty of Science, Masaryk University, Kamenice 5, Brno, 625 00, Czech Republic
| | - Julie Bienertova-Vasku
- Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, Brno, 625 00, Czech Republic.
- Research Centre for Toxic Compounds in the Environment, Faculty of Science, Masaryk University, Kamenice 5, Brno, 625 00, Czech Republic.
| |
Collapse
|
3
|
Zu T, Lian H, Green B, Yu Y. Ultra-high Dimensional Quantile Regression for Longitudinal Data: an Application to Blood Pressure Analysis. J Am Stat Assoc 2022. [DOI: 10.1080/01621459.2022.2128806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Affiliation(s)
- Tianhai Zu
- Department of Operations, Business Analytics, & Information Systems, University of Cincinnati, Cincinnati, Ohio, USA
| | - Heng Lian
- Department of Mathematics, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong Hong Kong, China
| | - Brittany Green
- Department of Information Systems, Analytics, and Operations, University of Louisville, Louisville, Kentucky, USA
| | - Yan Yu
- Department of Operations, Business Analytics, & Information Systems, University of Cincinnati, Cincinnati, Ohio, USA
| |
Collapse
|
4
|
Li Z, Hu X, Wan J, Yang J, Jia Z, Tian L, Wu X, Song C, Yan C. The alleles of AGT and HIF1A gene affect the risk of hypertension in plateau residents. Exp Biol Med (Maywood) 2021; 247:237-245. [PMID: 34758666 DOI: 10.1177/15353702211055838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Plateau essential hypertension is a common chronic harmful disease of permanent residents in plateau areas. Studies have shown some single nucleotide polymorphisms (SNPs) associations with hypertension, but few have been verified in plateau area-lived people. In this paper, we examined some hypertension-related gene loci to analyze the relationship between risk SNPs and plateau essential hypertension in residents in Qinghai-Tibet plateau area. We screened hypertension-related SNPs from the literature, Clinvar database, GHR database, GTR database, and GWAS database, and then selected 101 susceptible SNPs for detection. Illumina MiSeq NGS platform was used to perform DNA sequencing on the blood samples from 185 Tibetan dwellings of Qinghai, and bioinformatic tools were used to make genotyping. Genetic models adjusted by gender and age were used to calculate the risk effects of genotypes. Four known SNPs as well as a new locus were found associated with PHE, which were rs2493134 (AGT), rs9349379 (PHACTR1), rs1371182 (CYP2C56P-PRPS1P1), rs567481079 (CYP2C56P-PRPS1P1), and chr14:61734822 (HIF1A). Among them, genotypes of rs2493134, rs9349379, and rs567481079 were risk factors, genotypes of rs1371182 and chr14:61734822 were protective factors. The rs2493134 in AGT was found associated with an increased risk of the plateau essential hypertension by 3.24-, 3.24-, and 2.06-fold in co-dominant, dominant, and Log-additive models, respectively. The rs9349379 in PHACTR1 is associated with a 2.61-fold increased risk of plateau essential hypertension according to the dominant model. This study reveals that the alleles of AGT, HIF1A, and PHACTR1 are closely related to plateau essential hypertension risk in the plateau Tibetan population.
Collapse
Affiliation(s)
- Zongjin Li
- Department of Computer, Qinghai Normal University, Xining, Qinghai 810000, China
| | - Xi Hu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Jinping Wan
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Jiyu Yang
- Department of Cardiovascular Medicine, Xining First People's Hospital, Xining 810000, China
| | - Zeyu Jia
- Department of Computer, Qinghai Normal University, Xining, Qinghai 810000, China
| | - Liqin Tian
- Department of Computer, Qinghai Normal University, Xining, Qinghai 810000, China.,Department of Computer, 71039North China Institute of Science and Technology, Langfang, Hebei 065201, China
| | - Xiaoming Wu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Changxin Song
- Department of Mechanical engineering and information, Shanghai Urban Construction Vocational College, Shanghai 200000, China
| | - Chengying Yan
- Department of Cardiovascular Medicine, Xining First People's Hospital, Xining 810000, China
| |
Collapse
|
5
|
Wu T, Wang Y, Shi W, Zhang BQ, Raelson J, Yao YM, Wu HD, Xu ZX, Marois-Blanchet FC, Ledoux J, Blunck R, Sheng JZ, Hu SJ, Luo H, Wu J. A Variant in the Nicotinic Acetylcholine Receptor Alpha 3 Subunit Gene Is Associated With Hypertension Risks in Hypogonadic Patients. Front Genet 2020; 11:539862. [PMID: 33329690 PMCID: PMC7728919 DOI: 10.3389/fgene.2020.539862] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 11/10/2020] [Indexed: 12/29/2022] Open
Abstract
Ephb6 gene knockout causes hypertension in castrated mice. EPHB6 controls catecholamine secretion by adrenal gland chromaffin cells (AGCCs) in a testosterone-dependent way. Nicotinic acetylcholine receptor (nAChR) is a ligand-gated Ca2+/Na+ channel, and its opening is the first signaling event leading to catecholamine secretion by AGCCs. There is a possibility that nAChR might be involved in EPHB6 signaling, and thus sequence variants of its subunit genes are associated with hypertension risks. CHRNA3 is the major subunit of nAChR used in human and mouse AGCCs. We conducted a human genetic study to assess the association of CHRNA3 variants with hypertension risks in hypogonadic males. The study cohort included 1,500 hypogonadic Chinese males with (750 patients) or without (750 patients) hypertension. The result revealed that SNV rs3743076 in the fourth intron of CHRNA3 was significantly associated with hypertension risks in the hypogonadic males. We further showed that EPHB6 physically interacted with CHRNA3 in AGCCs, providing a molecular basis for nAChR being in the EPHB6 signaling pathway.
Collapse
Affiliation(s)
- Tao Wu
- Institute of Cardiology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Yujia Wang
- Research Centre, Centre Hospitalier de l'Université de Montréal (CHUM), Montreal, QC, Canada.,Children's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Wei Shi
- Research Centre, Centre Hospitalier de l'Université de Montréal (CHUM), Montreal, QC, Canada
| | - Bi-Qi Zhang
- Institute of Cardiology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - John Raelson
- Research Centre, Centre Hospitalier de l'Université de Montréal (CHUM), Montreal, QC, Canada
| | - Yu-Mei Yao
- Department of Cardiology, The Third Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Huan-Dong Wu
- Institute of Cardiology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Zao-Xian Xu
- Institute of Cardiology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | | | - Jonathan Ledoux
- Montreal Heart Institute, Université de Montréal, Montreal, QC, Canada
| | - Rikard Blunck
- Department of Physics, University of Montreal, Montreal, QC, Canada
| | - Jian-Zhong Sheng
- Department of Pathology and Physiopathology, College of Medicine, Zhejiang University, Hangzhou, China
| | - Shen-Jiang Hu
- Institute of Cardiology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Hongyu Luo
- Research Centre, Centre Hospitalier de l'Université de Montréal (CHUM), Montreal, QC, Canada
| | - Jiangping Wu
- Research Centre, Centre Hospitalier de l'Université de Montréal (CHUM), Montreal, QC, Canada.,Nephrology Service, Centre Hospitalier de l'Université de Montréal (CHUM), Montreal, QC, Canada
| |
Collapse
|
6
|
de las Fuentes L, Sung YJ, Sitlani CM, Avery CL, Bartz TM, Keyser CD, Evans DS, Li X, Musani SK, Ruiter R, Smith AV, Sun F, Trompet S, Xu H, Arnett DK, Bis JC, Broeckel U, Busch EL, Chen YDI, Correa A, Cummings SR, Floyd JS, Ford I, Guo X, Harris TB, Ikram MA, Lange L, Launer LJ, Reiner AP, Schwander K, Smith NL, Sotoodehnia N, Stewart JD, Stott DJ, Stürmer T, Taylor KD, Uitterlinden A, Vasan RS, Wiggins KL, Cupples LA, Gudnason V, Heckbert SR, Jukema JW, Liu Y, Psaty BM, Rao DC, Rotter JI, Stricker B, Wilson JG, Whitsel EA. Genome-wide meta-analysis of variant-by-diuretic interactions as modulators of lipid traits in persons of European and African ancestry. THE PHARMACOGENOMICS JOURNAL 2020; 20:482-493. [PMID: 31806883 PMCID: PMC7260079 DOI: 10.1038/s41397-019-0132-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 11/13/2019] [Accepted: 11/20/2019] [Indexed: 01/11/2023]
Abstract
Hypertension (HTN) is a significant risk factor for cardiovascular morbidity and mortality. Metabolic abnormalities, including adverse cholesterol and triglycerides (TG) profiles, are frequent comorbid findings with HTN and contribute to cardiovascular disease. Diuretics, which are used to treat HTN and heart failure, have been associated with worsening of fasting lipid concentrations. Genome-wide meta-analyses with 39,710 European-ancestry (EA) individuals and 9925 African-ancestry (AA) individuals were performed to identify genetic variants that modify the effect of loop or thiazide diuretic use on blood lipid concentrations. Both longitudinal and cross sectional data were used to compute cohort-specific interaction results, which were then combined through meta-analysis in each ancestry. These ancestry-specific results were further combined through trans-ancestry meta-analysis. Analysis of EA data identified two genome-wide significant (p < 5 × 10-8) loci with single nucleotide variant (SNV)-loop diuretic interaction on TG concentrations (including COL11A1). Analysis of AA data identified one genome-wide significant locus adjacent to BMP2 with SNV-loop diuretic interaction on TG concentrations. Trans-ancestry analysis strengthened evidence of association for SNV-loop diuretic interaction at two loci (KIAA1217 and BAALC). There were few significant SNV-thiazide diuretic interaction associations on TG concentrations and for either diuretic on cholesterol concentrations. Several promising loci were identified that may implicate biologic pathways that contribute to adverse metabolic side effects from diuretic therapy.
Collapse
Affiliation(s)
- Lisa de las Fuentes
- Cardiovascular Division, Department of Medicine, Washington University, St. Louis, MO, USA.
| | - Y J Sung
- Division of Biostatistics, Washington University, St. Louis, MO, USA
| | - C M Sitlani
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA, USA
| | - C L Avery
- Gillings School of Global Public Health, Department of Epidemiology, University of North Carolina, Chapel Hill, NC, USA
| | - T M Bartz
- Cardiovascular Health Research Unit, Departments of Medicine and Biostatistics, University of Washington, Seattle, WA, USA
| | - C de Keyser
- Department of Epidemiology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - D S Evans
- Research Institute, California Pacific Medical Center, San Francisco, CA, USA
| | - X Li
- Institute for Translational Genomics and Population Sciences, Department of Pediatrics, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - S K Musani
- Jackson Heart Study, Department of Medicine, University of Mississippi Medical Center, Jackson, MS, USA
| | - R Ruiter
- Department of Epidemiology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - A V Smith
- Icelandic Heart Association, Kopavogur, Iceland
- Faculty of Medicine, University of Iceland, Reykjavik, Iceland
| | - F Sun
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | - S Trompet
- Department of Cardiology, Leiden University Medical Center, Leiden, The Netherlands
- Department of Gerontology and Geriatrics, Leiden University Medical Center, Leiden, The Netherlands
| | - H Xu
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | - D K Arnett
- Dean's Office, University of Kentucky College of Public Health, Lexington, KY, USA
| | - J C Bis
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA, USA
| | - U Broeckel
- Section of Genomic Pediatrics, Department of Pediatrics, Medicine and Physiology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - E L Busch
- Channing Division of Network Medicine, Department of Medicine, Harvard Medical School and Brigham and Women's Hospital, Boston, MA, USA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Y-D I Chen
- Institute for Translational Genomics and Population Sciences, Department of Pediatrics, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - A Correa
- Jackson Heart Study, Department of Medicine, University of Mississippi Medical Center, Jackson, MS, USA
| | - S R Cummings
- Research Institute, California Pacific Medical Center, San Francisco, CA, USA
| | - J S Floyd
- Cardiovascular Health Research Unit, Departments of Medicine and Epidemiology, University of Washington, Seattle, WA, USA
| | - I Ford
- Robertson Center for biostatistics, University of Glasgow, Glasgow, UK
| | - X Guo
- Institute for Translational Genomics and Population Sciences, Department of Pediatrics, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - T B Harris
- Laboratory of Epidemiology and Population Sciences, Intramural Research Program, National Institute on Aging, Bethesda, MD, USA
| | - M A Ikram
- Department of Epidemiology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - L Lange
- Department of Genetics, University of Colorado, Denver, Denver, CO, USA
| | - L J Launer
- Laboratory of Epidemiology and Population Sciences, Intramural Research Program, National Institute on Aging, Bethesda, MD, USA
| | - A P Reiner
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
- School of Public Health, Department of Epidemiology, University of Washington, Seattle, WA, USA
| | - K Schwander
- Division of Biostatistics, Washington University, St. Louis, MO, USA
| | - N L Smith
- Cardiovascular Health Research Unit, Department of Epidemiology, University of Washington, Seattle, WA, USA
- Seattle Epidemiologic Research and Information Center (ERIC), VA Cooperative Studies Program, VA Puget Sound Health Care System, Seattle, WA, USA
| | - N Sotoodehnia
- Cardiovascular Health Research Unit, Departments of Medicine and Epidemiology, University of Washington, Seattle, WA, USA
- Cardiology, Department of Medicine, University of Washington, Seattle, WA, USA
| | - J D Stewart
- Gillings School of Global Public Health, Department of Epidemiology, University of North Carolina, Chapel Hill, NC, USA
- Carolina Population Center, University of North Carolina, Chapel Hill, NC, USA
| | - D J Stott
- Institute of cardiovascular and medical sciences, Faculty of Medicine, University of Glasgow, Glasgow, United Kingdom
| | - T Stürmer
- Gillings School of Global Public Health, Department of Epidemiology, University of North Carolina, Chapel Hill, NC, USA
- Center for Pharmacoepidemiology, University of North Carolina, Chapel Hill, NC, USA
| | - K D Taylor
- Institute for Translational Genomics and Population Sciences, Department of Pediatrics, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - A Uitterlinden
- Department of Epidemiology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - R S Vasan
- The Framingham Heart Study, Framingham, MA, USA
- Department of Medicine, Boston University School of Medicine, Boston, MA, USA
| | - K L Wiggins
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA, USA
| | - L A Cupples
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
- The Framingham Heart Study, Framingham, MA, USA
| | - V Gudnason
- Icelandic Heart Association, Kopavogur, Iceland
- Faculty of Medicine, University of Iceland, Reykjavik, Iceland
| | - S R Heckbert
- Cardiovascular Health Research Unit, Department of Epidemiology, University of Washington, Seattle, WA, USA
| | - J W Jukema
- Department of Cardiology, Leiden University Medical Center, Leiden, The Netherlands
- Interuniversity Cardiology Institute of the Netherlands, Utrecht, The Netherlands
| | - Y Liu
- Division of Public Health Sciences, Department of Epidemiology and Prevention, Wake Forest University, Winston-, Salem, NC, USA
| | - B M Psaty
- Cardiovascular Health Research Unit, Departments of Epidemiology, Medicine, and Health Services, University of Washington, Seattle, WA, USA
- Kaiser Permanente Washington Health Research Institute, Seattle, WA, USA
| | - D C Rao
- Division of Biostatistics, Washington University, St. Louis, MO, USA
| | - J I Rotter
- Institute for Translational Genomics and Population Sciences, Department of Pediatrics, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - B Stricker
- Department of Epidemiology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - J G Wilson
- Biophysics and Physiology, Department of Medicine, University of Mississippi Medical Center, Jackson, MS, USA
| | - E A Whitsel
- Gillings School of Global Public Health, Department of Epidemiology, University of North Carolina, Chapel Hill, NC, USA
- School of Medicine, Department of Medicine, University of North Carolina, Chapel Hill, NC, USA
| |
Collapse
|
7
|
Pathak GA, Zhou Z, Silzer TK, Barber RC, Phillips NR. Two-stage Bayesian GWAS of 9576 individuals identifies SNP regions that are targeted by miRNAs inversely expressed in Alzheimer's and cancer. Alzheimers Dement 2020; 16:162-177. [PMID: 31914222 DOI: 10.1002/alz.12003] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 10/16/2019] [Accepted: 10/16/2019] [Indexed: 12/12/2022]
Abstract
INTRODUCTION We compared genetic variants between Alzheimer's disease (AD) and two age-related cancers-breast and prostate -to identify single-nucleotide polymorphisms (SNPs) that are associated with inverse comorbidity of AD and cancer. METHODS Bayesian multinomial regression was used to compare sex-stratified cases (AD and cancer) against controls in a two-stage study. A ±500 KB region around each replicated hit was imputed and analyzed after merging individuals from the two stages. The microRNAs (miRNAs) that target the genes involving these SNPs were analyzed for miRNA family enrichment. RESULTS We identified 137 variants with inverse odds ratios for AD and cancer located on chromosomes 19, 4, and 5. The mapped miRNAs within the network were enriched for miR-17 and miR-515 families. DISCUSSION The identified SNPs were rs4298154 (intergenic), within TOMM40/APOE/APOC1, MARK4, CLPTM1, and near the VDAC1/FSTL4 locus. The miRNAs identified in our network have been previously reported to have inverse expression in AD and cancer.
Collapse
Affiliation(s)
- Gita A Pathak
- Department of Microbiology, Immunology and Genetics, Graduate School of Biomedical Sciences, University of North Texas Health Science Center, Fort Worth, Texas, USA
| | - Zhengyang Zhou
- Department of Biostatistics and Epidemiology, School of Public Health, University of North Texas Health Science Center, Fort Worth, Texas, USA
| | - Talisa K Silzer
- Department of Microbiology, Immunology and Genetics, Graduate School of Biomedical Sciences, University of North Texas Health Science Center, Fort Worth, Texas, USA
| | - Robert C Barber
- Department of Pharmacology & Neuroscience, Graduate School of Biomedical Sciences, University of North Texas Health Science Center, Fort Worth, Texas, USA
| | - Nicole R Phillips
- Department of Microbiology, Immunology and Genetics, Graduate School of Biomedical Sciences, University of North Texas Health Science Center, Fort Worth, Texas, USA
| |
Collapse
|
8
|
Woo HJ, Reifman J. Genetic interaction effects reveal lipid-metabolic and inflammatory pathways underlying common metabolic disease risks. BMC Med Genomics 2018; 11:54. [PMID: 29925367 PMCID: PMC6011398 DOI: 10.1186/s12920-018-0373-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Accepted: 06/12/2018] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Common metabolic diseases, including type 2 diabetes, coronary artery disease, and hypertension, arise from disruptions of the body's metabolic homeostasis, with relatively strong contributions from genetic risk factors and substantial comorbidity with obesity. Although genome-wide association studies have revealed many genomic loci robustly associated with these diseases, biological interpretation of such association is challenging because of the difficulty in mapping single-nucleotide polymorphisms (SNPs) onto the underlying causal genes and pathways. Furthermore, common diseases are typically highly polygenic, and conventional single variant-based association testing does not adequately capture potentially important large-scale interaction effects between multiple genetic factors. METHODS We analyzed moderately sized case-control data sets for type 2 diabetes, coronary artery disease, and hypertension to characterize the genetic risk factors arising from non-additive, collective interaction effects, using a recently developed algorithm (discrete discriminant analysis). We tested associations of genes and pathways with the disease status while including the cumulative sum of interaction effects between all variants contained in each group. RESULTS In contrast to non-interacting SNP mapping, which produced few genome-wide significant loci, our analysis revealed extensive arrays of pathways, many of which are involved in the pathogenesis of these metabolic diseases but have not been directly identified in genetic association studies. They comprised cell stress and apoptotic pathways for insulin-producing β-cells in type 2 diabetes, processes covering different atherosclerotic stages in coronary artery disease, and elements of both type 2 diabetes and coronary artery disease risk factors (cell cycle, apoptosis, and hemostasis) associated with hypertension. CONCLUSIONS Our results support the view that non-additive interaction effects significantly enhance the level of common metabolic disease associations and modify their genetic architectures and that many of the expected genetic factors behind metabolic disease risks reside in smaller genotyping samples in the form of interacting groups of SNPs.
Collapse
Affiliation(s)
- Hyung Jun Woo
- Biotechnology High Performance Computing Software Applications Institute, Telemedicine and Advanced Technology Research Center, U.S. Army Medical Research and Materiel Command, Fort Detrick, MD, USA
| | - Jaques Reifman
- Biotechnology High Performance Computing Software Applications Institute, Telemedicine and Advanced Technology Research Center, U.S. Army Medical Research and Materiel Command, Fort Detrick, MD, USA.
| |
Collapse
|
9
|
Richard MA, Huan T, Ligthart S, Gondalia R, Jhun MA, Brody JA, Irvin MR, Marioni R, Shen J, Tsai PC, Montasser ME, Jia Y, Syme C, Salfati EL, Boerwinkle E, Guan W, Mosley TH, Bressler J, Morrison AC, Liu C, Mendelson MM, Uitterlinden AG, van Meurs JB, Franco OH, Zhang G, Li Y, Stewart JD, Bis JC, Psaty BM, Chen YDI, Kardia SLR, Zhao W, Turner ST, Absher D, Aslibekyan S, Starr JM, McRae AF, Hou L, Just AC, Schwartz JD, Vokonas PS, Menni C, Spector TD, Shuldiner A, Damcott CM, Rotter JI, Palmas W, Liu Y, Paus T, Horvath S, O'Connell JR, Guo X, Pausova Z, Assimes TL, Sotoodehnia N, Smith JA, Arnett DK, Deary IJ, Baccarelli AA, Bell JT, Whitsel E, Dehghan A, Levy D, Fornage M. DNA Methylation Analysis Identifies Loci for Blood Pressure Regulation. Am J Hum Genet 2017; 101:888-902. [PMID: 29198723 PMCID: PMC5812919 DOI: 10.1016/j.ajhg.2017.09.028] [Citation(s) in RCA: 155] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Accepted: 09/28/2017] [Indexed: 12/13/2022] Open
Abstract
Genome-wide association studies have identified hundreds of genetic variants associated with blood pressure (BP), but sequence variation accounts for a small fraction of the phenotypic variance. Epigenetic changes may alter the expression of genes involved in BP regulation and explain part of the missing heritability. We therefore conducted a two-stage meta-analysis of the cross-sectional associations of systolic and diastolic BP with blood-derived genome-wide DNA methylation measured on the Infinium HumanMethylation450 BeadChip in 17,010 individuals of European, African American, and Hispanic ancestry. Of 31 discovery-stage cytosine-phosphate-guanine (CpG) dinucleotides, 13 replicated after Bonferroni correction (discovery: N = 9,828, p < 1.0 × 10-7; replication: N = 7,182, p < 1.6 × 10-3). The replicated methylation sites are heritable (h2 > 30%) and independent of known BP genetic variants, explaining an additional 1.4% and 2.0% of the interindividual variation in systolic and diastolic BP, respectively. Bidirectional Mendelian randomization among up to 4,513 individuals of European ancestry from 4 cohorts suggested that methylation at cg08035323 (TAF1B-YWHAQ) influences BP, while BP influences methylation at cg00533891 (ZMIZ1), cg00574958 (CPT1A), and cg02711608 (SLC1A5). Gene expression analyses further identified six genes (TSPAN2, SLC7A11, UNC93B1, CPT1A, PTMS, and LPCAT3) with evidence of triangular associations between methylation, gene expression, and BP. Additional integrative Mendelian randomization analyses of gene expression and DNA methylation suggested that the expression of TSPAN2 is a putative mediator of association between DNA methylation at cg23999170 and BP. These findings suggest that heritable DNA methylation plays a role in regulating BP independently of previously known genetic variants.
Collapse
Affiliation(s)
- Melissa A Richard
- Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center, Houston, TX 77030, USA.
| | - Tianxiao Huan
- Population Sciences Branch, National Heart, Lung, and Blood Institute, NIH, Bethesda, MD 20892, USA; Framingham Heart Study, Framingham, MA 01702, USA
| | - Symen Ligthart
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam 3000, the Netherlands
| | - Rahul Gondalia
- Department of Epidemiology, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Min A Jhun
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI 48108, USA
| | - Jennifer A Brody
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA 98195, USA
| | - Marguerite R Irvin
- Department of Epidemiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Riccardo Marioni
- Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Edinburgh EH8 9JZ, UK; Medical Genetics Section, Centre for Genomic and Experimental Medicine, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XU, UK; Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Jincheng Shen
- Department of Population Health Sciences, University of Utah School of Medicine, Salt Lake City, UT 84108, USA
| | - Pei-Chien Tsai
- Department of Twin Research and Genetic Epidemiology, Kings College London, SE17EH London, UK
| | - May E Montasser
- Division of Endocrinology, Diabetes, and Nutrition, Program for Personalized and Genomic Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Yucheng Jia
- Institute for Translational Genomics and Population Sciences, Departments of Pediatrics and Medicine, Los Angeles BioMedical Research Institute at Harbor-UCLA Medical Center, Torrance, CA 90502, USA
| | - Catriona Syme
- Hospital for Sick Children, University of Toronto, Toronto, ON M5G 0A4, Canada
| | - Elias L Salfati
- Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Eric Boerwinkle
- Human Genetics Center, School of Public Health, University of Texas Health Science Center, Houston, TX 77030, USA; Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Weihua Guan
- Department of Biostatistics, University of Minnesota, Minneapolis, MN 55454, USA
| | - Thomas H Mosley
- Department of Medicine, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Jan Bressler
- Human Genetics Center, School of Public Health, University of Texas Health Science Center, Houston, TX 77030, USA
| | - Alanna C Morrison
- Human Genetics Center, School of Public Health, University of Texas Health Science Center, Houston, TX 77030, USA
| | - Chunyu Liu
- Population Sciences Branch, National Heart, Lung, and Blood Institute, NIH, Bethesda, MD 20892, USA; Framingham Heart Study, Framingham, MA 01702, USA; Department of Biostatistics, Boston University, Boston, MA 02118, USA
| | - Michael M Mendelson
- Population Sciences Branch, National Heart, Lung, and Blood Institute, NIH, Bethesda, MD 20892, USA; Framingham Heart Study, Framingham, MA 01702, USA; Department of Cardiology, Boston Children's Hospital, Boston, MA 02115, USA
| | - André G Uitterlinden
- Department of Internal Medicine, Erasmus University Medical Center, Rotterdam 3000, the Netherlands
| | - Joyce B van Meurs
- Department of Internal Medicine, Erasmus University Medical Center, Rotterdam 3000, the Netherlands
| | - Oscar H Franco
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam 3000, the Netherlands
| | - Guosheng Zhang
- Department of Genetics, University of North Carolina, Chapel Hill, NC 27514, USA; Curriculum in Bioinformatics and Computational Biology, University of North Carolina, Chapel Hill, NC 27514, USA; Department of Statistics, University of North Carolina, Chapel Hill, NC 27514, USA
| | - Yun Li
- Department of Genetics, University of North Carolina, Chapel Hill, NC 27514, USA; Department of Biostatistics, University of North Carolina, Chapel Hill, NC 27599, USA
| | - James D Stewart
- Department of Epidemiology, University of North Carolina, Chapel Hill, NC 27599, USA; Carolina Population Center, University of North Carolina, Chapel Hill, NC 27514, USA
| | - Joshua C Bis
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA 98195, USA
| | - Bruce M Psaty
- Cardiovascular Health Research Unit, Departments of Medicine, Epidemiology, and Health Services, University of Washington, Seattle, WA 98101, USA; Kaiser Permanente Washington Health Research Unit, Seattle, WA 98101, USA
| | - Yii-Der Ida Chen
- Institute for Translational Genomics and Population Sciences, Departments of Pediatrics and Medicine, Los Angeles BioMedical Research Institute at Harbor-UCLA Medical Center, Torrance, CA 90502, USA
| | - Sharon L R Kardia
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI 48108, USA
| | - Wei Zhao
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI 48108, USA
| | - Stephen T Turner
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN 55905, USA
| | - Devin Absher
- HudsonAlpha Institute for Biotechnology, Huntsville, AL 35806, USA
| | - Stella Aslibekyan
- Department of Epidemiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - John M Starr
- Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Edinburgh EH8 9JZ, UK; Alzheimer Scotland Dementia Research Centre, University of Edinburgh, Edinburgh EH8 9JZ, UK
| | - Allan F McRae
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia; Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Lifang Hou
- Department of Preventive Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Allan C Just
- Department of Preventive Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Joel D Schwartz
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Pantel S Vokonas
- Veterans Affairs Normative Aging Study, Veterans Affairs Boston Healthcare System, Department of Medicine, Boston University School of Medicine, Boston, MA 02118, USA
| | - Cristina Menni
- Department of Twin Research and Genetic Epidemiology, Kings College London, SE17EH London, UK
| | - Tim D Spector
- Department of Twin Research and Genetic Epidemiology, Kings College London, SE17EH London, UK
| | - Alan Shuldiner
- Division of Endocrinology, Diabetes, and Nutrition, Program for Personalized and Genomic Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA; The Regeneron Genetics Center, Regeneron Pharmaceuticals, Tarrytown, NY 10591, USA
| | - Coleen M Damcott
- Division of Endocrinology, Diabetes, and Nutrition, Program for Personalized and Genomic Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Jerome I Rotter
- Institute for Translational Genomics and Population Sciences, Departments of Pediatrics and Medicine, Los Angeles BioMedical Research Institute at Harbor-UCLA Medical Center, Torrance, CA 90502, USA
| | - Walter Palmas
- Department of Medicine, Columbia University, New York, NY 10032, USA
| | - Yongmei Liu
- Wake Forest School of Medicine, Winston-Salem, NC 27157, USA
| | - Tomáš Paus
- Departments of Psychology and Psychiatry, University of Toronto, Toronto, ON M5S 3G3, Canada; Rotman Research Institute, Baycrest, Toronto, ON M6A 2E1, Canada; Child Mind Institute, New York, NY 10022, USA
| | - Steve Horvath
- Department of Human Genetics, Gonda Research Center, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Jeffrey R O'Connell
- Division of Endocrinology, Diabetes, and Nutrition, Program for Personalized and Genomic Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Xiuqing Guo
- Institute for Translational Genomics and Population Sciences, Departments of Pediatrics and Medicine, Los Angeles BioMedical Research Institute at Harbor-UCLA Medical Center, Torrance, CA 90502, USA
| | - Zdenka Pausova
- Hospital for Sick Children, University of Toronto, Toronto, ON M5G 0A4, Canada; Departments of Physiology and Nutritional Sciences, University of Toronto, Toronto, ON M5S 1A8, Canada
| | | | - Nona Sotoodehnia
- Cardiovascular Health Research Unit, Division of Cardiology, University of Washington, Seattle, WA 98195, USA
| | - Jennifer A Smith
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI 48108, USA
| | - Donna K Arnett
- University of Kentucky, College of Public Health, Lexington, KY 40563, USA
| | - Ian J Deary
- Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Edinburgh EH8 9JZ, UK; Department of Psychology, University of Edinburgh, Edinburgh EH9 8JZ, UK
| | - Andrea A Baccarelli
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Jordana T Bell
- Department of Twin Research and Genetic Epidemiology, Kings College London, SE17EH London, UK
| | - Eric Whitsel
- Department of Epidemiology, University of North Carolina, Chapel Hill, NC 27599, USA; Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA
| | - Abbas Dehghan
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam 3000, the Netherlands; Department of Biostatistics and Epidemiology, MRC-PHE Centre for Environment and Health, School of Public Health, Imperial College London, London W2 1PG, UK
| | - Daniel Levy
- Population Sciences Branch, National Heart, Lung, and Blood Institute, NIH, Bethesda, MD 20892, USA; Framingham Heart Study, Framingham, MA 01702, USA
| | - Myriam Fornage
- Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center, Houston, TX 77030, USA; Human Genetics Center, School of Public Health, University of Texas Health Science Center, Houston, TX 77030, USA.
| |
Collapse
|
10
|
Li H, Wu T, Wang S, Li X, Qiu Y, Lin C, Qiu C, Deng Z, Zhou L, Zhang X. Replication of a genome-wide association study on essential hypertension in Mongolians. Clin Exp Hypertens 2017; 40:79-89. [PMID: 28682143 DOI: 10.1080/10641963.2017.1334796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Replication of genome-wide significant association SNPs in independent populations is an essential approach for identifying gene-disease relationships. Therefore, we sought to investigate the top 21 SNPs (rs10507454, rs11897156, rs11897991, rs12325203, rs12541835, rs13395322, rs1525035, rs16936892, rs17010027, rs17045859, rs17136827, rs1866525, rs2045590, rs4547758, rs4655688, rs7107438, rs761353, rs8127139, rs9312305, rs9407874 and rs9865108) from a genome-wide association study of essential hypertension in Mongolians. This was a community-based case-control study involving 428 hypertensives and 638 normotensives from Kerqinzuoyihou Banner,Tongliao, Inner Mongolian Autonomous Region, China. Genotyping was conducted with Sequenom MassArray (®) SNP detection technology. Overall, there were no significant differences in the genotype distributions and allele frequencies between the cases and controls. There was a significant difference between the allele frequencies at locus rs17010027 in cases (high systolic blood pressure) and controls in female (p = .036). There were significant differences in the distribution of genotypes and the allele frequencies at locus rs10507454 between cases (high diastolic blood pressure) and controls (p = .019 and p = .022, respectively) especially in male (p = .009 and p = .011, respectively). rs17010027 is associated with high systolic blood pressure in female, and rs10507454 is associated with high diastolic blood pressure especially in male of this Mongolian population.
Collapse
Affiliation(s)
- Hongmei Li
- a Research Institute of Medicine and Pharmacy , Qiqihar Medical University , Qiqihar , Heilongjiang , China
| | - Tong Wu
- a Research Institute of Medicine and Pharmacy , Qiqihar Medical University , Qiqihar , Heilongjiang , China
| | - Shaoqing Wang
- b Department of Pathology , Qiqihar Medical University , Qiqihar , Heilongjiang , China
| | - Xueyan Li
- a Research Institute of Medicine and Pharmacy , Qiqihar Medical University , Qiqihar , Heilongjiang , China
| | - Yongqiang Qiu
- c School of Public Health , Qiqihar Medical University , Qiqihar , Heilongjiang , China
| | - Chunrong Lin
- a Research Institute of Medicine and Pharmacy , Qiqihar Medical University , Qiqihar , Heilongjiang , China
| | - Changchun Qiu
- a Research Institute of Medicine and Pharmacy , Qiqihar Medical University , Qiqihar , Heilongjiang , China
| | - Zhihui Deng
- a Research Institute of Medicine and Pharmacy , Qiqihar Medical University , Qiqihar , Heilongjiang , China
| | - Li Zhou
- a Research Institute of Medicine and Pharmacy , Qiqihar Medical University , Qiqihar , Heilongjiang , China
| | - Xiaojie Zhang
- b Department of Pathology , Qiqihar Medical University , Qiqihar , Heilongjiang , China
| |
Collapse
|
11
|
Tremblay J, Wang Y, Raelson J, Marois-Blanchet FC, Wu Z, Luo H, Bradley E, Chalmers J, Woodward M, Harrap S, Hamet P, Wu J. Evidence from single nucleotide polymorphism analyses of ADVANCE study demonstrates EFNB3 as a hypertension risk gene. Sci Rep 2017; 7:44114. [PMID: 28272517 PMCID: PMC5341021 DOI: 10.1038/srep44114] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Accepted: 02/03/2017] [Indexed: 01/11/2023] Open
Abstract
EPH kinases and their ligands, ephrins (EFNs), have vital and diverse biological functions. We recently reported that Efnb3 gene deletion results in hypertension in female but not male mice. These data suggest that EFNB3 regulates blood pressure in a sex- and sex hormone-dependent way. In the present study, we conducted a human genetic study to assess the association of EFNB3 single nucleotide polymorphisms with human hypertension risks, using 3,448 patients with type 2 diabetes from the ADVANCE study (Action in Diabetes and Vascular Disease: Peterax and Diamicron MR Controlled Evaluation). We have observed significant association between 2 SNPs in the 3′ untranslated region or within the adjacent region just 3′ of the EFNB3 gene with hypertension, corroborating our findings from the mouse model. Thus, our investigation has shown that EFNB3 is a hypertension risk gene in certain individuals.
Collapse
Affiliation(s)
- Johanne Tremblay
- Research Centre, Centre hospitalier de l'Université de Montréal (CRCHUM), Montreal, Quebec H2X 0A9, Canada
| | - Yujia Wang
- Research Centre, Centre hospitalier de l'Université de Montréal (CRCHUM), Montreal, Quebec H2X 0A9, Canada
| | - John Raelson
- Research Centre, Centre hospitalier de l'Université de Montréal (CRCHUM), Montreal, Quebec H2X 0A9, Canada
| | | | - Zenghui Wu
- Research Centre, Centre hospitalier de l'Université de Montréal (CRCHUM), Montreal, Quebec H2X 0A9, Canada
| | - Hongyu Luo
- Research Centre, Centre hospitalier de l'Université de Montréal (CRCHUM), Montreal, Quebec H2X 0A9, Canada
| | - Edward Bradley
- Research Centre, Centre hospitalier de l'Université de Montréal (CRCHUM), Montreal, Quebec H2X 0A9, Canada
| | - John Chalmers
- The George Institute for Global Health, University of Sydney Sydney, New South Wales, 2006, Australia
| | - Mark Woodward
- The George Institute for Global Health, University of Sydney Sydney, New South Wales, 2006, Australia.,The George Institute for Global Health, University of Oxford, Oxford, UK
| | - Stephen Harrap
- Department of Epidemiology, Johns Hopkins University, Baltimore MD, USA.,Department of Physiology, University of Melbourne, Victoria 3010, Australia
| | - Pavel Hamet
- Research Centre, Centre hospitalier de l'Université de Montréal (CRCHUM), Montreal, Quebec H2X 0A9, Canada
| | - Jiangping Wu
- Research Centre, Centre hospitalier de l'Université de Montréal (CRCHUM), Montreal, Quebec H2X 0A9, Canada
| |
Collapse
|
12
|
The role of GRIP1 and ephrin B3 in blood pressure control and vascular smooth muscle cell contractility. Sci Rep 2016; 6:38976. [PMID: 27941904 PMCID: PMC5150233 DOI: 10.1038/srep38976] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Accepted: 11/16/2016] [Indexed: 12/25/2022] Open
Abstract
Several erythropoietin-producing hepatocellular receptor B family (EPHB) and their ligands, ephrinBs (EFNBs), are involved in blood pressure regulation in animal models. We selected 528 single nucleotide polymorphisms (SNPs) within the genes of EPHB6, EFNB2, EFNB3 and GRIP1 in the EPH/EFN signalling system to query the International Blood Pressure Consortium dataset. A SNP within the glutamate receptor interacting protein 1 (GRIP1) gene presented a p-value of 0.000389, approaching the critical p-value of 0.000302, for association with diastolic blood pressure of 60,396 individuals. According to echocardiography, we found that Efnb3 gene knockout mice showed enhanced constriction in the carotid arteries. In vitro studies revealed that in mouse vascular smooth muscle cells, siRNA knockdown of GRIP1, which is in the EFNB3 reverse signalling pathway, resulted in increased contractility of these cells. These data suggest that molecules in the EPHB/EFNB signalling pathways, specifically EFNB3 and GRIP1, are involved blood pressure regulation.
Collapse
|
13
|
Fowdar JY, Grealy R, Lu Y, Griffiths LR. A genome-wide association study of essential hypertension in an Australian population using a DNA pooling approach. Mol Genet Genomics 2016; 292:307-324. [PMID: 27866268 DOI: 10.1007/s00438-016-1274-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Accepted: 11/10/2016] [Indexed: 01/11/2023]
Abstract
Despite the success of genome-wide association studies (GWAS) in detecting genetic loci involved in complex traits, few susceptibility genes have been detected for essential hypertension (EH). We aimed to use pooled DNA GWAS approach to identify and validate novel genomic loci underlying EH susceptibility in an Australian case-control population. Blood samples and questionnaires detailing medical history, blood pressure, and prescribed medications were collected for 409 hypertensives and 409 age-, sex- and ethnicity-matched normotensive controls. Case and control DNA were pooled in quadruplicate and hybridized to Illumina 1 M-Duo arrays. Allele frequencies agreed with those reported in reference data and known EH association signals were represented in the top-ranked SNPs more frequently than expected by chance. Validation showed that pooled DNA GWAS gave reliable estimates of case and control allele frequencies. Although no markers reached Bonferroni-corrected genome-wide significance levels (5.0 × 10-8), the top marker rs34870220 near ASGR1 approached significance (p = 4.32 × 10-7), as did several candidate loci (p < 1 × 10-6) on chromosomes 2, 4, 6, 9, 12, and 17. Four markers (located in or near genes NHSL1, NKFB1, GLI2, and LRRC10) from the top ten ranked SNPs were individually genotyped in pool samples and were tested for association between cases and controls using the χ 2 test. Of these, rs1599961 (NFKB1) and rs12711538 (GLI2) showed significant difference between cases and controls (p < 0.01). Additionally, four top-ranking markers within NFKB1 were found to be in LD, suggesting a single strong association signal for this gene.
Collapse
Affiliation(s)
- Javed Y Fowdar
- School of Medical Science, Griffith University, Gold Coast, Australia
| | - Rebecca Grealy
- School of Medical Science, Griffith University, Gold Coast, Australia
| | - Yi Lu
- Genetic Epidemiology Department, Queensland Institute of Medical Research, Brisbane, Australia
| | - Lyn R Griffiths
- Genomics Research Centre, Institute of Health and Biomedical Innovation, School of Biomedical Sciences, Queensland University of Technology, 60 Musk Ave, Kelvin Grove, Brisbane, QLD, 4059, Australia.
| |
Collapse
|
14
|
Kiranmayi M, Chirasani VR, Allu PKR, Subramanian L, Martelli EE, Sahu BS, Vishnuprabu D, Kumaragurubaran R, Sharma S, Bodhini D, Dixit M, Munirajan AK, Khullar M, Radha V, Mohan V, Mullasari AS, Naga Prasad SV, Senapati S, Mahapatra NR. Catestatin Gly364Ser Variant Alters Systemic Blood Pressure and the Risk for Hypertension in Human Populations via Endothelial Nitric Oxide Pathway. Hypertension 2016; 68:334-47. [PMID: 27324226 DOI: 10.1161/hypertensionaha.116.06568] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Accepted: 05/17/2016] [Indexed: 12/13/2022]
Abstract
Catestatin (CST), an endogenous antihypertensive/antiadrenergic peptide, is a novel regulator of cardiovascular physiology. Here, we report case-control studies in 2 geographically/ethnically distinct Indian populations (n≈4000) that showed association of the naturally-occurring human CST-Gly364Ser variant with increased risk for hypertension (age-adjusted odds ratios: 1.483; P=0.009 and 2.951; P=0.005). Consistently, 364Ser allele carriers displayed elevated systolic (up to ≈8 mm Hg; P=0.004) and diastolic (up to ≈6 mm Hg; P=0.001) blood pressure. The variant allele was also found to be in linkage disequilibrium with other functional single-nucleotide polymorphisms in the CHGA promoter and nearby coding region. Functional characterization of the Gly364Ser variant was performed using cellular/molecular biological experiments (viz peptide-receptor binding assays, nitric oxide [NO], phosphorylated extracellular regulated kinase, and phosphorylated endothelial NO synthase estimations) and computational approaches (molecular dynamics simulations for structural analysis of wild-type [CST-WT] and variant [CST-364Ser] peptides and docking of peptide/ligand with β-adrenergic receptors [ADRB1/2]). CST-WT and CST-364Ser peptides differed profoundly in their secondary structures and showed differential interactions with ADRB2; although CST-WT displaced the ligand bound to ADRB2, CST-364Ser failed to do the same. Furthermore, CST-WT significantly inhibited ADRB2-stimulated extracellular regulated kinase activation, suggesting an antagonistic role towards ADRB2 unlike CST-364Ser. Consequently, CST-WT was more potent in NO production in human umbilical vein endothelial cells as compared with CST-364Ser. This NO-producing ability of CST-WT was abrogated by ADRB2 antagonist ICI 118551. In conclusion, CST-364Ser allele enhanced the risk for hypertension in human populations, possibly via diminished endothelial NO production because of altered interactions of CST-364Ser peptide with ADRB2 as compared with CST-WT.
Collapse
Affiliation(s)
- Malapaka Kiranmayi
- From the Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, Tamil Nadu, India (M.Kiranmayi, V.R.C., P.K.R.A., L.S., B.S.S., R.K., M.D., S.Senapati, N.R.M.); Department of Molecular Cardiology, Lerner Research Institute, Cleveland Clinic, OH (E.E.M., S.V.N.P.); Department of Genetics, Dr. ALM PG Institute of Basic Medical Sciences, University of Madras, Taramani Campus, Chennai, Tamil Nadu, India (D.V., A.K.M.); Department of Experimental Medicine and Biotechnology, Postgraduate Institute of Medical Education and Research, Chandigarh, India (S.Sharma, M.Khullar); Department of Molecular Genetics, Madras Diabetes Research Foundation, Chennai, Tamil Nadu, India (D.B., V.R., V.M.); Institute of Cardiovascular Diseases, Madras Medical Mission, Chennai, Tamil Nadu, India (A.S.M.); Department of Medicine, University of California San Francisco (P.K.R.A.); and Department of Clinical Biochemistry, University of Cambridge, Cambridge, United Kingdom (B.S.S.)
| | - Venkat R Chirasani
- From the Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, Tamil Nadu, India (M.Kiranmayi, V.R.C., P.K.R.A., L.S., B.S.S., R.K., M.D., S.Senapati, N.R.M.); Department of Molecular Cardiology, Lerner Research Institute, Cleveland Clinic, OH (E.E.M., S.V.N.P.); Department of Genetics, Dr. ALM PG Institute of Basic Medical Sciences, University of Madras, Taramani Campus, Chennai, Tamil Nadu, India (D.V., A.K.M.); Department of Experimental Medicine and Biotechnology, Postgraduate Institute of Medical Education and Research, Chandigarh, India (S.Sharma, M.Khullar); Department of Molecular Genetics, Madras Diabetes Research Foundation, Chennai, Tamil Nadu, India (D.B., V.R., V.M.); Institute of Cardiovascular Diseases, Madras Medical Mission, Chennai, Tamil Nadu, India (A.S.M.); Department of Medicine, University of California San Francisco (P.K.R.A.); and Department of Clinical Biochemistry, University of Cambridge, Cambridge, United Kingdom (B.S.S.)
| | - Prasanna K R Allu
- From the Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, Tamil Nadu, India (M.Kiranmayi, V.R.C., P.K.R.A., L.S., B.S.S., R.K., M.D., S.Senapati, N.R.M.); Department of Molecular Cardiology, Lerner Research Institute, Cleveland Clinic, OH (E.E.M., S.V.N.P.); Department of Genetics, Dr. ALM PG Institute of Basic Medical Sciences, University of Madras, Taramani Campus, Chennai, Tamil Nadu, India (D.V., A.K.M.); Department of Experimental Medicine and Biotechnology, Postgraduate Institute of Medical Education and Research, Chandigarh, India (S.Sharma, M.Khullar); Department of Molecular Genetics, Madras Diabetes Research Foundation, Chennai, Tamil Nadu, India (D.B., V.R., V.M.); Institute of Cardiovascular Diseases, Madras Medical Mission, Chennai, Tamil Nadu, India (A.S.M.); Department of Medicine, University of California San Francisco (P.K.R.A.); and Department of Clinical Biochemistry, University of Cambridge, Cambridge, United Kingdom (B.S.S.)
| | - Lakshmi Subramanian
- From the Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, Tamil Nadu, India (M.Kiranmayi, V.R.C., P.K.R.A., L.S., B.S.S., R.K., M.D., S.Senapati, N.R.M.); Department of Molecular Cardiology, Lerner Research Institute, Cleveland Clinic, OH (E.E.M., S.V.N.P.); Department of Genetics, Dr. ALM PG Institute of Basic Medical Sciences, University of Madras, Taramani Campus, Chennai, Tamil Nadu, India (D.V., A.K.M.); Department of Experimental Medicine and Biotechnology, Postgraduate Institute of Medical Education and Research, Chandigarh, India (S.Sharma, M.Khullar); Department of Molecular Genetics, Madras Diabetes Research Foundation, Chennai, Tamil Nadu, India (D.B., V.R., V.M.); Institute of Cardiovascular Diseases, Madras Medical Mission, Chennai, Tamil Nadu, India (A.S.M.); Department of Medicine, University of California San Francisco (P.K.R.A.); and Department of Clinical Biochemistry, University of Cambridge, Cambridge, United Kingdom (B.S.S.)
| | - Elizabeth E Martelli
- From the Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, Tamil Nadu, India (M.Kiranmayi, V.R.C., P.K.R.A., L.S., B.S.S., R.K., M.D., S.Senapati, N.R.M.); Department of Molecular Cardiology, Lerner Research Institute, Cleveland Clinic, OH (E.E.M., S.V.N.P.); Department of Genetics, Dr. ALM PG Institute of Basic Medical Sciences, University of Madras, Taramani Campus, Chennai, Tamil Nadu, India (D.V., A.K.M.); Department of Experimental Medicine and Biotechnology, Postgraduate Institute of Medical Education and Research, Chandigarh, India (S.Sharma, M.Khullar); Department of Molecular Genetics, Madras Diabetes Research Foundation, Chennai, Tamil Nadu, India (D.B., V.R., V.M.); Institute of Cardiovascular Diseases, Madras Medical Mission, Chennai, Tamil Nadu, India (A.S.M.); Department of Medicine, University of California San Francisco (P.K.R.A.); and Department of Clinical Biochemistry, University of Cambridge, Cambridge, United Kingdom (B.S.S.)
| | - Bhavani S Sahu
- From the Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, Tamil Nadu, India (M.Kiranmayi, V.R.C., P.K.R.A., L.S., B.S.S., R.K., M.D., S.Senapati, N.R.M.); Department of Molecular Cardiology, Lerner Research Institute, Cleveland Clinic, OH (E.E.M., S.V.N.P.); Department of Genetics, Dr. ALM PG Institute of Basic Medical Sciences, University of Madras, Taramani Campus, Chennai, Tamil Nadu, India (D.V., A.K.M.); Department of Experimental Medicine and Biotechnology, Postgraduate Institute of Medical Education and Research, Chandigarh, India (S.Sharma, M.Khullar); Department of Molecular Genetics, Madras Diabetes Research Foundation, Chennai, Tamil Nadu, India (D.B., V.R., V.M.); Institute of Cardiovascular Diseases, Madras Medical Mission, Chennai, Tamil Nadu, India (A.S.M.); Department of Medicine, University of California San Francisco (P.K.R.A.); and Department of Clinical Biochemistry, University of Cambridge, Cambridge, United Kingdom (B.S.S.)
| | - Durairajpandian Vishnuprabu
- From the Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, Tamil Nadu, India (M.Kiranmayi, V.R.C., P.K.R.A., L.S., B.S.S., R.K., M.D., S.Senapati, N.R.M.); Department of Molecular Cardiology, Lerner Research Institute, Cleveland Clinic, OH (E.E.M., S.V.N.P.); Department of Genetics, Dr. ALM PG Institute of Basic Medical Sciences, University of Madras, Taramani Campus, Chennai, Tamil Nadu, India (D.V., A.K.M.); Department of Experimental Medicine and Biotechnology, Postgraduate Institute of Medical Education and Research, Chandigarh, India (S.Sharma, M.Khullar); Department of Molecular Genetics, Madras Diabetes Research Foundation, Chennai, Tamil Nadu, India (D.B., V.R., V.M.); Institute of Cardiovascular Diseases, Madras Medical Mission, Chennai, Tamil Nadu, India (A.S.M.); Department of Medicine, University of California San Francisco (P.K.R.A.); and Department of Clinical Biochemistry, University of Cambridge, Cambridge, United Kingdom (B.S.S.)
| | - Rathnakumar Kumaragurubaran
- From the Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, Tamil Nadu, India (M.Kiranmayi, V.R.C., P.K.R.A., L.S., B.S.S., R.K., M.D., S.Senapati, N.R.M.); Department of Molecular Cardiology, Lerner Research Institute, Cleveland Clinic, OH (E.E.M., S.V.N.P.); Department of Genetics, Dr. ALM PG Institute of Basic Medical Sciences, University of Madras, Taramani Campus, Chennai, Tamil Nadu, India (D.V., A.K.M.); Department of Experimental Medicine and Biotechnology, Postgraduate Institute of Medical Education and Research, Chandigarh, India (S.Sharma, M.Khullar); Department of Molecular Genetics, Madras Diabetes Research Foundation, Chennai, Tamil Nadu, India (D.B., V.R., V.M.); Institute of Cardiovascular Diseases, Madras Medical Mission, Chennai, Tamil Nadu, India (A.S.M.); Department of Medicine, University of California San Francisco (P.K.R.A.); and Department of Clinical Biochemistry, University of Cambridge, Cambridge, United Kingdom (B.S.S.)
| | - Saurabh Sharma
- From the Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, Tamil Nadu, India (M.Kiranmayi, V.R.C., P.K.R.A., L.S., B.S.S., R.K., M.D., S.Senapati, N.R.M.); Department of Molecular Cardiology, Lerner Research Institute, Cleveland Clinic, OH (E.E.M., S.V.N.P.); Department of Genetics, Dr. ALM PG Institute of Basic Medical Sciences, University of Madras, Taramani Campus, Chennai, Tamil Nadu, India (D.V., A.K.M.); Department of Experimental Medicine and Biotechnology, Postgraduate Institute of Medical Education and Research, Chandigarh, India (S.Sharma, M.Khullar); Department of Molecular Genetics, Madras Diabetes Research Foundation, Chennai, Tamil Nadu, India (D.B., V.R., V.M.); Institute of Cardiovascular Diseases, Madras Medical Mission, Chennai, Tamil Nadu, India (A.S.M.); Department of Medicine, University of California San Francisco (P.K.R.A.); and Department of Clinical Biochemistry, University of Cambridge, Cambridge, United Kingdom (B.S.S.)
| | - Dhanasekaran Bodhini
- From the Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, Tamil Nadu, India (M.Kiranmayi, V.R.C., P.K.R.A., L.S., B.S.S., R.K., M.D., S.Senapati, N.R.M.); Department of Molecular Cardiology, Lerner Research Institute, Cleveland Clinic, OH (E.E.M., S.V.N.P.); Department of Genetics, Dr. ALM PG Institute of Basic Medical Sciences, University of Madras, Taramani Campus, Chennai, Tamil Nadu, India (D.V., A.K.M.); Department of Experimental Medicine and Biotechnology, Postgraduate Institute of Medical Education and Research, Chandigarh, India (S.Sharma, M.Khullar); Department of Molecular Genetics, Madras Diabetes Research Foundation, Chennai, Tamil Nadu, India (D.B., V.R., V.M.); Institute of Cardiovascular Diseases, Madras Medical Mission, Chennai, Tamil Nadu, India (A.S.M.); Department of Medicine, University of California San Francisco (P.K.R.A.); and Department of Clinical Biochemistry, University of Cambridge, Cambridge, United Kingdom (B.S.S.)
| | - Madhulika Dixit
- From the Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, Tamil Nadu, India (M.Kiranmayi, V.R.C., P.K.R.A., L.S., B.S.S., R.K., M.D., S.Senapati, N.R.M.); Department of Molecular Cardiology, Lerner Research Institute, Cleveland Clinic, OH (E.E.M., S.V.N.P.); Department of Genetics, Dr. ALM PG Institute of Basic Medical Sciences, University of Madras, Taramani Campus, Chennai, Tamil Nadu, India (D.V., A.K.M.); Department of Experimental Medicine and Biotechnology, Postgraduate Institute of Medical Education and Research, Chandigarh, India (S.Sharma, M.Khullar); Department of Molecular Genetics, Madras Diabetes Research Foundation, Chennai, Tamil Nadu, India (D.B., V.R., V.M.); Institute of Cardiovascular Diseases, Madras Medical Mission, Chennai, Tamil Nadu, India (A.S.M.); Department of Medicine, University of California San Francisco (P.K.R.A.); and Department of Clinical Biochemistry, University of Cambridge, Cambridge, United Kingdom (B.S.S.)
| | - Arasambattu K Munirajan
- From the Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, Tamil Nadu, India (M.Kiranmayi, V.R.C., P.K.R.A., L.S., B.S.S., R.K., M.D., S.Senapati, N.R.M.); Department of Molecular Cardiology, Lerner Research Institute, Cleveland Clinic, OH (E.E.M., S.V.N.P.); Department of Genetics, Dr. ALM PG Institute of Basic Medical Sciences, University of Madras, Taramani Campus, Chennai, Tamil Nadu, India (D.V., A.K.M.); Department of Experimental Medicine and Biotechnology, Postgraduate Institute of Medical Education and Research, Chandigarh, India (S.Sharma, M.Khullar); Department of Molecular Genetics, Madras Diabetes Research Foundation, Chennai, Tamil Nadu, India (D.B., V.R., V.M.); Institute of Cardiovascular Diseases, Madras Medical Mission, Chennai, Tamil Nadu, India (A.S.M.); Department of Medicine, University of California San Francisco (P.K.R.A.); and Department of Clinical Biochemistry, University of Cambridge, Cambridge, United Kingdom (B.S.S.)
| | - Madhu Khullar
- From the Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, Tamil Nadu, India (M.Kiranmayi, V.R.C., P.K.R.A., L.S., B.S.S., R.K., M.D., S.Senapati, N.R.M.); Department of Molecular Cardiology, Lerner Research Institute, Cleveland Clinic, OH (E.E.M., S.V.N.P.); Department of Genetics, Dr. ALM PG Institute of Basic Medical Sciences, University of Madras, Taramani Campus, Chennai, Tamil Nadu, India (D.V., A.K.M.); Department of Experimental Medicine and Biotechnology, Postgraduate Institute of Medical Education and Research, Chandigarh, India (S.Sharma, M.Khullar); Department of Molecular Genetics, Madras Diabetes Research Foundation, Chennai, Tamil Nadu, India (D.B., V.R., V.M.); Institute of Cardiovascular Diseases, Madras Medical Mission, Chennai, Tamil Nadu, India (A.S.M.); Department of Medicine, University of California San Francisco (P.K.R.A.); and Department of Clinical Biochemistry, University of Cambridge, Cambridge, United Kingdom (B.S.S.)
| | - Venkatesan Radha
- From the Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, Tamil Nadu, India (M.Kiranmayi, V.R.C., P.K.R.A., L.S., B.S.S., R.K., M.D., S.Senapati, N.R.M.); Department of Molecular Cardiology, Lerner Research Institute, Cleveland Clinic, OH (E.E.M., S.V.N.P.); Department of Genetics, Dr. ALM PG Institute of Basic Medical Sciences, University of Madras, Taramani Campus, Chennai, Tamil Nadu, India (D.V., A.K.M.); Department of Experimental Medicine and Biotechnology, Postgraduate Institute of Medical Education and Research, Chandigarh, India (S.Sharma, M.Khullar); Department of Molecular Genetics, Madras Diabetes Research Foundation, Chennai, Tamil Nadu, India (D.B., V.R., V.M.); Institute of Cardiovascular Diseases, Madras Medical Mission, Chennai, Tamil Nadu, India (A.S.M.); Department of Medicine, University of California San Francisco (P.K.R.A.); and Department of Clinical Biochemistry, University of Cambridge, Cambridge, United Kingdom (B.S.S.)
| | - Viswanathan Mohan
- From the Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, Tamil Nadu, India (M.Kiranmayi, V.R.C., P.K.R.A., L.S., B.S.S., R.K., M.D., S.Senapati, N.R.M.); Department of Molecular Cardiology, Lerner Research Institute, Cleveland Clinic, OH (E.E.M., S.V.N.P.); Department of Genetics, Dr. ALM PG Institute of Basic Medical Sciences, University of Madras, Taramani Campus, Chennai, Tamil Nadu, India (D.V., A.K.M.); Department of Experimental Medicine and Biotechnology, Postgraduate Institute of Medical Education and Research, Chandigarh, India (S.Sharma, M.Khullar); Department of Molecular Genetics, Madras Diabetes Research Foundation, Chennai, Tamil Nadu, India (D.B., V.R., V.M.); Institute of Cardiovascular Diseases, Madras Medical Mission, Chennai, Tamil Nadu, India (A.S.M.); Department of Medicine, University of California San Francisco (P.K.R.A.); and Department of Clinical Biochemistry, University of Cambridge, Cambridge, United Kingdom (B.S.S.)
| | - Ajit S Mullasari
- From the Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, Tamil Nadu, India (M.Kiranmayi, V.R.C., P.K.R.A., L.S., B.S.S., R.K., M.D., S.Senapati, N.R.M.); Department of Molecular Cardiology, Lerner Research Institute, Cleveland Clinic, OH (E.E.M., S.V.N.P.); Department of Genetics, Dr. ALM PG Institute of Basic Medical Sciences, University of Madras, Taramani Campus, Chennai, Tamil Nadu, India (D.V., A.K.M.); Department of Experimental Medicine and Biotechnology, Postgraduate Institute of Medical Education and Research, Chandigarh, India (S.Sharma, M.Khullar); Department of Molecular Genetics, Madras Diabetes Research Foundation, Chennai, Tamil Nadu, India (D.B., V.R., V.M.); Institute of Cardiovascular Diseases, Madras Medical Mission, Chennai, Tamil Nadu, India (A.S.M.); Department of Medicine, University of California San Francisco (P.K.R.A.); and Department of Clinical Biochemistry, University of Cambridge, Cambridge, United Kingdom (B.S.S.)
| | - Sathyamangla V Naga Prasad
- From the Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, Tamil Nadu, India (M.Kiranmayi, V.R.C., P.K.R.A., L.S., B.S.S., R.K., M.D., S.Senapati, N.R.M.); Department of Molecular Cardiology, Lerner Research Institute, Cleveland Clinic, OH (E.E.M., S.V.N.P.); Department of Genetics, Dr. ALM PG Institute of Basic Medical Sciences, University of Madras, Taramani Campus, Chennai, Tamil Nadu, India (D.V., A.K.M.); Department of Experimental Medicine and Biotechnology, Postgraduate Institute of Medical Education and Research, Chandigarh, India (S.Sharma, M.Khullar); Department of Molecular Genetics, Madras Diabetes Research Foundation, Chennai, Tamil Nadu, India (D.B., V.R., V.M.); Institute of Cardiovascular Diseases, Madras Medical Mission, Chennai, Tamil Nadu, India (A.S.M.); Department of Medicine, University of California San Francisco (P.K.R.A.); and Department of Clinical Biochemistry, University of Cambridge, Cambridge, United Kingdom (B.S.S.)
| | - Sanjib Senapati
- From the Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, Tamil Nadu, India (M.Kiranmayi, V.R.C., P.K.R.A., L.S., B.S.S., R.K., M.D., S.Senapati, N.R.M.); Department of Molecular Cardiology, Lerner Research Institute, Cleveland Clinic, OH (E.E.M., S.V.N.P.); Department of Genetics, Dr. ALM PG Institute of Basic Medical Sciences, University of Madras, Taramani Campus, Chennai, Tamil Nadu, India (D.V., A.K.M.); Department of Experimental Medicine and Biotechnology, Postgraduate Institute of Medical Education and Research, Chandigarh, India (S.Sharma, M.Khullar); Department of Molecular Genetics, Madras Diabetes Research Foundation, Chennai, Tamil Nadu, India (D.B., V.R., V.M.); Institute of Cardiovascular Diseases, Madras Medical Mission, Chennai, Tamil Nadu, India (A.S.M.); Department of Medicine, University of California San Francisco (P.K.R.A.); and Department of Clinical Biochemistry, University of Cambridge, Cambridge, United Kingdom (B.S.S.)
| | - Nitish R Mahapatra
- From the Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, Tamil Nadu, India (M.Kiranmayi, V.R.C., P.K.R.A., L.S., B.S.S., R.K., M.D., S.Senapati, N.R.M.); Department of Molecular Cardiology, Lerner Research Institute, Cleveland Clinic, OH (E.E.M., S.V.N.P.); Department of Genetics, Dr. ALM PG Institute of Basic Medical Sciences, University of Madras, Taramani Campus, Chennai, Tamil Nadu, India (D.V., A.K.M.); Department of Experimental Medicine and Biotechnology, Postgraduate Institute of Medical Education and Research, Chandigarh, India (S.Sharma, M.Khullar); Department of Molecular Genetics, Madras Diabetes Research Foundation, Chennai, Tamil Nadu, India (D.B., V.R., V.M.); Institute of Cardiovascular Diseases, Madras Medical Mission, Chennai, Tamil Nadu, India (A.S.M.); Department of Medicine, University of California San Francisco (P.K.R.A.); and Department of Clinical Biochemistry, University of Cambridge, Cambridge, United Kingdom (B.S.S.).
| |
Collapse
|
15
|
Feldman RD, Gros R, Ding Q, Hussain Y, Ban MR, McIntyre AD, Hegele RA. A common hypofunctional genetic variant of GPER is associated with increased blood pressure in women. Br J Clin Pharmacol 2014; 78:1441-52. [PMID: 25039431 PMCID: PMC4256633 DOI: 10.1111/bcp.12471] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2014] [Accepted: 07/11/2014] [Indexed: 01/11/2023] Open
Abstract
AIMS Activation of vascular GPER has been linked to vasodepressor effects in animals. However, the significance of GPER regulation on chronic blood pressure control in humans is unknown. METHODS To examine this question we determined the functional significance of expression of a common missense single nucleotide variant of GPER, P16L in vascular smooth muscle cells, and its association with blood pressure in humans. Further, to validate the importance of carrying GPER P16L in the development of hypertension we assessed allele frequency in a cohort of hard-to-treat hypertensive patients referred to a tertiary care clinic. RESULTS Expression of the GPER P16L variant (V) vs. wild type (WT) in rat aortic vascular smooth muscle cells, was associated with a significant decrease in G1 (1 μm, a GPER agonist)-mediated ERK phosphorylation (slope of the function of G1-stimulated ERK phosphorylation: GPER content WT: 16.2, 95% CI 9.9, 22.6; V: 5.0, 95% CI 1.0, 9.0; P < 0.005) and apoptosis (slope of the function of G1-stimulated apoptosis: GPER content: WT: 4.4, 95% CI: 3.4, 5.4; V: 2.5, 95% CI 1.6, 2.3 P < 0.005). Normotensive female subjects, but not male subjects, carrying this hypofunctional variant (allele frequency 22%) have increased blood pressure [mean arterial pressure: P16/P16: 80 ± 1 mmHg (n = 204) vs. P16L carriers: 82 ± 1 mmHg (n = 127), 95% CI for difference: 0.6, 4.0 mmHg, P < 0.05], [systolic blood pressure: P16/P16: 105 ± 1 mmHg vs. P16L carriers: 108 ± 1 mmHg, 95% CI for difference:1.0, 5.1 mmHg, P < 0.05], [diastolic blood pressure: P16/P16: 66 ± 0.5 mmHg vs. P16L carriers 68 ± 0.7, 95% CI for difference: 0.2, 3.6 mmHg, P < 0.05]. Further, the P16L allele frequency was almost two-fold higher in female vs. male hypertensive patients (31% vs. 16%, allele ratio 0.5, 95% CI 0.32, 0.76, P < 0.05). CONCLUSIONS The common genetic variant, GPER P16L, is hypofunctional and female carriers of this allele have increased blood pressure. There was an increased prevalence in a population of hard-to-treat hypertensive female patients. Cumulatively, these data suggest that in females, impaired GPER function might be associated with increased blood pressure and risk of hypertension.
Collapse
Affiliation(s)
| | - Robert Gros
- Robarts Research InstituteLondon, ON, Canada
| | | | | | | | | | | |
Collapse
|
16
|
Wong EH, So HC, Li M, Wang Q, Butler AW, Paul B, Wu HM, Hui TC, Choi SC, So MT, Garcia-Barcelo MM, McAlonan GM, Chen EY, Cheung EF, Chan RC, Purcell SM, Cherny SS, Chen RR, Li T, Sham PC. Common variants on Xq28 conferring risk of schizophrenia in Han Chinese. Schizophr Bull 2014; 40:777-86. [PMID: 24043878 PMCID: PMC4059435 DOI: 10.1093/schbul/sbt104] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Schizophrenia is a highly heritable, severe psychiatric disorder affecting approximately 1% of the world population. A substantial portion of heritability is still unexplained and the pathophysiology of schizophrenia remains to be elucidated. To identify more schizophrenia susceptibility loci, we performed a genome-wide association study (GWAS) on 498 patients with schizophrenia and 2025 controls from the Han Chinese population, and a follow-up study on 1027 cases and 1005 controls. In the follow-up study, we included 384 single nucleotide polymorphisms (SNPs) which were selected from the top hits in our GWAS (130 SNPs) and from previously implicated loci for schizophrenia based on the SZGene database, NHGRI GWAS Catalog, copy number variation studies, GWAS meta-analysis results from the international Psychiatric Genomics Consortium (PGC) and candidate genes from plausible biological pathways (254 SNPs). Within the chromosomal region Xq28, SNP rs2269372 in RENBP achieved genome-wide significance with a combined P value of 3.98 × 10(-8) (OR of allele A = 1.31). SNPs with suggestive P values were identified within 2 genes that have been previously implicated in schizophrenia, MECP2 (rs2734647, P combined = 8.78 × 10(-7), OR = 1.28; rs2239464, P combined = 6.71 × 10(-6), OR = 1.26) and ARHGAP4 (rs2269368, P combined = 4.74 × 10(-7), OR = 1.25). In addition, the patient sample in our follow-up study showed a significantly greater burden for pre-defined risk alleles based on the SNPs selected than the controls. This indicates the existence of schizophrenia susceptibility loci among the SNPs we selected. This also further supports multigenic inheritance in schizophrenia. Our findings identified a new schizophrenia susceptibility locus on Xq28, which harbor the genes RENBP, MECP2, and ARHGAP4.
Collapse
Affiliation(s)
- Emily H.M. Wong
- Department of Psychiatry, The University of Hong Kong, Hong Kong, China;,
Co-first authors
| | - Hon-Cheong So
- Department of Psychiatry, The University of Hong Kong, Hong Kong, China;,
Co-first authors
| | - Miaoxin Li
- Department of Psychiatry, The University of Hong Kong, Hong Kong, China;,Centre for Genomic Sciences, The University of Hong Kong, Hong Kong, China
| | - Quang Wang
- The Mental Health Centre and Psychiatric Laboratory, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Amy W. Butler
- Department of Psychiatry, The University of Hong Kong, Hong Kong, China;,MRC Social Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, King’s College London, London, UK
| | - Basil Paul
- Department of Psychiatry, The University of Hong Kong, Hong Kong, China
| | - Hei-Man Wu
- Department of Psychiatry, The University of Hong Kong, Hong Kong, China
| | - Tomy C.K. Hui
- Department of Psychiatry, The University of Hong Kong, Hong Kong, China
| | - Siu-Chung Choi
- Department of Psychiatry, The University of Hong Kong, Hong Kong, China
| | - Man-Ting So
- Department of Surgery, The University of Hong Kong, Hong Kong, China
| | - Maria-Mercè Garcia-Barcelo
- Centre for Genomic Sciences, The University of Hong Kong, Hong Kong, China;,Department of Surgery, The University of Hong Kong, Hong Kong, China
| | - Grainne M. McAlonan
- Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, King’s College London, UK
| | - Eric Y.H. Chen
- Department of Psychiatry, The University of Hong Kong, Hong Kong, China
| | | | - Raymond C.K. Chan
- Institute of Psychology, Chinese Academy of Sciences, Beijing, China
| | - Shaun M. Purcell
- Division of Psychiatric Genomics, Mount Sinai School of Medicine, New York
| | - Stacey S. Cherny
- Department of Psychiatry, The University of Hong Kong, Hong Kong, China;,Centre for Genomic Sciences, The University of Hong Kong, Hong Kong, China;,State Key Laboratory in Brain and Cognitive Sciences, The University of Hong Kong, Hong King, China
| | - Ronald R.L. Chen
- Department of Psychiatry, The University of Hong Kong, Hong Kong, China
| | - Tao Li
- The Mental Health Centre and Psychiatric Laboratory, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Pak-Chung Sham
- Department of Psychiatry, The University of Hong Kong, Hong Kong, China; Centre for Genomic Sciences, The University of Hong Kong, Hong Kong, China; State Key Laboratory in Brain and Cognitive Sciences, The University of Hong Kong, Hong King, China;
| |
Collapse
|
17
|
Wu G, Cheng M, Huang H, Yang B, Jiang H, Huang C. A variant of IL6R is associated with the recurrence of atrial fibrillation after catheter ablation in a Chinese Han population. PLoS One 2014; 9:e99623. [PMID: 24940886 PMCID: PMC4062460 DOI: 10.1371/journal.pone.0099623] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2012] [Accepted: 05/17/2014] [Indexed: 01/19/2023] Open
Abstract
Background Recent studies have identified a variant, rs4845625, in the interleukin-6 receptor (IL6R) gene associated with Atrial Fibrillation (AF). Levels of circulating interleukin-6 and other proinflammatory molecules have consistently been associated with a risk for AF and its recurrence after catheter ablation. This study tested the hypothesis that variant rs4845625 is associated with AF recurrence after catheter ablation in a Chinese Han population. Methods A total of 278 consecutive patients (mean age 59.4±11.5 years, 43% female) with paroxysmal (36.0%), persistent (59.7%), and permanent (4.3%) AF who underwent catheterablation from 2007–2011, were included in this study. Patients were monitored for 12 months for a recurrence of AF. The SNP rs4845625 was genotyped using high resolution melting analysis. Results In our study cohort, an early recurrence of AF (ERAF), defined as a recurrence within the first 4 weeks, was observed in 42.8% of the patients, whereas late recurrence of AF (LRAF) (between 3 and 12 months) occurred in 25.9% of the patients. No significant differences in baseline clinical or echocardiographic characteristics were observed between patients with ERAF and LRAF. In contrast, the presence of the T allele of rs4845625 was associated with an increase in the risk for both ERAF (odds ratio [OR]: 1.84, 95% confidence interval [CI]: 1.31–2.59, p = 4.10×10−4) and LRAF (OR: 1.92, 95% CI: 1.30–2.81, p = 0.001). Furthermore, this association was significant after adjustments for age, sex, hypertension, diabetes and other risk factors. No significant relationship between rs4845625 and serum levels of IL6 was observed. Conclusions In this study, a variant of the IL6R gene, rs4845625, was found confer risk to AF recurrence after catheter ablation in a Chinese Han population. Our findings indicated that the IL6R pathway or inflammation may play important rols in the recurrence of AF after catheter ablation.
Collapse
Affiliation(s)
- Gang Wu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Mian Cheng
- Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - He Huang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Bo Yang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Hong Jiang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Congxin Huang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
- * E-mail:
| |
Collapse
|
18
|
Gragnoli C. Hypothesis of the neuroendocrine cortisol pathway gene role in the comorbidity of depression, type 2 diabetes, and metabolic syndrome. APPLICATION OF CLINICAL GENETICS 2014; 7:43-53. [PMID: 24817815 PMCID: PMC4012344 DOI: 10.2147/tacg.s39993] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Depression, type 2 diabetes (T2D), and metabolic syndrome (MetS) are often comorbid. Depression per se increases the risk for T2D by 60%. This risk is not accounted for by the use of antidepressant therapy. Stress causes hyperactivation of the hypothalamic–pituitary–adrenal (HPA) axis, by triggering the hypothalamic corticotropin-releasing hormone (CRH) secretion, which stimulates the anterior pituitary to release the adrenocorticotropin hormone (ACTH), which causes the adrenal secretion of cortisol. Depression is associated with an increased level of cortisol, and CRH and ACTH at inappropriately “normal” levels, that is too high compared to their expected lower levels due to cortisol negative feedback. T2D and MetS are also associated with hypercortisolism. High levels of cortisol can impair mood as well as cause hyperglycemia and insulin resistance and other traits typical of T2D and MetS. We hypothesize that HPA axis hyperactivation may be due to variants in the genes of the CRH receptors (CRHR1, CRHR2), corticotropin receptors (or melanocortin receptors, MC1R-MC5R), glucocorticoid receptor (NR3C1), mineralocorticoid receptor (NR3C2), and of the FK506 binding protein 51 (FKBP5), and that these variants may be partially responsible for the clinical association of depression, T2D and MetS. In this review, we will focus on the correlation of stress, HPA axis hyperactivation, and the possible genetic role of the CRHR1, CRHR2, MCR1–5, NR3C1, and NR3C2 receptors and FKBP5 in the susceptibility to the comorbidity of depression, T2D, and MetS. New studies are needed to confirm the hypothesized role of these genes in the clinical association of depression, T2D, and MetS.
Collapse
Affiliation(s)
- Claudia Gragnoli
- Center for Biotechnology and Department of Biology, College of Science and Technology, Temple University, Philadelphia, PA, USA ; Molecular Biology Laboratory, Bios Biotech Multi-Diagnostic Health Center, Rome, Italy
| |
Collapse
|
19
|
Kurki MI, Gaál EI, Kettunen J, Lappalainen T, Menelaou A, Anttila V, van 't Hof FNG, von und zu Fraunberg M, Helisalmi S, Hiltunen M, Lehto H, Laakso A, Kivisaari R, Koivisto T, Ronkainen A, Rinne J, Kiemeney LAL, Vermeulen SH, Kaunisto MA, Eriksson JG, Aromaa A, Perola M, Lehtimäki T, Raitakari OT, Salomaa V, Gunel M, Dermitzakis ET, Ruigrok YM, Rinkel GJE, Niemelä M, Hernesniemi J, Ripatti S, de Bakker PIW, Palotie A, Jääskeläinen JE. High risk population isolate reveals low frequency variants predisposing to intracranial aneurysms. PLoS Genet 2014; 10:e1004134. [PMID: 24497844 PMCID: PMC3907358 DOI: 10.1371/journal.pgen.1004134] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2013] [Accepted: 12/10/2013] [Indexed: 11/18/2022] Open
Abstract
3% of the population develops saccular intracranial aneurysms (sIAs), a complex trait, with a sporadic and a familial form. Subarachnoid hemorrhage from sIA (sIA-SAH) is a devastating form of stroke. Certain rare genetic variants are enriched in the Finns, a population isolate with a small founder population and bottleneck events. As the sIA-SAH incidence in Finland is >2× increased, such variants may associate with sIA in the Finnish population. We tested 9.4 million variants for association in 760 Finnish sIA patients (enriched for familial sIA), and in 2,513 matched controls with case-control status and with the number of sIAs. The most promising loci (p<5E-6) were replicated in 858 Finnish sIA patients and 4,048 controls. The frequencies and effect sizes of the replicated variants were compared to a continental European population using 717 Dutch cases and 3,004 controls. We discovered four new high-risk loci with low frequency lead variants. Three were associated with the case-control status: 2q23.3 (MAF 2.1%, OR 1.89, p 1.42×10-9); 5q31.3 (MAF 2.7%, OR 1.66, p 3.17×10-8); 6q24.2 (MAF 2.6%, OR 1.87, p 1.87×10-11) and one with the number of sIAs: 7p22.1 (MAF 3.3%, RR 1.59, p 6.08×-9). Two of the associations (5q31.3, 6q24.2) replicated in the Dutch sample. The 7p22.1 locus was strongly differentiated; the lead variant was more frequent in Finland (4.6%) than in the Netherlands (0.3%). Additionally, we replicated a previously inconclusive locus on 2q33.1 in all samples tested (OR 1.27, p 1.87×10-12). The five loci explain 2.1% of the sIA heritability in Finland, and may relate to, but not explain, the increased incidence of sIA-SAH in Finland. This study illustrates the utility of population isolates, familial enrichment, dense genotype imputation and alternate phenotyping in search for variants associated with complex diseases.
Collapse
Affiliation(s)
- Mitja I. Kurki
- Neurosurgery, NeuroCenter, Kuopio University Hospital, Kuopio, Finland
- Neurosurgery, Institute of Clinical Medicine, University of Eastern Finland, Kuopio, Finland
- Department of Neurobiology, A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
- * E-mail:
| | - Emília Ilona Gaál
- Department of Neurosurgery, Helsinki University Central Hospital, Helsinki, Finland
| | - Johannes Kettunen
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland
- Department of Chronic Disease Prevention, National Institute for Health and Welfare, Helsinki, Finland
| | - Tuuli Lappalainen
- Department of Genetic Medicine and Development, University of Geneva Medical School, Geneva, Switzerland
| | - Androniki Menelaou
- Department of Medical Genetics, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Verneri Anttila
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland
- Analytical and Translational Genetics Unit, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
- Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, Massachusetts, United States of America
| | - Femke N. G. van 't Hof
- UMC Utrecht Stroke Center, Department of Neurology and Neurosurgery, Rudolf Magnus Institute of Neuroscience, University Medical Center Utrecht, The Netherlands
| | - Mikael von und zu Fraunberg
- Neurosurgery, NeuroCenter, Kuopio University Hospital, Kuopio, Finland
- Neurosurgery, Institute of Clinical Medicine, University of Eastern Finland, Kuopio, Finland
| | - Seppo Helisalmi
- Neurology, Institute of Clinical Medicine, University of Eastern Finland, Kuopio, Finland
| | - Mikko Hiltunen
- Neurology, Institute of Clinical Medicine, University of Eastern Finland, Kuopio, Finland
| | - Hanna Lehto
- Department of Neurosurgery, Helsinki University Central Hospital, Helsinki, Finland
| | - Aki Laakso
- Department of Neurosurgery, Helsinki University Central Hospital, Helsinki, Finland
| | - Riku Kivisaari
- Department of Neurosurgery, Helsinki University Central Hospital, Helsinki, Finland
| | - Timo Koivisto
- Neurosurgery, NeuroCenter, Kuopio University Hospital, Kuopio, Finland
| | - Antti Ronkainen
- Neurosurgery, NeuroCenter, Kuopio University Hospital, Kuopio, Finland
| | - Jaakko Rinne
- Neurosurgery, NeuroCenter, Kuopio University Hospital, Kuopio, Finland
| | - Lambertus A. L. Kiemeney
- Department of Urology, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
- Department for Health Evidence, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - Sita H. Vermeulen
- Department for Health Evidence, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - Mari A. Kaunisto
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland
- Folkhälsan Research Centre, Helsinki, Finland
| | - Johan G. Eriksson
- Folkhälsan Research Centre, Helsinki, Finland
- Department of Chronic Disease Prevention, National Institute for Health and Welfare, Helsinki, Finland
- Department of General Practice and Primary Health Care, University of Helsinki, Helsinki, Finland
- Department of Internal Medicine, Vasa Central Hospital, Vasa, Finland
- Unit of General Practice, Helsinki University Central Hospital, Helsinki, Finland
| | - Arpo Aromaa
- Department of Chronic Disease Prevention, National Institute for Health and Welfare, Helsinki, Finland
| | - Markus Perola
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland
- Department of Chronic Disease Prevention, National Institute for Health and Welfare, Helsinki, Finland
- Estonian Genome Center, University of Tartu, Tartu, Estonia
| | - Terho Lehtimäki
- Department of Clinical Chemistry, Fimlab Laboratories, Tampere University Hospital and University of Tampere, Tampere, Finland
| | - Olli T. Raitakari
- Department of Clinical Physiology and Nuclear Medicine, University of Turku and Turku University Hospital, Turku, Finland
- Research Centre of Applied and Preventive Cardiovascular Medicine, University of Turku and Turku University Central Hospital, Turku, Finland
| | - Veikko Salomaa
- Department of Chronic Disease Prevention, National Institute for Health and Welfare, Helsinki, Finland
| | - Murat Gunel
- Department of Neurosurgery, Department of Neurobiology and Department of Genetics, Program on Neurogenetics, Howard Hughes Medical Institute, Yale School of Medicine, New Haven, Connecticut, United States of America
| | - Emmanouil T. Dermitzakis
- Department of Genetic Medicine and Development, University of Geneva Medical School, Geneva, Switzerland
| | - Ynte M. Ruigrok
- UMC Utrecht Stroke Center, Department of Neurology and Neurosurgery, Rudolf Magnus Institute of Neuroscience, University Medical Center Utrecht, The Netherlands
| | - Gabriel J. E. Rinkel
- UMC Utrecht Stroke Center, Department of Neurology and Neurosurgery, Rudolf Magnus Institute of Neuroscience, University Medical Center Utrecht, The Netherlands
| | - Mika Niemelä
- Department of Neurosurgery, Helsinki University Central Hospital, Helsinki, Finland
| | - Juha Hernesniemi
- Department of Neurosurgery, Helsinki University Central Hospital, Helsinki, Finland
| | - Samuli Ripatti
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland
- Department of Chronic Disease Prevention, National Institute for Health and Welfare, Helsinki, Finland
- Hjelt Institute, University of Helsinki, Helsinki, Finland
| | - Paul I. W. de Bakker
- Department of Medical Genetics, University Medical Center Utrecht, Utrecht, The Netherlands
- Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, Massachusetts, United States of America
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
- Department of Epidemiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Aarno Palotie
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland
- Analytical and Translational Genetics Unit, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
- Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, Massachusetts, United States of America
- Department of Human Genetics, The Wellcome Trust Sanger Institute, Cambridge, United Kingdom
| | - Juha E. Jääskeläinen
- Neurosurgery, NeuroCenter, Kuopio University Hospital, Kuopio, Finland
- Neurosurgery, Institute of Clinical Medicine, University of Eastern Finland, Kuopio, Finland
| |
Collapse
|
20
|
Simino J, Sung YJ, Kume R, Schwander K, Rao DC. Gene-alcohol interactions identify several novel blood pressure loci including a promising locus near SLC16A9. Front Genet 2013; 4:277. [PMID: 24376456 PMCID: PMC3860258 DOI: 10.3389/fgene.2013.00277] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2013] [Accepted: 11/22/2013] [Indexed: 01/11/2023] Open
Abstract
Alcohol consumption is a known risk factor for hypertension, with recent candidate studies implicating gene-alcohol interactions in blood pressure (BP) regulation. We used 6882 (predominantly) Caucasian participants aged 20-80 years from the Framingham SNP Health Association Resource (SHARe) to perform a genome-wide analysis of SNP-alcohol interactions on BP traits. We used a two-step approach in the ABEL suite to examine genetic interactions with three alcohol measures (ounces of alcohol consumed per week, drinks consumed per week, and the number of days drinking alcohol per week) on four BP traits [systolic (SBP), diastolic (DBP), mean arterial (MAP), and pulse (PP) pressure]. In the first step, we fit a linear mixed model of each BP trait onto age, sex, BMI, and antihypertensive medication while accounting for the phenotypic correlation among relatives. In the second step, we conducted 1 degree-of-freedom (df) score tests of the SNP main effect, alcohol main effect, and SNP-alcohol interaction using the maximum likelihood estimates (MLE) of the parameters from the first step. We then calculated the joint 2 df score test of the SNP main effect and SNP-alcohol interaction using MixABEL. The effect of SNP rs10826334 (near SLC16A9) on SBP was significantly modulated by both the number of alcoholic drinks and the ounces of alcohol consumed per week (p-values of 1.27E-08 and 3.92E-08, respectively). Each copy of the G-allele decreased SBP by 3.79 mmHg in those consuming 14 drinks per week vs. a 0.461 mmHg decrease in non-drinkers. Index SNPs in 20 other loci exhibited suggestive (p-value ≤ 1E-06) associations with BP traits by the 1 df interaction test or joint 2 df test, including 3 rare variants, one low-frequency variant, and SNPs near/in genes ESRRG, FAM179A, CRIPT-SOCS5, KAT2B, ADCY2, GLI3, ZNF716, SLIT1, PDE3A, KERA-LUM, RNF219-AS1, CLEC3A, FBXO15, and IGSF5. SNP-alcohol interactions may enhance discovery of novel variants with large effects that can be targeted with lifestyle modifications.
Collapse
Affiliation(s)
- Jeannette Simino
- Division of Biostatistics, Washington University School of MedicineSt. Louis, MO, USA
| | | | | | | | | |
Collapse
|
21
|
Gene network analysis of candidate loci for human anorectal malformations. PLoS One 2013; 8:e69142. [PMID: 23936318 PMCID: PMC3731316 DOI: 10.1371/journal.pone.0069142] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2013] [Accepted: 06/05/2013] [Indexed: 11/19/2022] Open
Abstract
Anorectal malformations (ARMs) are birth defects that require surgery and carry significant chronic morbidity. Our earlier genome-wide copy number variation (CNV) study had provided a wealth of candidate loci. To find out whether these candidate loci are related to important developmental pathways, we have performed an extensive literature search coupled with the currently available bioinformatics tools. This has allowed us to assign both genic and non-genic CNVs to interrelated pathways known to govern the development of the anorectal region. We have linked 11 candidate genes to the WNT signalling pathway and 17 genes to the cytoskeletal network. Interestingly, candidate genes with similar functions are disrupted by the same type of CNV. The gene network we discovered provides evidence that rare mutations in different interrelated genes may lead to similar phenotypes, accounting for genetic heterogeneity in ARMs. Classification of patients according to the affected pathway and lesion type should eventually improve the diagnosis and the identification of common genes/molecules as therapeutic targets.
Collapse
|
22
|
Larsson E, Wahlstrand B, Hedblad B, Hedner T, Kjeldsen SE, Melander O, Lindahl P. Hypertension and genetic variation in endothelial-specific genes. PLoS One 2013; 8:e62035. [PMID: 23637959 PMCID: PMC3639261 DOI: 10.1371/journal.pone.0062035] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2012] [Accepted: 03/18/2013] [Indexed: 01/11/2023] Open
Abstract
Genome-wide association (GWA) studies usually detect common genetic variants with low-to-medium effect sizes. Many contributing variants are not revealed, since they fail to reach significance after strong correction for multiple comparisons. The WTCCC study for hypertension, for example, failed to identify genome-wide significant associations. We hypothesized that genetic variation in genes expressed specifically in the endothelium may be important for hypertension development. Results from the WTCCC study were combined with previously published gene expression data from mice to specifically investigate SNPs located within endothelial-specific genes, bypassing the requirement for genome-wide significance. Six SNPs from the WTCCC study were selected for independent replication in 5205 hypertensive patients and 5320 population-based controls, and successively in a cohort of 16537 individuals. A common variant (rs10860812) in the DRAM (damage-regulated autophagy modulator) locus showed association with hypertension (P = 0.008) in the replication study. The minor allele (A) had a protective effect (OR = 0.93; 95% CI 0.88–0.98 per A-allele), which replicates the association in the WTCCC GWA study. However, a second follow-up, in the larger cohort, failed to reveal an association with blood pressure. We further tested the endothelial-specific genes for co-localization with a panel of newly discovered SNPs from large meta-GWAS on hypertension or blood pressure. There was no significant overlap between those genes and hypertension or blood pressure loci. The result does not support the hypothesis that genetic variation in genes expressed in endothelium plays an important role for hypertension development. Moreover, the discordant association of rs10860812 with blood pressure in the case control study versus the larger Malmö Preventive Project–study highlights the importance of rigorous replication in multiple large independent studies.
Collapse
Affiliation(s)
- Erik Larsson
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, The Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
- * E-mail: (EL); (PL)
| | - Björn Wahlstrand
- Institute of Medicine, The Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Bo Hedblad
- Clinical research Center (CRC), Malmö University Hospital, Malmö, Sweden
| | - Thomas Hedner
- Institute of Medicine, The Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Sverre E. Kjeldsen
- Department of Cardiology/Cardiovascular and Renal Research Center, Ullevaal University Hospital, Oslo, Norway
| | - Olle Melander
- Clinical research Center (CRC), Malmö University Hospital, Malmö, Sweden
| | - Per Lindahl
- Wallenberg Laboratory, Institute of Medicine, The Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
- * E-mail: (EL); (PL)
| |
Collapse
|
23
|
Wong EHM, Cui L, Ng CL, Tang CSM, Liu XL, So MT, Yip BHK, Cheng G, Zhang R, Tang WK, Yang W, Lau YL, Baum L, Kwan P, Sun LD, Zuo XB, Ren YQ, Yin XY, Miao XP, Liu J, Lui VCH, Ngan ESW, Yuan ZW, Zhang SW, Xia J, Wang H, Sun XB, Wang R, Chang T, Chan IHY, Chung PHY, Zhang XJ, Wong KKY, Cherny SS, Sham PC, Tam PKH, Garcia-Barcelo MM. Genome-wide copy number variation study in anorectal malformations. Hum Mol Genet 2012; 22:621-31. [PMID: 23108157 DOI: 10.1093/hmg/dds451] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Anorectal malformations (ARMs, congenital obstruction of the anal opening) are among the most common birth defects requiring surgical treatment (2-5/10 000 live-births) and carry significant chronic morbidity. ARMs present either as isolated or as part of the phenotypic spectrum of some chromosomal abnormalities or monogenic syndromes. The etiology is unknown. To assess the genetic contribution to ARMs, we investigated single-nucleotide polymorphisms and copy number variations (CNVs) at genome-wide scale. A total of 363 Han Chinese sporadic ARM patients and 4006 Han Chinese controls were included. Overall, we detected a 1.3-fold significant excess of rare CNVs in patients. Stratification of patients by presence/absence of other congenital anomalies showed that while syndromic ARM patients carried significantly longer rare duplications than controls (P = 0.049), non-syndromic patients were enriched with both rare deletions and duplications when compared with controls (P = 0.00031). Twelve chromosomal aberrations and 114 rare CNVs were observed in patients but not in 868 controls nor 11 943 healthy individuals from the Database of Genomic Variants. Importantly, these aberrations were observed in isolated ARM patients. Gene-based analysis revealed 79 genes interfered by CNVs in patients only. In particular, we identified a de novo DKK4 duplication. DKK4 is a member of the WNT signaling pathway which is involved in the development of the anorectal region. In mice, Wnt disruption results in ARMs. Our data suggest a role for rare CNVs not only in syndromic but also in isolated ARM patients and provide a list of plausible candidate genes for the disorder.
Collapse
Affiliation(s)
- Emily H M Wong
- Department of Psychiatry, The University of Hong Kong, Hong Kong SAR, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|