1
|
Lu S, Zhong H, Liu F, Zhou K, Tang W, Yang B, Li W, Xue C. STAT4 gene polymorphism may be associated with microscopic polyangiitis susceptibility in a Chinese Guangxi population: A case-control analysis based on propensity score matching. Hum Immunol 2025; 86:111241. [PMID: 39862807 DOI: 10.1016/j.humimm.2025.111241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 12/20/2024] [Accepted: 01/14/2025] [Indexed: 01/27/2025]
Abstract
BACKGROUND Microscopic polyangiitis (MPA) is a severe multisystem autoimmune disease featured by small-vessel vasculitis with few or no immune complex, also has a significant genetic predisposition. Growing evidence has confirmed that STAT4 gene is tightly associated with multiple autoimmune diseases, but its contribution to MPA onset is still elusive. OBJECTIVE The aim was to investigated the association between STAT4 gene polymorphisms (rs7572482, rs7574865 and rs12991409) and MPA susceptibility in a Guangxi population of China. METHODS 260 MPA patients and 295 healthy adult volunteers were selected, 1:1 propensity score matching (PSM) was performed to control potential confounding variables, then 199 MPA patients and 199 healthy adult volunteers matched in gender, ethnicity and age were included in this study. High-throughput sequencing and multiplex PCR were applied to detect the target STAT4 SNPs. SHEsis and SNPstats were used to evaluated the allele frequency, genotype frequency, linkage disequilibrium (LD), haplotype, and the association between SNPs and the MPA susceptibility in multiple genetic models. SNP-SNP interactions were explored based on generalized multifactor dimensionality reduction (GMDR) algorithm. Some clinical indicators, such as renal pathology and therapeutic effects, were collected and compared. RESULTS The allele and genotype frequencies of rs7574865 displayed significant diversities between case group and control group (p < 0.05). Strong LD was found between rs7572482 and rs12991409 (D'=0.9). The haplotype GGT was related to a reduced risk of MPA (OR = 0.661, 95 %CI: 0.469-0.931, p = 0.017), and haplotype GTT might perform an increased risk of MPA (OR = 1.922, 95 %CI: 1.225-3.015, p = 0.004). Rs7574865 polymorphism was associated with an increased risk of MPA in codominant model (OR:2.03; p = 0.0093), dominant model (OR: 1.88p = 0.0023), and overdominant model (OR:1.57; p = 0.027). In Han and male subgroups, rs7574865 polymorphism dramatically increased the MPA risk. GMDR suggested that STAT4 rs7574865 and PTPN22 rs3811021 composed the most risk combinations (p = 0.0010). Moreover, renal pathology, Birmingham vasculitis activity score (BVAS), and alanine aminotransferase (ALT) might be linked with STAT4 gene polymorphisms (p < 0.05). CONCLUSIONS The genetic polymorphism of STAT4 may be associated with MPA susceptibility and renal pathological classification in Chinese Guangxi population; the T allele of rs7574865 may be an important risk factor for MPA.
Collapse
Affiliation(s)
- Shurong Lu
- The Second Affiliated Hospital of Guangxi Medical University, Department of Nephrology, Nanning, Guangxi 530021, China
| | - Huan Zhong
- The Second Affiliated Hospital of Guangxi Medical University, Department of Nephrology, Nanning, Guangxi 530021, China
| | - Fugang Liu
- The Second Affiliated Hospital of Guangxi Medical University, Department of Nephrology, Nanning, Guangxi 530021, China
| | - Kangkang Zhou
- The Second Affiliated Hospital of Guangxi Medical University, Department of Nephrology, Nanning, Guangxi 530021, China
| | - Wenlv Tang
- The Second Affiliated Hospital of Guangxi Medical University, Department of Nephrology, Nanning, Guangxi 530021, China
| | - Binglan Yang
- The Second Affiliated Hospital of Guangxi Medical University, Department of Nephrology, Nanning, Guangxi 530021, China
| | - Wei Li
- The Second Affiliated Hospital of Guangxi Medical University, Department of Nephrology, Nanning, Guangxi 530021, China.
| | - Chao Xue
- The Second Affiliated Hospital of Guangxi Medical University, Department of Nephrology, Nanning, Guangxi 530021, China.
| |
Collapse
|
2
|
Mehboob MZ, Hamid A, Senthil Kumar J, Lei X. Comprehensive characterization of pathogenic missense CTRP6 variants and their association with cancer. BMC Cancer 2025; 25:304. [PMID: 39979869 PMCID: PMC11840981 DOI: 10.1186/s12885-025-13685-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Accepted: 02/07/2025] [Indexed: 02/22/2025] Open
Abstract
BACKGROUND Previous genome-wide association studies have linked three missense single nucleotide polymorphisms (SNPs) in C1q/TNF-related protein 6 (CTRP6) to diseases such as type 1 diabetes and autoimmune diseases. However, the potential association of newly identified missense CTRP6 variants with diseases, especially cancer, remains unclear. METHODS We used several pathogenicity prediction algorithms to identify deleterious mutations within the highly conserved C1q domain of human CTRP6, following the retrieval of all SNPs from the Ensembl database. We systematically analyzed the effects of these mutations on the protein's stability, flexibility, structural conformation, compactness, stiffness, and overall functionality using various bioinformatics tools. Additionally, we investigated the association of these mutations with different cancer types using the cBioPortal and canSAR databases. RESULTS We identified 11 detrimental missense SNPs within the C1q domain, a region critical for this protein's functionality. Using various computational methods, we predicted the functional impact of these missense variants and assessed their effects on the stability and flexibility of the CTRP6 structure. Molecular dynamics simulations revealed significant structural differences between the native and mutated structures, including changes in structural conformation, compactness, solvent accessibility, and flexibility. Additionally, our study shows a strong association between two mutations, G181S and R247W, and certain types of cancer: colon adenocarcinoma and uterine corpus endometrial carcinoma, respectively. We also found that the mutational status of CTRP6 and other cancer-related genes, such as MAP2K3, p16, TP53, and JAK1, affected each other's expression, potentially contributing to cancer development. CONCLUSIONS Our screening and predictive analysis of pathogenic missense variants in CTRP6 advance the understanding of the functional implications of these mutations, potentially facilitating more focused and efficient research in the future.
Collapse
Affiliation(s)
- Muhammad Zubair Mehboob
- Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, OK, 74078, USA
| | - Arslan Hamid
- Institute for Molecular Biomedicine, Department of Molecular Immunology and Cell Biology, University of Bonn, 53115, Bonn, Germany
| | - Jeevotham Senthil Kumar
- Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, OK, 74078, USA
| | - Xia Lei
- Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, OK, 74078, USA.
- 142F Noble Research Center, Oklahoma State University, Stillwater, OK, 74078, USA.
| |
Collapse
|
3
|
Sun Y, Yang S. Autoimmune side-effect of immunotherapy in lung cancer treatment revealed from large-scale cohort. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.12.03.24318450. [PMID: 39677478 PMCID: PMC11643146 DOI: 10.1101/2024.12.03.24318450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
Although immune checkpoint inhibitors have illustrated strong benefits in patient survival and have been widely acknowledged in treating lung cancer, they may be subject to increased risk of immune-related adverse effects (irAEs). Although existing literature have studied the mechanisms of irAEs of immunotherapy, it is difficult to quantify such effect, especially at a large-scale real-world population level. In this paper, the autoimmune-related risk of multiple immune checkpoint inhibitors is compared with that of chemotherapy based on Medicaid and CHIP TAF (T-MSIS Analytic File) data of over 100,000 patient samples from 2012 to 2018. Results show that the irAEs of immunotherapy is significantly higher than chemotherapy in both unadjusted and adjusted samples from the dataset. Analysis on subpopulation and specific disease types further shows that certain immunotherapy treatments are associated with higher risk of irAEs, and the risk of certain autoimmune diseases may vary. We also illustrate the robustness of our conclusion through additional sensitivity analysis, confirming the necessity of keeping track of autoimmune side effects of immune checkpoint inhibitors for medicine researchers. Our methods are also available to evaluate effectiveness and side effects of novel therapies at a large-scale population level.
Collapse
Affiliation(s)
- Yan Sun
- H. Milton Stewart School of Industrial and Systems Engineering, Georgia Institute of Technology, 755 Ferst Dr NW, Atlanta, 30318, Georgia, USA
| | - Shihao Yang
- H. Milton Stewart School of Industrial and Systems Engineering, Georgia Institute of Technology, 755 Ferst Dr NW, Atlanta, 30318, Georgia, USA
| |
Collapse
|
4
|
Shen J, Pan J, Yu G, Cai H, Xu H, Yan H, Feng Y. Genetic interactions and pleiotropy in metabolic diseases: Insights from a comprehensive GWAS analysis. J Cell Mol Med 2024; 28:e70045. [PMID: 39238070 PMCID: PMC11377178 DOI: 10.1111/jcmm.70045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 07/27/2024] [Accepted: 08/16/2024] [Indexed: 09/07/2024] Open
Abstract
This study offers insights into the genetic and biological connections between nine common metabolic diseases using data from genome-wide association studies. Our goal is to unravel the genetic interactions and biological pathways of these complex diseases, enhancing our understanding of their genetic architecture. We employed a range of advanced analytical techniques to explore the genetic correlations and shared genetic variants of these diseases. These methods include Linked Disequilibrium Score Regression, High-Definition Likelihood (HDL), genetic analysis combining multiplicity and annotation (GPA), two-sample Mendelian randomization analyses, analysis under the multiplicity-complex null hypothesis (PLACO), and Functional mapping and annotation of genetic associations (FUMA). Additionally, Bayesian co-localization analyses were used to examine associations of specific loci across traits. Our study discovered significant genomic correlations and shared loci, indicating complex genetic interactions among these metabolic diseases. We found several shared single nucleotide variants and risk loci, notably highlighting the role of the immune system and endocrine pathways in these diseases. Particularly, rs2476601 and its associated gene PTPN22 appear to play a crucial role in the connection between type 2 diabetes mellitus, hypothyroidism/mucous oedema and hypoglycaemia. These findings enhance our understanding of the genetic underpinnings of these diseases and open new potential avenues for targeted therapeutic and preventive strategies. The results underscore the importance of considering pleiotropic effects in deciphering the genetic architecture of complex diseases, especially metabolic ones.
Collapse
Affiliation(s)
- Jing Shen
- The Affiliated Jiangsu Shengze Hospital of Nanjing Medical University, Suzhou, China
| | - Julong Pan
- The Affiliated Jiangsu Shengze Hospital of Nanjing Medical University, Suzhou, China
| | - Gang Yu
- The Affiliated Jiangsu Shengze Hospital of Nanjing Medical University, Suzhou, China
| | - Hui Cai
- The Affiliated Jiangsu Shengze Hospital of Nanjing Medical University, Suzhou, China
| | - Hua Xu
- The Affiliated Jiangsu Shengze Hospital of Nanjing Medical University, Suzhou, China
| | - Hanfei Yan
- The Affiliated Jiangsu Shengze Hospital of Nanjing Medical University, Suzhou, China
| | - Yu Feng
- The Affiliated Jiangsu Shengze Hospital of Nanjing Medical University, Suzhou, China
- The University of New South Wales, Sydney, New South Wales, Australia
- The University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
5
|
Saevarsdottir S, Bjarnadottir K, Markusson T, Berglund J, Olafsdottir TA, Halldorsson GH, Rutsdottir G, Gunnarsdottir K, Arnthorsson AO, Lund SH, Stefansdottir L, Gudmundsson J, Johannesson AJ, Sturluson A, Oddsson A, Halldorsson B, Ludviksson BR, Ferkingstad E, Ivarsdottir EV, Sveinbjornsson G, Grondal G, Masson G, Eldjarn GH, Thorisson GA, Kristjansdottir K, Knowlton KU, Moore KHS, Gudjonsson SA, Rognvaldsson S, Knight S, Nadauld LD, Holm H, Magnusson OT, Sulem P, Gudbjartsson DF, Rafnar T, Thorleifsson G, Melsted P, Norddahl GL, Jonsdottir I, Stefansson K. Start codon variant in LAG3 is associated with decreased LAG-3 expression and increased risk of autoimmune thyroid disease. Nat Commun 2024; 15:5748. [PMID: 38982041 PMCID: PMC11233504 DOI: 10.1038/s41467-024-50007-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 06/27/2024] [Indexed: 07/11/2024] Open
Abstract
Autoimmune thyroid disease (AITD) is a common autoimmune disease. In a GWAS meta-analysis of 110,945 cases and 1,084,290 controls, 290 sequence variants at 225 loci are associated with AITD. Of these variants, 115 are previously unreported. Multiomics analysis yields 235 candidate genes outside the MHC-region and the findings highlight the importance of genes involved in T-cell regulation. A rare 5'-UTR variant (rs781745126-T, MAF = 0.13% in Iceland) in LAG3 has the largest effect (OR = 3.42, P = 2.2 × 10-16) and generates a novel start codon for an open reading frame upstream of the canonical protein translation initiation site. rs781745126-T reduces mRNA and surface expression of the inhibitory immune checkpoint LAG-3 co-receptor on activated lymphocyte subsets and halves LAG-3 levels in plasma among heterozygotes. All three homozygous carriers of rs781745126-T have AITD, of whom one also has two other T-cell mediated diseases, that is vitiligo and type 1 diabetes. rs781745126-T associates nominally with vitiligo (OR = 5.1, P = 6.5 × 10-3) but not with type 1 diabetes. Thus, the effect of rs781745126-T is akin to drugs that inhibit LAG-3, which unleash immune responses and can have thyroid dysfunction and vitiligo as adverse events. This illustrates how a multiomics approach can reveal potential drug targets and safety concerns.
Collapse
Affiliation(s)
- Saedis Saevarsdottir
- deCODE genetics/Amgen, Inc., Reykjavik, Iceland.
- Faculty of Medicine, School of Health Sciences, University of Iceland, Reykjavik, Iceland.
- Department of Medicine, Landspitali, the National University Hospital of Iceland, Reykjavik, Iceland.
| | | | - Thorsteinn Markusson
- deCODE genetics/Amgen, Inc., Reykjavik, Iceland
- Faculty of Medicine, School of Health Sciences, University of Iceland, Reykjavik, Iceland
| | | | - Thorunn A Olafsdottir
- deCODE genetics/Amgen, Inc., Reykjavik, Iceland
- Faculty of Medicine, School of Health Sciences, University of Iceland, Reykjavik, Iceland
| | - Gisli H Halldorsson
- deCODE genetics/Amgen, Inc., Reykjavik, Iceland
- School of Engineering and Natural Sciences, University of Iceland, Reykjavik, Iceland
| | - Gudrun Rutsdottir
- deCODE genetics/Amgen, Inc., Reykjavik, Iceland
- School of Engineering and Natural Sciences, University of Iceland, Reykjavik, Iceland
| | | | | | | | | | | | - Ari J Johannesson
- Department of Medicine, Landspitali, the National University Hospital of Iceland, Reykjavik, Iceland
| | | | | | | | - Björn R Ludviksson
- Faculty of Medicine, School of Health Sciences, University of Iceland, Reykjavik, Iceland
- Department of Immunology, Landspitali, the National University Hospital of Iceland, Reykjavik, Iceland
| | | | - Erna V Ivarsdottir
- deCODE genetics/Amgen, Inc., Reykjavik, Iceland
- School of Engineering and Natural Sciences, University of Iceland, Reykjavik, Iceland
| | | | - Gerdur Grondal
- Faculty of Medicine, School of Health Sciences, University of Iceland, Reykjavik, Iceland
- Department of Medicine, Landspitali, the National University Hospital of Iceland, Reykjavik, Iceland
| | | | | | | | | | - Kirk U Knowlton
- Intermountain Medical Center, Intermountain Heart Institute, Salt Lake City, UT, USA
- School of Medicine, University of Utah, Salt Lake City, UT, USA
| | | | | | | | - Stacey Knight
- Intermountain Medical Center, Intermountain Heart Institute, Salt Lake City, UT, USA
| | | | - Hilma Holm
- deCODE genetics/Amgen, Inc., Reykjavik, Iceland
| | | | | | - Daniel F Gudbjartsson
- deCODE genetics/Amgen, Inc., Reykjavik, Iceland
- School of Engineering and Natural Sciences, University of Iceland, Reykjavik, Iceland
| | | | | | - Pall Melsted
- deCODE genetics/Amgen, Inc., Reykjavik, Iceland
- School of Engineering and Natural Sciences, University of Iceland, Reykjavik, Iceland
| | | | - Ingileif Jonsdottir
- deCODE genetics/Amgen, Inc., Reykjavik, Iceland
- Faculty of Medicine, School of Health Sciences, University of Iceland, Reykjavik, Iceland
- Department of Immunology, Landspitali, the National University Hospital of Iceland, Reykjavik, Iceland
| | - Kari Stefansson
- deCODE genetics/Amgen, Inc., Reykjavik, Iceland.
- Faculty of Medicine, School of Health Sciences, University of Iceland, Reykjavik, Iceland.
| |
Collapse
|
6
|
Zucker R, Kovalerchik M, Stern A, Kaufman H, Linial M. Revealing the genetic complexity of hypothyroidism: integrating complementary association methods. Front Genet 2024; 15:1409226. [PMID: 38919955 PMCID: PMC11196612 DOI: 10.3389/fgene.2024.1409226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 05/16/2024] [Indexed: 06/27/2024] Open
Abstract
Hypothyroidism is a common endocrine disorder whose prevalence increases with age. The disease manifests itself when the thyroid gland fails to produce sufficient thyroid hormones. The disorder includes cases of congenital hypothyroidism (CH), but most cases exhibit hormonal feedback dysregulation and destruction of the thyroid gland by autoantibodies. In this study, we sought to identify causal genes for hypothyroidism in large populations. The study used the UK-Biobank (UKB) database, reporting on 13,687 cases of European ancestry. We used GWAS compilation from Open Targets (OT) and tuned protocols focusing on genes and coding regions, along with complementary association methods of PWAS (proteome-based) and TWAS (transcriptome-based). Comparing summary statistics from numerous GWAS revealed a limited number of variants associated with thyroid development. The proteome-wide association study method identified 77 statistically significant genes, half of which are located within the Chr6-MHC locus and are enriched with autoimmunity-related genes. While coding GWAS and PWAS highlighted the centrality of immune-related genes, OT and transcriptome-wide association study mostly identified genes involved in thyroid developmental programs. We used independent populations from Finland (FinnGen) and the Taiwan cohort to validate the PWAS results. The higher prevalence in females relative to males is substantiated as the polygenic risk score prediction of hypothyroidism relied mostly from the female group genetics. Comparing results from OT, TWAS, and PWAS revealed the complementary facets of hypothyroidism's etiology. This study underscores the significance of synthesizing gene-phenotype association methods for this common, intricate disease. We propose that the integration of established association methods enhances interpretability and clinical utility.
Collapse
Affiliation(s)
- Roei Zucker
- The Rachel and Selim Benin School of Computer Science and Engineering, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Michael Kovalerchik
- The Rachel and Selim Benin School of Computer Science and Engineering, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Amos Stern
- The Rachel and Selim Benin School of Computer Science and Engineering, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Hadasa Kaufman
- Department of Biological Chemistry, Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Michal Linial
- Department of Biological Chemistry, Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
7
|
Liu R, Shang X, Fu Y, Wang Y, Wang P, Yan S. Shared genetic architecture between hypothyroidism and rheumatoid arthritis: A large-scale cross-trait analysis. Mol Immunol 2024; 168:17-24. [PMID: 38368726 DOI: 10.1016/j.molimm.2024.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/10/2024] [Accepted: 02/02/2024] [Indexed: 02/20/2024]
Abstract
BACKGROUND In recent years, mounting evidence has indicated a co-morbid relationship between hypothyroidism and rheumatoid arthritis (RA), however, the shared genetic factors underlying this association remain unclear. This study aims to investigate the common genetic architecture between hypothyroidism and RA. METHODS Genome-wide association study (GWAS) summary statistics from recently published studies were utilized to examine the genetic correlation, shared genetic loci, and potential causal relationship between hypothyroidism and RA. Statistical methods included linkage disequilibrium score regression (LDSC), high-definition likelihood (HDL), cross-trait meta-analyses, colocalization analysis, multi-marker analysis of genomic annotation (MAGMA), tissue-specific enrichment analysis (TSEA), functional enrichment analysis, and latent causal variable method (LCV). RESULTS Our study demonstrated a significant genetic correlation between hypothyroidism and RA(LDSC:rg=0.3803,p=7.23e-11;HDL:rg=0.3849,p=1.02e-21). Through cross-trait meta-analysis, we identified 1035 loci, including 43 novel genetic loci. By integrating colocalization analysis and the MAGMA algorithm, we found a substantial number of genes, such as PTPN22, TYK2, and CTLA-4, shared between the two diseases, which showed significant enrichment across 14 tissues. These genes were primarily associated with the regulation of alpha-beta T cell proliferation, positive regulation of T cell activation, positive regulation of leukocyte cell-cell adhesion, T cell receptor signaling pathway, and JAK-STAT signaling pathway. However, our study did not reveal a significant causal association between the two diseases using the LCV approach. CONCLUSION Based on these findings, there is a significant genetic correlation between hypothyroidism and RA, suggesting a shared genetic basis for these conditions.
Collapse
Affiliation(s)
- Ruiyan Liu
- Endocrine Ward II, The First Affiliated Hospital of Henan University of Traditional Chinese Medicine, Zhengzhou, China
| | - Xin Shang
- Endocrine Ward II, The First Affiliated Hospital of Henan University of Traditional Chinese Medicine, Zhengzhou, China
| | - Yu Fu
- Endocrine Ward II, The First Affiliated Hospital of Henan University of Traditional Chinese Medicine, Zhengzhou, China
| | - Ying Wang
- Department of Geriatrics, First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| | - Ping Wang
- Endocrine Ward II, The First Affiliated Hospital of Henan University of Traditional Chinese Medicine, Zhengzhou, China.
| | - Shuxun Yan
- Endocrine Ward II, The First Affiliated Hospital of Henan University of Traditional Chinese Medicine, Zhengzhou, China.
| |
Collapse
|
8
|
Lucotte EA, Asgari Y, Sugier PE, Karimi M, Domenighetti C, Lesueur F, Boland-Augé A, Ostroumova E, de Vathaire F, Zidane M, Guénel P, Deleuze JF, Boutron-Ruault MC, Severi G, Liquet B, Truong T. Investigation of common genetic risk factors between thyroid traits and breast cancer. Hum Mol Genet 2023; 33:38-47. [PMID: 37740403 PMCID: PMC10729861 DOI: 10.1093/hmg/ddad159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 09/12/2023] [Accepted: 09/19/2023] [Indexed: 09/24/2023] Open
Abstract
Breast cancer (BC) risk is suspected to be linked to thyroid disorders, however observational studies exploring the association between BC and thyroid disorders gave conflicting results. We proposed an alternative approach by investigating the shared genetic risk factors between BC and several thyroid traits. We report a positive genetic correlation between BC and thyroxine (FT4) levels (corr = 0.13, p-value = 2.0 × 10-4) and a negative genetic correlation between BC and thyroid-stimulating hormone (TSH) levels (corr = -0.09, p-value = 0.03). These associations are more striking when restricting the analysis to estrogen receptor-positive BC. Moreover, the polygenic risk scores (PRS) for FT4 and hyperthyroidism are positively associated to BC risk (OR = 1.07, 95%CI: 1.00-1.13, p-value = 2.8 × 10-2 and OR = 1.04, 95%CI: 1.00-1.08, p-value = 3.8 × 10-2, respectively), while the PRS for TSH is inversely associated to BC risk (OR = 0.93, 95%CI: 0.89-0.97, p-value = 2.0 × 10-3). Using the PLACO method, we detected 49 loci associated to both BC and thyroid traits (p-value < 5 × 10-8), in the vicinity of 130 genes. An additional colocalization and gene-set enrichment analyses showed a convincing causal role for a known pleiotropic locus at 2q35 and revealed an additional one at 8q22.1 associated to both BC and thyroid cancer. We also found two new pleiotropic loci at 14q32.33 and 17q21.31 that were associated to both TSH levels and BC risk. Enrichment analyses and evidence of regulatory signals also highlighted brain tissues and immune system as candidates for obtaining associations between BC and TSH levels. Overall, our study sheds light on the complex interplay between BC and thyroid traits and provides evidence of shared genetic risk between those conditions.
Collapse
Affiliation(s)
- Elise A Lucotte
- Paris-Saclay University, UVSQ, Gustave Roussy, Inserm, CESP, Team “Exposome and Heredity”, 94807 Villejuif, France
| | - Yazdan Asgari
- Paris-Saclay University, UVSQ, Gustave Roussy, Inserm, CESP, Team “Exposome and Heredity”, 94807 Villejuif, France
| | - Pierre-Emmanuel Sugier
- Paris-Saclay University, UVSQ, Gustave Roussy, Inserm, CESP, Team “Exposome and Heredity”, 94807 Villejuif, France
- Laboratoire de Mathématiques et de leurs Applications de Pau, Université de Pau et des Pays de l’Adour, UMR CNRS 5142, E2S-UPPA, 64013 Pau, France
| | - Mojgan Karimi
- Paris-Saclay University, UVSQ, Gustave Roussy, Inserm, CESP, Team “Exposome and Heredity”, 94807 Villejuif, France
| | - Cloé Domenighetti
- Paris-Saclay University, UVSQ, Gustave Roussy, Inserm, CESP, Team “Exposome and Heredity”, 94807 Villejuif, France
| | - Fabienne Lesueur
- Inserm, U900, Institut Curie, PSL University, Mines ParisTech, 75006 Paris, France
| | - Anne Boland-Augé
- National Centre of Human Genomics Research, François Jacob Institute of Biology, Commissariat à l’Energie Atomique, Paris-Saclay University, 91000 Evry, France
| | | | - Florent de Vathaire
- Paris-Saclay University, UVSQ, Gustave Roussy, Inserm, CESP, Team of Epidemiology of radiations, 94807 Villejuif, France
| | - Monia Zidane
- Paris-Saclay University, UVSQ, Gustave Roussy, Inserm, CESP, Team of Epidemiology of radiations, 94807 Villejuif, France
| | - Pascal Guénel
- Paris-Saclay University, UVSQ, Gustave Roussy, Inserm, CESP, Team “Exposome and Heredity”, 94807 Villejuif, France
| | - Jean-François Deleuze
- National Centre of Human Genomics Research, François Jacob Institute of Biology, Commissariat à l’Energie Atomique, Paris-Saclay University, 91000 Evry, France
| | | | - Gianluca Severi
- Paris-Saclay University, UVSQ, Gustave Roussy, Inserm, CESP, Team “Exposome and Heredity”, 94807 Villejuif, France
- Department of Statistics, Computer Science, Applications “G. Parenti”, University of Florence, 50121 Florence, Italy
| | - Benoît Liquet
- Laboratoire de Mathématiques et de leurs Applications de Pau, Université de Pau et des Pays de l’Adour, UMR CNRS 5142, E2S-UPPA, 64013 Pau, France
- School of Mathematical and Physical Sciences, Macquarie University, 2109 Sydney, Australia
| | - Thérèse Truong
- Paris-Saclay University, UVSQ, Gustave Roussy, Inserm, CESP, Team “Exposome and Heredity”, 94807 Villejuif, France
| |
Collapse
|
9
|
Zamwar UM, Muneshwar KN. Epidemiology, Types, Causes, Clinical Presentation, Diagnosis, and Treatment of Hypothyroidism. Cureus 2023; 15:e46241. [PMID: 37908940 PMCID: PMC10613832 DOI: 10.7759/cureus.46241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 09/29/2023] [Indexed: 11/02/2023] Open
Abstract
Hypothyroidism means an underactive thyroid gland. This leads to a decrease in the functioning of the thyroid gland. It is a very common endocrine disorder that causes under-secretion of thyroid hormones, mainly thyroxine (T4) and triiodothyronine (T3). It affects people of every age group but is more commonly found in women and older people. The symptoms of hypothyroidism can go unnoticed, may not be specific, and may overlap with other conditions, which makes it harder to diagnose it in some cases. Common symptoms include fatigue, weight gain, increased sensitivity to cold (cold intolerance), irregular bowel movements (constipation), and dry skin (xeroderma). These conditions are mostly the result of a low metabolic rate in the body. Weight gain occurs due to a decrease in fat-burning rate and cold intolerance due to a decrease in heat production by the body. This condition can be caused by a variety of factors, including autoimmune diseases, radiation therapy, thyroid gland removal surgeries, and certain medications. The diagnosis of hypothyroidism is based on laboratory tests that measure the levels of thyroid hormones (T3 and T4) in the blood. Treatment typically involves lifelong hormone replacement therapy with synthetic thyroid hormone replacement medication, such as levothyroxine, to help regulate hormone levels in the body. People with hypothyroidism may need to have their medication dosage adjusted over time. If hypothyroidism is left untreated, it can lead to severe complications like mental retardation, delayed milestones, etc., in infants and heart failure, infertility, myxedema coma, etc., in adults. With appropriate treatment, the symptoms of hypothyroidism can be effectively managed, and most people with the condition can lead normal, healthy lives. Lifestyle modifications like eating healthy food and exercising regularly can help manage the symptoms and improve the quality of life.
Collapse
Affiliation(s)
- Udit M Zamwar
- Community Medicine, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Komal N Muneshwar
- Community Medicine, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| |
Collapse
|
10
|
Blombery P, Pazhakh V, Albuquerque AS, Maimaris J, Tu L, Briones Miranda B, Evans F, Thompson ER, Carpenter B, Proctor I, Curtin JA, Lambert J, Burns SO, Lieschke GJ. Biallelic deleterious germline SH2B3 variants cause a novel syndrome of myeloproliferation and multi-organ autoimmunity. EJHAEM 2023; 4:463-469. [PMID: 37206266 PMCID: PMC10188477 DOI: 10.1002/jha2.698] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 04/01/2023] [Accepted: 04/15/2023] [Indexed: 05/21/2023]
Abstract
SH2B3 is a negative regulator of multiple cytokine receptor signalling pathways in haematopoietic tissue. To date, a single kindred has been described with germline biallelic loss-of-function SH2B3 variants characterized by early onset developmental delay, hepatosplenomegaly and autoimmune thyroiditis/hepatitis. Herein, we described two further unrelated kindreds with germline biallelic loss-of-function SH2B3 variants that show striking phenotypic similarity to each other as well as to the previous kindred of myeloproliferation and multi-organ autoimmunity. One proband also suffered severe thrombotic complications. CRISPR-Cas9 gene editing of zebrafish sh2b3 created assorted deleterious variants in F0 crispants, which manifest significantly increased number of macrophages and thrombocytes, partially replicating the human phenotype. Treatment of the sh2b3 crispant fish with ruxolitinib intercepted this myeloproliferative phenotype. Skin-derived fibroblasts from one patient demonstrated increased phosphorylation of JAK2 and STAT5 after stimulation with IL-3, GH, GM-CSF and EPO compared to healthy controls. In conclusion, these additional probands and functional data in combination with the previous kindred provide sufficient evidence for biallelic homozygous deleterious variants in SH2B3 to be considered a valid gene-disease association for a clinical syndrome of bone marrow myeloproliferation and multi-organ autoimmune manifestations.
Collapse
Affiliation(s)
- Piers Blombery
- Clinical HaematologyPeter MacCallum Cancer Centre/Royal Melbourne HospitalMelbourneVictoriaAustralia
- University of MelbourneMelbourneVictoriaAustralia
| | - Vahid Pazhakh
- Clinical HaematologyPeter MacCallum Cancer Centre/Royal Melbourne HospitalMelbourneVictoriaAustralia
- Australian Regenerative Medicine InstituteMonash UniversityClaytonVictoriaAustralia
| | | | - Jesmeen Maimaris
- Institute of Immunity and TransplantationUniversity College LondonLondonUK
- Department of ImmunologyRoyal Free London NHS Foundation TrustLondonUK
| | - Lingge Tu
- Australian Regenerative Medicine InstituteMonash UniversityClaytonVictoriaAustralia
| | | | - Florence Evans
- Institute of Immunity and TransplantationUniversity College LondonLondonUK
| | - Ella R. Thompson
- Clinical HaematologyPeter MacCallum Cancer Centre/Royal Melbourne HospitalMelbourneVictoriaAustralia
- University of MelbourneMelbourneVictoriaAustralia
| | - Ben Carpenter
- Department of HaematologyUniversity College London Hospitals NHS Foundation TrustLondonUK
| | - Ian Proctor
- Department of HaematologyUniversity College London Hospitals NHS Foundation TrustLondonUK
| | - Julie A. Curtin
- Haematology DepartmentChildren's Hospital at WestmeadWestmeadNew South WalesAustralia
| | - Jonathan Lambert
- Department of HaematologyUniversity College London Hospitals NHS Foundation TrustLondonUK
- Department of HaematologyUCL Cancer InstituteUniversity College LondonLondonUK
| | - Siobhan O. Burns
- Institute of Immunity and TransplantationUniversity College LondonLondonUK
- Department of ImmunologyRoyal Free London NHS Foundation TrustLondonUK
| | - Graham J. Lieschke
- Clinical HaematologyPeter MacCallum Cancer Centre/Royal Melbourne HospitalMelbourneVictoriaAustralia
- Australian Regenerative Medicine InstituteMonash UniversityClaytonVictoriaAustralia
| |
Collapse
|
11
|
Vargas-Uricoechea H. Molecular Mechanisms in Autoimmune Thyroid Disease. Cells 2023; 12:918. [PMID: 36980259 PMCID: PMC10047067 DOI: 10.3390/cells12060918] [Citation(s) in RCA: 70] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/14/2023] [Accepted: 03/15/2023] [Indexed: 03/19/2023] Open
Abstract
The most common cause of acquired thyroid dysfunction is autoimmune thyroid disease, which is an organ-specific autoimmune disease with two presentation phenotypes: hyperthyroidism (Graves-Basedow disease) and hypothyroidism (Hashimoto's thyroiditis). Hashimoto's thyroiditis is distinguished by the presence of autoantibodies against thyroid peroxidase and thyroglobulin. Meanwhile, autoantibodies against the TSH receptor have been found in Graves-Basedow disease. Numerous susceptibility genes, as well as epigenetic and environmental factors, contribute to the pathogenesis of both diseases. This review summarizes the most common genetic, epigenetic, and environmental mechanisms involved in autoimmune thyroid disease.
Collapse
Affiliation(s)
- Hernando Vargas-Uricoechea
- Metabolic Diseases Study Group, Department of Internal Medicine, Universidad del Cauca, Carrera 6 Nº 13N-50, Popayán 190001, Colombia
| |
Collapse
|
12
|
Lafontaine N, Wilson SG, Walsh JP. DNA Methylation in Autoimmune Thyroid Disease. J Clin Endocrinol Metab 2023; 108:604-613. [PMID: 36420742 DOI: 10.1210/clinem/dgac664] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 11/02/2022] [Accepted: 11/14/2022] [Indexed: 11/25/2022]
Abstract
Graves disease and Hashimoto disease form part of the spectrum of autoimmune thyroid disease (AITD), to which genetic and environmental factors are recognized contributors. Epigenetics provides a potential link between environmental influences, gene expression, and thyroid autoimmunity. DNA methylation (DNAm) is the best studied epigenetic process, and global hypomethylation of leukocyte DNA is reported in several autoimmune disorders. This review summarizes the current understanding of DNAm in AITD. Targeted DNAm studies of blood samples from AITD patients have reported differential DNAm in the promoter regions of several genes implicated in AITD, including TNF, IFNG, IL2RA, IL6, ICAM1, and PTPN22. In many cases, however, the findings await replication and are unsupported by functional studies to support causal roles in AITD pathogenesis. Furthermore, thyroid hormones affect DNAm, and in many studies confounding by reverse causation has not been considered. Recent studies have shown that DNAm patterns in candidate genes including ITGA6, PRKAA2, and DAPK1 differ between AITD patients from regions with different iodine status, providing a potential mechanism for associations between iodine and AITD. Research focus in the field is moving from candidate gene studies to an epigenome-wide approach. Genome-wide methylation studies of AITD patients have demonstrated multiple differentially methylated positions, including some in immunoregulatory genes such as NOTCH1, HLA-DRB1, TNF, and ICAM1. Large, epigenome-wide studies are required to elucidate the pathophysiological role of DNAm in AITD, with the potential to provide novel diagnostic and prognostic biomarkers as well as therapeutic targets.
Collapse
Affiliation(s)
- Nicole Lafontaine
- Department of Endocrinology & Diabetes, Sir Charles Gairdner Hospital, Nedlands, Western Australia 6009, Australia
- Medical School, University of Western Australia, Crawley, Western Australia 6009, Australia
| | - Scott G Wilson
- Department of Endocrinology & Diabetes, Sir Charles Gairdner Hospital, Nedlands, Western Australia 6009, Australia
- School of Biomedical Sciences, University of Western Australia, Crawley, Western Australia 6009, Australia
| | - John P Walsh
- Department of Endocrinology & Diabetes, Sir Charles Gairdner Hospital, Nedlands, Western Australia 6009, Australia
- Medical School, University of Western Australia, Crawley, Western Australia 6009, Australia
| |
Collapse
|
13
|
Elsayed OM, Abdelazim SA, Darwish HA, Shaker OG, Senousy MA. Association of LncRNA-PAX8-AS1 and LAIR-2 polymorphisms along with their expression with clinical and subclinical hypothyroidism. Sci Rep 2023; 13:6. [PMID: 36593237 PMCID: PMC9807632 DOI: 10.1038/s41598-022-26346-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 12/13/2022] [Indexed: 01/03/2023] Open
Abstract
The genetic and epigenetic architecture of clinical and subclinical hypothyroidism remains unclear. We investigated the impact of long noncoding RNA (LncRNA)-PAX8-AS1 and LAIR-2 genetic variants on the susceptibility to clinical and subclinical hypothyroidism, their influence on LncRNA-PAX8-AS1 and LAIR-2 expression and their potential as hypothyroid biomarkers. Hundred clinical hypothyroid patients, 110 subclinical hypothyroid patients, and 95 healthy controls were enrolled. Gene expression analysis and genotyping were performed by qPCR. LAIR-2 protein, a proinflammatory mediator, was tested by ELISA. Serum LncRNA-PAX8-AS1 was downregulated, whereas LAIR-2 mRNA and protein levels were upregulated in clinical and subclinical hypothyroid patients compared to healthy controls. LncRNA-PAX8-AS1 rs4848320 and rs1110839 were associated with increased risk of clinical hypothyroidism. Interestingly, both SNPs were associated with differential expression of serum LncRNA-PAX8-AS1 among clinical hypothyroid patients. LAIR-2 rs2287828 was associated with elevated risk of both clinical and subclinical hypothyroidism. Harboring the rs2287828 T allele augmented the LAIR-2 mRNA expression among clinical hypothyroid patients, while elevated both LAIR-2 mRNA and protein levels in subclinical hypothyroid patients. The rs4848320-rs1110839-rs2287828 TTT, CTT, and CGT haplotypes were associated with increased hypothyroid risk. Surprisingly, serum LncRNA-PAX8-AS1 and LAIR-2 mRNA expression demonstrated superior diagnostic accuracy for clinical hypothyroidism and turned out as independent predictors in the multivariate analysis. Conclusively, LncRNA-PAX8-AS1 and LAIR-2 genetic variants are novel genetic biomarkers of hypothyroidism that could alter the LncRNA-PAX8-AS1 and LAIR-2 expression. LncRNA-PAX8-AS1 and LAIR-2 expression profiles have the potential as effective diagnostic and prognostic indicators of hypothyroidism.
Collapse
Affiliation(s)
| | - Samy A Abdelazim
- Biochemistry Department, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt.
| | - Hebatallah A Darwish
- Pharmacology, Toxicology and Biochemistry Department, Faculty of Pharmacy, Future University in Egypt (FUE), Cairo, Egypt
| | - Olfat G Shaker
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Mahmoud A Senousy
- Biochemistry Department, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt
- Department of Biochemistry, Faculty of Pharmacy and Drug Technology, Egyptian Chinese University, Cairo, 11786, Egypt
| |
Collapse
|
14
|
Li H, Li M, Dong S, Zhang S, Dong A, Zhang M. Assessment of the association between genetic factors regulating thyroid function and microvascular complications in diabetes: A two-sample Mendelian randomization study in the European population. Front Endocrinol (Lausanne) 2023; 14:1126339. [PMID: 36926020 PMCID: PMC10011638 DOI: 10.3389/fendo.2023.1126339] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Accepted: 02/15/2023] [Indexed: 03/08/2023] Open
Abstract
BACKGROUND Observational studies have identified a possible link between thyroid function and diabetic microangiopathy, specifically in diabetic kidney disease (DKD) and diabetic retinopathy (DR). However, it is unclear whether this association reflects a causal relationship. OBJECTIVE To assess the potential direct effect of thyroid characteristics on DKD and DR based on Mendelian randomization (MR). METHODS We conducted an MR study using genetic variants as an instrument associated with thyroid function to examine the causal effects on DKD and DR. The study included the analysis of 4 exposure factors associated with thyroid hormone regulation and 5 outcomes. Genomewide significant variants were used as instruments for standardized freethyroxine (FT4) and thyroid-stimulating hormone (TSH) levels within the reference range, standardized free triiodothyronine (FT3):FT4 ratio, and standardized thyroid peroxidase antibody (TPOAB) levels. The primary outcomes were DKD and DR events, and secondary outcomes were estimated glomerular filtration rate (eGFR), urinary albumin-to-creatinine ratio (ACR) in diabetes, and proliferative diabetic retinopathy (PDR). Satisfying the 3 MR core assumptions, the inverse-variance weighted technique was used as the primary analysis, and sensitivity analysis was performed using MR-Egger, weighted median, and MR pleiotropy residual sum and outlier techniques. RESULTS All outcome and exposure instruments were selected from publicly available GWAS data conducted in European populations. In inverse-variance weighted random-effects MR, gene-based TSH with in the reference range was associated with DKD (OR 1.44; 95%CI 1.04, 2.41; P = 0.033) and eGFR (β: -0.031; 95%CI: -0.063, -0.001; P = 0.047). Gene-based increased FT3:FT4 ratio, decreased FT4 with in the reference range were associated with increased ACR with inverse-variance weighted random-effects β of 0.178 (95%CI: 0.004, 0.353; P = 0.046) and -0.078 (95%CI: -0.142, -0.014; P = 0.017), respectively, and robust to tests of horizontal pleiotropy. However, all thyroid hormone instruments were not associated with DR and PDR at the genetic level. CONCLUSION In diabetic patients, an elevated TSH within the reference range was linked to a greater risk of DKD and decreased eGFR. Similarly, decreased FT4 and an increased FT3:FT4 ratio within the reference range were associated with increased ACR in diabetic patients. However, gene-based thyroid hormones were not associated with DR, indicating a possible pathway involving the thyroid-islet-renal axis. However, larger population studies are needed to further validate this conclusion.
Collapse
Affiliation(s)
- Hongdian Li
- Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Mingxuan Li
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Shaoning Dong
- Department of Nephrology, Tianjin academy of Traditional Chinese Medicine Affiliated Hospital, Tianjin, China
| | - Sai Zhang
- Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Ao Dong
- Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Mianzhi Zhang
- Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China
- Department of Nephrology, Tianjin academy of Traditional Chinese Medicine Affiliated Hospital, Tianjin, China
- *Correspondence: Mianzhi Zhang,
| |
Collapse
|
15
|
Shao F, Li R, Guo Q, Qin R, Su W, Yin H, Tian L. Plasma Metabolomics Reveals Systemic Metabolic Alterations of Subclinical and Clinical Hypothyroidism. J Clin Endocrinol Metab 2022; 108:13-25. [PMID: 36181451 PMCID: PMC9759175 DOI: 10.1210/clinem/dgac555] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 09/01/2022] [Indexed: 02/03/2023]
Abstract
CONTEXT Clinical hypothyroidism (CH) and subclinical hypothyroidism (SCH) have been linked to various metabolic comorbidities but the underlying metabolic alterations remain unclear. Metabolomics may provide metabolic insights into the pathophysiology of hypothyroidism. OBJECTIVE We explored metabolic alterations in SCH and CH and identify potential metabolite biomarkers for the discrimination of SCH and CH from euthyroid individuals. METHODS Plasma samples from a cohort of 126 human subjects, including 45 patients with CH, 41 patients with SCH, and 40 euthyroid controls, were analyzed by high-resolution mass spectrometry-based metabolomics. Data were processed by multivariate principal components analysis and orthogonal partial least squares discriminant analysis. Correlation analysis was performed by a Multivariate Linear Regression analysis. Unbiased Variable selection in R algorithm and 3 machine learning models were utilized to develop prediction models based on potential metabolite biomarkers. RESULTS The plasma metabolomic patterns in SCH and CH groups were significantly different from those of control groups, while metabolite alterations between SCH and CH groups were dramatically similar. Pathway enrichment analysis found that SCH and CH had a significant impact on primary bile acid biosynthesis, steroid hormone biosynthesis, lysine degradation, tryptophan metabolism, and purine metabolism. Significant associations for 65 metabolites were found with levels of thyrotropin, free thyroxine, thyroid peroxidase antibody, or thyroglobulin antibody. We successfully selected and validated 17 metabolic biomarkers to differentiate 3 groups. CONCLUSION SCH and CH have significantly altered metabolic patterns associated with hypothyroidism, and metabolomics coupled with machine learning algorithms can be used to develop diagnostic models based on selected metabolites.
Collapse
Affiliation(s)
| | | | - Qian Guo
- Department of Endocrinology (Cadre Ward 3), Gansu Provincial Hospital, Lanzhou, Gansu 730099, China
- Clinical Research Center for Metabolic Disease, Gansu Province. 204 Donggang West Road, Lanzhou, Gansu 730099, China
| | - Rui Qin
- Clinical Research Center for Metabolic Disease, Gansu Province. 204 Donggang West Road, Lanzhou, Gansu 730099, China
| | - Wenxiu Su
- Clinical Research Center for Metabolic Disease, Gansu Province. 204 Donggang West Road, Lanzhou, Gansu 730099, China
| | - Huiyong Yin
- Correspondence: Limin Tian, M.D., The First School of Clinical Medicine, Lanzhou University, Gansu Provincial Hospital, Donggang West Road, 730030, Lanzhou, Gansu, China. ; Huiyong Yin, Ph.D., Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai, China 200031.
| | - Limin Tian
- Correspondence: Limin Tian, M.D., The First School of Clinical Medicine, Lanzhou University, Gansu Provincial Hospital, Donggang West Road, 730030, Lanzhou, Gansu, China. ; Huiyong Yin, Ph.D., Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai, China 200031.
| |
Collapse
|
16
|
Tong K, Zhang C, Yang T, Guo R, Wang X, Guan R, Jin T. Suggestive evidence of the genetic association of TMOD1 and PTCSC2 polymorphisms with thyroid carcinoma in the Chinese Han population. BMC Endocr Disord 2022; 22:263. [PMID: 36316666 PMCID: PMC9620653 DOI: 10.1186/s12902-022-01177-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 10/11/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The purpose of this study was to survey the associations of six single nucleotide polymorphisms (SNPs) in the TMOD1 and PTCSC2 genes with thyroid carcinoma (TC). METHOD Peripheral blood samples were obtained from 510 patients with TC and 509 normal controls. Six SNPs were genotyped by the Agena MassARRAY platform. Logistic regression was used to evaluate the association between SNPs and TC susceptibility by calculating odds ratios (ORs) and 95% confidence intervals (CIs). SNP-SNP interactions were analyzed by multifactor dimensionality reduction (MDR). RESULTS Our study showed that rs925489 (OR = 1.45, p = 0.011) and rs965513 (OR = 1.40, p = 0.021) were significantly associated with an increased risk of TC. Rs10982622 decreased TC risk (OR = 0.74, p = 0.025). Further stratification analysis showed that rs10982622 reduced the susceptibility to TC in patients aged ≤ 45 years (OR = 0.69, p = 0.019) and in females (OR = 0.61, p = 0.014). Rs925489 increased TC risk in people aged > 45 years (OR = 1.54, p = 0.044) and in males (OR = 2.34, p = 0.003). In addition, rs965513 was related to an increased risk of TC in males (OR = 2.14, p = 0.007). Additionally, haplotypes in the block (rs925489|rs965513) significantly increased TC risk (p < 0.05). The best predictive model for TC was the combination of rs1052270, rs10982622, rs1475545, rs16924016, and rs925489. CONCLUSION TMOD1 and PTCSC2 polymorphisms were separately correlated with a remarkable decrease and increase in TC risk based on the analysis.
Collapse
Affiliation(s)
- Kaijun Tong
- Department of Medical Images, People's Hospital of Wanning, Huanshi three eastern Road, Wancheng Town, Wanning City, Hainan Province, China
| | - Chang Zhang
- Department of Clinical Laboratory, People's Hospital of Wanning, Hainan Province, Wanning, China
| | - Tingting Yang
- Department of Medical Images, People's Hospital of Wanning, Huanshi three eastern Road, Wancheng Town, Wanning City, Hainan Province, China
| | - Rongbiao Guo
- Department of Medical Images, People's Hospital of Wanning, Huanshi three eastern Road, Wancheng Town, Wanning City, Hainan Province, China
| | - Xinyuan Wang
- Department of Medical Images, People's Hospital of Wanning, Huanshi three eastern Road, Wancheng Town, Wanning City, Hainan Province, China
| | - Renyang Guan
- Department of Medical Images, People's Hospital of Wanning, Huanshi three eastern Road, Wancheng Town, Wanning City, Hainan Province, China.
| | - Tianbo Jin
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, 710069, Xi'an, Shaanxi, China.
- Provincial Key Laboratory of Biotechnology of Shaanxi Province, Northwest University, 229 North Taibai Road, 710069, Xi'an, Shaanxi, China.
| |
Collapse
|
17
|
Lim G, Widiapradja A, Levick SP, McKelvey KJ, Liao XH, Refetoff S, Bullock M, Clifton-Bligh RJ. Foxe1 Deletion in the Adult Mouse Is Associated With Increased Thyroidal Mast Cells and Hypothyroidism. Endocrinology 2022; 163:bqac158. [PMID: 36156081 PMCID: PMC9618408 DOI: 10.1210/endocr/bqac158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Indexed: 11/29/2022]
Abstract
CONTEXT Foxe1 is a key thyroid developmental transcription factor. Germline deletion results in athyreosis and congenital hypothyroidism. Some data suggest an ongoing role for maintaining thyroid differentiation. OBJECTIVE We created a mouse model to directly examine the role of Foxe1 in the adult thyroid. METHODS A model of tamoxifen-inducible Cre-mediated ubiquitous deletion of Foxe1 was generated in mice of C57BL/6J background (Foxe1flox/flox/Cre-TAM). Tamoxifen or vehicle was administered to Foxe1flox/flox/Cre mice aged 6-8 weeks. Blood was collected at 4, 12, and 20 weeks, and tissues after 12 or 20 weeks for molecular and histological analyses. Plasma total thyroxine (T4), triiodothyronine, and thyrotropin (TSH) were measured. Transcriptomics was performed using microarray or RNA-seq and validated by reverse transcription quantitative polymerase chain reaction. RESULTS Foxe1 was decreased by approximately 80% in Foxe1flox/flox/Cre-TAM mice and confirmed by immunohistochemistry. Foxe1 deletion was associated with abnormal follicular architecture and smaller follicle size at 12 and 20 weeks. Plasma TSH was elevated in Foxe1flox/flox/Cre-TAM mice as early as 4 weeks and T4 was lower in pooled samples from 12 and 20 weeks. Foxe1 deletion was also associated with an increase in thyroidal mast cells. Transcriptomic analyses found decreased Tpo and Tg and upregulated mast cell markers Mcpt4 and Ctsg in Foxe1flox/flox/Cre-TAM mice. CONCLUSION Foxe1 deletion in adult mice was associated with disruption in thyroid follicular architecture accompanied by biochemical hypothyroidism, confirming its role in maintenance of thyroid differentiation. An unanticipated finding was an increase in thyroidal mast cells. These data suggest a possible explanation for previous human genetic studies associating alleles in/near FOXE1 with hypothyroidism and/or autoimmune thyroiditis.
Collapse
Affiliation(s)
- Grace Lim
- Cancer Genetics Laboratory, Kolling Institute, Faculty of Medicine and Health, The University of Sydney, St Leonards, NSW 2065, Australia
| | - Alexander Widiapradja
- Cardiac Biology and Heart Failure Laboratory, Kolling Institute, Faculty of Medicine and Health, The University of Sydney, St Leonards, NSW 2065, Australia
| | - Scott P Levick
- Cardiac Biology and Heart Failure Laboratory, Kolling Institute, Faculty of Medicine and Health, The University of Sydney, St Leonards, NSW 2065, Australia
| | - Kelly J McKelvey
- Bill Walsh Translational Cancer Research Laboratory, Kolling Institute, Faculty of Medicine and Health, The University of Sydney, St Leonards, NSW 2065, Australia
| | - Xiao-Hui Liao
- Department of Medicine, The University of Chicago, Chicago, Illinois 60637, USA
| | - Samuel Refetoff
- Department of Medicine, Pediatrics and Committee on Genetics, The University of Chicago, Chicago, Illinois 60637, USA
| | - Martyn Bullock
- Cancer Genetics Laboratory, Kolling Institute, Faculty of Medicine and Health, The University of Sydney, St Leonards, NSW 2065, Australia
| | - Roderick J Clifton-Bligh
- Cancer Genetics Laboratory, Kolling Institute, Faculty of Medicine and Health, The University of Sydney, St Leonards, NSW 2065, Australia
- Department of Endocrinology, Royal North Shore Hospital, St Leonards, NSW 2065, Australia
| |
Collapse
|
18
|
Chen G, Lv H, Zhang X, Gao Y, Liu X, Gu C, Xue R, Wang Q, Chen M, Zhai J, Yue W, Yu H. Assessment of the relationships between genetic determinants of thyroid functions and bipolar disorder: A mendelian randomization study. J Affect Disord 2022; 298:373-380. [PMID: 34728293 DOI: 10.1016/j.jad.2021.10.101] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 09/03/2021] [Accepted: 10/23/2021] [Indexed: 11/29/2022]
Abstract
BACKGROUND Thyroid functions (TFs) have been implicated in the initiation and propagation of psychiatric disorders. Observational studies have shown associations of TFs with psychiatric disorders. However, the relationship between TFs and psychiatric diseases were still unclear. METHODS Genetic instruments for 6 TF-realted indexes, including free thyroxine (FT4), triiodothyronine (FT3):FT4 ratio, thyrotropin (TSH), thyroid peroxidase antibodies (TPOAb) concentration, hypothyroidism, and hyperthyroidism, were obtained from several genome-wide association studies (GWASs). Their associations with BD were evaluated using Psychiatric Genomics Consortium (PGC) datasets (41,917 cases and 371,549 controls). All GWAS summary statitics were from European ancestry. Mendelian randomization (MR) estimates from each genetic instrument were combined using inverse variance weighted (IVW) meta-analysis, with complementary methods (eg, weighted median and MR Egger). We also multiple sensitivity analyses to examine horizontal pleiotropy and heterogeneity. RESULTS Genetically predicted level of FT4 was significantly associated with BD (odds ratio (OR)=0.89, 95% confidence interval (CI): 0.83-0.95; P=4.65 × 10-3), survived after the Bonferroni correction (P<0.05/6=0.008). Consistent directional effects for all sensitivity analyses were observed in the weighted median and MR Egger methods. Furthermore, our sensitive test suggested no significant horizontal pleiotropy (intercept=-0.01, P=0.12) and no notable heterogeneity (Q = 29.9; P=0.09). However, other TF indexes (FT3:FT4 ratio [OR=1.24, P=0.10], TSH [OR=1.01, P=0.61], TPOAb concentration [OR=1.20, P=0.54], hypothyroidism [OR=1.00, P=0.91], and hyperthyroidism [OR=0.99, P=0.57]) were not associated with BD. CONCLUSIONS Our results provide further evidence that higher FT4 level is associated with a reduced risk of BD, and suggest the importance of FT4 level in BD risk assessment and potential therapeutic targets development.
Collapse
Affiliation(s)
- Guoqing Chen
- Department of Psychiatry, Jining Medical University, Jining, Shandong 272067, China
| | - Honggang Lv
- Department of Psychiatry, Jining Medical University, Jining, Shandong 272067, China
| | - Xiao Zhang
- National Clinical Research Center for Mental Disorders & Key Laboratory of Mental Health, Ministry of Health (Peking University), Peking University Sixth Hospital (Institute of Mental Health), Beijing 100191, China
| | - Yan Gao
- Department of Psychiatry, Jining Medical University, Jining, Shandong 272067, China
| | - Xia Liu
- Department of Psychiatry, Shandong Daizhuang Hospital, Jining, Shandong 272051, China
| | - Chuanzheng Gu
- Department of Psychiatry, Shandong Daizhuang Hospital, Jining, Shandong 272051, China
| | - Ranran Xue
- Department of Psychiatry, Shandong Daizhuang Hospital, Jining, Shandong 272051, China
| | - Qiuling Wang
- Department of Psychiatry, Shandong Daizhuang Hospital, Jining, Shandong 272051, China
| | - Min Chen
- Department of Psychiatry, Jining Medical University, Jining, Shandong 272067, China
| | - Jinguo Zhai
- Department of Psychiatry, Jining Medical University, Jining, Shandong 272067, China
| | - Weihua Yue
- National Clinical Research Center for Mental Disorders & Key Laboratory of Mental Health, Ministry of Health (Peking University), Peking University Sixth Hospital (Institute of Mental Health), Beijing 100191, China; PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing 100871, China.
| | - Hao Yu
- Department of Psychiatry, Jining Medical University, Jining, Shandong 272067, China.
| |
Collapse
|
19
|
Divergent prognostic effects of pre-existing and treatment-emergent thyroid dysfunction in patients treated with immune checkpoint inhibitors. Cancer Immunol Immunother 2022; 71:2169-2181. [PMID: 35072744 PMCID: PMC9308834 DOI: 10.1007/s00262-022-03151-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 01/03/2022] [Indexed: 12/17/2022]
Abstract
Background Thyroid dysfunction is among the most common autoimmune diseases and immune checkpoint inhibitor (ICI)-induced immune-related adverse events (irAE). We determined the association between longitudinal thyroid function and clinical outcomes in patients treated with ICI. Methods We identified all patients treated with ICI at UT Southwestern Medical Center from January 1, 2011, through December 31, 2020. We defined normal thyroid stimulating hormone (TSH) and free thyroxine (FT4) levels according to institutional reference range. We defined clinical thyroid dysfunction using established criteria incorporating labs and treatment. We determined the association between thyroid function and overall survival (OS) using Kaplan–Meier curves, log-rank tests, and multivariate Cox proportional hazards model. Results A total of 1781 patients were included in analyses, of whom 381 (21%) had abnormal baseline TSH. Patients with abnormal baseline TSH were more likely to be female, have kidney cancer, and initiate levothyroxine after ICI initiation (all P < 0.001). Patients with abnormal baseline TSH had inferior OS (median 16 vs 27 months; P < 0.001). Among patients with normal baseline TSH, those who had abnormal TSH after ICI initiation had improved OS (median 41 vs 22 months; P < 0.001). In a multivariate Cox model, abnormal baseline TSH was associated with worse OS (HR 1.62; 95% CI, 1.30–2.02; P < 0.001), while initiation of levothyroxine after ICI initiation was associated with improved OS (HR 0.62; 95% CI, 0.44–0.88; P = 0.008). Conclusions ICI-induced thyroid dysfunction is associated with improved survival, although abnormal TSH prior to ICI initiation is associated with inferior survival. Precis Thyroid abnormalities occur commonly in the general population and as immunotherapy toxicities. We found that immunotherapy-induced thyroid dysfunction is associated with better survival, but pre-existing thyroid abnormalities convey worse outcomes. Supplementary Information The online version contains supplementary material available at 10.1007/s00262-022-03151-2.
Collapse
|
20
|
Kim C, Kim YJ, Choi W, Jang HM, Hwang MY, Jung S, Lim H, Hong SB, Yoon K, Kim BJ, Park HY, Han B. Phenome-wide association study of the major histocompatibility complex region in the Korean population identifies novel association signals. Hum Mol Genet 2022; 31:2655-2667. [PMID: 35043955 DOI: 10.1093/hmg/ddac016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 11/11/2021] [Accepted: 01/11/2022] [Indexed: 11/13/2022] Open
Abstract
Human leukocyte antigen (HLA) gene variants in the major histocompatibility complex (MHC) region are associated with numerous complex human diseases and quantitative traits. Previous phenome-wide association studies (PheWAS) for this region demonstrated that HLA association patterns to the phenome have both population-specific and population-shared components. We performed MHC PheWAS in the Korean population by analyzing associations between phenotypes and genetic variants in the MHC region using the Korea Biobank Array project data samples from the Korean Genome and Epidemiology Study (KoGES) cohorts. Using this single-population dataset, we curated and analyzed 82 phenotypes for 125 673 Korean individuals after imputing HLA using CookHLA, a recently developed imputation framework. More than one-third of these phenotypes showed significant associations, confirming 56 known associations and discovering 13 novel association signals that were not reported previously. In addition, we analyzed heritability explained by the variants in the MHC region and genetic correlations among phenotypes based on the MHC variants.
Collapse
Affiliation(s)
- Chanwoo Kim
- Department of Electrical and Computer Engineering, Seoul National University, Seoul 08826, Republic of Korea
- Paul G. Allen School of Computer Science and Engineering, University of Washington, Seattle, WA 98195, USA
| | - Young Jin Kim
- Division of Genome Science, Department of Precision Medicine, National Institute of Health, Cheongju-si, Chungcheongbuk-do 28159,, Republic of Korea
| | - Wanson Choi
- Department of Biomedical Sciences, BK21 Plus Biomedical Science Project, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Hye-Mi Jang
- Division of Genome Science, Department of Precision Medicine, National Institute of Health, Cheongju-si, Chungcheongbuk-do 28159,, Republic of Korea
| | - Mi Yeong Hwang
- Division of Genome Science, Department of Precision Medicine, National Institute of Health, Cheongju-si, Chungcheongbuk-do 28159,, Republic of Korea
| | - Sunwoo Jung
- Interdisciplinary Program in Bioengineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Hyunjoon Lim
- Interdisciplinary Program in Bioengineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Sang Bin Hong
- Department of Neurology, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Kyungheon Yoon
- Division of Genome Science, Department of Precision Medicine, National Institute of Health, Cheongju-si, Chungcheongbuk-do 28159,, Republic of Korea
| | - Bong-Jo Kim
- Division of Genome Science, Department of Precision Medicine, National Institute of Health, Cheongju-si, Chungcheongbuk-do 28159,, Republic of Korea
| | - Hyun-Young Park
- Department of Precision Medicine, National Institute of Health, Cheongju-si, Chungcheongbuk-do 28159, Republic of Korea
| | - Buhm Han
- Department of Biomedical Sciences, BK21 Plus Biomedical Science Project, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
- Interdisciplinary Program in Bioengineering, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
21
|
Ren W, Xu C, Wang S, Li H, Dai H, Yang F, Shao Y, Bai Y. The effect of VAV3 polymorphisms on thyroid cancer. Endocrine 2022; 75:178-184. [PMID: 34292486 DOI: 10.1007/s12020-021-02827-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 07/10/2021] [Indexed: 10/20/2022]
Abstract
BACKGROUND The incidence of thyroid cancer is rising rapidly in China, but there are few studies on the risk factors of thyroid cancer in the Chinese Han population. METHODS We performed this case-control study of 510 patients and 509 controls to for determine the linkage of VAV3 variants (rs17019602, rs7521681, rs4915076, and rs1777451) with thyroid cancer susceptibility by computing the odds ratio (OR) and 95% confidence intervals (CI). Multi-factor dimension reduction (MDR) analysis was conducted to assess interaction of VAV3 genetic variants. RESULTS We found that rs7521681 was remarkably related to a higher risk of thyroid cancer (OR = 1.74, p = 0.012), whereas rs4915076 (OR = 0.66, p = 0.001) significantly decreased thyroid cancer susceptibility. Stratified analyses showed that rs4915076 had a protective role in thyroid cancer in both ages >45 years (OR = 0.70, p = 0.017) and age ≤45 years (OR = 0.63, p = 0.007). Rs17019602 could increase the susceptibility of thyroid cancer in men (OR = 4.76, p = 0.049). Rs7521681 was related to an increased risk of thyroid cancer in women (OR = 1.97, p = 0.012). Rs4915076 could protect individuals from thyroid cancer both in men (OR = 0.60, p = 0.031) and women (OR = 0.68, p = 0.010). Moreover, rs4915076 was the best single-locus model to predict thyroid cancer. Interestingly, the interaction model of rs17019602, rs7521681, rs4915076, rs1777451, and age was a candidate gene-environment model. CONCLUSION Our results indicated VAV3 variants were associated with thyroid cancer, which provides a new sight into etiology of thyroid cancer.
Collapse
Affiliation(s)
- Wanli Ren
- Otorhinolaryngology head and neck surgery, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Chongwen Xu
- Otorhinolaryngology head and neck surgery, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Shiyang Wang
- Otorhinolaryngology head and neck surgery, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Huajing Li
- Otorhinolaryngology head and neck surgery, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Hao Dai
- Otorhinolaryngology head and neck surgery, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Fangli Yang
- Otorhinolaryngology head and neck surgery, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Yuan Shao
- Otorhinolaryngology head and neck surgery, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China.
| | - Yanxia Bai
- Otorhinolaryngology head and neck surgery, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China.
| |
Collapse
|
22
|
Ellervik C, Mora S, Kuś A, Åsvold B, Marouli E, Deloukas P, Sterenborg RB, Teumer A, Burgess S, Sabater-Lleal M, Huffman J, Johnson AD, Trégouet DA, Smith NL, Medici M, DeVries PS, Chasman DI, Kjaergaard AD. Effects of Thyroid Function on Hemostasis, Coagulation, and Fibrinolysis: A Mendelian Randomization Study. Thyroid 2021; 31:1305-1315. [PMID: 34210154 PMCID: PMC8558080 DOI: 10.1089/thy.2021.0055] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Background: Untreated hypothyroidism is associated with acquired von Willebrand syndrome, and hyperthyroidism is associated with increased thrombosis risk. However, the causal effects of thyroid function on hemostasis, coagulation, and fibrinolysis are unknown. Methods: In a two-sample Mendelian randomization (MR) study with genome-wide association variants, we assessed causality of genetically predicted hypothyroidism (N = 134,641), normal-range thyrotropin (TSH; N = 54,288) and free thyroxine (fT4) (N = 49,269), hyperthyroidism (N = 51,823), and thyroid peroxidase antibody positivity (N = 25,821) on coagulation (activated partial thromboplastin time, von Willebrand factor [VWF], factor VIII [FVIII], prothrombin time, factor VII, fibrinogen) and fibrinolysis (D-dimer, tissue plasminogen activator [TPA], plasminogen activator inhibitor-1) from the CHARGE Hemostasis Consortium (N = 2583-120,246). Inverse-variance-weighted random effects were the main MR analysis followed by sensitivity analyses. Two-sided p < 0.05 was nominally significant, and p < 0.0011[ = 0.05/(5 exposures × 9 outcomes)] was Bonferroni significant for the main MR analysis. Results: Genetically increased TSH was associated with decreased VWF [β(SE) = -0.020(0.006), p = 0.001] and with decreased fibrinogen [β(SE) = -0.008(0.002), p = 0.001]. Genetically increased fT4 was associated with increased VWF [β(SE) = 0.028(0.011), p = 0.012]. Genetically predicted hyperthyroidism was associated with increased VWF [β(SE) = 0.012(0.004), p = 0.006] and increased FVIII [β(SE) = 0.013(0.005), p = 0.007]. Genetically predicted hypothyroidism and hyperthyroidism were associated with decreased TPA [β(SE) = -0.009(0.024), p = 0.024] and increased TPA [β(SE) = 0.022(0.008), p = 0.008], respectively. MR sensitivity analyses showed similar direction but lower precision. Other coagulation and fibrinolytic factors were inconclusive. Conclusions: In the largest genetic studies currently available, genetically increased TSH and fT4 may be associated with decreased and increased synthesis of VWF, respectively. Since Bonferroni correction may be too conservative given the correlation between the analyzed traits, we cannot reject nominal associations of thyroid traits with coagulation or fibrinolytic factors.
Collapse
Affiliation(s)
- Christina Ellervik
- Department of Laboratory Medicine, Boston Children's Hospital, Boston, Massachusetts, USA
- Department of Pathology, Harvard Medical School, Boston, Massachusetts, USA
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Data and Data Support, Region Zealand, Sorø, Denmark
- Address correspondence to: Christina Ellervik, MD, PhD, Department of Laboratory Medicine, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA 02115, USA.
| | - Samia Mora
- Center for Lipid Metabolomics, Division of Preventive Medicine; Brigham and Women's Hospital, and Harvard Medical School, Boston, Massachusetts, USA
- Division of Cardiovascular Medicine, Brigham and Women's Hospital, and Harvard Medical School, Boston, Massachusetts, USA
| | - Aleksander Kuś
- Department of Internal Medicine, Academic Center for Thyroid Diseases; Erasmus Medical Center, Rotterdam, The Netherlands
- Department of Epidemiology, Erasmus Medical Center, Rotterdam, The Netherlands
- Department of Internal Medicine and Endocrinology, Medical University of Warsaw, Warsaw, Poland
| | - Bjørn Åsvold
- K.G. Jebsen Center for Genetic Epidemiology, Department of Public Health and Nursing, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
- Department of Endocrinology, Clinic of Medicine, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
| | - Eirini Marouli
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Panos Deloukas
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
- Princess Al-Jawhara Al-Brahim Centre of Excellence in Research of Hereditary Disorders (PACER-HD), King Abdulaziz University, Jeddah, Saudi Arabia
| | - Rosalie B.T.M. Sterenborg
- Department of Internal Medicine, Academic Center for Thyroid Diseases; Erasmus Medical Center, Rotterdam, The Netherlands
- Department of Epidemiology, Erasmus Medical Center, Rotterdam, The Netherlands
- Department of Internal Medicine, Radboud Institute for Health Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Alexander Teumer
- Institute for Community Medicine, University Medicine Greifswald, Greifswald, Germany
- DZHK (German Center for Cardiovascular Research), Partner Site Greifswald, Greifswald, Germany
| | - Stephen Burgess
- MRC Biostatistics Unit, University of Cambridge, Cambridge, United Kingdom
- Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, United Kingdom
| | - Maria Sabater-Lleal
- Genomics of Complex Diseases Group, Research Institute Hospital de la Santa Creu i Sant Pau, IIB Sant Pau, Barcelona, Spain
- Cardiovascular Medicine Unit, Department of Medicine, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Jennifer Huffman
- Scientific Director for Genomics Research, Center for Population Genomics, Massachusetts Veterans Epidemiology Research and Information Center (MAVERIC), VA Boston Healthcare System, Boston, Massachusetts, USA
| | - Andrew D. Johnson
- National Heart, Lung and Blood Institute's The Framingham Heart Study, Population Sciences Branch, Division of Intramural Research, National Heart, Lung and Blood Institute, Framingham, Massachusetts, USA
| | - David-Alexandre Trégouet
- INSERM U1219, Bordeaux Population Health Research Center, University of Bordeaux, Bordeaux, France
| | - Nicolas L. Smith
- Department of Epidemiology, University of Washington, Seattle, Washington, USA
- Kaiser Permamente Washington Health Research Institute, Kaiser Permanente Washington, Seattle, Washington, USA
- Seattle Epidemiologic Research and Information Center, Department of Veterans Affairs Office of Research and Development, Seattle, Washington, USA
| | - Marco Medici
- Department of Internal Medicine, Academic Center for Thyroid Diseases; Erasmus Medical Center, Rotterdam, The Netherlands
- Department of Epidemiology, Erasmus Medical Center, Rotterdam, The Netherlands
- Department of Internal Medicine, Radboud Institute for Health Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Paul S. DeVries
- Department of Epidemiology, Human Genetics, and Environmental Sciences, Human Genetics Center, School of Public Health, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Daniel I. Chasman
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
- Program in Medical and Population Genetics, The Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
- Division of Preventive Medicine, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | | |
Collapse
|
23
|
Heilbron K, Mozaffari SV, Vacic V, Yue P, Wang W, Shi J, Jubb AM, Pitts SJ, Wang X. Advancing drug discovery using the power of the human genome. J Pathol 2021; 254:418-429. [PMID: 33748968 PMCID: PMC8251523 DOI: 10.1002/path.5664] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Revised: 03/11/2021] [Accepted: 03/16/2021] [Indexed: 12/31/2022]
Abstract
Human genetics plays an increasingly important role in drug development and population health. Here we review the history of human genetics in the context of accelerating the discovery of therapies, present examples of how human genetics evidence supports successful drug targets, and discuss how polygenic risk scores could be beneficial in various clinical settings. We highlight the value of direct-to-consumer platforms in the era of fast-paced big data biotechnology, and how diverse genetic and health data can benefit society. © 2021 23andMe, Inc. The Journal of Pathology published by John Wiley & Sons, Ltd. on behalf of The Pathological Society of Great Britain and Ireland.
Collapse
|
24
|
Khan Z, Hammer C, Carroll J, Di Nucci F, Acosta SL, Maiya V, Bhangale T, Hunkapiller J, Mellman I, Albert ML, McCarthy MI, Chandler GS. Genetic variation associated with thyroid autoimmunity shapes the systemic immune response to PD-1 checkpoint blockade. Nat Commun 2021; 12:3355. [PMID: 34099659 PMCID: PMC8184890 DOI: 10.1038/s41467-021-23661-4] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 05/05/2021] [Indexed: 12/19/2022] Open
Abstract
Activation of systemic immune responses using PD-1 checkpoint inhibitors is an essential approach to cancer therapy. Yet, the extent of benefit relative to risk of immune related adverse events (irAE) varies widely among patients. Here, we study endocrine irAE from 7 clinical trials across 6 cancers where atezolizumab (anti-PD-L1) was combined with chemotherapies and compared to standard of care. We show that atezolizumab-induced thyroid dysfunction is associated with longer survival. We construct a polygenic risk score (PRS) for lifetime risk of hypothyroidism using a GWAS from the UK Biobank and apply this PRS to genetic data collected from 2,616 patients of European ancestry from these trials. Patients with high PRS are at increased risk of atezolizumab-induced thyroid dysfunction and lower risk of death in triple negative breast cancer. Our results indicate that genetic variation associated with thyroid autoimmunity interacts with biological pathways driving the systemic immune response to PD-1 blockade.
Collapse
Affiliation(s)
- Zia Khan
- Genentech, South San Francisco, CA, USA.
| | | | | | | | | | | | | | | | | | - Matthew L Albert
- Genentech, South San Francisco, CA, USA
- insitro, South San Francisco, CA, USA
| | | | | |
Collapse
|
25
|
Yamamoto R, Hwang J, Ishikawa T, Kon T, Sale WS. Composition and function of ciliary inner-dynein-arm subunits studied in Chlamydomonas reinhardtii. Cytoskeleton (Hoboken) 2021; 78:77-96. [PMID: 33876572 DOI: 10.1002/cm.21662] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 03/30/2021] [Accepted: 04/15/2021] [Indexed: 11/09/2022]
Abstract
Motile cilia (also interchangeably called "flagella") are conserved organelles extending from the surface of many animal cells and play essential functions in eukaryotes, including cell motility and environmental sensing. Large motor complexes, the ciliary dyneins, are present on ciliary outer-doublet microtubules and drive movement of cilia. Ciliary dyneins are classified into two general types: the outer dynein arms (ODAs) and the inner dynein arms (IDAs). While ODAs are important for generation of force and regulation of ciliary beat frequency, IDAs are essential for control of the size and shape of the bend, features collectively referred to as waveform. Also, recent studies have revealed unexpected links between IDA components and human diseases. In spite of their importance, studies on IDAs have been difficult since they are very complex and composed for several types of IDA motors, each unique in composition and location in the axoneme. Thanks in part to genetic, biochemical, and structural analysis of Chlamydomonas reinhardtii, we are beginning to understand the organization and function of the ciliary IDAs. In this review, we summarize the composition of Chlamydomonas IDAs particularly focusing on each subunit, and discuss the assembly, conservation, and functional role(s) of these IDA subunits. Furthermore, we raise several additional questions/challenges regarding IDAs, and discuss future perspectives of IDA studies.
Collapse
Affiliation(s)
- Ryosuke Yamamoto
- Department of Biological Sciences, Graduate School of Science, Osaka University, Osaka, Japan
| | - Juyeon Hwang
- Department of Cell Biology, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Takashi Ishikawa
- Department of Biology and Chemistry, Paul Scherrer Institute, Villigen PSI, Switzerland.,Department of Biology, ETH Zurich, Zurich, Switzerland
| | - Takahide Kon
- Department of Biological Sciences, Graduate School of Science, Osaka University, Osaka, Japan
| | - Winfield S Sale
- Department of Cell Biology, Emory University School of Medicine, Atlanta, Georgia, USA
| |
Collapse
|
26
|
Assessment of causal association between thyroid function and lipid metabolism: a Mendelian randomization study. Chin Med J (Engl) 2021; 134:1064-1069. [PMID: 33942801 PMCID: PMC8116035 DOI: 10.1097/cm9.0000000000001505] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Background: Thyroid dysfunction is associated with cardiovascular diseases. However, the role of thyroid function in lipid metabolism remains partly unknown. The present study aimed to investigate the causal association between thyroid function and serum lipid metabolism via a genetic analysis termed Mendelian randomization (MR). Methods: The MR approach uses a genetic variant as the instrumental variable in epidemiological studies to mimic a randomized controlled trial. A two-sample MR was performed to assess the causal association, using summary statistics from the Atrial Fibrillation Genetics Consortium (n = 537,409) and the Global Lipids Genetics Consortium (n = 188,577). The clinical measures of thyroid function include thyrotropin (TSH), free triiodothyronine (FT3) and free thyroxine (FT4) levels, FT3:FT4 ratio and concentration of thyroid peroxidase antibodies (TPOAb). The serum lipid metabolism traits include total cholesterol (TC) and triglycerides, high-density lipoprotein, and low-density lipoprotein (LDL) levels. The MR estimate and MR inverse variance-weighted method were used to assess the association between thyroid function and serum lipid metabolism. Results: The results demonstrated that increased TSH levels were significantly associated with higher TC (β = 0.052, P = 0.002) and LDL (β = 0.041, P = 0.018) levels. In addition, the FT3:FT4 ratio was significantly associated with TC (β = 0.240, P = 0.033) and LDL (β = 0.025, P = 0.027) levels. However, no significant differences were observed between genetically predicted FT4 and TPOAb and serum lipids. Conclusion: Taken together, the results of the present study suggest an association between thyroid function and serum lipid metabolism, highlighting the importance of the pituitary-thyroid-cardiac axis in dyslipidemia susceptibility.
Collapse
|
27
|
Simcoe M, Valdes A, Liu F, Furlotte NA, Evans DM, Hemani G, Ring SM, Smith GD, Duffy DL, Zhu G, Gordon SD, Medland SE, Vuckovic D, Girotto G, Sala C, Catamo E, Concas MP, Brumat M, Gasparini P, Toniolo D, Cocca M, Robino A, Yazar S, Hewitt A, Wu W, Kraft P, Hammond CJ, Shi Y, Chen Y, Zeng C, Klaver CCW, Uitterlinden AG, Ikram MA, Hamer MA, van Duijn CM, Nijsten T, Han J, Mackey DA, Martin NG, Cheng CY, Hinds DA, Spector TD, Kayser M, Hysi PG. Genome-wide association study in almost 195,000 individuals identifies 50 previously unidentified genetic loci for eye color. SCIENCE ADVANCES 2021; 7:eabd1239. [PMID: 33692100 PMCID: PMC7946369 DOI: 10.1126/sciadv.abd1239] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 01/25/2021] [Indexed: 05/03/2023]
Abstract
Human eye color is highly heritable, but its genetic architecture is not yet fully understood. We report the results of the largest genome-wide association study for eye color to date, involving up to 192,986 European participants from 10 populations. We identify 124 independent associations arising from 61 discrete genomic regions, including 50 previously unidentified. We find evidence for genes involved in melanin pigmentation, but we also find associations with genes involved in iris morphology and structure. Further analyses in 1636 Asian participants from two populations suggest that iris pigmentation variation in Asians is genetically similar to Europeans, albeit with smaller effect sizes. Our findings collectively explain 53.2% (95% confidence interval, 45.4 to 61.0%) of eye color variation using common single-nucleotide polymorphisms. Overall, our study outcomes demonstrate that the genetic complexity of human eye color considerably exceeds previous knowledge and expectations, highlighting eye color as a genetically highly complex human trait.
Collapse
Affiliation(s)
- Mark Simcoe
- Department of Twins Research and Genetic Epidemiology, King's College London, London, UK
- Department of Ophthalmology, King's College London, London, UK
| | - Ana Valdes
- Department of Twins Research and Genetic Epidemiology, King's College London, London, UK
- Division of Rheumatology, Orthopaedics and Dermatology, School of Medicine, University of Nottingham, Nottingham, UK
| | - Fan Liu
- Department of Genetic Identification, Erasmus MC University Medical Center Rotterdam, Rotterdam, Netherlands
- Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | | | - David M Evans
- University of Queensland Diamantina Institute, University of Queensland, Brisbane, Queensland, Australia
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK
| | - Gibran Hemani
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK
- Population Health Sciences Bristol Medical School University of Bristol, Bristol, UK
| | - Susan M Ring
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK
- Population Health Sciences Bristol Medical School University of Bristol, Bristol, UK
| | - George Davey Smith
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK
- Population Health Sciences Bristol Medical School University of Bristol, Bristol, UK
| | - David L Duffy
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Gu Zhu
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Scott D Gordon
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Sarah E Medland
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Dragana Vuckovic
- Department of Medical Sciences, University of Trieste, Trieste, Italy
- Institute for Maternal and Child Health IRCCS "Burlo Garofolo", Trieste, Italy
- Epidemiology and Biostatistics Department, Faculty of Medicine, School of Public Health, Imperial College London, London, UK
| | - Giorgia Girotto
- Department of Medical Sciences, University of Trieste, Trieste, Italy
- Institute for Maternal and Child Health IRCCS "Burlo Garofolo", Trieste, Italy
| | - Cinzia Sala
- Division of Genetics of Common Disorders, S. Raffaele Scientific Institute, Milan, Italy
| | - Eulalia Catamo
- Department of Medical Sciences, University of Trieste, Trieste, Italy
| | - Maria Pina Concas
- Institute for Maternal and Child Health IRCCS "Burlo Garofolo", Trieste, Italy
| | - Marco Brumat
- Department of Medical Sciences, University of Trieste, Trieste, Italy
| | - Paolo Gasparini
- Department of Medical Sciences, University of Trieste, Trieste, Italy
- Institute for Maternal and Child Health IRCCS "Burlo Garofolo", Trieste, Italy
| | - Daniela Toniolo
- Division of Genetics of Common Disorders, S. Raffaele Scientific Institute, Milan, Italy
| | - Massimiliano Cocca
- Institute for Maternal and Child Health IRCCS "Burlo Garofolo", Trieste, Italy
| | - Antonietta Robino
- Institute for Maternal and Child Health IRCCS "Burlo Garofolo", Trieste, Italy
| | - Seyhan Yazar
- Centre for Ophthalmology and Visual Science, University of Western Australia, Lions Eye Institute, Perth, Australia
| | - Alex Hewitt
- Centre for Ophthalmology and Visual Science, University of Western Australia, Lions Eye Institute, Perth, Australia
- Centre for Eye Research Australia, University of Melbourne, Department of Ophthalmology, Royal Victorian Eye and Ear Hospital, Melbourne, Australia
- School of Medicine, Menzies Research Institute Tasmania, University of Tasmania, Hobart, Australia
| | - Wenting Wu
- Department of Epidemiology, Fairbanks School of Public Health, Indiana University, and Indiana University Melvin and Bren Simon Cancer Center, Indianapolis, IN, USA
| | - Peter Kraft
- Program in Genetic Epidemiology and Statistical Genetics, Harvard T.H. Chan School of Public Health, Harvard University, Boston, MA, USA
| | - Christopher J Hammond
- Department of Twins Research and Genetic Epidemiology, King's College London, London, UK
- Department of Ophthalmology, King's College London, London, UK
| | - Yuan Shi
- Singapore Eye Research Institute, Singapore National Eye Center, Singapore
| | - Yan Chen
- Department of Genetic Identification, Erasmus MC University Medical Center Rotterdam, Rotterdam, Netherlands
- Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Changqing Zeng
- Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
| | - Caroline C W Klaver
- Department of Ophthalmology, Erasmus MC University Medical Center Rotterdam, Rotterdam, Netherlands
- Department of Epidemiology, Erasmus MC University Medical Center Rotterdam, Rotterdam, Netherlands
- Department of Ophthalmology, Radboud University Medical Center, Nijmegen, Netherlands
| | - Andre G Uitterlinden
- Department of Epidemiology, Erasmus MC University Medical Center Rotterdam, Rotterdam, Netherlands
- Department of Internal Medicine, Erasmus MC University Medical Center Rotterdam, Rotterdam, Netherlands
| | - M Arfan Ikram
- Department of Epidemiology, Erasmus MC University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Merel A Hamer
- Department of Dermatology, Erasmus MC University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Cornelia M van Duijn
- Department of Epidemiology, Erasmus MC University Medical Center Rotterdam, Rotterdam, Netherlands
- Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Tamar Nijsten
- Department of Dermatology, Erasmus MC University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Jiali Han
- Department of Epidemiology, Fairbanks School of Public Health, Indiana University, and Indiana University Melvin and Bren Simon Cancer Center, Indianapolis, IN, USA
| | - David A Mackey
- Centre for Ophthalmology and Visual Science, University of Western Australia, Lions Eye Institute, Perth, Australia
| | - Nicholas G Martin
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Ching-Yu Cheng
- Singapore Eye Research Institute, Singapore National Eye Center, Singapore
- Duke-NUS Medical School, Singapore
| | | | - Timothy D Spector
- Department of Twins Research and Genetic Epidemiology, King's College London, London, UK
| | - Manfred Kayser
- Department of Genetic Identification, Erasmus MC University Medical Center Rotterdam, Rotterdam, Netherlands.
| | - Pirro G Hysi
- Department of Twins Research and Genetic Epidemiology, King's College London, London, UK.
- Department of Ophthalmology, King's College London, London, UK
| |
Collapse
|
28
|
Zeber-Lubecka N, Hennig EE. Genetic Susceptibility to Joint Occurrence of Polycystic Ovary Syndrome and Hashimoto's Thyroiditis: How Far Is Our Understanding? Front Immunol 2021; 12:606620. [PMID: 33746952 PMCID: PMC7968419 DOI: 10.3389/fimmu.2021.606620] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 01/07/2021] [Indexed: 12/15/2022] Open
Abstract
Polycystic ovary syndrome (PCOS) and Hashimoto’s thyroiditis (HT) are endocrine disorders that commonly occur among young women. A higher prevalence of HT in women with PCOS, relative to healthy individuals, is observed consistently. Combined occurrence of both diseases is associated with a higher risk of severe metabolic and reproductive complications. Genetic factors strongly impact the pathogenesis of both PCOS and HT and several susceptibility loci associated with a higher risk of both disorders have been identified. Furthermore, some candidate gene polymorphisms are thought to be functionally relevant; however, few genetic variants are proposed to be causally associated with the incidence of both disorders together.
Collapse
Affiliation(s)
- Natalia Zeber-Lubecka
- Department of Gastroenterology, Hepatology and Clinical Oncology, Centre of Postgraduate Medical Education, Warsaw, Poland
| | - Ewa E Hennig
- Department of Gastroenterology, Hepatology and Clinical Oncology, Centre of Postgraduate Medical Education, Warsaw, Poland.,Department of Genetics, Maria Skłodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| |
Collapse
|
29
|
Kherrour W, Kalicanin D, Brčić L, Hambaba L, Yahia M, Benbia S, Perica VB. Genotype association of IP6K3 gene with Hashimoto’s thyroiditis in Algerian population (Aures region). EGYPTIAN JOURNAL OF MEDICAL HUMAN GENETICS 2020. [DOI: 10.1186/s43042-020-00086-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Hashimoto’s thyroiditis (HT) is a chronic autoimmune disease of the thyroid gland and is also the main cause of hypothyroidism. A recent genome-wide association study (GWAS) suggested an association of three novel genetic variants with HT in a population of Caucasian origin (Croatian). A case-control study was performed to investigate the association of these three newly suggested genetic variants with HT in a non-Caucasian ethnic group, an Arab-Berber from Algeria.
Three variants (rs12944194 located 206 kb from SDK2, rs791903 inside IP6K3, and rs75201096 inside GNA14) were genotyped using real-time PCR.
Results
There were no significant differences in allele frequencies of the three genetic variants between HT cases and controls. However, the present study showed nominal significance in the genotype distribution of rs791903 (IP6K3 gene) between HT patients and the control group (P = 0.024); we observed a decrease in the frequency of rs791903 recessive homozygotes (CC) in HT cases versus controls (OR = 0.476, P = 0.025).
Conclusion
This is the first study that showed the genotypic association of IP6K3 intronic variant with decreased risk for HT in non-Caucasian, Algerian, population, whereas we did not confirm the association of SDK2 and GNA14 genetic variants with HT. The IP6K3 gene (inositol hexaphosphate kinase 3), located near major histocompatibility complex (MHC), has previously been associated with other common autoimmune diseases beside HT, such as Graves’s disease and rheumatoid arthritis, which is providing more evidence of a good candidacy for the genetic contribution to the development of HT and autoimmunity.
Collapse
|
30
|
Zheng NS, Feng Q, Kerchberger VE, Zhao J, Edwards TL, Cox NJ, Stein CM, Roden DM, Denny JC, Wei WQ. PheMap: a multi-resource knowledge base for high-throughput phenotyping within electronic health records. J Am Med Inform Assoc 2020; 27:1675-1687. [PMID: 32974638 PMCID: PMC7751140 DOI: 10.1093/jamia/ocaa104] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 05/06/2020] [Accepted: 05/13/2020] [Indexed: 01/16/2023] Open
Abstract
OBJECTIVE Developing algorithms to extract phenotypes from electronic health records (EHRs) can be challenging and time-consuming. We developed PheMap, a high-throughput phenotyping approach that leverages multiple independent, online resources to streamline the phenotyping process within EHRs. MATERIALS AND METHODS PheMap is a knowledge base of medical concepts with quantified relationships to phenotypes that have been extracted by natural language processing from publicly available resources. PheMap searches EHRs for each phenotype's quantified concepts and uses them to calculate an individual's probability of having this phenotype. We compared PheMap to clinician-validated phenotyping algorithms from the Electronic Medical Records and Genomics (eMERGE) network for type 2 diabetes mellitus (T2DM), dementia, and hypothyroidism using 84 821 individuals from Vanderbilt Univeresity Medical Center's BioVU DNA Biobank. We implemented PheMap-based phenotypes for genome-wide association studies (GWAS) for T2DM, dementia, and hypothyroidism, and phenome-wide association studies (PheWAS) for variants in FTO, HLA-DRB1, and TCF7L2. RESULTS In this initial iteration, the PheMap knowledge base contains quantified concepts for 841 disease phenotypes. For T2DM, dementia, and hypothyroidism, the accuracy of the PheMap phenotypes were >97% using a 50% threshold and eMERGE case-control status as a reference standard. In the GWAS analyses, PheMap-derived phenotype probabilities replicated 43 of 51 previously reported disease-associated variants for the 3 phenotypes. For 9 of the 11 top associations, PheMap provided an equivalent or more significant P value than eMERGE-based phenotypes. The PheMap-based PheWAS showed comparable or better performance to a traditional phecode-based PheWAS. PheMap is publicly available online. CONCLUSIONS PheMap significantly streamlines the process of extracting research-quality phenotype information from EHRs, with comparable or better performance to current phenotyping approaches.
Collapse
Affiliation(s)
- Neil S Zheng
- Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - QiPing Feng
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Division of Clinical Pharmacology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - V Eric Kerchberger
- Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Juan Zhao
- Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Todd L Edwards
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Nancy J Cox
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - C Michael Stein
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Division of Clinical Pharmacology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Department of Pharmacology, Vanderbilt University, Nashville, Tennessee, USA
| | - Dan M Roden
- Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Division of Clinical Pharmacology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Department of Pharmacology, Vanderbilt University, Nashville, Tennessee, USA
| | - Joshua C Denny
- Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Wei-Qi Wei
- Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| |
Collapse
|
31
|
Li QS, Tian C, Hinds D. Genome-wide association studies of antidepressant class response and treatment-resistant depression. Transl Psychiatry 2020; 10:360. [PMID: 33106475 PMCID: PMC7589471 DOI: 10.1038/s41398-020-01035-6] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 07/20/2020] [Accepted: 07/28/2020] [Indexed: 12/21/2022] Open
Abstract
The "antidepressant efficacy" survey (AES) was deployed to > 50,000 23andMe, Inc. research participants to investigate the genetic basis of treatment-resistant depression (TRD) and non-treatment-resistant depression (NTRD). Genome-wide association studies (GWAS) were performed, including TRD vs. NTRD, selective serotonin reuptake inhibitor (SSRI) responders vs. non-responders, serotonin-norepinephrine reuptake inhibitor (SNRI) responders vs. non-responders, and norepinephrine-dopamine reuptake inhibitor responders vs. non-responders. Only the SSRI association reached the genome-wide significance threshold (p < 5 × 10-8): one genomic region in RNF219-AS1 (SNP rs4884091, p = 2.42 × 10-8, OR = 1.21); this association was also observed in the meta-analysis (13,130 responders vs. 6,610 non-responders) of AES and an earlier "antidepressant efficacy and side effects" survey (AESES) cohort. Meta-analysis for SNRI response phenotype derived from AES and AESES (4030 responders vs. 3049 non-responders) identified another genomic region (lead SNP rs4955665, p = 1.62 × 10-9, OR = 1.25) in an intronic region of MECOM passing the genome-wide significance threshold. Meta-analysis for the TRD phenotype (31,068 NTRD vs 5,714 TRD) identified one additional genomic region (lead SNP rs150245813, p = 8.07 × 10-9, OR = 0.80) in 10p11.1 passing the genome-wide significance threshold. A stronger association for rs150245813 was observed in current study (p = 7.35 × 10-7, OR = 0.79) than the previous study (p = 1.40 × 10-3, OR = 0.81), and for rs4955665, a stronger association in previous study (p = 1.21 × 10-6, OR = 1.27) than the current study (p = 2.64 × 10-4, OR = 1.21). In total, three novel loci associated with SSRI or SNRI (responders vs. non-responders), and NTRD vs TRD were identified; gene level association and gene set enrichment analyses implicate enrichment of genes involved in immune process.
Collapse
Affiliation(s)
- Qingqin S Li
- Janssen Research & Development, LLC, Titusville, NJ, USA.
| | | | | |
Collapse
|
32
|
FLT3 stop mutation increases FLT3 ligand level and risk of autoimmune thyroid disease. Nature 2020; 584:619-623. [PMID: 32581359 DOI: 10.1038/s41586-020-2436-0] [Citation(s) in RCA: 87] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 04/08/2020] [Indexed: 02/08/2023]
Abstract
Autoimmune thyroid disease is the most common autoimmune disease and is highly heritable1. Here, by using a genome-wide association study of 30,234 cases and 725,172 controls from Iceland and the UK Biobank, we find 99 sequence variants at 93 loci, of which 84 variants are previously unreported2-7. A low-frequency (1.36%) intronic variant in FLT3 (rs76428106-C) has the largest effect on risk of autoimmune thyroid disease (odds ratio (OR) = 1.46, P = 2.37 × 10-24). rs76428106-C is also associated with systemic lupus erythematosus (OR = 1.90, P = 6.46 × 10-4), rheumatoid factor and/or anti-CCP-positive rheumatoid arthritis (OR = 1.41, P = 4.31 × 10-4) and coeliac disease (OR = 1.62, P = 1.20 × 10-4). FLT3 encodes fms-related tyrosine kinase 3, a receptor that regulates haematopoietic progenitor and dendritic cells. RNA sequencing revealed that rs76428106-C generates a cryptic splice site, which introduces a stop codon in 30% of transcripts that are predicted to encode a truncated protein, which lacks its tyrosine kinase domains. Each copy of rs76428106-C doubles the plasma levels of the FTL3 ligand. Activating somatic mutations in FLT3 are associated with acute myeloid leukaemia8 with a poor prognosis and rs76428106-C also predisposes individuals to acute myeloid leukaemia (OR = 1.90, P = 5.40 × 10-3). Thus, a predicted loss-of-function germline mutation in FLT3 causes a reduction in full-length FLT3, with a compensatory increase in the levels of its ligand and an increased disease risk, similar to that of a gain-of-function mutation.
Collapse
|
33
|
Lin YJ, Cheng CF, Wang CH, Liang WM, Tang CH, Tsai LP, Chen CH, Wu JY, Hsieh AR, Lee MTM, Lin TH, Liao CC, Huang SM, Zhang Y, Tsai CH, Tsai FJ. Genetic Architecture Associated With Familial Short Stature. J Clin Endocrinol Metab 2020; 105:5805154. [PMID: 32170311 DOI: 10.1210/clinem/dgaa131] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 03/10/2020] [Indexed: 12/21/2022]
Abstract
CONTEXT Human height is an inheritable, polygenic trait under complex and multilocus genetic regulation. Familial short stature (FSS; also called genetic short stature) is the most common type of short stature and is insufficiently known. OBJECTIVE To investigate the FSS genetic profile and develop a polygenic risk predisposition score for FSS risk prediction. DESIGN AND SETTING The FSS participant group of Han Chinese ancestry was diagnosed by pediatric endocrinologists in Taiwan. PATIENTS AND INTERVENTIONS The genetic profiles of 1163 participants with FSS were identified by using a bootstrapping subsampling and genome-wide association studies (GWAS) method. MAIN OUTCOME MEASURES Genetic profile, polygenic risk predisposition score for risk prediction. RESULTS Ten novel genetic single nucleotide polymorphisms (SNPs) and 9 reported GWAS human height-related SNPs were identified for FSS risk. These 10 novel SNPs served as a polygenic risk predisposition score for FSS risk prediction (area under the curve: 0.940 in the testing group). This FSS polygenic risk predisposition score was also associated with the height reduction regression tendency in the general population. CONCLUSION A polygenic risk predisposition score composed of 10 genetic SNPs is useful for FSS risk prediction and the height reduction tendency. Thus, it might contribute to FSS risk in the Han Chinese population from Taiwan.
Collapse
Affiliation(s)
- Ying-Ju Lin
- Genetic Center, Department of Medical Research, China Medical University Hospital, Taichung, Taiwan
- School of Chinese Medicine, China Medical University, Taichung, Taiwan
| | - Chi-Fung Cheng
- Genetic Center, Department of Medical Research, China Medical University Hospital, Taichung, Taiwan
- Department of Health Services Administration, China Medical University, Taichung, Taiwan
| | - Chung-Hsing Wang
- Children's Hospital of China Medical University, Taichung, Taiwan
| | - Wen-Miin Liang
- Department of Health Services Administration, China Medical University, Taichung, Taiwan
| | - Chih-Hsin Tang
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
| | - Li-Ping Tsai
- Department of Pediatrics, Taipei Tzu Chi Hospital, New Taipei City, Taiwan
| | - Chien-Hsiun Chen
- School of Chinese Medicine, China Medical University, Taichung, Taiwan
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Jer-Yuarn Wu
- School of Chinese Medicine, China Medical University, Taichung, Taiwan
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Ai-Ru Hsieh
- Department of Statistics, Tamkang University, New Taipei City, Taiwan
| | | | - Ting-Hsu Lin
- Genetic Center, Department of Medical Research, China Medical University Hospital, Taichung, Taiwan
| | - Chiu-Chu Liao
- Genetic Center, Department of Medical Research, China Medical University Hospital, Taichung, Taiwan
| | - Shao-Mei Huang
- Genetic Center, Department of Medical Research, China Medical University Hospital, Taichung, Taiwan
| | - Yanfei Zhang
- Genomic Medicine Institute, Geisinger, Danville, Pennsylvania, USA
| | - Chang-Hai Tsai
- Department of Biotechnology and Bioinformatics, Asia University, Taichung, Taiwan
| | - Fuu-Jen Tsai
- Genetic Center, Department of Medical Research, China Medical University Hospital, Taichung, Taiwan
- School of Chinese Medicine, China Medical University, Taichung, Taiwan
- Children's Hospital of China Medical University, Taichung, Taiwan
- Department of Biotechnology and Bioinformatics, Asia University, Taichung, Taiwan
| |
Collapse
|
34
|
Abstract
Background: Uncertainty in the mechanism and directionality of observational associations between thyroid function and kidney function may be addressed by genetic analysis with an instrumental variable method termed bidirectional Mendelian randomization (MR). Methods: In the Women's Genome Health Study (WGHS), observational associations between thyroid measures and kidney function were evaluated. Genetic instruments for MR were from recent genome-wide association studies (GWAS) of hypothyroidism, thyrotropin (TSH), and free thyroxine (fT4) concentrations within the reference range, thyroid peroxidase antibodies (TPOAb), estimated glomerular filtration rate from creatinine (eGFRcrea), eGFR from cystatin C (eGFRcys), and chronic kidney disease (CKD). In WGHS individual-level data, these instruments were used for bidirectional MR between thyroid (N = 3336) and kidney (N = 23,186) functions. To increase power, MR was also performed using GWAS summary statistics from the Chronic Kidney Disease Genetics Consortium (CKDGen) for eGFRcrea (N = 567,460), eGFRcys (N = 24,063), CKD [N(total) = 480,698, N(cases) = 41,395], and urinary albumin/creatinine ratio (UACR/N = 54,450). Results: In the WGHS, hypothyroidism was observationally associated with decreased eGFRcrea [beta (standard error, SE): -0.024 (0.009) ln(mL/min/1.73 m2), p = 0.01]. By MR, hypothyroidism was associated with decreased eGFRcrea in the WGHS [beta (SE): -0.007 (0.002) per doubled odds hypothyroidism, p = 1.7 × 10-3] and in CKDGen [beta (SE): -0.004 (0.0005), p = 2.0 × 10-22], and robust to sensitivity analysis. Hypothyroidism was also associated by MR with increased CKD in CKDGen (odds ratio, OR [confidence interval, CI]: 1.05 [1.03-1.08], p = 3.3 × 10-5), but not in the WGHS (OR [CI]: 1.02 [0.95-1.10], p = 0.57). Increased TSH within the reference range had an MR association with increased eGFRcrea in the WGHS [beta (SE): -0.018 (0.007) ln(mL/min/1.73 m2)/standard deviation, SD, p = 6.5 × 10-3] and CKDGen [beta (SE): -0.008 (0.001) ln(mL/min/1.73 m2)/SD, p = 6.8 × 10-17], and with CKD in CKDGen (OR [CI]: 1.10 [1.04-1.15], p = 3.1 × 10-4). There were no MR associations of hypothyroidism or TSH with eGFRcys or UACR, and MR associations of fT4 in the reference range with kidney function were inconsistent in both the WGHS and CKDGen. However, by MR in CKDGen, TPOAb were robustly associated with decreased eGFRcrea [beta (SE): -0.041 (0.009), p = 6.2 × 10-6] and decreased eGFRcys [beta (SE): -0.294 (0.065), p = 6.2 × 10-6]. TPOAb were less robustly associated with CKD but not associated with UACR. In reverse MR in the WGHS, kidney function was not consistently associated with thyroid function. Conclusions: Bidirectional MR supports a directional association from hypothyroidism, increased TSH, and TPOAb, but not fT4, to decreased eGFRcrea and increased CKD.
Collapse
Affiliation(s)
- Christina Ellervik
- Department of Laboratory Medicine, Boston Children's Hospital, Boston, Massachusetts
- Department of Pathology, Harvard Medical School, Boston, Massachusetts
- Department of Medicine, Harvard Medical School, Boston, Massachusetts
- Christina Ellervik, MD, PhD, DMSci, Department of Laboratory Medicine, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA 02115 ;
| | - Samia Mora
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Cardiovascular Division, Brigham and Women's Hospital, Boston, Massachusetts
- Division of Preventive Medicine, Brigham and Women's Hospital, Boston, Massachusetts
- Center for Lipid Metabolomics, Division of Preventive Medicine, Brigham and Women's Hospital, Boston, Massachusetts
| | - Paul M. Ridker
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Cardiovascular Division, Brigham and Women's Hospital, Boston, Massachusetts
- Division of Preventive Medicine, Brigham and Women's Hospital, Boston, Massachusetts
- Center for Lipid Metabolomics, Division of Preventive Medicine, Brigham and Women's Hospital, Boston, Massachusetts
- Department of Epidemiology, T.H. Chan School of Public Health, Boston, Massachusetts
| | - Daniel I. Chasman
- Cardiovascular Division, Brigham and Women's Hospital, Boston, Massachusetts
- Center for Lipid Metabolomics, Division of Preventive Medicine, Brigham and Women's Hospital, Boston, Massachusetts
- Address correspondence to: Daniel I. Chasman, PhD, Division of Preventive Medicine, Brigham and Women's Hospital, 900 Commonwealth Avenue, Boston, MA 02215
| |
Collapse
|
35
|
Ellervik C, Roselli C, Christophersen IE, Alonso A, Pietzner M, Sitlani CM, Trompet S, Arking DE, Geelhoed B, Guo X, Kleber ME, Lin HJ, Lin H, MacFarlane P, Selvin E, Shaffer C, Smith AV, Verweij N, Weiss S, Cappola AR, Dörr M, Gudnason V, Heckbert S, Mooijaart S, März W, Psaty BM, Ridker PM, Roden D, Stott DJ, Völzke H, Benjamin EJ, Delgado G, Ellinor P, Homuth G, Köttgen A, Jukema JW, Lubitz SA, Mora S, Rienstra M, Rotter JI, Shoemaker MB, Sotoodehnia N, Taylor KD, van der Harst P, Albert CM, Chasman DI. Assessment of the Relationship Between Genetic Determinants of Thyroid Function and Atrial Fibrillation: A Mendelian Randomization Study. JAMA Cardiol 2020; 4:144-152. [PMID: 30673084 DOI: 10.1001/jamacardio.2018.4635] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Importance Increased free thyroxine (FT4) and decreased thyrotropin are associated with increased risk of atrial fibrillation (AF) in observational studies, but direct involvement is unclear. Objective To evaluate the potential direct involvement of thyroid traits on AF. Design, Setting, and Participants Study-level mendelian randomization (MR) included 11 studies, and summary-level MR included 55 114 AF cases and 482 295 referents, all of European ancestry. Exposures Genomewide significant variants were used as instruments for standardized FT4 and thyrotropin levels within the reference range, standardized triiodothyronine (FT3):FT4 ratio, hypothyroidism, standardized thyroid peroxidase antibody levels, and hyperthyroidism. Mendelian randomization used genetic risk scores in study-level analysis or individual single-nucleotide polymorphisms in 2-sample MR for the summary-level data. Main Outcomes and Measures Prevalent and incident AF. Results The study-level analysis included 7679 individuals with AF and 49 233 referents (mean age [standard error], 62 [3] years; 15 859 men [29.7%]). In study-level random-effects meta-analysis, the pooled hazard ratio of FT4 levels (nanograms per deciliter) for incident AF was 1.55 (95% CI, 1.09-2.20; P = .02; I2 = 76%) and the pooled odds ratio (OR) for prevalent AF was 2.80 (95% CI, 1.41-5.54; P = .003; I2 = 64%) in multivariable-adjusted analyses. The FT4 genetic risk score was associated with an increase in FT4 by 0.082 SD (standard error, 0.007; P < .001) but not with incident AF (risk ratio, 0.84; 95% CI, 0.62-1.14; P = .27) or prevalent AF (OR, 1.32; 95% CI, 0.64-2.73; P = .46). Similarly, in summary-level inverse-variance weighted random-effects MR, gene-based FT4 within the reference range was not associated with AF (OR, 1.01; 95% CI, 0.89-1.14; P = .88). However, gene-based increased FT3:FT4 ratio, increased thyrotropin within the reference range, and hypothyroidism were associated with AF with inverse-variance weighted random-effects OR of 1.33 (95% CI, 1.08-1.63; P = .006), 0.88 (95% CI, 0.84-0.92; P < .001), and 0.94 (95% CI, 0.90-0.99; P = .009), respectively, and robust to tests of horizontal pleiotropy. However, the subset of hypothyroidism single-nucleotide polymorphisms involved in autoimmunity and thyroid peroxidase antibodies levels were not associated with AF. Gene-based hyperthyroidism was associated with AF with MR-Egger OR of 1.31 (95% CI, 1.05-1.63; P = .02) with evidence of horizontal pleiotropy (P = .045). Conclusions and Relevance Genetically increased FT3:FT4 ratio and hyperthyroidism, but not FT4 within the reference range, were associated with increased AF, and increased thyrotropin within the reference range and hypothyroidism were associated with decreased AF, supporting a pathway involving the pituitary-thyroid-cardiac axis.
Collapse
Affiliation(s)
- Christina Ellervik
- Department of Laboratory Medicine, Boston Children's Hospital, Boston, Massachusetts.,Harvard Medical School, Boston, Massachusetts.,Division of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Carolina Roselli
- Program in Medical and Population Genetics, The Broad Institute of MIT and Harvard, Cambridge, Massachusetts
| | - Ingrid E Christophersen
- Department of Medical Genetics, Oslo University Hospital, Oslo, Norway.,Department of Medical Research, Bærum Hospital, Vestre Viken Hospital Trust, Gjettum, Norway
| | - Alvaro Alonso
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, Georgia
| | - Maik Pietzner
- Institute of Clinical Chemistry and Laboratory Medicine, University Medicine Greifswald, Greifswald, Germany.,DZHK (German Center for Cardiovascular Research), Partner Site Greifswald, Greifswald, Germany
| | - Collen M Sitlani
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle
| | - Stella Trompet
- Department of Cardiology, Leiden University Medical Center, Leiden, the Netherlands.,Section of Gerontology and Geriatrics, Department of Internal Medicine, Leiden University Medical Center, Leiden, the Netherlands
| | - Dan E Arking
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Bastiaan Geelhoed
- University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Xiuqing Guo
- Division of Genomic Outcomes, Institute for Translational Genomics and Population Sciences, Torrance, California.,Department of Pediatrics, Los Angeles Biomedical Research Institute, Harbor-University of California, Los Angeles Medical Center, Torrance.,Department of Pediatrics, David Geffen School of Medicine, University of California, Los Angeles
| | - Marcus E Kleber
- Vth Department of Medicine (Nephrology, Hypertensiology, Endocrinology, Diabetology, Rheumatology), Medical Faculty of Mannheim, University of Heidelberg, Mannheim, Germany
| | - Henry J Lin
- Division of Genomic Outcomes, Institute for Translational Genomics and Population Sciences, Torrance, California.,Department of Pediatrics, Los Angeles Biomedical Research Institute, Harbor-University of California, Los Angeles Medical Center, Torrance.,Department of Pediatrics, David Geffen School of Medicine, University of California, Los Angeles
| | - Honghuang Lin
- Department of Medicine, Boston University School of Medicine, Boston, Massachusetts.,National Heart Lung and Blood Institute's and Boston University's Framingham Heart Study, Framingham, Massachusetts
| | - Peter MacFarlane
- Institute of Health and Wellbeing, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Elizabeth Selvin
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| | - Christian Shaffer
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Albert V Smith
- School of Public Health, Department of Biostatistics, University of Michigan, Ann Arbor.,Icelandic Heart Association, Kopavogur, Iceland
| | - Niek Verweij
- University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Stefan Weiss
- DZHK (German Center for Cardiovascular Research), Partner Site Greifswald, Greifswald, Germany.,Interfaculty Institute for Genetics and Functional Genomics, University Medicine and University Greifswald, Greifswald, Germany
| | - Anne R Cappola
- Smilow Center for Translational Research, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia
| | - Marcus Dörr
- DZHK (German Center for Cardiovascular Research), Partner Site Greifswald, Greifswald, Germany.,Department of Internal Medicine B, University Medicine Greifswald, Greifswald, Germany
| | - Vilmundur Gudnason
- Icelandic Heart Association, Kopavogur, Iceland.,Faculty of Medicine, University of Iceland, Reykjavik, Iceland
| | - Susan Heckbert
- Department of Epidemiology, University of Washington, Seattle
| | - Simon Mooijaart
- Section of Gerontology and Geriatrics, Department of Internal Medicine, Leiden University Medical Center, Leiden, the Netherlands.,Institute for Evidence-Based Medicine in Old Age, Leiden, the Netherlands
| | - Winfried März
- Vth Department of Medicine (Nephrology, Hypertensiology, Endocrinology, Diabetology, Rheumatology), Medical Faculty of Mannheim, University of Heidelberg, Mannheim, Germany.,Synlab Academy, Synlab Holding Deutschland GmbH, Mannheim, Germany
| | - Bruce M Psaty
- Cardiovascular Health Research Unit, Department of Medicine, Epidemiology, and Health Services, University of Washington, Seattle.,Kaiser Permanente Washington Health Research Institute, Seattle
| | - Paul M Ridker
- Harvard Medical School, Boston, Massachusetts.,Division of Cardiovascular, Brigham and Women's Hospital, Boston, Massachusetts.,Division of Preventive Medicine, Brigham and Women's Hospital, Boston, Massachusetts
| | - Dan Roden
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - David J Stott
- Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Henry Völzke
- DZHK (German Center for Cardiovascular Research), Partner Site Greifswald, Greifswald, Germany.,Institute for Community Medicine, University Medicine Greifswald, Greifswald, Germany
| | - Emelia J Benjamin
- Department of Medicine, Boston University School of Medicine, Boston, Massachusetts.,National Heart Lung and Blood Institute's and Boston University's Framingham Heart Study, Framingham, Massachusetts.,Department of Epidemiology, Boston University School of Public Health, Boston, Massachusetts
| | - Graciela Delgado
- Vth Department of Medicine (Nephrology, Hypertensiology, Endocrinology, Diabetology, Rheumatology), Medical Faculty of Mannheim, University of Heidelberg, Mannheim, Germany
| | - Patrick Ellinor
- Harvard Medical School, Boston, Massachusetts.,Cardiovascular Research Center, Massachusetts General Hospital, Charlestown, Massachusetts.,Cardiac Arrhythmia Service, Massachusetts General Hospital, Boston, Massachusetts
| | - Georg Homuth
- University Medicine Greifswald, Interfaculty Institute for Genetics and Functional Genomics, Greifswald, Germany
| | - Anna Köttgen
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland.,Institute of Genetic Epidemiology, Faculty of Medicine and Medical Center, University of Freiburg, Freiburg, Germany
| | - Johan W Jukema
- Department of Cardiology, Leiden University Medical Center, Leiden, the Netherlands.,Einthoven Laboratory for Experimental Vascular Medicine, LUMC, Leiden, the Netherlands.,Interuniversity Cardiology Institute of the Netherlands, Utrecht, the Netherlands
| | - Steven A Lubitz
- Cardiovascular Research Center, Cardiac Arrhythmia Service, Massachusetts General Hospital, Boston
| | - Samia Mora
- Harvard Medical School, Boston, Massachusetts.,Division of Cardiovascular, Brigham and Women's Hospital, Boston, Massachusetts.,Division of Preventive Medicine, Brigham and Women's Hospital, Boston, Massachusetts
| | - Michiel Rienstra
- University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Jerome I Rotter
- Division of Genomic Outcomes, Institute for Translational Genomics and Population Sciences, Torrance, California.,Department of Pediatrics, Los Angeles Biomedical Research Institute, Harbor-University of California, Los Angeles Medical Center, Torrance.,Department of Pediatrics, David Geffen School of Medicine, University of California, Los Angeles
| | - M Benjamin Shoemaker
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Nona Sotoodehnia
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle
| | - Kent D Taylor
- Division of Genomic Outcomes, Institute for Translational Genomics and Population Sciences, Torrance, California.,Department of Pediatrics, Los Angeles Biomedical Research Institute, Harbor-University of California, Los Angeles Medical Center, Torrance.,Department of Pediatrics, David Geffen School of Medicine, University of California, Los Angeles
| | - Pim van der Harst
- University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Christine M Albert
- Harvard Medical School, Boston, Massachusetts.,Division of Cardiovascular, Brigham and Women's Hospital, Boston, Massachusetts.,Division of Preventive Medicine, Brigham and Women's Hospital, Boston, Massachusetts
| | - Daniel I Chasman
- Harvard Medical School, Boston, Massachusetts.,Program in Medical and Population Genetics, The Broad Institute of MIT and Harvard, Cambridge, Massachusetts.,Division of Preventive Medicine, Brigham and Women's Hospital, Boston, Massachusetts
| |
Collapse
|
36
|
Gan Q, Li Y, Liu Q, Lund M, Su G, Liang X. Genome-wide association studies for the concentrations of insulin, triiodothyronine, and thyroxine in Chinese Holstein cattle. Trop Anim Health Prod 2019; 52:1655-1660. [PMID: 31853785 DOI: 10.1007/s11250-019-02170-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Accepted: 12/01/2019] [Indexed: 10/25/2022]
Abstract
To further understand the genetic structure that is associated with insulin (INS) and thyroid hormones (TH), including triiodothyronine (T3) and thyroxine (T4), in Chinese Holstein cows, we conducted a genome-wide association study (GWAS) of thyroid hormones and insulin in cows. We conducted GWAS analysis on 1217 Chinese Holstein cows raised in southern China and found 19 significant single nucleotide polymorphisms (SNPs) in this study: 10 SNPs were associated with INS, 5 SNPs were associated with T3, and 4 SNPs were associated with T4. In our study, the GWAS method was used for preliminary screening on related genes of traits, and due to insufficient relevant literature, a functional analysis of genes could only be based on human studies. We observed that DGKB from Bos taurus chromosome (BTA)4 is strongly associated with insulin secretion. We found that EXOC4 gene was significantly correlated with T3 and T4 traits. Another significant SNP was located in the CYP7A1 gene, which has been confirmed to be affected by thyroid hormones.
Collapse
Affiliation(s)
- QianFu Gan
- College of Animal Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - YiRan Li
- College of Animal Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - QingHua Liu
- College of Animal Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - M Lund
- Department of Molecular Biology and Genetics, Center for Quantitative Genetics and Genomics, Aarhus University, 8000, Aarhus, Denmark
| | - GuoSheng Su
- Department of Molecular Biology and Genetics, Center for Quantitative Genetics and Genomics, Aarhus University, 8000, Aarhus, Denmark
| | - XueWu Liang
- College of Animal Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| |
Collapse
|
37
|
Warrier V, Toro R, Won H, Leblond CS, Cliquet F, Delorme R, De Witte W, Bralten J, Chakrabarti B, Børglum AD, Grove J, Poelmans G, Hinds DA, Bourgeron T, Baron-Cohen S. Social and non-social autism symptoms and trait domains are genetically dissociable. Commun Biol 2019; 2:328. [PMID: 31508503 PMCID: PMC6722082 DOI: 10.1038/s42003-019-0558-4] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 07/19/2019] [Indexed: 02/06/2023] Open
Abstract
The core diagnostic criteria for autism comprise two symptom domains - social and communication difficulties, and unusually repetitive and restricted behaviour, interests and activities. There is some evidence to suggest that these two domains are dissociable, though this hypothesis has not yet been tested using molecular genetics. We test this using a genome-wide association study (N = 51,564) of a non-social trait related to autism, systemising, defined as the drive to analyse and build systems. We demonstrate that systemising is heritable and genetically correlated with autism. In contrast, we do not identify significant genetic correlations between social autistic traits and systemising. Supporting this, polygenic scores for systemising are significantly and positively associated with restricted and repetitive behaviour but not with social difficulties in autistic individuals. These findings strongly suggest that the two core domains of autism are genetically dissociable, and point at how to fractionate the genetics of autism.
Collapse
Affiliation(s)
- Varun Warrier
- Autism Research Centre, Department of Psychiatry, University of Cambridge, Cambridgeshire, UK
| | - Roberto Toro
- Human Genetics and Cognitive Functions, Institut Pasteur, UMR3571 CNRS, Université de Paris, Paris, France
| | - Hyejung Won
- Department of Genetics and Neuroscience Center, University of North Carolina, Chapel Hill, NC 27599 USA
| | - Claire S. Leblond
- Human Genetics and Cognitive Functions, Institut Pasteur, UMR3571 CNRS, Université de Paris, Paris, France
| | - Freddy Cliquet
- Human Genetics and Cognitive Functions, Institut Pasteur, UMR3571 CNRS, Université de Paris, Paris, France
| | - Richard Delorme
- Human Genetics and Cognitive Functions, Institut Pasteur, UMR3571 CNRS, Université de Paris, Paris, France
- Child and Adolescent Psychiatry Department, Robert Debré Hospital, Paris, France
| | - Ward De Witte
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Janita Bralten
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
| | - Bhismadev Chakrabarti
- Autism Research Centre, Department of Psychiatry, University of Cambridge, Cambridgeshire, UK
- Centre for Autism, School of Psychology and Clinical Language Sciences, University of Reading, Reading, UK
| | - Anders D. Børglum
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Aarhus, Denmark
- Centre for Integrative Sequencing, iSEQ, Aarhus University, Aarhus, Denmark
- Department of Biomedicine - Human Genetics, Aarhus University, Aarhus, Denmark
| | - Jakob Grove
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Aarhus, Denmark
- Centre for Integrative Sequencing, iSEQ, Aarhus University, Aarhus, Denmark
- Department of Biomedicine - Human Genetics, Aarhus University, Aarhus, Denmark
- Bioinformatics Research Centre, Aarhus University, Aarhus, Denmark
| | - Geert Poelmans
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| | | | - Thomas Bourgeron
- Human Genetics and Cognitive Functions, Institut Pasteur, UMR3571 CNRS, Université de Paris, Paris, France
| | - Simon Baron-Cohen
- Autism Research Centre, Department of Psychiatry, University of Cambridge, Cambridgeshire, UK
| |
Collapse
|
38
|
Matana A, Popović M, Boutin T, Torlak V, Brdar D, Gunjača I, Kolčić I, Boraska Perica V, Punda A, Polašek O, Hayward C, Barbalić M, Zemunik T. Genome-wide meta-analysis identifies novel gender specific loci associated with thyroid antibodies level in Croatians. Genomics 2019; 111:737-743. [DOI: 10.1016/j.ygeno.2018.04.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Revised: 02/28/2018] [Accepted: 04/16/2018] [Indexed: 11/16/2022]
|
39
|
Brčić L, Barić A, Gračan S, Brekalo M, Kaličanin D, Gunjača I, Torlak Lovrić V, Tokić S, Radman M, Škrabić V, Miljković A, Kolčić I, Štefanić M, Glavaš-Obrovac L, Lessel D, Polašek O, Zemunik T, Barbalić M, Punda A, Boraska Perica V. Genome-wide association analysis suggests novel loci for Hashimoto's thyroiditis. J Endocrinol Invest 2019; 42:567-576. [PMID: 30284222 DOI: 10.1007/s40618-018-0955-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Accepted: 09/18/2018] [Indexed: 12/20/2022]
Abstract
PURPOSE Hashimoto's thyroiditis (HT) is the most common form of autoimmune thyroid diseases. Current knowledge of HT genetics is limited, and not a single genome-wide association study (GWAS) focusing exclusively on HT has been performed to date. In order to decipher genetic determinants of HT, we performed the first GWAS followed by replication in a total of 1443 individuals from Croatia. METHODS We performed association analysis in a discovery cohort comprising 405 cases and 433 controls. We followed up 13 independent signals (P < 10-5) in 303 cases and 302 controls from two replication cohorts and then meta-analyzed results across discovery and replication datasets. RESULTS We identified three variants suggestively associated with HT: rs12944194 located 206 kb from SDK2 (P = 1.8 × 10-6), rs75201096 inside GNA14 (P = 2.41 × 10-5) and rs791903 inside IP6K3 (P = 3.16 × 10-5). Genetic risk score (GRS), calculated using risk alleles of these loci, accounted for 4.82% of the total HT variance, and individuals from the top GRS quartile had 2.76 times higher odds for HT than individuals from the lowest GRS quartile. CONCLUSIONS Although discovered loci are implicated with susceptibility to HT for the first time, genomic regions harboring these loci exhibit good biological candidacy due to involvement in the regulation of the thyroid function and autoimmunity. Additionally, we observe genetic overlap between HT and several related traits, such as hypothyroidism, Graves' disease and TPOAb. Our study adds a new knowledge of underlying HT genetics and sets a firm basis for further research.
Collapse
Affiliation(s)
- L Brčić
- Department of Medical Biology, School of Medicine, University of Split, Šoltanska 2, 21000, Split, Croatia
| | - A Barić
- Department of Nuclear Medicine, University Hospital Split, Split, Croatia
| | - S Gračan
- Department of Nuclear Medicine, University Hospital Split, Split, Croatia
| | - M Brekalo
- Department of Nuclear Medicine, University Hospital Split, Split, Croatia
| | - D Kaličanin
- Department of Medical Biology, School of Medicine, University of Split, Šoltanska 2, 21000, Split, Croatia
| | - I Gunjača
- Department of Medical Biology, School of Medicine, University of Split, Šoltanska 2, 21000, Split, Croatia
| | - V Torlak Lovrić
- Department of Nuclear Medicine, University Hospital Split, Split, Croatia
| | - S Tokić
- Department of Medical Chemistry, Biochemistry and Clinical Chemistry, Faculty of Medicine, University of Osijek, Osijek, Croatia
| | - M Radman
- Department of Nuclear Medicine, University Hospital Split, Split, Croatia
| | - V Škrabić
- Department of Pediatrics, University Hospital Split, Split, Croatia
| | - A Miljković
- Department of Public Health, School of Medicine, University of Split, Split, Croatia
| | - I Kolčić
- Department of Public Health, School of Medicine, University of Split, Split, Croatia
| | - M Štefanić
- Department of Nuclear Medicine and Oncology, Faculty of Medicine, University of Osijek, Osijek, Croatia
| | - L Glavaš-Obrovac
- Department of Medical Chemistry, Biochemistry and Clinical Chemistry, Faculty of Medicine, University of Osijek, Osijek, Croatia
| | - D Lessel
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - O Polašek
- Department of Public Health, School of Medicine, University of Split, Split, Croatia
| | - T Zemunik
- Department of Medical Biology, School of Medicine, University of Split, Šoltanska 2, 21000, Split, Croatia
| | - M Barbalić
- Department of Medical Biology, School of Medicine, University of Split, Šoltanska 2, 21000, Split, Croatia
| | - A Punda
- Department of Nuclear Medicine, University Hospital Split, Split, Croatia
| | - V Boraska Perica
- Department of Medical Biology, School of Medicine, University of Split, Šoltanska 2, 21000, Split, Croatia.
| |
Collapse
|
40
|
Muhammad SA, Fatima N, Paracha RZ, Ali A, Chen JY. A systematic simulation-based meta-analytical framework for prediction of physiological biomarkers in alopecia. ACTA ACUST UNITED AC 2019; 26:2. [PMID: 30993080 PMCID: PMC6449998 DOI: 10.1186/s40709-019-0094-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Accepted: 03/20/2019] [Indexed: 01/13/2023]
Abstract
Background Alopecia or hair loss is a complex polygenetic and psychologically devastating disease affecting millions of men and women globally. Since the gene annotation and environmental knowledge is limited for alopecia, a systematic analysis for the identification of candidate biomarkers is required that could provide potential therapeutic targets for hair loss therapy. Results We designed an interactive framework to perform a meta-analytical study based on differential expression analysis, systems biology, and functional proteomic investigations. We analyzed eight publicly available microarray datasets and found 12 potential candidate biomarkers including three extracellular proteins from the list of differentially expressed genes with a p-value < 0.05. After expression profiling and functional analysis, we studied protein–protein interactions and observed functional associations of source proteins including WIF1, SPON1, LYZ, GPRC5B, PTPRE, ZFP36L2, HBB, PHF15, LMCD1, KRT35 and VAV3 with target proteins including APCDD1, WNT1, WNT3A, SHH, ESRI, TGFB1, and APP. Pathway analysis of these molecules revealed their role in major physiological reactions including protein metabolism, signal transduction, WNT, BMP, EDA, NOTCH and SHH pathways. These pathways regulate hair growth, hair follicle differentiation, pigmentation, and morphogenesis. We studied the regulatory role of β-catenin, Nf-kappa B, cytokines and retinoic acid in the development of hair growth. Therefore, the differential expression of these significant proteins would affect the normal level and could cause aberrations in hair growth. Conclusion Our integrative approach helps to prioritize the biomarkers that ultimately lessen the economic burden of experimental studies. It will also be valuable to discover mutants in genomic data in order to increase the identification of new biomarkers for similar problems. Electronic supplementary material The online version of this article (10.1186/s40709-019-0094-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Syed Aun Muhammad
- 1Institute of Molecular Biology and Biotechnology, Bahauddin Zakariya University, Multan, 60800 Pakistan
| | - Nighat Fatima
- 2Department of Pharmacy, COMSATS Institute of Information Technology, Abbottabad, 22060 Pakistan
| | - Rehan Zafar Paracha
- 3Research Center of Modeling and Simulation (RCMS), Department of Computational Sciences, National University of Sciences and Technology (NUST), Islamabad, 44000 Pakistan
| | - Amjad Ali
- 4Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), Islamabad, 44000 Pakistan
| | - Jake Y Chen
- 5Informatics Institute, School of Medicine, The University of Alabama (UAB), Birmingham, USA
| |
Collapse
|
41
|
Beaumont RN, Warrington NM, Cavadino A, Tyrrell J, Nodzenski M, Horikoshi M, Geller F, Myhre R, Richmond RC, Paternoster L, Bradfield JP, Kreiner-Møller E, Huikari V, Metrustry S, Lunetta KL, Painter JN, Hottenga JJ, Allard C, Barton SJ, Espinosa A, Marsh JA, Potter C, Zhang G, Ang W, Berry DJ, Bouchard L, Das S, Hakonarson H, Heikkinen J, Helgeland Ø, Hocher B, Hofman A, Inskip HM, Jones SE, Kogevinas M, Lind PA, Marullo L, Medland SE, Murray A, Murray JC, Njølstad PR, Nohr EA, Reichetzeder C, Ring SM, Ruth KS, Santa-Marina L, Scholtens DM, Sebert S, Sengpiel V, Tuke MA, Vaudel M, Weedon MN, Willemsen G, Wood AR, Yaghootkar H, Muglia LJ, Bartels M, Relton CL, Pennell CE, Chatzi L, Estivill X, Holloway JW, Boomsma DI, Montgomery GW, Murabito JM, Spector TD, Power C, Järvelin MR, Bisgaard H, Grant SFA, Sørensen TIA, Jaddoe VW, Jacobsson B, Melbye M, McCarthy MI, Hattersley AT, Hayes MG, Frayling TM, Hivert MF, Felix JF, Hyppönen E, Lowe WL, Evans DM, Lawlor DA, Feenstra B, Freathy RM. Genome-wide association study of offspring birth weight in 86 577 women identifies five novel loci and highlights maternal genetic effects that are independent of fetal genetics. Hum Mol Genet 2019; 27:742-756. [PMID: 29309628 PMCID: PMC5886200 DOI: 10.1093/hmg/ddx429] [Citation(s) in RCA: 133] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 12/15/2017] [Indexed: 12/22/2022] Open
Abstract
Genome-wide association studies of birth weight have focused on fetal genetics, whereas relatively little is known about the role of maternal genetic variation. We aimed to identify maternal genetic variants associated with birth weight that could highlight potentially relevant maternal determinants of fetal growth. We meta-analysed data on up to 8.7 million SNPs in up to 86 577 women of European descent from the Early Growth Genetics (EGG) Consortium and the UK Biobank. We used structural equation modelling (SEM) and analyses of mother–child pairs to quantify the separate maternal and fetal genetic effects. Maternal SNPs at 10 loci (MTNR1B, HMGA2, SH2B3, KCNAB1, L3MBTL3, GCK, EBF1, TCF7L2, ACTL9, CYP3A7) were associated with offspring birth weight at P < 5 × 10−8. In SEM analyses, at least 7 of the 10 associations were consistent with effects of the maternal genotype acting via the intrauterine environment, rather than via effects of shared alleles with the fetus. Variants, or correlated proxies, at many of the loci had been previously associated with adult traits, including fasting glucose (MTNR1B, GCK and TCF7L2) and sex hormone levels (CYP3A7), and one (EBF1) with gestational duration. The identified associations indicate that genetic effects on maternal glucose, cytochrome P450 activity and gestational duration, and potentially on maternal blood pressure and immune function, are relevant for fetal growth. Further characterization of these associations in mechanistic and causal analyses will enhance understanding of the potentially modifiable maternal determinants of fetal growth, with the goal of reducing the morbidity and mortality associated with low and high birth weights.
Collapse
Affiliation(s)
- Robin N Beaumont
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, University of Exeter, Royal Devon and Exeter Hospital, Exeter EX2 5DW, UK
| | - Nicole M Warrington
- Translational Research Institute, University of Queensland Diamantina Institute, Brisbane, QLD, Australia
| | - Alana Cavadino
- Centre for Environmental and Preventive Medicine, Wolfson Institute of Preventive Medicine, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Jessica Tyrrell
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, University of Exeter, Royal Devon and Exeter Hospital, Exeter EX2 5DW, UK.,European Centre for Environment and Human Health, University of Exeter, The Knowledge Spa, Truro TR1 3HD, UK
| | - Michael Nodzenski
- Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Momoko Horikoshi
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford, UK.,Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Frank Geller
- Department of Epidemiology Research, Statens Serum Institut, Copenhagen, Denmark
| | - Ronny Myhre
- Division of Epidemiology, Department of Genes and Environment, Norwegian Institute of Public Health, Oslo, Norway
| | - Rebecca C Richmond
- Medical Research Council Integrative Epidemiology Unit at the University of Bristol, Oakfield House, Oakfield Grove, Bristol BS8 2BN, UK.,Population Health Science, Bristol Medical School, University of Bristol, Oakfield House, Oakfield Grove, Bristol BS8 2BN, UK.,The Generation R Study Group, Erasmus MC, University Medical Center Rotterdam, 3000 CA Rotterdam, The Netherlands
| | - Lavinia Paternoster
- Medical Research Council Integrative Epidemiology Unit at the University of Bristol, Oakfield House, Oakfield Grove, Bristol BS8 2BN, UK
| | - Jonathan P Bradfield
- Center for Applied Genomics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Eskil Kreiner-Møller
- Copenhagen Prospective Studies on Asthma in Childhood (COPSAC), Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark.,Danish Pediatric Asthma Center, Copenhagen University Hospital, Gentofte, Denmark
| | - Ville Huikari
- Institute of Health Sciences, University of Oulu, Oulu, Finland
| | - Sarah Metrustry
- Department of Twin Research, King's College London, St. Thomas' Hospital, London, UK
| | - Kathryn L Lunetta
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA.,Framingham Heart Study, Framingham, MA, USA
| | - Jodie N Painter
- QIMR Berghofer Medical Research Institute, Royal Brisbane Hospital, Herston, QLD 4029, Australia
| | - Jouke-Jan Hottenga
- EMGO Institute for Health and Care Research, VU University Medical Center, Amsterdam, The Netherlands.,Department of Biological Psychology, Vrije Universiteit Amsterdam, 1081 BT Amsterdam, The Netherlands
| | - Catherine Allard
- Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, QC, Canada
| | - Sheila J Barton
- Medical Research Council Lifecourse Epidemiology Unit, University of Southampton, Southampton, UK
| | - Ana Espinosa
- Pompeu Fabra University (UPF), Barcelona, Spain.,IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain.,ISGlobal, Centre for Research in Environmental Epidemiology (CREAL), Barcelona, Spain
| | - Julie A Marsh
- Division of Obstetrics and Gynaecology, The University of Western Australia, Perth, Australia
| | - Catherine Potter
- Institute of Genetic Medicine, Newcastle University, Central Parkway, Newcastle upon Tyne NE1 3BZ, UK
| | - Ge Zhang
- Human Genetics Division, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.,Center for Prevention of Preterm Birth, Perinatal Institute, Cincinnati Children's Hospital Medical Center, OH, USA.,March of Dimes Prematurity Research Center Ohio Collaborative, Cincinnati, OH, USA
| | - Wei Ang
- Division of Obstetrics and Gynaecology, The University of Western Australia, Perth, Australia
| | - Diane J Berry
- Population, Policy and Practice, UCL Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Luigi Bouchard
- Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, QC, Canada.,ECOGENE-21 and Lipid Clinic, Chicoutimi Hospital, Saguenay, QC, Canada.,Department of Biochemistry, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Shikta Das
- Population, Policy and Practice, UCL Great Ormond Street Institute of Child Health, University College London, London, UK
| | | | - Hakon Hakonarson
- Center for Applied Genomics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA.,Division of Human Genetics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA.,Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Jani Heikkinen
- FIMM Institute for Molecular Medicine Finland, Helsinki University, Helsinki FI-00014, Finland
| | - Øyvind Helgeland
- Department of Clinical Science, KG Jebsen Center for Diabetes Research, University of Bergen, Bergen, Norway.,Department of Genetics and Bioinformatics, Domain of Health Data and Digitalisation, Institute of Public Health, Oslo, Norway
| | - Berthold Hocher
- The First Affiliated Hospital of Jinan University, Guangzhou 510630, China.,Institute of Nutritional Science, University of Potsdam, Potsdam, Germany
| | - Albert Hofman
- Department of Epidemiology, Erasmus MC, University Medical Center Rotterdam, 3000 CA Rotterdam, The Netherlands
| | - Hazel M Inskip
- Medical Research Council Lifecourse Epidemiology Unit, University of Southampton, Southampton, UK.,NIHR Southampton Biomedical Research Centre, University of Southampton and University Hospital Southampton NHS Foundation Trust, Southampton, UK
| | - Samuel E Jones
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, University of Exeter, Royal Devon and Exeter Hospital, Exeter EX2 5DW, UK
| | - Manolis Kogevinas
- Pompeu Fabra University (UPF), Barcelona, Spain.,IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain.,ISGlobal, Centre for Research in Environmental Epidemiology (CREAL), Barcelona, Spain
| | - Penelope A Lind
- QIMR Berghofer Medical Research Institute, Royal Brisbane Hospital, Herston, QLD 4029, Australia
| | - Letizia Marullo
- Genetic Section, Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Sarah E Medland
- QIMR Berghofer Medical Research Institute, Royal Brisbane Hospital, Herston, QLD 4029, Australia
| | - Anna Murray
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, University of Exeter, Royal Devon and Exeter Hospital, Exeter EX2 5DW, UK
| | - Jeffrey C Murray
- Department of Pediatrics, University of Iowa, Iowa City, IA, USA
| | - Pål R Njølstad
- Department of Clinical Science, KG Jebsen Center for Diabetes Research, University of Bergen, Bergen, Norway.,Department of Pediatrics, Haukeland University Hospital, Bergen 5021, Norway
| | - Ellen A Nohr
- Research Unit of Obstetrics & Gynecology, Institute of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Christoph Reichetzeder
- Institute of Nutritional Science, University of Potsdam, Potsdam, Germany.,Center for Cardiovascular Research, Charité, Berlin, Germany
| | - Susan M Ring
- Medical Research Council Integrative Epidemiology Unit at the University of Bristol, Oakfield House, Oakfield Grove, Bristol BS8 2BN, UK.,Population Health Science, Bristol Medical School, University of Bristol, Oakfield House, Oakfield Grove, Bristol BS8 2BN, UK
| | - Katherine S Ruth
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, University of Exeter, Royal Devon and Exeter Hospital, Exeter EX2 5DW, UK
| | - Loreto Santa-Marina
- ISGlobal, Centre for Research in Environmental Epidemiology (CREAL), Barcelona, Spain.,Subdirección de Salud Pública y Adicciones de Gipuzkoa, Donostia/San Sebastián, Spain.,Instituto de Investigación Sanitaria BIODONOSTIA, Donostia/San Sebastián, Spain
| | - Denise M Scholtens
- Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Sylvain Sebert
- Institute of Health Sciences, University of Oulu, Oulu, Finland.,Department of Epidemiology and Biostatistics, School of Public Health, Medical Research Council-Health Protection Agency Centre for Environment and Health, Faculty of Medicine, Imperial College London, London, UK
| | - Verena Sengpiel
- Department of Obstetrics and Gynecology, Sahlgrenska Academy, Sahgrenska University Hospital, Gothenburg, Sweden
| | - Marcus A Tuke
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, University of Exeter, Royal Devon and Exeter Hospital, Exeter EX2 5DW, UK
| | - Marc Vaudel
- Department of Clinical Science, KG Jebsen Center for Diabetes Research, University of Bergen, Bergen, Norway
| | - Michael N Weedon
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, University of Exeter, Royal Devon and Exeter Hospital, Exeter EX2 5DW, UK
| | - Gonneke Willemsen
- EMGO Institute for Health and Care Research, VU University Medical Center, Amsterdam, The Netherlands.,Department of Biological Psychology, Vrije Universiteit Amsterdam, 1081 BT Amsterdam, The Netherlands
| | - Andrew R Wood
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, University of Exeter, Royal Devon and Exeter Hospital, Exeter EX2 5DW, UK
| | - Hanieh Yaghootkar
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, University of Exeter, Royal Devon and Exeter Hospital, Exeter EX2 5DW, UK
| | - Louis J Muglia
- Center for Prevention of Preterm Birth, Perinatal Institute, Cincinnati Children's Hospital Medical Center, OH, USA.,March of Dimes Prematurity Research Center Ohio Collaborative, Cincinnati, OH, USA
| | - Meike Bartels
- EMGO Institute for Health and Care Research, VU University Medical Center, Amsterdam, The Netherlands.,Department of Biological Psychology, Vrije Universiteit Amsterdam, 1081 BT Amsterdam, The Netherlands
| | - Caroline L Relton
- Medical Research Council Integrative Epidemiology Unit at the University of Bristol, Oakfield House, Oakfield Grove, Bristol BS8 2BN, UK.,Population Health Science, Bristol Medical School, University of Bristol, Oakfield House, Oakfield Grove, Bristol BS8 2BN, UK.,Institute of Genetic Medicine, Newcastle University, Central Parkway, Newcastle upon Tyne NE1 3BZ, UK
| | - Craig E Pennell
- Division of Obstetrics and Gynaecology, The University of Western Australia, Perth, Australia
| | - Leda Chatzi
- Department of Social Medicine, University of Crete, Crete, Greece
| | - Xavier Estivill
- Pompeu Fabra University (UPF), Barcelona, Spain.,ISGlobal, Centre for Research in Environmental Epidemiology (CREAL), Barcelona, Spain
| | - John W Holloway
- Human Development & Health, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Dorret I Boomsma
- EMGO Institute for Health and Care Research, VU University Medical Center, Amsterdam, The Netherlands.,Department of Biological Psychology, Vrije Universiteit Amsterdam, 1081 BT Amsterdam, The Netherlands
| | - Grant W Montgomery
- QIMR Berghofer Medical Research Institute, Royal Brisbane Hospital, Herston, QLD 4029, Australia
| | - Joanne M Murabito
- Framingham Heart Study, Framingham, MA, USA.,Section of General Internal Medicine, Boston University School of Medicine, Boston, MA, USA
| | - Tim D Spector
- Department of Twin Research, King's College London, St. Thomas' Hospital, London, UK
| | - Christine Power
- Population, Policy and Practice, UCL Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Marjo-Ritta Järvelin
- Institute of Health Sciences, University of Oulu, Oulu, Finland.,Department of Epidemiology and Biostatistics, School of Public Health, Medical Research Council-Health Protection Agency Centre for Environment and Health, Faculty of Medicine, Imperial College London, London, UK.,Biocenter Oulu, University of Oulu, Oulu, Finland.,Unit of Primary Care, Oulu University Hospital, FI-90220 Oulu, 90029 OYS, Finland.,Department of Children and Young People and Families, National Institute for Health and Welfare, FI-90101 Oulu, Finland
| | - Hans Bisgaard
- Copenhagen Prospective Studies on Asthma in Childhood (COPSAC), Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark.,Danish Pediatric Asthma Center, Copenhagen University Hospital, Gentofte, Denmark
| | - Struan F A Grant
- Center for Applied Genomics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA.,Division of Human Genetics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA.,Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Thorkild I A Sørensen
- Medical Research Council Integrative Epidemiology Unit at the University of Bristol, Oakfield House, Oakfield Grove, Bristol BS8 2BN, UK.,Department of Public Health, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Vincent W Jaddoe
- The Generation R Study Group, Erasmus MC, University Medical Center Rotterdam, 3000 CA Rotterdam, The Netherlands.,Department of Epidemiology, Erasmus MC, University Medical Center Rotterdam, 3000 CA Rotterdam, The Netherlands.,Department of Pediatrics, Erasmus MC, University Medical Center Rotterdam, 3000 CA Rotterdam, The Netherlands
| | - Bo Jacobsson
- Division of Epidemiology, Department of Genes and Environment, Norwegian Institute of Public Health, Oslo, Norway.,Department of Obstetrics and Gynecology, Sahlgrenska Academy, Sahgrenska University Hospital, Gothenburg, Sweden
| | - Mads Melbye
- Department of Epidemiology Research, Statens Serum Institut, Copenhagen, Denmark.,Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Mark I McCarthy
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford, UK.,Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK.,Oxford National Institute for Health Research (NIHR) Biomedical Research Centre, Churchill Hospital, Oxford, UK
| | - Andrew T Hattersley
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, University of Exeter, Royal Devon and Exeter Hospital, Exeter EX2 5DW, UK
| | - M Geoffrey Hayes
- Division of Endocrinology, Metabolism and Molecular Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Timothy M Frayling
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, University of Exeter, Royal Devon and Exeter Hospital, Exeter EX2 5DW, UK
| | - Marie-France Hivert
- Department of Population Medicine, Harvard Pilgrim Health Care Institute, Harvard Medical School, Boston, MA, USA.,Diabetes Center, Massachussetts General Hospital, Boston, MA, USA.,Department of Medicine, Universite de Sherbrooke, QC, Canada
| | - Janine F Felix
- The Generation R Study Group, Erasmus MC, University Medical Center Rotterdam, 3000 CA Rotterdam, The Netherlands.,Department of Epidemiology, Erasmus MC, University Medical Center Rotterdam, 3000 CA Rotterdam, The Netherlands.,Department of Pediatrics, Erasmus MC, University Medical Center Rotterdam, 3000 CA Rotterdam, The Netherlands
| | - Elina Hyppönen
- Population, Policy and Practice, UCL Great Ormond Street Institute of Child Health, University College London, London, UK.,Centre for School of Population Health Research, School of Health Sciences, and Sansom Institute, University of South Australia, Adelaide, Australia.,South Australian Health and Medical Research Institute, Adelaide, Australia
| | - William L Lowe
- Division of Endocrinology, Metabolism and Molecular Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - David M Evans
- Translational Research Institute, University of Queensland Diamantina Institute, Brisbane, QLD, Australia.,Medical Research Council Integrative Epidemiology Unit at the University of Bristol, Oakfield House, Oakfield Grove, Bristol BS8 2BN, UK.,Population Health Science, Bristol Medical School, University of Bristol, Oakfield House, Oakfield Grove, Bristol BS8 2BN, UK
| | - Debbie A Lawlor
- Medical Research Council Integrative Epidemiology Unit at the University of Bristol, Oakfield House, Oakfield Grove, Bristol BS8 2BN, UK.,Population Health Science, Bristol Medical School, University of Bristol, Oakfield House, Oakfield Grove, Bristol BS8 2BN, UK
| | - Bjarke Feenstra
- Department of Epidemiology Research, Statens Serum Institut, Copenhagen, Denmark
| | - Rachel M Freathy
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, University of Exeter, Royal Devon and Exeter Hospital, Exeter EX2 5DW, UK.,Medical Research Council Integrative Epidemiology Unit at the University of Bristol, Oakfield House, Oakfield Grove, Bristol BS8 2BN, UK
| |
Collapse
|
42
|
Sun W, Zhang X, Wu J, Zhao W, Zhao S, Li M. Correlation of TSHR and CTLA-4 Single Nucleotide Polymorphisms with Graves Disease. Int J Genomics 2019; 2019:6982623. [PMID: 31565653 PMCID: PMC6745126 DOI: 10.1155/2019/6982623] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 05/16/2019] [Accepted: 06/17/2019] [Indexed: 02/06/2023] Open
Abstract
This study was designed to explore the association between Graves disease (GD) and thyroid-stimulating hormone receptor (TSHR) and cytotoxic T-lymphocyte-associated antigen 4 (CTLA-4) single nucleotide polymorphisms (SNPs). We studied a total of 1217 subjects from a Han population in northern Anhui province in China. Six SNPs within TSHR (rs179247, rs12101261, rs2284722, rs4903964, rs2300525, and rs17111394) and four SNPs within CTLA-4 (rs10197319, rs231726, rs231804, and rs1024161) were genotyped via a Taqman probe technique using a Fluidigm EP1 platform. The TSHR alleles rs179247-G, rs12101261-C, and rs4903964-G were negatively correlated with GD, whereas the rs2284722-A and rs17111394-C alleles were positively correlated with GD. Analyzing TSHR SNPs at rs179247, rs2284722, rs12101261, and rs4903964 yielded 8 different haplotypes. There were positive correlations between GD risk and the haplotypes AGTA and AATA (OR = 1.27, 95%CI = 1.07-1.50, P = 0.005; OR = 1.45, 95%CI = 1.21-1.75, P < 0.001, respectively). There were negative correlations between GD risk and the haplotype GGCG (OR = 0.56, 95%CI = 0.46-0.67, P < 0.001). With respect to haplotypes based on SNPs at the TSHR rs2300525 and rs17111394 loci, the CC haplotype was positively correlated with GD risk (OR = 1.32, 95%CI = 1.08-1.60, P = 0.006). Analyzing CTLA-4 SNPs at rs231804, rs1024161, and rs231726 yielded four haplotypes, of which AAA was positively correlated with GD risk (OR = 1.21, 95%CI = 1.02-1.43, P = 0.029). Polymorphisms at rs179247, rs12101261, rs2284722, rs4903964, and rs17111394 were associated with GD susceptibility. Haplotypes of both TSHR and CTLA-4 were additionally related to GD risk.
Collapse
Affiliation(s)
- Weihua Sun
- 1Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, 250000 Shandong Province, China
- 2Department of Endocrinology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, 233000 Anhui Province, China
| | - Xiaomei Zhang
- 2Department of Endocrinology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, 233000 Anhui Province, China
| | - Jing Wu
- 2Department of Endocrinology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, 233000 Anhui Province, China
| | - Wendi Zhao
- 2Department of Endocrinology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, 233000 Anhui Province, China
| | - Shuangxia Zhao
- 3The Core Laboratory in Medical Center of Clinical Research, Department of Endocrinology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University (SJTU) School of Medicine, Shanghai 200011, China
| | - Minglong Li
- 1Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, 250000 Shandong Province, China
| |
Collapse
|
43
|
Genome-wide analyses identify a role for SLC17A4 and AADAT in thyroid hormone regulation. Nat Commun 2018; 9:4455. [PMID: 30367059 PMCID: PMC6203810 DOI: 10.1038/s41467-018-06356-1] [Citation(s) in RCA: 194] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Accepted: 08/31/2018] [Indexed: 12/20/2022] Open
Abstract
Thyroid dysfunction is an important public health problem, which affects 10% of the general population and increases the risk of cardiovascular morbidity and mortality. Many aspects of thyroid hormone regulation have only partly been elucidated, including its transport, metabolism, and genetic determinants. Here we report a large meta-analysis of genome-wide association studies for thyroid function and dysfunction, testing 8 million genetic variants in up to 72,167 individuals. One-hundred-and-nine independent genetic variants are associated with these traits. A genetic risk score, calculated to assess their combined effects on clinical end points, shows significant associations with increased risk of both overt (Graves’ disease) and subclinical thyroid disease, as well as clinical complications. By functional follow-up on selected signals, we identify a novel thyroid hormone transporter (SLC17A4) and a metabolizing enzyme (AADAT). Together, these results provide new knowledge about thyroid hormone physiology and disease, opening new possibilities for therapeutic targets. Thyroid dysfunction is a common public health problem and associated with cardiovascular co-morbidities. Here, the authors carry out genome-wide meta-analysis for thyroid hormone (TH) levels, hyper- and hypothyroidism and identify SLC17A4 as a TH transporter and AADAT as a TH metabolizing enzyme.
Collapse
|
44
|
Sjögren’s Syndrome and Autoimmune Thyroid Disease: Two Sides of the Same Coin. Clin Rev Allergy Immunol 2018; 56:362-374. [DOI: 10.1007/s12016-018-8709-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
45
|
Winslow AR, Hyde CL, Wilk JB, Eriksson N, Cannon P, Miller MR, Hirst WD. Self-report data as a tool for subtype identification in genetically-defined Parkinson's Disease. Sci Rep 2018; 8:12992. [PMID: 30154511 PMCID: PMC6113219 DOI: 10.1038/s41598-018-30843-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Accepted: 04/30/2018] [Indexed: 12/26/2022] Open
Abstract
Through a targeted recruitment 23andMe has collected DNA and patient-reported symptoms from more than 10,000 subjects reporting a physician-verified diagnosis of PD. This study evaluated the potential of self-report, web-based questionnaires to rapidly assess disease natural history and symptomology in genetically-defined PD populations. While average age-at-diagnosis was significantly lower in GBA mutation carriers compared to idiopathic PD, or iPD (idiopathic PD, defined as no GBA mutations and no LRRK2 G2019S mutation), there were no significant differences in symptoms. Conversely, LRRK2 G2019S carrier status significantly associated with reporting of milder daily symptoms of lightheadedness and several differences were observed at a false discovery rate < 0.1, including increased reporting of changes in walking as an initial symptom of disease, decreased reporting of lightheadedness upon standing, and milder symptoms related to daily functioning. The subclinical differences in symptoms reported by LRRK2 G2019S carriers suggest differences in underlying pathophysiology and/or disease progression in LRRK2 carriers compared to iPD. Importantly, we confirm previous findings in PD genetic subsets where disease characteristics were ascertained through clinical exam. Overall, these data support the effective use of self-report and genetic data to rapidly analyze information from a large disease population or difficult to identify genetic subgroups.
Collapse
Affiliation(s)
- Ashley R Winslow
- Human Genetics and Computational Biomedicine, Pfizer Worldwide Research and Development, 1 Portland Street, Cambridge, MA, 02139, USA. .,Orphan Disease Center, University of Pennsylvania, 125 S. 31st St., Philadelphia, PA, 19104, USA.
| | - Craig L Hyde
- Early Clinical Development, Pfizer Worldwide Research and Development, 558 Eastern Point Rd., Groton, CT, 06340, USA
| | - Jemma B Wilk
- Human Genetics and Computational Biomedicine, Pfizer Worldwide Research and Development, 1 Portland Street, Cambridge, MA, 02139, USA
| | | | - Paul Cannon
- 23andMe Inc., 899W. Evelyn Avenue, Mountain View, CA, 94041, USA
| | - Melissa R Miller
- Human Genetics and Computational Target Validation, Pfizer Worldwide Research and Development, 1 Portland Street, Cambirdge, MA, 02139, USA
| | - Warren D Hirst
- Neuroscience, Pfizer Worldwide Research and Development, 1 Portland Street, Cambridge, MA, 02139, USA.,Parkinson's Disease and Movement Disorders Research, Biogen Research and Early Development, 115 Broadway, Cambridge, MA, 02142, USA
| |
Collapse
|
46
|
Pietzner M, Kacprowski T, Friedrich N. Empowering thyroid hormone research in human subjects using OMICs technologies. J Endocrinol 2018; 238:R13-R29. [PMID: 29724864 DOI: 10.1530/joe-18-0117] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Accepted: 05/03/2018] [Indexed: 12/16/2022]
Abstract
OMICs subsume different physiological layers including the genome, transcriptome, proteome and metabolome. Recent advances in analytical techniques allow for the exhaustive determination of biomolecules in all OMICs levels from less invasive human specimens such as blood and urine. Investigating OMICs in deeply characterized population-based or experimental studies has led to seminal improvement of our understanding of genetic determinants of thyroid function, identified putative thyroid hormone target genes and thyroid hormone-induced shifts in the plasma protein and metabolite content. Consequently, plasma biomolecules have been suggested as surrogates of tissue-specific action of thyroid hormones. This review provides a brief introduction to OMICs in thyroid research with a particular focus on metabolomics studies in humans elucidating the important role of thyroid hormones for whole body metabolism in adults.
Collapse
Affiliation(s)
- Maik Pietzner
- Institute of Clinical Chemistry and Laboratory MedicineUniversity Medicine Greifswald, Greifswald, Germany
- DZHK (German Center for Cardiovascular Research)Partner Site Greifswald, Greifswald, Germany
| | - Tim Kacprowski
- Chair of Experimental BioinformaticsTUM School of Life Sciences Weihenstephan Technical University of Munich, Freising-Weihenstephan, Germany
| | - Nele Friedrich
- Institute of Clinical Chemistry and Laboratory MedicineUniversity Medicine Greifswald, Greifswald, Germany
- DZHK (German Center for Cardiovascular Research)Partner Site Greifswald, Greifswald, Germany
| |
Collapse
|
47
|
Warrier V, Grasby KL, Uzefovsky F, Toro R, Smith P, Chakrabarti B, Khadake J, Mawbey-Adamson E, Litterman N, Hottenga JJ, Lubke G, Boomsma DI, Martin NG, Hatemi PK, Medland SE, Hinds DA, Bourgeron T, Baron-Cohen S. Genome-wide meta-analysis of cognitive empathy: heritability, and correlates with sex, neuropsychiatric conditions and cognition. Mol Psychiatry 2018; 23:1402-1409. [PMID: 28584286 PMCID: PMC5656177 DOI: 10.1038/mp.2017.122] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2016] [Revised: 04/08/2017] [Accepted: 04/12/2017] [Indexed: 12/19/2022]
Abstract
We conducted a genome-wide meta-analysis of cognitive empathy using the 'Reading the Mind in the Eyes' Test (Eyes Test) in 88,056 research volunteers of European Ancestry (44,574 females and 43,482 males) from 23andMe Inc., and an additional 1497 research volunteers of European Ancestry (891 females and 606 males) from the Brisbane Longitudinal Twin Study. We confirmed a female advantage on the Eyes Test (Cohen's d=0.21, P<2.2 × 10-16), and identified a locus in 3p26.1 that is associated with scores on the Eyes Test in females (rs7641347, Pmeta=1.58 × 10-8). Common single nucleotide polymorphisms explained 5.8% (95% CI: 4.5%-7.2%; P=1.00 × 10-17) of the total trait variance in both sexes, and we identified a twin heritability of 28% (95% CI: 13%-42%). Finally, we identified significant genetic correlation between the Eyes Test and anorexia nervosa, openness (NEO-Five Factor Inventory), and different measures of educational attainment and cognitive aptitude.
Collapse
Affiliation(s)
- Varun Warrier
- Autism Research Centre, Department of Psychiatry, University of Cambridge, Cambridgeshire, United Kingdom,Corresponding authors: Varun Warrier () and Simon Baron-Cohen (). Autism Research Centre, Douglas House, 18B Trumpington Road, Cambridge, CB2 8AH, United Kingdom. Telephone: 0044 (0) 1223 746057
| | | | - Florina Uzefovsky
- Autism Research Centre, Department of Psychiatry, University of Cambridge, Cambridgeshire, United Kingdom,Department of Psychology, Ben Gurion University of the Negev, Israel
| | - Roberto Toro
- CNRS UMR 3571: Genes, Synapses and Cognition, Institut Pasteur, Paris, France,Université Paris Diderot, Sorbonne Paris Cité, Human Genetics and Cognitive Functions, Paris, France,Institut Pasteur, 5-28 Rue du Dr Roux, 75015 Paris, France
| | - Paula Smith
- Autism Research Centre, Department of Psychiatry, University of Cambridge, Cambridgeshire, United Kingdom
| | - Bhismadev Chakrabarti
- Centre for Integrative Neuroscience and Neurodynamics, School of Psychology and Clinical Language Sciences, University of Reading, Reading, United Kingdom
| | - Jyoti Khadake
- NIHR Cambridge BioResource, Cambridge University and Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Eleanor Mawbey-Adamson
- NIHR Cambridge BioResource, Cambridge University and Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Nadia Litterman
- 23andMe Inc., 899 West Evelyn Ave, Mountain View, California 94041, USA
| | - Jouke-Jan Hottenga
- Department of Biological Psychology, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands,EMGO+ Institute for Health and Care Research, VU Medical Center, Amsterdam, the Netherlands.,Neuroscience Campus Amsterdam, Vrije Universiteit, Amsterdam, the Netherlands
| | - Gitta Lubke
- Department of Biological Psychology, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands,Department of Psychology, University of Notre Dame, United States
| | - Dorret I Boomsma
- Department of Biological Psychology, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | | | - Peter K Hatemi
- Political Science, Microbiology and Biochemistry, Pennsylvania State University
| | - Sarah E Medland
- QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - David A Hinds
- 23andMe Inc., 899 West Evelyn Ave, Mountain View, California 94041, USA
| | - Thomas Bourgeron
- CNRS UMR 3571: Genes, Synapses and Cognition, Institut Pasteur, Paris, France,Université Paris Diderot, Sorbonne Paris Cité, Human Genetics and Cognitive Functions, Paris, France,Institut Pasteur, 5-28 Rue du Dr Roux, 75015 Paris, France
| | - Simon Baron-Cohen
- Autism Research Centre, Department of Psychiatry, University of Cambridge, Cambridgeshire, United Kingdom,CLASS Clinic, Cambridgeshire and Peterborough NHS Foundation Trust (CPFT), Cambridgeshire, United Kingdom,Corresponding authors: Varun Warrier () and Simon Baron-Cohen (). Autism Research Centre, Douglas House, 18B Trumpington Road, Cambridge, CB2 8AH, United Kingdom. Telephone: 0044 (0) 1223 746057
| |
Collapse
|
48
|
Hwangbo Y, Park YJ. Genome-Wide Association Studies of Autoimmune Thyroid Diseases, Thyroid Function, and Thyroid Cancer. Endocrinol Metab (Seoul) 2018; 33:175-184. [PMID: 29947174 PMCID: PMC6021314 DOI: 10.3803/enm.2018.33.2.175] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 05/08/2018] [Accepted: 05/14/2018] [Indexed: 12/16/2022] Open
Abstract
Thyroid diseases, including autoimmune thyroid diseases and thyroid cancer, are known to have high heritability. Family and twin studies have indicated that genetics plays a major role in the development of thyroid diseases. Thyroid function, represented by thyroid stimulating hormone (TSH) and free thyroxine (T4), is also known to be partly genetically determined. Before the era of genome-wide association studies (GWAS), the ability to identify genes responsible for susceptibility to thyroid disease was limited. Over the past decade, GWAS have been used to identify genes involved in many complex diseases, including various phenotypes of the thyroid gland. In GWAS of autoimmune thyroid diseases, many susceptibility loci associated with autoimmunity (human leukocyte antigen [HLA], protein tyrosine phosphatase, non-receptor type 22 [PTPN22], cytotoxic T-lymphocyte associated protein 4 [CTLA4], and interleukin 2 receptor subunit alpha [IL2RA]) or thyroid-specific genes (thyroid stimulating hormone receptor [TSHR] and forkhead box E1 [FOXE1]) have been identified. Regarding thyroid function, many susceptibility loci for levels of TSH and free T4 have been identified through genome-wide analyses. In GWAS of differentiated thyroid cancer, associations at FOXE1, MAP3K12 binding inhibitory protein 1 (MBIP)-NK2 homeobox 1 (NKX2-1), disrupted in renal carcinoma 3 (DIRC3), neuregulin 1 (NRG1), and pecanex-like 2 (PCNXL2) have been commonly identified in people of European and Korean ancestry, and many other susceptibility loci have been found in specific populations. Through GWAS of various thyroid-related phenotypes, many susceptibility loci have been found, providing insights into the pathogenesis of thyroid diseases and disease co-clustering within families and individuals.
Collapse
Affiliation(s)
- Yul Hwangbo
- Center for Thyroid Cancer, National Cancer Center, Goyang, Korea
| | - Young Joo Park
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea.
| |
Collapse
|
49
|
Abstract
Empathy is the ability to recognize and respond to the emotional states of other individuals. It is an important psychological process that facilitates navigating social interactions and maintaining relationships, which are important for well-being. Several psychological studies have identified difficulties in both self-report and performance-based measures of empathy in a range of psychiatric conditions. To date, no study has systematically investigated the genetic architecture of empathy using genome-wide association studies (GWAS). Here we report the results of the largest GWAS of empathy to date using a well-validated self-report measure of empathy, the Empathy Quotient (EQ), in 46,861 research participants from 23andMe, Inc. We identify 11 suggestive loci (P < 1 × 10-6), though none were significant at P < 2.5 × 10-8 after correcting for multiple testing. The most significant SNP was identified in the non-stratified analysis (rs4882760; P = 4.29 × 10-8), and is an intronic SNP in TMEM132C. The EQ had a modest but significant narrow-sense heritability (0.11 ± 0.014; P = 1.7 × 10-14). As predicted, based on earlier work, we confirmed a significant female advantage on the EQ (P < 2 × 10-16, Cohen's d = 0.65). We identified similar SNP heritability and high genetic correlation between the sexes. Also, as predicted, we identified a significant negative genetic correlation between autism and the EQ (rg = -0.27 ± 0.07, P = 1.63 × 10-4). We also identified a significant positive genetic correlation between the EQ and risk for schizophrenia (rg = 0.19 ± 0.04; P = 1.36 × 10-5), risk for anorexia nervosa (rg = 0.32 ± 0.09; P = 6 × 10-4), and extraversion (rg = 0.45 ± 0.08; 5.7 × 10-8). This is the first GWAS of self-reported empathy. The results suggest that the genetic variations associated with empathy also play a role in psychiatric conditions and psychological traits.
Collapse
|
50
|
Replication confirms the association of loci in FOXE1, PDE8B, CAPZB and PDE10A with thyroid traits: a Genetics of Diabetes Audit and Research Tayside study (GoDARTS). Pharmacogenet Genomics 2018; 27:356-362. [PMID: 28727628 DOI: 10.1097/fpc.0000000000000299] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
OBJECTIVE Replication of associations in genome-wide association studies is desirable to ensure that such signals are potentially clinically meaningful. This study aimed to replicate associations of selected single-nucleotide polymorphisms (SNPs) with hypothyroidism and serum thyroid-stimulating hormone (TSH) using electronic medical records (EMRs). PATIENTS AND METHODS A cross-sectional study was carried out among patients of European Caucasian ethnicity from the Genetics of Diabetes Audit and Research Tayside recruited in Tayside (Scotland, UK). EMRs (biochemistry, prescribing, hospital admissions and demographics) were used to ascertain patients with hypothyroidism and their controls as well as average serum TSH concentration, and linked to genetic biobank data. Genetic tests of association were performed using logistic and linear regression models. RESULTS We analysed 1703 cases of hypothyroidism and 9457 controls. All four SNPs located on chromosome 9 at FOXE1 were associated with hypothyroidism with similar effect estimates (odds ratio=0.75-0.76, P<5e-08). Also, loci on chromosomes 1 (PTPN22), six (HLA-E/HLA-C) and 12 (SH2B3) were replicated. For serum TSH, we confirmed 12 SNPs previously reported at PDE8B, CAPZB, PDE10A, LOC105371356, NR3C2, VEGFA, IGFBP5, INSR, PRDM11, NFIA, ITPK1 and ABO. Overall, these SNPs accounted for 6.8% of the serum TSH variation (P<1e-04). CONCLUSION EMRs linked to genomic data in large populations enable validation of genome-wide association studies discoveries without additional genotyping costs. Our replication confirmed at genome-wide significance the association of loci at FOXE1 with hypothyroidism, and PDE8B, CAPZB and PDE10A with serum TSH. A total of 12 SNPs seemed to explain nearly 7% of the serum TSH variation.
Collapse
|