1
|
Fernández-Domínguez IJ, Pérez-Cárdenas E, Taja-Chayeb L, Wegman-Ostrosky T, Caro-Sánchez CHS, Zentella-Dehesa A, Dueñas-González A, López-Basabe H, Morales-Bárcenas R, Trejo-Becerril C. Increased amounts of cell-free DNA released from a culture with a high content of cancer stem cells. Front Cell Dev Biol 2025; 13:1499936. [PMID: 40226589 PMCID: PMC11985834 DOI: 10.3389/fcell.2025.1499936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Accepted: 03/07/2025] [Indexed: 04/15/2025] Open
Abstract
Background The study and characterization of cell-free DNA (cfDNA) has gained significant importance due to its clinical applications as a diagnostic and prognostic marker. However, it remains unclear whether all cell populations within a tumor or culture contribute equally to its release. This pioneering research analyzes the contribution of cancer stem cells (CSCs) in colon cancer cell lines to the amount of cfDNA released and its role in cellular transformation. Methods The CSC population derived from the SW480 colon cancer cell line was enriched using a non-adhesive culture system to assess the quantity and electrophoretic profile of the released cfDNA. Subsequently, in vitro transformation assays were conducted to compare the transforming capacity of the cfDNA obtained from enriched cultures with that from non-enriched cultures. Group differences were analyzed using analysis of variance (ANOVA), followed by post hoc interpretation with Tukey's test. Results Our study revealed that cultures with CSCs released greater amounts of cfDNA, displaying a distinct fragment profile. Additionally, cfDNA from different cellular origins influenced the transformation characteristics of NIH3T3 cells. This is the first demonstration of a link between CSC proportions and cfDNA release, suggesting that CSCs and microenvironmental conditions can affect cfDNA quantity and its potential to induce transformation. Conclusion These findings highlight the importance of cfDNA in carcinogenesis and its potential as a biomarker and therapeutic target, especially given the role of CSCs in drug resistance and tumor aggressiveness.
Collapse
Affiliation(s)
- Ileana J. Fernández-Domínguez
- Subdirección de Investigación Básica, Instituto Nacional de Cancerología, México City, Mexico
- Posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de México. Edificio D, 1° Piso, Circuito de Posgrados, Ciudad Universitaria, México City, Mexico
| | - Enrique Pérez-Cárdenas
- Subdirección de Investigación Básica, Instituto Nacional de Cancerología, México City, Mexico
| | - Lucia Taja-Chayeb
- Subdirección de Investigación Básica, Instituto Nacional de Cancerología, México City, Mexico
| | - Talia Wegman-Ostrosky
- Subdirección de Investigación Básica, Instituto Nacional de Cancerología, México City, Mexico
| | | | - Alejandro Zentella-Dehesa
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas (IIBO), Universidad Nacional Autónoma de México (UNAM), México City, Mexico
- Unidad de Bioquímica, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán (INCMNSZ), México City, Mexico
| | - Alfonso Dueñas-González
- Subdirección de Investigación Básica, Instituto Nacional de Cancerología, México City, Mexico
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas (IIBO), Universidad Nacional Autónoma de México (UNAM), México City, Mexico
| | - Horacio López-Basabe
- Departamento de Gastroenterología del Instituto Nacional de Cancerología, México City, Mexico
| | - Rocío Morales-Bárcenas
- Subdirección de Investigación Básica, Instituto Nacional de Cancerología, México City, Mexico
| | - Catalina Trejo-Becerril
- Subdirección de Investigación Básica, Instituto Nacional de Cancerología, México City, Mexico
| |
Collapse
|
2
|
Acharya SK, Shai S, Choon YF, Gunardi I, Hartanto FK, Kadir K, Roychoudhury A, Amtha R, Vincent-Chong VK. Cancer Stem Cells in Oral Squamous Cell Carcinoma: A Narrative Review on Experimental Characteristics and Methodological Challenges. Biomedicines 2024; 12:2111. [PMID: 39335624 PMCID: PMC11429394 DOI: 10.3390/biomedicines12092111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 09/11/2024] [Accepted: 09/12/2024] [Indexed: 09/30/2024] Open
Abstract
Cancer stem cells (CSCs) represent a subpopulation of cancer cells that are believed to initiate and drive cancer progression. In animal models, xenotransplanted CSCs have demonstrated the ability to produce tumors. Since their initial isolation in blood cancers, CSCs have been identified in various solid human cancers, including oral squamous cell carcinoma (OSCC). In addition to their tumorigenic properties, dysregulated stem-cell-related signaling pathways-Wnt family member (Wnt), neurogenic locus notch homolog protein (Notch), and hedgehog-have been shown to endow CSCs with characteristics like self-renewal, phenotypic plasticity, and chemoresistance, contributing to recurrence and treatment failure. Consequently, CSCs have become targets for new therapeutic agents, with some currently in different phases of clinical trials. Notably, small molecule inhibitors of the hedgehog signaling pathway, such as vismodegib and glasdegib, have been approved for the treatment of basal cell carcinoma and acute myeloid leukemia, respectively. Other strategies for eradicating CSCs include natural compounds, nano-drug delivery systems, targeting mitochondria and the CSC microenvironment, autophagy, hyperthermia, and immunotherapy. Despite the extensive documentation of CSCs in OSCC since its first demonstration in head and neck (HN) SCC in 2007, none of these novel pharmacological approaches have yet entered clinical trials for OSCC patients. This narrative review summarizes the in vivo and in vitro evidence of CSCs and CSC-related signaling pathways in OSCC, highlighting their role in promoting chemoresistance and immunotherapy resistance. Additionally, it addresses methodological challenges and discusses future research directions to improve experimental systems and advance CSC studies.
Collapse
Affiliation(s)
- Surendra Kumar Acharya
- Department of Oral Medicine, Radiology and Surgery, Faculty of Dentistry, Lincoln University College, Petaling Jaya 47301, Selangor, Malaysia
| | - Saptarsi Shai
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children’s Hospital, Houston, TX 77030, USA;
| | - Yee Fan Choon
- Department of Oral and Maxillofacial Surgical Sciences, Faculty of Dentistry, MAHSA University, Jenjarom 42610, Selangor, Malaysia;
| | - Indrayadi Gunardi
- Oral Medicine Department, Faculty of Dentistry, Universitas Trisakti, Jakarta 11440, Indonesia; (I.G.); (F.K.H.)
| | - Firstine Kelsi Hartanto
- Oral Medicine Department, Faculty of Dentistry, Universitas Trisakti, Jakarta 11440, Indonesia; (I.G.); (F.K.H.)
| | - Kathreena Kadir
- Department of Oral and Maxillofacial Clinical Sciences, Faculty of Dentistry, University of Malaya, Kuala Lumpur 50603, Malaysia;
| | - Ajoy Roychoudhury
- Department of Oral and Maxillofacial Surgery, All India Institute of Medical Sciences, New Delhi 110029, India;
| | - Rahmi Amtha
- Oral Medicine Department, Faculty of Dentistry, Universitas Trisakti, Jakarta 11440, Indonesia; (I.G.); (F.K.H.)
| | - Vui King Vincent-Chong
- Department of Oral Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| |
Collapse
|
3
|
Chen CY, Yang SH, Chang PY, Chen SF, Nieh S, Huang WY, Lin YC, Lee OKS. Cancer-Associated-Fibroblast-Mediated Paracrine and Autocrine SDF-1/CXCR4 Signaling Promotes Stemness and Aggressiveness of Colorectal Cancers. Cells 2024; 13:1334. [PMID: 39195225 PMCID: PMC11352219 DOI: 10.3390/cells13161334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 07/20/2024] [Accepted: 08/01/2024] [Indexed: 08/29/2024] Open
Abstract
Colorectal cancer (CRC) is a leading cause of cancer mortality worldwide, and cancer-associated fibroblasts (CAFs) play a major role in the tumor microenvironment (TME), which facilitates the progression of CRC. It is critical to understand how CAFs promote the progression of CRC for the development of novel therapeutic approaches. The purpose of this study was to understand how CAF-derived stromal-derived factor-1 (SDF-1) and its interactions with the corresponding C-X-C motif chemokine receptor 4 (CXCR4) promote CRC progression. Our study focused on their roles in promoting tumor cell migration and invasion and their effects on the characteristics of cancer stem cells (CSCs), which ultimately impact patient outcomes. Here, using in vivo approaches and clinical histological samples, we analyzed the influence of secreted SDF-1 on CRC progression, especially in terms of tumor cell behavior and stemness. We demonstrated that CAF-secreted SDF-1 significantly enhanced CRC cell migration and invasion through paracrine signaling. In addition, the overexpression of SDF-1 in CRC cell lines HT29 and HCT-116 triggered these cells to generate autocrine SDF-1 signaling, which further enhanced their CSC characteristics, including those of migration, invasion, and spheroid formation. An immunohistochemical study showed a close relationship between SDF-1 and CXCR4 expression in CRC tissue, and this significantly affected patient outcomes. The administration of AMD3100, an inhibitor of CXCR4, reversed the entire phenomenon. Our results strongly suggest that targeting this signaling axis in CRC is a feasible approach to attenuating tumor progression, and it may, therefore, serve as an alternative treatment method to improve the prognosis of patients with CRC, especially those with advanced, recurrent, or metastatic CRC following standard therapy.
Collapse
Affiliation(s)
- Chao-Yang Chen
- Division of Colon and Rectal Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei 11490, Taiwan;
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan
| | - Shih-Hsien Yang
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei 11490, Taiwan;
- Office of General Affairs and Occupational Safety, National Defense Medical Center, Taipei 11490, Taiwan
| | - Ping-Ying Chang
- Division of Hematology-Oncology, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei 11490, Taiwan;
| | - Su-Feng Chen
- Department of Dentistry, School of Dentistry, China Medical University, Taichung 40433, Taiwan;
| | - Shin Nieh
- Department of Pathology, Tri-Service General Hospital, National Defense Medical Center, Taipei 11490, Taiwan;
| | - Wen-Yen Huang
- Department of Radiation Oncology, Tri-Service General Hospital, National Defense Medical Center, Taipei 11490, Taiwan;
| | - Yu-Chun Lin
- Department of Pathology, Tri-Service General Hospital, National Defense Medical Center, Taipei 11490, Taiwan;
| | - Oscar Kuang-Sheng Lee
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan
- Stem Cell Research Center, National Yang Ming Chiao Tung University, Taipei 11211, Taiwan
- Department of Orthopedics, China Medical University Hospital, Taichung 40402, Taiwan
- Center for Translational Genomics & Regenerative Medicine Research, China Medical University Hospital, Taichung 40402, Taiwan
| |
Collapse
|
4
|
Chang YM, Huang WY, Yang SH, Jan CI, Nieh S, Lin YS, Chen SF, Lin YC. Interleukin-8/CXCR1 Signaling Contributes to the Progression of Pulmonary Adenocarcinoma Resulting in Malignant Pleural Effusion. Cells 2024; 13:968. [PMID: 38891100 PMCID: PMC11172099 DOI: 10.3390/cells13110968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 05/18/2024] [Accepted: 05/30/2024] [Indexed: 06/21/2024] Open
Abstract
Pulmonary adenocarcinoma (PADC) treatment limited efficacy in preventing tumor progression, often resulting in malignant pleural effusion (MPE). MPE is filled with various mediators, especially interleukin-8 (IL-8). However, the role of IL-8 and its signaling mechanism within the fluid microenvironment (FME) implicated in tumor progression warrants further investigation. Primary cultured cells from samples of patients with MPE from PADC, along with a commonly utilized lung cancer cell line, were employed to examine the role of IL-8 and its receptor, CXCR1, through comparative analysis. Our study primarily assessed migration and invasion capabilities, epithelial-mesenchymal transition (EMT), and cancer stem cell (CSC) properties. Additionally, IL-8 levels in MPE fluid versus serum, along with immunohistochemical expression of IL-8/CXCR1 signaling in tumor tissue and cell blocks were analyzed. IL-8/CXCR1 overexpression enhanced EMT and CSC properties. Furthermore, the immunocytochemical examination of 17 cell blocks from patients with PADC and MPE corroborated the significant correlation between upregulated IL-8 and CXCR1 expression and the co-expression of IL-8 and CXCR1 in MPE with distant metastasis. In summary, the IL-8/ CXCR1 axis in FME is pivotal to tumor promotion via paracrine and autocrine signaling. Our study provides a therapeutic avenue for improving the prognosis of PADC patients with MPE.
Collapse
Affiliation(s)
- Yi-Ming Chang
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei 11490, Taiwan; (Y.-M.C.); (S.-H.Y.)
- Department of Pathology and Laboratory Medicine, Kaohsiung Veterans General Hospital, Kaohsiung 813414, Taiwan;
| | - Wen-Yen Huang
- Department of Radiation Oncology, Tri-Service General Hospital, National Defense Medical Center, Taipei 11490, Taiwan;
| | - Shih-Hsien Yang
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei 11490, Taiwan; (Y.-M.C.); (S.-H.Y.)
- Office of General Affairs and Occupational Safety, National Defense Medical Center, Taipei 11490, Taiwan
| | - Chia-Ing Jan
- Department of Pathology and Laboratory Medicine, Kaohsiung Veterans General Hospital, Kaohsiung 813414, Taiwan;
| | - Shin Nieh
- Department of Pathology, Tri-Service General Hospital, National Defense Medical Center, Taipei 11490, Taiwan;
| | - Yaoh-Shiang Lin
- Department of Otorhinolaryngology, Head and Neck Surgery, Kaohsiung Veterans General Hospital, Kaohsiung 813414, Taiwan;
| | - Su-Feng Chen
- Department of Dentistry, School of Dentistry, China Medical University, Taichung 404333, Taiwan
| | - Yu-Chun Lin
- Department of Pathology, Tri-Service General Hospital, National Defense Medical Center, Taipei 11490, Taiwan;
| |
Collapse
|
5
|
de Castro LR, de Oliveira LD, Milan TM, Eskenazi APE, Bighetti-Trevisan RL, de Almeida OGG, Amorim MLM, Squarize CH, Castilho RM, de Almeida LO. Up-regulation of TNF-alpha/NFkB/SIRT1 axis drives aggressiveness and cancer stem cells accumulation in chemoresistant oral squamous cell carcinoma. J Cell Physiol 2024; 239:e31164. [PMID: 38149816 DOI: 10.1002/jcp.31164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 11/03/2023] [Accepted: 11/17/2023] [Indexed: 12/28/2023]
Abstract
Tumor resistance remains an obstacle to successfully treating oral squamous cell carcinoma (OSCC). Cisplatin is widely used as a cytotoxic drug to treat solid tumors, including advanced OSCC, but with low efficacy due to chemoresistance. Therefore, identifying the pathways that contribute to chemoresistance may show new possibilities for improving the treatment. This work explored the role of the tumor necrosis factor-alpha (TNF-alpha)/NFkB signaling in driving the cisplatin resistance of OSCC and its potential as a pharmacological target to overcome chemoresistance. Differential accessibility analysis demonstrated the enrichment of opened chromatin regions in members of the TNF-alpha/NFkB signaling pathway, and RNA-Seq confirmed the upregulation of TNF-alpha/NFkB signaling in cisplatin-resistant cell lines. NFkB was accumulated in cisplatin-resistant cell lines and in cancer stem cells (CSC), and the administration of TNF-alpha increased the CSC, suggesting that TNF-alpha/NFkB signaling is involved in the accumulation of CSC. TNF-alpha stimulation also increased the histone deacetylases HDAC1 and SIRT1. Cisplatin-resistant cell lines were sensitive to the pharmacological inhibition of NFkB, and low doses of the NFkB inhibitors, CBL0137, and emetine, efficiently reduced the CSC and the levels of SIRT1, increasing histone acetylation. The NFkB inhibitors decreased stemness potential, clonogenicity, migration, and invasion of cisplatin-resistant cell lines. The administration of the emetine significantly reduced the tumor growth of cisplatin-resistant xenograft models, decreasing NFkB and SIRT1, increasing histone acetylation, and decreasing CSC. TNF-alpha/NFkB/SIRT1 signaling regulates the epigenetic machinery by modulating histone acetylation, CSC, and aggressiveness of cisplatin-resistant OSCC and the NFkB inhibition is a potential strategy to treat chemoresistant OSCC.
Collapse
Affiliation(s)
- Letícia Rodrigues de Castro
- Department of Basic and Oral Biology, School of Dentistry of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Lucas Dias de Oliveira
- Department of Basic and Oral Biology, School of Dentistry of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Thaís Moré Milan
- Department of Basic and Oral Biology, School of Dentistry of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
- Department of Clinical Analysis, School of Pharmaceutical Sciences of Ribeirão Preto, Toxicology and Food Science, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Ana Patrícia Espaladori Eskenazi
- Department of Basic and Oral Biology, School of Dentistry of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Rayana Longo Bighetti-Trevisan
- Department of Basic and Oral Biology, School of Dentistry of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Otávio Guilherme Gonçalves de Almeida
- Department of Clinical Analysis, School of Pharmaceutical Sciences of Ribeirão Preto, Toxicology and Food Science, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Marcio Luis Munhoz Amorim
- Department of Electrical Engineering, School of Engineering of São Carlos, University of São Paulo, São Carlos, São Paulo, Brazil
| | - Cristiane Helena Squarize
- Laboratory of Epithelial Biology, Department of Periodontics and Oral Medicine, School of Dentistry, University of Michigan, Ann Arbor, Michigan, USA
| | - Rogerio Moraes Castilho
- Laboratory of Epithelial Biology, Department of Periodontics and Oral Medicine, School of Dentistry, University of Michigan, Ann Arbor, Michigan, USA
| | - Luciana Oliveira de Almeida
- Department of Basic and Oral Biology, School of Dentistry of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| |
Collapse
|
6
|
Miao Y, Wang P, Huang J, Qi X, Liang Y, Zhao W, Wang H, Lyu J, Zhu H. Metabolomics, Transcriptome and Single-Cell RNA Sequencing Analysis of the Metabolic Heterogeneity between Oral Cancer Stem Cells and Differentiated Cancer Cells. Cancers (Basel) 2024; 16:237. [PMID: 38254728 PMCID: PMC10813553 DOI: 10.3390/cancers16020237] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 11/30/2023] [Accepted: 12/26/2023] [Indexed: 01/24/2024] Open
Abstract
Understanding the distinct metabolic characteristics of cancer stem cells (CSC) may allow us to better cope with the clinical challenges associated with them. In this study, OSCC cell lines (CAL27 and HSC3) and multicellular tumor spheroid (MCTS) models were used to generate CSC-like cells. Quasi-targeted metabolomics and RNA sequencing were used to explore altered metabolites and metabolism-related genes. Pathview was used to display the metabolites and transcriptome data in a KEGG pathway. The single-cell RNA sequencing data of six patients with oral cancer were analyzed to characterize in vivo CSC metabolism. The results showed that 19 metabolites (phosphoethanolamine, carbamoylphosphate, etc.) were upregulated and 109 metabolites (2-aminooctanoic acid, 7-ketocholesterol, etc.) were downregulated in both MCTS cells. Integration pathway analysis revealed altered activity in energy production (glycolysis, citric cycle, fatty acid oxidation), macromolecular synthesis (purine/pyrimidine metabolism, glycerophospholipids metabolism) and redox control (glutathione metabolism). Single-cell RNA sequencing analysis confirmed altered glycolysis, glutathione and glycerophospholipid metabolism in in vivo CSC. We concluded that CSCs are metabolically inactive compared with differentiated cancer cells. Thus, oral CSCs may resist current metabolic-related drugs. Our result may be helpful in developing better therapeutic strategies against CSC.
Collapse
Affiliation(s)
- Yuwen Miao
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou 310020, China;
| | - Pan Wang
- Department of Stomatology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China; (P.W.); (H.Z.)
| | - Jinyan Huang
- Biomedical Big Data Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Xin Qi
- Department of Stomatology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China; (P.W.); (H.Z.)
| | - Yingjiqiong Liang
- Biomedical Big Data Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Wenquan Zhao
- Department of Stomatology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China; (P.W.); (H.Z.)
| | - Huiming Wang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou 310020, China;
| | - Jiong Lyu
- Department of Stomatology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China; (P.W.); (H.Z.)
| | - Huiyong Zhu
- Department of Stomatology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China; (P.W.); (H.Z.)
| |
Collapse
|
7
|
Zhao H, Han R, Wang Z, Xian J, Bai X. Colorectal Cancer Stem Cells and Targeted Agents. Pharmaceutics 2023; 15:2763. [PMID: 38140103 PMCID: PMC10748092 DOI: 10.3390/pharmaceutics15122763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 11/30/2023] [Accepted: 12/07/2023] [Indexed: 12/24/2023] Open
Abstract
Since their discovery, cancer stem cells have become a hot topic in cancer therapy research. These cells possess stem cell-like self-renewal and differentiation capacities and are important factors that dominate cancer metastasis, therapy-resistance and recurrence. Worse, their inherent characteristics make them difficult to eliminate. Colorectal cancer is the third-most common cancer and the second leading cause of cancer death worldwide. Targeting colorectal cancer stem cells (CR-CSCs) can inhibit colorectal cancer metastasis, enhance therapeutic efficacy and reduce recurrence. Here, we introduced the origin, biomarker proteins, identification, cultivation and research techniques of CR-CSCs, and we summarized the signaling pathways that regulate the stemness of CR-CSCs, such as Wnt, JAK/STAT3, Notch and Hh signaling pathway. In addition to these, we also reviewed recent anti-CR-CSC drugs targeting signaling pathways, biomarkers and other regulators. These will help researchers gain insight into the current agents targeting to CR-CSCs, explore new cancer drugs and propose potential therapies.
Collapse
Affiliation(s)
- Haobin Zhao
- Department of General Practice, People’s Hospital of Longhua, 38 Jinglong Jianshe Road, Shenzhen 518109, China; (H.Z.); (J.X.)
- Endocrinology Department, People’s Hospital of Longhua, 38 Jinglong Jianshe Road, Shenzhen 518109, China
| | - Ruining Han
- Obstetric Department, The Eighth Affiliated Hospital, Sun Yat-Sen University, Shenzhen 518033, China;
| | - Zhankun Wang
- Emergency Department, People’s Hospital of Longhua, 38 Jinglong Jianshe Road, Shenzhen 518109, China;
| | - Junfang Xian
- Department of General Practice, People’s Hospital of Longhua, 38 Jinglong Jianshe Road, Shenzhen 518109, China; (H.Z.); (J.X.)
| | - Xiaosu Bai
- Endocrinology Department, People’s Hospital of Longhua, 38 Jinglong Jianshe Road, Shenzhen 518109, China
| |
Collapse
|
8
|
Gunardi I, Sufiawati I, Goenawan H, Herawati DMD, Lesmana R, Abdullah AG. Research Trends in Molecular Biological Studies on Oral Squamous Cell Carcinoma: A Bibliometric Analysis. Oncol Rev 2023; 17:11585. [PMID: 38025895 PMCID: PMC10631265 DOI: 10.3389/or.2023.11585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 10/09/2023] [Indexed: 12/01/2023] Open
Abstract
Background: Since the discovery of PCR and ELISA, in vitro research in the realm of molecular biology pertaining to oral squamous cell carcinoma (OSCC) has witnessed significant expansion. Objective: to provide a comprehensive overview of molecular biology research on OSCC through visual mapping techniques. Methods: We conducted an analysis of publications within the "oral squamous cell carcinoma" category from Scopus' core collection. On 20 January 2023, we screened these publications using an advanced search employing the keywords "oral squamous cell cancer" and "cell line." Data analysis was performed using Microsoft Excel 2010 and VOSviewer, facilitating the examination of author contributions, journal productivity, institutional affiliations, and contributions by nations. VOSviewer was further utilized for co-occurrence and reference analysis of keywords. Results: A total of 781 papers spanning from 1992 to 2023 were collected. Notably, Japan, China, and the United States emerged as significant contributors in this field. The Osaka University Graduate School of Dentistry (Japan) ranked first with 21 publications. Chae J-I of Chonbuk National University (South Korea) emerged as the most prolific author, with 14 publications. The International Journal of Oncology and the Journal of Oral Pathology and Medicine were identified as the two most prolific journals. The central themes that emerged were epidermal growth factor receptor, invasion, epithelial-mesenchymal transition, angiogenesis, apoptosis, and metastasis. Conclusion: The rate of publications focused on the molecular biology of OSCC has seen a remarkable increase. Research priorities have shifted from topics such as "radiation, RANKL, cyclin D1, RNA interference, and matrix metalloproteinase" to encompass areas such as "chemoresistance due to cisplatin, other therapeutic agents (metformin and monoclonal antibody), autophagy, inflammation, microRNA, cancer-associated fibroblasts, and STAT3 (with roles in cell migration and tumorigenesis)." These seven significant future research areas hold promise in identifying reliable biological markers for oral cancer detection and treatment, thereby improving clinical outcomes.
Collapse
Affiliation(s)
- Indrayadi Gunardi
- Faculty of Medicine, Universitas Padjadjaran, Bandung, Indonesia
- Oral Medicine Department, Faculty of Dentistry, Universitas Trisakti, Jakarta, Indonesia
| | - Irna Sufiawati
- Oral Medicine Department, Faculty of Dentistry, Universitas Padjadjaran, Bandung, Indonesia
| | - Hanna Goenawan
- Department of Biomedical Sciences, Faculty of Medicine, Universitas Padjadjaran, Bandung, Indonesia
- Central Laboratory, Universitas Padjadjaran, Bandung, Indonesia
| | | | - Ronny Lesmana
- Department of Biomedical Sciences, Faculty of Medicine, Universitas Padjadjaran, Bandung, Indonesia
- Division of Biological Activity, Central Laboratory, Universitas Padjadjaran, Bandung, Indonesia
- Center of Excellence in Higher Education for Pharmaceutical Care Innovation, Universitas Padjadjaran, Bandung, Indonesia
| | - Ade Gafar Abdullah
- Electrical Engineering Studies Program, Universitas Pendidikan Indonesia, Bandung, Indonesia
| |
Collapse
|
9
|
Ponomarev AS, Gilazieva ZE, Solovyova VV, Rizvanov AA. Molecular Mechanisms of Tumor Cell Stemness Modulation during Formation of Spheroids. BIOCHEMISTRY. BIOKHIMIIA 2023; 88:979-994. [PMID: 37751868 DOI: 10.1134/s0006297923070106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 05/30/2023] [Accepted: 06/07/2023] [Indexed: 09/28/2023]
Abstract
Cancer stem cells (CSCs), their properties and interaction with microenvironment are of interest in modern medicine and biology. There are many studies on the emergence of CSCs and their involvement in tumor pathogenesis. The most important property inherent to CSCs is their stemness. Stemness combines ability of the cell to maintain its pluripotency, give rise to differentiated cells, and interact with environment to maintain a balance between dormancy, proliferation, and regeneration. While adult stem cells exhibit these properties by participating in tissue homeostasis, CSCs behave as their malignant equivalents. High tumor resistance to therapy, ability to differentiate, activate angiogenesis and metastasis arise precisely due to the stemness of CSCs. These cells can be used as a target for therapy of different types of cancer. Laboratory models are needed to study cancer biology and find new therapeutic strategies. A promising direction is three-dimensional tumor models or spheroids. Such models exhibit properties resembling stemness in a natural tumor. By modifying spheroids, it becomes possible to investigate the effect of therapy on CSCs, thus contributing to the development of anti-tumor drug test systems. The review examines the niche of CSCs, the possibility of their study using three-dimensional spheroids, and existing markers for assessing stemness of CSCs.
Collapse
Affiliation(s)
- Aleksei S Ponomarev
- Kazan (Volga Region) Federal University, Kazan, Republic of Tatarstan, 420008, Russia
| | - Zarema E Gilazieva
- Kazan (Volga Region) Federal University, Kazan, Republic of Tatarstan, 420008, Russia
| | - Valeriya V Solovyova
- Kazan (Volga Region) Federal University, Kazan, Republic of Tatarstan, 420008, Russia
| | - Albert A Rizvanov
- Kazan (Volga Region) Federal University, Kazan, Republic of Tatarstan, 420008, Russia.
| |
Collapse
|
10
|
du Plessis TL, Abdulla N, Kaur M. The utility of 3D models to study cholesterol in cancer: Insights and future perspectives. Front Oncol 2023; 13:1156246. [PMID: 37077827 PMCID: PMC10106729 DOI: 10.3389/fonc.2023.1156246] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 03/21/2023] [Indexed: 04/05/2023] Open
Abstract
Cholesterol remains a vital molecule required for life; however, increasing evidence exists implicating cholesterol in cancer development and progression. Numerous studies investigating the relationship between cholesterol and cancer in 2-dimensional (2D) culture settings exist, however these models display inherent limitations highlighting the incipient need to develop better models to study disease pathogenesis. Due to the multifaceted role cholesterol plays in the cell, researchers have begun utilizing 3-dimensional (3D) culture systems, namely, spheroids and organoids to recapitulate cellular architecture and function. This review aims to describe current studies exploring the relationship between cancer and cholesterol in a variety of cancer types using 3D culture systems. We briefly discuss cholesterol dyshomeostasis in cancer and introduce 3D in-vitro culture systems. Following this, we discuss studies performed in cancerous spheroid and organoid models that focused on cholesterol, highlighting the dynamic role cholesterol plays in various cancer types. Finally, we attempt to provide potential gaps in research that should be explored in this rapidly evolving field of study.
Collapse
|
11
|
Goruppi S, Clocchiatti A, Bottoni G, Di Cicco E, Ma M, Tassone B, Neel V, Demehri S, Simon C, Paolo Dotto G. The ULK3 kinase is a determinant of keratinocyte self-renewal and tumorigenesis targeting the arginine methylome. Nat Commun 2023; 14:887. [PMID: 36797248 PMCID: PMC9935893 DOI: 10.1038/s41467-023-36410-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 01/26/2023] [Indexed: 02/18/2023] Open
Abstract
Epigenetic mechanisms oversee epidermal homeostasis and oncogenesis. The identification of kinases controlling these processes has direct therapeutic implications. We show that ULK3 is a nuclear kinase with elevated expression levels in squamous cell carcinomas (SCCs) arising in multiple body sites, including skin and Head/Neck. ULK3 loss by gene silencing or deletion reduces proliferation and clonogenicity of human keratinocytes and SCC-derived cells and affects transcription impinging on stem cell-related and metabolism programs. Mechanistically, ULK3 directly binds and regulates the activity of two histone arginine methyltransferases, PRMT1 and PRMT5 (PRMT1/5), with ULK3 loss compromising PRMT1/5 chromatin association to specific genes and overall methylation of histone H4, a shared target of these enzymes. These findings are of translational significance, as downmodulating ULK3 by RNA interference or locked antisense nucleic acids (LNAs) blunts the proliferation and tumorigenic potential of SCC cells and promotes differentiation in two orthotopic models of skin cancer.
Collapse
Affiliation(s)
- Sandro Goruppi
- Cutaneous Biology Research Center, Massachusetts General Hospital, Charlestown, 02129, MA, USA.
- Department of Dermatology, Massachusetts General Hospital and Harvard Medical School, Boston, 02114, MA, USA.
| | - Andrea Clocchiatti
- Cutaneous Biology Research Center, Massachusetts General Hospital, Charlestown, 02129, MA, USA
- Department of Dermatology, Massachusetts General Hospital and Harvard Medical School, Boston, 02114, MA, USA
| | - Giulia Bottoni
- Cutaneous Biology Research Center, Massachusetts General Hospital, Charlestown, 02129, MA, USA
- Department of Dermatology, Massachusetts General Hospital and Harvard Medical School, Boston, 02114, MA, USA
| | - Emery Di Cicco
- Cutaneous Biology Research Center, Massachusetts General Hospital, Charlestown, 02129, MA, USA
- Department of Dermatology, Massachusetts General Hospital and Harvard Medical School, Boston, 02114, MA, USA
| | - Min Ma
- Personalized Cancer Prevention Research Unit and Head and Neck Surgery Division, Centre Hospitalier Universitaire Vaudois, Lausanne, 1011, Switzerland
- Department of Immunobiology, University of Lausanne, Epalinges, 1066, Switzerland
| | - Beatrice Tassone
- Personalized Cancer Prevention Research Unit and Head and Neck Surgery Division, Centre Hospitalier Universitaire Vaudois, Lausanne, 1011, Switzerland
- Department of Immunobiology, University of Lausanne, Epalinges, 1066, Switzerland
| | - Victor Neel
- Department of Dermatology, Massachusetts General Hospital and Harvard Medical School, Boston, 02114, MA, USA
| | - Shadhmer Demehri
- Cutaneous Biology Research Center, Massachusetts General Hospital, Charlestown, 02129, MA, USA
- Department of Dermatology, Massachusetts General Hospital and Harvard Medical School, Boston, 02114, MA, USA
| | - Christian Simon
- Personalized Cancer Prevention Research Unit and Head and Neck Surgery Division, Centre Hospitalier Universitaire Vaudois, Lausanne, 1011, Switzerland
- Department of Immunobiology, University of Lausanne, Epalinges, 1066, Switzerland
- International Cancer Prevention Institute, Epalinges, 1066, Switzerland
| | - G Paolo Dotto
- Cutaneous Biology Research Center, Massachusetts General Hospital, Charlestown, 02129, MA, USA.
- Department of Dermatology, Massachusetts General Hospital and Harvard Medical School, Boston, 02114, MA, USA.
- Personalized Cancer Prevention Research Unit and Head and Neck Surgery Division, Centre Hospitalier Universitaire Vaudois, Lausanne, 1011, Switzerland.
- Department of Immunobiology, University of Lausanne, Epalinges, 1066, Switzerland.
- International Cancer Prevention Institute, Epalinges, 1066, Switzerland.
| |
Collapse
|
12
|
Huang WY, Lin YS, Lin YC, Nieh S, Chang YM, Lee TY, Chen SF, Yang KD. Cancer-Associated Fibroblasts Promote Tumor Aggressiveness in Head and Neck Cancer through Chemokine Ligand 11 and C-C Motif Chemokine Receptor 3 Signaling Circuit. Cancers (Basel) 2022; 14:cancers14133141. [PMID: 35804913 PMCID: PMC9264987 DOI: 10.3390/cancers14133141] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 06/23/2022] [Accepted: 06/23/2022] [Indexed: 02/01/2023] Open
Abstract
Simple Summary Certain tumor aggressiveness-associated mediators from cancer-associated fibroblasts (CAFs) in tumor microenvironment have been reported. Using gene expression analysis, we identified that CAFs overexpress Chemokine ligand 11 (CCL11), which is associated with tumor migration and invasion, increased expression of cancer stem cell properties, and induction of the epithelial-to-mesenchymal transition. Neutralization of CAF-induced CCL11 reversed the aggressive phenotype of cancer cells. Based on the immunohistochemical staining of clinical samples, we found that increased co-expression of CCL11 and its receptor, C-C Motif Chemokine Receptor 3 (CCR3), was associated with poor overall survival. Our results suggest that targeting CCL11-CCR3 signaling is a potential therapeutic strategy for patients with aggressive head and neck cancer. Abstract The tumor microenvironment (TME) plays a crucial role in tumor progression. One of its key stromal components, cancer-associated fibroblasts (CAFs), may crosstalk with cancer cells by secreting certain cytokines or chemokines. However, which important mediator(s) are released by CAFs, and the underlying molecular mechanism, remain largely unknown. In the present study, we isolated patient-derived CAFs and normal fibroblasts (NFs). Using microarray analysis, we detected chemokine ligand 11 (CCL11) overexpression in CAFs compared to NFs. CCL11 administration promoted the migration and invasion of head and neck cancer (HNC) cells with enhanced cancer stem cell-like properties and induction of epithelial-to-mesenchymal transition. Furthermore, neutralization of CCL11 activity reversed the aggressive phenotype of CAF-induced cancer cells. Confocal microscopy showed colocalization of CCL11 and CC chemokine receptor 3 (CCR3) on HNC cells. Moreover, immunohistochemical analysis of clinical samples from 104 patients with HNC showed that expression of CCL11 and CCR3 were significantly correlated with poor overall survival (p = 0.003 and 0.044, respectively). Collectively, CCL11 expressed on CAFs promotes HNC invasiveness, and neutralization of CCL11 reverses this effect. We propose that the CCL11/CCR3 signaling circuit is a potential target for optimizing therapeutic strategies against HNC.
Collapse
Affiliation(s)
- Wen-Yen Huang
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei 112, Taiwan;
- Department of Radiation Oncology, Tri-Service General Hospital, National Defense Medical Center, Taipei 114, Taiwan
| | - Yaoh-Shiang Lin
- Department of Otorhinolaryngology, Head and Neck Surgery, Kaohsiung Veterans General Hospital, Kaohsiung 813, Taiwan;
| | - Yu-Chun Lin
- Department of Pathology, Tri-Service General Hospital, National Defense Medical Center, Taipei 114, Taiwan; (Y.-C.L.); (S.N.); (Y.-M.C.)
| | - Shin Nieh
- Department of Pathology, Tri-Service General Hospital, National Defense Medical Center, Taipei 114, Taiwan; (Y.-C.L.); (S.N.); (Y.-M.C.)
| | - Yi-Ming Chang
- Department of Pathology, Tri-Service General Hospital, National Defense Medical Center, Taipei 114, Taiwan; (Y.-C.L.); (S.N.); (Y.-M.C.)
- Department of Pathology, Kaohsiung Veterans General Hospital, Kaohsiung 813, Taiwan
| | - Tsai-Yu Lee
- Division of Colon and Rectum Surgery, Department of Surgery, Tri-Service General Hospital Songshan Branch, National Defense Medical Center, Taipei 105, Taiwan;
| | - Su-Feng Chen
- Department of Dentistry, School of Dentistry, China Medical University, Taichung 406, Taiwan
- Correspondence: (S.-F.C.); (K.D.Y.)
| | - Kuender D. Yang
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei 112, Taiwan;
- Division of Medical Research, MacKay Children’s Hospital, Taipei 104, Taiwan
- Department of Immunology & Microbiology, National Defense Medical Center, Taipei 114, Taiwan
- Correspondence: (S.-F.C.); (K.D.Y.)
| |
Collapse
|
13
|
Zou X, Yu K, Chu X, Yang L. Betanin alleviates inflammation and ameliorates apoptosis on human oral squamous cancer cells SCC131 and SCC4 through the NF‐κB/PI3K/Akt signaling pathway. J Biochem Mol Toxicol 2022; 36:e23094. [PMID: 35645143 DOI: 10.1002/jbt.23094] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 03/30/2022] [Accepted: 04/25/2022] [Indexed: 11/08/2022]
Affiliation(s)
- Xuan Zou
- Department of Stomatology The Fifth Medical Center of Chinese PLA General Hospital Beijing China
| | - Kaitao Yu
- Department of Stomatology The Fifth Medical Center of Chinese PLA General Hospital Beijing China
| | - Xiaoyang Chu
- Department of Stomatology The Fifth Medical Center of Chinese PLA General Hospital Beijing China
| | - Lili Yang
- Department of Stomatology The Fifth Medical Center of Chinese PLA General Hospital Beijing China
| |
Collapse
|
14
|
Cao L, Bridle KR, Shrestha R, Prithviraj P, Crawford DHG, Jayachandran A. CD73 and PD-L1 as Potential Therapeutic Targets in Gallbladder Cancer. Int J Mol Sci 2022; 23:ijms23031565. [PMID: 35163489 PMCID: PMC8836068 DOI: 10.3390/ijms23031565] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 01/21/2022] [Accepted: 01/28/2022] [Indexed: 12/24/2022] Open
Abstract
Gallbladder cancer (GBC) is one of the most common and aggressive biliary tract cancers with a dismal prognosis. Ongoing clinical trials are evaluating a few selected immune checkpoint inhibitors (ICIs) as monotherapy for the treatment of GBC patients. However, only a subset of patients benefits from these treatments. To improve ICI therapy response, molecular mechanisms that confer resistance to immune checkpoint (IC) blockade needs to be explored. Epithelial-to-mesenchymal transition (EMT) program and cancer stem cells (CSCs) have been implicated as key processes that confer ICI treatment resistance. However, in GBC the EMT-CSC-IC axis has not yet been clearly elucidated. This study aims to examine the aberrant expression of ICs associated with CSC and EMT. We successfully enriched CSCs by utilizing a 3-dimensional culture system and established a reversible EMT model with human GBC NOZ cell line. Notably, ICs CD73 and PD-L1 were closely associated with both CSC and EMT phenotypes. Knockdown of CD73 or PD-L1 reduced the proliferative and motile abilities of both adherent monolayers and anchorage-free spheroids. In conclusion, blocking CD73 and PD-L1 offer a promising therapeutic strategy for targeting highly aggressive populations with CSC and EMT phenotype to improve GBC patient prognosis.
Collapse
Affiliation(s)
- Lu Cao
- Faculty of Medicine, The University of Queensland, Brisbane, QLD 4120, Australia; (L.C.); (K.R.B.); (R.S.); (D.H.G.C.)
- Gallipoli Medical Research Institute, Greenslopes Private Hospital, Brisbane, QLD 4120, Australia
| | - Kim R. Bridle
- Faculty of Medicine, The University of Queensland, Brisbane, QLD 4120, Australia; (L.C.); (K.R.B.); (R.S.); (D.H.G.C.)
- Gallipoli Medical Research Institute, Greenslopes Private Hospital, Brisbane, QLD 4120, Australia
| | - Ritu Shrestha
- Faculty of Medicine, The University of Queensland, Brisbane, QLD 4120, Australia; (L.C.); (K.R.B.); (R.S.); (D.H.G.C.)
- Gallipoli Medical Research Institute, Greenslopes Private Hospital, Brisbane, QLD 4120, Australia
| | | | - Darrell H. G. Crawford
- Faculty of Medicine, The University of Queensland, Brisbane, QLD 4120, Australia; (L.C.); (K.R.B.); (R.S.); (D.H.G.C.)
- Gallipoli Medical Research Institute, Greenslopes Private Hospital, Brisbane, QLD 4120, Australia
| | - Aparna Jayachandran
- Faculty of Medicine, The University of Queensland, Brisbane, QLD 4120, Australia; (L.C.); (K.R.B.); (R.S.); (D.H.G.C.)
- Gallipoli Medical Research Institute, Greenslopes Private Hospital, Brisbane, QLD 4120, Australia
- Fiona Elsey Cancer Research Institute, Ballarat, VIC 3350, Australia;
- Correspondence:
| |
Collapse
|
15
|
Cabeza L, El-Hammadi MM, Ortiz R, Cayero-Otero MD, Jiménez-López J, Perazzoli G, Martin-Banderas L, Baeyens JM, Melguizo C, Prados J. Evaluation of poly (lactic-co-glycolic acid) nanoparticles to improve the therapeutic efficacy of paclitaxel in breast cancer. BIOIMPACTS : BI 2022; 12:515-531. [PMID: 36644541 PMCID: PMC9809141 DOI: 10.34172/bi.2022.23433] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 02/10/2021] [Accepted: 02/20/2021] [Indexed: 01/18/2023]
Abstract
Introduction: Paclitaxel (PTX) is a cornerstone in the treatment of breast cancer, the most common type of cancer in women. However, this drug has serious limitations, including lack of tissue-specificity, poor water solubility, and the development of drug resistance. The transport of PTX in a polymeric nanoformulation could overcome these limitations. Methods: In this study, PLGA-PTX nanoparticles (NPs) were assayed in breast cancer cell lines, breast cancer stem cells (CSCs) and multicellular tumor spheroids (MTSs) analyzing cell cycle, cell uptake (Nile Red-NR-) and α-tubulin expression. In addition, PLGA-PTX NPs were tested in vivo using C57BL/6 mice, including a biodistribution assay. Results: PTX-PLGA NPs induced a significant decrease in the PTX IC50 of cancer cell lines (1.31 and 3.03-fold reduction in MDA-MB-231 and E0771 cells, respectively) and CSCs. In addition, MTSs treated with PTX-PLGA exhibited a more disorganized surface and significantly higher cell death rates compared to free PTX (27.9% and 16.3% less in MTSs from MCF-7 and E0771, respectively). PTX-PLGA nanoformulation preserved PTX's mechanism of action and increased its cell internalization. Interestingly, PTX-PLGA NPs not only reduced the tumor volume of treated mice but also increased the antineoplastic drug accumulation in their lungs, liver, and spleen. In addition, mice treated with PTX-loaded NPs showed blood parameters similar to the control mice, in contrast with free PTX. Conclusion: These results suggest that our PTX-PLGA NPs could be a suitable strategy for breast cancer therapy, improving antitumor drug efficiency and reducing systemic toxicity without altering its mechanism of action.
Collapse
Affiliation(s)
- Laura Cabeza
- Institute of Biopathology and Regenerative Medicine (IBIMER), Center of Biomedical Research (CIBM), University of Granada, 18100 Granada, Spain
,Department of Anatomy and Embryology, Faculty of Medicine, University of Granada, 18071 Granada, Spain
,Biosanitary Institute of Granada (ibs.GRANADA), SAS-University of Granada, 18014 Granada, Spain
| | - Mazen M. El-Hammadi
- Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of Seville, 41012 Sevilla, Spain
| | - Raul Ortiz
- Institute of Biopathology and Regenerative Medicine (IBIMER), Center of Biomedical Research (CIBM), University of Granada, 18100 Granada, Spain
,Department of Anatomy and Embryology, Faculty of Medicine, University of Granada, 18071 Granada, Spain
,Biosanitary Institute of Granada (ibs.GRANADA), SAS-University of Granada, 18014 Granada, Spain
| | - Maria D. Cayero-Otero
- Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of Seville, 41012 Sevilla, Spain
| | - Julia Jiménez-López
- Institute of Biopathology and Regenerative Medicine (IBIMER), Center of Biomedical Research (CIBM), University of Granada, 18100 Granada, Spain
,Biosanitary Institute of Granada (ibs.GRANADA), SAS-University of Granada, 18014 Granada, Spain
| | - Gloria Perazzoli
- Institute of Biopathology and Regenerative Medicine (IBIMER), Center of Biomedical Research (CIBM), University of Granada, 18100 Granada, Spain
,Biosanitary Institute of Granada (ibs.GRANADA), SAS-University of Granada, 18014 Granada, Spain
| | - Lucia Martin-Banderas
- Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of Seville, 41012 Sevilla, Spain
| | - Jose M. Baeyens
- Department of Pharmacology, Institute of Neuroscience, Biomedical Research Center (CIBM), University of Granada, 18100, Granada, Spain
| | - Consolación Melguizo
- Institute of Biopathology and Regenerative Medicine (IBIMER), Center of Biomedical Research (CIBM), University of Granada, 18100 Granada, Spain
,Department of Anatomy and Embryology, Faculty of Medicine, University of Granada, 18071 Granada, Spain
,Biosanitary Institute of Granada (ibs.GRANADA), SAS-University of Granada, 18014 Granada, Spain
,Corresponding author: Consolación Melguizo,
| | - Jose Prados
- Institute of Biopathology and Regenerative Medicine (IBIMER), Center of Biomedical Research (CIBM), University of Granada, 18100 Granada, Spain
,Department of Anatomy and Embryology, Faculty of Medicine, University of Granada, 18071 Granada, Spain
,Biosanitary Institute of Granada (ibs.GRANADA), SAS-University of Granada, 18014 Granada, Spain
| |
Collapse
|
16
|
Chen YA, Ho CL, Ku MT, Hwu L, Lu CH, Chiu SJ, Chang WY, Liu RS. Detection of cancer stem cells by EMT-specific biomarker-based peptide ligands. Sci Rep 2021; 11:22430. [PMID: 34789743 PMCID: PMC8599855 DOI: 10.1038/s41598-021-01138-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 10/21/2021] [Indexed: 11/30/2022] Open
Abstract
The occurrence of epithelial-mesenchymal transition (EMT) within tumors, which enables invasion and metastasis, is linked to cancer stem cells (CSCs) with drug and radiation resistance. We used two specific peptides, F7 and SP peptides, to detect EMT derived cells or CSCs. Human tongue squamous carcinoma cell line-SAS transfected with reporter genes was generated and followed by spheroid culture. A small molecule inhibitor-Unc0642 and low-dose ionizing radiation (IR) were used for induction of EMT. Confocal microscopic imaging and fluorescence-activated cell sorting analysis were performed to evaluate the binding ability and specificity of peptides. A SAS xenograft mouse model with EMT induction was established for assessing the binding affinity of peptides. The results showed that F7 and SP peptides not only specifically penetrated into cytoplasm of SAS cells but also bound to EMT derived cells and CSCs with high nucleolin and vimentin expression. In addition, the expression of CSC marker and the binding of peptides were increased in tumors isolated from Unc0642/IR-treated groups. Our study demonstrates the potential of these peptides for detecting EMT derived cells or CSCs and might provide an alternative isolation method for these subpopulations within the tumor in the future.
Collapse
Affiliation(s)
- Yi-An Chen
- Department of Biomedical Imaging and Radiological Sciences, National Yang Ming Chiao Tung University, Taipei, 112, Taiwan.,Molecular and Genetic Imaging Core/Taiwan Mouse Clinic, National Comprehensive Mouse Phenotyping and Drug Testing Center, Taipei, 112, Taiwan
| | - Cheau-Ling Ho
- Department of Biomedical Imaging and Radiological Sciences, National Yang Ming Chiao Tung University, Taipei, 112, Taiwan
| | - Min-Tzu Ku
- Department of Biomedical Imaging and Radiological Sciences, National Yang Ming Chiao Tung University, Taipei, 112, Taiwan.,PET center, Department of Nuclear Medicine, Taipei Veterans General Hospital, Taipei, 112, Taiwan
| | - Luen Hwu
- Department of Biomedical Imaging and Radiological Sciences, National Yang Ming Chiao Tung University, Taipei, 112, Taiwan.,Molecular and Genetic Imaging Core/Taiwan Mouse Clinic, National Comprehensive Mouse Phenotyping and Drug Testing Center, Taipei, 112, Taiwan
| | - Cheng-Hsiu Lu
- Core Laboratory for Phenomics and Diagnostics, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, 833, Taiwan.,Department of Medical Research, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, 833, Taiwan
| | - Sain-Jhih Chiu
- Molecular and Genetic Imaging Core/Taiwan Mouse Clinic, National Comprehensive Mouse Phenotyping and Drug Testing Center, Taipei, 112, Taiwan
| | - Wen-Yi Chang
- Department of Biomedical Imaging and Radiological Sciences, National Yang Ming Chiao Tung University, Taipei, 112, Taiwan.,PET center, Department of Nuclear Medicine, Taipei Veterans General Hospital, Taipei, 112, Taiwan
| | - Ren-Shyan Liu
- Department of Biomedical Imaging and Radiological Sciences, National Yang Ming Chiao Tung University, Taipei, 112, Taiwan. .,PET center, Department of Nuclear Medicine, Taipei Veterans General Hospital, Taipei, 112, Taiwan. .,Department of Nuclear Medicine, Cheng Hsin General Hospital, Taipei, 112, Taiwan.
| |
Collapse
|
17
|
Zhang M, Dai Z, Zhao X, Wang G, Lai R. Anticarin β Inhibits Human Glioma Progression by Suppressing Cancer Stemness via STAT3. Front Oncol 2021; 11:715673. [PMID: 34408983 PMCID: PMC8366317 DOI: 10.3389/fonc.2021.715673] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 07/20/2021] [Indexed: 01/04/2023] Open
Abstract
Glioma is the most common form of malignant brain cancer. It is very difficult to cure malignant glioma because of the presence of glioma stem cells, which are a barrier to cure, have high tumorigenesis, associated with drug resistance, and responsible for relapse by regulating stemness genes. In this study, our results demonstrated that anticarin β, a natural compound from Antiaris toxicaria, can effectively and selectively suppress proliferation and cause apoptosis in glioma cells, which has an IC50 that is 100 times lower than that in mouse normal neural stem cells. Importantly, cell sphere formation assay and real time-quantitative analysis reveal that anticarin β inhibits cancer stemness by modulating related stemness gene expression. Additionally, anticarin β induces DNA damage to regulate the oncogene expression of signal transducer and activator of transcription 3 (STAT3), Akt, mitogen-activated protein kinases (MAPKs), and eventually leading to apoptosis. Furthermore, anticarin β effectively inhibits glioma growth and prolongs the lifts pan of tumor-bearing mice without systemic toxicity in the orthotopic xenograft mice model. These results suggest that anticarin β is a promising candidate inhibitor for malignant glioma.
Collapse
Affiliation(s)
- Min Zhang
- Key Laboratory of Animal Models and Human Disease Mechanisms, Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, Kunming Institute of Zoology - The Chinese University of Hong Kong (KIZ-CUHK) Joint Laboratory of Bioresources and Molecular Research in Common Diseases, National Resource Center for Non-Human Primates, Kunming Primate Research Center, and National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Kunming Institute of Zoology, Kunming, China.,Kunming College of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Zhi Dai
- Key Laboratory of Animal Models and Human Disease Mechanisms, Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, Kunming Institute of Zoology - The Chinese University of Hong Kong (KIZ-CUHK) Joint Laboratory of Bioresources and Molecular Research in Common Diseases, National Resource Center for Non-Human Primates, Kunming Primate Research Center, and National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Kunming Institute of Zoology, Kunming, China
| | - Xudong Zhao
- Key Laboratory of Animal Models and Human Disease Mechanisms, Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, Kunming Institute of Zoology - The Chinese University of Hong Kong (KIZ-CUHK) Joint Laboratory of Bioresources and Molecular Research in Common Diseases, National Resource Center for Non-Human Primates, Kunming Primate Research Center, and National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Kunming Institute of Zoology, Kunming, China
| | - Gan Wang
- Key Laboratory of Animal Models and Human Disease Mechanisms, Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, Kunming Institute of Zoology - The Chinese University of Hong Kong (KIZ-CUHK) Joint Laboratory of Bioresources and Molecular Research in Common Diseases, National Resource Center for Non-Human Primates, Kunming Primate Research Center, and National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Kunming Institute of Zoology, Kunming, China
| | - Ren Lai
- Key Laboratory of Animal Models and Human Disease Mechanisms, Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, Kunming Institute of Zoology - The Chinese University of Hong Kong (KIZ-CUHK) Joint Laboratory of Bioresources and Molecular Research in Common Diseases, National Resource Center for Non-Human Primates, Kunming Primate Research Center, and National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Kunming Institute of Zoology, Kunming, China
| |
Collapse
|
18
|
4-Acetyl-Antroquinonol B Improves the Sensitization of Cetuximab on Both Kras Mutant and Wild Type Colorectal Cancer by Modulating the Expression of Ras/Raf/miR-193a-3p Signaling Axis. Int J Mol Sci 2021; 22:ijms22147508. [PMID: 34299137 PMCID: PMC8307961 DOI: 10.3390/ijms22147508] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 07/03/2021] [Accepted: 07/05/2021] [Indexed: 12/11/2022] Open
Abstract
The KRAS mutation is one of the leading driver mutations in colorectal cancer (CRC), and it is usually associated with poor prognosis and drug resistance. Therapies targeting the epidermal growth factor receptor (EFGR) are widely used for end-stage CRC. However, patients with KRAS mutant genes cannot benefit from this therapy because of Ras signaling activation by KRAS mutant genes. Our previous study revealed the anti-proliferative effect of 4-acetyl-antroquinonol B (4-AAQB) on CRC cells, but whether the drug is effective in KRAS-mutant CRC remains unknown. We screened CRC cell lines harboring the KRAS mutation, namely G12A, G12C, G12V and G13D, with one wild type cell line as the control; SW1463 and Caco-2 cell lines were used for further experiments. Sulforhodamine B assays, together with the clonogenicity and invasion assay, revealed that KRAS-mutant SW1463 cells were resistant to cetuximab; however, 4-AAQB treatment effectively resensitized CRC cells to cetuximab through the reduction of colony formation, invasion, and tumorsphere generation and of oncogenic KRAS signaling cascade of CRC cells. Thus, inducing cells with 4-AAQB before cetuximab therapy could resensitize KRAS-mutant, but not wild-type, cells to cetuximab. Therefore, we hypothesized that 4-AAQB can inhibit KRAS. In silico analysis of the publicly available GEO (GSE66548) dataset of KRAS-mutated versus KRAS wild-type CRC patients confirmed that miR-193a-3p was significantly downregulated in the former compared with the latter patient population. Overexpression of miR-193a-3p considerably reduced the oncogenicity of both CRC cells. Furthermore, KRAS is a key target of miR-193a-3p. In vivo treatment with the combination of 4-AAQB and cetuximab significantly reduced the tumor burden of a xenograft mice model through the reduction of the expression of oncogenic markers (EGFR) and p-MEK, p-ERK, and c-RAF/p-c-RAF signaling, with the simultaneous induction of miR-193a-3p expression in the plasma. In summary, our findings provide strong evidence regarding the therapeutic effect of 4-AAQB on KRAS-mutant CRC cells. Furthermore, 4-AAQB effectively inhibits Ras singling in CRC cells, through which KRAS-mutant CRC can be resensitized to cetuximab.
Collapse
|
19
|
Enkhbat M, Liu Y, Kim J, Xu Y, Yin Z, Liu T, Deng C, Zou C, Xie X, Li X, Wang P. Expansion of Rare Cancer Cells into Tumoroids for Therapeutic Regimen and Cancer Therapy. ADVANCED THERAPEUTICS 2021. [DOI: 10.1002/adtp.202100017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Myagmartsend Enkhbat
- Shenzhen Key Laboratory of Biomimetic Materials and Cellular Immunomodulation Shenzhen Institute of Advanced Technology Chinese Academy of Sciences Shenzhen Guangdong 518055 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Yung‐Chiang Liu
- Shenzhen Key Laboratory of Biomimetic Materials and Cellular Immunomodulation Shenzhen Institute of Advanced Technology Chinese Academy of Sciences Shenzhen Guangdong 518055 China
| | - Jua Kim
- Shenzhen Key Laboratory of Biomimetic Materials and Cellular Immunomodulation Shenzhen Institute of Advanced Technology Chinese Academy of Sciences Shenzhen Guangdong 518055 China
| | - Yanshan Xu
- Shenzhen Key Laboratory of Biomimetic Materials and Cellular Immunomodulation Shenzhen Institute of Advanced Technology Chinese Academy of Sciences Shenzhen Guangdong 518055 China
| | - Zongyi Yin
- Department of Hepatobiliary Surgery General Hospital of Shenzhen University Guangdong 518055 China
| | - Tzu‐Ming Liu
- Cancer Center, Faculty of Health Sciences University of Macau Macao 999078 China
| | - Chu‐Xia Deng
- Cancer Center, Faculty of Health Sciences University of Macau Macao 999078 China
| | - Chang Zou
- The First Affiliated Hospital of Southern University Shenzhen People's Hospital Shenzhen Guangdong 518020 China
| | - Xi Xie
- State Key Laboratory of Optoelectronic Materials and Technologies School of Electronics and Information Technology Sun Yat‐sen University Guangzhou 510275 China
| | - Xiaowu Li
- Department of Hepatobiliary Surgery General Hospital of Shenzhen University Guangdong 518055 China
| | - Peng‐Yuan Wang
- Shenzhen Key Laboratory of Biomimetic Materials and Cellular Immunomodulation Shenzhen Institute of Advanced Technology Chinese Academy of Sciences Shenzhen Guangdong 518055 China
- Department of Chemistry and Biotechnology Swinburne University of Technology Victoria 3122 Australia
| |
Collapse
|
20
|
Hydroxychloroquine (HCQ) Modulates Autophagy and Oxidative DNA Damage Stress in Hepatocellular Carcinoma to Overcome Sorafenib Resistance via TLR9/SOD1/hsa-miR-30a-5p/Beclin-1 Axis. Cancers (Basel) 2021; 13:cancers13133227. [PMID: 34203465 PMCID: PMC8267639 DOI: 10.3390/cancers13133227] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 06/23/2021] [Accepted: 06/24/2021] [Indexed: 12/12/2022] Open
Abstract
Sorafenib is used for treating advanced hepatocellular carcinoma (HCC), but some patients acquire sorafenib resistance. We investigated the mechanisms underlying acquired sorafenib resistance in HCC cells and targeted them to re-sensitize them to sorafenib. In silico analysis indicated that toll-like receptor (TLR)-9 was significantly overexpressed, and that miRNA (hsa-miR-30a-5p) was downregulated in sorafenib-resistant HCC cells, which modulated HCC cell proliferation, oxidative stress, and apoptosis. TLR9 overexpression increased HCC cell proliferation, whereas TLR9 inhibition from hydroxychloroquine (HCQ) decreased HCC cell proliferation, tumor growth, oxidative stress marker (SOD1), and the formation of autophagosome bodies (reduced ATG5 and Beclin-1 expression). Moreover, HCQ treatment reduced epithelial-mesenchymal transition, leading to decreased clonogenicity, migratory ability, and invasiveness. HCQ targeted and reduced the self-renewal capacity phenotype by inhibiting tumorsphere generation. Both in vitro and in vivo results demonstrated the synergistic effect of the HCQ-sorafenib combination on sorafenib-resistant HCC (Huh7-SR) cells, increasing their sensitivity to treatment by modulating TLR9, autophagy (ATG5 and Beclin-1), oxidative stress (SOD1), and apoptosis (c-caspase3) expression and thus overcoming the drug resistance. This study's findings indicate that TLR9 overexpression occurs in sorafenib-resistant HCC cells and that its downregulation aids HCC suppression. Moreover, HCQ treatment significantly increases sorafenib's effect on sorafenib-resistant HCC cells.
Collapse
|
21
|
Sağraç D, Şişli HB, Şenkal S, Hayal TB, Şahin F, Doğan A. Organoids in Tissue Transplantation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1347:45-64. [PMID: 34164796 DOI: 10.1007/5584_2021_647] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Improvements in stem cell-based research and genetic modification tools enable stem cell-based tissue regeneration applications in clinical therapies. Although inadequate cell numbers in culture, invasive isolation procedures, and poor survival rates after transplantation remain as major challenges, cell-based therapies are useful tools for tissue regeneration.Organoids hold a great promise for tissue regeneration, organ and disease modeling, drug testing, development, and genetic profiling studies. Establishment of 3D cell culture systems eliminates the disadvantages of 2D models in terms of cell adaptation and tissue structure and function. Organoids possess the capacity to mimic the specific features of tissue architecture, cell-type composition, and the functionality of real organs while preserving the advantages of simplified and easily accessible cell culture models. Thus, organoid technology might emerge as an alternative to cell and tissue transplantation. Although transplantation of various organoids in animal models has been demonstrated, liöitations related to vascularized structure formation, cell viability and functionality remain as obstacles in organoid-based transplantation therapies. Clinical applications of organoid-based transplantations might be possible in the near future, when limitations related to cell viability and tissue integration are solved. In this review, the literature was analyzed and discussed to explore the current status of organoid-based transplantation studies.
Collapse
Affiliation(s)
- Derya Sağraç
- Department of Genetics and Bioengineering, Faculty of Engineering, Yeditepe University, Istanbul, Turkey
| | - Hatice Burcu Şişli
- Department of Genetics and Bioengineering, Faculty of Engineering, Yeditepe University, Istanbul, Turkey
| | - Selinay Şenkal
- Department of Genetics and Bioengineering, Faculty of Engineering, Yeditepe University, Istanbul, Turkey
| | - Taha Bartu Hayal
- Department of Genetics and Bioengineering, Faculty of Engineering, Yeditepe University, Istanbul, Turkey
| | - Fikrettin Şahin
- Department of Genetics and Bioengineering, Faculty of Engineering, Yeditepe University, Istanbul, Turkey
| | - Ayşegül Doğan
- Department of Genetics and Bioengineering, Faculty of Engineering, Yeditepe University, Istanbul, Turkey.
| |
Collapse
|
22
|
The Molecular Basis of Different Approaches for the Study of Cancer Stem Cells and the Advantages and Disadvantages of a Three-Dimensional Culture. Molecules 2021; 26:molecules26092615. [PMID: 33947095 PMCID: PMC8124970 DOI: 10.3390/molecules26092615] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 04/13/2021] [Accepted: 04/26/2021] [Indexed: 12/12/2022] Open
Abstract
Cancer stem cells (CSCs) are a rare tumor subpopulation with high differentiation, proliferative and tumorigenic potential compared to the remaining tumor population. CSCs were first discovered by Bonnet and Dick in 1997 in acute myeloid leukemia. The identification and isolation of these cells in this pioneering study were carried out through the flow cytometry, exploiting the presence of specific cell surface molecular markers (CD34+/CD38−). In the following years, different strategies and projects have been developed for the study of CSCs, which are basically divided into surface markers assays and functional assays; some of these techniques also allow working with a cellular model that better mimics the tumor architecture. The purpose of this mini review is to summarize and briefly describe all the current methods used for the identification, isolation and enrichment of CSCs, describing, where possible, the molecular basis, the advantages and disadvantages of each technique with a particular focus on those that offer a three-dimensional culture.
Collapse
|
23
|
Wong SHD, Xu X, Chen X, Xin Y, Xu L, Lai CHN, Oh J, Wong WKR, Wang X, Han S, You W, Shuai X, Wong N, Tan Y, Duan L, Bian L. Manipulation of the Nanoscale Presentation of Integrin Ligand Produces Cancer Cells with Enhanced Stemness and Robust Tumorigenicity. NANO LETTERS 2021; 21:3225-3236. [PMID: 33764789 DOI: 10.1021/acs.nanolett.1c00501] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Developing strategies for efficient expansion of cancer stem-like cells (CSCs) in vitro will help investigate the mechanism underlying tumorigenesis and cancer recurrence. Herein, we report a dynamic culture substrate tethered with integrin ligand-bearing magnetic nanoparticles via a flexible polymeric linker to enable magnetic manipulation of the nanoscale ligand tether mobility. The cancer cells cultured on the substrate with high ligand tether mobility develop into large semispherical colonies with CSCs features, which can be abrogated by magnetically restricting the ligand tether mobility. Mechanistically, the substrate with high ligand tether mobility suppresses integrin-mediated mechanotransduction and histone-related methylation, thereby enhancing cancer cell stemness. The culture-derived high-stemness cells can generate tumors both locally and at the distant lung and uterus much more efficiently than the low-stemness cells. We believe that this magnetic nanoplatform provides a promising strategy for investigating the dynamic interaction between CSCs and the microenvironment and establishing a cost-effective tumor spheroid model.
Collapse
Affiliation(s)
- Siu Hong Dexter Wong
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong, 999077, China
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Hong Kong, 999077, China
| | - Xiao Xu
- Department of Orthopedics, Shenzhen Intelligent Orthopaedics and Biomedical Innovation Platform, Guangdong Artificial Intelligence Biomedical Innovation Platform, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, 518035, China
| | - Xi Chen
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong, 999077, China
- Shenzhen Research Institute, The Hong Kong Polytechnic University, Shenzhen 518000, China
| | - Ying Xin
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong, 999077, China
- Shenzhen Research Institute, The Hong Kong Polytechnic University, Shenzhen 518000, China
| | - Limei Xu
- Department of Orthopedics, Shenzhen Intelligent Orthopaedics and Biomedical Innovation Platform, Guangdong Artificial Intelligence Biomedical Innovation Platform, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, 518035, China
| | - Chun Him Nathanael Lai
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Hong Kong, 999077, China
| | - Jiwon Oh
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Hong Kong, 999077, China
| | - Wai Ki Ricky Wong
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Hong Kong, 999077, China
| | - Xuemei Wang
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Hong Kong, 999077, China
| | - Shisong Han
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Hong Kong, 999077, China
- PCFM Lab of Ministry of Education, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, China
- Laboratory of Interventional Radiology, Department of Minimally Invasive Interventional Radiology, and Department of Radiology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, China
| | - Wenxing You
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Hong Kong, 999077, China
- Department of Surgery at Sir Y. K. Pao Centre for Cancer, The Chinese University of Hong Kong, Hong Kong, 999077, China
| | - Xintao Shuai
- PCFM Lab of Ministry of Education, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, China
- Laboratory of Interventional Radiology, Department of Minimally Invasive Interventional Radiology, and Department of Radiology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, China
| | - Nathalie Wong
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Hong Kong, 999077, China
- Department of Surgery at Sir Y. K. Pao Centre for Cancer, The Chinese University of Hong Kong, Hong Kong, 999077, China
| | - Youhua Tan
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong, 999077, China
- Shenzhen Research Institute, The Hong Kong Polytechnic University, Shenzhen 518000, China
| | - Li Duan
- Department of Orthopedics, Shenzhen Intelligent Orthopaedics and Biomedical Innovation Platform, Guangdong Artificial Intelligence Biomedical Innovation Platform, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, 518035, China
| | - Liming Bian
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Hong Kong, 999077, China
- Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, 518172, China
- China Orthopedic Regenerative Medicine Group (CORMed) Hangzhou, Zhejiang, 310058, China
| |
Collapse
|
24
|
Slemmons KK, Deel MD, Lin YT, Oristian KM, Kuprasertkul N, Genadry KC, Chen PH, Chi JTA, Linardic CM. A method to culture human alveolar rhabdomyosarcoma cell lines as rhabdospheres demonstrates an enrichment in stemness and Notch signaling. Biol Open 2021; 10:bio.050211. [PMID: 33372065 PMCID: PMC7888706 DOI: 10.1242/bio.050211] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The development of three-dimensional cell culture techniques has allowed cancer researchers to study the stemness properties of cancer cells in in vitro culture. However, a method to grow PAX3-FOXO1 fusion-positive rhabdomyosarcoma (FP-RMS), an aggressive soft tissue sarcoma of childhood, has to date not been reported, hampering efforts to identify the dysregulated signaling pathways that underlie FP-RMS stemness. Here, we first examine the expression of canonical stem cell markers in human RMS tumors and cell lines. We then describe a method to grow FP-RMS cell lines as rhabdospheres and demonstrate that these spheres are enriched in expression of canonical stemness factors as well as Notch signaling components. Specifically, FP-RMS rhabdospheres have increased expression of SOX2, POU5F1 (OCT4), and NANOG, and several receptors and transcriptional regulators in the Notch signaling pathway. FP-RMS rhabdospheres also exhibit functional stemness characteristics including multipotency, increased tumorigenicity in vivo, and chemoresistance. This method provides a novel practical tool to support research into FP-RMS stemness and chemoresistance signaling mechanisms. Summary: Here we report on a method to culture human PAX3-FOXO1 fusion-positive rhabdomyosarcoma cells in three dimensions, and use these rhabdospheres as a novel tool to study their stemness and chemoresistance signaling mechanisms.
Collapse
Affiliation(s)
- Katherine K Slemmons
- Departments of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, North Carolina
| | - Michael D Deel
- Pediatrics, Duke University School of Medicine, Durham, North Carolina
| | - Yi-Tzu Lin
- Pediatrics, Duke University School of Medicine, Durham, North Carolina
| | - Kristianne M Oristian
- Departments of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, North Carolina.,Pediatrics, Duke University School of Medicine, Durham, North Carolina
| | | | - Katia C Genadry
- Pediatrics, Duke University School of Medicine, Durham, North Carolina
| | - Po-Han Chen
- Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, North Carolina
| | - Jen-Tsan Ashley Chi
- Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, North Carolina
| | - Corinne M Linardic
- Departments of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, North Carolina .,Pediatrics, Duke University School of Medicine, Durham, North Carolina
| |
Collapse
|
25
|
Rajaee Z, Khoei S, Mahdavian A, Shirvalilou S, Mahdavi SR, Ebrahimi M. Radio-thermo-sensitivity Induced by Gold Magnetic Nanoparticles in the Monolayer Culture of Human Prostate Carcinoma Cell Line DU145. Anticancer Agents Med Chem 2021; 20:315-324. [PMID: 31840615 DOI: 10.2174/1871520620666191216113052] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 10/09/2019] [Accepted: 10/16/2019] [Indexed: 02/05/2023]
Abstract
BACKGROUND AND OBJECTIVE Prostate cancer is the second cause of death in men worldwide. In this study, the cytotoxic effects of PLGA polymer-coated gold Magnetic Nanoparticles (MGNPs), as a novel treatment to enhance radiation and thermal sensitivity in the presence of hyperthermia (43°C) and electron beam, on DU145 prostate cancer cells were investigated. METHODS Nanoparticles were characterized using TEM, DLS, XRD and SAED methods. MGNPs entrance into the cells was determined using Prussian blue staining and TEM. Furthermore, the cytotoxic effects of combinatorial treatment modalities were assessed by applying colony and sphere formation assay. RESULTS Our results revealed that the decrease of colony and sphere numbers after combinatorial treatment of hyperthermia and radiation in the presence of nanoparticles was significantly higher than the other treatment groups (P<0.05). This treatment method proved that it has the capability of eliminating most of the DU145 cells (80-100%), and increased the value of the linear parameter (α) to 4.86 times. CONCLUSION According to the study, magnetic gold nanoparticles, in addition to having a high atomic number, can effectively transmit heat produced inside them to the adjacent regions under hyperthermia, which increases the effects of radio-thermosensitivity, respectively.
Collapse
Affiliation(s)
- Zhila Rajaee
- Department of Medical Physics, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Samideh Khoei
- Department of Medical Physics, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.,Finetech in Medicine Research Centre, Iran University of Medical Sciences, Tehran, Iran
| | - Alireza Mahdavian
- Polymer Science Department, Iran Polymer & Petrochemical Institute, Tehran, Iran
| | - Sakine Shirvalilou
- Department of Medical Physics, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.,Finetech in Medicine Research Centre, Iran University of Medical Sciences, Tehran, Iran
| | - Seied R Mahdavi
- Department of Medical Physics, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Marzieh Ebrahimi
- Department of Stem Cells and Developmental Biology, Cell Science Research Centre, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| |
Collapse
|
26
|
Chen YL, Yen YC, Jang CW, Wang SH, Huang HT, Chen CH, Hsiao JR, Chang JY, Chen YW. Ephrin A4-ephrin receptor A10 signaling promotes cell migration and spheroid formation by upregulating NANOG expression in oral squamous cell carcinoma cells. Sci Rep 2021; 11:644. [PMID: 33436772 PMCID: PMC7804096 DOI: 10.1038/s41598-020-80060-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 12/15/2020] [Indexed: 01/29/2023] Open
Abstract
Ephrin type-A receptor 10 (EPHA10) has been implicated as a potential target for breast and prostate cancer therapy. However, its involvement in oral squamous cell carcinoma (OSCC) remains unclear. We demonstrated that EPHA10 supports in vivo tumor growth and lymphatic metastasis of OSCC cells. OSCC cell migration, epithelial mesenchymal transition (EMT), and sphere formation were found to be regulated by EPHA10, and EPHA10 was found to drive expression of some EMT- and stemness-associated transcription factors. Among EPHA10 ligands, exogenous ephrin A4 (EFNA4) induced the most OSCC cell migration and sphere formation, as well as up-regulation of SNAIL, NANOG, and OCT4. These effects were abolished by extracellular signal-regulated kinase (ERK) inhibition and NANOG knockdown. Also, EPHA10 was required for EFNA4-induced cell migration, sphere formation, and expression of NANOG and OCT4 mRNA. Our microarray dataset revealed that EFNA4 mRNA expression was associated with expression of NANOG and OCT4 mRNA, and OSCC patients showing high co-expression of EFNA4 with NANOG or OCT4 mRNA demonstrated poor recurrence-free survival rates. Targeting forward signaling of the EFNA4-EPHA10 axis may be a promising therapeutic approach for oral malignancies, and the combination of EFNA4 mRNA and downstream gene expression may be a useful prognostic biomarker for OSCC.
Collapse
Affiliation(s)
- Yu-Lin Chen
- grid.59784.370000000406229172National Institute of Cancer Research, National Health Research Institutes, 35 Keyan Road, Zhunan Town, Miaoli County, 35053 Taiwan
| | - Yi-Chen Yen
- grid.59784.370000000406229172National Institute of Cancer Research, National Health Research Institutes, 35 Keyan Road, Zhunan Town, Miaoli County, 35053 Taiwan
| | - Chuan-Wei Jang
- grid.59784.370000000406229172National Institute of Cancer Research, National Health Research Institutes, 35 Keyan Road, Zhunan Town, Miaoli County, 35053 Taiwan
| | - Ssu-Han Wang
- grid.59784.370000000406229172National Institute of Cancer Research, National Health Research Institutes, 35 Keyan Road, Zhunan Town, Miaoli County, 35053 Taiwan
| | - Hsin-Ting Huang
- grid.59784.370000000406229172National Institute of Cancer Research, National Health Research Institutes, 35 Keyan Road, Zhunan Town, Miaoli County, 35053 Taiwan
| | - Chung-Hsing Chen
- grid.59784.370000000406229172Institute of Population Health Sciences, National Health Research Institutes, Miaoli, Taiwan ,grid.59784.370000000406229172Taiwan Bioinformatics Core, National Health Research Institutes, Miaoli, Taiwan
| | - Jenn-Ren Hsiao
- grid.64523.360000 0004 0532 3255Department of Otolaryngology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Jang-Yang Chang
- grid.59784.370000000406229172National Institute of Cancer Research, National Health Research Institutes, 35 Keyan Road, Zhunan Town, Miaoli County, 35053 Taiwan
| | - Ya-Wen Chen
- grid.59784.370000000406229172National Institute of Cancer Research, National Health Research Institutes, 35 Keyan Road, Zhunan Town, Miaoli County, 35053 Taiwan ,grid.254145.30000 0001 0083 6092Ph.D. Program for Aging, Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
| |
Collapse
|
27
|
Gao S, Soares F, Wang S, Wong CC, Chen H, Yang Z, Liu W, Go MYY, Ahmed M, Zeng Y, O’Brien CA, Sung JJY, He HH, Yu J. CRISPR screens identify cholesterol biosynthesis as a therapeutic target on stemness and drug resistance of colon cancer. Oncogene 2021; 40:6601-6613. [PMID: 34621019 PMCID: PMC8639446 DOI: 10.1038/s41388-021-01882-7] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 05/15/2021] [Accepted: 06/01/2021] [Indexed: 12/13/2022]
Abstract
Cancer stem cells (CSCs) are responsible for tumor progression, recurrence, and drug resistance. To identify genetic vulnerabilities of colon cancer, we performed targeted CRISPR dropout screens comprising 657 Drugbank targets and 317 epigenetic regulators on two patient-derived colon CSC-enriched spheroids. Next-generation sequencing of pooled genomic DNAs isolated from surviving cells yielded therapeutic candidates. We unraveled 44 essential genes for colon CSC-enriched spheroids propagation, including key cholesterol biosynthetic genes (HMGCR, FDPS, and GGPS1). Cholesterol biosynthesis was induced in colon cancer tissues, especially CSC-enriched spheroids. The genetic and pharmacological inhibition of HMGCR/FDPS impaired self-renewal capacity and tumorigenic potential of the spheroid models in vitro and in vivo. Mechanistically, HMGCR or FDPS depletion impaired cancer stemness characteristics by activating TGF-β signaling, which in turn downregulated expression of inhibitors of differentiation (ID) proteins, key regulators of cancer stemness. Cholesterol and geranylgeranyl diphosphate (GGPP) rescued the growth inhibitory and signaling effect of HMGCR/FDPS blockade, implying a direct role of these metabolites in modulating stemness. Finally, cholesterol biosynthesis inhibitors and 5-FU demonstrated antitumor synergy in colon CSC-enriched spheroids, tumor organoids, and xenografts. Taken together, our study unravels novel genetic vulnerabilities of colon CSC-enriched spheroids and suggests cholesterol biosynthesis as a potential target in conjunction with traditional chemotherapy for colon cancer treatment.
Collapse
Affiliation(s)
- Shanshan Gao
- grid.10784.3a0000 0004 1937 0482Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong, China ,grid.415224.40000 0001 2150 066XPrincess Margaret Cancer Centre, University Health Network, Ontario, ON Canada
| | - Fraser Soares
- grid.415224.40000 0001 2150 066XPrincess Margaret Cancer Centre, University Health Network, Ontario, ON Canada
| | - Shiyan Wang
- grid.415224.40000 0001 2150 066XPrincess Margaret Cancer Centre, University Health Network, Ontario, ON Canada
| | - Chi Chun Wong
- grid.10784.3a0000 0004 1937 0482Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong, China
| | - Huarong Chen
- grid.10784.3a0000 0004 1937 0482Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong, China
| | - Zhenjie Yang
- grid.10784.3a0000 0004 1937 0482Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong, China
| | - Weixin Liu
- grid.10784.3a0000 0004 1937 0482Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong, China
| | - Minnie Y. Y. Go
- grid.10784.3a0000 0004 1937 0482Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong, China
| | - Musaddeque Ahmed
- grid.415224.40000 0001 2150 066XPrincess Margaret Cancer Centre, University Health Network, Ontario, ON Canada
| | - Yong Zeng
- grid.415224.40000 0001 2150 066XPrincess Margaret Cancer Centre, University Health Network, Ontario, ON Canada
| | - Catherine Adell O’Brien
- grid.415224.40000 0001 2150 066XPrincess Margaret Cancer Centre, University Health Network, Ontario, ON Canada
| | - Joseph J. Y. Sung
- grid.10784.3a0000 0004 1937 0482Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong, China
| | - Housheng Hansen He
- grid.415224.40000 0001 2150 066XPrincess Margaret Cancer Centre, University Health Network, Ontario, ON Canada ,grid.17063.330000 0001 2157 2938Department of Medical Biophysics, University of Toronto, Ontario, ON Canada
| | - Jun Yu
- grid.10784.3a0000 0004 1937 0482Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong, China
| |
Collapse
|
28
|
MCF7 Spheroid Development: New Insight about Spatio/Temporal Arrangements of TNTs, Amyloid Fibrils, Cell Connections, and Cellular Bridges. Int J Mol Sci 2020; 21:ijms21155400. [PMID: 32751344 PMCID: PMC7432950 DOI: 10.3390/ijms21155400] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 07/17/2020] [Accepted: 07/23/2020] [Indexed: 12/11/2022] Open
Abstract
Human breast adenocarcinoma cells (MCF7) grow in three-dimensional culture as spheroids that represent the structural complexity of avascular tumors. Therefore, spheroids offer a powerful tool for studying cancer development, aggressiveness, and drug resistance. Notwithstanding the large amount of data regarding the formation of MCF7 spheroids, a detailed description of the morpho-functional changes during their aggregation and maturation is still lacking. In this study, in addition to the already established role of gap junctions, we show evidence of tunneling nanotube (TNT) formation, amyloid fibril production, and opening of large stable cellular bridges, thus reporting the sequential events leading to MCF7 spheroid formation. The variation in cell phenotypes, sustained by dynamic expression of multiple proteins, leads to complex networking among cells similar to the sequence of morphogenetic steps occurring in embryogenesis/organogenesis. On the basis of the observation that early events in spheroid formation are strictly linked to the redox homeostasis, which in turn regulate amyloidogenesis, we show that the administration of N-acetyl-l-cysteine (NAC), a reactive oxygen species (ROS) scavenger that reduces the capability of cells to produce amyloid fibrils, significantly affects their ability to aggregate. Moreover, cells aggregation events, which exploit the intrinsic adhesiveness of amyloid fibrils, significantly decrease following the administration during the early aggregation phase of neutral endopeptidase (NEP), an amyloid degrading enzyme.
Collapse
|
29
|
Sun Z, Wang L, Zhou Y, Dong L, Ma W, Lv L, Zhang J, Wang X. Glioblastoma Stem Cell-Derived Exosomes Enhance Stemness and Tumorigenicity of Glioma Cells by Transferring Notch1 Protein. Cell Mol Neurobiol 2020; 40:767-784. [PMID: 31853695 PMCID: PMC11448788 DOI: 10.1007/s10571-019-00771-8] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 12/03/2019] [Indexed: 02/05/2023]
Abstract
Exosomes contain plenty of bioactive information, playing an important role in intercellular communication by transfer their bioactive molecular contents to recipient cells. Glioblastoma stem cells (GSCs) and non-GSC glioma cells coexist in GBM microenvironment; GSC-released exosomes contain intracellular signaling molecules, which may affect the biological phenotypes of recipient cells. However, whether GSC exosomes could affect the biological phenotype of non-GSC glioma cells has not yet been defined. To explore whether GSC exosomes could reprogramme non-GSC glioma cells into GSCs and its possible mechanism involved, non-GSC glioma cells were treated with GSCs released exosomes; the potential mechanisms of action were studied with RNA interference, Notch inhibitors and Western blot analysis. The proliferation, neurosphere formation, invasive capacities, and tumorigenicity of non-GSC glioma cells were increased significantly after GSC exosome treatment; Notch1 signaling pathway was activated in GSCs; Notch1 protein was highly enriched in GSC exosomes; Notch1 signaling pathway and stemness-related protein expressions were increased in GSC exosome treated non-GSC glioma cells and these cell generated tumor tissues; Notch1 protein expression in GSCs and their exosomes, and the neurosphere formation of GSCs were decreased by Notch1 RNA interference; Notch1 signaling pathway protein and stemness protein expressions were decreased in GSC exosome treated non-GSC glioma cells by Notch1 RNA interference and Notch inhibitors. The findings in this study indicated that GSC exosomes act as information carriers, mediated non-GSC glioma cell dedifferentiation into GSCs by delivering Notch1 protein through Notch1 signaling activation, and enhanced stemness and tumorigenicity of non-GSC glioma cells.
Collapse
Affiliation(s)
- Zhen Sun
- Laboratory of Experimental Oncology, State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, West China Clinical Medical School, Sichuan University, No. 1 Keyuan Road 4, Gaopeng Avenu, Hi-tech Zone, Chengdu, 610041, China
| | - Li Wang
- Laboratory of Experimental Oncology, State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, West China Clinical Medical School, Sichuan University, No. 1 Keyuan Road 4, Gaopeng Avenu, Hi-tech Zone, Chengdu, 610041, China
| | - Yueling Zhou
- Laboratory of Experimental Oncology, State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, West China Clinical Medical School, Sichuan University, No. 1 Keyuan Road 4, Gaopeng Avenu, Hi-tech Zone, Chengdu, 610041, China
| | - Lihua Dong
- Human Anatomy Department, School of Preclinical and Forensic Medcine, Sichuan University, Chengdu, 610041, China
| | - Weichao Ma
- Neurosurgery Department, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Liang Lv
- Neurosurgery Department, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jie Zhang
- Laboratory of Experimental Oncology, State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, West China Clinical Medical School, Sichuan University, No. 1 Keyuan Road 4, Gaopeng Avenu, Hi-tech Zone, Chengdu, 610041, China
| | - Xiujie Wang
- Laboratory of Experimental Oncology, State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, West China Clinical Medical School, Sichuan University, No. 1 Keyuan Road 4, Gaopeng Avenu, Hi-tech Zone, Chengdu, 610041, China.
| |
Collapse
|
30
|
Hu X, Peng WX, Zhou H, Jiang J, Zhou X, Huang D, Mo YY, Yang L. IGF2BP2 regulates DANCR by serving as an N6-methyladenosine reader. Cell Death Differ 2020; 27:1782-1794. [PMID: 31804607 PMCID: PMC7244758 DOI: 10.1038/s41418-019-0461-z] [Citation(s) in RCA: 244] [Impact Index Per Article: 48.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 11/02/2019] [Accepted: 11/11/2019] [Indexed: 12/31/2022] Open
Abstract
The major function of Insulin-like growth factor 2 mRNA-binding protein 2 (IGF2BP2) is to regulate cell metabolism. However, emerging evidence indicates that IGF2BP2 plays a role in cancer, but the underlying mechanism is largely unknown. Here we showed that upregulation of IGF2BP2 is associated with poor outcomes of pancreatic cancer patients and suppression of IGF2BP2 inhibits cell proliferation. We further showed that IGF2BP2 regulates lncRNA DANCR. Ectopic expression IGF2BP2 enhances, whereas knockdown (KD) or knockout (KO) of IGF2BP2 suppresses DANCR expression. Moreover, in vivo RNA precipitation and reciprocal RNA immunoprecipitation revealed that IGF2BP2 interacts with DANCR. DANCR promotes cell proliferation and stemness-like properties. Experiments with xenograft models revealed that while ectopic expression of DANCR promotes, DANCR KO suppresses tumor growth. Mechanistically, DANCR is modified at N6-methyladenosine (m6A) and mutagenesis assay identified that adenosine at 664 of DANCR is critical to the interaction between IGF2BP2 and DANCR where IGF2BP2 serves a reader for m6A modified DANCR and stabilizes DANCR RNA. Together, these results suggest that DANCR is a novel target for IGF2BP2 through m6A modification, and IGF2BP2 and DANCR work together to promote cancer stemness-like properties and pancreatic cancer pathogenesis.
Collapse
Affiliation(s)
- Xiaoge Hu
- Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, 310014, Zhejiang, China
- Cancer Institute, University of Mississippi Medical Center, Jackson, MS, USA
| | - Wan-Xin Peng
- Cancer Institute, University of Mississippi Medical Center, Jackson, MS, USA
- Department of Cell biology, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Huaixiang Zhou
- Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, 310014, Zhejiang, China
| | - Jiahong Jiang
- Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, 310014, Zhejiang, China
| | - Xinchun Zhou
- Department of Pathology, University of Mississippi Medical Center, Jackson, MS, USA
| | - Dongsheng Huang
- Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, 310014, Zhejiang, China
| | - Yin-Yuan Mo
- Cancer Institute, University of Mississippi Medical Center, Jackson, MS, USA.
- Department of Pharmacology/Toxicology, University of Mississippi Medical Center, Jackson, MS, USA.
| | - Liu Yang
- Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, 310014, Zhejiang, China.
| |
Collapse
|
31
|
Chang YH, Chu TY, Ding DC. Human fallopian tube epithelial cells exhibit stemness features, self-renewal capacity, and Wnt-related organoid formation. J Biomed Sci 2020; 27:32. [PMID: 32035490 PMCID: PMC7007656 DOI: 10.1186/s12929-019-0602-1] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Accepted: 12/19/2019] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Fallopian tube epithelial cells (FTEC) were thought to be the origin of high-grade serous ovarian carcinoma (HGSOC). Knowledge of the stemness or initiating characteristics of FTEC is insufficient. Previously, we have characterized the stemness cell marker of FTEC, this study aims to further characterize the clonogenicity and spheroid features of FTEC. METHODS We successfully derived FTECs from the epithelial layer of the human fallopian tubes. We examined the morphology, proliferation rate, doubling time, and clonal growth of them. At passage 3, the sphere formations on gelatin-coated culture, suspension culture, and matrigel culture were observed, and the expression of LGR5, SSEA3, SSEA4, and other stemness markers was examined. Furthermore, tissue-reconstituted organoids from coculture of FTEC, fallopian stromal cells (FTMSC) and endothelial cells (HUVEC) were examined. RESULTS FTEC exhibited cuboidal cell morphology and maintained at a constant proliferation rate for up to nine passages (P9). FTEC could proliferate from a single cell with a clonogenic efficiency of 4%. Flow cytometry revealed expressions of normal stem cell markers (SSEA3, SSEA4, and LGR5) and cancer stem cell markers (CD24, CD44, CD117, ROR1, and CD133). FTEC formed spheres and colonies when cultured on low attach dish. In the presence of Matrigel, the stemness and colony formation activity were much enhanced. In co-culturing with FTMSC and HUVEC, FTEC could form organoids that could be blocked by Wnt inhibitor DKK1. Expressions of LGR5 and FOXJ1 expression were also decreased by adding DKK1. CONCLUSION We demonstrated abundantly presence of stem cells in human FTECs which are efficient in forming colonies, spheres and organoids, relying on Wnt signaling. We also reported for the first time the generation of organoid from reconstitutied cell lineages in the tissue. This may provide a new model for studying the regneration and malignant transformation of the tubal epithelium.
Collapse
Affiliation(s)
- Yu-Hsun Chang
- Stem Cell Laboratory, Department of Research, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan.,Department of Pediatrics, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation; Tzu Chi University, Hualien, Taiwan
| | - Tang-Yuan Chu
- Department of Obstetrics and Gynecology, Hualien Tzu Chi General Hospital, Buddhist Tzu Chi Medical Foundation, Tzu Chi University, 707, Sec. 3, Chung-Yang Rd., Hualien, 970, Taiwan. .,Department of Life Sciences, Tzu Chi University, Hualien, Taiwan.
| | - Dah-Ching Ding
- Stem Cell Laboratory, Department of Research, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan. .,Department of Obstetrics and Gynecology, Hualien Tzu Chi General Hospital, Buddhist Tzu Chi Medical Foundation, Tzu Chi University, 707, Sec. 3, Chung-Yang Rd., Hualien, 970, Taiwan. .,Department of Gyecology and Obstetrics, School of Medicine, Tzu Chi University, Hualien, Taiwan.
| |
Collapse
|
32
|
Targeting TR4 nuclear receptor with antagonist bexarotene increases docetaxel sensitivity to better suppress the metastatic castration-resistant prostate cancer progression. Oncogene 2019; 39:1891-1903. [PMID: 31748715 PMCID: PMC7044111 DOI: 10.1038/s41388-019-1070-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 04/04/2019] [Accepted: 07/22/2019] [Indexed: 12/27/2022]
Abstract
Prostate cancer (PCa) is the second leading cause of cancer death in men in America, and there are no curative options for metastatic castration-resistant prostate cancer (mCRPC). Docetaxel (DTX) has been used as a standard chemotherapy for the mCRPC. However, resistance to DTX is a significant clinical problem as half of patients fail to respond to therapy. The TR4 nuclear receptor has been reported to play an important role in PCa progression, however, its linkage to the DTX resistance remains unclear. Here we found that TR4 was upregulated after DTX chemotherapy in the mCRPC cells and patients, and TR4 expression is correlated with DTX sensitivity with a higher level conferring chemo-resistance. Targeting TR4 with an antagonist bexarotene (Bex, a derivative of retinoid) suppressed the TR4 transactivation with increased DTX chemo-sensitivity. Mechanism dissection studies revealed that TR4 might alter the DTX chemo-sensitivity via modulating the TR4/lincRNA-p21/HIF-1α/VEGF-A signaling. Together, these results suggest that targeting this newly identified TR4/lincRNA-p21/HIF-1α/VEGF-A signaling with Bex, an FDA-approved drug, may increase the DTX chemo-sensitivity to better suppress the mCRPC progression.
Collapse
|
33
|
Yang S, Chen T, Huang L, Xu S, Cao Z, Zhang S, Xu J, Li Y, Yue Y, Lu W, Cheng X, Xie X. High-Risk Human Papillomavirus E7 Maintains Stemness Via APH1B In Cervical Cancer Stem-Cell Like Cells. Cancer Manag Res 2019; 11:9541-9552. [PMID: 31814758 PMCID: PMC6858839 DOI: 10.2147/cmar.s194239] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Accepted: 09/30/2019] [Indexed: 12/21/2022] Open
Abstract
Purpose To determine whether early proteins from high-risk human papillomavirus (HPV) have the capacity to maintain cellular stemness. Patients and methods First, we isolated cancer stem cell like cells from two cervical cancer cell lines, SiHa and CaSki, using non-adhesive culture with serum-free medium. Second, we knocked down HPV16 E7 in SiHa sphere cells and overexpressed HPV16 E7 in U2OS sphere cells. Third, we used RNA-seq analysis and Western blotting to screen and identify the expression of differentially expressed genes in SiHa cells with HPV16 E7 knockdown. Results We found that both SiHa and CaSki cells grew as cell spheres (oncospheres) and shared the properties of cancer stem cells, including high expression of stem cell marker OCT4 and SOX2, self-renew, and resistance to chemotherapeutic drugs. The stem-like properties were deprived when HPV16 E7 was knocked down in SiHa sphere cells and maintained when HPV16 E7 was over-expressed in U2OS sphere cells. APH1B was up-regulated, among differential expression genes, in SiHa cells with HPV16 E7 knockdown and modulated cellular stemness and SiHa sphere cells with APH1B knockdown regained the stem-like properties deprived by E7 inhibition. Conclusion HPV16 E7 possesses the capacity to maintain cellular stemness and APH1B may participate in this process in cervical cancer sphere cells.
Collapse
Affiliation(s)
- Shizhou Yang
- Department of Gynecologic Oncology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, People's Republic of China
| | - Tingting Chen
- Department of Gynecologic Oncology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, People's Republic of China
| | - Lu Huang
- Zhejiang Provincial People's Hospital, Hangzhou, Zhejiang, People's Republic of China
| | - Shanshan Xu
- Department of Gynecologic Oncology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, People's Republic of China
| | - Zhu Cao
- Department of Gynecologic Oncology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, People's Republic of China
| | - Songfa Zhang
- Department of Gynecologic Oncology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, People's Republic of China
| | - Junfen Xu
- Department of Gynecologic Oncology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, People's Republic of China
| | - Yang Li
- Department of Gynecologic Oncology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, People's Republic of China
| | - Yongfang Yue
- Department of Gynecologic Oncology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, People's Republic of China
| | - Weiguo Lu
- Department of Gynecologic Oncology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, People's Republic of China.,Center for Uterine Cancer Diagnosis & Therapy Research of Zhejiang Province, Hangzhou, Zhejiang, People's Republic of China
| | - Xiaodong Cheng
- Department of Gynecologic Oncology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, People's Republic of China.,Center for Uterine Cancer Diagnosis & Therapy Research of Zhejiang Province, Hangzhou, Zhejiang, People's Republic of China
| | - Xing Xie
- Department of Gynecologic Oncology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, People's Republic of China.,Center for Uterine Cancer Diagnosis & Therapy Research of Zhejiang Province, Hangzhou, Zhejiang, People's Republic of China
| |
Collapse
|
34
|
Brodaczewska KK, Bielecka ZF, Maliszewska-Olejniczak K, Szczylik C, Porta C, Bartnik E, Czarnecka AM. Metastatic renal cell carcinoma cells growing in 3D on poly‑D‑lysine or laminin present a stem‑like phenotype and drug resistance. Oncol Rep 2019; 42:1878-1892. [PMID: 31545459 PMCID: PMC6788014 DOI: 10.3892/or.2019.7321] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 07/10/2019] [Indexed: 12/13/2022] Open
Abstract
3D spheroids are built by heterogeneous cell types in different proliferative and metabolic states and are enriched in cancer stem cells. The main aim of the study was to investigate the usefulness of a novel metastatic renal cell carcinoma (RCC) 3D spheroid culture for in vitro cancer stem cell physiology research and drug toxicity screening. RCC cell lines, Caki-1 (skin metastasis derived) and ACHN (pleural effusion derived), were efficiently cultured in growth-factor/serum deprived, defined, StemXvivo and Nutristem medium on laminin-coated or poly-D-lysine-coated plates. In optimal 3D culture conditions, ACHN cells (StemXVivo/poly-D-lysine) formed small spheroids with remaining adherent cells of an epithelial phenotype, while Caki-1 cells (StemXVivo/laminin) formed large dark spheroids with significantly reduced cell viability in the center. In the 3D structures, expression levels of genes encoding stem transcription factors (OCT4, SOX2, NES) and RCC stem cell markers (CD105, CD133) were deregulated in comparison to these expression levels in traditional 2D culture. Sunitinib, epirubicin and doxycycline were more toxic to cells cultured in monolayers than for cells in 3D spheroids. High numbers of cells arrested in the G0/G1 phase of the cell cycle were found in spheroids under sunitinib treatment. We showed that metastatic RCC 3D spheroids supported with ECM are a useful model to determine the cancer cell growth characteristics that are not found in adherent 2D cultures. Due to the more complex architecture, spheroids may mimic in vivo micrometastases and may be more appropriate to investigate novel drug candidate responses, including the direct effects of tyrosine kinase inhibitor activity against RCC cells.
Collapse
Affiliation(s)
- Klaudia K Brodaczewska
- Department of Oncology with Laboratory of Molecular Oncology, Military Institute of Medicine, 04‑141 Warsaw, Poland
| | - Zofia F Bielecka
- Department of Oncology with Laboratory of Molecular Oncology, Military Institute of Medicine, 04‑141 Warsaw, Poland
| | | | - Cezary Szczylik
- Department of Oncology with Laboratory of Molecular Oncology, Military Institute of Medicine, 04‑141 Warsaw, Poland
| | - Camillo Porta
- Department of Internal Medicine and Therapeutics, University of Pavia, I‑27100 Pavia, Italy
| | - Ewa Bartnik
- Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, Poland
| | - Anna M Czarnecka
- Department of Oncology with Laboratory of Molecular Oncology, Military Institute of Medicine, 04‑141 Warsaw, Poland
| |
Collapse
|
35
|
Ward Rashidi MR, Mehta P, Bregenzer M, Raghavan S, Fleck EM, Horst EN, Harissa Z, Ravikumar V, Brady S, Bild A, Rao A, Buckanovich RJ, Mehta G. Engineered 3D Model of Cancer Stem Cell Enrichment and Chemoresistance. Neoplasia 2019; 21:822-836. [PMID: 31299607 PMCID: PMC6624324 DOI: 10.1016/j.neo.2019.06.005] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2018] [Revised: 06/03/2019] [Accepted: 06/12/2019] [Indexed: 12/14/2022] Open
Abstract
Intraperitoneal dissemination of ovarian cancers is preceded by the development of chemoresistant tumors with malignant ascites. Despite the high levels of chemoresistance and relapse observed in ovarian cancers, there are no in vitro models to understand the development of chemoresistance in situ. Method: We describe a highly integrated approach to establish an in vitro model of chemoresistance and stemness in ovarian cancer, using the 3D hanging drop spheroid platform. The model was established by serially passaging non-adherent spheroids. At each passage, the effectiveness of the model was evaluated via measures of proliferation, response to treatment with cisplatin and a novel ALDH1A inhibitor. Concomitantly, the expression and tumor initiating capacity of cancer stem-like cells (CSCs) was analyzed. RNA-seq was used to establish gene signatures associated with the evolution of tumorigenicity, and chemoresistance. Lastly, a mathematical model was developed to predict the emergence of CSCs during serial passaging of ovarian cancer spheroids. Results: Our serial passage model demonstrated increased cellular proliferation, enriched CSCs, and emergence of a platinum resistant phenotype. In vivo tumor xenograft assays indicated that later passage spheroids were significantly more tumorigenic with higher CSCs, compared to early passage spheroids. RNA-seq revealed several gene signatures supporting the emergence of CSCs, chemoresistance, and malignant phenotypes, with links to poor clinical prognosis. Our mathematical model predicted the emergence of CSC populations within serially passaged spheroids, concurring with experimentally observed data. Conclusion: Our integrated approach illustrates the utility of the serial passage spheroid model for examining the emergence and development of chemoresistance in ovarian cancer in a controllable and reproducible format.
Collapse
Affiliation(s)
- Maria R Ward Rashidi
- Department of Materials Science and Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Pooja Mehta
- Department of Materials Science and Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Michael Bregenzer
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Shreya Raghavan
- Department of Materials Science and Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Elyse M Fleck
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Eric N Horst
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Zainab Harissa
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Visweswaran Ravikumar
- Department of Bioinformatics and Computational Biology, Division of Quantitative Sciences, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Samuel Brady
- Department of Pharmacology and Toxicology, University of Utah, Salt Lake City, UT, USA
| | - Andrea Bild
- Division of Molecular Pharmacology, Department of Medical Oncology and Therapeutics, City of Hope Cancer Institute, Duarte, CA, USA
| | - Arvind Rao
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA; Department of Computational Medicine and Bioinformatics, Michigan Medicine, University of Michigan, Ann Arbor, MI, USA; Department of Radiation Oncology, Michigan Medicine, University of Michigan, Ann Arbor, MI, USA; Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA
| | - Ronald J Buckanovich
- Director of Ovarian Cancer Research, Magee Womens Research Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Geeta Mehta
- Department of Materials Science and Engineering, University of Michigan, Ann Arbor, MI, USA; Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA; Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA; Macromolecular Science and Engineering, University of Michigan, Ann Arbor, MI, USA..
| |
Collapse
|
36
|
Guo C, Xu LF, Li HM, Wang W, Guo JH, Jia MQ, Jia R, Jia J. Transcriptomic study of the mechanism of anoikis resistance in head and neck squamous carcinoma. PeerJ 2019; 7:e6978. [PMID: 31198634 PMCID: PMC6535219 DOI: 10.7717/peerj.6978] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 04/15/2019] [Indexed: 12/18/2022] Open
Abstract
Background Normal epithelial cells rapidly undergo apoptosis as soon as they lose contact with the extracellular matrix (ECM), which is termed as anoikis. However, cancer cells tend to develop a resistance mechanism to anoikis. This acquired ability is termed as anoikis resistance. Cancer cells, with anoikis resistance, can spread to distant tissues or organs via the peripheral circulatory system and cause cancer metastasis. Thus, inhibition of anoikis resistance blocks the metastatic ability of cancer cells. Methods Anoikis-resistant CAL27 (CAL27AR) cells were induced from CAL27 cells using the suspension culture approach. Transcriptome analysis was performed using RNA-Seq to study the differentially expressed genes (DEGs) between the CAL27ARcells and the parental CAL27 cells. Gene function annotation and Gene Ontology (GO) enrichment analysis were performed using DAVID database. Signaling pathways involved in DEGs were analyzed using Gene Set Enrichment Analysis (GSEA) software. Analysis results were confirmed by reverse transcription PCR (RT-PCR), western blotting, and gene correlation analysis based on the TCGA database. Results GO enrichment analysis indicated that the biological process (BP) of the DEGs was associated with epidermal development, DNA replication, and G1/S transition of the mitotic cell cycle. The analysis of cellular component (CC) showed that the most significant up-regulated genes were related to extracellular exosome. KEGG Pathway analysis revealed that 23 signaling pathways were activated (p-value ≤ 0.05, FDR q-value ≤ 0.05) and 22 signaling pathways were suppressed (p-value ≤ 0.05, FDR q-value ≤ 0.05). The results from the GSEA indicated that in contrast to the inhibition of EGFR signaling pathway, the VEGF signaling pathway was activated. The VEGF signaling pathway possibly activates STAT3 though induction of STAT3 phosphorylation. Gene correlation analysis revealed that the VEGFA- STAT3-KLF4-CDKN1A signal axis was not only present in head and neck squamous carcinoma (HNSCC) but also two other epithelial-derived carcinomas that highly express VEGFA, including kidney renal clear cell carcinoma (KIRC) and ovarian serous cystadenocarcinoma (OV).
Collapse
Affiliation(s)
- Chen Guo
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, Wuhan University, School and Hospital of Stomatology, Wuhan, Hubei, China
| | - Ling-Feng Xu
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, Wuhan University, School and Hospital of Stomatology, Wuhan, Hubei, China
| | - Hui-Min Li
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, Wuhan University, School and Hospital of Stomatology, Wuhan, Hubei, China
| | - Wei Wang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, Wuhan University, School and Hospital of Stomatology, Wuhan, Hubei, China
| | - Ji-Hua Guo
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, Wuhan University, School and Hospital of Stomatology, Wuhan, Hubei, China
| | - Meng-Qi Jia
- Department of Oral and Maxillofacial Surgery, Wuhan University, School and Hospital of Stomatology, Wuhan, Hubei, China
| | - Rong Jia
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, Wuhan University, School and Hospital of Stomatology, Wuhan, Hubei, China
| | - Jun Jia
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, Wuhan University, School and Hospital of Stomatology, Wuhan, Hubei, China.,Department of Oral and Maxillofacial Surgery, Wuhan University, School and Hospital of Stomatology, Wuhan, Hubei, China
| |
Collapse
|
37
|
Elkady AI. Targeting prostate cancer cell proliferation, stemness and metastatic potential using Costus speciosus derived phytochemicals. Am J Transl Res 2019; 11:2550-2569. [PMID: 31105862 PMCID: PMC6511805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Accepted: 01/26/2019] [Indexed: 06/09/2023]
Abstract
Prostate cancer is still at the forefront causes of cancer-related morbidity and mortality in men throughout the globe. The disease is initiated and fostered by a subset of cancer stem cells (CSCs). Costus speciosus is an oriental herb used in traditional medicine and is a source of bioactive compounds with known pharmacological activities. The present study aims to evaluate the anticancer property of varied extracts isolated from C. speciosus against the human prostate cancer PC-3 cells. Extracts derived from C. speciosus were analyzed by chromatography-mass spectrometry and their effects on the proliferation, migration, invasion, apoptosis and cell cycle distribution of PC-3 cells were investigated. Results showed that crude hexane extract of C. speciosus (CHECS) inhibited proliferation, clonogenic and metastatic potential of PC-3 cells. It induced apoptosis in PC-3 cells associated with generation of reactive oxygen species (ROS), reduction of GSH and permeabilization of mitochondrial and lysosomal membranes, induction of caspase-9/-3 activity and PARP-1 cleavage, DNA damage and an increase in ratio of Bax/Bcl-2 proteins. CHECS induced G0/G1 and G2/M arrest in PC-3 cells and targeted PC-3 prostaspheres. These findings indicate that phytochemicals of CHECS exhibit potential for natural therapeutic product development for prostate cancer.
Collapse
Affiliation(s)
- Ayman I Elkady
- Department of Zoology, Faculty of Science, Alexandria UniversityAlexandria, Egypt
- Department of Biological Sciences, Faculty of Sciences, King Abdulaziz UniversityJeddah, Saudi Arabia
| |
Collapse
|
38
|
Daouk R, Hassane M, Bahmad HF, Sinjab A, Fujimoto J, Abou-Kheir W, Kadara H. Genome-Wide and Phenotypic Evaluation of Stem Cell Progenitors Derived From Gprc5a-Deficient Murine Lung Adenocarcinoma With Somatic Kras Mutations. Front Oncol 2019; 9:207. [PMID: 31001473 PMCID: PMC6454871 DOI: 10.3389/fonc.2019.00207] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 03/11/2019] [Indexed: 12/12/2022] Open
Abstract
Lung adenocarcinomas (LUADs) with somatic mutations in the KRAS oncogene comprise the most common molecular subtype of lung cancer in smokers and present with overall dismal prognosis and resistance to most therapies. Our group recently demonstrated that tobacco carcinogen-exposed mice with knockout of the airway lineage G-protein coupled receptor, Gprc5a, develop LUADs with somatic mutations in Kras. Earlier work has suggested that cancer stem cells (CSCs) play crucial roles in clonal evolution of tumors and in therapy resistance. To date, our understanding of CSCs in LUADs with somatic Kras mutations remains lagging. Here we derived CSCs (as spheres in 3D cultures) with self-renewal properties from a murine Kras-mutant LUAD cell line we previously established from a tobacco carcinogen-exposed Gprc5a -/- mouse. Using syngeneic Gprc5a -/- models, we found that these CSCs, compared to their parental isoforms, exhibited increased tumorigenic potential in vivo, particularly in female animals. Using whole-transcriptome sequencing coupled with pathways analysis and confirmatory PCR, we identified gene features (n = 2,600) differentially expressed in the CSCs compared to parental cells and that were enriched with functional modules associated with an augmented malignant phenotype including stemness, tumor-promoting inflammation and anti-oxidant responses. Further, based on in silico predicted activation of GSK3β in CSCs, we found that tideglusib, an irreversible inhibitor of the kinase, exhibited marked anti-growth effects in the cultured CSCs. Our study underscores molecular cues in the pathogenesis of Kras-mutant LUAD and presents new models to study the evolution, and thus high-potential targets, of this aggressive malignancy.
Collapse
Affiliation(s)
- Reem Daouk
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Maya Hassane
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Hisham F. Bahmad
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Ansam Sinjab
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Junya Fujimoto
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Wassim Abou-Kheir
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Humam Kadara
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| |
Collapse
|
39
|
Xu Y, Hu J, Zhu Q, Song Q, Mu Y. Co-detection of ALDH1A1, ABCG2, ALCAM and CD133 in three A549 subpopulations at the single cell level by one-step digital RT-PCR. Integr Biol (Camb) 2019; 10:364-369. [PMID: 29808880 DOI: 10.1039/c8ib00042e] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Cancer stem-like cells (CSCs) displaying the properties of normal stem cells have become the main culprit associated with cancer transportation and recurrence. As of now, various CSC functions and marker genes have been identified due to the heterogeneity of cancer, such as aldehyde dehydrogenase (ALDH), the second member of the ABC transporter G-subfamily (ABCG2), activated leukocyte cell adhesion molecule (ALCAM) and CD133. To investigate these markers, most conventional approaches are bulk-based strategies, which may veil the disparity of single cells' gene expression. In this study, one-step digital RT-PCR at the single cell level was developed to co-determine the expression of ALDH1A1, ABCG2, ALCAM and CD133 genes in A549 cancer stem cells that perform high ALDH activities (ALDH+ A549 cells), as well as in ALDH- A549 cells and A549 cells, with 36, 20 and 20 cell samples each. The results demonstrated that, when compared to single ALDH- or A549 cells, the majority of single ALDH+ A549 cells displayed a 1.5- and 2.0-fold increase in the gene expression of ALDH1A1 and ALCAM (P < 0.001), respectively. However, for ABCG2 and CD133, there was no significant difference (P > 0.05), which means that they are not appropriate as co-indicated markers to identify ALDH+ A549 cells. Conclusively, as a single cell level approach, one-step digital RT-PCR has potential in exploring efficient co-detection markers for the classification and identification of CSCs.
Collapse
Affiliation(s)
- Yanan Xu
- Research Center for Analytical Instrumentation, Institute of Cyber Systems and Control, State Key Laboratory of Industrial Control Technology, Zhejiang University, Hangzhou 310027, Zhejiang, P. R. China.
| | | | | | | | | |
Collapse
|
40
|
Zhang H, Hao C, Wang H, Shang H, Li Z. Carboxypeptidase A4 promotes proliferation and stem cell characteristics of hepatocellular carcinoma. Int J Exp Pathol 2019; 100:133-138. [PMID: 31058377 PMCID: PMC6540673 DOI: 10.1111/iep.12315] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 03/10/2019] [Accepted: 03/11/2019] [Indexed: 12/14/2022] Open
Abstract
Carboxypeptidase A4 (CPA4), a member of the metallo-carboxypeptidase family, is overexpressed in liver cancer and is associated with cancer progression. The role of CPA4 in hepatocellular carcinoma (HCC) remains unclear. In this study, we aimed to evaluate the relevance of CPA4 to the proliferation and expression of stem cell characteristics of hepatocellular carcinoma cells. Western blot analysis showed high CPA4 expression in the liver cancer cell line Bel7402 and low expression in HepG2 cells. Knock-down of CPA4 decreased cancer cell proliferation as detected by MTT and clone formation assays. The serum-free culture system revealed that downregulated CPA4 suppressed the sphere formation capacities of tumour cells. However, upregulated CPA4 increased the proliferation and sphere formation capacity. In addition, the protein expression of CD133, ALDH1 and CD44 also increased in cells with upregulated CPA4. In vivo, the overexpression of CPA4 in tumour cells that were subcutaneously injected into nude mice markedly increased the growth of the tumours. These data suggest that CPA4 expression leads to poor prognoses by regulating tumour proliferation and the expression of stem cell characteristics and may therefore serve as a potential therapeutic target of HCC.
Collapse
Affiliation(s)
- Hongtao Zhang
- Department of Hepatopancreatobiliary SurgeryTianjin Nan‐Kai HospitalTianjinChina
| | - Chengfei Hao
- Department of Hepatopancreatobiliary SurgeryTianjin Nan‐Kai HospitalTianjinChina
- Tianjin Medical UniversityTianjinChina
| | - Haibo Wang
- Department of Hepatopancreatobiliary SurgeryTianjin Nan‐Kai HospitalTianjinChina
| | - Haitao Shang
- Department of Hepatopancreatobiliary SurgeryTianjin Nan‐Kai HospitalTianjinChina
| | - Zhonglian Li
- Department of Hepatopancreatobiliary SurgeryTianjin Nan‐Kai HospitalTianjinChina
| |
Collapse
|
41
|
Kang H, Kim C, Ji E, Ahn S, Jung M, Hong Y, Kim W, Lee EK. The MicroRNA-551a/MEF2C Axis Regulates the Survival and Sphere Formation of Cancer Cells in Response to 5-Fluorouracil. Mol Cells 2019; 42:175-182. [PMID: 30703870 PMCID: PMC6399004 DOI: 10.14348/molcells.2018.0288] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 12/06/2018] [Accepted: 12/12/2018] [Indexed: 12/27/2022] Open
Abstract
microRNAs regulate a diverse spectrum of cancer biology, including tumorigenesis, metastasis, stemness, and drug resistance. To investigate miRNA-mediated regulation of drug resistance, we characterized the resistant cell lines to 5-fluorouracil by inducing stable expression of miRNAs using lenti-miRNA library. Here, we demonstrate miR-551a as a novel factor regulating cell survival after 5-FU treatment. miR-551a-expressing cells (Hep3B-lenti-miR-551a) were resistant to 5-FU-induced cell death, and after 5-FU treatment, and showed significant increases in cell viability, cell survival, and sphere formation. It was further shown that myocyte-specific factor 2C is the direct target of miR-551a. Our results suggest that miR-551a plays a novel function in regulating 5-FU-induced cell death, and targeting miR-551a might be helpful to sensitize cells to anti-cancer drugs.
Collapse
Affiliation(s)
- Hoin Kang
- Department of Biochemistry, The Catholic University of Korea College of Medicine, Seoul,
Korea
| | - Chongtae Kim
- Department of Biochemistry, The Catholic University of Korea College of Medicine, Seoul,
Korea
| | - Eunbyul Ji
- Department of Biochemistry, The Catholic University of Korea College of Medicine, Seoul,
Korea
| | - Sojin Ahn
- Department of Biochemistry, The Catholic University of Korea College of Medicine, Seoul,
Korea
| | - Myeongwoo Jung
- Department of Biochemistry, The Catholic University of Korea College of Medicine, Seoul,
Korea
| | - Youlim Hong
- Department of Biochemistry, The Catholic University of Korea College of Medicine, Seoul,
Korea
| | - WooK Kim
- Department of Molecular Science and Technology, Ajou University, Suwon,
Korea
| | - Eun Kyung Lee
- Department of Biochemistry, The Catholic University of Korea College of Medicine, Seoul,
Korea
| |
Collapse
|
42
|
Nozaki M, Yabuta N, Fukuzawa M, Mukai S, Okamoto A, Sasakura T, Fukushima K, Naito Y, Longmore GD, Nojima H. LATS1/2 kinases trigger self-renewal of cancer stem cells in aggressive oral cancer. Oncotarget 2019; 10:1014-1030. [PMID: 30800215 PMCID: PMC6383686 DOI: 10.18632/oncotarget.26583] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Accepted: 12/27/2018] [Indexed: 12/20/2022] Open
Abstract
Cancer stem cells (CSCs), which play important roles in tumor initiation and progression, are resistant to many types of therapies. However, the regulatory mechanisms underlying CSC-specific properties, including self-renewal, are poorly understood. Here, we found that LATS1/2, the core Hippo pathway-kinases, were highly expressed in the oral squamous cell carcinoma line SAS, which exhibits high capacity of CSCs, and that depletion of these kinases prevented SAS cells from forming spheres under serum-free conditions. Detailed examination of the expression and activation of LATS kinases and related proteins over a time course of sphere formation revealed that LATS1/2 were more highly expressed and markedly activated before initiation of self-renewal. Moreover, TAZ, SNAIL, CHK1/2, and Aurora-A were expressed in hierarchical, oscillating patterns during sphere formation, suggesting that the process consists of four sequential steps. Our results indicate that LATS1/2 trigger self-renewal of CSCs by regulating the Hippo pathway, the EMT, and cell division.
Collapse
Affiliation(s)
- Masami Nozaki
- Department of Cell Biology, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan
| | - Norikazu Yabuta
- Department of Molecular Genetics, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan.,Department of Oncogene Research, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan
| | - Moe Fukuzawa
- Department of Molecular Genetics, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan
| | - Satomi Mukai
- Department of Molecular Genetics, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan.,Division of Cancer Biology, Aichi Cancer Center Research Institute, Chikusa-ku, Nagoya City, Aichi 464-8681, Japan
| | - Ayumi Okamoto
- Department of Molecular Genetics, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan
| | - Towa Sasakura
- Department of Molecular Genetics, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan
| | - Kohshiro Fukushima
- Department of Molecular Genetics, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan
| | - Yoko Naito
- Department of Molecular Genetics, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan.,Division of Cancer Cell Regulation, Aichi Cancer Center Research Institute, Chikusa-ku, Nagoya City, Aichi 464-8681, Japan
| | | | - Hiroshi Nojima
- Department of Molecular Genetics, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan
| |
Collapse
|
43
|
Varghese JJ, Hansen ME, Sharipol A, Ingalls MH, Ormanoski MA, Newlands SD, Ovitt CE, Benoit DSW. Salivary gland cell aggregates are derived from self-organization of acinar lineage cells. Arch Oral Biol 2019; 97:122-130. [PMID: 30384153 PMCID: PMC6323641 DOI: 10.1016/j.archoralbio.2018.10.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 10/15/2018] [Accepted: 10/15/2018] [Indexed: 12/27/2022]
Abstract
OBJECTIVE The objective of this study was to characterize the mechanism by which salivary gland cells (SGC) aggregate in vitro. DESIGN Timelapse microscopy was utilized to analyze the process of salivary gland aggregate formation using both primary murine and human salivary gland cells. The role of cell density, proliferation, extracellular calcium, and secretory acinar cells in aggregate formation was investigated. Finally, the ability of cells isolated from irradiated glands to form aggregates was also evaluated. RESULTS Salivary gland cell self-organization rather than proliferation was the predominant mechanism of aggregate formation in both primary mouse and human salivary gland cultures. Aggregation was found to require extracellular calcium while acinar lineage cells account for ∼80% of the total aggregate cell population. Finally, aggregation was not impaired by irradiation. CONCLUSIONS The data reveal that aggregation occurs as a result of heterogeneous salivary gland cell self-organization rather than from stem cell proliferation and differentiation, contradicting previous dogma. These results suggest a re-evaluation of aggregate formation as a criterion defining salivary gland stem cells.
Collapse
Affiliation(s)
- Jomy J Varghese
- Department of Biomedical Engineering, University of Rochester, United States
| | - M Eva Hansen
- Department of Biomedical Engineering, University of Rochester, United States
| | - Azmeer Sharipol
- Department of Biomedical Engineering, University of Rochester, United States
| | - Matthew H Ingalls
- Department of Biomedical Genetics, University of Rochester, United States
| | | | - Shawn D Newlands
- Department of Otolaryngology, University of Rochester, United States; Wilmot Cancer Institute, University of Rochester, United States; Department of Neuroscience, University of Rochester, United States
| | - Catherine E Ovitt
- Department of Biomedical Genetics, University of Rochester, United States; Center for Oral Biology, University of Rochester, United States.
| | - Danielle S W Benoit
- Department of Biomedical Engineering, University of Rochester, United States; Department of Biomedical Genetics, University of Rochester, United States; Center for Oral Biology, University of Rochester, United States; Center for Musculoskeletal Research, University of Rochester, United States; Department of Orthopaedics, University of Rochester, United States; Department of Chemical Engineering, University of Rochester, United States.
| |
Collapse
|
44
|
Surface-enhanced Raman spectroscopy based 3D spheroid culture for drug discovery studies. Talanta 2019; 191:390-399. [DOI: 10.1016/j.talanta.2018.08.087] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Revised: 08/27/2018] [Accepted: 08/31/2018] [Indexed: 12/26/2022]
|
45
|
Gou T, Hu J, Zhou S, Wu W, Fang W, Sun J, Hu Z, Shen H, Mu Y. A new method using machine learning for automated image analysis applied to chip-based digital assays. Analyst 2019; 144:3274-3281. [DOI: 10.1039/c9an00149b] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
An automated machine learning based method for image processes applied to digital assays.
Collapse
Affiliation(s)
- Tong Gou
- Research Center for Analytical Instrumentation
- Institute of Cyber-Systems and Control
- State Key Laboratory of Industrial Control Technology
- College of Control Science and Engineering
- Zhejiang University
| | - Jiumei Hu
- Research Center for Analytical Instrumentation
- Institute of Cyber-Systems and Control
- State Key Laboratory of Industrial Control Technology
- College of Control Science and Engineering
- Zhejiang University
| | - Shufang Zhou
- Research Center for Analytical Instrumentation
- Institute of Cyber-Systems and Control
- State Key Laboratory of Industrial Control Technology
- College of Control Science and Engineering
- Zhejiang University
| | - Wenshuai Wu
- Research Center for Analytical Instrumentation
- Institute of Cyber-Systems and Control
- State Key Laboratory of Industrial Control Technology
- College of Control Science and Engineering
- Zhejiang University
| | - Weibo Fang
- Research Center for Analytical Instrumentation
- Institute of Cyber-Systems and Control
- State Key Laboratory of Industrial Control Technology
- College of Control Science and Engineering
- Zhejiang University
| | - Jingjing Sun
- Research Center for Analytical Instrumentation
- Institute of Cyber-Systems and Control
- State Key Laboratory of Industrial Control Technology
- College of Control Science and Engineering
- Zhejiang University
| | - Zhenming Hu
- Research Center for Analytical Instrumentation
- Institute of Cyber-Systems and Control
- State Key Laboratory of Industrial Control Technology
- College of Control Science and Engineering
- Zhejiang University
| | - Haotian Shen
- Research Center for Analytical Instrumentation
- Institute of Cyber-Systems and Control
- State Key Laboratory of Industrial Control Technology
- College of Control Science and Engineering
- Zhejiang University
| | - Ying Mu
- Research Center for Analytical Instrumentation
- Institute of Cyber-Systems and Control
- State Key Laboratory of Industrial Control Technology
- College of Control Science and Engineering
- Zhejiang University
| |
Collapse
|
46
|
Chang MT, Lee SP, Fang CY, Hsieh PL, Liao YW, Lu MY, Tsai LL, Yu CC, Liu CM. Chemosensitizing effect of honokiol in oral carcinoma stem cells via regulation of IL-6/Stat3 signaling. ENVIRONMENTAL TOXICOLOGY 2018; 33:1105-1112. [PMID: 30076764 DOI: 10.1002/tox.22587] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 05/23/2018] [Accepted: 05/31/2018] [Indexed: 06/08/2023]
Abstract
Oral squamous cell carcinoma (OSCC) is one of the most common cancers worldwide with poor prognosis. Numerous studies have attempted to explore alternative regimens aimed at reducing cancer stem cells (CSCs) without compromising the efficacy of conventional chemoradiotherapy. The present study sought to assess the effect of a natural compound honokiol on the reduction of elevated cancer stemness, metastatic capacity, and chemoresistance of oral carcinoma stem cells (OCSCs). Our results demonstrated that honokiol attenuated the cell survival and self-renewal of OCSCs in a dose-dependent manner. Moreover, honokiol downregulated the expression of 2 selective markers of OCSCs, ALDH1, and CD44, as well as the migration and invasion abilities, indicating its potential to suppress cancer stemness. We showed that honokiol reduced the secretion of IL-6 and phosphorylation of STAT3, and the honokiol-inhibited self-renewal, invasion and colony formation were reversed by administration of IL-6. Most importantly, our data demonstrated that honokiol was able to potentiate the effect of Cisplatin, leading to a lower proportion of OCSCs and the decreased cancer stemness features. Taken together, this study demonstrated the benefits of utilizing honokiol as an adjunct therapy for OSCC treatment.
Collapse
Affiliation(s)
- Min-Te Chang
- Department of Oral and Maxillofacial Surgery, Chi Mei Medical Center, Tainan, Taiwan
| | - Shiao-Pieng Lee
- School of Dentistry, National Defense Medical Center, Taipei, Taiwan
- Department of Dentistry, Tri-Service General Hospital, Taipei, Taiwan
| | - Chih-Yuan Fang
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei, Taiwan
- Division of Oral and Maxillofacial Surgery, Department of Dentistry, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| | - Pei-Ling Hsieh
- Institute of Oral Sciences, Chung Shan Medical University, Taichung, Taiwan
| | - Yi-Wen Liao
- School of Dentistry, Chung Shan Medical University, Taichung, Taiwan
| | - Ming-Yi Lu
- School of Dentistry, Chung Shan Medical University, Taichung, Taiwan
- Department of Dentistry, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Lo-Lin Tsai
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei, Taiwan
- Division of Oral and Maxillofacial Surgery, Department of Dentistry, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| | - Cheng-Chia Yu
- Institute of Oral Sciences, Chung Shan Medical University, Taichung, Taiwan
- School of Dentistry, Chung Shan Medical University, Taichung, Taiwan
- Department of Dentistry, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Chia-Ming Liu
- School of Dentistry, Chung Shan Medical University, Taichung, Taiwan
- Department of Dentistry, Chung Shan Medical University Hospital, Taichung, Taiwan
| |
Collapse
|
47
|
The role of NF-κB and miRNA in oral cancer and cancer stem cells with or without HPV16 infection. PLoS One 2018; 13:e0205518. [PMID: 30372446 PMCID: PMC6205583 DOI: 10.1371/journal.pone.0205518] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 09/26/2018] [Indexed: 02/07/2023] Open
Abstract
A small subpopulation of cancer stem-like cells (CSCs) present in almost all tumors is responsible for drug resistance and tumor recurrence. The role of NF-kB and miRNA in close association with essential risk factors, tobacco, alcohol and high risk HPV infection during oral carcinogenesis and its prognosis is not well understood. We have isolated cancer stem like SP cells from both HPV+/-ve oral squamous cell carcinoma (OSCC) cell lines and primary tumors, which formed orospheres, expressed stemness markers Oct4, Sox-2, CD133 and CD117. These cells showed differentially upregulated expression of NF-kB proteins and selective overexpression of viral oncogenes E6/E7 only in HPV16+ve cells which formed higher number of orospheres, overexpressed c-Rel and selectively activated p65 that heterodimerized with p50 to show higher DNA binding activity. Further, selective over expression of miR-21 and miR-155 and downregulation of miR-34a were demonstrated by HPV+ve CSCs which overexpress HPV16 oncogene E6 that is responsible for the maintenance of stemness. While, HPV-ve CSCs show exclusively p50 homodimeriztion, poor differentiation and worst prognosis, HPV infection induced participation of p65 along with deregulated expression of specific miRNAs led to well differentiation of tumors and better prognosis.
Collapse
|
48
|
Yu C, Chu S, Yang S, Hsieh Y, Lee C, Chen P. Induction of apoptotic but not autophagic cell death by
Cinnamomum cassia
extracts on human oral cancer cells. J Cell Physiol 2018; 234:5289-5303. [DOI: 10.1002/jcp.27338] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Accepted: 08/10/2018] [Indexed: 12/19/2022]
Affiliation(s)
- Ching‐Han Yu
- Department of Physiology School of Medicine, Chung Shan Medical University Taichung Taiwan
- Department of Medical Research Chung Shan Medical University Hospital Taichung Taiwan
| | - Shu‐Chen Chu
- Institute and Department of Food Science Central Taiwan University of Science and Technology Taichung Taiwan
| | - Shun‐Fa Yang
- Department of Medical Research Chung Shan Medical University Hospital Taichung Taiwan
- Medicine Chung Shan Medical University Taichung China
| | - Yih‐Shou Hsieh
- Institute of Biochemistry, Microbiology and Immunology, Chung Shang Medical University Taichung Taiwan
- Clinical Laboratory, Chung Shan Medical University Hospital Taichung Taiwan
| | - Chih‐Yi Lee
- Institute of Biochemistry, Microbiology and Immunology, Chung Shang Medical University Taichung Taiwan
| | - Pei‐Ni Chen
- Institute of Biochemistry, Microbiology and Immunology, Chung Shang Medical University Taichung Taiwan
- Clinical Laboratory, Chung Shan Medical University Hospital Taichung Taiwan
| |
Collapse
|
49
|
Sumi S, Kawagoe M, Abe R, Yanai G, Yang KC, Shirouzu Y. A multiple-funnels cell culture insert for the scale-up production of uniform cell spheroids. Regen Ther 2018; 7:52-60. [PMID: 30271852 PMCID: PMC6147214 DOI: 10.1016/j.reth.2017.08.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Revised: 07/24/2017] [Accepted: 08/14/2017] [Indexed: 10/27/2022] Open
Abstract
Introduction Formation of cell spheres is an important procedure in biomedical research. A large number of high-quality cell spheres of uniform size and shape are required for basic studies and therapeutic applications. Conventional approaches, including the hanging drop method and suspension culture, are used for cell sphere production. However, these methods are time consuming, cell spheres cannot be harvested easily, and it is difficult to control the size and geometry of cell spheres. To resolve these problems, a novel multiple-funnel cell culture insert was designed for size controlling, easy harvesting, and scale-up production of cell spheres. Methods The culture substrate has 680 micro-funnels with a 1-mm width top, 0.89 mm depth, and 0.5 mm square bottom. Mouse embryonic stem cells were used to test the newly developed device. The seeded embryonic stem cells settled at the downward medium surface toward the bottom opening and aggregated as embryoid bodies (EBs). For cell sphere harvest, the bottom of the culture insert was put in contact with the medium surface in another culture dish, and the medium in the device flowed down with cell spheres by hydrostatic pressure. Results Compact cell spheres with uniform size and shape were collected easily. The diameter of the spheres could be controlled by adjusting the seeding cell density. Spontaneous neural differentiation (nestin and Tju1) and retinoic acid-induced endodermal differentiation (Pdx-1 and insulin I) were improved in the EBs produced using the new insert compared to those in EBs produced by suspension culture. Conclusions This novel cell culture insert shall improve future studies of cell spheres and benefit clinical applications of cell therapy.
Collapse
Key Words
- Cell culture insert
- Cell sphere
- DMEM, Dulbecco's Modified Eagle Medium
- EBs, embryoid bodies
- ES cells, embryonic stem cells
- Embryoid body
- GAPDH, glyceraldehyde-3-phosphate dehydrogenase
- Hanging drop
- LIF, leukemia inhibitory factor
- MEFs, mouse embryonic fibroblasts
- MSC, mesenchymal stem cell
- Mouse embryonic stem cell
- PBS, phosphate buffered saline
- PCR, polymerase chain reaction
- Pdx-1, pancreatic and duodenal homeobox 1
- RA, retinoic acid
- RPMI, Roswell Park Memorial Institute
- RT-PCR, real time polymerase chain reaction
- SD, standard deviation
- Spheroid
- Tuj1, neuron-specific class III beta-tubulin
Collapse
Affiliation(s)
- Shoichiro Sumi
- Laboratory of Organ and Tissue Reconstruction, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto 606-8507, Japan
| | - Masako Kawagoe
- Laboratory of Organ and Tissue Reconstruction, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto 606-8507, Japan.,Kuraray Co., Ltd., Tokyo 100-8115, Japan
| | - Rie Abe
- Laboratory of Organ and Tissue Reconstruction, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto 606-8507, Japan.,Graduate School of Life and Medical Sciences, Doshisha University, Kyoto 610-0394, Japan
| | - Goichi Yanai
- Laboratory of Organ and Tissue Reconstruction, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto 606-8507, Japan
| | - Kai-Chiang Yang
- Laboratory of Organ and Tissue Reconstruction, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto 606-8507, Japan.,School of Dental Technology, College of Oral Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Yasumasa Shirouzu
- Laboratory of Organ and Tissue Reconstruction, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto 606-8507, Japan.,Department of Stem Cell Biology, Kansai Medical University, Osaka-fu 573-1010, Japan
| |
Collapse
|
50
|
Zhang I, Beus M, Stochaj U, Le PU, Zorc B, Rajić Z, Petrecca K, Maysinger D. Inhibition of glioblastoma cell proliferation, invasion, and mechanism of action of a novel hydroxamic acid hybrid molecule. Cell Death Discov 2018; 4:41. [PMID: 30302275 PMCID: PMC6158288 DOI: 10.1038/s41420-018-0103-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 08/10/2018] [Accepted: 08/21/2018] [Indexed: 12/12/2022] Open
Abstract
Glioblastoma multiforme is one of the most aggressive brain tumors and current therapies with temozolomide or suberoylanilide hydroxamic acid (SAHA, vorinostat) show considerable limitations. SAHA is a histone deacetylase (HDAC) inhibitor that can cause undesirable side effects due to the lack of selectivity. We show here properties of a novel hybrid molecule, sahaquine, which selectively inhibits cytoplasmic HDAC6 at nanomolar concentrations without markedly suppressing class I HDACs. Inhibition of HDAC6 leads to significant α-tubulin acetylation, thereby impairing cytoskeletal organization in glioblastoma cells. The primaquine moiety of sahaquine reduced the activity of P-glycoprotein, which contributes to glioblastoma multiforme drug resistance. We propose the mechanism of action of sahaquine to implicate HDAC6 inhibition together with suppression of epidermal growth factor receptor and downstream kinase activity, which are prominent therapeutic targets in glioblastoma multiforme. Sahaquine significantly reduces the viability and invasiveness of glioblastoma tumoroids, as well as brain tumor stem cells, which are key to tumor survival and recurrence. These effects are augmented with the combination of sahaquine with temozolomide, the natural compound quercetin or buthionine sulfoximine, an inhibitor of glutathione biosynthesis. Thus, a combination of agents disrupting glioblastoma and brain tumor stem cell homeostasis provides an effective anti–cancer intervention.
Collapse
Affiliation(s)
- Issan Zhang
- 1Department of Pharmacology and Therapeutics, McGill University, Montreal, QC Canada
| | - Maja Beus
- 1Department of Pharmacology and Therapeutics, McGill University, Montreal, QC Canada.,2Faculty of Pharmacy and Biochemistry, University of Zagreb, Zagreb, Croatia
| | - Ursula Stochaj
- 3Department of Physiology, McGill University, Montreal, QC Canada
| | - Phuong Uyen Le
- 4Brain Tumour Research Centre, Montreal Neurological Institute and Hospital, Department of Neurology and Neurosurgery, McGill University, Montreal, QC Canada
| | - Branka Zorc
- 2Faculty of Pharmacy and Biochemistry, University of Zagreb, Zagreb, Croatia
| | - Zrinka Rajić
- 2Faculty of Pharmacy and Biochemistry, University of Zagreb, Zagreb, Croatia
| | - Kevin Petrecca
- 4Brain Tumour Research Centre, Montreal Neurological Institute and Hospital, Department of Neurology and Neurosurgery, McGill University, Montreal, QC Canada
| | - Dusica Maysinger
- 1Department of Pharmacology and Therapeutics, McGill University, Montreal, QC Canada
| |
Collapse
|