1
|
Iwai T, Ikeguchi R, Aoyama T, Noguchi T, Yoshimoto K, Sakamoto D, Fujita K, Miyazaki Y, Akieda S, Nagamura-Inoue T, Nagamura F, Nakayama K, Matsuda S. Nerve regeneration using a Bio 3D conduit derived from umbilical cord-Derived mesenchymal stem cells in a rat sciatic nerve defect model. PLoS One 2024; 19:e0310711. [PMID: 39715170 DOI: 10.1371/journal.pone.0310711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Accepted: 09/05/2024] [Indexed: 12/25/2024] Open
Abstract
Human umbilical cord-derived mesenchymal stromal cells (UC-MSCs), which can be prepared in advance and are presumed to be advantageous for nerve regeneration, have potential as a cell source for Bio 3D conduits. The purpose of this study was to evaluate the nerve regeneration ability of Bio 3D conduits made from UC-MSCs using a rat sciatic nerve defect model. METHODS A Bio 3D conduit was fabricated using a Bio 3D printer by placing UC-MSC spheroids into thin needles according to predesigned 3D data. The conduit was transplanted to bridge the 5-mm gaps of Lewis rat sciatic nerve, and nerve regeneration was evaluated at 8 weeks (Bio 3D group). Transplantation of autologous nerve segments (autograft) and silicone tubes represented the positive and negative control groups, respectively. In a second experiment, immunological reactions were evaluated in Bio 3D, autograft, and allograft groups by histochemical staining of transplanted segments in Brown Norway rats. RESULTS The mean angle of attack value in the kinematic analysis was significantly better in the Bio 3D group (‒20.1 ± 0.5°) than in the silicone group (‒33.7 ± 1.5°) 8 weeks after surgery. The average diameters of myelinated axons were significantly larger in the Bio 3D group (3.61 ± 0.15 μm) than in the silicone group (3.07 ± 0.12 μm), and the number of myelinated axons was significantly higher in the Bio 3D group (11,201 ± 980) than in the silicone group (8117 ± 646). Histological findings (hematoxylin and eosin [HE] staining and anti-CD3 fluorescent immunostaining) showed that rejection was suppressed in the Bio 3D group compared to the allograft group. Based on macroscopic findings and histological findings (anti-human mitochondrial fluorescent immunostaining), UC-MSCs in the Bio 3D conduit disappeared gradually from week 1 to week 8. CONCLUSIONS The Bio 3D conduit prepared from UC-MSCs was superior to the silicone tube and achieved comparable nerve regeneration to the autologous (autograft) group. Rejection was suppressed in the Bio 3D group compared to the allograft group. Although this study used a xenograft model, we speculate that rejection was low due to the characteristics of UC-MSCs. UC-MSCs are a useful cell source for Bio 3D conduits.
Collapse
Affiliation(s)
- Terunobu Iwai
- Department of Orthopaedic Surgery, Kyoto University, Kyoto, Japan
| | - Ryosuke Ikeguchi
- Department of Orthopaedic Surgery, Kyoto University, Kyoto, Japan
- Department of Rehabilitation Medicine, Kyoto University, Kyoto, Japan
| | - Tomoki Aoyama
- Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Takashi Noguchi
- Department of Orthopaedic Surgery, Kyoto University, Kyoto, Japan
| | - Koichi Yoshimoto
- Department of Orthopaedic Surgery, Kyoto University, Kyoto, Japan
| | - Daichi Sakamoto
- Department of Orthopaedic Surgery, Kyoto University, Kyoto, Japan
| | - Kazuaki Fujita
- Department of Orthopaedic Surgery, Kyoto University, Kyoto, Japan
| | | | | | - Tokiko Nagamura-Inoue
- Department of Cell Processing and Transfusion, The Institute of Medical Science, IMSUT CORD, Research Hospital, The University of Tokyo, Tokyo, Japan
| | - Fumitaka Nagamura
- Division of Advanced Medicine Promotion, The Advanced Clinical Center, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Koichi Nakayama
- Department of Regenerative Medicine and Biomedical Engineering, Faculty of Medicine, Saga University, Saga, Japan
| | - Shuichi Matsuda
- Department of Orthopaedic Surgery, Kyoto University, Kyoto, Japan
| |
Collapse
|
2
|
Short S, Lewik G, Issa F. An Immune Atlas of T Cells in Transplant Rejection: Pathways and Therapeutic Opportunities. Transplantation 2023; 107:2341-2352. [PMID: 37026708 PMCID: PMC10593150 DOI: 10.1097/tp.0000000000004572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 01/10/2023] [Accepted: 01/28/2023] [Indexed: 04/08/2023]
Abstract
Short-term outcomes in allotransplantation are excellent due to technical and pharmacological advances; however, improvement in long-term outcomes has been limited. Recurrent episodes of acute cellular rejection, a primarily T cell-mediated response to transplanted tissue, have been implicated in the development of chronic allograft dysfunction and loss. Although it is well established that acute cellular rejection is primarily a CD4 + and CD8 + T cell mediated response, significant heterogeneity exists within these cell compartments. During immune responses, naïve CD4 + T cells are activated and subsequently differentiate into specific T helper subsets under the influence of the local cytokine milieu. These subsets have distinct phenotypic and functional characteristics, with reported differences in their contribution to rejection responses specifically. Of particular relevance are the regulatory subsets and their potential to promote tolerance of allografts. Unraveling the specific contributions of these cell subsets in the context of transplantation is complex, but may reveal new avenues of therapeutic intervention for the prevention of rejection.
Collapse
Affiliation(s)
- Sarah Short
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, Oxfordshire, United Kingdom
| | - Guido Lewik
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, Oxfordshire, United Kingdom
| | - Fadi Issa
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, Oxfordshire, United Kingdom
| |
Collapse
|
3
|
Zuo KJ, Shafa G, Chan K, Zhang J, Hawkins C, Tajdaran K, Gordon T, Borschel GH. Local FK506 drug delivery enhances nerve regeneration through fresh, unprocessed peripheral nerve allografts. Exp Neurol 2021; 341:113680. [PMID: 33675777 DOI: 10.1016/j.expneurol.2021.113680] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 01/29/2021] [Accepted: 02/26/2021] [Indexed: 02/07/2023]
Abstract
OBJECTIVE Nerve allografts offer many advantages in the reconstruction of peripheral nerve gaps: they retain their native microstructure, contain pro-regenerative Schwann cells, are widely available, and avoid donor site morbidity. Unfortunately, clinical use of nerve allografts is limited by the need for systemic immunosuppression and its adverse effects. To eliminate the toxicity of the systemic immunosuppressant FK506, we developed a local FK506 drug delivery system (DDS) to provide drug release over 28 days. The study objective was to investigate if the local FK506 DDS enhances nerve regeneration in a rodent model of nerve gap defect reconstruction with immunologically-disparate nerve allografts. METHODS In male Lewis rats, a common peroneal nerve gap defect was reconstructed with either a 20 mm nerve isograft from a donor Lewis rat or a 20 mm fresh, unprocessed nerve allograft from an immunologically incompatible donor ACI rat. After 4 weeks of survival, nerve regeneration was evaluated using retrograde neuronal labelling, quantitative histomorphometry, and serum cytokine profile. RESULTS Treatment with both systemic FK506 and the local FK506 DDS significantly improved motor and sensory neuronal regeneration, as well as histomorphometric indices including myelinated axon number. Rats with nerve allografts treated with either systemic or local FK506 had significantly reduced serum concentrations of the pro-inflammatory cytokine IL-12 compared to untreated vehicle control rats with nerve allografts. Serum FK506 levels were undetectable in rats with local FK506 DDS. INTERPRETATION The local FK506 DDS improved motor and sensory nerve regeneration through fresh nerve allografts to a level equal to that of either systemic FK506 or nerve isografting. This treatment may be clinically translatable in peripheral nerve reconstruction or vascularized composite allotransplantation.
Collapse
Affiliation(s)
- Kevin J Zuo
- Division of Plastic & Reconstructive Surgery, The Hospital for Sick Children, Toronto, Canada; Division of Plastic & Reconstructive Surgery, Department of Surgery, University of Toronto, Toronto, Canada; Institute of Biomaterials and Biomedical Engineering, Faculty of Applied Science and Engineering, University of Toronto, Toronto, Canada.
| | - Golsa Shafa
- Division of Plastic & Reconstructive Surgery, The Hospital for Sick Children, Toronto, Canada.
| | - Katelyn Chan
- Division of Plastic & Reconstructive Surgery, The Hospital for Sick Children, Toronto, Canada; Division of Plastic & Reconstructive Surgery, Department of Surgery, University of Toronto, Toronto, Canada.
| | - Jennifer Zhang
- Division of Plastic & Reconstructive Surgery, The Hospital for Sick Children, Toronto, Canada.
| | - Cynthia Hawkins
- Division of Pathology, The Hospital for Sick Children, Toronto, Canada; Department of Laboratory Medicine & Pathobiology, University of Toronto, Toronto, Canada.
| | - Kasra Tajdaran
- Division of Plastic & Reconstructive Surgery, The Hospital for Sick Children, Toronto, Canada.
| | - Tessa Gordon
- Division of Plastic & Reconstructive Surgery, The Hospital for Sick Children, Toronto, Canada; Division of Plastic & Reconstructive Surgery, Department of Surgery, University of Toronto, Toronto, Canada; Program in Neuroscience, SickKids Research Institute, The Hospital for Sick Children, Toronto, Canada.
| | - Gregory H Borschel
- Division of Plastic & Reconstructive Surgery, The Hospital for Sick Children, Toronto, Canada; Division of Plastic & Reconstructive Surgery, Department of Surgery, University of Toronto, Toronto, Canada; Institute of Biomaterials and Biomedical Engineering, Faculty of Applied Science and Engineering, University of Toronto, Toronto, Canada; Program in Neuroscience, SickKids Research Institute, The Hospital for Sick Children, Toronto, Canada.
| |
Collapse
|
4
|
Li X, Hawthorne WJ, Burlak C. Xenotransplantation literature update, September/October 2019. Xenotransplantation 2019; 26:e12573. [PMID: 31762126 DOI: 10.1111/xen.12573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2019] [Accepted: 11/10/2019] [Indexed: 11/28/2022]
Affiliation(s)
- Xiaohang Li
- Department of Surgery, Schulze Diabetes Institute, University of Minnesota Medical School, Minneapolis, Minnesota.,Department of Hepatobiliary Surgery and Transplantation Unit, First Affiliated Hospital of China Medical University, Shenyang, China
| | - Wayne J Hawthorne
- The Department of Surgery, Westmead Hospital, Westmead, NSW, Australia.,The Centre for Transplant & Renal Research, The Westmead Institute for Medical Research, Westmead, NSW, Australia
| | - Christopher Burlak
- Department of Surgery, Schulze Diabetes Institute, University of Minnesota Medical School, Minneapolis, Minnesota
| |
Collapse
|
5
|
Cytokine Profiles in Children After Pediatric Kidney Transplantation With Acute Cellular Compared to Chronic Antibody-mediated Rejection and Stable Patients: A Pilot Study. Transplant Direct 2019; 5:e501. [PMID: 31773054 PMCID: PMC6831124 DOI: 10.1097/txd.0000000000000943] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 08/17/2019] [Accepted: 08/19/2019] [Indexed: 12/28/2022] Open
Abstract
Different patterns of plasma cytokines can be expected in the case of chronic active-antibody-mediated (cAMR) and acute cellular rejection (AR) after kidney transplantation (KTx).
Collapse
|
6
|
Forneris N, Burlak C. Xenotransplantation literature update, May/June 2019. Xenotransplantation 2019; 26:e12547. [PMID: 31392783 DOI: 10.1111/xen.12547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Accepted: 07/24/2019] [Indexed: 11/30/2022]
Affiliation(s)
- Nicole Forneris
- Department of Surgery, University of Minnesota Medical School, Minneapolis, Minnesota
| | - Christopher Burlak
- Department of Surgery, University of Minnesota Medical School, Minneapolis, Minnesota
| |
Collapse
|
7
|
Chen J, Gao H, Chen L, Wang X, Song Z, Cooper DKC, Qu Z, Cai Z, Mou L. A potential role of TLR2 in xenograft rejection of porcine iliac endothelial cells: An in vitro study. Xenotransplantation 2019; 26:e12526. [PMID: 31127671 DOI: 10.1111/xen.12526] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 03/26/2019] [Accepted: 04/18/2019] [Indexed: 02/01/2023]
Abstract
BACKGROUND Porcine vascular endothelial cells are a major participant in xenograft rejection. The Toll-like receptor 2 (TLR2) pathway plays an important role in both innate and adaptive immunity. The specific role of TLR2 in the response to a xenograft has not been reported. Whether the TLR2 pathway in pig vascular endothelial cells is involved in acute rejection needs to be investigated, and the mechanism is explored. METHODS We used a modified antibody-dependent complement-mediated cytotoxicity (ADCC) assay to conduct in vitro experiments. In porcine iliac artery endothelial cells (PIECs), siRNA was used to knock down the expression of TLR2, CXCL8, and CCL2. The effect of human serum or inactivated human serum on the expression of TLR2 was analyzed by real-time PCR and Western blotting, and transwell assays were used to assess the chemotactic efficiency of PIECs on human monocyte-macrophages (THP-1 cells) and human neutrophils. The downstream signaling pathways activated by human serum were detected by Western blotting, and the regulation of proinflammatory chemokines and cytokines by TLR2 signaling was assessed by real-time PCR and ELISA. RESULTS TLR2 was significantly upregulated in PIECs after exposure to human serum, and porcine proinflammatory chemokines, CXCL8 and CCL2, were induced, at least partially, in a TLR2-dependent pattern; the upregulated chemokines participated in the chemotaxis of human neutrophils and THP-1 cells across the species barrier. CONCLUSIONS (i) TLR2 is significantly upregulated in PIECs by human serum, (ii) the elevated TLR2 participates in the chemotaxis of inflammatory cells through the secretion of chemokine CCL2 and CXCL8, and (iii) blockade of TLR2 would be beneficial for xenograft survival.
Collapse
Affiliation(s)
- Jicheng Chen
- Shenzhen Xenotransplantation Medical Engineering Research and Development Center, Shenzhen Second People's Hospital, First Affiliated Hospital of Shenzhen University, Shenzhen, China.,Department of Nephrology, Shenzhen Longhua District Central Hospital, Shenzhen, China
| | - Hanchao Gao
- Shenzhen Xenotransplantation Medical Engineering Research and Development Center, Shenzhen Second People's Hospital, First Affiliated Hospital of Shenzhen University, Shenzhen, China.,Department of Nephrology, Shenzhen Longhua District Central Hospital, Shenzhen, China
| | - LinLin Chen
- Shenzhen Xenotransplantation Medical Engineering Research and Development Center, Shenzhen Second People's Hospital, First Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Xisheng Wang
- Department of Nephrology, Shenzhen Longhua District Central Hospital, Shenzhen, China
| | - Zongpei Song
- Shenzhen Xenotransplantation Medical Engineering Research and Development Center, Shenzhen Second People's Hospital, First Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - David K C Cooper
- Department of Surgery, University of Alabama at Birmingham, Birmingham, Alabama
| | - Zepeng Qu
- Shenzhen Xenotransplantation Medical Engineering Research and Development Center, Shenzhen Second People's Hospital, First Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Zhiming Cai
- Shenzhen Xenotransplantation Medical Engineering Research and Development Center, Shenzhen Second People's Hospital, First Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Lisha Mou
- Shenzhen Xenotransplantation Medical Engineering Research and Development Center, Shenzhen Second People's Hospital, First Affiliated Hospital of Shenzhen University, Shenzhen, China
| |
Collapse
|
8
|
Zhao Y, Cooper DKC, Wang H, Chen P, He C, Cai Z, Mou L, Luan S, Gao H. Potential pathological role of pro-inflammatory cytokines (IL-6, TNF-α, and IL-17) in xenotransplantation. Xenotransplantation 2019; 26:e12502. [PMID: 30770591 DOI: 10.1111/xen.12502] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 12/04/2018] [Accepted: 01/18/2019] [Indexed: 12/15/2022]
Abstract
The major limitation of organ transplantation is the shortage of available organs from deceased human donors which leads to the deaths of thousands of patients each year. Xenotransplantation is considered to be an effective way to resolve the problem. Immune rejection and coagulation dysfunction are two major hurdles for the successful survival of pig xenografts in primate recipients. Pro-inflammatory cytokines, such as IL-6, TNF-α, and IL-17, play important roles in many diseases and in allotransplantation. However, the pathological roles of these pro-inflammatory cytokines in xenotransplantation remain unclear. Here, we briefly review the signaling transduction and expression regulation of IL-6, TNF-α, and IL-17 and evaluate their potential pathological roles in in vitro and in vivo models of xenotransplantation. We found that IL-6, TNF-α, and IL-17 were induced in most in vitro or in vivo xenotransplantation model. Blockade of these cytokines using gene modification, antibody, or inhibitor had different effects in xenotransplantation. Inhibition of IL-6 signaling with tocilizumab decreased CRP but did not increase xenograft survival. The one possible reason is that tocilizumab can not suppress IL-6 signaling in porcine cells or organs. Other drugs which inhibit IL-6 signaling need to be investigated in xenotransplantation model. Inhibition of TNF-α was beneficial for the survival of xenografts in pig-to-mouse, rat, or NHP models. Blockade of IL-17 using a neutralizing antibody also increased xenograft survival in several animal models. However, the role of IL-17 in the pig-to-NHP xenotransplantation model remains unclear and needs to be further investigated. Moreover, blockade of TNF-α and IL-6 together has got a better effect in pig-to-baboon kidney xenotransplantation. Blockade two or even more cytokines together might get better effect in suppressing xenograft rejection. Better understanding the role of these cytokines in xenotransplantation will be beneficial for choosing better immunosuppressive strategy or producing genetic modification pig.
Collapse
Affiliation(s)
- Yanli Zhao
- Department of Nephrology, Shenzhen Longhua District Central Hospital, Guangdong Medical University Affiliated Longhua District Central Hospital, Shenzhen, China.,Shenzhen Xenotransplantation Medical Engineering Research and Development Center, Shenzhen Second People's Hospital, First Affiliated Hospital of Shenzhen University, Shenzhen University School of Medicine, Shenzhen, China.,Department of Medical Laboratory, Shenzhen Longhua District Central Hospital, Guangdong Medical University Affiliated Longhua District Central Hospital, Shenzhen, China
| | - David K C Cooper
- Xenotransplantation Program, Department of Surgery, University of Alabama at Birmingham, Birmingham, Alabama
| | - Huiyun Wang
- Department of Medical Laboratory, Shenzhen Longhua District Central Hospital, Guangdong Medical University Affiliated Longhua District Central Hospital, Shenzhen, China
| | - Pengfei Chen
- Department of Medical Laboratory, Shenzhen Longhua District Central Hospital, Guangdong Medical University Affiliated Longhua District Central Hospital, Shenzhen, China
| | - Chen He
- Shenzhen Xenotransplantation Medical Engineering Research and Development Center, Shenzhen Second People's Hospital, First Affiliated Hospital of Shenzhen University, Shenzhen University School of Medicine, Shenzhen, China
| | - Zhiming Cai
- Shenzhen Xenotransplantation Medical Engineering Research and Development Center, Shenzhen Second People's Hospital, First Affiliated Hospital of Shenzhen University, Shenzhen University School of Medicine, Shenzhen, China
| | - Lisha Mou
- Shenzhen Xenotransplantation Medical Engineering Research and Development Center, Shenzhen Second People's Hospital, First Affiliated Hospital of Shenzhen University, Shenzhen University School of Medicine, Shenzhen, China
| | - Shaodong Luan
- Department of Nephrology, Shenzhen Longhua District Central Hospital, Guangdong Medical University Affiliated Longhua District Central Hospital, Shenzhen, China
| | - Hanchao Gao
- Department of Nephrology, Shenzhen Longhua District Central Hospital, Guangdong Medical University Affiliated Longhua District Central Hospital, Shenzhen, China.,Shenzhen Xenotransplantation Medical Engineering Research and Development Center, Shenzhen Second People's Hospital, First Affiliated Hospital of Shenzhen University, Shenzhen University School of Medicine, Shenzhen, China.,Department of Medical Laboratory, Shenzhen Longhua District Central Hospital, Guangdong Medical University Affiliated Longhua District Central Hospital, Shenzhen, China
| |
Collapse
|
9
|
Gao H, Zhang Q, Chen J, Cooper DK, Hara H, Chen P, Wei L, Zhao Y, Xu J, Li Z, Cai Z, Luan S, Mou L. Porcine IL-6, IL-1β, and TNF-α regulate the expression of pro-inflammatory-related genes and tissue factor in human umbilical vein endothelial cells. Xenotransplantation 2018; 25:e12408. [PMID: 29932258 DOI: 10.1111/xen.12408] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Revised: 03/16/2018] [Accepted: 04/16/2018] [Indexed: 01/08/2023]
Affiliation(s)
- Hanchao Gao
- Department of Nephrology; Shenzhen Longhua District Central Hospital; Shenzhen China
- Shenzhen Xenotransplantation Medical Engineering Research and Development Center; Institute of Translational Medicine; Shenzhen Second People’s Hospital; First Affiliated Hospital of Shenzhen University; Shenzhen University School of Medicine; Shenzhen China
| | - Qing Zhang
- Shenzhen Xenotransplantation Medical Engineering Research and Development Center; Institute of Translational Medicine; Shenzhen Second People’s Hospital; First Affiliated Hospital of Shenzhen University; Shenzhen University School of Medicine; Shenzhen China
| | - Jicheng Chen
- Shenzhen Xenotransplantation Medical Engineering Research and Development Center; Institute of Translational Medicine; Shenzhen Second People’s Hospital; First Affiliated Hospital of Shenzhen University; Shenzhen University School of Medicine; Shenzhen China
| | - David K.C. Cooper
- Xenotransplantation Program; Department of Surgery; University of Alabama at Birmingham; Birmingham Al USA
| | - Hidetaka Hara
- Xenotransplantation Program; Department of Surgery; University of Alabama at Birmingham; Birmingham Al USA
| | - Pengfei Chen
- Department of Nephrology; Shenzhen Longhua District Central Hospital; Shenzhen China
- Shenzhen Xenotransplantation Medical Engineering Research and Development Center; Institute of Translational Medicine; Shenzhen Second People’s Hospital; First Affiliated Hospital of Shenzhen University; Shenzhen University School of Medicine; Shenzhen China
| | - Ling Wei
- Shenzhen Xenotransplantation Medical Engineering Research and Development Center; Institute of Translational Medicine; Shenzhen Second People’s Hospital; First Affiliated Hospital of Shenzhen University; Shenzhen University School of Medicine; Shenzhen China
| | - Yanli Zhao
- Department of Nephrology; Shenzhen Longhua District Central Hospital; Shenzhen China
- Shenzhen Xenotransplantation Medical Engineering Research and Development Center; Institute of Translational Medicine; Shenzhen Second People’s Hospital; First Affiliated Hospital of Shenzhen University; Shenzhen University School of Medicine; Shenzhen China
| | - Jia Xu
- Shenzhen Xenotransplantation Medical Engineering Research and Development Center; Institute of Translational Medicine; Shenzhen Second People’s Hospital; First Affiliated Hospital of Shenzhen University; Shenzhen University School of Medicine; Shenzhen China
| | - Zesong Li
- Shenzhen Xenotransplantation Medical Engineering Research and Development Center; Institute of Translational Medicine; Shenzhen Second People’s Hospital; First Affiliated Hospital of Shenzhen University; Shenzhen University School of Medicine; Shenzhen China
| | - Zhiming Cai
- Shenzhen Xenotransplantation Medical Engineering Research and Development Center; Institute of Translational Medicine; Shenzhen Second People’s Hospital; First Affiliated Hospital of Shenzhen University; Shenzhen University School of Medicine; Shenzhen China
| | - Shaodong Luan
- Department of Nephrology; Shenzhen Longhua District Central Hospital; Shenzhen China
| | - Lisha Mou
- Shenzhen Xenotransplantation Medical Engineering Research and Development Center; Institute of Translational Medicine; Shenzhen Second People’s Hospital; First Affiliated Hospital of Shenzhen University; Shenzhen University School of Medicine; Shenzhen China
| |
Collapse
|
10
|
Du J, Chen H, Qing L, Yang X, Jia X. Biomimetic neural scaffolds: a crucial step towards optimal peripheral nerve regeneration. Biomater Sci 2018; 6:1299-1311. [PMID: 29725688 PMCID: PMC5978680 DOI: 10.1039/c8bm00260f] [Citation(s) in RCA: 93] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Peripheral nerve injury is a common disease that affects more than 20 million people in the United States alone and remains a major burden to society. The current gold standard treatment for critical-sized nerve defects is autologous nerve graft transplantation; however, this method is limited in many ways and does not always lead to satisfactory outcomes. The limitations of autografts have prompted investigations into artificial neural scaffolds as replacements, and some neural scaffold devices have progressed to widespread clinical use; scaffold technology overall has yet to be shown to be consistently on a par with or superior to autografts. Recent advances in biomimetic scaffold technologies have opened up many new and exciting opportunities, and novel improvements in material, fabrication technique, scaffold architecture, and lumen surface modifications that better reflect biological anatomy and physiology have independently been shown to benefit overall nerve regeneration. Furthermore, biomimetic features of neural scaffolds have also been shown to work synergistically with other nerve regeneration therapy strategies such as growth factor supplementation, stem cell transplantation, and cell surface glycoengineering. This review summarizes the current state of neural scaffolds, highlights major advances in biomimetic technologies, and discusses future opportunities in the field of peripheral nerve regeneration.
Collapse
Affiliation(s)
- Jian Du
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD 21201, USA. ; Tel: +1 410-706-5025
| | - Huanwen Chen
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD 21201, USA. ; Tel: +1 410-706-5025
| | - Liming Qing
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD 21201, USA. ; Tel: +1 410-706-5025
| | - Xiuli Yang
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD 21201, USA. ; Tel: +1 410-706-5025
| | - Xiaofeng Jia
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD 21201, USA. ; Tel: +1 410-706-5025
- Department of Orthopedics, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
11
|
Bagheri M, Taghizadeh-Afshari A, Abkhiz S, Abdi-Rad I, Mohammadi-Fallah M, Alizadeh M, Sadeghzadeh S. Analysis of Interleukin-17 mRNA Level in the Urinary Cells of Kidney Transplant Recipients with Stable Function. MAEDICA 2017; 12:242-245. [PMID: 29610586 PMCID: PMC5879584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
OBJECTIVES Kidney transplantation supports patients with end-stage kidney diseases. Many factors control the allograft function in kidney transplant recipients. Interleukin-17 (IL-17) can be used as a non-invasive diagnostic biomarker of rejection. The aim of this study was to evaluate the expression of IL-17 mRNA in urinary cells of kidney transplant recipients with stable function. MATERIAL AND METHODS A total of 40 renal transplant recipients who were admitted for surgery and 30 healthy controls were enrolled in the study. From each patient, 30 mL urine samples were collected in 50 mL tubes on days 3 and 5 after renal transplantation; also, 30 mL urine samples were obtained from controls. Quantitative Real-Time PCR (qRT-PCR) technique was used for analysis of IL-17 mRNA level in the tested groups; 2-ÄÄCT method was performed for determining the relative gene expression between tested groups. RESULTS The mRNA expression mean ± SE of fold in patients and controls were 3.58±1.61 fold and 2.85±1.37 fold, respectively. The mRNA expression mean of IL-17 (fold) was not statistically different in tested groups (P-value = 0.63). CONCLUSIONS In kidney transplant recipients, urinary IL-17 expression provides informative data in relation to the allograft function regardless of allograft pathology.
Collapse
Affiliation(s)
- Morteza Bagheri
- Nephrology and Kidney Transplant Research Center, Urmia University of Medical Sciences, Urmia, Iran
| | - Ali Taghizadeh-Afshari
- Nephrology and Kidney Transplant Research Center, Urmia University of Medical Sciences, Urmia, Iran
| | - Saeed Abkhiz
- Nephrology and Kidney Transplant Research Center, Urmia University of Medical Sciences, Urmia, Iran
| | - Isa Abdi-Rad
- Cellular and Molecular Research Center, Urmia University of Medical Sciences, Urmia, Iran
| | | | - Mansour Alizadeh
- Cellular and Molecular Research Center, Urmia University of Medical Sciences, Urmia, Iran
| | - Saeed Sadeghzadeh
- Nephrology and Kidney Transplant Research Center, Urmia University of Medical Sciences, Urmia, Iran
| |
Collapse
|
12
|
Gao H, Liu L, Zhao Y, Hara H, Chen P, Xu J, Tang J, Wei L, Li Z, Cooper DK, Cai Z, Mou L. Human IL-6, IL-17, IL-1β, and TNF-α differently regulate the expression of pro-inflammatory related genes, tissue factor, and swine leukocyte antigen class I in porcine aortic endothelial cells. Xenotransplantation 2017; 24. [PMID: 28303603 DOI: 10.1111/xen.12291] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Revised: 01/04/2017] [Accepted: 01/10/2017] [Indexed: 01/13/2023]
Affiliation(s)
- Hanchao Gao
- Shenzhen Xenotransplantation Medical Engineering Research and Development Center; Institute of Translational Medicine, Shenzhen Second People's Hospital; First Affiliated Hospital of Shenzhen University; Shenzhen China
- Department of Biochemistry; Zhongshan School of Medicine; Sun Yat-sen University; Guangzhou China
| | - Lu Liu
- Shenzhen Xenotransplantation Medical Engineering Research and Development Center; Institute of Translational Medicine, Shenzhen Second People's Hospital; First Affiliated Hospital of Shenzhen University; Shenzhen China
- Department of Biochemistry; Zhongshan School of Medicine; Sun Yat-sen University; Guangzhou China
| | - Yanli Zhao
- Shenzhen Xenotransplantation Medical Engineering Research and Development Center; Institute of Translational Medicine, Shenzhen Second People's Hospital; First Affiliated Hospital of Shenzhen University; Shenzhen China
| | - Hidetaka Hara
- Xenotransplantation Program/Department of Surgery; The University of Alabama at Birmingham; Birmingham AL USA
| | - Pengfei Chen
- Shenzhen Xenotransplantation Medical Engineering Research and Development Center; Institute of Translational Medicine, Shenzhen Second People's Hospital; First Affiliated Hospital of Shenzhen University; Shenzhen China
- Department of Biochemistry; Zhongshan School of Medicine; Sun Yat-sen University; Guangzhou China
| | - Jia Xu
- Shenzhen Xenotransplantation Medical Engineering Research and Development Center; Institute of Translational Medicine, Shenzhen Second People's Hospital; First Affiliated Hospital of Shenzhen University; Shenzhen China
| | - Jia Tang
- Medical Genetics Center; Jiangmen Maternity and Child health Care Hospital; Jiangmen China
| | - Ling Wei
- Shenzhen Xenotransplantation Medical Engineering Research and Development Center; Institute of Translational Medicine, Shenzhen Second People's Hospital; First Affiliated Hospital of Shenzhen University; Shenzhen China
| | - Zesong Li
- Shenzhen Xenotransplantation Medical Engineering Research and Development Center; Institute of Translational Medicine, Shenzhen Second People's Hospital; First Affiliated Hospital of Shenzhen University; Shenzhen China
| | - David K.C. Cooper
- Xenotransplantation Program/Department of Surgery; The University of Alabama at Birmingham; Birmingham AL USA
| | - Zhiming Cai
- Shenzhen Xenotransplantation Medical Engineering Research and Development Center; Institute of Translational Medicine, Shenzhen Second People's Hospital; First Affiliated Hospital of Shenzhen University; Shenzhen China
| | - Lisha Mou
- Shenzhen Xenotransplantation Medical Engineering Research and Development Center; Institute of Translational Medicine, Shenzhen Second People's Hospital; First Affiliated Hospital of Shenzhen University; Shenzhen China
| |
Collapse
|
13
|
Yu X, Lu L, Liu Z, Yang T, Gong X, Ning Y, Jiang Y. Brain-derived neurotrophic factor modulates immune reaction in mice with peripheral nerve xenotransplantation. Neuropsychiatr Dis Treat 2016; 12:685-94. [PMID: 27099498 PMCID: PMC4820192 DOI: 10.2147/ndt.s98387] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND Brain-derived neurotrophic factor (BDNF) has been demonstrated to play an important role in survival, differentiation, and neurite outgrowth for many types of neurons. This study was designed to identify the role of BDNF during peripheral nerve xenotransplantation. MATERIALS AND METHODS A peripheral nerve xenotransplantation from rats to mice was performed. Intracellular cytokines were stained for natural killer (NK) cells, natural killer T (NKT) cells, T cells, and B cells and analyzed by flow cytometry in the spleen of the recipient mouse. Serum levels of related cytokines were quantified by cytometric bead array. RESULTS Splenic NK cells significantly increased in the xenotransplanted mice (8.47±0.88×10(7) cells/mL) compared to that in the control mice (4.66±0.78×10(7) cells/mL, P=0.0003), which significantly reduced in the presence of BDNF (4.85±0.87×10(7) cells/mL, P=0.0004). In contrast, splenic NKT cell number was significantly increased in the mice with xenotransplantation plus BDNF (XT + BDNF) compared to that of control group or of mice receiving xenotransplantation only (XT only). Furthermore, the number of CD3+ T cells, CD3+CD4+ T cells, CD3+CD4- T cells, interferon-γ-producing CD3+CD4+ T cells, and interleukin (IL)-17-producing CD3+CD4+ T cells, as well as CD3-CD19+ B cells, was significantly higher in the spleen of XT only mice compared to the control mice (P<0.05), which was significantly reduced by BDNF (P<0.05). The number of IL-4-producing CD3+CD4+ T cells and CD3+CD4+CD25+Foxp3+ T cells was significantly higher in the spleen of XT + BDNF mice than that in the spleen of XT only mice (P<0.05). Serum levels of IL-6, TNF-α, interferon-γ, and IL-17 were decreased, while IL-4 and IL-10 were stimulated by BDNF following xenotransplantation. CONCLUSION BDNF reduced NK cells but increased NKT cell accumulation in the spleen of xenotransplanted mice. BDNF modulated the number of splenic T cells and its subtype cells in the mice following xenotransplantation. These findings suggest that BDNF inhibits rejection of peripheral nerve following xenotransplantation by regulating innate as well as adaptive immune reaction.
Collapse
Affiliation(s)
- Xin Yu
- Department of Hand Surgery, The First Hospital of Jilin University, Changchun, People's Republic of China
| | - Laijin Lu
- Department of Hand Surgery, The First Hospital of Jilin University, Changchun, People's Republic of China
| | - Zhigang Liu
- Department of Hand Surgery, The First Hospital of Jilin University, Changchun, People's Republic of China
| | - Teng Yang
- Department of Orthopedics, The First Hospital of Jilin University, Changchun, People's Republic of China
| | - Xu Gong
- Department of Hand Surgery, The First Hospital of Jilin University, Changchun, People's Republic of China
| | - Yubo Ning
- Department of Orthopedics, Ningshi Orthopedics Hospital of Tonghua, Tonghua, People's Republic of China
| | - Yanfang Jiang
- Department of Central Laboratory, The First Hospital of Jilin University, Changchun, People's Republic of China
| |
Collapse
|
14
|
Ma L, Zhang H, Hu K, Lv G, Fu Y, Ayana DA, Zhao P, Jiang Y. The imbalance between Tregs, Th17 cells and inflammatory cytokines among renal transplant recipients. BMC Immunol 2015; 16:56. [PMID: 26400627 PMCID: PMC4581081 DOI: 10.1186/s12865-015-0118-8] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2014] [Accepted: 09/02/2015] [Indexed: 12/21/2022] Open
Abstract
Background A significant barrier to organ transplantation is the cellular rejection that occurs and mediated by antibodies, T cells, and innate immune cells. This study was aimed to determine the number of CD4+CD25+Foxp3+ Treg, CD4+IFN-γ−IL-17+ Th17, CD4+IFN-γ+IL-17− Th1 and CD4+IFN-γ+IL-17+ Th1/17 cells in renal transplant recipients (RTR). Methods Renal transplantation was performed for a total of 35 patients with end-stage renal failure. The number of CD4+CD25+Foxp3+ Treg, CD4+IFN-γ−IL-17+ Th17, CD4+IFN-γ+IL-17− Th1 and CD4+IFN-γ+IL-17+ Th1/17 cells, and the serum level of IFN-γ, TNF-α, IL-2, IL-4, IL-6, IL-10, and IL-17 were measured in pre- and post-transplant patients and 10 healthy controls (HC) using flow cytometry and Cytometric Bead Array (CBA). The association between the number of different subsets of CD4+ T-cells and clinical parameters were analyzed among the pre- and post-transplant patients, and the healthy controls. Results The number of CD4+IFN-γ−IL-17+ Th17, CD4+IFN-γ+IL-17− Th1 and CD4+IFN-γ+IL-17+ Th1/17 cells were significantly increased in patients with End-Stage Renal Failure (ESRF) compared to the HC. Stratification analysis indicated that AMR (Acute antibody mediated acute rejection), AR (acute rejection) and CR (chronic rejection) groups displayed greater number of CD4+IFN-γ−IL-17+ Th17, CD4+IFN-γ+IL-17− Th1 and CD4+IFN-γ+IL-17+ Th1/17 cells as well as high level of serum IL-2, IFN-γ, TNF-α and IL-17. But, the AMR, AR and CR groups have shown lower level of CD4+CD25+Foxp3+ T cells and serum IL-10 compared to transplant stable (TS) patients. Moreover, the number of Tregs were negatively correlated with the number of Th17 cells in RTR patients. The number of Tregs and Th17 cells were positively correlated with the eGFR and serum creatinine values, respectively. Conclusion The imbalance between different types of CD4+ T cells and dysregulated inflammatory cytokines may contribute towards renal transplantation rejection.
Collapse
Affiliation(s)
- Liang Ma
- Genetic Diagnosis Center, The First Hospital of Jilin University, Changchun, 130021, China. .,Department of Gastroenterology, The First People's Hospital of Changzhou, Third Affiliated Hospital of Suzhou University, Changzhou, Jiangsu, 213003, China.
| | - Huimao Zhang
- Genetic Diagnosis Center, The First Hospital of Jilin University, Changchun, 130021, China.
| | - Kebang Hu
- Department of Nephrology, The First Hospital of Jilin University, Changchun, 130021, China.
| | - Guoyue Lv
- Genetic Diagnosis Center, The First Hospital of Jilin University, Changchun, 130021, China.
| | - Yaowen Fu
- Department of Nephrology, The First Hospital of Jilin University, Changchun, 130021, China.
| | | | - Pingwei Zhao
- Genetic Diagnosis Center, The First Hospital of Jilin University, Changchun, 130021, China. .,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, China.
| | - Yanfang Jiang
- Genetic Diagnosis Center, The First Hospital of Jilin University, Changchun, 130021, China. .,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, China.
| |
Collapse
|
15
|
Jiang LF, Chen O, Chu TG, Ding J, Yu Q. T Lymphocyte Subsets and Cytokines in Rats Transplanted with Adipose-Derived Mesenchymal Stem Cells and Acellular Nerve for Repairing the Nerve Defects. J Korean Neurosurg Soc 2015; 58:101-6. [PMID: 26361524 PMCID: PMC4564740 DOI: 10.3340/jkns.2015.58.2.101] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Revised: 03/13/2015] [Accepted: 03/23/2015] [Indexed: 11/27/2022] Open
Abstract
Objective The aim of this study was to explore the immunity in rats transplanted with adipose-derived mesenchymal stem cells (ADSCs) and acellular nerve (ACN) for repairing sciatic nerve defects. Methods ADSCs were isolated from the adipose tissues of Wistar rats. Sprague-Dawley rats were used to establish a sciatic nerve defect model and then divided into four groups, according to the following methods : Group A, allogenic nerve graft; Group B, allograft with ACN; Group C, allograft ADSCs+ACN, and Group D, nerve autograft. Results At the day before transplantation and 3, 7, 14, and 28 days after transplantation, orbital venous blood of the Sprague-Dawley rats in each group was collected to detect the proportion of CD3+, CD4+, and CD8+ subsets using flow cytometry and to determine the serum concentration of interleukin-2 (IL-2), tumor necrosis factor-α (TNF-α) and interferon-γ (IFN-γ) using enzyme-linked immunosorbent assay (ELISA). At each postoperative time point, the proportion of CD3+, CD4+, and CD8+ subsets and the serum concentration of IL-2, TNF-α, and IFN-γ in group C were all near to those in group B and group D, in which no statistically significant difference was observed. As compared with group A, the proportion of CD3+, CD4+, and CD8+ subsets and the serum concentration of IL-2, TNF-α, and IFN-γ were significantly reduced in group C (p<0.05). Conclusion The artificial nerve established with ADSCs and ACN has no obvious allograft rejection for repairing rat nerve defects.
Collapse
Affiliation(s)
- Liang-Fu Jiang
- Department of Hand & Plastic Surgery, The Second Affiliated Hospital of Wenzhou Medical University, Zhejiang, China
| | - Ou Chen
- Department of Orthopaedics, Wenzhou Hospital of Integrated Traditional Chinese and Western Medicine, Zhejiang, China
| | - Ting-Gang Chu
- Department of Hand & Plastic Surgery, The Second Affiliated Hospital of Wenzhou Medical University, Zhejiang, China
| | - Jian Ding
- Department of Hand & Plastic Surgery, The Second Affiliated Hospital of Wenzhou Medical University, Zhejiang, China
| | - Qing Yu
- Department of Hand & Plastic Surgery, The Second Affiliated Hospital of Wenzhou Medical University, Zhejiang, China
| |
Collapse
|
16
|
Song TH, Jang J, Choi YJ, Shim JH, Cho DW. 3D-Printed Drug/Cell Carrier Enabling Effective Release of Cyclosporin A for Xenogeneic Cell-Based Therapy. Cell Transplant 2015; 24:2513-25. [PMID: 25608278 DOI: 10.3727/096368915x686779] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Systemic administration of the immunosuppressive drug cyclosporin A (CsA) is frequently associated with a number of side effects; therefore, sometimes it cannot be applied in sufficient dosage after allogeneic or xenogeneic cell transplantation. Local delivery is a possible solution to this problem. We used 3D printing to develop a CsA-loaded 3D drug carrier for the purpose of local and sustained delivery of CsA. The carrier is a hybrid of CsA-poly(lactic-co-glycolic acid) (PLGA) microsphere-loaded hydrogel and a polymeric framework so that external force can be endured under physiological conditions. The expression of cytokines, which are secreted by spleen cells activated by Con A, and which are related to immune rejection, was significantly decreased in vitro by the released CsA from the drug carrier. Drug carriers seeded with xenogeneic cells (human lung fibroblast) were subcutaneously implanted into the BALB/c mouse. As a result, T-cell-mediated rejection was also significantly suppressed for 4 weeks. These results show that the developed 3D drug carrier can be used as an effective xenogeneic cell delivery system with controllable immunosuppressive drugs for cell-based therapy.
Collapse
Affiliation(s)
- Tae-Ha Song
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Hyoja-dong, Nam-gu, Pohang, Kyungbuk, Korea
| | | | | | | | | |
Collapse
|
17
|
A Crucial Role of IL-17 in Bone Resorption During Rejection of Fresh Bone Xenotransplantation in Rats. Cell Biochem Biophys 2014; 71:1043-9. [DOI: 10.1007/s12013-014-0307-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
18
|
Chai H, Yang L, Gao L, Guo Y, Li H, Fan X, Wu B, Xue S, Cai Y, Jiang X, Qin B, Zhang S, Ke Y. Decreased percentages of regulatory T cells are necessary to activate Th1-Th17-Th22 responses during acute rejection of the peripheral nerve xenotransplantation in mice. Transplantation 2014; 98:729-37. [PMID: 25093516 DOI: 10.1097/tp.0000000000000319] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND T cells have major functions in the initiation and perpetuation of nerve graft rejection. Our study aimed to investigate the function of regulatory T cells (Treg)-Th1-Th17-Th22 cells in the rejection of peripheral nerve xenotransplantation. METHODS Adult male C57 BL/6 mice were used as the recipient for nerve xenotransplantation, and Sprague-Dawley rats were used as the donor. These nerve xenotransplanted mice were used as the experimental groups, and those that received autograft transplant were chosen as the control group. All of the animals were pretreated with interferon (IFN)-γ, interleukin (IL)-17, and IL-22 before the experiment was conducted. The percentages of spleen Treg-Th1-Th17-Th22 cells were evaluated by flow cytometry 1, 3, 7, 14, and 28 days after transplantation. Serum levels of IFN-γ, IL-17, and IL-22 were assessed by enzyme-linked immunosorbent assay. Statistical analysis was performed by Wilcoxon rank sum and Spearman correlation test. RESULTS During acute rejection, the percentages of Th1-Th17-Th22 cells in the spleen and serum IFN-γ, IL-17, and IL-22 levels in the experimental group increased compared with those in the control group. By contrast, CD4CD25Foxp3 T cell level decreased. The rejection of xenograft was significantly prevented after the mice were treated with IL-17-neutralizing, IL-22-neutralizing, and IFN-γ-neutralizing antibodies. Moreover, the percentage of CD4CD25Foxp3 Treg was negatively correlated with the percentages of Th1-Th17-Th22 cells and levels of IL-17, IL-22, and IFN-γ. CONCLUSION These results suggested that the Treg-Th1-Th17-Th22 cells involved in xenotransplant rejection and imbalance between Tregs and Th1-Th17-Th22 cells contribute to the acute rejection of peripheral nerve xenotransplant.
Collapse
Affiliation(s)
- Huihui Chai
- 1 Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China. 2 The National Key Clinic Specialty, The Neurosurgery Institute of Guangdong Province, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Southern Medical University, Guangzhou, China. 3 Department of Orthopedic Surgery, Jilin University, Third Hospital (China-Japan Union Hospital) of Jilin University, Changchun, China. 4 Department of General Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China. 5 Formerly Department of Functional Neurology and Neurosurgery, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China; currently Department of Neurology, Guangdong General Hospital, Guangdong Academy of Medical Science, Guangdong Neuroscience Institute, Guangzhou, China 6 Address correspondence to: Yanwu Guo, Ph.D., Department of Neurosurgery, Zhujiang Hospital, National Key Clinic Specialty, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Southern Medical University, 253 Gongye Road, Guangzhou, 510282, China. 7 Address correspondence to: Bing Qin, Ph.D., Department of Neurology, Guangdong General Hospital, Guangdong Academy of Medical Science, Guangdong Neuroscience Institute, Guangzhou, 510080, China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Schneider MKJ, Seebach JD. Xenotransplantation literature update, May to June 2012. Xenotransplantation 2012; 19:265-8. [PMID: 22909140 DOI: 10.1111/j.1399-3089.2012.00716.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Mårten K J Schneider
- Laboratory of Vascular Immunology, Division of Internal Medicine, University Hospital, Zurich, Switzerland.
| | | |
Collapse
|