1
|
Procyk CA, Melati A, Ribeiro J, Liu J, Branch MJ, Delicata JD, Tariq M, Kalarygrou AA, Kapadia J, Khorsani MM, West EL, Smith AJ, Gonzalez-Cordero A, Ali RR, Pearson RA. Human cone photoreceptor transplantation stimulates remodeling and restores function in AIPL1 model of end-stage Leber congenital amaurosis. Stem Cell Reports 2025; 20:102470. [PMID: 40154478 PMCID: PMC12069896 DOI: 10.1016/j.stemcr.2025.102470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 03/03/2025] [Accepted: 03/03/2025] [Indexed: 04/01/2025] Open
Abstract
Photoreceptor degeneration is a leading cause of untreatable sight loss. Previously, we showed that human pluripotent stem cell-derived cone photoreceptors (hCones) can rescue retinal function in the Rd1 mouse model of rod-cone dystrophy. However, retinal degenerations display markedly different severities and concomitant remodeling of the remaining retina; for photoreceptor replacement therapy to be broadly effective, it must work for a variety of disease phenotypes. Here, we sought to rescue the Aipl1-/- model of Leber congenital amaurosis, a particularly fast, severe condition. After transplantation of hCones, host cone bipolar cells underwent extensive remodeling and formed nascent synaptic-like connections. Electrophysiological recordings showed robust rescue of light-evoked activity across visually relevant photopic intensities, and treated mice exhibited visually evoked optokinetic head-tracking behavior. Thus, human cone photoreceptor replacement therapy is feasible even in very severe cases of retinal dystrophy, offering promise as a disease-agnostic therapy in Leber congenital amaurosis (LCA) and in other advanced retinal degenerations.
Collapse
Affiliation(s)
- Christopher A Procyk
- Ocular Cell and Gene Therapy Group, Centre for Gene Therapy and Regenerative Medicine, King's College London, Guy's Hospital, London SE1 9RT, UK
| | - Anna Melati
- Ocular Cell and Gene Therapy Group, Centre for Gene Therapy and Regenerative Medicine, King's College London, Guy's Hospital, London SE1 9RT, UK
| | - Joana Ribeiro
- Ocular Cell and Gene Therapy Group, Centre for Gene Therapy and Regenerative Medicine, King's College London, Guy's Hospital, London SE1 9RT, UK
| | - Jingshu Liu
- Ocular Cell and Gene Therapy Group, Centre for Gene Therapy and Regenerative Medicine, King's College London, Guy's Hospital, London SE1 9RT, UK
| | - Matthew J Branch
- Ocular Cell and Gene Therapy Group, Centre for Gene Therapy and Regenerative Medicine, King's College London, Guy's Hospital, London SE1 9RT, UK
| | - Jamie D Delicata
- Ocular Cell and Gene Therapy Group, Centre for Gene Therapy and Regenerative Medicine, King's College London, Guy's Hospital, London SE1 9RT, UK
| | - Menahil Tariq
- Ocular Cell and Gene Therapy Group, Centre for Gene Therapy and Regenerative Medicine, King's College London, Guy's Hospital, London SE1 9RT, UK
| | - Aikaterini A Kalarygrou
- Ocular Cell and Gene Therapy Group, Centre for Gene Therapy and Regenerative Medicine, King's College London, Guy's Hospital, London SE1 9RT, UK
| | - Jessica Kapadia
- Ocular Cell and Gene Therapy Group, Centre for Gene Therapy and Regenerative Medicine, King's College London, Guy's Hospital, London SE1 9RT, UK
| | - Majid Moshtagh Khorsani
- Ocular Cell and Gene Therapy Group, Centre for Gene Therapy and Regenerative Medicine, King's College London, Guy's Hospital, London SE1 9RT, UK
| | - Emma L West
- Ocular Cell and Gene Therapy Group, Centre for Gene Therapy and Regenerative Medicine, King's College London, Guy's Hospital, London SE1 9RT, UK
| | - Alexander J Smith
- Ocular Cell and Gene Therapy Group, Centre for Gene Therapy and Regenerative Medicine, King's College London, Guy's Hospital, London SE1 9RT, UK
| | - Anai Gonzalez-Cordero
- Ocular Cell and Gene Therapy Group, Centre for Gene Therapy and Regenerative Medicine, King's College London, Guy's Hospital, London SE1 9RT, UK
| | - Robin R Ali
- Ocular Cell and Gene Therapy Group, Centre for Gene Therapy and Regenerative Medicine, King's College London, Guy's Hospital, London SE1 9RT, UK
| | - Rachael A Pearson
- Ocular Cell and Gene Therapy Group, Centre for Gene Therapy and Regenerative Medicine, King's College London, Guy's Hospital, London SE1 9RT, UK.
| |
Collapse
|
2
|
Zhang Q, Sun J, Liu Z, Wang H, Zhou H, Liu W, Jia H, Li N, Li T, Wang F, Sun X. Clinical and Molecular Characterization of AIPL1-Associated Leber Congenital Amaurosis/Early-Onset Severe Retinal Dystrophy. Am J Ophthalmol 2024; 266:235-247. [PMID: 38880373 DOI: 10.1016/j.ajo.2024.06.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 06/07/2024] [Accepted: 06/07/2024] [Indexed: 06/18/2024]
Abstract
PURPOSE This study aimed to characterize the clinical features, genetic findings, and genotype-phenotype correlations of patients with Leber congenital amaurosis (LCA) or early-onset severe retinal dystrophy (EOSRD) harboring biallelic AIPL1 pathogenic variants. DESIGN Retrospective case series. METHODS This study consecutively enrolled 51 patients from 47 families with a clinical diagnosis of LCA/EOSRD harboring disease-causing variants in the AIPL1 gene, from October 2021 to September 2023. Molecular genetic findings, medical history, and ophthalmic evaluation including visual acuity (VA), multimodal retinal imaging, and electrophysiologic assessment were reviewed. RESULTS Of the 51 patients (32 with LCA and 19 with EOSRD), 27 (53%) were females, and age at last review ranged from 0.5 to 58.4 years. We identified 28 disease-causing AIPL1 variants, with 18 being novel. In patients with EOSRD, the mean (range) VA was 1.3 (0.7-2.7) logMAR and 1.3 (0.5-2.3) logMAR for right and left eyes respectively, with an average annual decline of 0.03 logMAR (R2 = 0.7547, P < .01). For patients with LCA, the VA ranged from light perception to counting fingers. Optical coherence tomography imaging demonstrated preservation of foveal ellipsoid zone in the 5 youngest EOSRD patients and 9 LCA children. Electroretinography showed severe cone-rod patterns in 78.6% (11/14) of patients with EOSRD, while classical extinguished pattern was documented in all patients with LCA available for the examination. The most common mutation was the nonsense variants of c.421C>T, with an allele frequency of 53.9%. All patients with EOSRD carried at least one missense mutation, of whom 13 identified with c.152A>G and 5 with c.572T>C. Twenty-six patients with LCA harbored two null AIPL1 variants, while 18 were homozygous for c.421C>T and 6 were heterozygous for c.421C>T with another loss-of-function variant. CONCLUSIONS This study reveals distinct clinical features and variation spectrum between AIPL1-associated LCA and EOSRD. Patients harboring at least one nonnull mutation, especially c.152A>G and c.572T>C, were significantly more likely to have a milder EOSRD phenotype than those with two null mutations. Residual foveal outer retinal structure observed in the youngest proportion of patients suggests an early window for gene augmentation therapy.
Collapse
Affiliation(s)
- Quan Zhang
- From the Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine (QZ, JS, ZL, HW, HZ, WL, HJ, NL, TL, and XS), Shanghai, China; National Clinical Research Center for Ophthalmic Diseases (QZ, JS, ZL, HW, WL, HJ, NL, TL, and XS), Shanghai, China
| | - Junran Sun
- From the Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine (QZ, JS, ZL, HW, HZ, WL, HJ, NL, TL, and XS), Shanghai, China; National Clinical Research Center for Ophthalmic Diseases (QZ, JS, ZL, HW, WL, HJ, NL, TL, and XS), Shanghai, China
| | - Zishi Liu
- From the Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine (QZ, JS, ZL, HW, HZ, WL, HJ, NL, TL, and XS), Shanghai, China; National Clinical Research Center for Ophthalmic Diseases (QZ, JS, ZL, HW, WL, HJ, NL, TL, and XS), Shanghai, China
| | - Hong Wang
- From the Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine (QZ, JS, ZL, HW, HZ, WL, HJ, NL, TL, and XS), Shanghai, China; National Clinical Research Center for Ophthalmic Diseases (QZ, JS, ZL, HW, WL, HJ, NL, TL, and XS), Shanghai, China
| | - Hao Zhou
- From the Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine (QZ, JS, ZL, HW, HZ, WL, HJ, NL, TL, and XS), Shanghai, China
| | - Wenjia Liu
- From the Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine (QZ, JS, ZL, HW, HZ, WL, HJ, NL, TL, and XS), Shanghai, China; National Clinical Research Center for Ophthalmic Diseases (QZ, JS, ZL, HW, WL, HJ, NL, TL, and XS), Shanghai, China
| | - Huixun Jia
- From the Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine (QZ, JS, ZL, HW, HZ, WL, HJ, NL, TL, and XS), Shanghai, China; National Clinical Research Center for Ophthalmic Diseases (QZ, JS, ZL, HW, WL, HJ, NL, TL, and XS), Shanghai, China; Shanghai Engineering Center for Visual Science and Photomedicine (HJ, FW, and XS), Shanghai, China
| | - Ningdong Li
- From the Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine (QZ, JS, ZL, HW, HZ, WL, HJ, NL, TL, and XS), Shanghai, China; National Clinical Research Center for Ophthalmic Diseases (QZ, JS, ZL, HW, WL, HJ, NL, TL, and XS), Shanghai, China
| | - Tong Li
- From the Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine (QZ, JS, ZL, HW, HZ, WL, HJ, NL, TL, and XS), Shanghai, China; National Clinical Research Center for Ophthalmic Diseases (QZ, JS, ZL, HW, WL, HJ, NL, TL, and XS), Shanghai, China.
| | - Fenghua Wang
- Shanghai Engineering Center for Visual Science and Photomedicine (HJ, FW, and XS), Shanghai, China; Innostellar Biotherapeutics Co., Ltd (FW), Shanghai, China
| | - Xiaodong Sun
- From the Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine (QZ, JS, ZL, HW, HZ, WL, HJ, NL, TL, and XS), Shanghai, China; National Clinical Research Center for Ophthalmic Diseases (QZ, JS, ZL, HW, WL, HJ, NL, TL, and XS), Shanghai, China; Shanghai Engineering Center for Visual Science and Photomedicine (HJ, FW, and XS), Shanghai, China; Shanghai Key Laboratory of Fundus Diseases (XS), Shanghai, China.
| |
Collapse
|
3
|
Daich Varela M, Michaelides M. RDH12 retinopathy: clinical features, biology, genetics and future directions. Ophthalmic Genet 2022; 43:1-6. [PMID: 35491887 PMCID: PMC10479312 DOI: 10.1080/13816810.2022.2062392] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 03/14/2022] [Accepted: 03/22/2022] [Indexed: 10/18/2022]
Abstract
Retinol dehydrogenase 12 (RDH12) is a small gene located on chromosome 14, encoding an enzyme capable of metabolizing retinoids. It is primarily located in photoreceptor inner segments and thereby is believed to have an important role in clearing excessive retinal and other toxic aldehydes produced by light exposure. Clinical features: RDH12-associated retinopathy has wide phenotypic variability; including early-onset severe retinal dystrophy/Leber Congenital Amaurosis (EOSRD/LCA; most frequent presentation), retinitis pigmentosa, cone-rod dystrophy, and macular dystrophy. It can be inherited in an autosomal recessive and dominant fashion. RDH12-EOSRD/LCA's key features are early visual impairment, petal-shaped, coloboma-like macular atrophy with variegated watercolour-like pattern, peripapillary sparing, and often dense bone spicule pigmentation. Future directions: There is currently no treatment available for RDH12-retinopathy. However, extensive preclinical investigations and an ongoing prospective natural history study are preparing the necessary foundation to design and establish forthcoming clinical trials. Herein, we will concisely review pathophysiology, molecular genetics, clinical features, and discuss therapeutic approaches.
Collapse
Affiliation(s)
- Malena Daich Varela
- UCL Institute of Ophthalmology, University College London, London, UK
- Moorfields Eye Hospital, London, UK
| | - Michel Michaelides
- UCL Institute of Ophthalmology, University College London, London, UK
- Moorfields Eye Hospital, London, UK
| |
Collapse
|
4
|
Huang CH, Yang CM, Yang CH, Hou YC, Chen TC. Leber's Congenital Amaurosis: Current Concepts of Genotype-Phenotype Correlations. Genes (Basel) 2021; 12:genes12081261. [PMID: 34440435 PMCID: PMC8392113 DOI: 10.3390/genes12081261] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 08/15/2021] [Accepted: 08/18/2021] [Indexed: 12/26/2022] Open
Abstract
Leber’s congenital amaurosis (LCA), one of the most severe inherited retinal dystrophies, is typically associated with extremely early onset of visual loss, nystagmus, and amaurotic pupils, and is responsible for 20% of childhood blindness. With advances in molecular diagnostic technology, the knowledge about the genetic background of LCA has expanded widely, while disease-causing variants have been identified in 38 genes. Different pathogenetic mechanisms have been found among these varieties of genetic mutations, all of which result in the dysfunction or absence of their encoded proteins participating in the visual cycle. Hence, the clinical phenotypes also exhibit extensive heterogenicity, including the course of visual impairment, involvement of the macular area, alteration in retinal structure, and residual function of the diseased photoreceptor. By reviewing the clinical course, fundoscopic images, optical coherent tomography examination, and electroretinogram, genotype-phenotype correlations could be established for common genetic mutations in LCA, which would benefit the timing of the diagnosis and thus promote early intervention. Gene therapy is promising in the management of LCA, while several clinical trials are ongoing and preliminary success has been announced, focusing on RPE65 and other common disease-causing genes. This review provides an update on the genetics, clinical examination findings, and genotype-phenotype correlations in the most well-established causative genetic mutations of LCA.
Collapse
Affiliation(s)
- Chu-Hsuan Huang
- Department of Ophthalmology, Cathay General Hospital, Taipei 106, Taiwan; (C.-H.H.); (Y.-C.H.)
| | - Chung-May Yang
- Department of Ophthalmology, National Taiwan University Hospital, Taipei 100, Taiwan; (C.-M.Y.); (C.-H.Y.)
- Department of Ophthalmology, College of Medicine, National Taiwan University, Taipei 100, Taiwan
| | - Chang-Hao Yang
- Department of Ophthalmology, National Taiwan University Hospital, Taipei 100, Taiwan; (C.-M.Y.); (C.-H.Y.)
- Department of Ophthalmology, College of Medicine, National Taiwan University, Taipei 100, Taiwan
| | - Yu-Chih Hou
- Department of Ophthalmology, Cathay General Hospital, Taipei 106, Taiwan; (C.-H.H.); (Y.-C.H.)
| | - Ta-Ching Chen
- Department of Ophthalmology, National Taiwan University Hospital, Taipei 100, Taiwan; (C.-M.Y.); (C.-H.Y.)
- Correspondence: ; Tel.: +886-2-23123456
| |
Collapse
|
5
|
Padhy SK, Takkar B, Narayanan R, Venkatesh P, Jalali S. Voretigene Neparvovec and Gene Therapy for Leber's Congenital Amaurosis: Review of Evidence to Date. APPLICATION OF CLINICAL GENETICS 2020; 13:179-208. [PMID: 33268999 PMCID: PMC7701157 DOI: 10.2147/tacg.s230720] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 11/06/2020] [Indexed: 12/13/2022]
Abstract
Gene therapy has now evolved as the upcoming modality for management of many disorders, both inheritable and non-inheritable. Knowledge of genetics pertaining to a disease has therefore become paramount for physicians across most specialities. Inheritable retinal dystrophies (IRDs) are notorious for progressive and relentless vision loss, frequently culminating in complete blindness in both eyes. Leber’s congenital amaurosis (LCA) is a typical example of an IRD that manifests very early in childhood. Research in gene therapy has led to the development and approval of voretigene neparvovec (VN) for use in patients of LCA with a deficient biallelic RPE65 gene. The procedure involves delivery of a recombinant virus vector that carries the RPE65 gene in the subretinal space. This comprehensive review reports the evidence thus far in support of gene therapy for LCA. We explore and compare the various gene targets including but not limited to RPE65, and discuss the choice of vector and method for ocular delivery. The review details the evolution of gene therapy with VN in a phased manner, concluding with the challenges that lie ahead for its translation for use in communities that differ much both genetically and economically.
Collapse
Affiliation(s)
- Srikanta Kumar Padhy
- Vitreoretina and Uveitis Services, L V Prasad Eye Institute, Mithu Tulsi Chanrai Campus, Bhubaneswar, India
| | - Brijesh Takkar
- Srimati Kanuri Santhamma Center for Vitreoretinal Diseases, Kallam Anji Reddy Campus, L.V. Prasad Eye Institute, Hyderabad, India.,Center of Excellence for Rare Eye Diseases, Kallam Anji Reddy Campus, L V Prasad Eye Institute, Hyderabad, India
| | - Raja Narayanan
- Srimati Kanuri Santhamma Center for Vitreoretinal Diseases, Kallam Anji Reddy Campus, L.V. Prasad Eye Institute, Hyderabad, India
| | - Pradeep Venkatesh
- Dr RP Centre for Ophthalmic Sciences, All India Institute of Medical Sciences, New Delhi, India
| | - Subhadra Jalali
- Srimati Kanuri Santhamma Center for Vitreoretinal Diseases, Kallam Anji Reddy Campus, L.V. Prasad Eye Institute, Hyderabad, India.,Jasti V. Ramanamma Childrens' Eye Care Centre, Kallam Anji Reddy Campus, L V Prasad Eye Institute, Hyderabad, India
| |
Collapse
|
6
|
Sacristan-Reviriego A, Le HM, Georgiou M, Meunier I, Bocquet B, Roux AF, Prodromou C, Bainbridge J, Michaelides M, van der Spuy J. Clinical and functional analyses of AIPL1 variants reveal mechanisms of pathogenicity linked to different forms of retinal degeneration. Sci Rep 2020; 10:17520. [PMID: 33067476 PMCID: PMC7567831 DOI: 10.1038/s41598-020-74516-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 08/21/2020] [Indexed: 12/18/2022] Open
Abstract
Disease-causing sequence variants in the highly polymorphic AIPL1 gene are associated with a broad spectrum of inherited retinal diseases ranging from severe autosomal recessive Leber congenital amaurosis to later onset retinitis pigmentosa. AIPL1 is a photoreceptor-specific co-chaperone that interacts with HSP90 to facilitate the stable assembly of retinal cGMP phosphodiesterase, PDE6. In this report, we establish unequivocal correlations between patient clinical phenotypes and in vitro functional assays of uncharacterized AIPL1 variants. We confirm that missense and nonsense variants in the FKBP-like and tetratricopeptide repeat domains of AIPL1 lead to the loss of both HSP90 interaction and PDE6 activity, confirming these variants cause LCA. In contrast, we report the association of p.G122R with milder forms of retinal degeneration, and show that while p.G122R had no effect on HSP90 binding, the modulation of PDE6 cGMP levels was impaired. The clinical history of these patients together with our functional assays suggest that the p.G122R variant is a rare hypomorphic allele with a later disease onset, amenable to therapeutic intervention. Finally, we report the primate-specific proline-rich domain to be dispensable for both HSP90 interaction and PDE6 activity. We conclude that variants investigated in this domain do not cause disease, with the exception of p.A352_P355del associated with autosomal dominant cone-rod dystrophy.
Collapse
Affiliation(s)
| | - Hoang Mai Le
- UCL Institute of Ophthalmology, University College London, 11 - 43 Bath Street, London, EC1V 9EL, UK
| | - Michalis Georgiou
- UCL Institute of Ophthalmology, University College London, 11 - 43 Bath Street, London, EC1V 9EL, UK.,Moorfields Eye Hospital, City Road, London, EC1V 2PD, UK
| | - Isabelle Meunier
- Centre National de Référence Maladies Sensorielles Génétiques, Service Ophtalmologie Hôpital Gui de Chauliac - CHRU de Montpellier, 80 rue Augustin Fliche, 34295, Montpellier, France
| | - Beatrice Bocquet
- Centre National de Référence Maladies Sensorielles Génétiques, Service Ophtalmologie Hôpital Gui de Chauliac - CHRU de Montpellier, 80 rue Augustin Fliche, 34295, Montpellier, France
| | - Anne-Françoise Roux
- Laboratoire de Génétique Moléculaire, CHU de Montpellier, Université de Montpellier, Montpellier, France
| | | | - James Bainbridge
- UCL Institute of Ophthalmology, University College London, 11 - 43 Bath Street, London, EC1V 9EL, UK.,Moorfields Eye Hospital, City Road, London, EC1V 2PD, UK
| | - Michel Michaelides
- UCL Institute of Ophthalmology, University College London, 11 - 43 Bath Street, London, EC1V 9EL, UK.,Moorfields Eye Hospital, City Road, London, EC1V 2PD, UK
| | - Jacqueline van der Spuy
- UCL Institute of Ophthalmology, University College London, 11 - 43 Bath Street, London, EC1V 9EL, UK.
| |
Collapse
|
7
|
Gumus E, Ozgur A. A Novel AIPL1 Nonsense Mutation: Case Report of Three Siblings Diagnosed with Leber Congenital Amaurosis. Fetal Pediatr Pathol 2020; 39:251-258. [PMID: 31342828 DOI: 10.1080/15513815.2019.1644687] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Background: Leber congenital amaurosis (LCA) is a subgroup of early onset retinal dystrophy, manifesting with early or congenital visual loss, wandering nystagmus, amaurotic pupils, oculodigital sign, reduced retinal thickness on optical coherence tomography and abnormal electroretinogram. Today, mutations of about 25 genes account for 80% of individuals with LCA. The AIPL1 mutations causing LCA type 4 account for about 5-10% of this group. Case Report: Three affected siblings with vision loss, nystagmus, cataracts, stage 4 keratoconus, retinal abnormalities (black spots), lack of glaucoma, and dysmorphic features from a consanguineous marriage had LCA type 4 with a novel homozygous missense mutations of AIPL1(c.862 C > T). Conclusion: Cortical cataracts, stage 4 keratoconus, retinal black spots, and lack of glaucoma along with mutations of AIPL1 (c.862 C > T) can be present in LCA type 4.
Collapse
Affiliation(s)
- Evren Gumus
- Medical Genetics, Harran Universitesi Tip Fakultesi, Sanliurfa, Turkey
| | - Armagan Ozgur
- Sanliurfa Research and Training Hospital, Sanliurfa, Turkey
| |
Collapse
|
8
|
Leber congenital amaurosis: Current genetic basis, scope for genetic testing and personalized medicine. Exp Eye Res 2019; 189:107834. [PMID: 31639339 DOI: 10.1016/j.exer.2019.107834] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 10/06/2019] [Accepted: 10/10/2019] [Indexed: 02/07/2023]
Abstract
Retinal dystrophies are one of the leading causes of pediatric congenital blindness. Leber's congenital amaurosis (LCA) encompasses one of the most severe forms of inherited retinal dystrophy responsible for early-onset childhood blindness in infancy. These are clinically characterized by nystagmus, amaurotic pupil response and markedly reduced or in most instances completely absent full-field electroretinogram. LCA exhibits immense genetic heterogeneity. With advances in next-generation genetic technologies, tremendous progress has been achieved over the last two decades in discovering genes and genetic defects leading to retinal dystrophies. Currently, 28 genes have been implicated in the pathogenesis of LCA and with initial reports of success in management with targeted gene therapy the disease has attracted a lot of research attention in the recent time. The review provides an update on genetic basis of LCA, scope for genetic testing and pharmacogenetic medicine in diagnosis and treatment of these diseases.
Collapse
|
9
|
Li Y, Pan Q, Gu YS. Phenotype-genotype correlation with Sanger sequencing identified retinol dehydrogenase 12 (RDH12) compound heterozygous variants in a Chinese family with Leber congenital amaurosis. J Zhejiang Univ Sci B 2018; 18:421-429. [PMID: 28471114 DOI: 10.1631/jzus.b1600156] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
BACKGROUND Leber congenital amaurosis (LCA) is a group of clinically and genetically heterogeneous retinal dystrophy. To date, 22 genes are known to be responsible for LCA, and some specific phenotypic features could provide significant prognostic information for a potential genetic etiology. This study is to identify gene variants responsible for LCA in a Chinese family using direct Sanger sequencing, with the help of phenotype-genotype correlations. METHODS A Chinese family with six members including two individuals affected with LCA was studied. All patients underwent a complete ophthalmic examination. Based on phenotype-genotype correlation, direct Sanger sequencing was performed to identify the candidate gene on all family members and normal controls. Targeted next-generation sequencing was used to exclude other known LCA genes. RESULTS By Sanger sequencing, we identified two novel missense variants in the retinol dehydrogenase 12 (RDH12) gene: a c.164C>A transversion predicting a p.T55K substitution, and a c.535C>G transversion predicting a p.H179D substitution. The two affected subjects carried both RDH12 variants, while their parents and offspring carried only one of heterozygous variants, showing complete cosegregation of the variants. The compound heterozygous variants were not present in 600 normal controls. Besides, the RDH12 variants were confirmed by targeted next-generation sequencing. CONCLUSIONS The RDH12 compound heterozygous variants might be the cause of the LCA family. Our study adds to the molecular spectrum of RDH12-related retinopathy and offers an effective example of the power of phenotype-genotype correlations in molecular diagnosis of LCA.
Collapse
Affiliation(s)
- Yun Li
- Department of Ophthalmology, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Qing Pan
- Department of Ophthalmology, Zhejiang Provincial People's Hospital, Hangzhou 310014, China
| | - Yang-Shun Gu
- Department of Ophthalmology, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, China
| |
Collapse
|
10
|
Yadav RP, Artemyev NO. AIPL1: A specialized chaperone for the phototransduction effector. Cell Signal 2017; 40:183-189. [PMID: 28939106 PMCID: PMC6022367 DOI: 10.1016/j.cellsig.2017.09.014] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Revised: 09/11/2017] [Accepted: 09/18/2017] [Indexed: 12/12/2022]
Abstract
Molecular chaperones play pivotal roles in protein folding, quality control, assembly of multimeric protein complexes, protein trafficking, stress responses, and other essential cellular processes. Retinal photoreceptor rod and cone cells have an unusually high demand for production, quality control, and trafficking of key phototransduction components, and thus, require a robust and specialized chaperone machinery to ensure the fidelity of sensing and transmission of visual signals. Misfolding and/or mistrafficking of photoreceptor proteins are known causes for debilitating blinding diseases. Phosphodiesterase 6, the effector enzyme of the phototransduction cascade, relies on a unique chaperone aryl hydrocarbon receptor (AhR)-interacting protein-like 1 (AIPL1) for its stability and function. The structure of AIPL1 and its relationship with the client remained obscure until recently. This review summarizes important recent advances in understanding the mechanisms underlying normal function of AIPL1 and the protein perturbations caused by pathogenic mutations.
Collapse
Affiliation(s)
- Ravi P Yadav
- Department of Molecular Physiology and Biophysics, The University of Iowa Carver College of Medicine, Iowa City, IA 52242, United States
| | - Nikolai O Artemyev
- Department of Molecular Physiology and Biophysics, The University of Iowa Carver College of Medicine, Iowa City, IA 52242, United States; Department of Ophthalmology and Visual Sciences, The University of Iowa Carver College of Medicine, Iowa City, IA 52242, United States.
| |
Collapse
|
11
|
Krebs MP, Collin GB, Hicks WL, Yu M, Charette JR, Shi LY, Wang J, Naggert JK, Peachey NS, Nishina PM. Mouse models of human ocular disease for translational research. PLoS One 2017; 12:e0183837. [PMID: 28859131 PMCID: PMC5578669 DOI: 10.1371/journal.pone.0183837] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Accepted: 08/12/2017] [Indexed: 01/24/2023] Open
Abstract
Mouse models provide a valuable tool for exploring pathogenic mechanisms underlying inherited human disease. Here, we describe seven mouse models identified through the Translational Vision Research Models (TVRM) program, each carrying a new allele of a gene previously linked to retinal developmental and/or degenerative disease. The mutations include four alleles of three genes linked to human nonsyndromic ocular diseases (Aipl1tvrm119, Aipl1tvrm127, Rpgrip1tvrm111, RhoTvrm334) and three alleles of genes associated with human syndromic diseases that exhibit ocular phentoypes (Alms1tvrm102, Clcn2nmf289, Fkrptvrm53). Phenotypic characterization of each model is provided in the context of existing literature, in some cases refining our current understanding of specific disease attributes. These murine models, on fixed genetic backgrounds, are available for distribution upon request and may be useful for understanding the function of the gene in the retina, the pathological mechanisms induced by its disruption, and for testing experimental approaches to treat the corresponding human ocular diseases.
Collapse
Affiliation(s)
- Mark P. Krebs
- The Jackson Laboratory, Bar Harbor, Maine, United States of America
| | - Gayle B. Collin
- The Jackson Laboratory, Bar Harbor, Maine, United States of America
| | - Wanda L. Hicks
- The Jackson Laboratory, Bar Harbor, Maine, United States of America
| | - Minzhong Yu
- Department of Ophthalmic Research, Cole Eye Institute, Cleveland Clinic Foundation, Cleveland, Ohio, United States of America
- Department of Ophthalmology, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, Ohio, United States of America
| | | | - Lan Ying Shi
- The Jackson Laboratory, Bar Harbor, Maine, United States of America
| | - Jieping Wang
- The Jackson Laboratory, Bar Harbor, Maine, United States of America
| | | | - Neal S. Peachey
- Department of Ophthalmic Research, Cole Eye Institute, Cleveland Clinic Foundation, Cleveland, Ohio, United States of America
- Department of Ophthalmology, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, Ohio, United States of America
- Research Service, Louis Stokes Cleveland VA Medical Center, Cleveland, Ohio, United States of America
| | - Patsy M. Nishina
- The Jackson Laboratory, Bar Harbor, Maine, United States of America
| |
Collapse
|
12
|
Kumaran N, Moore AT, Weleber RG, Michaelides M. Leber congenital amaurosis/early-onset severe retinal dystrophy: clinical features, molecular genetics and therapeutic interventions. Br J Ophthalmol 2017; 101:1147-1154. [PMID: 28689169 PMCID: PMC5574398 DOI: 10.1136/bjophthalmol-2016-309975] [Citation(s) in RCA: 227] [Impact Index Per Article: 28.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Revised: 04/26/2017] [Accepted: 04/30/2017] [Indexed: 12/29/2022]
Abstract
Leber congenital amaurosis (LCA) and early-onset severe retinal dystrophy (EOSRD) are both genetically and phenotypically heterogeneous, and characterised clinically by severe congenital/early infancy visual loss, nystagmus, amaurotic pupils and markedly reduced/absent full-field electroretinograms. The vast genetic heterogeneity of inherited retinal disease has been established over the last 10 - 20 years, with disease-causing variants identified in 25 genes to date associated with LCA/EOSRD, accounting for 70–80% of cases, with thereby more genes yet to be identified. There is now far greater understanding of the structural and functional associations seen in the various LCA/EOSRD genotypes. Subsequent development/characterisation of LCA/EOSRD animal models has shed light on the underlying pathogenesis and allowed the demonstration of successful rescue with gene replacement therapy and pharmacological intervention in multiple models. These advancements have culminated in more than 12 completed, ongoing and anticipated phase I/II and phase III gene therapy and pharmacological human clinical trials. This review describes the clinical and genetic characteristics of LCA/EOSRD and the differential diagnoses to be considered. We discuss in further detail the diagnostic clinical features, pathophysiology, animal models and human treatment studies and trials, in the more common genetic subtypes and/or those closest to intervention.
Collapse
Affiliation(s)
- Neruban Kumaran
- UCL Institute of Ophthalmology, University College London, London, UK.,Moorfields Eye Hospital NHS Foundation Trust, London, UK
| | - Anthony T Moore
- UCL Institute of Ophthalmology, University College London, London, UK.,Moorfields Eye Hospital NHS Foundation Trust, London, UK.,University of California San Francisco, San Francisco CA, California, USA
| | - Richard G Weleber
- Casey Eye Institute, Oregon Health and Science University, Portland, Oregon, USA
| | - Michel Michaelides
- UCL Institute of Ophthalmology, University College London, London, UK.,Moorfields Eye Hospital NHS Foundation Trust, London, UK
| |
Collapse
|
13
|
Ku CA, Hariprasad SM, Pennesi ME. Gene Therapy Trial Update: A Primer for Vitreoretinal Specialists. Ophthalmic Surg Lasers Imaging Retina 2016; 47:6-12. [PMID: 26731203 DOI: 10.3928/23258160-20151214-01] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
14
|
Wang S, Zhang Q, Zhang X, Wang Z, Zhao P. Clinical and genetic characteristics of Leber congenital amaurosis with novel mutations in known genes based on a Chinese eastern coast Han population. Graefes Arch Clin Exp Ophthalmol 2016; 254:2227-2238. [PMID: 27422788 DOI: 10.1007/s00417-016-3428-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Revised: 05/31/2016] [Accepted: 06/22/2016] [Indexed: 11/26/2022] Open
Abstract
PURPOSE To study the genotype-phenotype characteristics of Leber congenital amaurosis (LCA) in the Chinese eastern coast Han population. METHODS Children with strictly defined LCA with novel mutations of known LCA genes identified by targeted next-generation sequencing (NGS) and a prediction of pathogenicity (in silico) were included in this study (2013-2015). Mutations were confirmed using Sanger sequencing and segregation analysis. The clinical findings were recorded, including visual function, refractive error, fundus changes, and electroretinograms (ERGs). Spectral-domain optical coherence tomography (SD-OCT) examination, fundus fluorescein angiography (FFA), and ultra-wide field scanning laser ophthalmoscopy (UWF SLO) were performed on children when available. RESULTS A total of 65 patients underwent NGS for mutation screening and 45 patients were identified as carrying known LCA genes. Of these, 36(80 %) children harbored novel mutations, and they were all from the eastern coast of China. A total of 50 novel variants were identified, which covered 15 known LCA genes. GUCY2D (17 %), CEP290 (14 %), NMNAT1 (14 %), AIPL1 (11 %) and RPGRIP1 (11 %) were the five most frequently mutated genes with novel mutations. A total of four (11 %) patients with AIPL1 mutations harbored the same novel mutated allele (c.C241T p.Q81X), which was homozygous in patients 1 and 2. Unusual manifestations were detected in patient 16 who had novel mutations in CRB1 with a dense proliferative membrane adhering to the posterior retina of the right eye with numerous fine glistening crystals spreading over the retina of both eyes. Ten (40 %) of the 25 available patients who underwent SD-OCT showed a normal macular appearance using fundus photography but an abnormal macular structure using OCT imaging, most of whom presented with a thickened fovea with maldevelopment of the inner and outer retinal laminae. CONCLUSIONS There may be a high frequency of AIPL1 novel mutations and a founder mutation of p.Q81X in the Chinese eastern coast Han population. Our findings of specific features in this population broaden the spectrum of novel mutations and the phenotype of LCA with ethnic and regional variations. Fundus multimodality imaging may help guide comprehensive assessments for patients with LCA.
Collapse
Affiliation(s)
- Shiyuan Wang
- Department of Ophthalmology, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 1665 Kong Jiang Road, Shanghai, 200092, China
| | - Qi Zhang
- Department of Ophthalmology, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 1665 Kong Jiang Road, Shanghai, 200092, China
| | - Xiang Zhang
- Department of Ophthalmology, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 1665 Kong Jiang Road, Shanghai, 200092, China
| | - Zhaoyang Wang
- Department of Ophthalmology, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 1665 Kong Jiang Road, Shanghai, 200092, China
| | - Peiquan Zhao
- Department of Ophthalmology, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 1665 Kong Jiang Road, Shanghai, 200092, China.
| |
Collapse
|
15
|
Gopalakrishna KN, Boyd K, Yadav RP, Artemyev NO. Aryl Hydrocarbon Receptor-interacting Protein-like 1 Is an Obligate Chaperone of Phosphodiesterase 6 and Is Assisted by the γ-Subunit of Its Client. J Biol Chem 2016; 291:16282-91. [PMID: 27268253 DOI: 10.1074/jbc.m116.737593] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Indexed: 12/26/2022] Open
Abstract
Phosphodiesterase 6 (PDE6) is the effector enzyme in the phototransduction cascade and is critical for the health of both rod and cone photoreceptors. Its dysfunction, caused by mutations in either the enzyme itself or AIPL1 (aryl hydrocarbon receptor-interacting protein-like 1), leads to retinal diseases culminating in blindness. Progress in research on PDE6 and AIPL1 has been severely hampered by failure to express functional PDE6 in a heterologous expression system. Here, we demonstrated that AIPL1 is an obligate chaperone of PDE6 and that it enables low yield functional folding of cone PDE6C in cultured cells. We further show that the AIPL1-mediated production of folded PDE6C is markedly elevated in the presence of the inhibitory Pγ-subunit of PDE6. As illustrated in this study, a simple and sensitive system in which AIPL1 and Pγ are co-expressed with PDE6 represents an effective tool for probing structure-function relationships of AIPL1 and reliably establishing the pathogenicity of its variants.
Collapse
Affiliation(s)
| | - Kimberly Boyd
- From the Departments of Molecular Physiology and Biophysics and
| | - Ravi P Yadav
- From the Departments of Molecular Physiology and Biophysics and
| | - Nikolai O Artemyev
- From the Departments of Molecular Physiology and Biophysics and Ophthalmology and Visual Sciences, University of Iowa Carver College of Medicine, Iowa City, Iowa 52242
| |
Collapse
|
16
|
Lyons LA, Creighton EK, Alhaddad H, Beale HC, Grahn RA, Rah H, Maggs DJ, Helps CR, Gandolfi B. Whole genome sequencing in cats, identifies new models for blindness in AIPL1 and somite segmentation in HES7. BMC Genomics 2016; 17:265. [PMID: 27030474 PMCID: PMC4815086 DOI: 10.1186/s12864-016-2595-4] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Accepted: 03/16/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The reduced cost and improved efficiency of whole genome sequencing (WGS) is drastically improving the development of cats as biomedical models. Persian cats are models for Leber's congenital amaurosis (LCA), the most severe and earliest onset form of visual impairment in humans. Cats with innocuous breed-defining traits, such as a bobbed tail, can also be models for somite segmentation and vertebral column development. METHODS The first WGS in cats was conducted on a trio segregating for LCA and the bobbed tail abnormality. Variants were identified using FreeBayes and effects predicted using SnpEff. Variants within a known haplotype block for cat LCA and specific candidate genes for both phenotypes were prioritized by the predicted variant effect on the proteins and concordant segregation within the trio. The efficiency of WGS of a single trio of domestic cats was evaluated. RESULTS A stop gain was identified at position c.577C > T in cat AIPL1, a predicted p.Arg193*. A c.5A > G variant causing a p.V2A was identified in HES7. The variants segregated concordantly in a Persian - Japanese bobtail pedigree. Over 1700 cats from 40 different breeds and populations were genotyped for the AIPL1 variant, defining an allelic frequency in only Persian -related breeds of 1.15%. A sub-set of cats was genotyped for the HES7 variant, supporting the variant as private to the Japanese bobtail breed. Approximately 18 million SNPs were identified for application in cat research. The cat AIPL1 variant would have been considered a high priority variant for evaluation, regardless of a priori knowledge from previous genetic studies. CONCLUSIONS This study represents the first effort of the 99 Lives Cat Genome Sequencing Initiative to identify disease--causing variants in the domestic cat using WGS. The current cat reference assembly is efficient for gene and variant identification. However, as the feline variant database improves, development of cats as biomedical models for human disease will be more efficient, providing an alternative, large animal model for drug and gene therapy trials. Undiagnosed human patients with early-onset blindness should be screened for this AIPL1 variant. The HES7 variant should further calibrate the somite segmentation clock.
Collapse
Affiliation(s)
- Leslie A. Lyons
- />Department of Veterinary Medicine and Surgery, College of Veterinary Medicine, University of Missouri - Columbia, E109 Vet Med Building, 1600 E. Rollins Street, Columbia, MO 65211 USA
| | - Erica K. Creighton
- />Department of Veterinary Medicine and Surgery, College of Veterinary Medicine, University of Missouri - Columbia, E109 Vet Med Building, 1600 E. Rollins Street, Columbia, MO 65211 USA
| | - Hasan Alhaddad
- />College of Science, Kuwait University, Safat, 13060 Kuwait
| | | | - Robert A. Grahn
- />Veterinary Genetics Laboratory, School of Veterinary Medicine, University of California - Davis, Davis, CA 95616 USA
| | - HyungChul Rah
- />Graduate School of Health Science Business Convergence, College of Medicine, Chungbuk National University, Chongju, Chungbuk Province 28644 South Korea
| | - David J. Maggs
- />Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California - Davis, Davis, CA 95616 USA
| | - Christopher R. Helps
- />Langford Veterinary Services, University of Bristol, Langford, Bristol, BS40 5DU UK
| | - Barbara Gandolfi
- />Department of Veterinary Medicine and Surgery, College of Veterinary Medicine, University of Missouri - Columbia, E109 Vet Med Building, 1600 E. Rollins Street, Columbia, MO 65211 USA
| |
Collapse
|
17
|
Yadav RP, Majumder A, Gakhar L, Artemyev NO. Extended conformation of the proline-rich domain of human aryl hydrocarbon receptor-interacting protein-like 1: implications for retina disease. J Neurochem 2015; 135:165-75. [PMID: 26139345 DOI: 10.1111/jnc.13223] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Revised: 05/29/2015] [Accepted: 06/25/2015] [Indexed: 12/18/2022]
Abstract
Mutations in the primate-specific proline-rich domain (PRD) of aryl hydrocarbon receptor-interacting protein-like 1 (AIPL1) are thought to cause Leber congenital amaurosis or dominant cone-rod dystrophy. The role of PRD and the mechanisms of PRD mutations are poorly understood. Here, we have examined properties of hAIPL1 and effects of the PRD mutations on protein structure and function. Solution structures of hAIPL1, hAIPL11-316 with PRD truncation, and the P351Δ12 and P376S mutants were examined by small angle X-ray scattering. Our analysis suggests that PRD assumes an extended conformation and does not interact with the FK506-binding and tetratricopeptide domains. The PRD truncation, but not PRD mutations, reduced the molecule's radius of gyration and maximum dimension. We demonstrate that hAIPL1 is a monomeric protein, and its secondary structure and stability are not affected by the PRD mutations. PRD itself is an extended monomeric random coil. The PRD mutations caused little or no changes in hAIPL1 binding to known partners, phosphodiesterase-6A and HSP90. We also identified the γ-subunit of phosphodiesterase-6 as a novel partner of hAIPL1 and hypothesize that this interaction is altered by P351Δ12. Our results highlight the complexity of mechanisms of PRD mutations in disease and the possibility that certain mutations are benign variants. Mutations in the proline-rich domain (PRD) of human AIPL1 cause severe retinal diseases, yet the role of PRD and the mechanisms of PRD mutations are unknown. Here, we describe a SAXS-derived solution structure of AIPL1 and functional properties of disease-linked AIPL1-PRD mutants. This structure and functional analyses provide a framework for understanding the mechanisms of PRD in disease.
Collapse
Affiliation(s)
- Ravi P Yadav
- Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, Iowa, USA
| | - Anurima Majumder
- Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, Iowa, USA
| | - Lokesh Gakhar
- Department of Biochemistry, University of Iowa, Iowa City, Iowa, USA.,Protein Crystallography Facility, University of Iowa, Iowa City, Iowa, USA
| | - Nikolai O Artemyev
- Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, Iowa, USA.,Department of Ophthalmology and Visual Sciences, University of Iowa, Iowa City, Iowa, USA
| |
Collapse
|
18
|
Komatsu M, Wheeler HE, Chung S, Low SK, Wing C, Delaney SM, Gorsic LK, Takahashi A, Kubo M, Kroetz DL, Zhang W, Nakamura Y, Dolan ME. Pharmacoethnicity in Paclitaxel-Induced Sensory Peripheral Neuropathy. Clin Cancer Res 2015; 21:4337-46. [PMID: 26015512 DOI: 10.1158/1078-0432.ccr-15-0133] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Accepted: 05/20/2015] [Indexed: 12/22/2022]
Abstract
PURPOSE Paclitaxel is used worldwide in the treatment of breast, lung, ovarian, and other cancers. Sensory peripheral neuropathy is an associated adverse effect that cannot be predicted, prevented, or mitigated. To better understand the contribution of germline genetic variation to paclitaxel-induced peripheral neuropathy, we undertook an integrative approach that combines genome-wide association study (GWAS) data generated from HapMap lymphoblastoid cell lines (LCL) and Asian patients. METHODS GWAS was performed with paclitaxel-induced cytotoxicity generated in 363 LCLs and with paclitaxel-induced neuropathy from 145 Asian patients. A gene-based approach was used to identify overlapping genes and compare with a European clinical cohort of paclitaxel-induced neuropathy. Neurons derived from human-induced pluripotent stem cells were used for functional validation of candidate genes. RESULTS SNPs near AIPL1 were significantly associated with paclitaxel-induced cytotoxicity in Asian LCLs (P < 10(-6)). Decreased expression of AIPL1 resulted in decreased sensitivity of neurons to paclitaxel by inducing neurite morphologic changes as measured by increased relative total outgrowth, number of processes and mean process length. Using a gene-based analysis, there were 32 genes that overlapped between Asian LCL cytotoxicity and Asian patient neuropathy (P < 0.05), including BCR. Upon BCR knockdown, there was an increase in neuronal sensitivity to paclitaxel as measured by neurite morphologic characteristics. CONCLUSIONS We identified genetic variants associated with Asian paclitaxel-induced cytotoxicity and functionally validated the AIPL1 and BCR in a neuronal cell model. Furthermore, the integrative pharmacogenomics approach of LCL/patient GWAS may help prioritize target genes associated with chemotherapeutic-induced peripheral neuropathy.
Collapse
Affiliation(s)
- Masaaki Komatsu
- Section of Hematology/Oncology, Department of Medicine, The University of Chicago, Chicago, Illinois
| | - Heather E Wheeler
- Section of Hematology/Oncology, Department of Medicine, The University of Chicago, Chicago, Illinois
| | - Suyoun Chung
- Section of Hematology/Oncology, Department of Medicine, The University of Chicago, Chicago, Illinois. Division of Cancer Development System, National Cancer Center Research Institute, Tokyo, Japan
| | - Siew-Kee Low
- Laboratory for Statistical Analysis, Core for Genomic Medicine, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan. Laboratory of Molecular Medicine, Human Genome Center, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Claudia Wing
- Section of Hematology/Oncology, Department of Medicine, The University of Chicago, Chicago, Illinois
| | - Shannon M Delaney
- Section of Hematology/Oncology, Department of Medicine, The University of Chicago, Chicago, Illinois
| | - Lidija K Gorsic
- Section of Hematology/Oncology, Department of Medicine, The University of Chicago, Chicago, Illinois
| | - Atsushi Takahashi
- Laboratory for Statistical Analysis, Core for Genomic Medicine, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Michiaki Kubo
- Laboratory for Genotyping Development, Core for Genomic Medicine, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Deanna L Kroetz
- Department of Bioengineering and Therapeutic Sciences, School of Pharmacy and Medicine, University of California, San Francisco, San Francisco, California
| | - Wei Zhang
- Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Yusuke Nakamura
- Section of Hematology/Oncology, Department of Medicine, The University of Chicago, Chicago, Illinois. Laboratory of Molecular Medicine, Human Genome Center, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - M Eileen Dolan
- Section of Hematology/Oncology, Department of Medicine, The University of Chicago, Chicago, Illinois.
| |
Collapse
|
19
|
Hidalgo-de-Quintana J, Schwarz N, Meschede IP, Stern-Schneider G, Powner MB, Morrison EE, Futter CE, Wolfrum U, Cheetham ME, van der Spuy J. The Leber congenital amaurosis protein AIPL1 and EB proteins co-localize at the photoreceptor cilium. PLoS One 2015; 10:e0121440. [PMID: 25799540 PMCID: PMC4370678 DOI: 10.1371/journal.pone.0121440] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2014] [Accepted: 02/12/2015] [Indexed: 11/21/2022] Open
Abstract
Purpose The aim of this study was to investigate the interaction and co-localization of novel interacting proteins with the Leber congenital amaurosis (LCA) associated protein aryl hydrocarbon receptor interacting protein-like 1 (AIPL1). Methods The CytoTrapXR yeast two-hybrid system was used to screen a bovine retinal cDNA library. A novel interaction between AIPL1 and members of the family of EB proteins was confirmed by directed yeast two-hybrid analysis and co-immunoprecipitation assays. The localization of AIPL1 and the EB proteins in cultured cells and in retinal cryosections was examined by immunofluorescence microscopy and cryo-immunogold electron microscopy. Results Yeast two-hybrid (Y2H) analysis identified the interaction between AIPL1 and the EB proteins, EB1 and EB3. EB1 and EB3 were specifically co-immunoprecipitated with AIPL1 from SK-N-SH neuroblastoma cells. In directed 1:1 Y2H analysis, the interaction of EB1 with AIPL1 harbouring the LCA-causing mutations A197P, C239R and W278X was severely compromised. Immunofluorescent confocal microscopy revealed that AIPL1 did not co-localize with endogenous EB1 at the tips of microtubules, endogenous EB1 at the microtubule organising centre following disruption of the microtubule network, or with endogenous β-tubulin. Moreover, AIPL1 did not localize to primary cilia in ARPE-19 cells, whereas EB1 co-localized with the centrosomal marker pericentrin at the base of primary cilia. However, both AIPL1 and the EB proteins, EB1 and EB3, co-localized with centrin-3 in the connecting cilium of photoreceptor cells. Cryo-immunogold electron microscopy confirmed the co-localization of AIPL1 and EB1 in the connecting cilia in human retinal photoreceptors. Conclusions AIPL1 and the EB proteins, EB1 and EB3, localize at the connecting cilia of retinal photoreceptor cells, but do not co-localize in the cellular microtubule network or in primary cilia in non-retinal cells. These findings suggest that AIPL1 function in these cells is not related to the role of EB proteins in microtubule dynamics or primary ciliogenesis, but that their association may be related to a specific role in the specialized cilia apparatus of retinal photoreceptors.
Collapse
Affiliation(s)
- Juan Hidalgo-de-Quintana
- Department of Ocular Biology and Therapeutics, UCL Institute of Ophthalmology, London, United Kingdom
| | - Nele Schwarz
- Department of Ocular Biology and Therapeutics, UCL Institute of Ophthalmology, London, United Kingdom
| | - Ingrid P. Meschede
- Department of Cell Biology, UCL Institute of Ophthalmology, London, United Kingdom
| | - Gabriele Stern-Schneider
- Cell and Matrix Biology, Institute of Zoology, Johannes Gutenberg University of Mainz, Mainz, Germany
| | - Michael B. Powner
- Department of Cell Biology, UCL Institute of Ophthalmology, London, United Kingdom
| | - Ewan E. Morrison
- Section of Ophthalmology and Neuroscience, Leeds Institute of Molecular Medicine, St James’s University Hospital, Leeds, United Kingdom
| | - Clare E. Futter
- Department of Cell Biology, UCL Institute of Ophthalmology, London, United Kingdom
| | - Uwe Wolfrum
- Cell and Matrix Biology, Institute of Zoology, Johannes Gutenberg University of Mainz, Mainz, Germany
| | - Michael E. Cheetham
- Department of Ocular Biology and Therapeutics, UCL Institute of Ophthalmology, London, United Kingdom
| | - Jacqueline van der Spuy
- Department of Ocular Biology and Therapeutics, UCL Institute of Ophthalmology, London, United Kingdom
- * E-mail:
| |
Collapse
|
20
|
Chacon-Camacho OF, Zenteno JC. Review and update on the molecular basis of Leber congenital amaurosis. World J Clin Cases 2015; 3:112-124. [PMID: 25685757 PMCID: PMC4317604 DOI: 10.12998/wjcc.v3.i2.112] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Revised: 10/03/2014] [Accepted: 11/19/2014] [Indexed: 02/05/2023] Open
Abstract
Inherited retinal diseases are uncommon pathologies and one of the most harmful causes of childhood and adult blindness. Leber congenital amaurosis (LCA) is the most severe kind of these diseases accounting for approximately 5% of the whole retinal dystrophies and 20% of the children that study on blind schools. Clinical ophthalmologic findings including severe vision loss, nystagmus and ERG abnormalities should be suspected through the first year of life in this group of patients. Phenotypic variability is found when LCA patients have a full ophthalmologic examination. However, a correct diagnosis may be carried out; the determination of ophthalmologic clues as light sensibility, night blindness, fundus pigmentation, among other, join with electroretinographics findings, optical coherence tomography, and new technologies as molecular gene testing may help to reach to a precise diagnosis. Several retinal clinical features in LCA may suggest a genetic or gene particular defect; thus genetic-molecular tools could directly corroborate the clinical diagnosis. Currently, approximately 20 genes have been associated to LCA. In this review, historical perspective, clinical ophthalmological findings, new molecular-genetics technologies, possible phenotype-genotypes correlations, and gene therapy for some LCA genes are described.
Collapse
|
21
|
Ku CA, Chiodo VA, Boye SL, Hayes A, Goldberg AFX, Hauswirth WW, Ramamurthy V. Viral-mediated vision rescue of a novel AIPL1 cone-rod dystrophy model. Hum Mol Genet 2014; 24:670-84. [PMID: 25274777 DOI: 10.1093/hmg/ddu487] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Defects in aryl hydrocarbon receptor interacting protein-like1 (AIPL1) are associated with blinding diseases with a wide range of severity in humans. We examined the mechanism behind autosomal dominant cone-rod dystrophy (adCORD) caused by 12 base pair (bp) deletion at proline 351 of hAIPL1 (P351Δ12) mutation in the primate-specific region of human AIPL1. Mutant P351Δ12 human isoform, aryl hydrocarbon receptor interacting protein-like 1 (hAIPL1) mice demonstrated a CORD phenotype with early defects in cone-mediated vision and subsequent photoreceptor degeneration. A dominant CORD phenotype was observed in double transgenic animals expressing both mutant P351Δ12 and normal hAIPL1, but not with co-expression of P351Δ12 hAIPL1 and the mouse isoform, aryl hydrocarbon receptor interacting protein-like 1 (mAipl1). Despite a dominant effect of the mutation, we successfully rescued cone-mediated vision in P351Δ12 hAIPL1 mice following high over-expression of WT hAIPL1 by adeno-associated virus-mediated gene delivery, which was stable up to 6 months after treatment. Our transgenic P351Δ12 hAIPL1 mouse offers a novel model of AIPL1-CORD, with distinct defects from both the Aipl1-null mouse mimicking LCA and the Aipl1-hypomorphic mice mimicking a slow progressing RP.
Collapse
Affiliation(s)
- Cristy A Ku
- Center for Neuroscience Department of Ophthalmology and
| | - Vince A Chiodo
- Department of Ophthalmology, University of Florida, Gainesville, FL 32610, USA and
| | - Sanford L Boye
- Department of Ophthalmology, University of Florida, Gainesville, FL 32610, USA and
| | - Abigail Hayes
- Department of Ophthalmology and Department of Biochemistry, Robert C. Byrd Health Sciences Center, West Virginia University, Morgantown, WV 26505, USA
| | | | - William W Hauswirth
- Department of Ophthalmology, University of Florida, Gainesville, FL 32610, USA and
| | - Visvanathan Ramamurthy
- Center for Neuroscience Department of Ophthalmology and Department of Biochemistry, Robert C. Byrd Health Sciences Center, West Virginia University, Morgantown, WV 26505, USA
| |
Collapse
|
22
|
AIPL1 protein and its indispensable role in cone photoreceptor function and survival. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2014; 801:43-8. [PMID: 24664679 DOI: 10.1007/978-1-4614-3209-8_6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Mutations in Aryl hydrocarbon receptor interacting protein like-1 (AIPL1) are linked to Leber congenital amaurosis (LCA), a severe blinding disease that occurs in early childhood. The severity of disease is due to requirement for AIPL1 in both rod and cone photoreceptor cell survival and function. Aipl1 is expressed very early during retinal development in both rods and cones. In adult primates, robust expression of Aipl1 is found in rods but not in cones. Mouse models revealed the importance of AIPL1 in stability and function of heteromeric phosphodiesterase 6 (PDE6), an enzyme needed for visual response. However, the need for AIPL1 in cone cell survival and function is not clearly understood. In this chapter, using results obtained from multiple lines of animal models, we discuss the role for AIPL1 in photoreceptors.
Collapse
|
23
|
Petrs-Silva H, Linden R. Advances in gene therapy technologies to treat retinitis pigmentosa. Clin Ophthalmol 2013; 8:127-36. [PMID: 24391438 PMCID: PMC3878960 DOI: 10.2147/opth.s38041] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Retinitis pigmentosa (RP) is a class of diseases that leads to progressive degeneration of the retina. Experimental approaches to gene therapy for the treatment of inherited retinal dystrophies have advanced in recent years, inclusive of the safe delivery of genes to the human retina. This review is focused on the development of gene therapy for RP using recombinant adenoassociated viral vectors, which show a positive safety record and have so far been successful in several clinical trials for congenital retinal disease. Gene therapy for RP is under development in a variety of animal models, and the results raise expectations of future clinical application. Nonetheless, the translation of such strategies to the bedside requires further understanding of the mutations and mechanisms that cause visual defects, as well as thorough examination of potential adverse effects.
Collapse
Affiliation(s)
- Hilda Petrs-Silva
- Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Rafael Linden
- Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
24
|
Zou X, Yao F, Liang X, Xu F, Li H, Sui R, Dong F. De novo mutations in the cone-rod homeobox gene associated with leber congenital amaurosis in Chinese patients. Ophthalmic Genet 2013; 36:21-6. [PMID: 24001014 DOI: 10.3109/13816810.2013.827219] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
BACKGROUND The cone-rod homeobox (CRX) gene plays an important role in photoreceptor development. Recently, mutant alleles of the CRX gene have been associated with autosomal dominant Leber congenital amaurosis (LCA) and cone-rod dystrophy. The purpose of this study was to analyze the CRX mutations in a cohort of Chinese patients with LCA or early-onset severe retinal dystrophy (EOSRD) and to provide the clinical features of these patients. METHODS Patients with LCA or EOSRD were enrolled from 2003 to 2012. Detailed ocular examinations including optical coherence tomography (OCT) and standardized electrophysiology were performed. Genomic DNA was isolated with standard methods of genetic diagnosis. All three exons of CRX were amplified with PCR and screened for mutations through direct DNA sequencing. A total of 200 unrelated healthy Chinese subjects were screened to exclude nonpathogenic polymorphisms. Offspring-parent relationship was tested to confirm de novo mutation. RESULTS A total of 109 probands from 109 unrelated families were selected for mutation screening of the CRX gene. Two individuals with LCA were confirmed to carry de novo CRX mutations c.421delT (p.Ser141Pro fsX46) and c.571delT (p.Tyr191Met fsX3), respectively. The daughter of Case 1 also carried the same CRX mutation (c.421delT) and had LCA symptoms. Pigmentary retinopathy in the peripheral retina and macular atrophy were observed in the two probands. Macular atrophy without normal lamination structure was the retina phenotype under OCT. CONCLUSIONS Two de novo mutations in CRX were found in Chinese patients with LCA. The CRX mutation might create a dominantly inherited trait.
Collapse
|
25
|
Li H, Liang Y, Chiu K, Yuan Q, Lin B, Chang RCC, So KF. Lycium barbarum (wolfberry) reduces secondary degeneration and oxidative stress, and inhibits JNK pathway in retina after partial optic nerve transection. PLoS One 2013; 8:e68881. [PMID: 23894366 PMCID: PMC3716882 DOI: 10.1371/journal.pone.0068881] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2013] [Accepted: 06/02/2013] [Indexed: 11/30/2022] Open
Abstract
Our group has shown that the polysaccharides extracted from Lycium barbarum (LBP) are neuroprotective for retinal ganglion cells (RGCs) in different animal models. Protecting RGCs from secondary degeneration is a promising direction for therapy in glaucoma management. The complete optic nerve transection (CONT) model can be used to study primary degeneration of RGCs, while the partial optic nerve transection (PONT) model can be used to study secondary degeneration of RGCs because primary degeneration of RGCs and secondary degeneration can be separated in location in the same retina in this model; in other situations, these types of degeneration can be difficult to distinguish. In order to examine which kind of degeneration LBP could delay, both CONT and PONT models were used in this study. Rats were fed with LBP or vehicle daily from 7 days before surgery until sacrifice at different time-points and the surviving numbers of RGCs were evaluated. The expression of several proteins related to inflammation, oxidative stress, and the c-jun N-terminal kinase (JNK) pathways were detected with Western-blot analysis. LBP did not delay primary degeneration of RGCs after either CONT or PONT, but it did delay secondary degeneration of RGCs after PONT. We found that LBP appeared to exert these protective effects by inhibiting oxidative stress and the JNK/c-jun pathway and by transiently increasing production of insulin-like growth factor-1 (IGF-1). This study suggests that LBP can delay secondary degeneration of RGCs and this effect may be linked to inhibition of oxidative stress and the JNK/c-jun pathway in the retina.
Collapse
Affiliation(s)
- Hongying Li
- Department of Anatomy and the State Key Laboratory of Brain and Cognitive Science, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Yuxiang Liang
- Department of Anatomy and the State Key Laboratory of Brain and Cognitive Science, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Kin Chiu
- Department of Anatomy and the State Key Laboratory of Brain and Cognitive Science, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Qiuju Yuan
- Department of Anatomy and the State Key Laboratory of Brain and Cognitive Science, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Bin Lin
- Department of Anatomy and the State Key Laboratory of Brain and Cognitive Science, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Raymond Chuen-Chung Chang
- Department of Anatomy and the State Key Laboratory of Brain and Cognitive Science, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
- Research Centre of Heart, Brain, Hormone and Healthy Aging, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Kwok-Fai So
- Department of Anatomy and the State Key Laboratory of Brain and Cognitive Science, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
- Research Centre of Heart, Brain, Hormone and Healthy Aging, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
- GMH Institute of Central Nervous System Regeneration, Jinan University, Guangzhou, China
| |
Collapse
|
26
|
Chevallier A, Mialot A, Petit JM, Fernandez-Salguero P, Barouki R, Coumoul X, Beraneck M. Oculomotor deficits in aryl hydrocarbon receptor null mouse. PLoS One 2013; 8:e53520. [PMID: 23301081 PMCID: PMC3536739 DOI: 10.1371/journal.pone.0053520] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2012] [Accepted: 11/30/2012] [Indexed: 12/13/2022] Open
Abstract
The Aryl hydrocarbon Receptor or AhR, a ligand-activated transcription factor, is known to mediate the toxic and carcinogenic effects of various environmental pollutants such as 2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD). Recent studies in Caenorhabditis elegans and Drosophila melanogaster show that the orthologs of the AhR are expressed exclusively in certain types of neurons and are implicated in the development and the homeostasis of the central nervous system. While physiological roles of the AhR were demonstrated in the mammalian heart, liver and gametogenesis, its ontogenic expression and putative neural functions remain elusive. Here, we report that the constitutive absence of the AhR in adult mice (AhR-/-) leads to abnormal eye movements in the form of a spontaneous pendular horizontal nystagmus. To determine if the nystagmus is of vestibular, visual, or cerebellar origin, gaze stabilizing reflexes, namely vestibulo-ocular and optokinetic reflexes (VOR and OKR), were investigated. The OKR is less effective in the AhR-/- mice suggesting a deficit in the visuo-motor circuitry, while the VOR is mildly affected. Furthermore, the AhR is expressed in the retinal ganglion cells during the development, however electroretinograms revealed no impairment of retinal cell function. The structure of the cerebellum of the AhR-/- mice is normal which is compatible with the preserved VOR adaptation, a plastic process dependent on cerebellar integrity. Finally, intoxication with TCDD of control adults did not lead to any abnormality of the oculomotor control. These results demonstrate that the absence of the AhR leads to acquired central nervous system deficits in the adults. Given the many common features between both AhR mouse and human infantile nystagmus syndromes, the AhR-/- mice might give insights into the developmental mechanisms which lead to congenital eye disorders.
Collapse
Affiliation(s)
- Aline Chevallier
- INSERM UMR-S 747, Toxicologie Pharmacologie et Signalisation Cellulaire, Centre universitaire des Saints-Pères, Paris, France
- Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Antoine Mialot
- Centre d'Etude de la Sensori Motricité - CNRS UMR 8194, Centre universitaire des Saints-Pères, Paris, France
- Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | | | | | - Robert Barouki
- INSERM UMR-S 747, Toxicologie Pharmacologie et Signalisation Cellulaire, Centre universitaire des Saints-Pères, Paris, France
- Assistance Publique-Hôpitaux de Paris, Hôpital Necker-Enfants Malades, Paris, France
- Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Xavier Coumoul
- INSERM UMR-S 747, Toxicologie Pharmacologie et Signalisation Cellulaire, Centre universitaire des Saints-Pères, Paris, France
- Université Paris Descartes, Sorbonne Paris Cité, Paris, France
- * E-mail: (XC); (MB)
| | - Mathieu Beraneck
- Centre d'Etude de la Sensori Motricité - CNRS UMR 8194, Centre universitaire des Saints-Pères, Paris, France
- Université Paris Descartes, Sorbonne Paris Cité, Paris, France
- * E-mail: (XC); (MB)
| |
Collapse
|