1
|
Boakye-Appiah JK, Tran AC, Paul MJ, Hart P, Phillips RO, Harrison TS, Wansbrough-Jones M, Reljic R. A composite subunit vaccine confers full protection against Buruli ulcer disease in the mouse footpad model of Mycobacterium ulcerans infection. PLoS Negl Trop Dis 2025; 19:e0012710. [PMID: 39982950 PMCID: PMC11918321 DOI: 10.1371/journal.pntd.0012710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 03/18/2025] [Accepted: 02/02/2025] [Indexed: 02/23/2025] Open
Abstract
Buruli ulcer (BU) disease, a neglected necrotizing tropical skin infection caused by Mycobacterium ulcerans, is the third most common mycobacterial disease after tuberculosis and leprosy. Infections mostly occur in remote, rural areas of Central and West Africa, but also in Australia, Japan and Papua New Guinea. There is currently no vaccine against Buruli ulcer disease and all previous attempts using closely related bacteria and subunit proteins have been partially successful only. Here, we tested in mice a composite subunit formulation incorporating the Mycobacterium ulcerans toxin mycolactone as the immunomodulator, and the antigens Ag85A and Polyketide Synthase Enzyme Ketoreductase A (KRA), formulated with Quil-A adjuvant ('Burulivac'). Burulivac induced Ag85A and KRA antigen-specific antibodies, T cells and a mixed pro- and anti-inflammatory cytokine responses, which conferred absolute protection against Buruli ulcer disease in the mouse footpad model over a 14-week period of observation. This was superior to both live attenuated mycobacterial vaccines, that is, BCG and an avirulent M. ulcerans strain that lacks the mycolactone toxin (MuΔ). Interleukin 10 was found to be strongly associated with protection. We suggest that Burulivac is a promising vaccine candidate against Buruli ulcer disease that warrants further exploration.
Collapse
Affiliation(s)
- Justice Kofi Boakye-Appiah
- Institute for Infection and Immunity, School of Health and Medical Sciences, City St George’s University of London, London, United Kingdom
- School of Medical Sciences, Kwame Nkrumah University of Science and Technology (KNUST), Kumasi, Ghana
| | - Andy C. Tran
- Institute for Infection and Immunity, School of Health and Medical Sciences, City St George’s University of London, London, United Kingdom
| | - Matthew J. Paul
- Institute for Infection and Immunity, School of Health and Medical Sciences, City St George’s University of London, London, United Kingdom
| | - Peter Hart
- Institute for Infection and Immunity, School of Health and Medical Sciences, City St George’s University of London, London, United Kingdom
| | - Richard O. Phillips
- School of Medical Sciences, Kwame Nkrumah University of Science and Technology (KNUST), Kumasi, Ghana
| | - Thomas S. Harrison
- Institute for Infection and Immunity, School of Health and Medical Sciences, City St George’s University of London, London, United Kingdom
| | - Mark Wansbrough-Jones
- Institute for Infection and Immunity, School of Health and Medical Sciences, City St George’s University of London, London, United Kingdom
| | - Rajko Reljic
- Institute for Infection and Immunity, School of Health and Medical Sciences, City St George’s University of London, London, United Kingdom
| |
Collapse
|
2
|
Ishwarlall TZ, Adeleke VT, Maharaj L, Okpeku M, Adeniyi AA, Adeleke MA. Multi-epitope vaccine candidates based on mycobacterial membrane protein large (MmpL) proteins against Mycobacterium ulcerans. Open Biol 2023; 13:230330. [PMID: 37935359 PMCID: PMC10645115 DOI: 10.1098/rsob.230330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 09/26/2023] [Indexed: 11/09/2023] Open
Abstract
Buruli ulcer (BU) is a neglected tropical disease. It is caused by the bacterium Mycobacterium ulcerans and is characterized by skin lesions. Several studies were performed testing the Bacillus Calmette-Guérin (BCG) vaccine in human and animal models and M. ulcerans-specific vaccines in animal models. However, there are currently no clinically accepted vaccines to prevent M. ulcerans infection. The aim of this study was to identify T-cell and B-cell epitopes from the mycobacterial membrane protein large (MmpL) proteins of M. ulcerans. These epitopes were analysed for properties including antigenicity, immunogenicity, non-allergenicity, non-toxicity, population coverage and the potential to induce cytokines. The final 8 CD8+, 12 CD4+ T-cell and 5 B-cell epitopes were antigenic, non-allergenic and non-toxic. The estimated global population coverage of the CD8+ and CD4+ epitopes was 97.71%. These epitopes were used to construct five multi-epitope vaccine constructs with different adjuvants and linker combinations. The constructs underwent further structural analyses and refinement. The constructs were then docked with Toll-like receptors. Three of the successfully docked complexes were structurally analysed. Two of the docked complexes successfully underwent molecular dynamics simulations (MDS) and post-MDS analysis. The complexes generated were found to be stable. However, experimental validation of the complexes is required.
Collapse
Affiliation(s)
- Tamara Z. Ishwarlall
- Discipline of Genetics, School of Life Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Victoria T. Adeleke
- Department of Chemical Engineering, Mangosuthu University of Technology, Umlazi, Durban, South Africa
| | - Leah Maharaj
- Discipline of Genetics, School of Life Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Moses Okpeku
- Discipline of Genetics, School of Life Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Adebayo A. Adeniyi
- Department of Chemistry, Faculty of Natural and Agricultural Sciences, University of the Free State, Bloemfontein, South Africa
- Department of Industrial Chemistry, Federal University Oye Ekiti, Ekiti State, Nigeria
| | - Matthew A. Adeleke
- Discipline of Genetics, School of Life Sciences, University of KwaZulu-Natal, Durban, South Africa
| |
Collapse
|
3
|
Muhi S, Stinear TP. Systematic review of M. Bovis BCG and other candidate vaccines for Buruli ulcer prophylaxis. Vaccine 2021; 39:7238-7252. [PMID: 34119347 DOI: 10.1016/j.vaccine.2021.05.092] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 05/10/2021] [Accepted: 05/23/2021] [Indexed: 01/17/2023]
Abstract
Buruli ulcer, caused by Mycobacterium ulcerans, is a neglected tropical disease endemic to over 30 countries, with increasing incidence in temperate, coastal Victoria, Australia. Strategies to control transmission are urgently required. This study systematically reviews the literature to identify and describe candidate prophylactic Buruli ulcer vaccines. This review highlights that Mycobacterium bovis Bacillus Calmette-Guérin (BCG) vaccine is the only vaccine studied in randomised controlled trials and confirms its importance as a benchmark for comparison against putative vaccines in pre-clinical studies. Nevertheless, BCG alone is unable to offer long-term protection in humans. A number of experimental vaccines that exceed the protection provided by BCG in mice have emerged, particularly those utilising recombinant BCG expressing immunogenic M. ulcerans proteins. Although progress is promising, there remain key questions about the optimal approach to characterising the immunological correlates of protection in humans and strategies to investigate the safety and efficacy of such vaccines in humans.
Collapse
Affiliation(s)
- Stephen Muhi
- Victorian Infectious Diseases Service at the Royal Melbourne Hospital, Melbourne, Australia; Department of Microbiology and Immunology, Peter Doherty Institute at the University of Melbourne, Melbourne, Australia
| | - Timothy P Stinear
- Department of Microbiology and Immunology, Peter Doherty Institute at the University of Melbourne, Melbourne, Australia.
| |
Collapse
|
4
|
Robbe-Saule M, Foulon M, Poncin I, Esnault L, Varet H, Legendre R, Besnard A, Grzegorzewicz AE, Jackson M, Canaan S, Marsollier L, Marion E. Transcriptional adaptation of Mycobacterium ulcerans in an original mouse model: New insights into the regulation of mycolactone. Virulence 2021; 12:1438-1451. [PMID: 34107844 PMCID: PMC8204960 DOI: 10.1080/21505594.2021.1929749] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Mycobacterium ulcerans is the causal agent of Buruli ulcer, a chronic infectious disease and the third most common mycobacterial disease worldwide. Without early treatment, M. ulcerans provokes massive skin ulcers, caused by the mycolactone toxin, its main virulence factor. However, spontaneous healing may occur in Buruli ulcer patients several months or years after the disease onset. We have shown, in an original mouse model, that bacterial load remains high and viable in spontaneously healed tissues, with a switch of M. ulcerans to low levels of mycolactone production, adapting its strategy to survive in such a hostile environment. This original model offers the possibility to investigate the regulation of mycolactone production, by using an RNA-seq strategy to study bacterial adaptation during mouse infection. Pathway analysis and characterization of the tissue environment showed that the bacillus adapted to its new environment by modifying its metabolic activity and switching nutrient sources. Thus, M. ulcerans ensures its survival in healing tissues by reducing its secondary metabolism, leading to an inhibition of mycolactone synthesis. These findings shed new light on mycolactone regulation and pave the way for new therapeutic strategies.
Collapse
Affiliation(s)
| | | | | | | | - Hugo Varet
- Plate-forme Transcriptome Et Epigenome, Biomics, Centre De Ressources Et Recherches Technologiques (C2RT), Institut Pasteur, Paris, France.,Hub De Bioinformatique Et Biostatistique - Département Biologie Computationnelle, Institut Pasteur, Paris, France
| | - Rachel Legendre
- Plate-forme Transcriptome Et Epigenome, Biomics, Centre De Ressources Et Recherches Technologiques (C2RT), Institut Pasteur, Paris, France.,Hub De Bioinformatique Et Biostatistique - Département Biologie Computationnelle, Institut Pasteur, Paris, France
| | | | - Anna E Grzegorzewicz
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, United States
| | - Mary Jackson
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, United States
| | | | | | | |
Collapse
|
5
|
Fevereiro J, Fraga AG, Pedrosa J. Genetics in the Host-Mycobacterium ulcerans interaction. Immunol Rev 2021; 301:222-241. [PMID: 33682158 DOI: 10.1111/imr.12958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 01/30/2021] [Accepted: 02/01/2021] [Indexed: 11/30/2022]
Abstract
Buruli ulcer is an emerging infectious disease associated with high morbidity and unpredictable outbreaks. It is caused by Mycobacterium ulcerans, a slow-growing pathogen evolutionarily shaped by the acquisition of a plasmid involved in the production of a potent macrolide-like cytotoxin and by genome rearrangements and downsizing. These events culminated in an uncommon infection pattern, whereby M. ulcerans is both able to induce the initiation of the inflammatory cascade and the cell death of its proponents, as well as to survive within the phagosome and in the extracellular milieu. In such extreme conditions, the host is sentenced to rely on a highly orchestrated genetic landscape to be able to control the infection. We here revisit the dynamics of M. ulcerans infection, drawing parallels from other mycobacterioses and integrating the most recent knowledge on its evolution and pathogenicity in its interaction with the host immune response.
Collapse
Affiliation(s)
- João Fevereiro
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Alexandra G Fraga
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Jorge Pedrosa
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| |
Collapse
|
6
|
Demangel C. Immunity against Mycobacterium ulcerans: The subversive role of mycolactone. Immunol Rev 2021; 301:209-221. [PMID: 33607704 DOI: 10.1111/imr.12956] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 01/19/2021] [Accepted: 01/19/2021] [Indexed: 12/11/2022]
Abstract
Mycobacterium ulcerans causes Buruli ulcer, a neglected tropical skin disease manifesting as chronic wounds that can leave victims with major, life-long deformity and disability. Differently from other mycobacterial pathogens, M ulcerans produces mycolactone, a diffusible lipid factor with unique cytotoxic and immunomodulatory properties. Both traits result from mycolactone targeting Sec61, the entry point of the secretory pathway in eukaryotic cells. By inhibiting Sec61, mycolactone prevents the host cell's production of secreted proteins, and most of its transmembrane proteins. This molecular blockade dramatically alters the functions of immune cells, thereby the generation of protective immunity. Moreover, sustained inhibition of Sec61 triggers proteotoxic stress responses leading to apoptotic cell death, which can stimulate vigorous immune responses. The dynamics of bacterial production of mycolactone and elimination by infected hosts thus critically determine the balance between its immunostimulatory and immunosuppressive effects. Following an introduction summarizing the essential information on Buruli ulcer disease, this review focuses on the current state of knowledge regarding mycolactone's regulation and biodistribution. We then detail the consequences of mycolactone-mediated Sec61 blockade on initiation and maintenance of innate and adaptive immune responses. Finally, we discuss the key questions to address in order to improve immunity to M ulcerans, and how increased knowledge of mycolactone biology may pave the way to innovative therapeutics.
Collapse
Affiliation(s)
- Caroline Demangel
- Immunobiology of Infection Unit, INSERM U1221, Institut Pasteur, Paris, France
| |
Collapse
|
7
|
Mangas KM, Tobias NJ, Marion E, Babonneau J, Marsollier L, Porter JL, Pidot SJ, Wong CY, Jackson DC, Chua BY, Stinear TP. High antibody titres induced by protein subunit vaccines using Mycobacterium ulcerans antigens Hsp18 and MUL_3720 with a TLR-2 agonist fail to protect against Buruli ulcer in mice. PeerJ 2020; 8:e9659. [PMID: 32844063 PMCID: PMC7416718 DOI: 10.7717/peerj.9659] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 07/14/2020] [Indexed: 12/26/2022] Open
Abstract
Background Mycobacterium ulcerans is the causative agent of a debilitating skin and soft tissue infection known as Buruli ulcer (BU). There is no vaccine against BU. The purpose of this study was to investigate the vaccine potential of two previously described immunogenic M. ulcerans proteins, MUL_3720 and Hsp18, using a mouse tail infection model of BU. Methods Recombinant versions of the two proteins were each electrostatically coupled with a previously described lipopeptide adjuvant. Seven C57BL/6 and seven BALB/c mice were vaccinated and boosted with each of the formulations. Vaccinated mice were then challenged with M. ulcerans via subcutaneous tail inoculation. Vaccine performance was assessed by time-to-ulceration compared to unvaccinated mice. Results The MUL_3720 and Hsp18 vaccines induced high titres of antigen-specific antibodies that were predominately subtype IgG1. However, all mice developed ulcers by day-40 post-M. ulcerans challenge. No significant difference was observed in the time-to-onset of ulceration between the experimental vaccine groups and unvaccinated animals. Conclusions These data align with previous vaccine experiments using Hsp18 and MUL_3720 that indicated these proteins may not be appropriate vaccine antigens. This work highlights the need to explore alternative vaccine targets and different approaches to understand the role antibodies might play in controlling BU.
Collapse
Affiliation(s)
- Kirstie M Mangas
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria, Australia
| | - Nicholas J Tobias
- Johann Wolfgang Goethe Universität Frankfurt am Main, Frankfurt, Germany.,LOEWE Centre for Translational Biodiversity in Genomics (TBG), Frankfurt, Germany
| | - Estelle Marion
- Université de Nantes, Nantes, France.,Université de Nantes, Nantes, France.,Université d'Angers, Angers, France
| | - Jérémie Babonneau
- Université de Nantes, Nantes, France.,Université d'Angers, Angers, France
| | - Laurent Marsollier
- Université de Nantes, Nantes, France.,Université d'Angers, Angers, France
| | - Jessica L Porter
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria, Australia
| | - Sacha J Pidot
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria, Australia
| | - Chinn Yi Wong
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria, Australia
| | - David C Jackson
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria, Australia
| | - Brendon Y Chua
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria, Australia
| | - Timothy P Stinear
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
8
|
Röltgen K, Pluschke G, Spencer JS, Brennan PJ, Avanzi C. The immunology of other mycobacteria: M. ulcerans, M. leprae. Semin Immunopathol 2020; 42:333-353. [PMID: 32100087 PMCID: PMC7224112 DOI: 10.1007/s00281-020-00790-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 02/05/2020] [Indexed: 12/14/2022]
Abstract
Mycobacterial pathogens can be categorized into three broad groups: Mycobacterium tuberculosis complex causing tuberculosis, M. leprae and M. lepromatosis causing leprosy, and atypical mycobacteria, or non-tuberculous mycobacteria (NTM), responsible for a wide range of diseases. Among the NTMs, M. ulcerans is responsible for the neglected tropical skin disease Buruli ulcer (BU). Most pathogenic mycobacteria, including M. leprae, evade effector mechanisms of the humoral immune system by hiding and replicating inside host cells and are furthermore excellent modulators of host immune responses. In contrast, M. ulcerans replicates predominantly extracellularly, sheltered from host immune responses through the cytotoxic and immunosuppressive effects of mycolactone, a macrolide produced by the bacteria. In the year 2018, 208,613 new cases of leprosy and 2713 new cases of BU were reported to WHO, figures which are notoriously skewed by vast underreporting of these diseases.
Collapse
Affiliation(s)
- Katharina Röltgen
- Department of Pathology, Stanford School of Medicine, Stanford University, Stanford, CA, USA
| | - Gerd Pluschke
- Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Basel, Switzerland.
- University of Basel, Basel, Switzerland.
| | - John Stewart Spencer
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, USA
| | - Patrick Joseph Brennan
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, USA
| | - Charlotte Avanzi
- Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, USA
| |
Collapse
|
9
|
Röltgen K, Pluschke G. Buruli ulcer: The Efficacy of Innate Immune Defense May Be a Key Determinant for the Outcome of Infection With Mycobacterium ulcerans. Front Microbiol 2020; 11:1018. [PMID: 32523571 PMCID: PMC7261859 DOI: 10.3389/fmicb.2020.01018] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 04/24/2020] [Indexed: 12/18/2022] Open
Abstract
Buruli ulcer (BU) is a neglected, tropical infectious disease of the skin and the subcutaneous tissue caused by Mycobacterium ulcerans. This pathogen has emerged as a new species from a common ancestor with Mycobacterium marinum by acquisition of the virulence plasmid pMUM. The plasmid encodes enzymes required for the synthesis of the macrolide toxin mycolactone, which has cytotoxic and immunosuppressive activities. In advanced BU lesions, extracellular clusters of M. ulcerans reside in necrotic subcutaneous tissue and are protected from infiltrating leukocytes by the cytotoxic activity of secreted mycolactone. Several lines of evidence indicate that elements of the innate immune system eliminate in many cases the initial inoculum before bacterial clusters can form and that therefore exposure to M. ulcerans leads only in a minority of individuals to the characteristic chronic necrotizing BU lesions. It is assumed that phagocytes play a key role in early host defense against M. ulcerans. Antibodies against bacterial surface structures seem to have less potential to enhance innate immunity than TH1 cell responses. Precise innate and adaptive immune effector mechanisms leading to protective immunity are however unclear, complicating the development of effective vaccines, the most desired solution to control BU. The tuberculosis vaccine Mycobacterium bovis Bacillus Calmette–Guérin (BCG) has limited short-term protective activity against BU. Whether this effect is due to the broad antigenic cross-reactivity between M. bovis and M. ulcerans or is at least partly mediated by a non-specific enhanced responsiveness of innate immune cells to secondary stimulation, recently described as “trained immunity” or “innate immune memory” is unknown but has major implications for vaccine design. Current vaccine research and development activities are focusing on recombinant BCG, subunit vaccines with selected M. ulcerans proteins, and the neutralization of mycolactone.
Collapse
Affiliation(s)
- Katharina Röltgen
- Department of Pathology, Stanford School of Medicine, Stanford University, Stanford, CA, United States
| | - Gerd Pluschke
- Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Basel, Switzerland.,University of Basel, Basel, Switzerland
| |
Collapse
|
10
|
Van Der Werf TS, Barogui YT, Converse PJ, Phillips RO, Stienstra Y. Pharmacologic management of Mycobacterium ulcerans infection. Expert Rev Clin Pharmacol 2020; 13:391-401. [PMID: 32310683 DOI: 10.1080/17512433.2020.1752663] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
INTRODUCTION Pharmacological treatment of Buruli ulcer (Mycobacterium ulcerans infection; BU) is highly effective, as shown in two randomized trials in Africa. AREAS COVERED We review BU drug treatment - in vitro, in vivo and clinical trials (PubMed: '(Buruli OR (Mycobacterium AND ulcerans)) AND (treatment OR therapy).' We also highlight the pathogenesis of M. ulcerans infection that is dominated by mycolactone, a secreted exotoxin, that causes skin and soft tissue necrosis, and impaired immune response and tissue repair. Healing is slow, due to the delayed wash-out of mycolactone. An array of repurposed tuberculosis and leprosy drugs appears effective in vitro and in animal models. In clinical trials and observational studies, only rifamycins (notably, rifampicin), macrolides (notably, clarithromycin), aminoglycosides (notably, streptomycin) and fluoroquinolones (notably, moxifloxacin, and ciprofloxacin) have been tested. EXPERT OPINION A combination of rifampicin and clarithromycin is highly effective but lesions still take a long time to heal. Novel drugs like telacebec have the potential to reduce treatment duration but this drug may remain unaffordable in low-resourced settings. Research should address ulcer treatment in general; essays to measure mycolactone over time hold promise to use as a readout for studies to compare drug treatment schedules for larger lesions of Buruli ulcer.
Collapse
Affiliation(s)
- Tjip S Van Der Werf
- Departments of Internal Medicine/Infectious Diseases, University Medical Centre Groningen, University of Groningen , Groningen, Netherlands.,Pulmonary Diseases & Tuberculosis, University Medical Centre Groningen, University of Groningen , Groningen, Netherlands
| | - Yves T Barogui
- Ministère De La Sante ́, Programme National Lutte Contre La Lèpre Et l'Ulcère De Buruli , Cotonou, Benin
| | - Paul J Converse
- Department of Medicine, Johns Hopkins University Center for Tuberculosis Research , Baltimore, Maryland, USA
| | - Richard O Phillips
- Kumasi, Ghana And Kwame Nkrumah University of Science and Technology, Komfo Anokye Teaching Hospital , Kumasi, Ghana
| | - Ymkje Stienstra
- Departments of Internal Medicine/Infectious Diseases, University Medical Centre Groningen, University of Groningen , Groningen, Netherlands
| |
Collapse
|
11
|
Structural basis and designing of peptide vaccine using PE-PGRS family protein of Mycobacterium ulcerans—An integrated vaccinomics approach. Mol Immunol 2020; 120:146-163. [DOI: 10.1016/j.molimm.2020.02.009] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Revised: 01/16/2020] [Accepted: 02/12/2020] [Indexed: 12/29/2022]
|
12
|
Omansen TF, Marcsisin RA, Chua BY, Zeng W, Jackson DC, Porter JL, Stienstra Y, van der Werf TS, Stinear TP. In Vivo Imaging of Bioluminescent Mycobacterium ulcerans: A Tool to Refine the Murine Buruli Ulcer Tail Model. Am J Trop Med Hyg 2020; 101:1312-1321. [PMID: 31595865 DOI: 10.4269/ajtmh.18-0959] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Buruli ulcer (BU) is a neglected tropical disease caused by infection with Mycobacterium ulcerans. Unclear transmission, no available vaccine, and suboptimal treatment regimens hamper the control of this disease. Carefully designed preclinical research is needed to address these shortcomings. In vivo imaging (IVIS®, Perkin Elmer, Waltham, MA) of infection is an emerging tool that permits monitoring of disease progression and reduces the need to using large numbers of mice at different time-points during the experiment, as individual mice can be imaged at multiple time-points. We aimed to further describe the use of in vivo imaging (IVIS) in BU. We studied the detection of M. ulcerans in experimentally infected BALB/c mouse tails and the subsequent histopathology and immune response in this pilot study. IVIS-monitoring was performed weekly in ten infected BALB/c mice to measure light emitted as a proxy for bacterial load. Nine of 10 (90%) BALB/c mice infected subcutaneously with 3.3 × 105 M. ulcerans JKD8049 (containing pMV306 hsp16+luxG13) exhibited light emission from the site of infection, indicating M. ulcerans growth in vivo, whereas only five of 10 (50%) animals developed clinical signs of the disease. Specific antibody titers were detected within 2 weeks of the infection. Interferon (IFN)-γ and interleukin (IL)-10 were elevated in animals with pathology. Histopathology revealed clusters of acid-fast bacilli in the subcutaneous tissue, with macrophage infiltration and granuloma formation resembling human BU. Our study successfully showed the utility of M. ulcerans IVIS monitoring and lays a foundation for further research.
Collapse
Affiliation(s)
- Till F Omansen
- Department of Internal Medicine/Infectious Diseases, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands.,Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, Australia
| | - Renee A Marcsisin
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, Australia
| | - Brendon Y Chua
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, Australia
| | - Weiguang Zeng
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, Australia
| | - David C Jackson
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, Australia
| | - Jessica L Porter
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, Australia
| | - Ymkje Stienstra
- Department of Internal Medicine/Infectious Diseases, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Tjip S van der Werf
- Department of Pulmonary Diseases and Tuberculosis, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands.,Department of Internal Medicine/Infectious Diseases, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Timothy P Stinear
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, Australia
| |
Collapse
|
13
|
Vaccine-Specific Immune Responses against Mycobacterium ulcerans Infection in a Low-Dose Murine Challenge Model. Infect Immun 2020; 88:IAI.00753-19. [PMID: 31818964 DOI: 10.1128/iai.00753-19] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 12/06/2019] [Indexed: 01/22/2023] Open
Abstract
The neglected tropical disease Buruli ulcer (BU) is an infection of subcutaneous tissue with Mycobacterium ulcerans There is no effective vaccine. Here, we assessed an experimental prime-boost vaccine in a low-dose murine tail infection model. We used the enoyl reductase (ER) domain of the M. ulcerans mycolactone polyketide synthases electrostatically coupled with a previously described Toll-like receptor 2 (TLR-2) agonist-based lipopeptide adjuvant, R4Pam2Cys. Mice were vaccinated and then challenged via tail inoculation with 14 to 20 CFU of a bioluminescent strain of M. ulcerans Mice receiving either the experimental ER vaccine or Mycobacterium bovis bacillus Calmette-Guérin (BCG) were equally protected, with both groups faring significantly better than nonvaccinated animals (P < 0.05). To explore potential correlates of protection, a suite of 29 immune parameters were assessed in the mice at the end of the experimental period. Multivariate statistical approaches were used to interrogate the immune response data to develop disease-prognostic models. High levels of interleukin 2 (IL-2) and low gamma interferon (IFN-γ) produced in the spleen best predicted control of infection across all vaccine groups. Univariate logistic regression revealed vaccine-specific profiles of protection. High titers of ER-specific IgG serum antibodies together with IL-2 and IL-4 in the draining lymph node (DLN) were associated with protection induced by the ER vaccine. In contrast, high titers of IL-6, tumor necrosis factor alpha (TNF-α), IFN-γ, and IL-10 in the DLN and low IFN-γ titers in the spleen were associated with protection following BCG vaccination. This study suggests that an effective BU vaccine must induce localized, tissue-specific immune profiles with controlled inflammatory responses at the site of infection.
Collapse
|
14
|
Baldwin SL, Larsen SE, Ordway D, Cassell G, Coler RN. The complexities and challenges of preventing and treating nontuberculous mycobacterial diseases. PLoS Negl Trop Dis 2019; 13:e0007083. [PMID: 30763316 PMCID: PMC6375572 DOI: 10.1371/journal.pntd.0007083] [Citation(s) in RCA: 97] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Seemingly innocuous nontuberculous mycobacteria (NTM) species, classified by their slow or rapid growth rates, can cause a wide range of illnesses, from skin ulceration to severe pulmonary and disseminated disease. Despite their worldwide prevalence and significant disease burden, NTM do not garner the same financial or research focus as Mycobacterium tuberculosis. In this review, we outline the most abundant of over 170 NTM species and inadequacies of diagnostics and treatments and weigh the advantages and disadvantages of currently available in vivo animal models of NTM. In order to effectively combat this group of mycobacteria, more research focused on appropriate animal models of infection, screening of chemotherapeutic compounds, and development of anti-NTM vaccines and diagnostics is urgently needed.
Collapse
Affiliation(s)
- Susan L. Baldwin
- Infectious Disease Research Institute, Seattle, Washington, United States of America
| | - Sasha E. Larsen
- Infectious Disease Research Institute, Seattle, Washington, United States of America
- Department of Global Health, University of Washington, Seattle, Washington, United States of America
| | - Diane Ordway
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, United States of America
| | - Gail Cassell
- Infectious Disease Research Institute, Seattle, Washington, United States of America
- Department of Global Health and Social Medicine, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Rhea N. Coler
- Infectious Disease Research Institute, Seattle, Washington, United States of America
- Department of Global Health, University of Washington, Seattle, Washington, United States of America
- PAI Life Sciences, Seattle, Washington, United States of America
- * E-mail:
| |
Collapse
|
15
|
Robbe-Saule M, Babonneau J, Sismeiro O, Marsollier L, Marion E. An Optimized Method for Extracting Bacterial RNA from Mouse Skin Tissue Colonized by Mycobacterium ulcerans. Front Microbiol 2017; 8:512. [PMID: 28392785 PMCID: PMC5364165 DOI: 10.3389/fmicb.2017.00512] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Accepted: 03/13/2017] [Indexed: 11/13/2022] Open
Abstract
Bacterial transcriptome analyses during host colonization are essential to decipher the complexity of the relationship between the bacterium and its host. RNA sequencing (RNA-seq) is a promising approach providing valuable information about bacterial adaptation, the host response and, in some cases, mutual tolerance underlying crosstalk, as recently observed in the context of Mycobacterium ulcerans infection. Buruli ulcer is caused by M. ulcerans. This neglected disease is the third most common mycobacterial disease worldwide. Without treatment, M. ulcerans provokes massive skin ulcers. A healing process may be observed in 5% of Buruli ulcer patients several months after the initiation of disease. This spontaneous healing process suggests that some hosts can counteract the development of the lesions caused by M. ulcerans. Deciphering the mechanisms involved in this process should open up new treatment possibilities. To this end, we recently developed the first mouse model for studies of the spontaneous healing process. We have shown that the healing process is based on mutual tolerance between the bacterium and its host. In this context, RNA-seq seems to be the most appropriate method for deciphering bacterial adaptation. However, due to the low bacterial load in host tissues, the isolation of mycobacterial RNA from skin tissue for RNA-seq analysis remains challenging. We developed a method for extracting and purifying mycobacterial RNA whilst minimizing the amount of host RNA in the sample. This approach was based on the extraction of bacterial RNA by a differential lysis method. The challenge in the development of this method was the choice of a lysis system favoring the removal of host RNA without damage to the bacterial cells. We made use of the thick, resistant cell wall of M. ulcerans to achieve this end.
Collapse
Affiliation(s)
- Marie Robbe-Saule
- Center for Research in Cancerology and Immunology Nantes-Angers, Institut National de la Santé et de la Recherche Médicale, Université de Nantes, Université d'AngersAngers, France; Equipe Atip-Avenir, Center for Research in Cancerology and Immunology Nantes-Angers, Institut National de la Santé et de la Recherche Médicale, Centre Hospitalier Universitaire et Université d'AngersAngers, France
| | - Jérémie Babonneau
- Center for Research in Cancerology and Immunology Nantes-Angers, Institut National de la Santé et de la Recherche Médicale, Université de Nantes, Université d'AngersAngers, France; Equipe Atip-Avenir, Center for Research in Cancerology and Immunology Nantes-Angers, Institut National de la Santé et de la Recherche Médicale, Centre Hospitalier Universitaire et Université d'AngersAngers, France
| | - Odile Sismeiro
- Transcriptome and Epigenome Platform, Biomics, Center for Innovation and Technological Research, Institut Pasteur Paris, France
| | - Laurent Marsollier
- Center for Research in Cancerology and Immunology Nantes-Angers, Institut National de la Santé et de la Recherche Médicale, Université de Nantes, Université d'AngersAngers, France; Equipe Atip-Avenir, Center for Research in Cancerology and Immunology Nantes-Angers, Institut National de la Santé et de la Recherche Médicale, Centre Hospitalier Universitaire et Université d'AngersAngers, France
| | - Estelle Marion
- Center for Research in Cancerology and Immunology Nantes-Angers, Institut National de la Santé et de la Recherche Médicale, Université de Nantes, Université d'AngersAngers, France; Equipe Atip-Avenir, Center for Research in Cancerology and Immunology Nantes-Angers, Institut National de la Santé et de la Recherche Médicale, Centre Hospitalier Universitaire et Université d'AngersAngers, France
| |
Collapse
|
16
|
Hart BE, Lee S. Overexpression of a Mycobacterium ulcerans Ag85B-EsxH Fusion Protein in Recombinant BCG Improves Experimental Buruli Ulcer Vaccine Efficacy. PLoS Negl Trop Dis 2016; 10:e0005229. [PMID: 27941982 PMCID: PMC5179062 DOI: 10.1371/journal.pntd.0005229] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Revised: 12/22/2016] [Accepted: 12/04/2016] [Indexed: 12/16/2022] Open
Abstract
Buruli ulcer (BU) vaccine design faces similar challenges to those observed during development of prophylactic tuberculosis treatments. Multiple BU vaccine candidates, based upon Mycobacterium bovis BCG, altered Mycobacterium ulcerans (MU) cells, recombinant MU DNA, or MU protein prime-boosts, have shown promise by conferring transient protection to mice against the pathology of MU challenge. Recently, we have shown that a recombinant BCG vaccine expressing MU-Ag85A (BCG MU-Ag85A) displayed the highest level of protection to date, by significantly extending the survival time of MU challenged mice compared to BCG vaccination alone. Here we describe the generation, immunogenicity testing, and evaluation of protection conferred by a recombinant BCG strain which overexpresses a fusion of two alternative MU antigens, Ag85B and the MU ortholog of tuberculosis TB10.4, EsxH. Vaccination with BCG MU-Ag85B-EsxH induces proliferation of Ag85 specific CD4+ T cells in greater numbers than BCG or BCG MU-Ag85A and produces IFNγ+ splenocytes responsive to whole MU and recombinant antigens. In addition, anti-Ag85A and Ag85B IgG humoral responses are significantly enhanced after administration of the fusion vaccine compared to BCG or BCG MU-Ag85A. Finally, mice challenged with MU following a single subcutaneous vaccination with BCG MU-Ag85B-EsxH display significantly less bacterial burden at 6 and 12 weeks post-infection, reduced histopathological tissue damage, and significantly longer survival times compared to vaccination with either BCG or BCG MU-Ag85A. These results further support the potential of BCG as a foundation for BU vaccine design, whereby discovery and recombinant expression of novel immunogenic antigens could lead to greater anti-MU efficacy using this highly safe and ubiquitous vaccine. Mycobacterium ulcerans (MU) infection causes a highly disfiguring, necrotic skin disease known as Buruli ulcer (BU). Antibiotic treatments have low efficacy if the infection is diagnosed after ulceration begins, leading to frequent dependence on surgical removal of infected tissues. A prophylactic vaccine for BU does not exist and several attempts to create an effective vaccine have shown limited success. We recently demonstrated that a recombinant strain of M. bovis BCG expressing the immunodominant MU-Ag85A conferred significantly enhanced protection against experimental BU compared to the standard BCG vaccine. Here we show that BCG expression of a fusion between two alternative MU antigens, Ag85B and EsxH, can promote antigen-specific T cell and humoral immune response capable of significantly improving survival and protection against BU pathology, compared to BCG MU-Ag85A alone. These results support the potential for using the highly safe and ubiquitous BCG vaccine as a platform for further BU vaccine development.
Collapse
Affiliation(s)
- Bryan E. Hart
- Human Vaccine Institute and Department of Medicine, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Sunhee Lee
- Human Vaccine Institute and Department of Medicine, Duke University Medical Center, Durham, North Carolina, United States of America
- * E-mail:
| |
Collapse
|
17
|
Bieri R, Bolz M, Ruf MT, Pluschke G. Interferon-γ Is a Crucial Activator of Early Host Immune Defense against Mycobacterium ulcerans Infection in Mice. PLoS Negl Trop Dis 2016; 10:e0004450. [PMID: 26863011 PMCID: PMC4749296 DOI: 10.1371/journal.pntd.0004450] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Accepted: 01/21/2016] [Indexed: 12/13/2022] Open
Abstract
Buruli ulcer (BU), caused by infection with Mycobacterium ulcerans, is a chronic necrotizing human skin disease associated with the production of the cytotoxic macrolide exotoxin mycolactone. Despite extensive research, the type of immune responses elicited against this pathogen and the effector functions conferring protection against BU are not yet fully understood. While histopathological analyses of advanced BU lesions have demonstrated a mainly extracellular localization of the toxin producing acid fast bacilli, there is growing evidence for an early intra-macrophage growth phase of M. ulcerans. This has led us to investigate whether interferon-γ might play an important role in containing M. ulcerans infections. In an experimental Buruli ulcer mouse model we found that interferon-γ is indeed a critical regulator of early host immune defense against M. ulcerans infections. Interferon-γ knockout mice displayed a faster progression of the infection compared to wild-type mice. This accelerated progression was reflected in faster and more extensive tissue necrosis and oedema formation, as well as in a significantly higher bacterial burden after five weeks of infection, indicating that mice lacking interferon-γ have a reduced capacity to kill intracellular bacilli during the early intra-macrophage growth phase of M. ulcerans. This data demonstrates a prominent role of interferon-γ in early defense against M. ulcerans infection and supports the view that concepts for vaccine development against tuberculosis may also be valid for BU. Mycobacterium ulcerans is the causative agent of Buruli ulcer (BU), a slow progressing ulcerative skin disease. The mode of transmission of M. ulcerans remains unknown and only little is known about the early stages of the disease and the nature of protective immune responses against this pathogen. Given the increasing evidence for an early intracellular growth phase of M. ulcerans, we aimed at evaluating the impact of cell-mediated immunity for immunological defense against M. ulcerans infections. By comparing wild-type and interferon-γ-deficient mice in a BU mouse model, we could demonstrate that interferon-γ is a critical regulator of early host immune defense against M. ulcerans infections, indicative for an important role of early intracellular multiplication of the pathogen. In mice lacking interferon-γ the bacterial burden increased faster, resulting in accelerated pathogenesis. The observed differences between the two mouse strains were most likely due to differences in the capacity of macrophages to kill intracellular bacilli during the early stages of infection.
Collapse
Affiliation(s)
- Raphael Bieri
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Miriam Bolz
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Marie-Thérèse Ruf
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Gerd Pluschke
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
- * E-mail:
| |
Collapse
|
18
|
Bolz M, Bénard A, Dreyer AM, Kerber S, Vettiger A, Oehlmann W, Singh M, Duthie MS, Pluschke G. Vaccination with the Surface Proteins MUL_2232 and MUL_3720 of Mycobacterium ulcerans Induces Antibodies but Fails to Provide Protection against Buruli Ulcer. PLoS Negl Trop Dis 2016; 10:e0004431. [PMID: 26849213 PMCID: PMC4746116 DOI: 10.1371/journal.pntd.0004431] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Accepted: 01/13/2016] [Indexed: 12/29/2022] Open
Abstract
Background Buruli ulcer, caused by infection with Mycobacterium ulcerans, is a chronic ulcerative neglected tropical disease of the skin and subcutaneous tissue that is most prevalent in West African countries. M. ulcerans produces a cytotoxic macrolide exotoxin called mycolactone, which causes extensive necrosis of infected subcutaneous tissue and the development of characteristic ulcerative lesions with undermined edges. While cellular immune responses are expected to play a key role against early intracellular stages of M. ulcerans in macrophages, antibody mediated protection might be of major relevance against advanced stages, where bacilli are predominantly found as extracellular clusters. Methodology/Principal Findings To assess whether vaccine induced antibodies against surface antigens of M. ulcerans can protect against Buruli ulcer we formulated two surface vaccine candidate antigens, MUL_2232 and MUL_3720, as recombinant proteins with the synthetic Toll-like receptor 4 agonist glucopyranosyl lipid adjuvant-stable emulsion. The candidate vaccines elicited strong antibody responses without a strong bias towards a TH1 type cellular response, as indicated by the IgG2a to IgG1 ratio. Despite the cross-reactivity of the induced antibodies with the native antigens, no significant protection was observed against progression of an experimental M. ulcerans infection in a mouse footpad challenge model. Conclusions Even though vaccine-induced antibodies have the potential to opsonise the extracellular bacilli they do not have a protective effect since infiltrating phagocytes might be killed by mycolactone before reaching the bacteria, as indicated by lack of viable infiltrates in the necrotic infection foci. Buruli ulcer is a slow progressing ulcerative disease of the skin and subcutaneous tissue that is most prevalent in West African rural communities. Mycobacterium ulcerans, the causative agent of the disease, produces a toxin called mycolactone, which is held responsible for the extensive tissue damage seen in advanced Buruli ulcer lesions. To date, no effective vaccine against the disease exists and it is unclear to what extent antibodies against cell surface antigens of M. ulcerans play a role in protection. To assess whether vaccine induced antibodies against cell surface proteins can protect against Buruli ulcer, we formulated two surface vaccine candidate antigens, MUL_2232 and MUL_3720, as adjuvanted recombinant proteins and investigated their protective potential in a mouse model of M. ulcerans infection. Despite the induction of strong antibody responses against the surface molecules and cross-reactivity of the induced antibodies with the antigens in their native context, we did not observe protection against the disease. While the vaccine-induced antibodies could opsonize the extracellular bacilli, infiltrating phagocytes might be killed early by mycolactone.
Collapse
Affiliation(s)
- Miriam Bolz
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Angèle Bénard
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Anita M. Dreyer
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Sarah Kerber
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Andrea Vettiger
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | | | | | | | - Gerd Pluschke
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
- * E-mail:
| |
Collapse
|
19
|
Hart BE, Hale LP, Lee S. Immunogenicity and protection conferred by a recombinant Mycobacterium marinum vaccine against Buruli ulcer. ACTA ACUST UNITED AC 2016. [DOI: 10.1016/j.trivac.2016.04.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
20
|
Silva-Gomes R, Marcq E, Trigo G, Gonçalves CM, Longatto-Filho A, Castro AG, Pedrosa J, Fraga AG. Spontaneous Healing of Mycobacterium ulcerans Lesions in the Guinea Pig Model. PLoS Negl Trop Dis 2015; 9:e0004265. [PMID: 26625302 PMCID: PMC4666642 DOI: 10.1371/journal.pntd.0004265] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Accepted: 11/05/2015] [Indexed: 01/06/2023] Open
Abstract
Buruli Ulcer (BU) is a necrotizing skin disease caused by Mycobacterium ulcerans infection. BU is characterized by a wide range of clinical forms, including non-ulcerative cutaneous lesions that can evolve into severe ulcers if left untreated. Nevertheless, spontaneous healing has been reported to occur, although knowledge on this process is scarce both in naturally infected humans and experimental models of infection. Animal models are useful since they mimic different spectrums of human BU disease and have the potential to elucidate the pathogenic/protective pathway(s) involved in disease/healing. In this time-lapsed study, we characterized the guinea pig, an animal model of resistance to M. ulcerans, focusing on the macroscopic, microbiological and histological evolution throughout the entire experimental infectious process. Subcutaneous infection of guinea pigs with a virulent strain of M. ulcerans led to early localized swelling, which evolved into small well defined ulcers. These macroscopic observations correlated with the presence of necrosis, acute inflammatory infiltrate and an abundant bacterial load. By the end of the infectious process when ulcerative lesions healed, M. ulcerans viability decreased and the subcutaneous tissue organization returned to its normal state after a process of continuous healing characterized by tissue granulation and reepethelialization. In conclusion, we show that the experimental M. ulcerans infection of the guinea pig mimics the process of spontaneous healing described in BU patients, displaying the potential to uncover correlates of protection against BU, which can ultimately contribute to the development of new prophylactic and therapeutic strategies. Buruli Ulcer (BU) is a devastating skin disease caused by Mycobacterium ulcerans. BU usually starts off as a non-ulcerative lesion, but if lesions are left untreated they can evolve into ulcers or may even affect the bone. Nevertheless, spontaneous healing of active lesions has been reported in some patients, although little is known about this process. In this study, the authors performed a time-lapsed study on a resistant animal model of M. ulcerans infection–the guinea pig. Subcutaneous infection of the guinea pig led to the development of ulcerative lesions that eventually healed over the course of infection and, interestingly, this healing was associated with a decrease in M. ulcerans viability and with an ongoing reparative process of the infected tissue. Given that similar observations have been made in BU patients that spontaneously resolved M. ulcerans infection, the guinea pig model has the potential to disclose the protective immune mechanisms underlying resistance to BU.
Collapse
Affiliation(s)
- Rita Silva-Gomes
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Braga, Portugal
- ICVS/3B’s—PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Elly Marcq
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Braga, Portugal
- ICVS/3B’s—PT Government Associate Laboratory, Braga/Guimarães, Portugal
- Mycobacteriology Unit, Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | - Gabriela Trigo
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Braga, Portugal
- ICVS/3B’s—PT Government Associate Laboratory, Braga/Guimarães, Portugal
- Institute for Biotechnology and Bioengineering, Centre of Biological Engineering, University of Minho, Braga, Portugal
| | - Carine M. Gonçalves
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Braga, Portugal
- ICVS/3B’s—PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Adhemar Longatto-Filho
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Braga, Portugal
- ICVS/3B’s—PT Government Associate Laboratory, Braga/Guimarães, Portugal
- Laboratory of Medical Investigation (LIM14), Faculty of Medicine of São Paulo University, São Paulo, Brazil
- Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos, Brazil
| | - António G. Castro
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Braga, Portugal
- ICVS/3B’s—PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Jorge Pedrosa
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Braga, Portugal
- ICVS/3B’s—PT Government Associate Laboratory, Braga/Guimarães, Portugal
- * E-mail:
| | - Alexandra G. Fraga
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Braga, Portugal
- ICVS/3B’s—PT Government Associate Laboratory, Braga/Guimarães, Portugal
| |
Collapse
|
21
|
Recombinant BCG Expressing Mycobacterium ulcerans Ag85A Imparts Enhanced Protection against Experimental Buruli ulcer. PLoS Negl Trop Dis 2015; 9:e0004046. [PMID: 26393347 PMCID: PMC4579011 DOI: 10.1371/journal.pntd.0004046] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Accepted: 08/11/2015] [Indexed: 11/19/2022] Open
Abstract
Buruli ulcer, an emerging tropical disease caused by Mycobacterium ulcerans (MU), is characterized by disfiguring skin necrosis and high morbidity. Relatively little is understood about the mode of transmission, pathogenesis, or host immune responses to MU infection. Due to significant reduction in quality of life for patients with extensive tissue scarring, and that a disproportionately high percentage of those affected are disadvantaged children, a Buruli ulcer vaccine would be greatly beneficial to the worldwide community. Previous studies have shown that mice inoculated with either M. bovis bacille Calmette–Guérin (BCG) or a DNA vaccine encoding the M. ulcerans mycolyl transferase, Ag85A (MU-Ag85A), are transiently protected against pathology caused by intradermal challenge with MU. Building upon this principle, we have generated quality-controlled, live-recombinant strains of BCG and M. smegmatis which express the immunodominant MU Ag85A. Priming with rBCG MU-Ag85A followed by an M. smegmatis MU-Ag85A boost strongly induced murine antigen-specific CD4+ T cells and elicited functional IFNγ-producing splenocytes which recognized MU-Ag85A peptide and whole M. ulcerans better than a BCG prime-boost vaccination. Strikingly, mice vaccinated with a single subcutaneous dose of BCG MU-Ag85A or prime-boost displayed significantly enhanced survival, reduced tissue pathology, and lower bacterial load compared to mice vaccinated with BCG. Importantly, this level of superior protection against experimental Buruli ulcer compared to BCG has not previously been achieved. These results suggest that use of BCG as a recombinant vehicle expressing MU antigens represents an effective Buruli ulcer vaccine strategy and warrants further antigen discovery to improve vaccine efficacy. Buruli ulcer, caused by subcutaneous infection with Mycobacterium ulcerans, is a highly disfiguring flesh-eating skin disease with significant morbidity. Besides surgical intervention, 8-week combination antibiotics is the standard of care. However, problems with resistance and toxicity warrant their replacement with efficacious vaccines. Several attempts to generate a vaccine have met with limited success and, to date, BCG remains the only vaccine capable of conferring transient protection. Here we demonstrate that a recombinant BCG-based vaccine expressing the immunodominant M. ulcerans Ag85A is capable of significantly enhancing protection in experimental Buruli ulcer compared to standard BCG, with a decrease in bacterial burden, pathology, and increase in survival. These results support further Buruli ulcer vaccine development using the highly safe and well-established BCG vehicle.
Collapse
|
22
|
Use of Recombinant Virus Replicon Particles for Vaccination against Mycobacterium ulcerans Disease. PLoS Negl Trop Dis 2015; 9:e0004011. [PMID: 26275222 PMCID: PMC4537091 DOI: 10.1371/journal.pntd.0004011] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Accepted: 07/27/2015] [Indexed: 02/05/2023] Open
Abstract
Buruli ulcer, caused by infection with Mycobacterium ulcerans, is a necrotizing disease of the skin and subcutaneous tissue, which is most prevalent in rural regions of West African countries. The majority of clinical presentations seen in patients are ulcers on limbs that can be treated by eight weeks of antibiotic therapy. Nevertheless, scarring and permanent disabilities occur frequently and Buruli ulcer still causes high morbidity. A vaccine against the disease is so far not available but would be of great benefit if used for prophylaxis as well as therapy. In the present study, vesicular stomatitis virus-based RNA replicon particles encoding the M. ulcerans proteins MUL2232 and MUL3720 were generated and the expression of the recombinant antigens characterized in vitro. Immunisation of mice with the recombinant replicon particles elicited antibodies that reacted with the endogenous antigens of M. ulcerans cells. A prime-boost immunization regimen with MUL2232-recombinant replicon particles and recombinant MUL2232 protein induced a strong immune response but only slightly reduced bacterial multiplication in a mouse model of M. ulcerans infection. We conclude that a monovalent vaccine based on the MUL2232 antigen will probably not sufficiently control M. ulcerans infection in humans. Infection with Mycobacterium ulcerans can lead to a slow progressing, ulcerative disease of the skin and underlying soft tissue called Buruli ulcer. The disease is most prevalent in rural African communities with limited access to health care facilities. The most efficient means to prevent the disease, a vaccine against Buruli ulcer is not available to date. In the present study we investigated the immunogenicity and protective potential of a single cycle virus system expressing the two M. ulcerans antigens MUL2232 and MUL3720. Immunization of mice with those vesicular stomatitis virus replicon particles led to the induction of humoral as well as cellular immune responses in the immunized animals. Subsequent challenge experiments in a mouse model of M. ulcerans infection demonstrated only a limited reduction of bacterial burden in mice immunized with a prime-boost approach with MUL2232. Most probably, a vaccine formulation with only one antigen will not be able to provide protection against Buruli ulcer in humans.
Collapse
|
23
|
Protective effect of a dewaxed whole-cell vaccine against Mycobacterium ulcerans infection in mice. Vaccine 2015; 33:2232-2239. [DOI: 10.1016/j.vaccine.2015.03.046] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Revised: 02/23/2015] [Accepted: 03/12/2015] [Indexed: 11/22/2022]
|
24
|
Effectiveness of routine BCG vaccination on buruli ulcer disease: a case-control study in the Democratic Republic of Congo, Ghana and Togo. PLoS Negl Trop Dis 2015; 9:e3457. [PMID: 25569674 PMCID: PMC4287572 DOI: 10.1371/journal.pntd.0003457] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2014] [Accepted: 12/07/2014] [Indexed: 11/30/2022] Open
Abstract
Background The only available vaccine that could be potentially beneficial against mycobacterial diseases contains live attenuated bovine tuberculosis bacillus (Mycobacterium bovis) also called Bacillus Calmette-Guérin (BCG). Even though the BCG vaccine is still widely used, results on its effectiveness in preventing mycobacterial diseases are partially contradictory, especially regarding Buruli Ulcer Disease (BUD). The aim of this case-control study is to evaluate the possible protective effect of BCG vaccination on BUD. Methodology The present study was performed in three different countries and sites where BUD is endemic: in the Democratic Republic of the Congo, Ghana, and Togo from 2010 through 2013. The large study population was comprised of 401 cases with laboratory confirmed BUD and 826 controls, mostly family members or neighbors. Principal Findings After stratification by the three countries, two sexes and four age groups, no significant correlation was found between the presence of BCG scar and BUD status of individuals. Multivariate analysis has shown that the independent variables country (p = 0.31), sex (p = 0.24), age (p = 0.96), and presence of a BCG scar (p = 0.07) did not significantly influence the development of BUD category I or category II/III. Furthermore, the status of BCG vaccination was also not significantly related to duration of BUD or time to healing of lesions. Conclusions In our study, we did not observe significant evidence of a protective effect of routine BCG vaccination on the risk of developing either BUD or severe forms of BUD. Since accurate data on BCG strains used in these three countries were not available, no final conclusion can be drawn on the effectiveness of BCG strain in protecting against BUD. As has been suggested for tuberculosis and leprosy, well-designed prospective studies on different existing BCG vaccine strains are needed also for BUD. After tuberculosis and leprosy, Buruli Ulcer Disease (BUD) is the third most common human mycobacterial disease. The only available vaccine that could be potentially beneficial against these diseases is BCG. Even though BCG vaccine is widely used, the results on its effectiveness are partially contradictory, probably since different BCG strains are used. The aim of this study was to evaluate the possible protective effect of BCG vaccines on BUD. The present study was performed in three different countries and sites where BUD is endemic: in the Democratic Republic of the Congo, Ghana, and Togo from 2010 through 2013. The large study population was comprised of 401 cases with laboratory confirmed BUD and 826 controls, mostly family members or neighbors. Considering the three countries, sex, and age, the analysis confirmed that the BCG vaccination did not significantly decrease the risk for developing BUD or for developing severe forms of BUD. Furthermore, the status of BCG vaccination was also not significantly related to duration of BUD or to time to healing of lesions. In our study, we could not find any evidence of a protective effect of routine BCG vaccination on BUD.
Collapse
|
25
|
Proteomic analysis of the action of the Mycobacterium ulcerans toxin mycolactone: targeting host cells cytoskeleton and collagen. PLoS Negl Trop Dis 2014; 8:e3066. [PMID: 25101965 PMCID: PMC4125307 DOI: 10.1371/journal.pntd.0003066] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2014] [Accepted: 06/20/2014] [Indexed: 12/21/2022] Open
Abstract
Buruli ulcer (BU) is a neglected tropical disease caused by Mycobacterium ulcerans. The tissue damage characteristic of BU lesions is known to be driven by the secretion of the potent lipidic exotoxin mycolactone. However, the molecular action of mycolactone on host cell biology mediating cytopathogenesis is not fully understood. Here we applied two-dimensional electrophoresis (2-DE) to identify the mechanisms of mycolactone's cellular action in the L929 mouse fibroblast proteome. This revealed 20 changed spots corresponding to 18 proteins which were clustered mainly into cytoskeleton-related proteins (Dync1i2, Cfl1, Crmp2, Actg1, Stmn1) and collagen biosynthesis enzymes (Plod1, Plod3, P4ha1). In line with cytoskeleton conformational disarrangements that are observed by immunofluorescence, we found several regulators and constituents of both actin- and tubulin-cytoskeleton affected upon exposure to the toxin, providing a novel molecular basis for the effect of mycolactone. Consistent with these cytoskeleton-related alterations, accumulation of autophagosomes as well as an increased protein ubiquitination were observed in mycolactone-treated cells. In vivo analyses in a BU mouse model revealed mycolactone-dependent structural changes in collagen upon infection with M. ulcerans, associated with the reduction of dermal collagen content, which is in line with our proteomic finding of mycolactone-induced down-regulation of several collagen biosynthesis enzymes. Our results unveil the mechanisms of mycolactone-induced molecular cytopathogenesis on exposed host cells, with the toxin compromising cell structure and homeostasis by inducing cytoskeleton alterations, as well as disrupting tissue structure, by impairing the extracellular matrix biosynthesis. Buruli Ulcer (BU) is a neglected tropical disease caused by Mycobacterium ulcerans infection. It has been recognized for many years that BU pathogenesis is mediated by the potent exotoxin mycolactone; however, the molecular action of this toxin on the host cell biology that drives its pathogenesis is not fully understood. Here we present a proteomic-based study that explores the molecular action of mycolactone on host cells biology. Our results provide further molecular evidence for the cytoskeleton-disarrangement induced by mycolactone, and unveil its impact on cytoskeleton-dependent cellular functions. Moreover, we extend the field of action of this toxin to the biosynthesis of collagen, implicating mycolactone on the decrease of dermal collagen found on BU lesions. Given the dependence of M. ulcerans virulence on its toxin, these findings on mycolactone's molecular action on host cells and tissues are of major importance for the understanding of BU pathogenesis.
Collapse
|
26
|
Chany AC, Tresse C, Casarotto V, Blanchard N. History, biology and chemistry of Mycobacterium ulcerans infections (Buruli ulcer disease). Nat Prod Rep 2014; 30:1527-67. [PMID: 24178858 DOI: 10.1039/c3np70068b] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Mycobacterium ulcerans infections (Buruli ulcer disease) have a long history that can be traced back 150 years. The successive discoveries of the mycobacteria in 1948 and of mycolactone A/B in 1999, the toxin responsible for this dramatic necrotic skin disease, resulted in a paradigm shift concerning the disease itself and in a broader sense, delineated an entirely new role for bioactive polyketides as virulence factors. The fascinating history, biology and chemistry of M. ulcerans infections are discussed in this review.
Collapse
Affiliation(s)
- Anne-Caroline Chany
- Université de Haute Alsace, Laboratoire de Chimie Organique et Bioorganique, EA4566, Ecole Nationale Supérieure de Chimie de Mulhouse, 3 rue Alfred Werner, 68093 Mulhouse Cedex, France
| | | | | | | |
Collapse
|
27
|
Roupie V, Pidot SJ, Einarsdottir T, Van Den Poel C, Jurion F, Stinear TP, Huygen K. Analysis of the vaccine potential of plasmid DNA encoding nine mycolactone polyketide synthase domains in Mycobacterium ulcerans infected mice. PLoS Negl Trop Dis 2014; 8:e2604. [PMID: 24392169 PMCID: PMC3879250 DOI: 10.1371/journal.pntd.0002604] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2013] [Accepted: 11/07/2013] [Indexed: 11/18/2022] Open
Abstract
There is no effective vaccine against Buruli ulcer. In experimental footpad infection of C57BL/6 mice with M. ulcerans, a prime-boost vaccination protocol using plasmid DNA encoding mycolyltransferase Ag85A of M. ulcerans and a homologous protein boost has shown significant, albeit transient protection, comparable to the one induced by M. bovis BCG. The mycolactone toxin is an obvious candidate for a vaccine, but by virtue of its chemical structure, this toxin is not immunogenic in itself. However, antibodies against some of the polyketide synthase domains involved in mycolactone synthesis, were found in Buruli ulcer patients and healthy controls from the same endemic region, suggesting that these domains are indeed immunogenic. Here we have analyzed the vaccine potential of nine polyketide synthase domains using a DNA prime/protein boost strategy. C57BL/6 mice were vaccinated against the following domains: acyl carrier protein 1, 2, and 3, acyltransferase (acetate) 1 and 2, acyltransferase (propionate), enoylreductase, ketoreductase A, and ketosynthase load module. As positive controls, mice were vaccinated with DNA encoding Ag85A or with M. bovis BCG. Strongest antigen specific antibodies could be detected in response to acyltransferase (propionate) and enoylreductase. Antigen-specific Th1 type cytokine responses (IL-2 or IFN-γ) were induced by vaccination against all antigens, and were strongest against acyltransferase (propionate). Finally, vaccination against acyltransferase (propionate) and enoylreductase conferred some protection against challenge with virulent M. ulcerans 1615. However, protection was weaker than the one conferred by vaccination with Ag85A or M. bovis BCG. Combinations of these polyketide synthase domains with the vaccine targeting Ag85A, of which the latter is involved in the integrity of the cell wall of the pathogen, and/or with live attenuated M. bovis BCG or mycolactone negative M. ulcerans may eventually lead to the development of an efficacious BU vaccine.
Collapse
Affiliation(s)
- Virginie Roupie
- Service Immunology, Scientific Institute of Public Health (WIV-ISP Site Ukkel), Brussels, Belgium
| | - Sacha J. Pidot
- Department of Microbiology and Immunology, University of Melbourne, Parkville, Victoria, Australia
| | - Tobba Einarsdottir
- Service Immunology, Scientific Institute of Public Health (WIV-ISP Site Ukkel), Brussels, Belgium
| | - Christophe Van Den Poel
- Service Immunology, Scientific Institute of Public Health (WIV-ISP Site Ukkel), Brussels, Belgium
| | - Fabienne Jurion
- Service Immunology, Scientific Institute of Public Health (WIV-ISP Site Ukkel), Brussels, Belgium
| | - Timothy P. Stinear
- Department of Microbiology and Immunology, University of Melbourne, Parkville, Victoria, Australia
| | - Kris Huygen
- Service Immunology, Scientific Institute of Public Health (WIV-ISP Site Ukkel), Brussels, Belgium
- * E-mail:
| |
Collapse
|
28
|
Regulation of mycolactone, the Mycobacterium ulcerans toxin, depends on nutrient source. PLoS Negl Trop Dis 2013; 7:e2502. [PMID: 24244764 PMCID: PMC3828164 DOI: 10.1371/journal.pntd.0002502] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2013] [Accepted: 09/12/2013] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Mycobacterium ulcerans, a slow-growing environmental bacterium, is the etiologic agent of Buruli ulcer, a necrotic skin disease. Skin lesions are caused by mycolactone, the main virulence factor of M. ulcerans, with dermonecrotic (destruction of the skin and soft tissues) and immunosuppressive activities. This toxin is secreted in vesicles that enhance its biological activities. Nowadays, it is well established that the main reservoir of the bacilli is localized in the aquatic environment where the bacillus may be able to colonize different niches. Here we report that plant polysaccharides stimulate M. ulcerans growth and are implicated in toxin synthesis regulation. METHODOLOGY/PRINCIPAL FINDINGS In this study, by selecting various algal components, we have identified plant-specific carbohydrates, particularly glucose polymers, capable of stimulating M. ulcerans growth in vitro. Furthermore, we underscored for the first time culture conditions under which the polyketide toxin mycolactone, the sole virulence factor of M. ulcerans identified to date, is down-regulated. Using a quantitative proteomic approach and analyzing transcript levels by RT-qPCR, we demonstrated that its regulation is not at the transcriptional or translational levels but must involve another type of regulation. M. ulcerans produces membrane vesicles, as other mycobacterial species, in which are the mycolactone is concentrated. By transmission electron microscopy, we observed that the production of vesicles is independent from the toxin production. Concomitant with this observed decrease in mycolactone production, the production of mycobacterial siderophores known as mycobactins was enhanced. CONCLUSIONS/SIGNIFICANCE This work is the first step in the identification of the mechanisms involved in mycolactone regulation and paves the way for the discovery of putative new drug targets in the future.
Collapse
|
29
|
Trigo G, Martins TG, Fraga AG, Longatto-Filho A, Castro AG, Azeredo J, Pedrosa J. Phage therapy is effective against infection by Mycobacterium ulcerans in a murine footpad model. PLoS Negl Trop Dis 2013; 7:e2183. [PMID: 23638204 PMCID: PMC3636042 DOI: 10.1371/journal.pntd.0002183] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2012] [Accepted: 03/18/2013] [Indexed: 11/21/2022] Open
Abstract
Background Buruli Ulcer (BU) is a neglected, necrotizing skin disease caused by Mycobacterium ulcerans. Currently, there is no vaccine against M. ulcerans infection. Although the World Health Organization recommends a combination of rifampicin and streptomycin for the treatment of BU, clinical management of advanced stages is still based on the surgical resection of infected skin. The use of bacteriophages for the control of bacterial infections has been considered as an alternative or to be used in association with antibiotherapy. Additionally, the mycobacteriophage D29 has previously been shown to display lytic activity against M. ulcerans isolates. Methodology/Principal findings We used the mouse footpad model of M. ulcerans infection to evaluate the therapeutic efficacy of treatment with mycobacteriophage D29. Analyses of macroscopic lesions, bacterial burdens, histology and cytokine production were performed in both M. ulcerans-infected footpads and draining lymph nodes (DLN). We have demonstrated that a single subcutaneous injection of the mycobacteriophage D29, administered 33 days after bacterial challenge, was sufficient to decrease pathology and to prevent ulceration. This protection resulted in a significant reduction of M. ulcerans numbers accompanied by an increase of cytokine levels (including IFN-γ), both in footpads and DLN. Additionally, mycobacteriophage D29 treatment induced a cellular infiltrate of a lymphocytic/macrophagic profile. Conclusions/Significance Our observations demonstrate the potential of phage therapy against M. ulcerans infection, paving the way for future studies aiming at the development of novel phage-related therapeutic approaches against BU. Buruli Ulcer (BU), caused by Mycobacterium ulcerans, is a necrotizing disease of the skin, subcutaneous tissue and bone. Standard treatment of BU patients consists of a combination of the antibiotics rifampicin and streptomycin for 8 weeks. However, in advanced stages of the disease, surgical resection of the destroyed skin is still required. The use of bacterial viruses (bacteriophages) for the control of bacterial infections has been considered as an alternative or a supplement to antibiotic chemotherapy. By using a mouse model of M. ulcerans footpad infection, we show that mice treated with a single subcutaneous injection of the mycobacteriophage D29 present decreased footpad pathology associated with a reduction of the bacterial burden. In addition, D29 treatment induced increased levels of IFN-γ and TNF in M. ulcerans-infected footpads, correlating with a predominance of a mononuclear infiltrate. These findings suggest the potential use of phage therapy in BU, as a novel therapeutic approach against this disease, particularly in advanced stages where bacteria are found primarily in an extracellular location in the subcutaneous tissue, and thus immediately accessible by lytic phages.
Collapse
Affiliation(s)
- Gabriela Trigo
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Braga, Portugal
| | | | | | | | | | | | | |
Collapse
|