1
|
Xing Z, Yang T, Li X, Xu H, Hong Y, Shao S, Li T, Ye L, Li Y, Jin X, Wei Y. High-glucose-associated YTHDC1 lactylation reduces the sensitivity of bladder cancer to enfortumab vedotin therapy. Cell Rep 2025; 44:115545. [PMID: 40215164 DOI: 10.1016/j.celrep.2025.115545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2024] [Revised: 01/26/2025] [Accepted: 03/19/2025] [Indexed: 04/26/2025] Open
Abstract
Hyperglycemia is a recognized risk factor for bladder cancer (BC). Enfortumab vedotin (EV), the first NECTIN4-targeting antibody-drug conjugate, demonstrates promising clinical efficacy in patients with advanced BC. In this study, we show that EV treatment is less effective in BC patients with diabetes than in those with normoglycemia. The subsequent in vitro and in vivo experiments indicate that high glucose decreases the sensitivity of BC cells to EV. Mechanistically, lactate overproduction associated with high glucose promotes AARS1-mediated YTHDC1 lactylation and enhances RNF183-mediated YTHDC1 ubiquitination. Downregulated YTHDC1 reduces JUND mRNA stability in an m6A-dependent manner, subsequently decreasing NECTIN4 expression and EV responsiveness. Our study identifies a high-glucose-associated lactate-AARS1-YTHDC1-JUND-NECTIN4 axis that affects EV sensitivity in BC. Targeting this axis with JUND activators or β-alanine may offer therapeutic strategies to enhance the sensitivity of BC cells to EV.
Collapse
Affiliation(s)
- Zhuo Xing
- Department of Urology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Tiejun Yang
- The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou 450008, China
| | - Xurui Li
- The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou 450008, China
| | - Haozhe Xu
- Department of Urology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Yulong Hong
- Department of Urology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Shuai Shao
- Department of Urology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Tao Li
- Shengli Clinical Medical College of Fujian Medical University, Department of Urology, Fujian Provincial Hospital, Fuzhou University Affiliated Provincial Hospital, No. 134, Dong Street, Fuzhou 350001, People's Republic of China
| | - Liefu Ye
- Shengli Clinical Medical College of Fujian Medical University, Department of Urology, Fujian Provincial Hospital, Fuzhou University Affiliated Provincial Hospital, No. 134, Dong Street, Fuzhou 350001, People's Republic of China
| | - Yuan Li
- Department of Urology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China.
| | - Xin Jin
- Department of Urology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China; FuRong Laboratory, Changsha 410078, Hunan, China.
| | - Yongbao Wei
- Shengli Clinical Medical College of Fujian Medical University, Department of Urology, Fujian Provincial Hospital, Fuzhou University Affiliated Provincial Hospital, No. 134, Dong Street, Fuzhou 350001, People's Republic of China.
| |
Collapse
|
2
|
Kim HY, Kim JM, Shin YK. Granzyme mRNA-miRNA interaction and its implication to functional impact. Genes Genomics 2024; 46:1495-1506. [PMID: 39528794 DOI: 10.1007/s13258-024-01578-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Accepted: 09/26/2024] [Indexed: 11/16/2024]
Abstract
BACKGROUND Granzyme activity can affect the processing and stability of miRNAs within target cells. They also could induce changes in miRNA expression that impact apoptotic signaling. Granzyme-induced apoptosis might result in changes to the miRNA profile, which can further influence the apoptosis and inflammation processes. OBJECTIVE The aim of this study was to bioinformatically analyze which miRNAs and transcription factors bind to the CDS and UTR regions of the granzyme family to regulate gene expression in relation to granzyme evolution and their association with human cancer diseases. METHODS The expression patterns of granzyme genes were analyzed in various human tissues. MiRNAs binding to the CDS and UTR of the granzyme family were examined, and the transcription factors binding to these miRNAs binding sites were also analyzed. Cytoscape program was used to visualize and analyze the networks of interactions between granzyme mRNA and miRNAs. Additionally, the evolutionary patterns of the granzyme family in relation to miRNAs and transcription factors binding were investigated. RESULTS Analysis of the expression patterns of the granzyme family in various human tissues shows that GZMA and GZMK are strongly expressed in lymph nodes. GZMB exhibits strong expression in the bone marrow, while GZMA is prominently expressed in the spleen. Twenty-two miRNAs bind to both GZMK and GZMB mRNA, while six miRNAs bind to both GZMK and GZMM mRNA. The only miRNA that binds to GZMK, GZMB, GZMM, and GZMA mRNA is hsa-miR-146a-5p. Transcription factors JUND, FOS, and JUN are distinctly interconnected with has-miR-5696 and GZMK. Association data between the granzyme family and cancers showed that various miRNAs were consistently implicated and exhibited either upregulation or downregulation. CONCLUSION Although the granzyme family possesses distinct genetic information, it shows relatively high expression levels in the lymph node, spleen, and bone marrow. Many miRNAs specifically regulate granzyme gene expression, and various transcription factors are involved. Analyzing the granzyme genes-miRNAs-transcription factors-related network will provide crucial insights into the mechanisms of cancer development and suppression.
Collapse
Affiliation(s)
- Hyeon-Young Kim
- Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, 08826, Republic of Korea
| | - Jung-Min Kim
- Department of Integrated Biological Science, Pusan National University, Busan, 46241, Republic of Korea
| | - Young Kee Shin
- Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, 08826, Republic of Korea.
- Department of Pharmacy, College of Pharmacy, Seoul National University, Seoul, 08826, Republic of Korea.
| |
Collapse
|
3
|
Choi G, Ju HY, Bok J, Choi J, Shin JW, Oh H, Jeon Y, Kim J, Kim D, Moon H, Lee JE, Keum YS, Kim YM, Kim HY, Park SH, Han MR, Chung Y. NRF2 is a spatiotemporal metabolic hub essential for the polyfunctionality of Th2 cells. Proc Natl Acad Sci U S A 2024; 121:e2319994121. [PMID: 38959032 PMCID: PMC11252815 DOI: 10.1073/pnas.2319994121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 05/20/2024] [Indexed: 07/04/2024] Open
Abstract
Upon encountering allergens, CD4+ T cells differentiate into IL-4-producing Th2 cells in lymph nodes, which later transform into polyfunctional Th2 cells producing IL-5 and IL-13 in inflamed tissues. However, the precise mechanism underlying their polyfunctionality remains elusive. In this study, we elucidate the pivotal role of NRF2 in polyfunctional Th2 cells in murine models of allergic asthma and in human Th2 cells. We found that an increase in reactive oxygen species (ROS) in immune cells infiltrating the lungs is necessary for the development of eosinophilic asthma and polyfunctional Th2 cells in vivo. Deletion of the ROS sensor NRF2 specifically in T cells, but not in dendritic cells, significantly abolished eosinophilia and polyfunctional Th2 cells in the airway. Mechanistically, NRF2 intrinsic to T cells is essential for inducing optimal oxidative phosphorylation and glycolysis capacity, thereby driving Th2 cell polyfunctionality independently of IL-33, partially by inducing PPARγ. Treatment with an NRF2 inhibitor leads to a substantial decrease in polyfunctional Th2 cells and subsequent eosinophilia in mice and a reduction in the production of Th2 cytokines from peripheral blood mononuclear cells in asthmatic patients. These findings highlight the critical role of Nrf2 as a spatial and temporal metabolic hub that is essential for polyfunctional Th2 cells, suggesting potential therapeutic implications for allergic diseases.
Collapse
Affiliation(s)
- Garam Choi
- Laboratory of Immune Regulation, Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul08826, Republic of Korea
| | - Hye-Yeon Ju
- Division of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, Incheon22012, Republic of Korea
| | - Jahyun Bok
- Laboratory of Immune Regulation, Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul08826, Republic of Korea
| | - Jungseo Choi
- Laboratory of Immune Regulation, Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul08826, Republic of Korea
| | - Jae Woo Shin
- Laboratory of Mucosal Immunology in Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul03080, Republic of Korea
| | - Hansol Oh
- Laboratory of Molecular Immunology, Department of Biological Science, Ulsan National Institute of Science & Technology, Ulsan44919, Republic of Korea
| | - Yeojin Jeon
- Laboratory of Immune Regulation, Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul08826, Republic of Korea
| | - Jiyeon Kim
- Laboratory of Immune Regulation, Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul08826, Republic of Korea
| | - Daehong Kim
- Laboratory of Immune Regulation, Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul08826, Republic of Korea
| | - Heesu Moon
- Laboratory of Immune Regulation, Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul08826, Republic of Korea
| | - Jeong-Eun Lee
- Laboratory of Immune Regulation, Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul08826, Republic of Korea
| | - Young-Sam Keum
- College of Pharmacy and Integrated Research, Institute for Drug Development, Dongguk University, Goyang10326, Republic of Korea
| | - You-Me Kim
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon34141, Republic of Korea
| | - Hye Young Kim
- Laboratory of Mucosal Immunology in Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul03080, Republic of Korea
| | - Sung Ho Park
- Laboratory of Molecular Immunology, Department of Biological Science, Ulsan National Institute of Science & Technology, Ulsan44919, Republic of Korea
| | - Mi-Ryung Han
- Division of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, Incheon22012, Republic of Korea
| | - Yeonseok Chung
- Laboratory of Immune Regulation, Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul08826, Republic of Korea
| |
Collapse
|
4
|
Bai W, Yang L, Qiu J, Zhu Z, Wang S, Li P, Zhou D, Wang H, Liao Y, Yu Y, Yang Z, Wen P, Zhang D. Single-cell analysis of CD4+ tissue residency memory cells (TRMs) in adult atopic dermatitis: A new potential mechanism. Genomics 2024; 116:110870. [PMID: 38821220 DOI: 10.1016/j.ygeno.2024.110870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 05/09/2024] [Accepted: 05/25/2024] [Indexed: 06/02/2024]
Abstract
The pathophysiology of atopic dermatitis (AD) is complex. CD4+ T cells play an essential role in the development of lesions in AD. However, the underlying mechanism remains unclear. In the present study, we investigated the differentially expressed genes (DEGs) between adult AD lesioned and non-lesioned skin using two datasets from the Gene Expression Omnibus (GEO) database. 62 DEGs were shown to be related to cytokine response. Compared to non-lesioned skin, lesioned skin showed immune infiltration with increased numbers of activated natural killer (NK) cells and CD4+ T memory cells (p < 0.01). We then identified 13 hub genes with a strong association with CD4+ T cells using weighted correlation network analysis. Single-cell analysis of AD detected a novel CD4+ T subcluster, CD4+ tissue residency memory cells (TRMs), which were verified through immunohistochemistry (IHC) to be increased in the dermal area of AD. The significant relationship between CD4+ TRM and AD was assessed through further analyses. FOXO1 and SBNO2, two of the 13 hub genes, were characteristically expressed in the CD4+ TRM, but down-regulated in IFN-γ/TNF-α-induced HaCaT cells, as shown using quantitative polymerase chain reaction (qPCR). Moreover, SBNO2 expression was associated with increased Th1 infiltration in AD (p < 0.05). In addition, genes filtered using Mendelian randomization were positively correlated with CD4+ TRM and were highly expressed in IFN-γ/TNF-α-induced HaCaT cells, as determined using qPCR and western blotting. Collectively, our results revealed that the newly identified CD4+ TRM may be involved in the pathogenesis of adult AD.
Collapse
Affiliation(s)
- Wenxuan Bai
- Department of Laboratory Medicine, The Third Xiangya Hospital of Central South University, Changsha, Hunan, China; Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Le Yang
- Department of Laboratory Medicine, The Third Xiangya Hospital of Central South University, Changsha, Hunan, China; Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Jing Qiu
- Department of Laboratory Medicine, The Third Xiangya Hospital of Central South University, Changsha, Hunan, China; Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Zihan Zhu
- Department of Laboratory Medicine, The Third Xiangya Hospital of Central South University, Changsha, Hunan, China; Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Shuxing Wang
- Department of Laboratory Medicine, The Third Xiangya Hospital of Central South University, Changsha, Hunan, China; Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Peidi Li
- Department of Laboratory Medicine, The Third Xiangya Hospital of Central South University, Changsha, Hunan, China; Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Dawei Zhou
- Department of Laboratory Medicine, The Third Xiangya Hospital of Central South University, Changsha, Hunan, China; Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Hongyi Wang
- Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yuxuan Liao
- Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China; National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yao Yu
- Department of Laboratory Medicine, The Third Xiangya Hospital of Central South University, Changsha, Hunan, China; Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Zijiang Yang
- Department of Laboratory Medicine, The Third Xiangya Hospital of Central South University, Changsha, Hunan, China; Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Puqiao Wen
- Department of Laboratory Medicine, The Third Xiangya Hospital of Central South University, Changsha, Hunan, China; Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Di Zhang
- Department of Laboratory Medicine, The Third Xiangya Hospital of Central South University, Changsha, Hunan, China.
| |
Collapse
|
5
|
Eum HH, Jeong D, Kim N, Jo A, Na M, Kang H, Hong Y, Kong JS, Jeong GH, Yoo SA, Lee HO. Single-cell RNA sequencing reveals myeloid and T cell co-stimulation mediated by IL-7 anti-cancer immunotherapy. Br J Cancer 2024; 130:1388-1401. [PMID: 38424167 PMCID: PMC11014989 DOI: 10.1038/s41416-024-02617-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 02/03/2024] [Accepted: 02/08/2024] [Indexed: 03/02/2024] Open
Abstract
BACKGROUND Immune checkpoint inhibitors unleash inhibitory signals on T cells conferred by tumors and surrounding stromal cells. Despite the clinical efficacy of checkpoint inhibitors, the lack of target expression and persistence of immunosuppressive cells limit the pervasive effectiveness of the therapy. These limitations may be overcome by alternative approaches that co-stimulate T cells and the immune microenvironment. METHODS We analyzed single-cell RNA sequencing data from multiple human cancers and a mouse tumor transplant model to discover the pleiotropic expression of the Interleukin 7 (IL-7) receptor on T cells, macrophages, and dendritic cells. RESULTS Our experiment on the mouse model demonstrated that recombinant IL-7 therapy induces tumor regression, expansion of effector CD8 T cells, and pro-inflammatory activation of macrophages. Moreover, spatial transcriptomic data support immunostimulatory interactions between macrophages and T cells. CONCLUSION These results indicate that IL-7 therapy induces anti-tumor immunity by activating T cells and pro-inflammatory myeloid cells, which may have diverse therapeutic applicability.
Collapse
Affiliation(s)
- Hye Hyeon Eum
- Department of Microbiology, College of Medicine, The Catholic University of Korea, Seoul, 06591, Republic of Korea
- Department of Biomedicine and Health Sciences, Graduate School, The Catholic University of Korea, Seoul, 06591, Republic of Korea
| | - Dasom Jeong
- Department of Microbiology, College of Medicine, The Catholic University of Korea, Seoul, 06591, Republic of Korea
- Department of Biomedicine and Health Sciences, Graduate School, The Catholic University of Korea, Seoul, 06591, Republic of Korea
| | - Nayoung Kim
- Department of Microbiology, College of Medicine, The Catholic University of Korea, Seoul, 06591, Republic of Korea
- Department of Biomedicine and Health Sciences, Graduate School, The Catholic University of Korea, Seoul, 06591, Republic of Korea
| | - Areum Jo
- Department of Microbiology, College of Medicine, The Catholic University of Korea, Seoul, 06591, Republic of Korea
- Department of Biomedicine and Health Sciences, Graduate School, The Catholic University of Korea, Seoul, 06591, Republic of Korea
| | - Minsu Na
- Department of Microbiology, College of Medicine, The Catholic University of Korea, Seoul, 06591, Republic of Korea
- Department of Biomedicine and Health Sciences, Graduate School, The Catholic University of Korea, Seoul, 06591, Republic of Korea
| | - Huiram Kang
- Department of Microbiology, College of Medicine, The Catholic University of Korea, Seoul, 06591, Republic of Korea
- Department of Biomedicine and Health Sciences, Graduate School, The Catholic University of Korea, Seoul, 06591, Republic of Korea
| | - Yourae Hong
- Digestive Oncology, Department of Oncology, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Jin-Sun Kong
- Department of Biomedicine and Health Sciences, Graduate School, The Catholic University of Korea, Seoul, 06591, Republic of Korea
- Center for Integrative Rheumatoid Transcriptomics and Dynamics, College of Medicine, The Catholic University of Korea, Seoul, 06591, Republic of Korea
| | - Gi Heon Jeong
- Department of Biomedicine and Health Sciences, Graduate School, The Catholic University of Korea, Seoul, 06591, Republic of Korea
- Center for Integrative Rheumatoid Transcriptomics and Dynamics, College of Medicine, The Catholic University of Korea, Seoul, 06591, Republic of Korea
| | - Seung-Ah Yoo
- Department of Biomedicine and Health Sciences, Graduate School, The Catholic University of Korea, Seoul, 06591, Republic of Korea
- Center for Integrative Rheumatoid Transcriptomics and Dynamics, College of Medicine, The Catholic University of Korea, Seoul, 06591, Republic of Korea
| | - Hae-Ock Lee
- Department of Microbiology, College of Medicine, The Catholic University of Korea, Seoul, 06591, Republic of Korea.
- Department of Biomedicine and Health Sciences, Graduate School, The Catholic University of Korea, Seoul, 06591, Republic of Korea.
| |
Collapse
|
6
|
Zheng H, Wang S, Li X, Hu H. A computational modeling of pri-miRNA expression. PLoS One 2024; 19:e0290768. [PMID: 38165860 PMCID: PMC10760784 DOI: 10.1371/journal.pone.0290768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Accepted: 08/15/2023] [Indexed: 01/04/2024] Open
Abstract
MicroRNAs (miRNAs) play crucial roles in gene regulation. Most studies focus on mature miRNAs, which leaves many unknowns about primary miRNAs (pri-miRNAs). To fill the gap, we attempted to model the expression of pri-miRNAs in 1829 primary cell types, cell lines, and tissues in this study. We demonstrated that the expression of pri-miRNAs can be modeled well by the expression of specific sets of mRNAs, which we termed their associated mRNAs. These associated mRNAs differ from their corresponding target mRNAs and are enriched with specific functions. Most associated mRNAs of a miRNA are shared across conditions, while on average, about one-fifth of the associated mRNAs are condition-specific. Our study shed new light on understanding miRNA biogenesis and general gene transcriptional regulation.
Collapse
Affiliation(s)
- Hansi Zheng
- Department of Computer Science, University of Central Florida, Orlando, Florida, United States of America
| | - Saidi Wang
- Department of Computer Science, University of Central Florida, Orlando, Florida, United States of America
| | - Xiaoman Li
- Burnett School of Biomedical Science, College of Medicine, University of Central Florida, Orlando, Florida, United States of America
| | - Haiyan Hu
- Department of Computer Science, University of Central Florida, Orlando, Florida, United States of America
| |
Collapse
|
7
|
Li X, Li Y, Dong L, Chang Y, Zhang X, Wang C, Chen M, Bo X, Chen H, Han W, Nie J. Decitabine priming increases anti-PD-1 antitumor efficacy by promoting CD8+ progenitor exhausted T cell expansion in tumor models. J Clin Invest 2023; 133:e165673. [PMID: 36853831 PMCID: PMC10065084 DOI: 10.1172/jci165673] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 02/16/2023] [Indexed: 03/01/2023] Open
Abstract
CD8+ exhausted T cells (Tex) are heterogeneous. PD-1 inhibitors reinvigorate progenitor Tex, which subsequently differentiate into irresponsive terminal Tex. The ability to maintain a capacity for durable proliferation of progenitor Tex is important, but the mechanism remains unclear. Here, we showed CD8+ progenitor Tex pretreated with decitabine, a low-dose DNA demethylating agent, had enhanced proliferation and effector function against tumors after anti-PD-1 treatment in vitro. Treatment with decitabine plus anti-PD-1 promoted the activation and expansion of tumor-infiltrated CD8+ progenitor Tex and efficiently suppressed tumor growth in multiple tumor models. Transcriptional and epigenetic profiling of tumor-infiltrated T cells demonstrated that the combination of decitabine plus anti-PD-1 markedly elevated the clonal expansion and cytolytic activity of progenitor Tex compared with anti-PD-1 monotherapy and restrained CD8+ T cell terminal differentiation. Strikingly, decitabine plus anti-PD-1 sustained the expression and activity of the AP-1 transcription factor JunD, which was reduced following PD-1 blockade therapy. Downregulation of JunD repressed T cell proliferation, and activation of JNK/AP-1 signaling in CD8+ T cells enhanced the antitumor capacity of PD-1 inhibitors. Together, epigenetic agents remodel CD8+ progenitor Tex populations and improve responsiveness to anti-PD-1 therapy.
Collapse
Affiliation(s)
- Xiang Li
- Department of Bio-therapeutic, the First Medical Centre, Chinese PLA General Hospital, Beijing, China
| | - Yaru Li
- Institute of Health Service and Transfusion Medicine, Beijing, China
| | - Liang Dong
- Department of Bio-therapeutic, the First Medical Centre, Chinese PLA General Hospital, Beijing, China
| | - Yixin Chang
- Department of Bio-therapeutic, the First Medical Centre, Chinese PLA General Hospital, Beijing, China
| | - Xingying Zhang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Chunmeng Wang
- Department of Bio-therapeutic, the First Medical Centre, Chinese PLA General Hospital, Beijing, China
| | - Meixia Chen
- Department of Bio-therapeutic, the First Medical Centre, Chinese PLA General Hospital, Beijing, China
| | - Xiaochen Bo
- Institute of Health Service and Transfusion Medicine, Beijing, China
| | - Hebing Chen
- Institute of Health Service and Transfusion Medicine, Beijing, China
| | - Weidong Han
- Department of Bio-therapeutic, the First Medical Centre, Chinese PLA General Hospital, Beijing, China
- Changping Laboratory, Beijing, China
| | - Jing Nie
- Department of Bio-therapeutic, the First Medical Centre, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
8
|
Sun M, Cao Y, Okada R, Reyes-González JM, Stack HG, Qin H, Li N, Seibert C, Kelly MC, Ruppin E, Ho M, Thiele CJ, Nguyen R. Preclinical optimization of a GPC2-targeting CAR T-cell therapy for neuroblastoma. J Immunother Cancer 2023; 11:e005881. [PMID: 36631162 PMCID: PMC9835961 DOI: 10.1136/jitc-2022-005881] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/30/2022] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND Although most patients with newly diagnosed high-risk neuroblastoma (NB) achieve remission after initial therapy, more than 50% experience late relapses caused by minimal residual disease (MRD) and succumb to their cancer. Therapeutic strategies to target MRD may benefit these children. We developed a new chimeric antigen receptor (CAR) targeting glypican-2 (GPC2) and conducted iterative preclinical engineering of the CAR structure to maximize its anti-tumor efficacy before clinical translation. METHODS We evaluated different GPC2-CAR constructs by measuring the CAR activity in vitro. NOD-SCID mice engrafted orthotopically with human NB cell lines or patient-derived xenografts and treated with human CAR T cells served as in vivo models. Mechanistic studies were performed using single-cell RNA-sequencing. RESULTS Applying stringent in vitro assays and orthotopic in vivo NB models, we demonstrated that our single-chain variable fragment, CT3, integrated into a CAR vector with a CD28 hinge, CD28 transmembrane, and 4-1BB co-stimulatory domain (CT3.28H.BBζ) elicits the best preclinical anti-NB activity compared with other tested CAR constructs. This enhanced activity was associated with an enrichment of CD8+ effector T cells in the tumor-microenvironment and upregulation of several effector molecules such as GNLY, GZMB, ZNF683, and HMGN2. Finally, we also showed that the CT3.28H.BBζ CAR we developed was more potent than a recently clinically tested GD2-targeted CAR to control NB growth in vivo. CONCLUSION Given the robust preclinical activity of CT3.28H.BBζ, these results form a promising basis for further clinical testing in children with NB.
Collapse
Affiliation(s)
- Ming Sun
- Pediatric Oncology Branch, NCI, Bethesda, Maryland, USA
| | - Yingying Cao
- Cancer Data Science Laboratory, NCI, Bethesda, Maryland, USA
| | - Reona Okada
- Pediatric Oncology Branch, NCI, Bethesda, Maryland, USA
| | | | | | - Haiying Qin
- Pediatric Oncology Branch, NCI, Bethesda, Maryland, USA
| | - Nan Li
- Laboratory of Molecular Biology, National Institutes of Health, Bethesda, Maryland, USA
| | - Charlie Seibert
- Center for Cancer Research Single Cell Analysis Facility, Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Michael C Kelly
- Single Cell Analysis Facility, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
| | - Eytan Ruppin
- Cancer Data Science Laboratory, NCI, Bethesda, Maryland, USA
| | - Mitchell Ho
- Laboratory of Molecular Biology, National Institutes of Health, Bethesda, Maryland, USA
| | | | - Rosa Nguyen
- Pediatric Oncology Branch, NCI, Bethesda, Maryland, USA
| |
Collapse
|
9
|
Wang S, Zheng H, Choi JS, Lee JK, Li X, Hu H. A systematic evaluation of the computational tools for ligand-receptor-based cell-cell interaction inference. Brief Funct Genomics 2022; 21:339-356. [PMID: 35822343 PMCID: PMC9479691 DOI: 10.1093/bfgp/elac019] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 06/13/2022] [Accepted: 06/16/2022] [Indexed: 11/13/2022] Open
Abstract
Cell-cell interactions (CCIs) are essential for multicellular organisms to coordinate biological processes and functions. One classical type of CCI interaction is between secreted ligands and cell surface receptors, i.e. ligand-receptor (LR) interactions. With the recent development of single-cell technologies, a large amount of single-cell ribonucleic acid (RNA) sequencing (scRNA-Seq) data has become widely available. This data availability motivated the single-cell-resolution study of CCIs, particularly LR-based CCIs. Dozens of computational methods and tools have been developed to predict CCIs by identifying LR-based CCIs. Many of these tools have been theoretically reviewed. However, there is little study on current LR-based CCI prediction tools regarding their performance and running results on public scRNA-Seq datasets. In this work, to fill this gap, we tested and compared nine of the most recent computational tools for LR-based CCI prediction. We used 15 well-studied scRNA-Seq samples that correspond to approximately 100K single cells under different experimental conditions for testing and comparison. Besides briefing the methodology used in these nine tools, we summarized the similarities and differences of these tools in terms of both LR prediction and CCI inference between cell types. We provided insight into using these tools to make meaningful discoveries in understanding cell communications.
Collapse
Affiliation(s)
| | | | | | | | - Xiaoman Li
- Corresponding authors: Haiyan Hu, Department of Computer Science, University of Central Florida, Orlando, FL, USA. Tel.: +1-4078820134; Fax: +1-4078235835; E-mail: ; Xiaoman Li, Burnett School of Biomedical Science, University of Central Florida, Orlando, FL, USA. Tel.: +1-4078234811; Fax: +1-4078235835; E-mail:
| | - Haiyan Hu
- Corresponding authors: Haiyan Hu, Department of Computer Science, University of Central Florida, Orlando, FL, USA. Tel.: +1-4078820134; Fax: +1-4078235835; E-mail: ; Xiaoman Li, Burnett School of Biomedical Science, University of Central Florida, Orlando, FL, USA. Tel.: +1-4078234811; Fax: +1-4078235835; E-mail:
| |
Collapse
|
10
|
Talukder A, Zhang W, Li X, Hu H. A deep learning method for miRNA/isomiR target detection. Sci Rep 2022; 12:10618. [PMID: 35739186 PMCID: PMC9226005 DOI: 10.1038/s41598-022-14890-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 06/14/2022] [Indexed: 11/30/2022] Open
Abstract
Accurate identification of microRNA (miRNA) targets at base-pair resolution has been an open problem for over a decade. The recent discovery of miRNA isoforms (isomiRs) adds more complexity to this problem. Despite the existence of many methods, none considers isomiRs, and their performance is still suboptimal. We hypothesize that by taking the isomiR-mRNA interactions into account and applying a deep learning model to study miRNA-mRNA interaction features, we may improve the accuracy of miRNA target predictions. We developed a deep learning tool called DMISO to capture the intricate features of miRNA/isomiR-mRNA interactions. Based on tenfold cross-validation, DMISO showed high precision (95%) and recall (90%). Evaluated on three independent datasets, DMISO had superior performance to five tools, including three popular conventional tools and two recently developed deep learning-based tools. By applying two popular feature interpretation strategies, we demonstrated the importance of the miRNA regions other than their seeds and the potential contribution of the RNA-binding motifs within miRNAs/isomiRs and mRNAs to the miRNA/isomiR-mRNA interactions.
Collapse
Affiliation(s)
- Amlan Talukder
- Department of Computer Science, University of Central Florida, Orlando, FL, 32816, USA
| | - Wencai Zhang
- Burnett School of Biomedical Science, University of Central Florida, Orlando, FL, 32816, USA
| | - Xiaoman Li
- Burnett School of Biomedical Science, University of Central Florida, Orlando, FL, 32816, USA.
| | - Haiyan Hu
- Department of Computer Science, University of Central Florida, Orlando, FL, 32816, USA.
- Genomics and Bioinformatics Cluster, University of Central Florida, Orlando, FL, 32816, USA.
| |
Collapse
|
11
|
Ethiraj P, Haque IA, Alford AK, Gou W, Singh T, Sambandam Y, Hathaway-Schrader JD, Reddy SV. Inhibition of NFAM1 suppresses phospho-SAPK/JNK signaling during osteoclast differentiation and bone resorption. J Cell Biochem 2021; 122:1534-1543. [PMID: 34228377 DOI: 10.1002/jcb.30076] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 04/27/2021] [Accepted: 06/13/2021] [Indexed: 01/18/2023]
Abstract
We have recently demonstrated NFAT activating protein with ITAM motif 1 (NFAM1) signaling increases osteoclast (OCL) formation/bone resorption associated with the Paget's disease of bone, however, the underlying molecular mechanisms of the NFAM1 regulation of OCL differentiation and bone resorption remains unclear. Here, we showed that RANK ligand stimulation enhances NFAM1 expression in preosteoclast cells. Conditioned media collected from RANKL stimulated RAW264.7 NFAM1 knockdown (KD) stable cells showed inhibition of interleukin-6 (2.5-fold), tumour necrosis factor-α (2.2-fold) and CXCL-5 (3-fold) levels compared to wild-type (WT) cells. Further, RANKL stimulation significantly increased p-STAT6 expression (5.5-fold) in WT cells, but no significant effect was observed in NFAM1-KD cells. However, no changes were detected in signal transducer and activator of transcription 3 levels in either of cell groups. Interestingly, NFAM1-KD suppressed the RANKL stimulated c-fos, p-c-Jun and c-Jun N-terminal kinase (JNK) activity in preosteoclasts. We further showed that the suppression of JNK activity is through inhibition of p-SAPK/JNK in these cells. In addition, NFATc1 expression, a critical transcription factor associated with osteoclastogenesis is significantly inhibited in NFAM1-KD preosteoclast cells. Interestingly, NFAM1 inhibition suppressed the OCL differentiation and bone resorption capacity in mouse bone marrow cell cultures. We also demonstrated inhibition of tartrate-resistant acid phosphatase expression in RANKL stimulated NFAM1-KD preosteoclast cells. Thus, our results suggest that NFAM1 control SAPK/JNK signaling to modulate osteoclast differentiation and bone resorption.
Collapse
Affiliation(s)
- Purushoth Ethiraj
- Department of Pediatrics, Darby Children's Research Institute, Charleston, South Carolina, USA
| | - Ishraq A Haque
- Department of Pediatrics, Darby Children's Research Institute, Charleston, South Carolina, USA
| | - Anna K Alford
- Department of Pediatrics, Darby Children's Research Institute, Charleston, South Carolina, USA
| | - Wenyu Gou
- Department of Surgery, College of Dental Medicine, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Toolika Singh
- Department of Cardiology, College of Dental Medicine, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Yuvaraj Sambandam
- Department of Surgery, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Jessica D Hathaway-Schrader
- Department of Oral Health Sciences, College of Dental Medicine, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Sakamuri V Reddy
- Department of Pediatrics, Darby Children's Research Institute, Charleston, South Carolina, USA
| |
Collapse
|
12
|
Verma M, Michalec L, Sripada A, McKay J, Sirohi K, Verma D, Sheth D, Martin R, Dyjack N, Seibold MA, Knapp JR, Tu TH, O'Connor BP, Gorska MM, Alam R. The molecular and epigenetic mechanisms of innate lymphoid cell (ILC) memory and its relevance for asthma. J Exp Med 2021; 218:212204. [PMID: 34076685 PMCID: PMC8176441 DOI: 10.1084/jem.20201354] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 01/11/2021] [Accepted: 04/28/2021] [Indexed: 12/13/2022] Open
Abstract
Repetitive exposure of Rag1−/− mice to the Alternaria allergen extract generated a form of memory that elicited an asthma-like response upon a subthreshold recall challenge 3–15 wk later. This memory was associated with lung ICOS+ST2+ ILC2s. Genetic, pharmacologic, and antibody-mediated inhibition and adoptive transfer established an essential role for ILC2s in memory-driven asthma. ATAC-seq demonstrated a distinct epigenetic landscape of memory ILC2s and identified Bach2 and AP1 (JunD and Fosl2) motifs as major drivers of altered gene accessibility. scRNA-seq, gene knockout, and signaling studies suggest that repetitive allergenic stress induces a gene repression program involving Nr4a2, Zeb1, Bach2, and JunD and a preparedness program involving Fhl2, FosB, Stat6, Srebf2, and MPP7 in memory ILC2s. A mutually regulated balance between these two programs establishes and maintains memory. The preparedness program (e.g., Fhl2) can be activated with a subthreshold cognate stimulation, which down-regulates repressors and activates effector pathways to elicit the memory-driven phenotype.
Collapse
Affiliation(s)
- Mukesh Verma
- Division of Allergy & Immunology, Department of Medicine, National Jewish Health, Denver, CO
| | - Lidia Michalec
- Division of Allergy & Immunology, Department of Medicine, National Jewish Health, Denver, CO
| | - Anand Sripada
- Division of Allergy & Immunology, Department of Medicine, National Jewish Health, Denver, CO
| | - Jerome McKay
- Division of Allergy & Immunology, Department of Medicine, National Jewish Health, Denver, CO
| | - Kapil Sirohi
- Division of Allergy & Immunology, Department of Medicine, National Jewish Health, Denver, CO
| | - Divya Verma
- Division of Allergy & Immunology, Department of Medicine, National Jewish Health, Denver, CO
| | - Dipa Sheth
- Division of Allergy & Immunology, Department of Medicine, National Jewish Health, Denver, CO
| | - Richard Martin
- Division of Pulmonary, Critical Care and Sleep Medicine, National Jewish Health, Denver, CO.,Department of Pediatrics, National Jewish Health, Denver, CO
| | - Nathan Dyjack
- Center for Genes, Environment and Health, National Jewish Health, Denver, CO
| | - Max A Seibold
- Center for Genes, Environment and Health, National Jewish Health, Denver, CO.,Department of Pediatrics, National Jewish Health, Denver, CO
| | - Jennifer R Knapp
- Center for Genes, Environment and Health, National Jewish Health, Denver, CO
| | - Ting-Hui Tu
- Center for Genes, Environment and Health, National Jewish Health, Denver, CO
| | - Brian P O'Connor
- Center for Genes, Environment and Health, National Jewish Health, Denver, CO
| | - Magdalena M Gorska
- Division of Allergy & Immunology, Department of Medicine, National Jewish Health, Denver, CO.,School of Medicine, University of Colorado Denver, Denver, CO
| | - Rafeul Alam
- Division of Allergy & Immunology, Department of Medicine, National Jewish Health, Denver, CO.,School of Medicine, University of Colorado Denver, Denver, CO
| |
Collapse
|
13
|
STAT5 is essential for IL-7-mediated viability, growth, and proliferation of T-cell acute lymphoblastic leukemia cells. Blood Adv 2019; 2:2199-2213. [PMID: 30185437 DOI: 10.1182/bloodadvances.2018021063] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 08/04/2018] [Indexed: 12/22/2022] Open
Abstract
T-cell acute lymphoblastic leukemia (T-ALL) constitutes an aggressive subset of ALL, the most frequent childhood malignancy. Whereas interleukin-7 (IL-7) is essential for normal T-cell development, it can also accelerate T-ALL development in vivo and leukemia cell survival and proliferation by activating phosphatidylinositol 3-kinase/protein kinase B/mechanistic target of rapamycin signaling. Here, we investigated whether STAT5 could also mediate IL-7 T-ALL-promoting effects. We show that IL-7 induces STAT pathway activation in T-ALL cells and that STAT5 inactivation prevents IL-7-mediated T-ALL cell viability, growth, and proliferation. At the molecular level, STAT5 is required for IL-7-induced downregulation of p27kip1 and upregulation of the transferrin receptor, CD71. Surprisingly, STAT5 inhibition does not significantly affect IL-7-mediated Bcl-2 upregulation, suggesting that, contrary to normal T-cells, STAT5 promotes leukemia cell survival through a Bcl-2-independent mechanism. STAT5 chromatin immunoprecipitation sequencing and RNA sequencing reveal a diverse IL-7-driven STAT5-dependent transcriptional program in T-ALL cells, which includes BCL6 inactivation by alternative transcription and upregulation of the oncogenic serine/threonine kinase PIM1 Pharmacological inhibition of PIM1 abrogates IL-7-mediated proliferation on T-ALL cells, indicating that strategies involving the use of PIM kinase small-molecule inhibitors may have therapeutic potential against a majority of leukemias that rely on IL-7 receptor (IL-7R) signaling. Overall, our results demonstrate that STAT5, in part by upregulating PIM1 activity, plays a major role in mediating the leukemia-promoting effects of IL-7/IL-7R.
Collapse
|
14
|
Consecutive epigenetically-active agent combinations act in ID1-RUNX3-TET2 and HOXA pathways for Flt3ITD+ve AML. Oncotarget 2018; 9:5703-5715. [PMID: 29464028 PMCID: PMC5814168 DOI: 10.18632/oncotarget.23655] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Accepted: 10/25/2017] [Indexed: 11/25/2022] Open
Abstract
Co-occurrence of Flt3ITD and TET2 mutations provoke an animal model of AML by epigenetic repression of Wnt pathway antagonists, including RUNX3, and by hyperexpression of ID1, encoding Wnt agonist. These affect HOXA over-expression and treatment resistance. A comparable epigenetic phenotype was identified among adult AML patients needing novel intervention. We chose combinations of targeted agents acting on distinct effectors, at the levels of both signal transduction and chromatin remodeling, in relapsed/refractory AML's, including Flt3ITD+ve, described with a signature of repressed tumor suppressor genes, involving Wnt antagonist RUNX3, occurring along with ID1 and HOXA over-expressions. We tracked patient response to combination of Flt3/Raf inhibitor, Sorafenib, and Vorinostat, pan-histone deacetylase inhibitor, without or with added Bortezomib, in consecutive phase I trials. A striking association of rapid objective remissions (near-complete, complete responses) was noted to accompany induced early pharmacodynamic changes within patient blasts in situ, involving these effectors, significantly linking RUNX3/Wnt antagonist de-repression (80%) and ID1 downregulation (85%), to a response, also preceded by profound HOXA9 repression. Response occurred in context of concurrent TET2 mutation/hypomorphy and Flt3ITD+ve mutation (83% of complete responses). Addition of Bortezomib to the combination was vital to attainment of complete response in Flt3ITD+ve cases exhibiting such Wnt pathway dysregulation.
Collapse
|
15
|
Xu H, Medina S, Lauer FT, Douillet C, Liu KJ, Hudson LG, Stýblo M, Aleksunes LM, Burchiel SW. Efflux Transporters Regulate Arsenite-Induced Genotoxicity in Double Negative and Double Positive T Cells. Toxicol Sci 2017; 158:127-139. [PMID: 28472378 PMCID: PMC6257016 DOI: 10.1093/toxsci/kfx075] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Arsenite (As+3) exposure is known to cause immunotoxicity in human and animal models. Our previous studies demonstrated that As+3 at 50-500 nM concentrations induced both genotoxicity and nongenotoxicity in mouse thymus cells. Developing T cells at CD4-CD8- double negative (DN) stage, the first stage after early T cells are transported from bone marrow to thymus, were found to be more sensitive to As+3 toxicity than the T cells at CD4 + CD8 + double positive (DP) stage in vitro. Induction of Mdr1 (Abcb1) and Mrp1 (Abcc1), 2 multidrug resistance transporters and exporters of As+3, was associated with the reversal of As+3-induced double strand breaks and DNA damage. In order to confirm that the thymus cell populations have different sensitivity to As+3in vivo, male C57BL/6J mice were exposed to 0, 100, and 500 ppb As+3 in drinking water for 30 d. A significant decrease in DN cell percentage was observed with exposure to 500 ppb As+3. Low to moderate concentrations of As+3 were shown to induce higher genotoxicity in sorted DN than DP cells in vitro. Calcein AM uptake and Mdr1/Mrp1 mRNA quantification results revealed that DN cells not only had limited As+3 exporter activity, but also lacked the ability to activate these exporters with As+3 treatments, resulting in a higher accumulation of intracellular As+3. Knockdown study of As+3 exporters in the DN thymic cell line, D1 using siRNA, demonstrated that Mdr1 and Mrp1 regulate intracellular As+3 accumulation and genotoxicity. Taken together, the results indicate that transporter regulation is an important mechanism for differential genotoxicity induced by As+3 in thymocytes at different developmental stages.
Collapse
Affiliation(s)
- Huan Xu
- Department of Pharmaceutical Sciences, The University of New Mexico College of Pharmacy, Albuquerque, New Mexico 87131
| | - Sebastian Medina
- Department of Pharmaceutical Sciences, The University of New Mexico College of Pharmacy, Albuquerque, New Mexico 87131
| | - Fredine T. Lauer
- Department of Pharmaceutical Sciences, The University of New Mexico College of Pharmacy, Albuquerque, New Mexico 87131
| | - Christelle Douillet
- Department of Nutrition, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27516
| | - Ke Jian Liu
- Department of Pharmaceutical Sciences, The University of New Mexico College of Pharmacy, Albuquerque, New Mexico 87131
| | - Laurie G. Hudson
- Department of Pharmaceutical Sciences, The University of New Mexico College of Pharmacy, Albuquerque, New Mexico 87131
| | - Miroslav Stýblo
- Department of Nutrition, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27516
| | - Lauren M. Aleksunes
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey 08854
| | - Scott W. Burchiel
- Department of Pharmaceutical Sciences, The University of New Mexico College of Pharmacy, Albuquerque, New Mexico 87131
| |
Collapse
|
16
|
Ubieta K, Garcia M, Grötsch B, Uebe S, Weber GF, Stein M, Ekici A, Schett G, Mielenz D, Bozec A. Fra-2 regulates B cell development by enhancing IRF4 and Foxo1 transcription. J Exp Med 2017; 214:2059-2071. [PMID: 28566276 PMCID: PMC5502419 DOI: 10.1084/jem.20160514] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Revised: 10/21/2016] [Accepted: 04/14/2017] [Indexed: 12/02/2022] Open
Abstract
The role of AP-1 transcription factors in early B cell development and function is still incompletely characterized. Ubieta at al. describe the function of the Fra-2/AP-1 transcription factor as a regulator of Foxo1 and Irf4 expression in B cells. Fra-2 affects B cell proliferation and maintains their number in bone marrow. The role of AP-1 transcription factors in early B cell development and function is still incompletely characterized. Here we address the role of Fra-2 in B cell differentiation. Deletion of Fra-2 leads to impaired B cell proliferation in the bone marrow. In addition, IL-7–stimulated pro–B cell cultures revealed a reduced differentiation from large pre–B cells to small B cells and immature B cells. Gene profiling and chromatin immunoprecipitation sequencing analyses unraveled a transcriptional reduction of the transcription factors Foxo1, Irf4, Ikaros, and Aiolos in Fra-2–deficient B cells. Moreover, expression of IL7Rα and Rag 1/2, downstream targets of Irf4 and Foxo1, were also reduced in the absence of Fra-2. Pro–B cell proliferation and small pre–B cell differentiation were fully rescued by expression of Foxo1 and Irf4 in Fra-2–deficient pro–B cells. Hence, Fra-2 is a key upstream regulator of Foxo1 and Irf4 expression and influences proliferation and differentiation of B cells at multiple stages.
Collapse
Affiliation(s)
- Kenia Ubieta
- Department of Internal Medicine 3 - Rheumatology and Immunology, Universitätsklinikum Erlangen, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany.,Department of Surgery, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany
| | - Mireia Garcia
- Department of Internal Medicine 3 - Rheumatology and Immunology, Universitätsklinikum Erlangen, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany
| | - Bettina Grötsch
- Department of Internal Medicine 3 - Rheumatology and Immunology, Universitätsklinikum Erlangen, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany
| | - Steffen Uebe
- Institute of Human Genetics, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany
| | - Georg F Weber
- Department of Surgery, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany
| | - Merle Stein
- Division of Molecular Immunology, Department of Internal Medicine 3 - Rheumatology and Immunology, Nikolaus-Fiebiger-Center, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany
| | - Arif Ekici
- Institute of Human Genetics, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany
| | - Georg Schett
- Department of Internal Medicine 3 - Rheumatology and Immunology, Universitätsklinikum Erlangen, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany
| | - Dirk Mielenz
- Division of Molecular Immunology, Department of Internal Medicine 3 - Rheumatology and Immunology, Nikolaus-Fiebiger-Center, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany
| | - Aline Bozec
- Department of Internal Medicine 3 - Rheumatology and Immunology, Universitätsklinikum Erlangen, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany
| |
Collapse
|
17
|
Bevington SL, Cauchy P, Withers DR, Lane PJL, Cockerill PN. T Cell Receptor and Cytokine Signaling Can Function at Different Stages to Establish and Maintain Transcriptional Memory and Enable T Helper Cell Differentiation. Front Immunol 2017; 8:204. [PMID: 28316598 PMCID: PMC5334638 DOI: 10.3389/fimmu.2017.00204] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Accepted: 02/14/2017] [Indexed: 12/24/2022] Open
Abstract
Experienced T cells exhibit immunological memory via a rapid recall response, responding to restimulation much faster than naïve T cells. The formation of immunological memory starts during an initial slow response, when naïve T cells become transformed to proliferating T blast cells, and inducible immune response genes are reprogrammed as active chromatin domains. We demonstrated that these active domains are supported by thousands of priming elements which cooperate with inducible transcriptional enhancers to enable efficient responses to stimuli. At the conclusion of this response, a small proportion of these cells return to the quiescent state as long-term memory T cells. We proposed that priming elements can be established in a hit-and-run process dependent on the inducible factor AP-1, but then maintained by the constitutive factors RUNX1 and ETS-1. This priming mechanism may also function to render genes receptive to additional differentiation-inducing factors such as GATA3 and TBX21 that are encountered under polarizing conditions. The proliferation of recently activated T cells and the maintenance of immunological memory in quiescent memory T cells are also dependent on various cytokine signaling pathways upstream of AP-1. We suggest that immunological memory is established by T cell receptor signaling, but maintained by cytokine signaling.
Collapse
Affiliation(s)
- Sarah L Bevington
- Institute of Cancer and Genomic Sciences, Institute of Biomedical Research, University of Birmingham , Birmingham , UK
| | - Pierre Cauchy
- Institute of Cancer and Genomic Sciences, Institute of Biomedical Research, University of Birmingham , Birmingham , UK
| | - David R Withers
- Institute of Immunology and Immunotherapy, Institute of Biomedical Research, University of Birmingham , Birmingham , UK
| | - Peter J L Lane
- Institute of Immunology and Immunotherapy, Institute of Biomedical Research, University of Birmingham , Birmingham , UK
| | - Peter N Cockerill
- Institute of Cancer and Genomic Sciences, Institute of Biomedical Research, University of Birmingham , Birmingham , UK
| |
Collapse
|
18
|
Lin XW, Xu WH. Hexokinase is a key regulator of energy metabolism and ROS activity in insect lifespan extension. Aging (Albany NY) 2016; 8:245-59. [PMID: 26852422 PMCID: PMC4789580 DOI: 10.18632/aging.100885] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Developmental arrest (diapause) is a ‘non-aging’ state that is similar to the Caenorhabditis elegans dauer stage and Drosophila lifespan extension. Diapause results in low metabolic activity and a profound extension of insect lifespan. Here, we cloned the Helicoverpa armigera Hexokinase (HK) gene, a gene that is critical for the developmental arrest of this species. HK expression and activity levels were significantly increased in nondiapause-destined pupae compared with those of diapause-destined pupae. Downregulation of HK activity reduced cell viability and delayed pupal development by reducing metabolic activity and increasing ROS activity, which suggests that HK is a key regulator of insect development. We then identified the transcription factors Har-CREB, -c-Myc, and -POU as specifically binding the Har-HK promoter and regulating its activity. Intriguingly, Har-POU and -c-Myc are specific transcription factors for HK expression, whereas Har-CREB is nonspecific. Furthermore, Har-POU and -c-Myc could respond to ecdysone, which is an upstream hormone. Therefore, low ecdysone levels in diapause-destined individuals lead to low Har-POU and -c-Myc expression levels, ultimately repressing Har-HK expression and inducing entry into diapause or lifespan extension.
Collapse
Affiliation(s)
- Xian-Wu Lin
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510006, China
| | - Wei-Hua Xu
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510006, China
| |
Collapse
|
19
|
Chen HY, Ren XY, Wang WH, Zhang YX, Chen SF, Zhang B, Wang LX. Upregulated ROS production induced by the proteasome inhibitor MG-132 on XBP1 gene expression and cell apoptosis in Tca-8113 cells. Biomed Pharmacother 2014; 68:709-13. [PMID: 25092240 DOI: 10.1016/j.biopha.2014.07.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Accepted: 07/08/2014] [Indexed: 12/01/2022] Open
Abstract
Exposure of Tca-8113 cells to proteasome inhibitor carbobenzoxy-Leu-Leu-leucinal (MG-132) causing apoptosis is associated with endoplasmic reticulum (ER) stress. X-box-binding protein-1 (XBP1) is an important regulator of a subset of genes active during ER stress, which is related to cell survival and is required for tumor growth. The present study is to evaluate the effect of MG-132 on ROS production, XBP1 gene expression, tumor necrosis factor receptor-associated factor 2 (TRAF2), ASK1 and c-jun protein expression in tongue squamous cell carcinoma cell line Tca-8113 cells. ROS production was measured by reactive oxygen species assay. X-box binding protein-1 (XBP1) mRNA was analyzed by real-time-PCR, TRAF2, ASK1 and c-jun protein were investigated by western blot and immunocytochemistry respectively. The result indicated that ROS production, TRAF2, ASK1 and c-jun were elevated in MG-132 treated cells. Giving ROS scavenger N-acetyl-L-cysteine (NAC) largely prevented the effects of MG-132. Furthermore, treating with MG-132 lead to decreased XBP1 mRNA expression but could not completely block the expression of XBP1. Taken together, these findings provide the evidence that MG-132 induced ER stress lead to Tca-8113 cells apoptosis through ROS generation and TRAF2-ASK1-JNK signal pathway activation.
Collapse
Affiliation(s)
- Hai-ying Chen
- Oral Maxillofacial Head-Neck Key Laboratory of Medical Biology, and central laboratory of Liaocheng People's Hospital, Liaocheng, Shandong 252000, China
| | - Xiao-yan Ren
- Oral Maxillofacial Head-Neck Key Laboratory of Medical Biology, and central laboratory of Liaocheng People's Hospital, Liaocheng, Shandong 252000, China
| | - Wei-hua Wang
- Oral Maxillofacial Head-Neck Key Laboratory of Medical Biology, and central laboratory of Liaocheng People's Hospital, Liaocheng, Shandong 252000, China
| | - Ying-xin Zhang
- Oral Maxillofacial Head-Neck Key Laboratory of Medical Biology, and central laboratory of Liaocheng People's Hospital, Liaocheng, Shandong 252000, China
| | - Shuang-feng Chen
- Oral Maxillofacial Head-Neck Key Laboratory of Medical Biology, and central laboratory of Liaocheng People's Hospital, Liaocheng, Shandong 252000, China
| | - Bin Zhang
- Department of Oral and Maxillofacial Surgery, Liaocheng People's Hospital, Liaocheng, Shandong 252000, China.
| | - Le-xin Wang
- School of Biomedical Sciences, Charles Sturt University, Wagga Wagga, NSW 2650, Australia.
| |
Collapse
|
20
|
Yaping Z, Ying W, Luqin D, Ning T, Xuemei A, Xixian Y. Mechanism of interleukin-1β-induced proliferation in rat hepatic stellate cells from different levels of signal transduction. APMIS 2013; 122:392-8. [PMID: 23992404 DOI: 10.1111/apm.12155] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2013] [Accepted: 07/04/2013] [Indexed: 12/18/2022]
Abstract
Hepatic stellate cells (HSCs) are the major producers of collagen in the liver. Their conversion from resting cells to proliferative, contractile, and activated cells is a critical step leading to liver fibrosis that is characterized by the deposition of excessive extracellular matrix. Interleukin-1 (IL-1) may play a role in maintaining HSC in a proliferative state that is responsible for hepatic fibrogenesis. The aim of this study was to study the roles of the IL-1 type I receptor (IL-1R1), c-Jun N-terminal kinase (JNK), and activation protein-1 (AP-1) in IL-1β-mediated proliferation in rat HSCs. We showed that IL-1β can upregulate proliferation in rat HSCs; however, inhibition of the JNK pathway could inhibit HSCs proliferation. Furthermore, IL-1β activated IL-1R1 expression, the JNK signaling pathway, and AP-1 activity in a time-dependent manner in rat HSCs. These data demonstrate that IL-1β could promote the proliferation of rat HSCs and that the IL-1R1, JNK, and AP-1 pathways were involved in this process. In summary, IL-1β-induced proliferation is possibly mediated by the IL-1R1, JNK, and AP-1 pathways in rat HSCs. Therefore, drugs that block these pathways may inhibit the proliferation of HSCs and suppress liver fibrosis.
Collapse
Affiliation(s)
- Zhang Yaping
- Department of Pediatrics, Third Hospital of Hebei Medical University
| | | | | | | | | | | |
Collapse
|
21
|
Interleukin-7 receptor controls development and maturation of late stages of thymocyte subpopulations. Proc Natl Acad Sci U S A 2012; 110:612-7. [PMID: 23267098 DOI: 10.1073/pnas.1219242110] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Interleukin (IL)-7 is a cytokine essential for T lymphocyte development and homeostasis. However, little is known about the roles of IL-7 receptor α-chain (IL-7Rα) in late stages of T-cell development. To address this question, we established IL-7Rα-floxed mice and crossed them with CD4-Cre transgenic mice. Resultant IL-7R conditional knockout (IL-7RcKO) mice exhibited marked reduction in CD8 single positive (SP) T cells, regulatory T cells (Tregs), and natural killer T (NKT) cells in thymus. The proportion and proliferation of both mature CD4SP and CD8SP thymocytes were decreased without affecting Runx expression. In addition, expression of the glucocorticoid-induced TNF receptor was reduced in CD4SP and CD8SP thymocytes, and expression of CD5 was decreased in CD8SP thymocytes. IL-7RcKO mice also showed impaired Treg and NKT cell proliferation and inhibition of NKT cell maturation. Bcl-2 expression was reduced in CD4SP and CD8SP thymocytes but not in Tregs and NKT cells, and introduction of a Bcl-2 transgene rescued frequency and CD5 expression of CD8SP thymocytes. Furthermore, IL-7RcKO mice exhibited greatly increased numbers of B cells and, to a lesser extent, γδ T and dendritic cells in thymus. Overall, this study demonstrates that IL-7Rα differentially controls development and maturation of thymocyte subpopulations in late developmental stages and suggests that IL-7R expression on αβ T cells suppresses development of other cell lineages in thymus.
Collapse
|