1
|
Baca CF, Majumder P, Hickling JH, Ye L, Teplova M, Brady SF, Patel DJ, Marraffini LA. The CRISPR-associated adenosine deaminase Cad1 converts ATP to ITP to provide antiviral immunity. Cell 2024; 187:7183-7195.e24. [PMID: 39471810 PMCID: PMC11645235 DOI: 10.1016/j.cell.2024.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 09/06/2024] [Accepted: 10/02/2024] [Indexed: 11/01/2024]
Abstract
Type III CRISPR systems provide immunity against genetic invaders through the production of cyclic oligo-adenylate (cAn) molecules that activate effector proteins that contain CRISPR-associated Rossman fold (CARF) domains. Here, we characterized the function and structure of an effector in which the CARF domain is fused to an adenosine deaminase domain, CRISPR-associated adenosine deaminase 1 (Cad1). We show that upon binding of cA4 or cA6 to its CARF domain, Cad1 converts ATP to ITP, both in vivo and in vitro. Cryoelectron microscopy (cryo-EM) structural studies on full-length Cad1 reveal an hexameric assembly composed of a trimer of dimers, with bound ATP at inter-domain sites required for activity and ATP/ITP within deaminase active sites. Upon synthesis of cAn during phage infection, Cad1 activation leads to a growth arrest of the host that prevents viral propagation. Our findings reveal that CRISPR-Cas systems employ a wide range of molecular mechanisms beyond nucleic acid degradation to provide adaptive immunity in prokaryotes.
Collapse
Affiliation(s)
- Christian F Baca
- Laboratory of Bacteriology, The Rockefeller University, New York, NY 10065, USA; Tri-Institutional PhD Program in Chemical Biology, Weill Cornell Medical College, Rockefeller University and Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Puja Majumder
- Structural Biology Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA
| | - James H Hickling
- Laboratory of Bacteriology, The Rockefeller University, New York, NY 10065, USA
| | - Linzhi Ye
- Tri-Institutional PhD Program in Chemical Biology, Weill Cornell Medical College, Rockefeller University and Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Laboratory of Genetically Encoded Small Molecules, The Rockefeller University, New York, NY 10065, USA
| | - Marianna Teplova
- Structural Biology Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA
| | - Sean F Brady
- Laboratory of Genetically Encoded Small Molecules, The Rockefeller University, New York, NY 10065, USA
| | - Dinshaw J Patel
- Structural Biology Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA.
| | - Luciano A Marraffini
- Laboratory of Bacteriology, The Rockefeller University, New York, NY 10065, USA; Howard Hughes Medical Institute, The Rockefeller University, New York, NY 10065, USA.
| |
Collapse
|
2
|
Saha D, Pramanik A, Freville A, Siddiqui AA, Pal U, Banerjee C, Nag S, Debsharma S, Pramanik S, Mazumder S, Maiti NC, Datta S, van Ooij C, Bandyopadhyay U. Structure-function analysis of nucleotide housekeeping protein HAM1 from human malaria parasite Plasmodium falciparum. FEBS J 2024; 291:4349-4371. [PMID: 39003571 DOI: 10.1111/febs.17216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 03/29/2024] [Accepted: 06/20/2024] [Indexed: 07/15/2024]
Abstract
Non-canonical nucleotides, generated as oxidative metabolic by-products, significantly threaten the genome integrity of Plasmodium falciparum and thereby, their survival, owing to their mutagenic effects. PfHAM1, an evolutionarily conserved inosine/xanthosine triphosphate pyrophosphohydrolase, maintains nucleotide homeostasis in the malaria parasite by removing non-canonical nucleotides, although structure-function intricacies are hitherto poorly reported. Here, we report the X-ray crystal structure of PfHAM1, which revealed a homodimeric structure, additionally validated by size-exclusion chromatography-multi-angle light scattering analysis. The two monomeric units in the dimer were aligned in a parallel fashion, and critical residues associated with substrate and metal binding were identified, wherein a notable structural difference was observed in the β-sheet main frame compared to human inosine triphosphate pyrophosphatase. PfHAM1 exhibited Mg++-dependent pyrophosphohydrolase activity and the highest binding affinity to dITP compared to other non-canonical nucleotides as measured by isothermal titration calorimetry. Modifying the pfham1 genomic locus followed by live-cell imaging of expressed mNeonGreen-tagged PfHAM1 demonstrated its ubiquitous presence in the cytoplasm across erythrocytic stages with greater expression in trophozoites and schizonts. Interestingly, CRISPR-Cas9/DiCre recombinase-guided pfham1-null P. falciparum survived in culture under standard growth conditions, indicating its assistive role in non-canonical nucleotide clearance during intra-erythrocytic stages. This is the first comprehensive structural and functional report of PfHAM1, an atypical nucleotide-cleansing enzyme in P. falciparum.
Collapse
Affiliation(s)
- Debanjan Saha
- Division of Infectious Diseases and Immunology, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| | - Atanu Pramanik
- Division of Structural Biology & Bioinformatics, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| | - Aline Freville
- Department of Infection Biology, London School of Hygiene & Tropical Medicine, UK
| | - Asim Azhar Siddiqui
- Division of Infectious Diseases and Immunology, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| | - Uttam Pal
- Division of Structural Biology & Bioinformatics, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| | - Chinmoy Banerjee
- Division of Infectious Diseases and Immunology, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| | - Shiladitya Nag
- Division of Infectious Diseases and Immunology, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| | - Subhashis Debsharma
- Division of Infectious Diseases and Immunology, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| | - Saikat Pramanik
- Division of Infectious Diseases and Immunology, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| | - Somnath Mazumder
- Department of Zoology, Raja Peary Mohan College, Uttarpara, India
| | - Nakul C Maiti
- Division of Structural Biology & Bioinformatics, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| | - Saumen Datta
- Division of Structural Biology & Bioinformatics, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| | - Christiaan van Ooij
- Department of Infection Biology, London School of Hygiene & Tropical Medicine, UK
| | - Uday Bandyopadhyay
- Division of Infectious Diseases and Immunology, CSIR-Indian Institute of Chemical Biology, Kolkata, India
- Department of Biological Sciences, Bose Institute, Kolkata, India
| |
Collapse
|
3
|
Mahillon M, Brodard J, Dubuis N, Gugerli P, Blouin AG, Schumpp O. Mixed infection of ITPase-encoding potyvirid and secovirid in Mercurialis perennis: evidences for a convergent euphorbia-specific viral counterstrike. Virol J 2024; 21:6. [PMID: 38178191 PMCID: PMC10768138 DOI: 10.1186/s12985-023-02257-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 12/04/2023] [Indexed: 01/06/2024] Open
Abstract
BACKGROUND In cellular organisms, inosine triphosphate pyrophosphatases (ITPases) prevent the incorporation of mutagenic deaminated purines into nucleic acids. These enzymes have also been detected in the genomes of several plant RNA viruses infecting two euphorbia species. In particular, two ipomoviruses produce replicase-associated ITPases to cope with high concentration of non-canonical nucleotides found in cassava tissues. METHOD Using high-throughput RNA sequencing on the wild euphorbia species Mercurialis perennis, two new members of the families Potyviridae and Secoviridae were identified. Both viruses encode for a putative ITPase, and were found in mixed infection with a new partitivirid. Following biological and genomic characterization of these viruses, the origin and function of the phytoviral ITPases were investigated. RESULTS While the potyvirid was shown to be pathogenic, the secovirid and partitivirid could not be transmitted. The secovirid was found belonging to a proposed new Comovirinae genus tentatively named "Mercomovirus", which also accommodates other viruses identified through transcriptome mining, and for which an asymptomatic pollen-associated lifestyle is suspected. Homology and phylogenetic analyses inferred that the ITPases encoded by the potyvirid and secovirid were likely acquired through independent horizontal gene transfer events, forming lineages distinct from the enzymes found in cassava ipomoviruses. Possible origins from cellular organisms are discussed for these proteins. In parallel, the endogenous ITPase of M. perennis was predicted to encode for a C-terminal nuclear localization signal, which appears to be conserved among the ITPases of euphorbias but absent in other plant families. This subcellular localization is in line with the idea that nucleic acids remain protected in the nucleus, while deaminated nucleotides accumulate in the cytoplasm where they act as antiviral molecules. CONCLUSION Three new RNA viruses infecting M. perennis are described, two of which encoding for ITPases. These enzymes have distinct origins, and are likely required by viruses to circumvent high level of cytoplasmic non-canonical nucleotides. This putative plant defense mechanism has emerged early in the evolution of euphorbias, and seems to specifically target certain groups of RNA viruses infecting perennial hosts.
Collapse
Affiliation(s)
- Mathieu Mahillon
- Research Group Virology, Bacteriology and Phytoplasmology, Plant Protection Department, Agroscope, Nyon, Switzerland
| | - Justine Brodard
- Research Group Virology, Bacteriology and Phytoplasmology, Plant Protection Department, Agroscope, Nyon, Switzerland
| | - Nathalie Dubuis
- Research Group Virology, Bacteriology and Phytoplasmology, Plant Protection Department, Agroscope, Nyon, Switzerland
| | - Paul Gugerli
- Research Group Virology, Bacteriology and Phytoplasmology, Plant Protection Department, Agroscope, Nyon, Switzerland
| | - Arnaud G Blouin
- Research Group Virology, Bacteriology and Phytoplasmology, Plant Protection Department, Agroscope, Nyon, Switzerland
| | - Olivier Schumpp
- Research Group Virology, Bacteriology and Phytoplasmology, Plant Protection Department, Agroscope, Nyon, Switzerland.
| |
Collapse
|
4
|
Schroader JH, Handley MT, Reddy K. Inosine triphosphate pyrophosphatase: A guardian of the cellular nucleotide pool and potential mediator of RNA function. WILEY INTERDISCIPLINARY REVIEWS. RNA 2023; 14:e1790. [PMID: 37092460 DOI: 10.1002/wrna.1790] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 02/10/2023] [Accepted: 03/20/2023] [Indexed: 04/25/2023]
Abstract
Inosine triphosphate pyrophosphatase (ITPase), encoded by the ITPA gene in humans, is an important enzyme that preserves the integrity of cellular nucleotide pools by hydrolyzing the noncanonical purine nucleotides (deoxy)inosine and (deoxy)xanthosine triphosphate into monophosphates and pyrophosphate. Variants in the ITPA gene can cause partial or complete ITPase deficiency. Partial ITPase deficiency is benign but clinically relevant as it is linked to altered drug responses. Complete ITPase deficiency causes a severe multisystem disorder characterized by seizures and encephalopathy that is frequently associated with fatal infantile dilated cardiomyopathy. In the absence of ITPase activity, its substrate noncanonical nucleotides have the potential to accumulate and become aberrantly incorporated into DNA and RNA. Hence, the pathophysiology of ITPase deficiency could arise from metabolic imbalance, altered DNA or RNA regulation, or from a combination of these factors. Here, we review the known functions of ITPase and highlight recent work aimed at determining the molecular basis for ITPA-associated pathogenesis which provides evidence for RNA dysfunction. This article is categorized under: RNA in Disease and Development > RNA in Disease RNA in Disease and Development > RNA in Development.
Collapse
Affiliation(s)
- Jacob H Schroader
- The RNA Institute, University at Albany, State University of New York, Albany, New York, USA
- Department of Biological Sciences, University at Albany, State University of New York, Albany, New York, USA
| | - Mark T Handley
- Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - Kaalak Reddy
- The RNA Institute, University at Albany, State University of New York, Albany, New York, USA
- Department of Biological Sciences, University at Albany, State University of New York, Albany, New York, USA
| |
Collapse
|
5
|
Pagano A, Kunz L, Dittmann A, Araújo SDS, Macovei A, Shridhar Gaonkar S, Sincinelli F, Wazeer H, Balestrazzi A. Changes in Medicago truncatula seed proteome along the rehydration-dehydration cycle highlight new players in the genotoxic stress response. FRONTIERS IN PLANT SCIENCE 2023; 14:1188546. [PMID: 37409306 PMCID: PMC10319343 DOI: 10.3389/fpls.2023.1188546] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 05/24/2023] [Indexed: 07/07/2023]
Abstract
Introduction Several molecular aspects underlying the seed response to priming and the resulting vigor profile are still poorly understood. Mechanisms involved in genome maintenance deserve attention since the balance between stimulation of germination and DNA damage accumulation versus active repair is a key determinant for designing successful seed priming protocols. Methods Changes in the Medicago truncatula seed proteome were investigated in this study, using discovery mass spectrometry and label-free quantification, along the rehydration-dehydration cycle of a standard vigorization treatment (hydropriming plus dry-back), and during post-priming imbibition. Resuts and discussion From 2056 to 2190 proteins were detected in each pairwise comparison, among which six were differentially accumulated and 36 were detected only in one condition. The following proteins were selected for further investigation: MtDRP2B (DYNAMIN-RELATED PROTEIN), MtTRXm4 (THIOREDOXIN m4), and MtASPG1 (ASPARTIC PROTEASE IN GUARD CELL 1) showing changes in seeds under dehydration stress; MtITPA (INOSINE TRIPHOSPHATE PYROPHOSPHORYLASE), MtABA2 (ABSCISIC ACID DEFICIENT 2), MtRS2Z32 (SERINE/ARGININE-RICH SPLICING FACTOR RS2Z32), and MtAQR (RNA HELICASE AQUARIUS) that were differentially regulated during post-priming imbibition. Changes in the corresponding transcript levels were assessed by qRT-PCR. In animal cells, ITPA hydrolyses 2'-deoxyinosine triphosphate and other inosine nucleotides, preventing genotoxic damage. A proof of concept was performed by imbibing primed and control M. truncatula seeds in presence/absence of 20 mM 2'-deoxyinosine (dI). Results from comet assay highlighted the ability of primed seeds to cope with dI-induced genotoxic damage. The seed repair response was assessed by monitoring the expression profiles of MtAAG (ALKYL-ADENINE DNA GLYCOSILASE) and MtEndoV (ENDONUCLEASE V) genes that participate in the repair of the mismatched I:T pair in BER (base excision repair) and AER (alternative excision repair) pathways, respectively.
Collapse
Affiliation(s)
- Andrea Pagano
- Department of Biology and Biotechnology ‘L. Spallanzani’, University of Pavia, Pavia, Italy
| | - Laura Kunz
- Functional Genomics Center Zurich (FGCZ), University of Zurich/Eidgenossische Technische Hochschule (ETH) Zurich, Zurich, Switzerland
| | - Antje Dittmann
- Functional Genomics Center Zurich (FGCZ), University of Zurich/Eidgenossische Technische Hochschule (ETH) Zurich, Zurich, Switzerland
| | - Susana De Sousa Araújo
- Association BLC3 - Campus of Technology and Innovation, Centre BIO R&D Unit | North Delegation, Macedo de Cavaleiros, Portugal
| | - Anca Macovei
- Department of Biology and Biotechnology ‘L. Spallanzani’, University of Pavia, Pavia, Italy
- National Biodiversity Future Center (NBFC), Palermo, Italy
| | | | - Federico Sincinelli
- Department of Biology and Biotechnology ‘L. Spallanzani’, University of Pavia, Pavia, Italy
| | - Hisham Wazeer
- Department of Biology and Biotechnology ‘L. Spallanzani’, University of Pavia, Pavia, Italy
| | - Alma Balestrazzi
- Department of Biology and Biotechnology ‘L. Spallanzani’, University of Pavia, Pavia, Italy
- National Biodiversity Future Center (NBFC), Palermo, Italy
| |
Collapse
|
6
|
Zamzami MA. Inosine Triphosphate Pyrophosphatase (ITPase): Functions, Mutations, Polymorphisms and Its Impact on Cancer Therapies. Cells 2022; 11:384. [PMID: 35159194 PMCID: PMC8833965 DOI: 10.3390/cells11030384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 01/18/2022] [Accepted: 01/19/2022] [Indexed: 11/16/2022] Open
Abstract
Inosine triphosphate pyrophosphatase (ITPase) is an enzyme encoded by the ITPA gene and functions to prevent the incorporation of noncanonical purine nucleotides into DNA and RNA. Specifically, the ITPase catalyzed the hydrolysis of (deoxy) nucleoside triphosphates ((d) NTPs) into the corresponding nucleoside monophosphate with the concomitant release of pyrophosphate. Recently, thiopurine drug metabolites such as azathioprine have been included in the lists of ITPase substrates. Interestingly, inosine or xanthosine triphosphate (ITP/XTP) and their deoxy analogs, deoxy inosine or xanthosine triphosphate (dITP/dXTP), are products of important biological reactions such as deamination that take place within the cellular compartments. However, the incorporation of ITP/XTP, dITP/dXTP, or the genetic deficiency or polymorphism of the ITPA gene have been implicated in many human diseases, including infantile epileptic encephalopathy, early onset of tuberculosis, and the responsiveness of patients to cancer therapy. This review provides an up-to-date report on the ITPase enzyme, including information regarding its discovery, analysis, and cellular localization, its implication in human diseases including cancer, and its therapeutic potential, amongst others.
Collapse
Affiliation(s)
- Mazin A. Zamzami
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
- Centre of Artificial Intelligence in Precision Medicines, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| |
Collapse
|
7
|
Panjali Z, Hahad O, Rajabi F, Maddah S, Zendehdel R. Occupational exposure to metal-rich particulate matter modifies the expression of repair genes in foundry workers. Toxicol Ind Health 2021; 37:504-512. [PMID: 34247554 DOI: 10.1177/07482337211021202] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Foundry workers are exposed to numerous occupational health hazards, which may result in increased risk of cancer, respiratory disease, and other diseases. Oxidative stress is known to be involved in the pathogenesis of such diseases. The present study aimed to investigate the association between multiple occupational exposures in foundry workers and expression of deoxyribonucleic acid (DNA) repair genes as a biomarker of oxidative DNA damage. The study sample comprised 17 foundry workers and 27 matched control subjects. Expression of 8-oxoguanine DNA glycosylase-1 (OGG1), inosine triphosphate pyrophosphate (ITPA), and MutT homolog 1 (MTH1) in peripheral blood was examined using the real-time polymerase chain reaction method. Air sampling to determine exposure to metal-rich particulate matter and measurement of extremely low-frequency electromagnetic fields (ELF-EMFs) were conducted according to the National Institute for Occupational Safety and Health standard methods. Personal air sampling revealed that occupational exposure to particulate matter exceeded the threshold limit values (TLVs) in 76% of the workstations, whereas ELF-EMF exposure appeared to be lower than the TLV. ITPA was significantly upregulated in foundry workers compared with control subjects, whereas no significant difference was observed for OGG1 and MTH1. Moreover, ITPA was strongly and positively correlated with the concentration of metal-rich particulate matter in foundry workers. No significant correlation was found between ELF-EMF exposure and expression of DNA repair genes. DNA repair gene expression may be a sensitive biomarker for occupational exposures, which suggests an involvement of oxidative stress in metal-induced toxicity. Further studies are needed to determine the role of DNA repair gene expression in response to occupational/environmental hazards.
Collapse
Affiliation(s)
- Zahra Panjali
- Student Research Committee, School of Public Health and Safety, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Department of Occupational Health and Safety, School of Health and Medical Engineering, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Omar Hahad
- Department of Cardiology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany.,German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Mainz, Germany
| | - Fatemeh Rajabi
- Department of Occupational Health and Safety, School of Public Health and Safety, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Saeid Maddah
- Department of Occupational Health and Safety, School of Health and Medical Engineering, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Rezvan Zendehdel
- Environmental and Occupational Hazard Control Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
8
|
James AM, Seal SE, Bailey AM, Foster GD. Viral inosine triphosphatase: A mysterious enzyme with typical activity, but an atypical function. MOLECULAR PLANT PATHOLOGY 2021; 22:382-389. [PMID: 33471956 PMCID: PMC7865087 DOI: 10.1111/mpp.13021] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 10/22/2020] [Accepted: 10/23/2020] [Indexed: 05/03/2023]
Abstract
Plant viruses typically have highly condensed genomes, yet the plant-pathogenic viruses Cassava brown streak virus, Ugandan cassava brown streak virus, and Euphorbia ringspot virus are unusual in encoding an enzyme not yet found in any other virus, the "house-cleaning" enzyme inosine triphosphatase. Inosine triphosphatases (ITPases) are highly conserved enzymes that occur in all kingdoms of life and perform a house-cleaning function by hydrolysing the noncanonical nucleotide inosine triphosphate to inosine monophosphate. The ITPases encoded by cassava brown streak virus and Ugandan cassava brown streak virus have been characterized biochemically and are shown to have typical ITPase activity. However, their biological role in virus infection has yet to be elucidated. Here we review what is known of viral-encoded ITPases and speculate on potential roles in infection with the aim of generating a greater understanding of cassava brown streak viruses, a group of the world's most devastating viruses.
Collapse
Affiliation(s)
- Amy M. James
- School of Biological SciencesLife Sciences BuildingUniversity of BristolBristolUK
| | - Susan E. Seal
- Natural Resources Institute, Chatham MaritimeGillinghamUK
| | - Andy M. Bailey
- School of Biological SciencesLife Sciences BuildingUniversity of BristolBristolUK
| | - Gary D. Foster
- School of Biological SciencesLife Sciences BuildingUniversity of BristolBristolUK
| |
Collapse
|
9
|
DeWeirdt PC, Sangree AK, Hanna RE, Sanson KR, Hegde M, Strand C, Persky NS, Doench JG. Genetic screens in isogenic mammalian cell lines without single cell cloning. Nat Commun 2020; 11:752. [PMID: 32029722 PMCID: PMC7005275 DOI: 10.1038/s41467-020-14620-6] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 01/23/2020] [Indexed: 01/04/2023] Open
Abstract
Isogenic pairs of cell lines, which differ by a single genetic modification, are powerful tools for understanding gene function. Generating such pairs of mammalian cells, however, is labor-intensive, time-consuming, and, in some cell types, essentially impossible. Here, we present an approach to create isogenic pairs of cells that avoids single cell cloning, and screen these pairs with genome-wide CRISPR-Cas9 libraries to generate genetic interaction maps. We query the anti-apoptotic genes BCL2L1 and MCL1, and the DNA damage repair gene PARP1, identifying both expected and uncharacterized buffering and synthetic lethal interactions. Additionally, we compare acute CRISPR-based knockout, single cell clones, and small-molecule inhibition. We observe that, while the approaches provide largely overlapping information, differences emerge, highlighting an important consideration when employing genetic screens to identify and characterize potential drug targets. We anticipate that this methodology will be broadly useful to comprehensively study gene function across many contexts.
Collapse
Affiliation(s)
- Peter C DeWeirdt
- Genetic Perturbation Platform, Broad Institute of MIT and Harvard, 75 Ames Street, Cambridge, MA, 02142, USA
| | - Annabel K Sangree
- Genetic Perturbation Platform, Broad Institute of MIT and Harvard, 75 Ames Street, Cambridge, MA, 02142, USA
| | - Ruth E Hanna
- Genetic Perturbation Platform, Broad Institute of MIT and Harvard, 75 Ames Street, Cambridge, MA, 02142, USA
| | - Kendall R Sanson
- Genetic Perturbation Platform, Broad Institute of MIT and Harvard, 75 Ames Street, Cambridge, MA, 02142, USA
| | - Mudra Hegde
- Genetic Perturbation Platform, Broad Institute of MIT and Harvard, 75 Ames Street, Cambridge, MA, 02142, USA
| | - Christine Strand
- Genetic Perturbation Platform, Broad Institute of MIT and Harvard, 75 Ames Street, Cambridge, MA, 02142, USA
| | - Nicole S Persky
- Genetic Perturbation Platform, Broad Institute of MIT and Harvard, 75 Ames Street, Cambridge, MA, 02142, USA
| | - John G Doench
- Genetic Perturbation Platform, Broad Institute of MIT and Harvard, 75 Ames Street, Cambridge, MA, 02142, USA.
| |
Collapse
|
10
|
Senthilvelan A, Shanmugasundaram M, Kore AR. An efficient protection-free chemical synthesis of inosine 5'-nucleotides. NUCLEOSIDES NUCLEOTIDES & NUCLEIC ACIDS 2020; 39:829-837. [PMID: 31997708 DOI: 10.1080/15257770.2019.1708388] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
A facile, straightforward, reliable, and efficient chemical synthesis of inosine nucleotides such as inosine-5'-monophosphate, inosine-5'-diphosphate, and inosine-5'-triphosphate, starting from inosine is delineated. The inosine-5'-monophosphate is achieved by the highly regioselective monophosphorylation of inosine using the Yoshikawa procedure. The inosine-5'-diphosphate is obtained by the coupling reaction of tributylammonium phosphate with an activated inosine-5'-monophosphate using zinc chloride as a catalyst. The inosine-5'-triphosphate is efficiently achieved by the improved "one-pot, three-step" Ludwig synthetic strategy. In all the cases, the resulting final product is isolated in good yields with high purity (>99.5%).
Collapse
Affiliation(s)
| | | | - Anilkumar R Kore
- Life Sciences Solutions Group, Thermo Fisher Scientific, Austin, TX, USA
| |
Collapse
|
11
|
Kozmin SG, Rogozin IB, Moore EA, Abney M, Schaaper RM, Pavlov YI. Comment on "A commensal strain of Staphylococcus epidermidis protects against skin neoplasia" by Nakatsuji et al. SCIENCE ADVANCES 2019; 5:eaaw3915. [PMID: 31535021 PMCID: PMC6739109 DOI: 10.1126/sciadv.aaw3915] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Accepted: 08/15/2019] [Indexed: 06/10/2023]
Abstract
A recent article in Science Advances described the striking discovery that the commensal Staphylococcus epidermidis strain MO34 displays antimicrobial and antitumor activities by producing a small molecule, identified as the nucleobase analog 6-N-hydroxylaminopurine (6-HAP). However, in contradiction to the literature, the authors claimed that 6-HAP is nonmutagenic and proposed that the toxic effect of 6-HAP results from its ability to inhibit, in its base form, DNA synthesis. To resolve the discrepancy, we proved by genetic experiments with bacteria and yeast that extracts of MO34 do contain a mutagenic compound whose effects are identical to chemically synthesized 6-HAP. The MO34 extract induced the same mutation spectrum as authentic 6-HAP. Notably, the toxic and mutagenic effects of both synthetic and MO34-derived 6-HAP depended on conversion to the corresponding nucleotide. The nucleobase 6-HAP does not inhibit DNA synthesis in vitro, and we conclude that 6-HAP exerts its biological activity when incorporated into DNA.
Collapse
Affiliation(s)
- Stanislav G. Kozmin
- National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | - Igor B. Rogozin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, USA
| | - Elizabeth A. Moore
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, USA
| | - Mariah Abney
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, USA
- University of Nebraska at Omaha, Omaha, NE, USA
| | - Roel M. Schaaper
- National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | - Youri I. Pavlov
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, USA
- Departments of Microbiology and Pathology, Biochemistry and Molecular Biology, Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE, USA
| |
Collapse
|
12
|
Negrão F, Giorgio S, Eberlin MN, Yates JR. Comparative Proteomic Analysis of Murine Cutaneous Lesions Induced by Leishmania amazonensis or Leishmania major. ACS Infect Dis 2019; 5:1295-1305. [PMID: 31094195 DOI: 10.1021/acsinfecdis.8b00370] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Cutaneous leishmaniasisis is the most common clinical form of leishmaniasis and one of the most relevant neglected diseases. It is known that the progress of the disease is species specific and the host's immune response plays an important role in its outcome. However, the pathways that lead to parasite clearance or survival remain unknown. In this work, skin tissue from mice experimentally infected with L. amazonensis, one of the causative agents of cutaneous leishmaniasis in the Amazon region, L. major, another causative agent of cutaneous leishmaniasis in Africa, the Middle East, China, and India, or lipopolysaccharides from Escherichia coli as an inflammation model were investigated using label-free proteomics to unveil Leishmania-specific protein alterations. Proteomics is a powerful tool to investigate host-pathogen relationships to address biological questions. In this work, proteins from mice skin biopsies were identified and quantified using nano-LC coupled with tandem mass spectrometry analyses. Integrated Proteomics Pipeline was used for peptide/protein identification and quantification. Western blot was used for validation of protein quantification by mass spectrometry, and protein pathways were predicted using Ingenuity Pathway Analysis. In this proteomics study, several proteins were pointed out as hypothetical targets to guide future studies on Leishmania-specific modulation of proteins in the host. We identified hundreds of exclusively modulated proteins after Leishmania spp. infection and 17 proteins that were differentially modulated in the host after L. amazonensis or L. major infection.
Collapse
Affiliation(s)
- Fernanda Negrão
- Department of Chemical Physiology, The Scripps Research Institute, 10550 North Torrey Pines Road, SR302, La Jolla, California 92037, United States
- Department of Animal Biology, Institute of Biology, Rua Monteiro Lobato, 255, Campinas, Sao Paulo 13083-862, Brazil
- Department of Organic Chemistry, Institute of Chemistry, UNICAMP, Rua Josué de Castro SN, Room A111, Campinas, Sao Paulo 13083-862, Brazil
| | - Selma Giorgio
- Department of Animal Biology, Institute of Biology, Rua Monteiro Lobato, 255, Campinas, Sao Paulo 13083-862, Brazil
| | - Marcos Nogueira Eberlin
- Department of Organic Chemistry, Institute of Chemistry, UNICAMP, Rua Josué de Castro SN, Room A111, Campinas, Sao Paulo 13083-862, Brazil
| | - John R. Yates
- Department of Chemical Physiology, The Scripps Research Institute, 10550 North Torrey Pines Road, SR302, La Jolla, California 92037, United States
| |
Collapse
|
13
|
Nakamura A, Wang D, Komatsu Y. Molecular mechanism of substrate recognition and specificity of tRNA His guanylyltransferase during nucleotide addition in the 3'-5' direction. RNA (NEW YORK, N.Y.) 2018; 24:1583-1593. [PMID: 30111535 PMCID: PMC6191723 DOI: 10.1261/rna.067330.118] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Accepted: 08/09/2018] [Indexed: 05/06/2023]
Abstract
The tRNAHis guanylyltransferase (Thg1) transfers a guanosine triphosphate (GTP) in the 3'-5' direction onto the 5'-terminal of tRNAHis, opposite adenosine at position 73 (A73). The guanosine at the -1 position (G-1) serves as an identity element for histidyl-tRNA synthetase. To investigate the mechanism of recognition for the insertion of GTP opposite A73, first we constructed a two-stranded tRNAHis molecule composed of a primer and a template strand through division at the D-loop. Next, we evaluated the structural requirements of the incoming GTP from the incorporation efficiencies of GTP analogs into the two-piece tRNAHis Nitrogen at position 7 and the 6-keto oxygen of the guanine base were important for G-1 addition; however, interestingly, the 2-amino group was found not to be essential from the highest incorporation efficiency of inosine triphosphate. Furthermore, substitution of the conserved A73 in tRNAHis revealed that the G-1 addition reaction was more efficient onto the template containing the opposite A73 than onto the template with cytidine (C73) or other bases forming canonical Watson-Crick base-pairing. Some interaction might occur between incoming GTP and A73, which plays a role in the prevention of continuous templated 3'-5' polymerization. This study provides important insights into the mechanism of accurate tRNAHis maturation.
Collapse
Affiliation(s)
- Akiyoshi Nakamura
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Sapporo 062-8517, Japan
| | - Daole Wang
- Graduate School of Life Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Yasuo Komatsu
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Sapporo 062-8517, Japan
- Graduate School of Life Science, Hokkaido University, Sapporo 060-0810, Japan
| |
Collapse
|
14
|
Tsesmetzis N, Paulin CBJ, Rudd SG, Herold N. Nucleobase and Nucleoside Analogues: Resistance and Re-Sensitisation at the Level of Pharmacokinetics, Pharmacodynamics and Metabolism. Cancers (Basel) 2018; 10:cancers10070240. [PMID: 30041457 PMCID: PMC6071274 DOI: 10.3390/cancers10070240] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2018] [Revised: 07/18/2018] [Accepted: 07/20/2018] [Indexed: 02/07/2023] Open
Abstract
Antimetabolites, in particular nucleobase and nucleoside analogues, are cytotoxic drugs that, starting from the small field of paediatric oncology, in combination with other chemotherapeutics, have revolutionised clinical oncology and transformed cancer into a curable disease. However, even though combination chemotherapy, together with radiation, surgery and immunotherapy, can nowadays cure almost all types of cancer, we still fail to achieve this for a substantial proportion of patients. The understanding of differences in metabolism, pharmacokinetics, pharmacodynamics, and tumour biology between patients that can be cured and patients that cannot, builds the scientific basis for rational therapy improvements. Here, we summarise current knowledge of how tumour-specific and patient-specific factors can dictate resistance to nucleobase/nucleoside analogues, and which strategies of re-sensitisation exist. We revisit well-established hurdles to treatment efficacy, like the blood-brain barrier and reduced deoxycytidine kinase activity, but will also discuss the role of novel resistance factors, such as SAMHD1. A comprehensive appreciation of the complex mechanisms that underpin the failure of chemotherapy will hopefully inform future strategies of personalised medicine.
Collapse
Affiliation(s)
- Nikolaos Tsesmetzis
- Childhood Cancer Research Unit, Department of Women's and Children's Health, Karolinska Institutet, 171 77 Stockholm, Sweden.
| | - Cynthia B J Paulin
- Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, 171 65 Stockholm, Sweden.
| | - Sean G Rudd
- Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, 171 65 Stockholm, Sweden.
| | - Nikolas Herold
- Childhood Cancer Research Unit, Department of Women's and Children's Health, Karolinska Institutet, 171 77 Stockholm, Sweden.
- Paediatric Oncology, Theme of Children's and Women's Health, Karolinska University Hospital Solna, 171 76 Stockholm, Sweden.
| |
Collapse
|
15
|
Gene dosage effects in yeast support broader roles for the LOG1, HAM1 and DUT1 genes in detoxification of nucleotide analogues. PLoS One 2018; 13:e0196840. [PMID: 29738539 PMCID: PMC5940212 DOI: 10.1371/journal.pone.0196840] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Accepted: 04/21/2018] [Indexed: 12/22/2022] Open
Abstract
Purine and pyrimidine analogues have important uses in chemotherapies against cancer, and a better understanding of the mechanisms that cause resistance to these drugs is therefore of importance in cancer treatment. In the yeast Saccharomyces cerevisiae, overexpression of the HAM1 gene encoding inosine triphosphate pyrophosphatase confers resistance to both the purine analogue 6-N-hydroxylaminopurine (HAP) and the pyrimidine analogue 5-fluorouracil (5-FU) (Carlsson et al., 2013, PLoS One 8, e52094). To find out more about the mechanisms of resistance to nucleotide analogues, and possible interdependencies between purine and pyrimidine analogue resistance mechanisms, we screened a plasmid library in yeast for genes that confer HAP resistance when overexpressed. We cloned four such genes: ADE4, DUT1, APT2, and ATR1. We further looked for genetic interactions between these genes and genes previously found to confer resistance to 5-FU. We found that HMS1, LOG1 (YJL055W), HAM1, and ATR1 confer resistance to both 5-FU and HAP, whereas ADE4, DUT1 and APT2 are specific for HAP resistance, and CPA1 and CPA2 specific for 5-FU resistance. Possible mechanisms for 5-FU and HAP detoxification are discussed based on the observed genetic interactions. Based on the effect of LOG1 against both 5-FU and HAP toxicity, we propose that the original function of the LOG (LONELY GUY) family of proteins likely was to degrade non-canonical nucleotides, and that their role in cytokinin production is a later development in some organisms.
Collapse
|
16
|
Charbgoo F, Behmanesh M, Nikkhah M, Kane EG. RNAi mediated gene silencing of ITPA using a targeted nanocarrier: Apoptosis induction in SKBR3 cancer cells. Clin Exp Pharmacol Physiol 2018; 44:888-894. [PMID: 28464292 DOI: 10.1111/1440-1681.12776] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2016] [Revised: 04/08/2017] [Accepted: 04/13/2017] [Indexed: 11/28/2022]
Abstract
A pure nucleotide pool is required for high-fidelity DNA replication and prevention of carcinogenesis in living cells. Human inosine triphosphatase (ITPase), encoded by the ITPA gene, plays a critical role in maintaining the purity of the cellular nucleotide pool by excluding nucleotides that enhance mutagenesis. ITPase is a nucleoside triphosphate pyrophosphatase that hydrolyzes the non-canonical nucleotides inosine triphosphate (ITP) and xanthine triphosphate (XTP). The monophosphate products of ITPase reactions are subsequently excluded from the nucleotide pool and the improper substitution of ITP and XTP into DNA and RNA is prevented. Previous studies show that deficiency in ITPA can suppress cellular growth and enhance DNA instability. In this study, we evaluated the influence of effective ITPA down-regulation on the induction of apoptosis in a human cancer cell line using folate-single wall nanotubes (SWNT) as a targeted nanocarrier. We assessed whether SWNT enhances IPTA-siRNA transfection efficiency in cancer cells using folate as a homing device. Since folate receptor is considerably overexpressed in cancer cells, conjugation of SWNTs to folate could enhance their cancer-specific penetrance. We found that nanocarrier mediated ITPA-siRNA transfection into SKBR3 cells caused significant reduction of ITPA mRNA expression level and complete down-regulation of the ITPase protein product. The silencing of ITPA led to promotion of apoptosis in SWNT-treated SKBR3 cancer cells.
Collapse
Affiliation(s)
- Fahimeh Charbgoo
- Department of Nanobiotechnology, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Mehrdad Behmanesh
- Department of Nanobiotechnology, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran.,Department of Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Maryam Nikkhah
- Department of Nanobiotechnology, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Eric G Kane
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, NC, USA
| |
Collapse
|
17
|
Dai J, Lu Y, Wang J, Yang L, Han Y, Wang Y, Yan D, Ruan Q, Wang S. A four-gene signature predicts survival in clear-cell renal-cell carcinoma. Oncotarget 2018; 7:82712-82726. [PMID: 27779101 PMCID: PMC5347726 DOI: 10.18632/oncotarget.12631] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Accepted: 09/25/2016] [Indexed: 01/20/2023] Open
Abstract
Clear-cell renal-cell carcinoma (ccRCC) is the most common pathological subtype of renal cell carcinoma (RCC), accounting for about 80% of RCC. In order to find potential prognostic biomarkers in ccRCC, we presented a four-gene signature to evaluate the prognosis of ccRCC. SurvExpress and immunohistochemical (IHC) staining of tissue microarrays were used to analyze the association between the four genes and the prognosis of ccRCC. Data from TCGA dataset revealed a prognostic prompt function of the four genes (PTEN, PIK3C2A, ITPA and BCL3). Further discovery suggested that the four-gene signature predicted survival better than any of the four genes alone. Moreover, IHC staining demonstrated a consistent result with TCGA, indicating that the signature was an independent prognostic factor of survival in ccRCC. Univariate and multivariate Cox proportional hazard regression analysis were conducted to verify the association of clinicopathological variables and the four genes' expression levels with survival. The results further testified that the risk (four-gene signature) was an independent prognostic factors of both Overall Survival (OS) and Disease-free Survival (DFS) (P<0.05). In conclusion, the four-gene signature was correlated with the survival of ccRCC, and therefore, may help to provide significant clinical implications for predicting the prognosis of patients.
Collapse
Affiliation(s)
- Jun Dai
- Cancer Biology Research Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuchao Lu
- Department and Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jinyu Wang
- Department of Orthopaedics and Traumatology, Prince of Wales Hospital, The Chinese University of Hong Kong SAR, Hong Kong, China
| | - Lili Yang
- Institute of Pathology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yingyan Han
- Cancer Biology Research Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ying Wang
- Institute of Pathology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Dan Yan
- Department of Pathology, Medical College, Wuhan University of Science and Technology, Wuhan, China
| | - Qiurong Ruan
- Institute of Pathology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shaogang Wang
- Department and Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
18
|
Nakatsuji T, Chen TH, Butcher AM, Trzoss LL, Nam SJ, Shirakawa KT, Zhou W, Oh J, Otto M, Fenical W, Gallo RL. A commensal strain of Staphylococcus epidermidis protects against skin neoplasia. SCIENCE ADVANCES 2018; 4:eaao4502. [PMID: 29507878 PMCID: PMC5834004 DOI: 10.1126/sciadv.aao4502] [Citation(s) in RCA: 175] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Accepted: 01/24/2018] [Indexed: 05/04/2023]
Abstract
We report the discovery that strains of Staphylococcus epidermidis produce 6-N-hydroxyaminopurine (6-HAP), a molecule that inhibits DNA polymerase activity. In culture, 6-HAP selectively inhibited proliferation of tumor lines but did not inhibit primary keratinocytes. Resistance to 6-HAP was associated with the expression of mitochondrial amidoxime reducing components, enzymes that were not observed in cells sensitive to this compound. Intravenous injection of 6-HAP in mice suppressed the growth of B16F10 melanoma without evidence of systemic toxicity. Colonization of mice with an S. epidermidis strain producing 6-HAP reduced the incidence of ultraviolet-induced tumors compared to mice colonized by a control strain that did not produce 6-HAP. S. epidermidis strains producing 6-HAP were found in the metagenome from multiple healthy human subjects, suggesting that the microbiome of some individuals may confer protection against skin cancer. These findings show a new role for skin commensal bacteria in host defense.
Collapse
Affiliation(s)
- Teruaki Nakatsuji
- Department of Dermatology, University of California, San Diego, La Jolla, CA 92093, USA
| | - Tiffany H. Chen
- Department of Dermatology, University of California, San Diego, La Jolla, CA 92093, USA
| | - Anna M. Butcher
- Department of Dermatology, University of California, San Diego, La Jolla, CA 92093, USA
| | - Lynnie L. Trzoss
- Scripps Institute of Oceanography, University of California, San Diego, La Jolla, CA 92093, USA
| | - Sang-Jip Nam
- Scripps Institute of Oceanography, University of California, San Diego, La Jolla, CA 92093, USA
| | - Karina T. Shirakawa
- Department of Dermatology, University of California, San Diego, La Jolla, CA 92093, USA
| | - Wei Zhou
- The Jackson Laboratory for Genomic Medicine, Farmington, CT 06032, USA
| | - Julia Oh
- The Jackson Laboratory for Genomic Medicine, Farmington, CT 06032, USA
| | - Michael Otto
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - William Fenical
- Scripps Institute of Oceanography, University of California, San Diego, La Jolla, CA 92093, USA
| | - Richard L. Gallo
- Department of Dermatology, University of California, San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
19
|
Ji D, Stepchenkova EI, Cui J, Menezes MR, Pavlov YI, Kool ET. Measuring deaminated nucleotide surveillance enzyme ITPA activity with an ATP-releasing nucleotide chimera. Nucleic Acids Res 2017; 45:11515-11524. [PMID: 29036687 PMCID: PMC5714213 DOI: 10.1093/nar/gkx774] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Accepted: 08/23/2017] [Indexed: 01/24/2023] Open
Abstract
Nucleotide quality surveillance enzymes play important roles in human health, by detecting damaged molecules in the nucleotide pool and deactivating them before they are incorporated into chromosomal DNA or adversely affect metabolism. In particular, deamination of adenine moiety in (deoxy)nucleoside triphosphates, resulting in formation of (d)ITP, can be deleterious, leading to DNA damage, mutagenesis and other harmful cellular effects. The 21.5 kDa human enzyme that mitigates this damage by conversion of (d)ITP to monophosphate, ITPA, has been proposed as a possible therapeutic and diagnostic target for multiple diseases. Measuring the activity of this enzyme is useful both in basic research and in clinical applications involving this pathway, but current methods are nonselective and are not applicable to measurement of the enzyme from cells or tissues. Here, we describe the design and synthesis of an ITPA-specific chimeric dinucleotide (DIAL) that replaces the pyrophosphate leaving group of the native substrate with adenosine triphosphate, enabling sensitive detection via luciferase luminescence signaling. The probe is shown to function sensitively and selectively to quantify enzyme activity in vitro, and can be used to measure the activity of ITPA in bacterial, yeast and human cell lysates.
Collapse
Affiliation(s)
- Debin Ji
- Department of Chemistry, Stanford University, Stanford, CA 94305, USA
| | - Elena I Stepchenkova
- The Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198, USA.,Department of Genetics and Biotechnology, Saint-Petersburg State University, St Petersburg, 199034, Russia.,Saint-Petersburg Branch of Vavilov Institute of General Genetics, RAS, St Petersburg, 199034, Russia
| | - Jian Cui
- The Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Miriam R Menezes
- Department of Neurosurgery, University of Texas Health Science Center, Houston, TX 77030, USA
| | - Youri I Pavlov
- The Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198, USA.,Departments of Biochemistry and Molecular Biology; Microbiology and Pathology; Genetics Cell Biology and Anatomy; University of Nebraska Medical Center, Omaha, NE 61818, USA
| | - Eric T Kool
- Department of Chemistry, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
20
|
Jimmerson LC, Urban TJ, Truesdale A, Baouchi-Mokrane F, Kottilil S, Meissner EG, Sims Z, Langness JA, Hodara A, Aquilante CL, Kiser JJ. Variant Inosine Triphosphatase Phenotypes Are Associated With Increased Ribavirin Triphosphate Levels. J Clin Pharmacol 2017; 57:118-124. [PMID: 27349952 PMCID: PMC10725569 DOI: 10.1002/jcph.783] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Accepted: 06/09/2016] [Indexed: 12/26/2022]
Abstract
Individuals with lower inosine triphosphatase (ITPA) enzyme activity have a reduced likelihood of experiencing hemolytic anemia during hepatitis C virus (HCV) treatment containing ribavirin (RBV). Because ITPA degrades purines and RBV is a purine analogue, it is conceivable that ITPA activity may affect intracellular RBV concentrations. Here we assessed the association between ITPA activity phenotype and concentrations of RBV triphosphate (RBV-TP) in red blood cells (RBCs) during HCV treatment. RBV-TP was quantified in the RBCs of 177 HCV-infected individuals at a median (range) of 84 (19 to 336) days into HCV treatment that included RBV. Mean (SD) RBV-TP concentrations were 92.8 (51.6), 101.3 (53.5), 184.8 (84.5), and 197.7 (64.6) pmol/106 cells for 100%, 60%, 30%, and ≤10% ITPA activity groups, respectively. Overall, RBV-TP was approximately 2-fold higher in patients with ≤30% ITPA activity compared to 100% activity (P < .0001). Despite higher RBV-TP levels, individuals with variant ITPA phenotypes had less anemia. The 100% activity group had, on average, a -2.20 g/dL drop in hemoglobin vs -1.43 g/dL (P = .04) for 60% activity, -1.14 g/dL (P = .008) for 30% activity, and -0.70 g/dL (P = .06) for ≤10% activity. This finding of higher RBV-TP concentrations in RBCs in ITPA variants was unexpected given that ITPA activity-deficient individuals have a reduced likelihood of RBV-induced anemia. It also refutes the hypothesis that the mechanism by which ITPA variants are protected against anemia is due to lower RBV-TP levels in RBCs.
Collapse
Affiliation(s)
- Leah C. Jimmerson
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Denver, Aurora, Colorado
| | - Thomas J. Urban
- Division of Pharmacotherapy and Experimental Therapeutics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | | | | | - Shyam Kottilil
- Division of Clinical Care and Research, Institute of Human Virology, University of Maryland, Baltimore, Maryland
- Critical Care Medicine Department, Clinical Center, National Institute of Health, Bethesda, Maryland
| | - Eric G. Meissner
- Division of Infectious Diseases, Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, South Carolina
- Critical Care Medicine Department, Clinical Center, National Institute of Health, Bethesda, Maryland
| | - Zayani Sims
- Critical Care Medicine Department, Clinical Center, National Institute of Health, Bethesda, Maryland
| | - Jacob A. Langness
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Denver, Aurora, Colorado
- Department of Pharmacy, University of Colorado Hospital, Aurora, Colorado
| | - Ariel Hodara
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Denver, Aurora, Colorado
| | - Christina L. Aquilante
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Denver, Aurora, Colorado
| | - Jennifer J. Kiser
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Denver, Aurora, Colorado
| |
Collapse
|
21
|
Xia LL, Tang YB, Song FF, Xu L, Ji P, Wang SJ, Zhu JM, Zhang Y, Zhao GP, Wang Y, Liu TT. DCTPP1 attenuates the sensitivity of human gastric cancer cells to 5-fluorouracil by up-regulating MDR1 expression epigenetically. Oncotarget 2016; 7:68623-68637. [PMID: 27612427 PMCID: PMC5356578 DOI: 10.18632/oncotarget.11864] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Accepted: 08/24/2016] [Indexed: 01/08/2023] Open
Abstract
Gastric cancer (GC) is among the most malignant cancers with high incidence and poor prognoses worldwide as well as in China. dCTP pyrophosphatase 1 (DCTPP1) is overexpressed in GC with a poor prognosis. Given chemotherapeutic drugs share similar structures with pyrimidine nucleotides, the role of DCTPP1 in affecting the drug sensitivity in GC remains unclear and is worthy of investigation. In the present study, we reported that DCTPP1-knockdown GC cell line BGC-823 exhibited more sensitivity to 5-fluorouracil (5-FU), demonstrated by the retardation of cell proliferation, the increase in cell apoptosis, cell cycle arrest at S phase and more DNA damages. Multidrug resistance 1 (MDR1) expression was unexpectedly down-regulated in DCTPP1-knockdown BGC-823 cells together with more intracellular 5-FU accumulation. This was in large achieved by the elevated methylation in promoter region of MDR1 gene. The intracellular 5-methyl-dCTP level increased in DCTPP1-knockdown BGC-823 cells as well. More significantly, the strong correlation of DCTPP1 and MDR1 expression was detectable in clinical GC samples. Our results thus imply a novel mechanism of chemoresistance mediated by the overexpression of DCTPP1 in GC. It is achieved partially through decreasing the concentration of intracellular 5-methyl-dCTP, which in turn results in promoter hypomethylation and hyper-expression of drug resistant gene MDR1. Our study suggests DCTPP1 as a potential indicative biomarker for the predication of chemoresistance in GC.
Collapse
Affiliation(s)
- Li-liang Xia
- State Key Laboratory of Genetic Engineering, Department of Microbiology, School of Life Sciences and Institute of Biomedical Sciences, Fudan University, Shanghai, China
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, Chinese National Human Genome Center at Shanghai, Shanghai, China
| | - Ya-bin Tang
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Department of Pharmacology and Chemical Biology, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Fei-fei Song
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Department of Pharmacology and Chemical Biology, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Ling Xu
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Department of Pharmacology and Chemical Biology, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Ping Ji
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Department of Pharmacology and Chemical Biology, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Shu-jun Wang
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Department of Pharmacology and Chemical Biology, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Ji-min Zhu
- Department of Gastroenterology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yong Zhang
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Department of Pharmacology and Chemical Biology, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Guo-ping Zhao
- State Key Laboratory of Genetic Engineering, Department of Microbiology, School of Life Sciences and Institute of Biomedical Sciences, Fudan University, Shanghai, China
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, Chinese National Human Genome Center at Shanghai, Shanghai, China
- Department of Microbiology and Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, New Territories, Hong Kong SAR, China
| | - Ying Wang
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Department of Pharmacology and Chemical Biology, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Tao-tao Liu
- Department of Gastroenterology, Zhongshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
22
|
Nakauchi A, Wong JH, Mahasirimongkol S, Yanai H, Yuliwulandari R, Mabuchi A, Liu X, Mushiroda T, Wattanapokayakit S, Miyagawa T, Keicho N, Tokunaga K. Identification of ITPA on chromosome 20 as a susceptibility gene for young-onset tuberculosis. Hum Genome Var 2016; 3:15067. [PMID: 27081565 PMCID: PMC4760120 DOI: 10.1038/hgv.2015.67] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Revised: 10/30/2015] [Accepted: 11/04/2015] [Indexed: 01/31/2023] Open
Abstract
Tuberculosis (TB) is a complex disease, and both genetic and environmental factors contribute to disease progression. A previous genome-wide linkage study in Thailand determined that chromosome 20p13-12.3 may contain risk factors for young-onset disease. The present study aimed to identify novel susceptibility genes for young-onset TB within a 1-Mbp target region adjacent to the top-ranking risk marker in Chr.20p13-12.3. We performed next-generation sequencing (NGS) of the region in 13 young patients from multi-case families in Thailand. We then selected the functionally interesting single-nucleotide polymorphisms as candidates for subsequent analyses. The detected candidates rs13830 and rs1127354 in ITPA showed an association with young (<45 years old) TB patients. However, there was no association in old (⩾45 years old) patients. These findings confirm that stratifying patients based on age of TB onset can be important for identifying genetic risk factors for TB susceptibility. In addition, in silico expression quantitative trait loci analyses indicated that ITPA expression was associated with rs13830 genotype. This is the first study to use NGS resequencing to gain insight into host genetic factors associated with TB and to report a significant association for ITPA with host susceptibility in young-onset TB. The study also demonstrated the effectiveness of NGS in identifying susceptibility genes in common diseases.
Collapse
Affiliation(s)
- Ayaka Nakauchi
- Department of Human Genetics, Graduate School of Medicine, The University of Tokyo , Tokyo, Japan
| | - Jing Hao Wong
- Department of Human Genetics, Graduate School of Medicine, The University of Tokyo , Tokyo, Japan
| | - Surakameth Mahasirimongkol
- Medical Genetics Center, Medical Life Sciences Institute, Department of Medical Sciences, Ministry of Public Health , Nonthaburi, Thailand
| | - Hideki Yanai
- Department of Human Genetics, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan; Fukujuji Hospital, Japan Anti-Tuberculosis Association (JATA), Tokyo, Japan
| | - Rika Yuliwulandari
- Department of Human Genetics, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan; Genomic Medicine Research Group, YARSI Research Institute, YARSI University, Jakarta, Indonesia
| | - Akihiko Mabuchi
- Department of Human Genetics, Graduate School of Medicine, The University of Tokyo , Tokyo, Japan
| | - Xiaoxi Liu
- Department of Human Genetics, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan; RIKEN Brain Science Institute, Saitama, Japan
| | - Taisei Mushiroda
- Research Group for Pharmacogenomics, RIKEN Center for Integrative Medical Sciences , Kanagawa, Japan
| | - Sukanya Wattanapokayakit
- Medical Genetics Center, Medical Life Sciences Institute, Department of Medical Sciences, Ministry of Public Health , Nonthaburi, Thailand
| | - Taku Miyagawa
- Department of Human Genetics, Graduate School of Medicine, The University of Tokyo , Tokyo, Japan
| | - Naoto Keicho
- Department of Pathophysiology and Host Defense, The Research Institute of Tuberculosis, Japan Anti-Tuberculosis Association (JATA) , Tokyo, Japan
| | - Katsushi Tokunaga
- Department of Human Genetics, Graduate School of Medicine, The University of Tokyo , Tokyo, Japan
| |
Collapse
|
23
|
Impact of Genetic Polymorphisms on 6-Thioguanine Nucleotide Levels and Toxicity in Pediatric Patients with IBD Treated with Azathioprine. Inflamm Bowel Dis 2015; 21:2897-908. [PMID: 26332308 DOI: 10.1097/mib.0000000000000570] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
BACKGROUND Thiopurine-related toxicity results in discontinuation of therapy in up to 30% of patients with inflammatory bowel disease. Although thiopurine S-methyltransferase (TPMT) is implicated in toxicity, not all toxicity can be attributed to TPMT polymorphisms. We investigated the effects of polymorphisms of genes involved in thiopurine and folate metabolism pathways on 6-thioguanine nucleotide levels and toxicity. METHODS Retrospective clinical data and blood samples were collected from 132 pediatric patients with inflammatory bowel disease treated with azathioprine. Eighty-seven genetic polymorphisms of 30 genes were screened using the MassARRAY system, and 70 polymorphisms of 28 genes were selected for further analysis. RESULTS TPMT genotype (P < 0.001), concurrent use of mesalazine (P = 0.006), ABCC5 (rs2293001) (P < 0.001), ITPA (rs2236206 and rs8362) (P = 0.010 and P = 0.003), and ABCB1 (rs2032582) (P = 0.028) were all associated with the ratio of 6-thioguanine nucleotides to azathioprine dose. ADK (rs10824095) (P = 0.004, odds ratio [OR] = 6.220), SLC29A1 (rs747199) (P = 0.016, OR = 5.681), and TYMS (rs34743033) (P = 0.045, OR = 3.846) were associated with neutropenia. ABCC1 (rs2074087) (P = 0.022, OR = 3.406), IMPDH1 (rs2278294) (P = 0.027, OR = 0.276), and IMPDH2 (rs11706052) (P = 0.034, OR = 3.639) had a significant impact on lymphopenia. CONCLUSIONS This study describes genetic polymorphisms in genes whose products may affect pharmacokinetics and which may predict the relative likelihood of benefit or risk from thiopurine treatment. These findings may serve as a basis for personalized thiopurine therapy in pediatric patients with inflammatory bowel disease, although our data need to be validated in further studies.
Collapse
|
24
|
Plitzko B, Havemeyer A, Kunze T, Clement B. The pivotal role of the mitochondrial amidoxime reducing component 2 in protecting human cells against apoptotic effects of the base analog N6-hydroxylaminopurine. J Biol Chem 2015; 290:10126-35. [PMID: 25713076 DOI: 10.1074/jbc.m115.640052] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Indexed: 12/27/2022] Open
Abstract
N-Hydroxylated nucleobases and nucleosides as N-hydroxylaminopurine (HAP) or N-hydroxyadenosine (HAPR) may be generated endogenously in the course of cell metabolism by cytochrome P450, by oxidative stress or by a deviating nucleotide biosynthesis. These compounds have shown to be toxic and mutagenic for procaryotic and eucaryotic cells. For DNA replication fidelity it is therefore of great importance that organisms exhibit effective mechanisms to remove such non-canonical base analogs from DNA precursor pools. In vitro, the molybdoenzymes mitochondrial amidoxime reducing component 1 and 2 (mARC1 and mARC2) have shown to be capable of reducing N-hydroxylated base analogs and nucleoside analogs to the corresponding canonical nucleobases and nucleosides upon reconstitution with the electron transport proteins cytochrome b5 and NADH-cytochrome b5 reductase. By RNAi-mediated down-regulation of mARC in human cell lines the mARC-dependent N-reductive detoxication of HAP in cell metabolism could be demonstrated. For HAPR, on the other hand, the reduction to adenosine seems to be of less significance in the detoxication pathway of human cells as HAPR is primarily metabolized to inosine by direct dehydroxylamination catalyzed by adenosine deaminase. Furthermore, the effect of mARC knockdown on sensitivity of human cells to HAP was examined by flow cytometric quantification of apoptotic cell death and detection of poly (ADP-ribose) polymerase (PARP) cleavage. mARC2 was shown to protect HeLa cells against the apoptotic effects of the base analog, whereas the involvement of mARC1 in reductive detoxication of HAP does not seem to be pivotal.
Collapse
Affiliation(s)
- Birte Plitzko
- From the Department of Pharmaceutical and Medicinal Chemistry, Pharmaceutical Institute, Christian-Albrechts-University of Kiel, 24118 Kiel, Germany
| | - Antje Havemeyer
- From the Department of Pharmaceutical and Medicinal Chemistry, Pharmaceutical Institute, Christian-Albrechts-University of Kiel, 24118 Kiel, Germany
| | - Thomas Kunze
- From the Department of Pharmaceutical and Medicinal Chemistry, Pharmaceutical Institute, Christian-Albrechts-University of Kiel, 24118 Kiel, Germany
| | - Bernd Clement
- From the Department of Pharmaceutical and Medicinal Chemistry, Pharmaceutical Institute, Christian-Albrechts-University of Kiel, 24118 Kiel, Germany
| |
Collapse
|
25
|
Smid A, Karas-Kuzelicki N, Milek M, Jazbec J, Mlinaric-Rascan I. Association of ITPA genotype with event-free survival and relapse rates in children with acute lymphoblastic leukemia undergoing maintenance therapy. PLoS One 2014; 9:e109551. [PMID: 25303517 PMCID: PMC4193781 DOI: 10.1371/journal.pone.0109551] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Accepted: 09/02/2014] [Indexed: 01/18/2023] Open
Abstract
Although the treatment of acute lymphoblastic leukemia (ALL) has improved significantly over recent decades, failure due to treatment-related toxicities and relapse of the disease still occur in about 20% of patients. This retrospective study included 308 pediatric ALL patients undergoing maintenance therapy and investigated the effects of genetic variants of enzymes involved in the 6-mercaptopurine (6-MP) metabolism and folate pathway on survival and relapse rates. The presence of at least one of the non-functional ITPA alleles (94C>A and/or IVS2+21A>C variant) was associated with longer event-free survival compared to patients with the wild-type ITPA genotype (p = 0.033). Furthermore, patients carrying at least one non-functional ITPA allele were shown to be at a lower risk of suffering early (p = 0.003) and/or bone marrow relapse (p = 0.017). In conclusion, the ITPA genotype may serve as a genetic marker for the improvement of risk stratification and therapy individualization for patients with ALL.
Collapse
Affiliation(s)
- Alenka Smid
- Faculty of Pharmacy, University of Ljubljana, Ljubljana, Slovenia
| | | | - Miha Milek
- Faculty of Pharmacy, University of Ljubljana, Ljubljana, Slovenia
| | - Janez Jazbec
- University Children's Hospital, University Medical Centre Ljubljana, Ljubljana, Slovenia
| | | |
Collapse
|
26
|
Carlsson M, Gustavsson M, Hu GZ, Murén E, Ronne H. A Ham1p-dependent mechanism and modulation of the pyrimidine biosynthetic pathway can both confer resistance to 5-fluorouracil in yeast. PLoS One 2013; 8:e52094. [PMID: 24124444 PMCID: PMC3792807 DOI: 10.1371/journal.pone.0052094] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2012] [Accepted: 11/09/2012] [Indexed: 12/13/2022] Open
Abstract
5-Fluorouracil (5-FU) is an anticancer drug and pyrimidine analogue. A problem in 5-FU therapy is acquired resistance to the drug. To find out more about the mechanisms of resistance, we screened a plasmid library in yeast for genes that confer 5-FU resistance when overexpressed. We cloned five genes: CPA1, CPA2, HMS1, HAM1 and YJL055W. CPA1 and CPA2 encode a carbamoyl phosphate synthase involved in arginine biosynthesis and HMS1 a helix-loop-helix transcription factor. Our results suggest that CPA1, CPA2, and HMS1 confer 5-FU resistance by stimulating pyrimidine biosynthesis. Thus, they are unable to confer 5-FU resistance in a ura2 mutant, and inhibit the uptake and incorporation into RNA of both uracil and 5-FU. In contrast, HAM1 and YJL055W confer 5-FU resistance in a ura2 mutant, and selectively inhibit incorporation into RNA of 5-FU but not uracil. HAM1 is the strongest resistance gene, but it partially depends on YJL055W for its function. This suggests that HAM1 and YJL055W function together in mediating resistance to 5-FU. Ham1p encodes an inosine triphosphate pyrophosphatase that has been implicated in resistance to purine analogues. Our results suggest that Ham1p could have a broader specificity that includes 5-FUTP and other pyrimidine analogoue triphosphates.
Collapse
Affiliation(s)
- Mattias Carlsson
- Department of Microbiology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Marie Gustavsson
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Guo-Zhen Hu
- Department of Microbiology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Eva Murén
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Hans Ronne
- Department of Microbiology, Swedish University of Agricultural Sciences, Uppsala, Sweden
- * E-mail:
| |
Collapse
|
27
|
Lada AG, Stepchenkova EI, Waisertreiger ISR, Noskov VN, Dhar A, Eudy JD, Boissy RJ, Hirano M, Rogozin IB, Pavlov YI. Genome-wide mutation avalanches induced in diploid yeast cells by a base analog or an APOBEC deaminase. PLoS Genet 2013; 9:e1003736. [PMID: 24039593 PMCID: PMC3764175 DOI: 10.1371/journal.pgen.1003736] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2013] [Accepted: 07/05/2013] [Indexed: 11/23/2022] Open
Abstract
Genetic information should be accurately transmitted from cell to cell; conversely, the adaptation in evolution and disease is fueled by mutations. In the case of cancer development, multiple genetic changes happen in somatic diploid cells. Most classic studies of the molecular mechanisms of mutagenesis have been performed in haploids. We demonstrate that the parameters of the mutation process are different in diploid cell populations. The genomes of drug-resistant mutants induced in yeast diploids by base analog 6-hydroxylaminopurine (HAP) or AID/APOBEC cytosine deaminase PmCDA1 from lamprey carried a stunning load of thousands of unselected mutations. Haploid mutants contained almost an order of magnitude fewer mutations. To explain this, we propose that the distribution of induced mutation rates in the cell population is uneven. The mutants in diploids with coincidental mutations in the two copies of the reporter gene arise from a fraction of cells that are transiently hypersensitive to the mutagenic action of a given mutagen. The progeny of such cells were never recovered in haploids due to the lethality caused by the inactivation of single-copy essential genes in cells with too many induced mutations. In diploid cells, the progeny of hypersensitive cells survived, but their genomes were saturated by heterozygous mutations. The reason for the hypermutability of cells could be transient faults of the mutation prevention pathways, like sanitization of nucleotide pools for HAP or an elevated expression of the PmCDA1 gene or the temporary inability of the destruction of the deaminase. The hypothesis on spikes of mutability may explain the sudden acquisition of multiple mutational changes during evolution and carcinogenesis.
Collapse
Affiliation(s)
- Artem G. Lada
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Elena I. Stepchenkova
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
- Saint Petersburg Branch of Vavilov Institute of General Genetics, St. Petersburg, Russia
- Department of Genetics, Saint Petersburg University, St. Petersburg, Russia
| | - Irina S. R. Waisertreiger
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Vladimir N. Noskov
- J. Craig Venter Institute, Rockville, Maryland, United States of America
| | - Alok Dhar
- Department of Genetics, Cell Biology and Anatomy and Munroe-Meyer Institute, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - James D. Eudy
- Department of Genetics, Cell Biology and Anatomy and Munroe-Meyer Institute, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Robert J. Boissy
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Masayuki Hirano
- Emory Vaccine Center, Department of Pathology and Laboratory Medicine, Emory University, Atlanta, Georgia, United States of America
| | - Igor B. Rogozin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Youri I. Pavlov
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
- Department of Genetics, Saint Petersburg University, St. Petersburg, Russia
| |
Collapse
|
28
|
Simone PD, Pavlov YI, Borgstahl GEO. ITPA (inosine triphosphate pyrophosphatase): from surveillance of nucleotide pools to human disease and pharmacogenetics. Mutat Res 2013; 753:131-146. [PMID: 23969025 DOI: 10.1016/j.mrrev.2013.08.001] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2013] [Revised: 07/31/2013] [Accepted: 08/02/2013] [Indexed: 01/08/2023]
Abstract
Cellular nucleotide pools are often contaminated by base analog nucleotides which interfere with a plethora of biological reactions, from DNA and RNA synthesis to cellular signaling. An evolutionarily conserved inosine triphosphate pyrophosphatase (ITPA) removes the non-canonical purine (d)NTPs inosine triphosphate and xanthosine triphosphate by hydrolyzing them into their monophosphate form and pyrophosphate. Mutations in the ITPA orthologs in model organisms lead to genetic instability and, in mice, to severe developmental anomalies. In humans there is genetic polymorphism in ITPA. One allele leads to a proline to threonine substitution at amino acid 32 and causes varying degrees of ITPA deficiency in tissues and plays a role in patients' response to drugs. Structural analysis of this mutant protein reveals that the protein is destabilized by the formation of a cavity in its hydrophobic core. The Pro32Thr allele is thought to cause the observed dominant negative effect because the resulting active enzyme monomer targets both homo- and heterodimers to degradation.
Collapse
Affiliation(s)
- Peter D Simone
- The Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Youri I Pavlov
- The Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198, USA; Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, USA; Department of Pathology and Microbiology, University of Nebraska Medical Center, USA; Department of Genetics, St-Petersburg University, St-Petersburg, 199034, Russia
| | - Gloria E O Borgstahl
- The Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198, USA; Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, USA; Department of Pharmaceutical Sciences, University of Nebraska Medical Center, USA.
| |
Collapse
|
29
|
Simone PD, Struble LR, Kellezi A, Brown CA, Grabow CE, Khutsishvili I, Marky LA, Pavlov YI, Borgstahl GE. The human ITPA polymorphic variant P32T is destabilized by the unpacking of the hydrophobic core. J Struct Biol 2013; 182:197-208. [PMID: 23528839 PMCID: PMC4212276 DOI: 10.1016/j.jsb.2013.03.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2012] [Revised: 03/11/2013] [Accepted: 03/13/2013] [Indexed: 01/24/2023]
Abstract
Inosine triphosphate pyrophosphatase (ITPA), a key enzyme involved in maintaining the purity of cellular nucleoside triphosphate pools, specifically recognizes inosine triphosphate and xanthosine triphosphate (including the deoxyribose forms) and detoxifies them by catalyzing the hydrolysis of a phosphoanhydride bond, releasing pyrophosphate. This prevents their inappropriate use as substrates in enzymatic reactions utilizing (d)ATP or (d)GTP. A human genetic polymorphism leads to the substitution of Thr for Pro32 (P32T) and causes ITPA deficiency in erythrocytes, with heterozygotes having on average 22.5% residual activity, and homozygotes having undetectable activity. This polymorphism has been implicated in modulating patients' response to mercaptopurines and ribavirin. Human fibroblasts containing this variant have elevated genomic instability upon treatment with base analogs. We find that the wild-type and P32T forms are dimeric in solution and in the crystal structure. This abolishes the previous speculation that the P32T change disrupts dimerization as a mechanism of inactivation. The only difference in structure from the wild-type protein is that the area surrounding Thr32 is disrupted. Phe31 is flipped from the hydrophobic core out into the solvent, leaving a hole in the hydrophobic core of the protein which likely accounts for the reduced thermal stability of P32T ITPA and ultimately leads to its susceptibility to degradation in human cells. Circular dichroism and thermal denaturation studies confirm these structural results. We propose that the dimer of P32T variant subunit with wild-type subunit is degraded in cells similarly to the P32T homodimer explaining the level of loss of ITPA activity in heterozygotes.
Collapse
Affiliation(s)
- Peter D. Simone
- The Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, 987696 Nebraska Medical Center, Omaha, NE 68198-7696, USA
| | - Lucas R. Struble
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Admir Kellezi
- The Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, 987696 Nebraska Medical Center, Omaha, NE 68198-7696, USA
| | - Carrie A. Brown
- Department of Chemistry, Wayne State College, Wayne, NE 68787, USA
| | - Corinn E. Grabow
- The Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, 987696 Nebraska Medical Center, Omaha, NE 68198-7696, USA
| | - Irine Khutsishvili
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE 68198-6025, USA
| | - Luis A. Marky
- The Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, 987696 Nebraska Medical Center, Omaha, NE 68198-7696, USA
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE 68198-6025, USA
| | - Youri I. Pavlov
- The Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, 987696 Nebraska Medical Center, Omaha, NE 68198-7696, USA
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Department of Genetics, St-Petersburg University, St-Petersburg 199034, Russia
| | - Gloria E.O. Borgstahl
- The Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, 987696 Nebraska Medical Center, Omaha, NE 68198-7696, USA
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE 68198-6025, USA
| |
Collapse
|
30
|
Zamzami MA, Duley JA, Price GR, Venter DJ, Yarham JW, Taylor RW, Catley LP, Florin THJ, Marinaki AM, Bowling F. Inosine triphosphate pyrophosphohydrolase (ITPA) polymorphic sequence variants in adult hematological malignancy patients and possible association with mitochondrial DNA defects. J Hematol Oncol 2013; 6:24. [PMID: 23547827 PMCID: PMC3765497 DOI: 10.1186/1756-8722-6-24] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2012] [Accepted: 03/13/2013] [Indexed: 01/27/2023] Open
Abstract
Background Inosine triphosphate pyrophosphohydrolase (ITPase) is a ‘house-cleaning’ enzyme that degrades non-canonical (‘rogue’) nucleotides. Complete deficiency is fatal in knockout mice, but a mutant polymorphism resulting in low enzyme activity with an accumulation of ITP and other non-canonical nucleotides, appears benign in humans. We hypothesised that reduced ITPase activity may cause acquired mitochondrial DNA (mtDNA) defects. Furthermore, we investigated whether accumulating mtDNA defects may then be a risk factor for cell transformation, in adult haematological malignancy (AHM). Methods DNA was extracted from peripheral blood and bone marrow samples. Microarray-based sequencing of mtDNA was performed on 13 AHM patients confirmed as carrying the ITPA 94C>A mutation causing low ITPase activity, and 4 AHM patients with wildtype ITPA. The frequencies of ITPA 94C>A and IVS2+21A>C polymorphisms were studied from 85 available AHM patients. Results ITPA 94C>A was associated with a significant increase in total heteroplasmic/homoplasmic mtDNA mutations (p<0.009) compared with wildtype ITPA, following exclusion of haplogroup variants. This suggested that low ITPase activity may induce mitochondrial abnormalities. Compared to the normal population, frequencies for the 94C>A and IVS2+21A>C mutant alleles among the AHM patients were higher for myelodyplastic syndrome (MDS) - but below significance; were approximately equivalent for chronic lymphoblastic leukemia; and were lower for acute myeloid leukemia. Conclusions This study invokes a new paradigm for the evolution of MDS, where nucleotide imbalances produced by defects in ‘house-cleaning’ genes may induce mitochondrial dysfunction, compromising cell integrity. It supports recent studies which point towards an important role for ITPase in cellular surveillance of rogue nucleotides.
Collapse
|
31
|
Stocco G, Franca R, Verzegnassi F, Londero M, Rabusin M, Decorti G. Multilocus genotypes of relevance for drug metabolizing enzymes and therapy with thiopurines in patients with acute lymphoblastic leukemia. Front Genet 2013; 3:309. [PMID: 23335936 PMCID: PMC3538559 DOI: 10.3389/fgene.2012.00309] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2012] [Accepted: 12/12/2012] [Indexed: 12/31/2022] Open
Abstract
Multilocus genotypes have been shown to be of relevance for using pharmacogenomic principles to individualize drug therapy. As it relates to thiopurine therapy, genetic polymorphisms of TPMT are strongly associated with the pharmacokinetics and clinical effects of thiopurines (mercaptopurine and azathioprine), influencing their toxicity and efficacy. We have recently demonstrated that TPMT and ITPA genotypes constitute a multilocus genotype of pharmacogenetic relevance for children with acute lymphoblastic leukemia (ALL) receiving thiopurine therapy. The use of high-throughput genomic analysis allows identification of additional candidate genetic factors associated with pharmacogenetic phenotypes, such as TPMT enzymatic activity: PACSIN2 polymorphisms have been identified by a genome-wide analysis, combining evaluation of polymorphisms and gene expression, as a significant determinant of TPMT activity in the HapMap CEU cell lines and the effects of PACSIN2 on TPMT activity and mercaptopurine induced adverse effects were confirmed in children with ALL. Combination of genetic factors of relevance for thiopurine metabolizing enzyme activity, based on the growing understanding of their association with drug metabolism and efficacy, is particularly promising for patients with pediatric ALL. The knowledge basis and clinical applications for multilocus genotypes of importance for therapy with mercaptopurine in pediatric ALL is discussed in the present review.
Collapse
Affiliation(s)
- Gabriele Stocco
- Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital Memphis, TN, USA ; Department of Life Sciences, University of Trieste Trieste, Italy
| | | | | | | | | | | |
Collapse
|
32
|
Waisertreiger ISR, Liston VG, Menezes MR, Kim HM, Lobachev KS, Stepchenkova EI, Tahirov TH, Rogozin IB, Pavlov YI. Modulation of mutagenesis in eukaryotes by DNA replication fork dynamics and quality of nucleotide pools. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2012; 53:699-724. [PMID: 23055184 PMCID: PMC3893020 DOI: 10.1002/em.21735] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2012] [Revised: 08/13/2012] [Accepted: 08/15/2012] [Indexed: 06/01/2023]
Abstract
The rate of mutations in eukaryotes depends on a plethora of factors and is not immediately derived from the fidelity of DNA polymerases (Pols). Replication of chromosomes containing the anti-parallel strands of duplex DNA occurs through the copying of leading and lagging strand templates by a trio of Pols α, δ and ϵ, with the assistance of Pol ζ and Y-family Pols at difficult DNA template structures or sites of DNA damage. The parameters of the synthesis at a given location are dictated by the quality and quantity of nucleotides in the pools, replication fork architecture, transcription status, regulation of Pol switches, and structure of chromatin. The result of these transactions is a subject of survey and editing by DNA repair.
Collapse
Affiliation(s)
- Irina S.-R. Waisertreiger
- Eppley Institute for Research in Cancer and Allied Diseases, ESH 7009, 986805 Nebraska Medical Center, Omaha, NE 68198-6805, U.S.A
| | - Victoria G. Liston
- Eppley Institute for Research in Cancer and Allied Diseases, ESH 7009, 986805 Nebraska Medical Center, Omaha, NE 68198-6805, U.S.A
| | - Miriam R. Menezes
- Eppley Institute for Research in Cancer and Allied Diseases, ESH 7009, 986805 Nebraska Medical Center, Omaha, NE 68198-6805, U.S.A
| | - Hyun-Min Kim
- School of Biology and Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332, U.S.A
| | - Kirill S. Lobachev
- School of Biology and Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332, U.S.A
| | - Elena I. Stepchenkova
- Eppley Institute for Research in Cancer and Allied Diseases, ESH 7009, 986805 Nebraska Medical Center, Omaha, NE 68198-6805, U.S.A
- Saint Petersburg Branch of Vavilov Institute of General Genetics, Universitetskaya emb. 7/9, St Petersburg, 199034, Russia
- Department of Genetics, Saint Petersburg University, Universitetskaya emb. 7/9, St Petersburg, 199034, Russia
| | - Tahir H. Tahirov
- Eppley Institute for Research in Cancer and Allied Diseases, ESH 7009, 986805 Nebraska Medical Center, Omaha, NE 68198-6805, U.S.A
| | - Igor B. Rogozin
- National Center for Biotechnology Information NLM, National Institutes of Health, Bethesda, MD 20894, U.S.A
- Institute of Cytology and Genetics, 630090 Novosibirsk, Russia
| | - Youri. I. Pavlov
- Eppley Institute for Research in Cancer and Allied Diseases, ESH 7009, 986805 Nebraska Medical Center, Omaha, NE 68198-6805, U.S.A
- Department of Genetics, Saint Petersburg University, Universitetskaya emb. 7/9, St Petersburg, 199034, Russia
| |
Collapse
|