1
|
McCauley MA, Milligan WR, Lin J, Penley MJ, Quinn LM, Morran LT. An empirical test of Baker's law: dispersal favors increased rates of self-fertilization. Evolution 2025; 79:432-441. [PMID: 39660484 DOI: 10.1093/evolut/qpae177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 11/15/2024] [Accepted: 12/09/2024] [Indexed: 12/12/2024]
Abstract
Baker's law is the observation that recently dispersed populations are more likely to be self-fertilizing than populations at the range core. The explanatory hypothesis is that dispersal favors self-fertilization due to reproductive assurance. Caenorhabditis elegans nematodes reproduce via either self-fertilization or outcrossing and frequently disperse in small numbers to new bacterial food sources. While C. elegans males facilitate outcrossing, males and outcrossing are rare in natural C. elegans populations. Here, we use experimental evolution to test if frequent dispersal selects for the invasion of self-fertilization into predominantly outcrossing populations. C. elegans dispersal often occurs in the dauer alternative life stage. Therefore, we tested the effects of dispersal on rates of self-fertilization in populations exposed to dauer-inducing conditions and populations maintained under standard lab conditions. Overall, we found that populations required to disperse to new food sources rapidly evolved substantially elevated rates of self-fertilization compared to populations that were not required to disperse in both dauer and non-dauer populations. Our results demonstrate that frequent dispersal can readily favor the evolution of increased selfing rates in C. elegans populations, regardless of life stage. These data provide a potential mechanism to explain the dearth of outcrossing in natural populations of C. elegans.
Collapse
Affiliation(s)
- Michelle A McCauley
- Population Biology, Ecology, and Evolution Graduate Program, Emory University, Atlanta, GA, United States
| | | | - Julie Lin
- Department of Biology, Emory University, Atlanta, GA, United States
| | - McKenna J Penley
- Department of Biology, Emory University, Atlanta, GA, United States
| | - Lilja M Quinn
- Department of Biology, Washington University, St. Louis, MO, United States
| | - Levi T Morran
- Department of Biology, Emory University, Atlanta, GA, United States
| |
Collapse
|
2
|
Rockman MV. Parental-effect gene-drive elements under partial selfing, or why do Caenorhabditis genomes have hyperdivergent regions? Genetics 2025; 229:1-36. [PMID: 39475455 PMCID: PMC11708918 DOI: 10.1093/genetics/iyae175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 10/14/2024] [Accepted: 10/16/2024] [Indexed: 11/06/2024] Open
Abstract
Self-fertile Caenorhabditis nematodes carry a surprising number of Medea elements, alleles that act in heterozygous mothers and cause death or developmental delay in offspring that do not inherit them. At some loci, both alleles in a cross operate as independent Medeas, affecting all the homozygous progeny of a selfing heterozygote. The genomic coincidence of Medea elements and ancient, deeply coalescing haplotypes, which pepper the otherwise homogeneous genomes of these animals, raises questions about how these apparent gene-drive elements persist for long periods of time. Here, I investigate how mating system affects the evolution of Medeas, and their paternal-effect counterparts, peels. Despite an intuition that antagonistic alleles should induce balancing selection by killing homozygotes, models show that, under partial selfing, antagonistic elements experience positive frequency dependence: the common allele drives the rare one extinct, even if the rare one is more penetrant. Analytical results for the threshold frequency required for one allele to invade a population show that a very weakly penetrant allele, one whose effects would escape laboratory detection, could nevertheless prevent a much more penetrant allele from invading under high rates of selfing. Ubiquitous weak antagonistic Medeas and peels could then act as localized barriers to gene flow between populations, generating genomic islands of deep coalescence. Analysis of gene expression data, however, suggests that this cannot be the whole story. A complementary explanation is that ordinary ecological balancing selection generates ancient haplotypes on which Medeas can evolve, while high homozygosity in these selfers minimizes the role of gene drive in their evolution.
Collapse
Affiliation(s)
- Matthew V Rockman
- Department of Biology and Center for Genomics & Systems Biology, New York University, New York, NY 10003, USA
| |
Collapse
|
3
|
Parée T, Noble L, Roze D, Teotónio H. Selection Can Favor a Recombination Landscape That Limits Polygenic Adaptation. Mol Biol Evol 2025; 42:msae273. [PMID: 39776196 PMCID: PMC11739800 DOI: 10.1093/molbev/msae273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Revised: 12/05/2024] [Accepted: 12/13/2024] [Indexed: 01/11/2025] Open
Abstract
Modifiers of recombination rates have been described but the selective pressures acting on them and their effect on adaptation to novel environments remain unclear. We performed experimental evolution in the nematode Caenorhabditis elegans using alternative rec-1 alleles modifying the position of meiotic crossovers along chromosomes without detectable direct fitness effects. We show that adaptation to a novel environment is impaired by the allele that decreases recombination rates in the genomic regions containing fitness variation. However, the allele that impairs adaptation is indirectly favored by selection, because it increases recombination rates and reduces the associations among beneficial and deleterious variation located in its chromosomal vicinity. These results validate theoretical expectations about the evolution of recombination but suggest that genome-wide polygenic adaptation is of little consequence to indirect selection on recombination rate modifiers.
Collapse
Affiliation(s)
- Tom Parée
- Institut de Biologie, École Normale Supérieure, CNRS UMR 8197, Inserm U1024, PSL Research University, Paris 75005, France
- Department of Biology, New York University, New York, NY 10003, USA
| | - Luke Noble
- Institut de Biologie, École Normale Supérieure, CNRS UMR 8197, Inserm U1024, PSL Research University, Paris 75005, France
- EnviroDNA, 95 Albert St Brunswick, Melbourne, Victoria 3065, Australia
| | - Denis Roze
- Adaptation et Diversité en Milieu Marin CNRS UMR 7144, Station Biologique de Roscoff, Sorbonne University, Roscoff 29688, France
| | - Henrique Teotónio
- Institut de Biologie, École Normale Supérieure, CNRS UMR 8197, Inserm U1024, PSL Research University, Paris 75005, France
| |
Collapse
|
4
|
Braendle C, Paaby A. Life history in Caenorhabditis elegans: from molecular genetics to evolutionary ecology. Genetics 2024; 228:iyae151. [PMID: 39422376 PMCID: PMC11538407 DOI: 10.1093/genetics/iyae151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 09/11/2024] [Indexed: 10/19/2024] Open
Abstract
Life history is defined by traits that reflect key components of fitness, especially those relating to reproduction and survival. Research in life history seeks to unravel the relationships among these traits and understand how life history strategies evolve to maximize fitness. As such, life history research integrates the study of the genetic and developmental mechanisms underlying trait determination with the evolutionary and ecological context of Darwinian fitness. As a leading model organism for molecular and developmental genetics, Caenorhabditis elegans is unmatched in the characterization of life history-related processes, including developmental timing and plasticity, reproductive behaviors, sex determination, stress tolerance, and aging. Building on recent studies of natural populations and ecology, the combination of C. elegans' historical research strengths with new insights into trait variation now positions it as a uniquely valuable model for life history research. In this review, we summarize the contributions of C. elegans and related species to life history and its evolution. We begin by reviewing the key characteristics of C. elegans life history, with an emphasis on its distinctive reproductive strategies and notable life cycle plasticity. Next, we explore intraspecific variation in life history traits and its underlying genetic architecture. Finally, we provide an overview of how C. elegans has guided research on major life history transitions both within the genus Caenorhabditis and across the broader phylum Nematoda. While C. elegans is relatively new to life history research, significant progress has been made by leveraging its distinctive biological traits, establishing it as a highly cross-disciplinary system for life history studies.
Collapse
Affiliation(s)
- Christian Braendle
- Université Côte d’Azur, CNRS, Inserm, Institut de Biologie Valrose, 06108 Nice, France
| | - Annalise Paaby
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
| |
Collapse
|
5
|
Rockman MV. Parental-effect gene-drive elements under partial selfing, or why do Caenorhabditis genomes have hyperdivergent regions? BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.23.604817. [PMID: 39091748 PMCID: PMC11291142 DOI: 10.1101/2024.07.23.604817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
Self-fertile Caenorhabditis nematodes carry a surprising number of Medea elements, alleles that act in heterozygous mothers and cause death or developmental delay in offspring that don't inherit them. At some loci, both alleles in a cross operate as independent Medeas, affecting all the homozygous progeny of a selfing heterozygote. The genomic coincidence of Medea elements and ancient, deeply coalescing haplotypes, which pepper the otherwise homogeneous genomes of these animals, raises questions about how these apparent gene-drive elements persist for long periods of time. Here I investigate how mating system affects the evolution of Medeas, and their paternal-effect counterparts, peels. Despite an intuition that antagonistic alleles should induce balancing selection by killing homozygotes, models show that, under partial selfing, antagonistic elements experience positive frequency dependence: the common allele drives the rare one extinct, even if the rare one is more penetrant. Analytical results for the threshold frequency required for one allele to invade a population show that a very weakly penetrant allele, one whose effects would escape laboratory detection, could nevertheless prevent a much more penetrant allele from invading under high rates of selfing. Ubiquitous weak antagonistic Medeas and peels could then act as localized barriers to gene flow between populations, generating genomic islands of deep coalescence. Analysis of gene expression data, however, suggest that this cannot be the whole story. A complementary explanation is that ordinary ecological balancing selection generates ancient haplotypes on which Medeas can evolve, while high homozygosity in these selfers minimizes the role of gene drive in their evolution.
Collapse
Affiliation(s)
- Matthew V Rockman
- Department of Biology and Center for Genomics & Systems Biology, New York University, New York, NY 10003
| |
Collapse
|
6
|
Quevarec L, Morran LT, Dufourcq-Sekatcheff E, Armant O, Adam-Guillermin C, Bonzom JM, Réale D. Host defense alteration in Caenorhabditis elegans after evolution under ionizing radiation. BMC Ecol Evol 2024; 24:95. [PMID: 38982371 PMCID: PMC11234525 DOI: 10.1186/s12862-024-02282-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 07/01/2024] [Indexed: 07/11/2024] Open
Abstract
BACKGROUND Adaptation to a stressor can lead to costs on other traits. These costs play an unavoidable role on fitness and influence the evolutionary trajectory of a population. Host defense seems highly subject to these costs, possibly because its maintenance is energetically costly but essential to the survival. When assessing the ecological risk related to pollution, it is therefore relevant to consider these costs to evaluate the evolutionary consequences of stressors on populations. However, to the best of our knowledge, the effects of evolution in irradiate environment on host defense have never been studied. Using an experimental evolution approach, we analyzed fitness across 20 transfers (about 20 generations) in Caenorhabditis elegans populations exposed to 0, 1.4, and 50.0 mGy.h- 1 of 137Cs gamma radiation. Then, populations from transfer 17 were placed in the same environmental conditions without irradiation (i.e., common garden) for about 10 generations before being exposed to the bacterial parasite Serratia marcescens and their survival was estimated to study host defense. Finally, we studied the presence of an evolutionary trade-off between fitness of irradiated populations and host defense. RESULTS We found a lower fitness in both irradiated treatments compared to the control ones, but fitness increased over time in the 50.0 mGy.h- 1, suggesting a local adaptation of the populations. Then, the survival rate of C. elegans to S. marcescens was lower for common garden populations that had previously evolved under both irradiation treatments, indicating that evolution in gamma-irradiated environment had a cost on host defense of C. elegans. Furthermore, we showed a trade-off between standardized fitness at the end of the multigenerational experiment and survival of C. elegans to S. marcescens in the control treatment, but a positive correlation between the two traits for the two irradiated treatments. These results indicate that among irradiated populations, those most sensitive to ionizing radiation are also the most susceptible to the pathogen. On the other hand, other irradiated populations appear to have evolved cross-resistance to both stress factors. CONCLUSIONS Our study shows that adaptation to an environmental stressor can be associated with an evolutionary cost when a new stressor appears, even several generations after the end of the first stressor. Among irradiated populations, we observed an evolution of resistance to ionizing radiation, which also appeared to provide an advantage against the pathogen. On the other hand, some of the irradiated populations seemed to accumulate sensitivities to stressors. This work provides a new argument to show the importance of considering evolutionary changes in ecotoxicology and for ecological risk assessment.
Collapse
Affiliation(s)
- Loïc Quevarec
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PSE-ENV/SERPEN/LECO, Cadarache, Saint Paul Lez Durance, 13115, France.
| | - Levi T Morran
- Department of Biology, Emory University, Atlanta, GA, 30322, USA
| | - Elizabeth Dufourcq-Sekatcheff
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PSE-ENV/SERPEN/LECO, Cadarache, Saint Paul Lez Durance, 13115, France
| | - Olivier Armant
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PSE-ENV/SERPEN/LECO, Cadarache, Saint Paul Lez Durance, 13115, France
| | - Christelle Adam-Guillermin
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PSE-SANTE/SDOS/LMDN, Cadarache, Saint Paul Lez Durance, 13115, France
| | - Jean-Marc Bonzom
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PSE-ENV/SERPEN/LECO, Cadarache, Saint Paul Lez Durance, 13115, France
| | - Denis Réale
- Département des sciences biologiques, Université du Québec à Montréal, Montréal, QC, Canada
| |
Collapse
|
7
|
Baran JK, Kosztyła P, Antoł W, Labocha MK, Sychta K, Drobniak SM, Prokop ZM. Reproductive system, temperature, and genetic background effects in experimentally evolving populations of Caenorhabditis elegans. PLoS One 2024; 19:e0300276. [PMID: 38557670 PMCID: PMC10984399 DOI: 10.1371/journal.pone.0300276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 02/25/2024] [Indexed: 04/04/2024] Open
Abstract
Experimental evolution (EE) is a powerful research framework for gaining insights into many biological questions, including the evolution of reproductive systems. We designed a long-term and highly replicated EE project using the nematode C. elegans, with the main aim of investigating the impact of reproductive system on adaptation and diversification under environmental challenge. From the laboratory-adapted strain N2, we derived isogenic lines and introgressed the fog-2(q71) mutation, which changes the reproductive system from nearly exclusive selfing to obligatory outcrossing, independently into 3 of them. This way, we obtained 3 pairs of isogenic ancestral populations differing in reproductive system; from these, we derived replicate EE populations and let them evolve in either novel (increased temperature) or control conditions for over 100 generations. Subsequently, fitness of both EE and ancestral populations was assayed under the increased temperature conditions. Importantly, each population was assayed in 2-4 independent blocks, allowing us to gain insight into the reproducibility of fitness scores. We expected to find upward fitness divergence, compared to ancestors, in populations which had evolved in this treatment, particularly in the outcrossing ones due to the benefits of genetic shuffling. However, our data did not support these predictions. The first major finding was very strong effect of replicate block on populations' fitness scores. This indicates that despite standardization procedures, some important environmental effects were varying among blocks, and possibly compounded by epigenetic inheritance. Our second key finding was that patterns of EE populations' divergence from ancestors differed among the ancestral isolines, suggesting that research conclusions derived for any particular genetic background should never be generalized without sampling a wider set of backgrounds. Overall, our results support the calls to pay more attention to biological variability when designing studies and interpreting their results, and to avoid over-generalizations of outcomes obtained for specific genetic and/or environmental conditions.
Collapse
Affiliation(s)
- Joanna K. Baran
- Faculty of Biology, Institute of Environmental Sciences, Jagiellonian University in Krakow, Krakow, Poland
| | - Paulina Kosztyła
- Faculty of Biology, Institute of Environmental Sciences, Jagiellonian University in Krakow, Krakow, Poland
| | - Weronika Antoł
- Faculty of Biology, Institute of Environmental Sciences, Jagiellonian University in Krakow, Krakow, Poland
- Institute of Systematics and Evolution of Animals, Polish Academy of Sciences, Krakow, Poland
| | - Marta K. Labocha
- Faculty of Biology, Institute of Environmental Sciences, Jagiellonian University in Krakow, Krakow, Poland
| | - Karolina Sychta
- Institute of Systematics and Evolution of Animals, Polish Academy of Sciences, Krakow, Poland
| | - Szymon M. Drobniak
- Faculty of Biology, Institute of Environmental Sciences, Jagiellonian University in Krakow, Krakow, Poland
- Evolution and Ecology Research Centre, School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Zofia M. Prokop
- Faculty of Biology, Institute of Environmental Sciences, Jagiellonian University in Krakow, Krakow, Poland
| |
Collapse
|
8
|
Parée T, Noble L, Ferreira Gonçalves J, Teotónio H. rec-1 loss of function increases recombination in the central gene clusters at the expense of autosomal pairing centers. Genetics 2024; 226:iyad205. [PMID: 38001364 DOI: 10.1093/genetics/iyad205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 10/03/2023] [Accepted: 11/08/2023] [Indexed: 11/26/2023] Open
Abstract
Meiotic control of crossover (CO) number and position is critical for homologous chromosome segregation and organismal fertility, recombination of parental genotypes, and the generation of novel genetic combinations. We here characterize the recombination rate landscape of a rec-1 loss of function modifier of CO position in Caenorhabditis elegans, one of the first ever modifiers discovered. By averaging CO position across hermaphrodite and male meioses and by genotyping 203 single-nucleotide variants covering about 95% of the genome, we find that the characteristic chromosomal arm-center recombination rate domain structure is lost in the loss of function rec-1 mutant. The rec-1 loss of function mutant smooths the recombination rate landscape but is insufficient to eliminate the nonuniform position of CO. Lower recombination rates in the rec-1 mutant are particularly found in the autosomal arm domains containing the pairing centers. We further find that the rec-1 mutant is of little consequence for organismal fertility and egg viability and thus for rates of autosomal nondisjunction. It nonetheless increases X chromosome nondisjunction rates and thus male appearance. Our findings question the maintenance of recombination rate heritability and genetic diversity among C. elegans natural populations, and they further suggest that manipulating genetic modifiers of CO position will help find quantitative trait loci located in low-recombining genomic regions normally refractory to discovery.
Collapse
Affiliation(s)
- Tom Parée
- Institut de Biologie de l'École Normale Supérieure, CNRS UMR, 8197, Inserm U1024, PSL Research University, Paris F-75005, France
| | - Luke Noble
- Institut de Biologie de l'École Normale Supérieure, CNRS UMR, 8197, Inserm U1024, PSL Research University, Paris F-75005, France
- EnviroDNA, 95 Albert St., Brunswick, Victoria 3065, Australia
| | - João Ferreira Gonçalves
- Institut de Biologie de l'École Normale Supérieure, CNRS UMR, 8197, Inserm U1024, PSL Research University, Paris F-75005, France
| | - Henrique Teotónio
- Institut de Biologie de l'École Normale Supérieure, CNRS UMR, 8197, Inserm U1024, PSL Research University, Paris F-75005, France
| |
Collapse
|
9
|
Mallard F, Noble L, Guzella T, Afonso B, Baer CF, Teotónio H. Phenotypic stasis with genetic divergence. PEER COMMUNITY JOURNAL 2023; 3:e119. [PMID: 39346701 PMCID: PMC11434230 DOI: 10.24072/pcjournal.349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Whether or not genetic divergence in the short-term of tens to hundreds of generations is compatible with phenotypic stasis remains a relatively unexplored problem. We evolved predominantly outcrossing, genetically diverse populations of the nematode Caenorhabditis elegans under a constant and homogeneous environment for 240 generations and followed individual locomotion behavior. Although founders of lab populations show highly diverse locomotion behavior, during lab evolution, the component traits of locomotion behavior - defined as the transition rates in activity and direction - did not show divergence from the ancestral population. In contrast, transition rates' genetic (co)variance structure showed a marked divergence from the ancestral state and differentiation among replicate populations during the final 100 generations and after most adaptation had been achieved. We observe that genetic differentiation is a transient pattern during the loss of genetic variance along phenotypic dimensions under drift during the last 100 generations of lab evolution. These results suggest that short-term stasis of locomotion behavior is maintained because of stabilizing selection, while the genetic structuring of component traits is contingent upon drift history.
Collapse
Affiliation(s)
- François Mallard
- Institut de Biologie de l'École Normale Supérieure, CNRS UMR 8197, Inserm U1024, PSL Research University, F-75005 Paris, France
| | - Luke Noble
- Institut de Biologie de l'École Normale Supérieure, CNRS UMR 8197, Inserm U1024, PSL Research University, F-75005 Paris, France
| | - Thiago Guzella
- Institut de Biologie de l'École Normale Supérieure, CNRS UMR 8197, Inserm U1024, PSL Research University, F-75005 Paris, France
| | - Bruno Afonso
- Institut de Biologie de l'École Normale Supérieure, CNRS UMR 8197, Inserm U1024, PSL Research University, F-75005 Paris, France
| | - Charles F Baer
- Department of Biology, University of Florida Genetics Institute, University of Florida, Gainsville, Florida 32611, U.S.A
| | - Henrique Teotónio
- Institut de Biologie de l'École Normale Supérieure, CNRS UMR 8197, Inserm U1024, PSL Research University, F-75005 Paris, France
| |
Collapse
|
10
|
Petersen C, Hamerich IK, Adair KL, Griem-Krey H, Torres Oliva M, Hoeppner MP, Bohannan BJM, Schulenburg H. Host and microbiome jointly contribute to environmental adaptation. THE ISME JOURNAL 2023; 17:1953-1965. [PMID: 37673969 PMCID: PMC10579302 DOI: 10.1038/s41396-023-01507-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 08/25/2023] [Accepted: 08/30/2023] [Indexed: 09/08/2023]
Abstract
Most animals and plants have associated microorganisms, collectively referred to as their microbiomes, which can provide essential functions. Given their importance, host-associated microbiomes have the potential to contribute substantially to adaptation of the host-microbiome assemblage (the "metaorganism"). Microbiomes may be especially important for rapid adaptation to novel environments because microbiomes can change more rapidly than host genomes. However, it is not well understood how hosts and microbiomes jointly contribute to metaorganism adaptation. We developed a model system with which to disentangle the contributions of hosts and microbiomes to metaorganism adaptation. We established replicate mesocosms containing the nematode Caenorhabditis elegans co-cultured with microorganisms in a novel complex environment (laboratory compost). After approximately 30 nematode generations (100 days), we harvested worm populations and associated microbiomes, and subjected them to a common garden experiment designed to unravel the impacts of microbiome composition and host genetics on metaorganism adaptation. We observed that adaptation took different trajectories in different mesocosm lines, with some increasing in fitness and others decreasing, and that interactions between host and microbiome played an important role in these contrasting evolutionary paths. We chose two exemplary mesocosms (one with a fitness increase and one with a decrease) for detailed study. For each example, we identified specific changes in both microbiome composition (for both bacteria and fungi) and nematode gene expression associated with each change in fitness. Our study provides experimental evidence that adaptation to a novel environment can be jointly influenced by host and microbiome.
Collapse
Affiliation(s)
- Carola Petersen
- Department of Evolutionary Ecology and Genetics, Kiel University, Kiel, Germany
| | - Inga K Hamerich
- Department of Evolutionary Ecology and Genetics, Kiel University, Kiel, Germany
| | - Karen L Adair
- Institute of Ecology and Evolution, University of Oregon, Eugene, OR, USA
| | - Hanne Griem-Krey
- Department of Evolutionary Ecology and Genetics, Kiel University, Kiel, Germany
| | | | - Marc P Hoeppner
- Institute of Clinical Molecular Biology, Kiel University, Kiel, Germany
| | | | - Hinrich Schulenburg
- Department of Evolutionary Ecology and Genetics, Kiel University, Kiel, Germany.
- Max-Planck Institute for Evolutionary Biology, Ploen, Germany.
| |
Collapse
|
11
|
Sepulveda NB, Chen D, Petrella LN. Moderate heat stress-induced sterility is due to motility defects and reduced mating drive in Caenorhabditis elegans males. J Exp Biol 2023; 226:jeb245546. [PMID: 37724024 DOI: 10.1242/jeb.245546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 09/11/2023] [Indexed: 09/20/2023]
Abstract
Moderate heat stress negatively impacts fertility in sexually reproducing organisms at sublethal temperatures. These moderate heat stress effects are typically more pronounced in males. In some species, sperm production, quality and motility are the primary cause of male infertility during moderate heat stress. However, this is not the case in the model nematode Caenorhabditis elegans, where changes in mating behavior are the primary cause of fertility loss. We report that heat-stressed C. elegans males are more motivated to locate and remain on food and less motivated to leave food to find and mate with hermaphrodites than their unstressed counterparts. Heat-stressed males also demonstrate a reduction in motility that likely limits their ability to mate. Collectively these changes result in a dramatic reduction in reproductive success. The reduction in mate-searching behavior may be partially due to increased expression of the chemoreceptor odr-10 in the AWA sensory neurons, which is a marker for starvation in males. These results demonstrate that moderate heat stress may have profound and previously underappreciated effects on reproductive behaviors. As climate change continues to raise global temperatures, it will be imperative to understand how moderate heat stress affects behavioral and motility elements critical to reproduction.
Collapse
Affiliation(s)
- Nicholas B Sepulveda
- Department of Biological Sciences, Marquette University, 1428 W Clybourn St., Milwaukee, WI 53217, USA
| | - Donald Chen
- Department of Biological Sciences, Marquette University, 1428 W Clybourn St., Milwaukee, WI 53217, USA
| | - Lisa N Petrella
- Department of Biological Sciences, Marquette University, 1428 W Clybourn St., Milwaukee, WI 53217, USA
| |
Collapse
|
12
|
Palka JK, Dyba A, Brzozowska J, Antoł W, Sychta K, Prokop ZM. Evolution of fertilization ability in obligatorily outcrossing populations of Caenorhabditis elegans. PeerJ 2023; 11:e15825. [PMID: 37701823 PMCID: PMC10494835 DOI: 10.7717/peerj.15825] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 07/10/2023] [Indexed: 09/14/2023] Open
Abstract
In species reproducing by selfing, the traits connected with outcrossing typically undergo degeneration, a phenomenon called selfing syndrome. In Caenorhabditis elegans nematodes, selfing syndrome affects many traits involved in mating, rendering cross-fertilization highly inefficient. In this study, we investigated the evolution of cross-fertilization efficiency in populations genetically modified to reproduce by obligatory outcrossing. Following the genetic modification, replicate obligatorily outcrossing were maintained for over 100 generations, at either optimal (20 °C) or elevated (24 °C) temperatures, as a part of a broader experimental evolution program. Subsequently, fertilization rates were assayed in the evolving populations, as well as their ancestors who had the obligatory outcrossing introduced but did not go through experimental evolution. Fertilization effectivity was measured by tracking the fractions of fertilized females in age-synchronized populations, through 8 h since reaching adulthood. In order to check the robustness of our measurements, each evolving population was assayed in two or three independent replicate blocks. Indeed, we found high levels of among-block variability in the fertilization trajectories, and in the estimates of divergence between evolving populations and their ancestors. We also identified five populations which appear to have evolved increased fertilization efficiency, relative to their ancestors. However, due to the abovementioned high variability, this set of populations should be treated as candidate, with further replications needed to either confirm or disprove their divergence from ancestors. Furthermore, we also discuss additional observations we have made concerning fertilization trajectories.
Collapse
Affiliation(s)
- Joanna K. Palka
- Institute of Environmental Sciences, Faculty of Biology, Jagiellonian University in Cracow, Cracow, Poland
| | - Alicja Dyba
- Institute of Environmental Sciences, Faculty of Biology, Jagiellonian University in Cracow, Cracow, Poland
| | - Julia Brzozowska
- Institute of Environmental Sciences, Faculty of Biology, Jagiellonian University in Cracow, Cracow, Poland
| | - Weronika Antoł
- Institute of Environmental Sciences, Faculty of Biology, Jagiellonian University in Cracow, Cracow, Poland
| | - Karolina Sychta
- Institute of Environmental Sciences, Faculty of Biology, Jagiellonian University in Cracow, Cracow, Poland
| | - Zofia M. Prokop
- Institute of Environmental Sciences, Faculty of Biology, Jagiellonian University in Cracow, Cracow, Poland
| |
Collapse
|
13
|
Santos J, Matos M, Flatt T, Chelo IM. Microbes are potential key players in the evolution of life histories and aging in Caenorhabditis elegans. Ecol Evol 2023; 13:e10537. [PMID: 37753311 PMCID: PMC10518755 DOI: 10.1002/ece3.10537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 08/07/2023] [Accepted: 09/01/2023] [Indexed: 09/28/2023] Open
Abstract
Microbes can have profound effects on host fitness and health and the appearance of late-onset diseases. Host-microbe interactions thus represent a major environmental context for healthy aging of the host and might also mediate trade-offs between life-history traits in the evolution of host senescence. Here, we have used the nematode Caenorhabditis elegans to study how host-microbe interactions may modulate the evolution of life histories and aging. We first characterized the effects of two non-pathogenic and one pathogenic Escherichia coli strains, together with the pathogenic Serratia marcescens DB11 strain, on population growth rates and survival of C. elegans from five different genetic backgrounds. We then focused on an outbred C. elegans population, to understand if microbe-specific effects on the reproductive schedule and in traits such as developmental rate and survival were also expressed in the presence of males and standing genetic variation, which could be relevant for the evolution of C. elegans and other nematode species in nature. Our results show that host-microbe interactions have a substantial host-genotype-dependent impact on the reproductive aging and survival of the nematode host. Although both pathogenic bacteria reduced host survival in comparison with benign strains, they differed in how they affected other host traits. Host fertility and population growth rate were affected by S. marcescens DB11 only during early adulthood, whereas this occurred at later ages with the pathogenic E. coli IAI1. In both cases, these effects were largely dependent on the host genotypes. Given such microbe-specific genotypic differences in host life history, we predict that the evolution of reproductive schedules and senescence might be critically contingent on host-microbe interactions in nature.
Collapse
Affiliation(s)
- Josiane Santos
- cE3c – Centre for Ecology, Evolution and Environmental Changes & CHANGE – Global Change and Sustainability InstituteLisboaPortugal
- Departamento de Biologia Animal, Faculdade de CiênciasUniversidade de LisboaLisboaPortugal
| | - Margarida Matos
- cE3c – Centre for Ecology, Evolution and Environmental Changes & CHANGE – Global Change and Sustainability InstituteLisboaPortugal
- Departamento de Biologia Animal, Faculdade de CiênciasUniversidade de LisboaLisboaPortugal
| | - Thomas Flatt
- Department of BiologyUniversity of FribourgFribourgSwitzerland
| | - Ivo M. Chelo
- cE3c – Centre for Ecology, Evolution and Environmental Changes & CHANGE – Global Change and Sustainability InstituteLisboaPortugal
- Departamento de Biologia Animal, Faculdade de CiênciasUniversidade de LisboaLisboaPortugal
| |
Collapse
|
14
|
Mallard F, Afonso B, Teotónio H. Selection and the direction of phenotypic evolution. eLife 2023; 12:e80993. [PMID: 37650381 PMCID: PMC10564456 DOI: 10.7554/elife.80993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Accepted: 07/14/2023] [Indexed: 09/01/2023] Open
Abstract
Predicting adaptive phenotypic evolution depends on invariable selection gradients and on the stability of the genetic covariances between the component traits of the multivariate phenotype. We describe the evolution of six traits of locomotion behavior and body size in the nematode Caenorhabditis elegans for 50 generations of adaptation to a novel environment. We show that the direction of adaptive multivariate phenotypic evolution can be predicted from the ancestral selection differentials, particularly when the traits were measured in the new environment. Interestingly, the evolution of individual traits does not always occur in the direction of selection, nor are trait responses to selection always homogeneous among replicate populations. These observations are explained because the phenotypic dimension with most of the ancestral standing genetic variation only partially aligns with the phenotypic dimension under directional selection. These findings validate selection theory and suggest that the direction of multivariate adaptive phenotypic evolution is predictable for tens of generations.
Collapse
Affiliation(s)
- François Mallard
- Institut de Biologie de l’École Normale Supérieure, CNRS UMR 8197, Inserm U1024, PSL Research UniversityParisFrance
| | - Bruno Afonso
- Institut de Biologie de l’École Normale Supérieure, CNRS UMR 8197, Inserm U1024, PSL Research UniversityParisFrance
| | - Henrique Teotónio
- Institut de Biologie de l’École Normale Supérieure, CNRS UMR 8197, Inserm U1024, PSL Research UniversityParisFrance
| |
Collapse
|
15
|
Teterina AA, Willis JH, Lukac M, Jovelin R, Cutter AD, Phillips PC. Genomic diversity landscapes in outcrossing and selfing Caenorhabditis nematodes. PLoS Genet 2023; 19:e1010879. [PMID: 37585484 PMCID: PMC10461856 DOI: 10.1371/journal.pgen.1010879] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 08/28/2023] [Accepted: 07/21/2023] [Indexed: 08/18/2023] Open
Abstract
Caenorhabditis nematodes form an excellent model for studying how the mode of reproduction affects genetic diversity, as some species reproduce via outcrossing whereas others can self-fertilize. Currently, chromosome-level patterns of diversity and recombination are only available for self-reproducing Caenorhabditis, making the generality of genomic patterns across the genus unclear given the profound potential influence of reproductive mode. Here we present a whole-genome diversity landscape, coupled with a new genetic map, for the outcrossing nematode C. remanei. We demonstrate that the genomic distribution of recombination in C. remanei, like the model nematode C. elegans, shows high recombination rates on chromosome arms and low rates toward the central regions. Patterns of genetic variation across the genome are also similar between these species, but differ dramatically in scale, being tenfold greater for C. remanei. Historical reconstructions of variation in effective population size over the past million generations echo this difference in polymorphism. Evolutionary simulations demonstrate how selection, recombination, mutation, and selfing shape variation along the genome, and that multiple drivers can produce patterns similar to those observed in natural populations. The results illustrate how genome organization and selection play a crucial role in shaping the genomic pattern of diversity whereas demographic processes scale the level of diversity across the genome as a whole.
Collapse
Affiliation(s)
- Anastasia A. Teterina
- Institute of Ecology and Evolution, University of Oregon, Eugene, Oregon, United States of America
- Center of Parasitology, Severtsov Institute of Ecology and Evolution RAS, Moscow, Russia
| | - John H. Willis
- Institute of Ecology and Evolution, University of Oregon, Eugene, Oregon, United States of America
| | - Matt Lukac
- Institute of Ecology and Evolution, University of Oregon, Eugene, Oregon, United States of America
| | - Richard Jovelin
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Ontario, Canada
| | - Asher D. Cutter
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Ontario, Canada
| | - Patrick C. Phillips
- Institute of Ecology and Evolution, University of Oregon, Eugene, Oregon, United States of America
| |
Collapse
|
16
|
Mallard F, Noble L, Baer CF, Teotónio H. Variation in mutational (co)variances. G3 (BETHESDA, MD.) 2023; 13:jkac335. [PMID: 36548954 PMCID: PMC9911065 DOI: 10.1093/g3journal/jkac335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 06/10/2022] [Accepted: 12/06/2022] [Indexed: 12/24/2022]
Abstract
Because of pleiotropy, mutations affect the expression and inheritance of multiple traits and, together with selection, are expected to shape standing genetic covariances between traits and eventual phenotypic divergence between populations. It is therefore important to find if the M matrix, describing mutational variances of each trait and covariances between traits, varies between genotypes. We here estimate the M matrix for six locomotion behavior traits in lines of two genotypes of the nematode Caenorhabditis elegans that accumulated mutations in a nearly neutral manner for 250 generations. We find significant mutational variance along at least one phenotypic dimension of the M matrices, but neither their size nor their orientation had detectable differences between genotypes. The number of generations of mutation accumulation, or the number of MA lines measured, was likely insufficient to sample enough mutations and detect potentially small differences between the two M matrices. We then tested if the M matrices were similar to one G matrix describing the standing genetic (co)variances of a population derived by the hybridization of several genotypes, including the two measured for M, and domesticated to a lab-defined environment for 140 generations. We found that the M and G were different because the genetic covariances caused by mutational pleiotropy in the two genotypes are smaller than those caused by linkage disequilibrium in the lab population. We further show that M matrices differed in their alignment with the lab population G matrix. If generalized to other founder genotypes of the lab population, these observations indicate that selection does not shape the evolution of the M matrix for locomotion behavior in the short-term of a few tens to hundreds of generations and suggests that the hybridization of C. elegans genotypes allows selection on new phenotypic dimensions of locomotion behavior.
Collapse
Affiliation(s)
- François Mallard
- Institut de Biologie de l’École Normale Supérieure, PSL Research University, CNRS UMR 8197, Inserm U1024, F-75005 Paris, France
| | - Luke Noble
- Institut de Biologie de l’École Normale Supérieure, PSL Research University, CNRS UMR 8197, Inserm U1024, F-75005 Paris, France
| | - Charles F Baer
- Department of Biology, University of Florida Genetics Institute, University of Florida, Gainsville, FL 32611, USA
| | - Henrique Teotónio
- Institut de Biologie de l’École Normale Supérieure, PSL Research University, CNRS UMR 8197, Inserm U1024, F-75005 Paris, France
| |
Collapse
|
17
|
Antoł W, Byszko J, Dyba A, Palka J, Babik W, Prokop Z. No detectable changes in reproductive behaviour of Caenorhabditis elegans males after 97 generations under obligatory outcrossing. PeerJ 2023; 11:e14572. [PMID: 36643640 PMCID: PMC9838211 DOI: 10.7717/peerj.14572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 11/28/2022] [Indexed: 01/12/2023] Open
Abstract
In Caenorhabditis elegans, a species reproducing mostly via self-fertilization, numerous signatures of selfing syndrome are observed, including differences in reproductive behaviour compared to related obligatory outcrossing species. In this study we investigated the effect of nearly 100 generations of obligatory outcrossing on several characteristics of male reproductive behaviour. A genetically uniform ancestral population carrying a mutation changing the reproductive system to obligatory outcrossing was split into four independent populations. We predicted that the transition from the natural reproductive system, where males were extremely rare, to obligatory outcrossing, where males comprise 50% of the population and are necessary for reproduction, will increase the selection pressure on higher effectiveness of mating behaviour. Several characteristics of male mating behaviour during a 15 min interaction as well as copulation success were compared between the ancestral and evolved populations. No significant differences in male mating behaviour or fertilization success were detected between generations 1 and 97 of obligatory outcrossing populations. We found, however, that longer contact with females increased chances of successful copulation, although this effect did not differ between populations. We conclude that either selection acting on male mating behaviour has not been strong enough, or mutational input of new adaptive variants has not been sufficient to cause noticeable behavioural differences after 97 generations of evolution starting from genetically uniform population.
Collapse
|
18
|
Quevarec L, Réale D, Dufourcq-Sekatcheff E, Armant O, Adam-Guillermin C, Bonzom JM. Ionizing radiation affects the demography and the evolution of Caenorhabditis elegans populations. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 249:114353. [PMID: 36516628 DOI: 10.1016/j.ecoenv.2022.114353] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 11/24/2022] [Accepted: 11/26/2022] [Indexed: 06/17/2023]
Abstract
Ionizing radiation can reduce survival, reproduction and affect development, and lead to the extinction of populations if their evolutionary response is insufficient. However, demographic and evolutionary studies on the effects of ionizing radiation are still scarce. Using an experimental evolution approach, we analyzed population growth rate and associated change in life history traits across generations in Caenorhabditis elegans populations exposed to 0, 1.4, and 50.0 mGy.h-1 of ionizing radiation (gamma external irradiation). We found a higher population growth rate in the 1.4 mGy.h-1 treatment and a lower in the 50.0 mGy.h-1 treatment compared to the control. Realized fecundity was lower in both 1.4 and 50.0 mGy.h-1 than control treatment. High irradiation levels decreased brood size from self-fertilized hermaphrodites, specifically early brood size. Finally, high irradiation levels decreased hatching success compared to the control condition. In reciprocal-transplant experiments, we found that life in low irradiation conditions led to the evolution of higher hatching success and late brood size. These changes could provide better tolerance against ionizing radiation, investing more in self-maintenance than in reproduction. These evolutionary changes were with some costs of adaptation. This study shows that ionizing radiation has both demographic and evolutionary consequences on populations.
Collapse
Affiliation(s)
- Loïc Quevarec
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PSE-ENV/SRTE/LECO, Cadarache 13115, Saint Paul Lez Durance, France.
| | - Denis Réale
- Département des sciences biologiques, Université du Québec à Montréal, Montréal, QC, Canada
| | - Elizabeth Dufourcq-Sekatcheff
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PSE-ENV/SRTE/LECO, Cadarache 13115, Saint Paul Lez Durance, France
| | - Olivier Armant
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PSE-ENV/SRTE/LECO, Cadarache 13115, Saint Paul Lez Durance, France
| | - Christelle Adam-Guillermin
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PSE-SANTE/SDOS/LMDN, Cadarache 13115, Saint Paul Lez Durance, France
| | - Jean-Marc Bonzom
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PSE-ENV/SRTE/LECO, Cadarache 13115, Saint Paul Lez Durance, France.
| |
Collapse
|
19
|
Quevarec L, Réale D, Dufourcq‐Sekatcheff E, Car C, Armant O, Dubourg N, Adam‐Guillermin C, Bonzom J. Male frequency in Caenorhabditis elegans increases in response to chronic irradiation. Evol Appl 2022; 15:1331-1343. [PMID: 36187185 PMCID: PMC9488675 DOI: 10.1111/eva.13420] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 05/02/2022] [Accepted: 05/03/2022] [Indexed: 01/09/2023] Open
Abstract
Outcrossing can be advantageous in a changing environment because it promotes the purge of deleterious mutations and increases the genetic diversity within a population, which may improve population persistence and evolutionary potential. Some species may, therefore, switch their reproductive mode from inbreeding to outcrossing when under environmental stress. This switch may have consequences on the demographic dynamics and evolutionary trajectory of populations. For example, it may directly influence the sex ratio of a population. However, much remains to be discovered about the mechanisms and evolutionary implications of sex ratio changes in a population in response to environmental stress. Populations of the androdioecious nematode Caenorhabditis elegans, are composed of selfing hermaphrodites and rare males. Here, we investigate the changes in the sex ratio of C. elegans populations exposed to radioactive pollution for 60 days or around 20 generations. We experimentally exposed populations to three levels of ionizing radiation (i.e., 0, 1.4, and 50 mGy.h-1). We then performed reciprocal transplant experiments to evaluate genetic divergence between populations submitted to different treatments. Finally, we used a mathematical model to examine the evolutionary mechanisms that could be responsible for the change in sex ratio. Our results showed an increase in male frequency in irradiated populations, and this effect increased with the dose rate. The model showed that an increase in male fertilization success or a decrease in hermaphrodite self-fertilization could explain this increase in the frequency of males. Moreover, males persisted in populations after transplant back into the control conditions. These results suggested selection favoring outcrossing under irradiation conditions. This study shows that ionizing radiation can sustainably alter the reproductive strategy of a population, likely impacting its long-term evolutionary history. This study highlights the need to evaluate the impact of pollutants on the reproductive strategies of populations when assessing the ecological risks.
Collapse
Affiliation(s)
- Loïc Quevarec
- PSE‐ENV/SRTE/LECO, CadaracheInstitut de Radioprotection et de Sûreté Nucléaire (IRSN)Saint Paul Lez DuranceFrance
| | - Denis Réale
- Département des Sciences BiologiquesUniversité du Québec à MontréalMontréalQuebecCanada
| | | | - Clément Car
- PSE‐ENV/SRTE/LECO, CadaracheInstitut de Radioprotection et de Sûreté Nucléaire (IRSN)Saint Paul Lez DuranceFrance
| | - Olivier Armant
- PSE‐ENV/SRTE/LECO, CadaracheInstitut de Radioprotection et de Sûreté Nucléaire (IRSN)Saint Paul Lez DuranceFrance
| | - Nicolas Dubourg
- PSE‐ENV/SRTE/LECO, CadaracheInstitut de Radioprotection et de Sûreté Nucléaire (IRSN)Saint Paul Lez DuranceFrance
| | - Christelle Adam‐Guillermin
- PSE‐SANTE/SDOS/LMDN, CadaracheInstitut de Radioprotection et de Sûreté Nucléaire (IRSN)Saint Paul Lez DuranceFrance
| | - Jean‐Marc Bonzom
- PSE‐ENV/SRTE/LECO, CadaracheInstitut de Radioprotection et de Sûreté Nucléaire (IRSN)Saint Paul Lez DuranceFrance
| |
Collapse
|
20
|
Antoł W, Palka JK, Błażejowska A, Sychta K, Kosztyła P, Labocha MK, Prokop ZM. Evolution of Reproductive Efficiency in Caenorhabditis elegans Under Obligatory Outcrossing. Evol Biol 2022. [DOI: 10.1007/s11692-022-09572-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
AbstractRadical shifts in reproductive systems result in radical changes in selective pressures acting on reproductive traits. Nematode Caenorhabditis elegans constitutes one of rare model systems where such shifts can be experimentally induced, providing an opportunity for studying the evolution of reproductive phenotypes in real time. Evolutionary history of predominantly selfing reproduction in has led to degeneration of traits involved outcrossing, making it inefficient. Here, we introduced obligatory outcrossing into isogenic lines of C. elegans and allowed replicate populations to evolve under the new reproductive system. We predicted that they should evolve higher outcrossing efficiency, leading to increased fitness relative to unevolved ancestors. To test this prediction, we assayed fitness of both ancestral and evolved outcrossing populations. To control for the potentially confounding effect of adaptation to laboratory conditions, we also assayed populations with wild-type (selfing) reproductive system. In five experimental blocks, we measured competitive fitness of 12 evolved populations (6 outcrossing, 6 selfing) after ca. 95 generations of evolution, along with their respective ancestors. On average, we found that fitness increased by 0.72 SD (± 0.3 CI) in outcrossing and by 0.52 (± 0.35 CI) in selfing populations, suggesting further adaptation to laboratory conditions in both types. Contrary to predictions, fitness increase was not significantly higher in outcrossing populations, suggesting no detectable adaptation to the changed reproductive system. Importantly, the results for individual populations varied strongly between experimental blocks, in some cases even differing in effect direction. This emphasises the importance of experimental replication in avoiding reporting false findings.
Collapse
|
21
|
Antoł W, Palka JK, Sychta K, Dudek K, Prokop ZM. Gene conversion restores selfing in experimentally evolving C. elegans populations with fog-2 loss-of-function mutation. MICROPUBLICATION BIOLOGY 2022; 2022:10.17912/micropub.biology.000569. [PMID: 35601754 PMCID: PMC9121179 DOI: 10.17912/micropub.biology.000569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 05/05/2022] [Accepted: 05/17/2022] [Indexed: 11/12/2022]
Abstract
We have discovered a new case of gene conversion restoring ability of self-fertilization in obligatory outcrossing
Caenorhabditis elegans
populations. The
fog-2(q71)
mutation, used to transform the nematodes’ mating system from mostly self-fertilization to obligatory outcrossing, was spontaneously removed by replacing a fragment of
fog-2
gene with a fragment of its paralog,
ftr-1
. This has occurred spontaneously in experimental evolution with large populations, evolving with
fog-2(q71)
mutation for over a hundred generations, without addition mutagens or other factors promoting mutation accumulation. A converted
fog-2
allele restoring hermaphrodite sperm production was detected in five experimental populations. This raises the question about stability of obligatory outcrossing populations in long-term experiments.
Collapse
Affiliation(s)
- Weronika Antoł
- Jagiellonian University in Kraków, Institute of Environmental Sciences, Poland
,
Correspondence to: Weronika Antoł (
)
| | - Joanna K. Palka
- Jagiellonian University in Kraków, Institute of Environmental Sciences, Poland
| | - Karolina Sychta
- Jagiellonian University in Kraków, Institute of Environmental Sciences, Poland
,
Polish Academy of Sciences, Institute of Systematics and Evolution of Animals, Poland
| | - Katarzyna Dudek
- Jagiellonian University in Kraków, Institute of Environmental Sciences, Poland
| | - Zofia M. Prokop
- Jagiellonian University in Kraków, Institute of Environmental Sciences, Poland
| |
Collapse
|
22
|
Bever BW, Dietz ZP, Sullins JA, Montoya AM, Bergthorsson U, Katju V, Estes S. Mitonuclear Mismatch is Associated With Increased Male Frequency, Outcrossing, and Male Sperm Size in Experimentally-Evolved C. elegans. Front Genet 2022; 13:742272. [PMID: 35360860 PMCID: PMC8961728 DOI: 10.3389/fgene.2022.742272] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 01/25/2022] [Indexed: 11/13/2022] Open
Abstract
We provide a partial test of the mitonuclear sex hypothesis with the first controlled study of how male frequencies and rates of outcrossing evolve in response to mitonuclear mismatch by allowing replicate lineages of C. elegans nematodes containing either mitochondrial or nuclear mutations of electron transport chain (ETC) genes to evolve under three sexual systems: facultatively outcrossing (wildtype), obligately selfing, and obligately outcrossing. Among facultatively outcrossing lines, we found evolution of increased male frequency in at least one replicate line of all four ETC mutant backgrounds tested—nuclear isp-1, mitochondrial cox-1 and ctb-1, and an isp-1 IV; ctb-1M mitonuclear double mutant—and confirmed for a single line set (cox-1) that increased male frequency also resulted in successful outcrossing. We previously found the same result for lines evolved from another nuclear ETC mutant, gas-1. For several lines in the current experiment, however, male frequency declined to wildtype levels (near 0%) in later generations. Male frequency did not change in lines evolved from a wildtype control strain. Additional phenotypic assays of lines evolved from the mitochondrial cox-1 mutant indicated that evolution of high male frequency was accompanied by evolution of increased male sperm size and mating success with tester females, but that it did not translate into increased mating success with coevolved hermaphrodites. Rather, hermaphrodites’ self-crossed reproductive fitness increased, consistent with sexually antagonistic coevolution. In accordance with evolutionary theory, males and sexual outcrossing may be most beneficial to populations evolving from a state of low ancestral fitness (gas-1, as previously reported) and less beneficial or deleterious to those evolving from a state of higher ancestral fitness (cox-1). In support of this idea, the obligately outcrossing fog-2 V; cox-1 M lines exhibited no fitness evolution compared to their ancestor, while facultatively outcrossing lines showed slight upward evolution of fitness, and all but one of the obligately selfing xol-1 X; cox-1 M lines evolved substantially increased fitness—even beyond wildtype levels. This work provides a foundation to directly test the effect of reproductive mode on the evolutionary dynamics of mitonuclear genomes, as well as whether compensatory mutations (nuclear or mitochondrial) can rescue populations from mitochondrial dysfunction.
Collapse
Affiliation(s)
- Brent W. Bever
- Department of Biology, Portland State University, Portland, OR, United States
| | - Zachary P. Dietz
- Department of Biology, Portland State University, Portland, OR, United States
| | - Jennifer A. Sullins
- Department of Biology, Portland State University, Portland, OR, United States
| | - Ariana M. Montoya
- Department of Biology, Portland State University, Portland, OR, United States
| | - Ulfar Bergthorsson
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX, United States
| | - Vaishali Katju
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX, United States
| | - Suzanne Estes
- Department of Biology, Portland State University, Portland, OR, United States
- *Correspondence: Suzanne Estes,
| |
Collapse
|
23
|
Papkou A, Schalkowski R, Barg MC, Koepper S, Schulenburg H. Population size impacts host-pathogen coevolution. Proc Biol Sci 2021; 288:20212269. [PMID: 34905713 PMCID: PMC8670963 DOI: 10.1098/rspb.2021.2269] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 11/18/2021] [Indexed: 11/25/2022] Open
Abstract
Ongoing host-pathogen interactions are characterized by rapid coevolutionary changes forcing species to continuously adapt to each other. The interacting species are often defined by finite population sizes. In theory, finite population size limits genetic diversity and compromises the efficiency of selection owing to genetic drift, in turn constraining any rapid coevolutionary responses. To date, however, experimental evidence for such constraints is scarce. The aim of our study was to assess to what extent population size influences the dynamics of host-pathogen coevolution. We used Caenorhabditus elegans and its pathogen Bacillus thuringiensis as a model for experimental coevolution in small and large host populations, as well as in host populations which were periodically forced through a bottleneck. By carefully controlling host population size for 23 host generations, we found that host adaptation was constrained in small populations and to a lesser extent in the bottlenecked populations. As a result, coevolution in large and small populations gave rise to different selection dynamics and produced different patterns of host-pathogen genotype-by-genotype interactions. Our results demonstrate a major influence of host population size on the ability of the antagonists to co-adapt to each other, thereby shaping the dynamics of antagonistic coevolution.
Collapse
Affiliation(s)
- Andrei Papkou
- Department of Evolutionary Ecology and Genetics, Zoological Institute, Christian-Albrechts-Universitaet Kiel, 24098 Kiel, Germany
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Rebecca Schalkowski
- Department of Evolutionary Ecology and Genetics, Zoological Institute, Christian-Albrechts-Universitaet Kiel, 24098 Kiel, Germany
| | - Mike-Christoph Barg
- Department of Evolutionary Ecology and Genetics, Zoological Institute, Christian-Albrechts-Universitaet Kiel, 24098 Kiel, Germany
| | - Svenja Koepper
- Department of Evolutionary Ecology and Genetics, Zoological Institute, Christian-Albrechts-Universitaet Kiel, 24098 Kiel, Germany
| | - Hinrich Schulenburg
- Department of Evolutionary Ecology and Genetics, Zoological Institute, Christian-Albrechts-Universitaet Kiel, 24098 Kiel, Germany
- Max-Planck Institute for Evolutionary Biology, 24306 Plön, Germany
| |
Collapse
|
24
|
van Sluijs L, Liu J, Schrama M, van Hamond S, Vromans SPJM, Scholten MH, Žibrat N, Riksen JAG, Pijlman GP, Sterken MG, Kammenga JE. Virus infection modulates male sexual behaviour in Caenorhabditis elegans. Mol Ecol 2021; 30:6776-6790. [PMID: 34534386 PMCID: PMC9291463 DOI: 10.1111/mec.16179] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 08/23/2021] [Accepted: 09/07/2021] [Indexed: 12/28/2022]
Abstract
Mating dynamics follow from natural selection on mate choice and individuals maximizing their reproductive success. Mate discrimination reveals itself by a plethora of behaviours and morphological characteristics, each of which can be affected by pathogens. A key question is how pathogens affect mate choice and outcrossing behaviour. Here we investigated the effect of Orsay virus on the mating dynamics of the androdiecious (male and hermaphrodite) nematode Caenorhabditis elegans. We tested genetically distinct strains and found that viral susceptibility differed between sexes in a genotype-dependent manner with males of reference strain N2 being more resistant than hermaphrodites. Males displayed a constitutively higher expression of intracellular pathogen response (IPR) genes, whereas the antiviral RNAi response did not have increased activity in males. Subsequent monitoring of sex ratios over 10 generations revealed that viral presence can change mating dynamics in isogenic populations. Sexual attraction assays showed that males preferred mating with uninfected rather than infected hermaphrodites. Together our results illustrate for the first time that viral infection can significantly affect male mating choice and suggest altered mating dynamics as a novel cause benefitting outcrossing under pathogenic stress conditions in C. elegans.
Collapse
Affiliation(s)
- Lisa van Sluijs
- Laboratory of NematologyWageningen University and ResearchWageningenthe Netherlands
- Laboratory of VirologyWageningen University and ResearchWageningenthe Netherlands
| | - Jie Liu
- Laboratory of NematologyWageningen University and ResearchWageningenthe Netherlands
| | - Mels Schrama
- Laboratory of NematologyWageningen University and ResearchWageningenthe Netherlands
| | - Sanne van Hamond
- Laboratory of NematologyWageningen University and ResearchWageningenthe Netherlands
| | | | - Marèl H. Scholten
- Laboratory of NematologyWageningen University and ResearchWageningenthe Netherlands
| | - Nika Žibrat
- Laboratory of NematologyWageningen University and ResearchWageningenthe Netherlands
| | - Joost A. G. Riksen
- Laboratory of NematologyWageningen University and ResearchWageningenthe Netherlands
| | - Gorben P. Pijlman
- Laboratory of VirologyWageningen University and ResearchWageningenthe Netherlands
| | - Mark G. Sterken
- Laboratory of NematologyWageningen University and ResearchWageningenthe Netherlands
| | - Jan E. Kammenga
- Laboratory of NematologyWageningen University and ResearchWageningenthe Netherlands
| |
Collapse
|
25
|
Phillips MA, Kutch IC, McHugh KM, Taggard SK, Burke MK. Crossing design shapes patterns of genetic variation in synthetic recombinant populations of Saccharomyces cerevisiae. Sci Rep 2021; 11:19551. [PMID: 34599243 PMCID: PMC8486856 DOI: 10.1038/s41598-021-99026-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 09/14/2021] [Indexed: 11/20/2022] Open
Abstract
"Synthetic recombinant" populations have emerged as a useful tool for dissecting the genetics of complex traits. They can be used to derive inbred lines for fine QTL mapping, or the populations themselves can be sampled for experimental evolution. In the latter application, investigators generally value maximizing genetic variation in constructed populations. This is because in evolution experiments initiated from such populations, adaptation is primarily fueled by standing genetic variation. Despite this reality, little has been done to systematically evaluate how different methods of constructing synthetic populations shape initial patterns of variation. Here we seek to address this issue by comparing outcomes in synthetic recombinant Saccharomyces cerevisiae populations created using one of two strategies: pairwise crossing of isogenic strains or simple mixing of strains in equal proportion. We also explore the impact of the varying the number of parental strains. We find that more genetic variation is initially present and maintained when population construction includes a round of pairwise crossing. As perhaps expected, we also observe that increasing the number of parental strains typically increases genetic diversity. In summary, we suggest that when constructing populations for use in evolution experiments, simply mixing founder strains in equal proportion may limit the adaptive potential.
Collapse
Affiliation(s)
- Mark A Phillips
- Department of Integrative Biology, Oregon State University, Corvallis, OR, 97331, USA.
| | - Ian C Kutch
- Department of Integrative Biology, Oregon State University, Corvallis, OR, 97331, USA
| | - Kaitlin M McHugh
- Department of Integrative Biology, Oregon State University, Corvallis, OR, 97331, USA
| | - Savannah K Taggard
- Department of Integrative Biology, Oregon State University, Corvallis, OR, 97331, USA
| | - Molly K Burke
- Department of Integrative Biology, Oregon State University, Corvallis, OR, 97331, USA.
| |
Collapse
|
26
|
Palka JK, Fiok K, Antoł W, Prokop ZM. Competitive fitness analysis using Convolutional Neural Network. J Nematol 2021; 52:e2020-108. [PMID: 33829182 PMCID: PMC8015326 DOI: 10.21307/jofnem-2020-108] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Indexed: 11/11/2022] Open
Abstract
We developed a procedure for estimating competitive fitness by using Caenorhabditis elegans as a model organism and a Convolutional Neural Network (CNN) as a tool. Competitive fitness is usually the most informative fitness measure, and competitive fitness assays often rely on green fluorescent protein (GFP) marker strains. CNNs are a class of deep learning neural networks, which are well suited for image analysis and object classification. Our model analyses involved image classification of nematodes as wild-type vs. GFP-expressing, and counted both categories. The performance was analyzed with (i) precision and recall parameters, and (ii) comparison of the wild-type frequency calculated from the model against that obtained by visual scoring of the same images. The average precision and recall varied from 0.79 to 0.87 and from 0.84 to 0.92, respectively, depending on worm density in the images. Compared with manual counting, the model decreased counting time at least 20-fold while preventing human errors. Given the rapid development in the field of CNN, the model, which is fully available on GitHub, can be further optimized and adapted for other image-based uses.
Collapse
Affiliation(s)
- Joanna K Palka
- Institute of Environmental Sciences, Faculty of Biology, Jagiellonian University, Kraków, Poland
| | - Krzysztof Fiok
- Department of Industrial Engineering and Management Systems, University of Central Florida, Orlando, Florida
| | - Weronika Antoł
- Institute of Environmental Sciences, Faculty of Biology, Jagiellonian University, Kraków, Poland
| | - Zofia M Prokop
- Institute of Environmental Sciences, Faculty of Biology, Jagiellonian University, Kraków, Poland
| |
Collapse
|
27
|
Noble LM, Rockman MV, Teotónio H. Gene-level quantitative trait mapping in Caenorhabditis elegans. G3 (BETHESDA, MD.) 2021; 11:jkaa061. [PMID: 33693602 PMCID: PMC8022935 DOI: 10.1093/g3journal/jkaa061] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Accepted: 12/13/2020] [Indexed: 02/06/2023]
Abstract
The Caenorhabditis elegans multiparental experimental evolution (CeMEE) panel is a collection of genome-sequenced, cryopreserved recombinant inbred lines useful for mapping the evolution and genetic basis of quantitative traits. We have expanded the resource with new lines and new populations, and here report the genotype and haplotype composition of CeMEE version 2, including a large set of putative de novo mutations, and updated additive and epistatic mapping simulations. Additive quantitative trait loci explaining 4% of trait variance are detected with >80% power, and the median detection interval approaches single-gene resolution on the highly recombinant chromosome arms. Although CeMEE populations are derived from a long-term evolution experiment, genetic structure is dominated by variation present in the ancestral population.
Collapse
Affiliation(s)
- Luke M Noble
- Institut de Biologie, École Normale Supérieure, CNRS 8197, Inserm U1024, PSL Research University, F-75005 Paris, France
- Department of Biology, Center for Genomics and Systems Biology, New York University, New York, NY 10003, USA
| | - Matthew V Rockman
- Department of Biology, Center for Genomics and Systems Biology, New York University, New York, NY 10003, USA
| | - Henrique Teotónio
- Institut de Biologie, École Normale Supérieure, CNRS 8197, Inserm U1024, PSL Research University, F-75005 Paris, France
| |
Collapse
|
28
|
Noble LM, Yuen J, Stevens L, Moya N, Persaud R, Moscatelli M, Jackson JL, Zhang G, Chitrakar R, Baugh LR, Braendle C, Andersen EC, Seidel HS, Rockman MV. Selfing is the safest sex for Caenorhabditis tropicalis. eLife 2021; 10:e62587. [PMID: 33427200 PMCID: PMC7853720 DOI: 10.7554/elife.62587] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Accepted: 01/08/2021] [Indexed: 12/30/2022] Open
Abstract
Mating systems have profound effects on genetic diversity and compatibility. The convergent evolution of self-fertilization in three Caenorhabditis species provides a powerful lens to examine causes and consequences of mating system transitions. Among the selfers, Caenorhabditis tropicalis is the least genetically diverse and most afflicted by outbreeding depression. We generated a chromosomal-scale genome for C. tropicalis and surveyed global diversity. Population structure is very strong, and islands of extreme divergence punctuate a genomic background that is highly homogeneous around the globe. Outbreeding depression in the laboratory is caused largely by multiple Medea-like elements, genetically consistent with maternal toxin/zygotic antidote systems. Loci with Medea activity harbor novel and duplicated genes, and their activity is modified by mito-nuclear background. Segregating Medea elements dramatically reduce fitness, and simulations show that selfing limits their spread. Frequent selfing in C. tropicalis may therefore be a strategy to avoid Medea-mediated outbreeding depression.
Collapse
Affiliation(s)
- Luke M Noble
- Department of Biology and Center for Genomics & Systems Biology, New York UniversityNew YorkUnited States
- Institute de Biologie, École Normale Supérieure, CNRS, InsermParisFrance
| | - John Yuen
- Department of Biology and Center for Genomics & Systems Biology, New York UniversityNew YorkUnited States
| | - Lewis Stevens
- Department of Molecular Biosciences, Northwestern UniversityEvanstonUnited States
| | - Nicolas Moya
- Department of Molecular Biosciences, Northwestern UniversityEvanstonUnited States
| | - Riaad Persaud
- Department of Biology and Center for Genomics & Systems Biology, New York UniversityNew YorkUnited States
| | - Marc Moscatelli
- Department of Biology and Center for Genomics & Systems Biology, New York UniversityNew YorkUnited States
| | - Jacqueline L Jackson
- Department of Biology and Center for Genomics & Systems Biology, New York UniversityNew YorkUnited States
| | - Gaotian Zhang
- Department of Molecular Biosciences, Northwestern UniversityEvanstonUnited States
| | | | - L Ryan Baugh
- Department of Biology, Duke UniversityDurhamUnited States
| | - Christian Braendle
- Institut de Biologie Valrose, Université Côte d’Azur, CNRS, InsermNiceFrance
| | - Erik C Andersen
- Department of Molecular Biosciences, Northwestern UniversityEvanstonUnited States
| | - Hannah S Seidel
- Department of Biology, Eastern Michigan UniversityYpsilantiUnited States
| | - Matthew V Rockman
- Department of Biology and Center for Genomics & Systems Biology, New York UniversityNew YorkUnited States
| |
Collapse
|
29
|
Noble LM, Miah A, Kaur T, Rockman MV. The Ancestral Caenorhabditis elegans Cuticle Suppresses rol-1. G3 (BETHESDA, MD.) 2020; 10:2385-2395. [PMID: 32423919 PMCID: PMC7341120 DOI: 10.1534/g3.120.401336] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 05/09/2020] [Indexed: 12/30/2022]
Abstract
Genetic background commonly modifies the effects of mutations. We discovered that worms mutant for the canonical rol-1 gene, identified by Brenner in 1974, do not roll in the genetic background of the wild strain CB4856. Using linkage mapping, association analysis and gene editing, we determined that N2 carries an insertion in the collagen gene col-182 that acts as a recessive enhancer of rol-1 rolling. From population and comparative genomics, we infer the insertion is derived in N2 and related laboratory lines, likely arising during the domestication of Caenorhabditis elegans, and breaking a conserved protein. The ancestral version of col-182 also modifies the phenotypes of four other classical cuticle mutant alleles, and the effects of natural genetic variation on worm shape and locomotion. These results underscore the importance of genetic background and the serendipity of Brenner's choice of strain.
Collapse
Affiliation(s)
- Luke M Noble
- Institut de Biologie, École Normale Supérieure, CNRS 8197, Inserm U1024, PSL Research University, F-75005 Paris, France
| | - Asif Miah
- Center for Genomics and Systems Biology, Department of Biology, New York University, NY, 10003
| | - Taniya Kaur
- Center for Genomics and Systems Biology, Department of Biology, New York University, NY, 10003
| | - Matthew V Rockman
- Center for Genomics and Systems Biology, Department of Biology, New York University, NY, 10003
| |
Collapse
|
30
|
Godinho DP, Cruz MA, Charlery de la Masselière M, Teodoro‐Paulo J, Eira C, Fragata I, Rodrigues LR, Zélé F, Magalhães S. Creating outbred and inbred populations in haplodiploids to measure adaptive responses in the laboratory. Ecol Evol 2020; 10:7291-7305. [PMID: 32760529 PMCID: PMC7391545 DOI: 10.1002/ece3.6454] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Accepted: 05/05/2020] [Indexed: 12/15/2022] Open
Abstract
Laboratory studies are often criticized for not being representative of processes occurring in natural populations. One reason for this is the fact that laboratory populations generally do not capture enough of the genetic variation of natural populations. This can be mitigated by mixing the genetic background of several field populations when creating laboratory populations. From these outbred populations, it is possible to generate inbred lines, thereby freezing and partitioning part of their variability, allowing each genotype to be characterized independently. Many studies addressing adaptation of organisms to their environment, such as those involving quantitative genetics or experimental evolution, rely on inbred or outbred populations, but the methodology underlying the generation of such biological resources is usually not explicitly documented. Here, we developed different procedures to circumvent common pitfalls of laboratory studies, and illustrate their application using two haplodiploid species, the spider mites Tetranychus urticae and Tetranychus evansi. First, we present a method that increases the chance of capturing high amounts of variability when creating outbred populations, by performing controlled crosses between individuals from different field-collected populations. Second, we depict the creation of inbred lines derived from such outbred populations, by performing several generations of sib-mating. Third, we outline an experimental evolution protocol that allows the maintenance of a constant population size at the beginning of each generation, thereby preventing bottlenecks and diminishing extinction risks. Finally, we discuss the advantages of these procedures and emphasize that sharing such biological resources and combining them with available genetic tools will allow consistent and comparable studies that greatly contribute to our understanding of ecological and evolutionary processes.
Collapse
Affiliation(s)
- Diogo P. Godinho
- Centre for Ecology, Evolution and Environmental Changes – cE3cFaculdade de Ciências da Universidade de LisboaLisboaPortugal
| | - Miguel A. Cruz
- Centre for Ecology, Evolution and Environmental Changes – cE3cFaculdade de Ciências da Universidade de LisboaLisboaPortugal
| | - Maud Charlery de la Masselière
- Centre for Ecology, Evolution and Environmental Changes – cE3cFaculdade de Ciências da Universidade de LisboaLisboaPortugal
| | - Jéssica Teodoro‐Paulo
- Centre for Ecology, Evolution and Environmental Changes – cE3cFaculdade de Ciências da Universidade de LisboaLisboaPortugal
| | - Cátia Eira
- Centre for Ecology, Evolution and Environmental Changes – cE3cFaculdade de Ciências da Universidade de LisboaLisboaPortugal
| | - Inês Fragata
- Centre for Ecology, Evolution and Environmental Changes – cE3cFaculdade de Ciências da Universidade de LisboaLisboaPortugal
| | - Leonor R. Rodrigues
- Centre for Ecology, Evolution and Environmental Changes – cE3cFaculdade de Ciências da Universidade de LisboaLisboaPortugal
| | - Flore Zélé
- Centre for Ecology, Evolution and Environmental Changes – cE3cFaculdade de Ciências da Universidade de LisboaLisboaPortugal
| | - Sara Magalhães
- Centre for Ecology, Evolution and Environmental Changes – cE3cFaculdade de Ciências da Universidade de LisboaLisboaPortugal
| |
Collapse
|
31
|
Vlachos C, Kofler R. Optimizing the Power to Identify the Genetic Basis of Complex Traits with Evolve and Resequence Studies. Mol Biol Evol 2019; 36:2890-2905. [PMID: 31400203 PMCID: PMC6878953 DOI: 10.1093/molbev/msz183] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Evolve and resequence (E&R) studies are frequently used to dissect the genetic basis of quantitative traits. By subjecting a population to truncating selection for several generations and estimating the allele frequency differences between selected and nonselected populations using next-generation sequencing (NGS), the loci contributing to the selected trait may be identified. The role of different parameters, such as, the population size or the number of replicate populations has been examined in previous works. However, the influence of the selection regime, that is the strength of truncating selection during the experiment, remains little explored. Using whole genome, individual based forward simulations of E&R studies, we found that the power to identify the causative alleles may be maximized by gradually increasing the strength of truncating selection during the experiment. Notably, such an optimal selection regime comes at no or little additional cost in terms of sequencing effort and experimental time. Interestingly, we also found that a selection regime which optimizes the power to identify the causative loci is not necessarily identical to a regime that maximizes the phenotypic response. Finally, our simulations suggest that an E&R study with an optimized selection regime may have a higher power to identify the genetic basis of quantitative traits than a genome-wide association study, highlighting that E&R is a powerful approach for finding the loci underlying complex traits.
Collapse
Affiliation(s)
- Christos Vlachos
- Institute für Populationsgenetik, Vetmeduni Vienna, Wien, Austria
- Vienna Graduate School of Population Genetics, Wien, Austria
| | - Robert Kofler
- Institute für Populationsgenetik, Vetmeduni Vienna, Wien, Austria
| |
Collapse
|
32
|
Chelo IM, Afonso B, Carvalho S, Theologidis I, Goy C, Pino-Querido A, Proulx SR, Teotónio H. Partial Selfing Can Reduce Genetic Loads While Maintaining Diversity During Experimental Evolution. G3 (BETHESDA, MD.) 2019; 9:2811-2821. [PMID: 31278175 PMCID: PMC6723137 DOI: 10.1534/g3.119.400239] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Accepted: 06/17/2019] [Indexed: 12/30/2022]
Abstract
Partial selfing, whereby self- and cross- fertilization occur in populations at intermediate frequencies, is generally thought to be evolutionarily unstable. Yet, it is found in natural populations. This could be explained if populations with partial selfing are able to reduce genetic loads and the possibility for inbreeding depression while keeping genetic diversity that may be important for future adaptation. To address this hypothesis, we compare the experimental evolution of Caenorhabditis elegans populations under partial selfing, exclusive selfing or predominant outcrossing, while they adapt to osmotically challenging conditions. We find that the ancestral genetic load, as measured by the risk of extinction upon inbreeding by selfing, is maintained as long as outcrossing is the main reproductive mode, but becomes reduced otherwise. Analysis of genome-wide single-nucleotide polymorphisms (SNPs) during experimental evolution and among the inbred lines that survived enforced inbreeding indicates that populations with predominant outcrossing or partial selfing maintained more genetic diversity than expected with neutrality or purifying selection. We discuss the conditions under which this could be explained by the presence of recessive deleterious alleles and/or overdominant loci. Taken together, our observations suggest that populations evolving under partial selfing can gain some of the benefits of eliminating unlinked deleterious recessive alleles and also the benefits of maintaining genetic diversity at partially dominant or overdominant loci that become associated due to variance of inbreeding levels.
Collapse
Affiliation(s)
- Ivo M Chelo
- Instituto Gulbenkian de Ciência, Apartado 14, P-2781-901 Oeiras, Portugal
- cE3c - Center for Ecology, Evolution and Environmental Changes, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
| | - Bruno Afonso
- Instituto Gulbenkian de Ciência, Apartado 14, P-2781-901 Oeiras, Portugal
- Institut de Biologie de l'École Normale Supérieure (IBENS), Inserm U1024, CNRS UMR 8197, F-75005 Paris, France
| | - Sara Carvalho
- Instituto Gulbenkian de Ciência, Apartado 14, P-2781-901 Oeiras, Portugal
| | - Ioannis Theologidis
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, 73100 Heraklion, Greece
| | - Christine Goy
- Leibniz Research Institute for Environmental Medicine, 40225 Düsseldorf, Germany, and
| | - Ania Pino-Querido
- Instituto Gulbenkian de Ciência, Apartado 14, P-2781-901 Oeiras, Portugal
| | - Stephen R Proulx
- Department of Ecology, Evolution, and Marine Biology, University of California Santa Barbara, CA 93106
| | - Henrique Teotónio
- Institut de Biologie de l'École Normale Supérieure (IBENS), Inserm U1024, CNRS UMR 8197, F-75005 Paris, France
| |
Collapse
|
33
|
Cutter AD, Morran LT, Phillips PC. Males, Outcrossing, and Sexual Selection in Caenorhabditis Nematodes. Genetics 2019; 213:27-57. [PMID: 31488593 PMCID: PMC6727802 DOI: 10.1534/genetics.119.300244] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 06/06/2019] [Indexed: 12/15/2022] Open
Abstract
Males of Caenorhabditis elegans provide a crucial practical tool in the laboratory, but, as the rarer and more finicky sex, have not enjoyed the same depth of research attention as hermaphrodites. Males, however, have attracted the attention of evolutionary biologists who are exploiting the C. elegans system to test longstanding hypotheses about sexual selection, sexual conflict, transitions in reproductive mode, and genome evolution, as well as to make new discoveries about Caenorhabditis organismal biology. Here, we review the evolutionary concepts and data informed by study of males of C. elegans and other Caenorhabditis We give special attention to the important role of sperm cells as a mediator of inter-male competition and male-female conflict that has led to drastic trait divergence across species, despite exceptional phenotypic conservation in many other morphological features. We discuss the evolutionary forces important in the origins of reproductive mode transitions from males being common (gonochorism: females and males) to rare (androdioecy: hermaphrodites and males) and the factors that modulate male frequency in extant androdioecious populations, including the potential influence of selective interference, host-pathogen coevolution, and mutation accumulation. Further, we summarize the consequences of males being common vs rare for adaptation and for trait divergence, trait degradation, and trait dimorphism between the sexes, as well as for molecular evolution of the genome, at both micro-evolutionary and macro-evolutionary timescales. We conclude that C. elegans male biology remains underexploited and that future studies leveraging its extensive experimental resources are poised to discover novel biology and to inform profound questions about animal function and evolution.
Collapse
Affiliation(s)
- Asher D Cutter
- Department of Ecology and Evolutionary Biology, University of Toronto, Ontario M5S3B2, Canada
| | - Levi T Morran
- Department of Biology, Emory University, Atlanta, Georgia 30322, and
| | - Patrick C Phillips
- Institute of Ecology and Evolution, University of Oregon, Eugene, Oregon 97403
| |
Collapse
|
34
|
Proulx SR, Dey S, Guzella T, Teotónio H. How differing modes of non-genetic inheritance affect population viability in fluctuating environments. Ecol Lett 2019; 22:1767-1775. [PMID: 31436016 DOI: 10.1111/ele.13355] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 04/30/2019] [Accepted: 07/01/2019] [Indexed: 12/28/2022]
Abstract
Different modes of non-genetic inheritance are expected to affect population persistence in fluctuating environments. We here analyse Caenorhabditis elegans density-independent per capita growth rate time series on 36 populations experiencing six controlled sequences of challenging oxygen level fluctuations across 60 generations, and parameterise competing models of non-genetic inheritance in order to explain observed dynamics. Our analysis shows that phenotypic plasticity and anticipatory maternal effects are sufficient to explain growth rate dynamics, but that a carryover model where 'epigenetic' memory is imperfectly transmitted and might be reset at each generation is a better fit to the data. We further find that this epigenetic memory is asymmetric since it is kept for longer when populations are exposed to the more challenging environment. Our analysis suggests that population persistence in fluctuating environments depends on the non-genetic inheritance of phenotypes whose expression is regulated across multiple generations.
Collapse
Affiliation(s)
- Stephen R Proulx
- Department of Ecology, Evolution, and Marine Biology, UC Santa Barbara, Santa Barbara, CA, 93106, USA
| | - Snigdhadip Dey
- Institut de Biologie de L'École Normale Suṕerieure, CNRS, Inserm, PSL Research University, F-75005, Paris, France
| | - Thiago Guzella
- Institut de Biologie de L'École Normale Suṕerieure, CNRS, Inserm, PSL Research University, F-75005, Paris, France
| | - Henrique Teotónio
- Institut de Biologie de L'École Normale Suṕerieure, CNRS, Inserm, PSL Research University, F-75005, Paris, France
| |
Collapse
|
35
|
Snoek BL, Volkers RJM, Nijveen H, Petersen C, Dirksen P, Sterken MG, Nakad R, Riksen JAG, Rosenstiel P, Stastna JJ, Braeckman BP, Harvey SC, Schulenburg H, Kammenga JE. A multi-parent recombinant inbred line population of C. elegans allows identification of novel QTLs for complex life history traits. BMC Biol 2019; 17:24. [PMID: 30866929 PMCID: PMC6417139 DOI: 10.1186/s12915-019-0642-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Accepted: 02/26/2019] [Indexed: 01/29/2023] Open
Abstract
BACKGROUND The nematode Caenorhabditis elegans has been extensively used to explore the relationships between complex traits, genotypes, and environments. Complex traits can vary across different genotypes of a species, and the genetic regulators of trait variation can be mapped on the genome using quantitative trait locus (QTL) analysis of recombinant inbred lines (RILs) derived from genetically and phenotypically divergent parents. Most RILs have been derived from crossing two parents from globally distant locations. However, the genetic diversity between local C. elegans populations can be as diverse as between global populations and could thus provide means of identifying genetic variation associated with complex traits relevant on a broader scale. RESULTS To investigate the effect of local genetic variation on heritable traits, we developed a new RIL population derived from 4 parental wild isolates collected from 2 closely located sites in France: Orsay and Santeuil. We crossed these 4 genetically diverse parental isolates to generate a population of 200 multi-parental RILs and used RNA-seq to obtain sequence polymorphisms identifying almost 9000 SNPs variable between the 4 genotypes with an average spacing of 11 kb, doubling the mapping resolution relative to currently available RIL panels for many loci. The SNPs were used to construct a genetic map to facilitate QTL analysis. We measured life history traits such as lifespan, stress resistance, developmental speed, and population growth in different environments, and found substantial variation for most traits. We detected multiple QTLs for most traits, including novel QTLs not found in previous QTL analysis, including those for lifespan and pathogen responses. This shows that recombining genetic variation across C. elegans populations that are in geographical close proximity provides ample variation for QTL mapping. CONCLUSION Taken together, we show that using more parents than the classical two parental genotypes to construct a RIL population facilitates the detection of QTLs and that the use of wild isolates facilitates the detection of QTLs. The use of multi-parent RIL populations can further enhance our understanding of local adaptation and life history trade-offs.
Collapse
Affiliation(s)
- Basten L Snoek
- Laboratory of Nematology, Wageningen University, Droevendaalsesteeg 1, NL-6708 PB, Wageningen, The Netherlands. .,Theoretical Biology and Bioinformatics, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands.
| | - Rita J M Volkers
- Laboratory of Nematology, Wageningen University, Droevendaalsesteeg 1, NL-6708 PB, Wageningen, The Netherlands
| | - Harm Nijveen
- Bioinformatics Group, Wageningen University, Droevendaalsesteeg 1, NL-6708 PB, Wageningen, The Netherlands
| | - Carola Petersen
- Zoological Institute, University of Kiel, 24098, Kiel, Germany
| | - Philipp Dirksen
- Zoological Institute, University of Kiel, 24098, Kiel, Germany
| | - Mark G Sterken
- Laboratory of Nematology, Wageningen University, Droevendaalsesteeg 1, NL-6708 PB, Wageningen, The Netherlands
| | - Rania Nakad
- Zoological Institute, University of Kiel, 24098, Kiel, Germany
| | - Joost A G Riksen
- Laboratory of Nematology, Wageningen University, Droevendaalsesteeg 1, NL-6708 PB, Wageningen, The Netherlands
| | - Philip Rosenstiel
- Institute for Clinical Molecular Biology, University of Kiel, 24098, Kiel, Germany
| | - Jana J Stastna
- Biomolecular Research Group, School of Human and Life Sciences, Canterbury Christ Church University, North Holmes Road, Canterbury, CT1 1QU, UK
| | - Bart P Braeckman
- Department of Biology, Ghent University, K. L. Ledeganckstraat 35, B-9000, Ghent, Belgium
| | - Simon C Harvey
- Biomolecular Research Group, School of Human and Life Sciences, Canterbury Christ Church University, North Holmes Road, Canterbury, CT1 1QU, UK
| | - Hinrich Schulenburg
- Zoological Institute, University of Kiel, 24098, Kiel, Germany. .,Max Planck Institute for Evolutionary Biology, August-Thienemann-Str. 2, 24306, Plön, Germany.
| | - Jan E Kammenga
- Laboratory of Nematology, Wageningen University, Droevendaalsesteeg 1, NL-6708 PB, Wageningen, The Netherlands.
| |
Collapse
|
36
|
Sex and Mitonuclear Adaptation in Experimental Caenorhabditis elegans Populations. Genetics 2019; 211:1045-1058. [PMID: 30670540 DOI: 10.1534/genetics.119.301935] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 01/17/2019] [Indexed: 01/10/2023] Open
Abstract
To reveal phenotypic and functional genomic patterns of mitonuclear adaptation, a laboratory adaptation study with Caenorhabditis elegans nematodes was conducted in which independently evolving lines were initiated from a low-fitness mitochondrial electron transport chain (ETC) mutant, gas-1 Following 60 generations of evolution in large population sizes with competition for food resources, two distinct classes of lines representing different degrees of adaptive response emerged: a low-fitness class that exhibited minimal or no improvement compared to the gas-1 mutant ancestor, and a high-fitness class containing lines that exhibited partial recovery of wild-type fitness. Many lines that achieved higher reproductive and competitive fitness levels were also noted to evolve high frequencies of males during the experiment, consistent with adaptation in these lines having been facilitated by outcrossing. Whole-genome sequencing and analysis revealed an enrichment of mutations in loci that occur in a gas-1-centric region of the C. elegans interactome and could be classified into a small number of functional genomic categories. A highly nonrandom pattern of mitochondrial DNA mutation was observed within high-fitness gas-1 lines, with parallel fixations of nonsynonymous base substitutions within genes encoding NADH dehydrogenase subunits I and VI. These mitochondrial gene products reside within ETC complex I alongside the nuclear-encoded GAS-1 protein, suggesting that rapid adaptation of select gas-1 recovery lines was driven by fixation of compensatory mitochondrial mutations.
Collapse
|
37
|
The genomic basis of Red Queen dynamics during rapid reciprocal host-pathogen coevolution. Proc Natl Acad Sci U S A 2018; 116:923-928. [PMID: 30598446 PMCID: PMC6338873 DOI: 10.1073/pnas.1810402116] [Citation(s) in RCA: 88] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Pathogens are omnipresent and by definition detrimental to their hosts. Pathogens thus exert high selection on their hosts, which, if adapting, can exert similar levels of selection on the pathogen, resulting in ongoing cycles of reciprocal adaptation between the antagonists. Such coevolutionary interactions have a central influence on the evolution of organisms. Surprisingly, we still know little about the exact selection dynamics and the genome regions involved. Our study uses a controlled experimental approach with an animal host to dissect coevolutionary selection. We find that distinct selective processes underlie rapid coadaptation in the two antagonists, including antagonistic frequency-dependent selection on toxin gene copy number in the pathogen, while the host response is likely influenced by changes in multiple genome regions. Red Queen dynamics, involving coevolutionary interactions between species, are ubiquitous, shaping the evolution of diverse biological systems. To date, information on the underlying selection dynamics and the involved genome regions is mainly available for bacteria–phage systems or only one of the antagonists of a eukaryotic host–pathogen interaction. We add to our understanding of these important coevolutionary interactions using an experimental host–pathogen model, which includes the nematode Caenorhabditis elegans and its pathogen Bacillus thuringiensis. We combined experimental evolution with time-shift experiments, in which a focal host or pathogen is tested against a coevolved antagonist from the past, present, or future, followed by genomic analysis. We show that (i) coevolution occurs rapidly within few generations, (ii) temporal coadaptation at the phenotypic level is found in parallel across replicate populations, consistent with antagonistic frequency-dependent selection, (iii) genomic changes in the pathogen match the phenotypic pattern and include copy number variations of a toxin-encoding plasmid, and (iv) host genomic changes do not match the phenotypic pattern and likely involve selective responses at more than one locus. By exploring the dynamics of coevolution at the phenotypic and genomic level for both host and pathogen simultaneously, our findings demonstrate a more complex model of the Red Queen, consisting of distinct selective processes acting on the two antagonists during rapid and reciprocal coadaptation.
Collapse
|
38
|
Guzella TS, Dey S, Chelo IM, Pino-Querido A, Pereira VF, Proulx SR, Teotónio H. Slower environmental change hinders adaptation from standing genetic variation. PLoS Genet 2018; 14:e1007731. [PMID: 30383789 PMCID: PMC6233921 DOI: 10.1371/journal.pgen.1007731] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 11/13/2018] [Accepted: 10/01/2018] [Indexed: 12/25/2022] Open
Abstract
Evolutionary responses to environmental change depend on the time available for adaptation before environmental degradation leads to extinction. Explicit tests of this relationship are limited to microbes where adaptation usually depends on the sequential fixation of de novo mutations, excluding standing variation for genotype-by-environment fitness interactions that should be key for most natural species. For natural species evolving from standing genetic variation, adaptation at slower rates of environmental change may be impeded since the best genotypes at the most extreme environments can be lost during evolution due to genetic drift or founder effects. To address this hypothesis, we perform experimental evolution with self-fertilizing populations of the nematode Caenorhabditis elegans and develop an inference model to describe natural selection on extant genotypes under environmental change. Under a sudden environmental change, we find that selection rapidly increases the frequency of genotypes with high fitness in the most extreme environment. In contrast, under a gradual environmental change selection first favors genotypes that are worse at the most extreme environment. We demonstrate with a second set of evolution experiments that, as a consequence of slower environmental change and thus longer periods to reach the most extreme environments, genetic drift and founder effects can lead to the loss of the most beneficial genotypes. We further find that maintenance of standing genetic variation can retard the fixation of the best genotypes in the most extreme environment because of interference between them. Taken together, these results show that slower environmental change can hamper adaptation from standing genetic variation and they support theoretical models indicating that standing variation for genotype-by-environment fitness interactions critically alters the pace and outcome of adaptation under environmental change.
Collapse
Affiliation(s)
- Thiago S. Guzella
- Institut de Biologie de l’ École Normale Supérieure (IBENS), École Normale Supérieure, CNRS, Inserm, PSL Research University, Paris, France
| | - Snigdhadip Dey
- Institut de Biologie de l’ École Normale Supérieure (IBENS), École Normale Supérieure, CNRS, Inserm, PSL Research University, Paris, France
| | - Ivo M. Chelo
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
| | | | - Veronica F. Pereira
- Institut de Biologie de l’ École Normale Supérieure (IBENS), École Normale Supérieure, CNRS, Inserm, PSL Research University, Paris, France
| | - Stephen R. Proulx
- Department of Ecology, Evolution, and Marine Biology, University of California Santa Barbara, Santa Barbara, CA, United States of America
| | - Henrique Teotónio
- Institut de Biologie de l’ École Normale Supérieure (IBENS), École Normale Supérieure, CNRS, Inserm, PSL Research University, Paris, France
| |
Collapse
|
39
|
Kasimatis KR, Moerdyk-Schauwecker MJ, Phillips PC. Auxin-Mediated Sterility Induction System for Longevity and Mating Studies in Caenorhabditis elegans. G3 (BETHESDA, MD.) 2018; 8:2655-2662. [PMID: 29880556 PMCID: PMC6071612 DOI: 10.1534/g3.118.200278] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Accepted: 06/06/2018] [Indexed: 11/18/2022]
Abstract
The ability to control both the means and timing of sexual reproduction provides a powerful tool to understand not only fertilization but also life history trade-offs resulting from sexual reproduction. However, precisely controlling fertilization has proved a major challenge across model systems. An ideal sterility induction system should be external, non-toxic, and reversible. Using the auxin-inducible degradation system targeting the spe-44 gene within the nematode Caenorhabditis elegans, we designed a means of externally inducing spermatogenesis arrest. We show that exposure to auxin during larval development induces both hermaphrodite self-sterility and male sterility. Moreover, male sterility can be reversed upon cessation of auxin exposure. The sterility induction system developed here has multiple applications in the fields of spermatogenesis and mating systems evolution. Importantly, this system is also a highly applicable tool for aging studies. In particular, we show that auxin-induced self-sterility is comparable to the commonly used chemically-induced FUdR sterility, while offering multiple benefits, including being less labor intensive, being non-toxic, and avoiding compound interactions with other experimental treatments.
Collapse
Affiliation(s)
- Katja R Kasimatis
- Institute of Ecology and Evolution, 5289 University of Oregon, University of Oregon, Eugene, OR 97403
| | | | - Patrick C Phillips
- Institute of Ecology and Evolution, 5289 University of Oregon, University of Oregon, Eugene, OR 97403
| |
Collapse
|
40
|
Lynch ZR, Penley MJ, Morran LT. Turnover in local parasite populations temporarily favors host outcrossing over self-fertilization during experimental evolution. Ecol Evol 2018; 8:6652-6662. [PMID: 30038764 PMCID: PMC6053587 DOI: 10.1002/ece3.4150] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 03/28/2018] [Accepted: 03/29/2018] [Indexed: 11/12/2022] Open
Abstract
The ubiquity of outcrossing in plants and animals is difficult to explain given its costs relative to self-fertilization. Despite these costs, exposure to changing environmental conditions can temporarily favor outcrossing over selfing. Therefore, recurring episodes of environmental change are predicted to favor the maintenance of outcrossing. Studies of host-parasite coevolution have provided strong support for this hypothesis. However, it is unclear whether multiple exposures to novel parasite genotypes in the absence of coevolution are sufficient to favor outcrossing. Using the nematode Caenorhabditis elegans and the bacterial parasite Serratia marcescens, we studied host responses to parasite turnover. We passaged several replicates of a host population that was well-adapted to the S. marcescens strain Sm2170 with either Sm2170 or one of three novel S. marcescens strains, each derived from Sm2170, for 18 generations. We found that hosts exposed to novel parasites maintained higher outcrossing rates than hosts exposed to Sm2170. Nonetheless, host outcrossing rates declined over time against all but the most virulent novel parasite strain. Hosts exposed to the most virulent novel strain exhibited increased outcrossing rates for approximately 12 generations, but did not maintain elevated levels of outcrossing throughout the experiment. Thus, parasite turnover can transiently increase host outcrossing. These results suggest that recurring episodes of parasite turnover have the potential to favor the maintenance of host outcrossing. However, such maintenance may require frequent exposure to novel virulent parasites, rapid rates of parasite turnover, and substantial host gene flow.
Collapse
|
41
|
Noble LM, Chelo I, Guzella T, Afonso B, Riccardi DD, Ammerman P, Dayarian A, Carvalho S, Crist A, Pino-Querido A, Shraiman B, Rockman MV, Teotónio H. Polygenicity and Epistasis Underlie Fitness-Proximal Traits in the Caenorhabditis elegans Multiparental Experimental Evolution (CeMEE) Panel. Genetics 2017; 207:1663-1685. [PMID: 29066469 PMCID: PMC5714472 DOI: 10.1534/genetics.117.300406] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Accepted: 10/10/2017] [Indexed: 01/27/2023] Open
Abstract
Understanding the genetic basis of complex traits remains a major challenge in biology. Polygenicity, phenotypic plasticity, and epistasis contribute to phenotypic variance in ways that are rarely clear. This uncertainty can be problematic for estimating heritability, for predicting individual phenotypes from genomic data, and for parameterizing models of phenotypic evolution. Here, we report an advanced recombinant inbred line (RIL) quantitative trait locus mapping panel for the hermaphroditic nematode Caenorhabditis elegans, the C. elegans multiparental experimental evolution (CeMEE) panel. The CeMEE panel, comprising 507 RILs at present, was created by hybridization of 16 wild isolates, experimental evolution for 140-190 generations, and inbreeding by selfing for 13-16 generations. The panel contains 22% of single-nucleotide polymorphisms known to segregate in natural populations, and complements existing C. elegans mapping resources by providing fine resolution and high nucleotide diversity across > 95% of the genome. We apply it to study the genetic basis of two fitness components, fertility and hermaphrodite body size at time of reproduction, with high broad-sense heritability in the CeMEE. While simulations show that we should detect common alleles with additive effects as small as 5%, at gene-level resolution, the genetic architectures of these traits do not feature such alleles. We instead find that a significant fraction of trait variance, approaching 40% for fertility, can be explained by sign epistasis with main effects below the detection limit. In congruence, phenotype prediction from genomic similarity, while generally poor ([Formula: see text]), requires modeling epistasis for optimal accuracy, with most variance attributed to the rapidly evolving chromosome arms.
Collapse
Affiliation(s)
- Luke M Noble
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York 10003
| | - Ivo Chelo
- Instituto Gulbenkian de Ciência, P-2781-901 Oeiras, Portugal
| | - Thiago Guzella
- Institut de Biologie, École Normale Supérieure, Centre National de la Recherche Scientifique (CNRS) UMR 8197, Institut National de la Santé et de la Recherche Médicale (INSERM) U1024, F-75005 Paris, France
| | - Bruno Afonso
- Instituto Gulbenkian de Ciência, P-2781-901 Oeiras, Portugal
- Institut de Biologie, École Normale Supérieure, Centre National de la Recherche Scientifique (CNRS) UMR 8197, Institut National de la Santé et de la Recherche Médicale (INSERM) U1024, F-75005 Paris, France
| | - David D Riccardi
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York 10003
| | - Patrick Ammerman
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York 10003
| | - Adel Dayarian
- Kavli Institute for Theoretical Physics, University of California, Santa Barbara, California 93106
| | - Sara Carvalho
- Instituto Gulbenkian de Ciência, P-2781-901 Oeiras, Portugal
| | - Anna Crist
- Institut de Biologie, École Normale Supérieure, Centre National de la Recherche Scientifique (CNRS) UMR 8197, Institut National de la Santé et de la Recherche Médicale (INSERM) U1024, F-75005 Paris, France
| | | | - Boris Shraiman
- Kavli Institute for Theoretical Physics, University of California, Santa Barbara, California 93106
- Department of Physics, University of California, Santa Barbara, California 93106
| | - Matthew V Rockman
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York 10003
| | - Henrique Teotónio
- Institut de Biologie, École Normale Supérieure, Centre National de la Recherche Scientifique (CNRS) UMR 8197, Institut National de la Santé et de la Recherche Médicale (INSERM) U1024, F-75005 Paris, France
| |
Collapse
|
42
|
Aston E, Channon A, Belavkin RV, Gifford DR, Krašovec R, Knight CG. Critical Mutation Rate has an Exponential Dependence on Population Size for Eukaryotic-length Genomes with Crossover. Sci Rep 2017; 7:15519. [PMID: 29138394 PMCID: PMC5686101 DOI: 10.1038/s41598-017-14628-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Accepted: 10/02/2017] [Indexed: 01/22/2023] Open
Abstract
The critical mutation rate (CMR) determines the shift between survival-of-the-fittest and survival of individuals with greater mutational robustness ("flattest"). We identify an inverse relationship between CMR and sequence length in an in silico system with a two-peak fitness landscape; CMR decreases to no more than five orders of magnitude above estimates of eukaryotic per base mutation rate. We confirm the CMR reduces exponentially at low population sizes, irrespective of peak radius and distance, and increases with the number of genetic crossovers. We also identify an inverse relationship between CMR and the number of genes, confirming that, for a similar number of genes to that for the plant Arabidopsis thaliana (25,000), the CMR is close to its known wild-type mutation rate; mutation rates for additional organisms were also found to be within one order of magnitude of the CMR. This is the first time such a simulation model has been assigned input and produced output within range for a given biological organism. The decrease in CMR with population size previously observed is maintained; there is potential for the model to influence understanding of populations undergoing bottleneck, stress, and conservation strategy for populations near extinction.
Collapse
Affiliation(s)
- Elizabeth Aston
- School of Computing and Mathematics, Keele University, Keele, Staffordshire, UK.
| | - Alastair Channon
- School of Computing and Mathematics, Keele University, Keele, Staffordshire, UK
| | - Roman V Belavkin
- School of Engineering and Information Sciences, Middlesex University, London, UK
| | - Danna R Gifford
- Faculty of Science and Engineering, The University of Manchester, Manchester, UK
| | - Rok Krašovec
- Faculty of Science and Engineering, The University of Manchester, Manchester, UK
| | - Christopher G Knight
- Faculty of Science and Engineering, The University of Manchester, Manchester, UK
| |
Collapse
|
43
|
The mutational decay of male-male and hermaphrodite-hermaphrodite competitive fitness in the androdioecious nematode C. elegans. Heredity (Edinb) 2017; 120:1-12. [PMID: 29234171 DOI: 10.1038/s41437-017-0003-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Revised: 07/27/2017] [Accepted: 08/16/2017] [Indexed: 12/14/2022] Open
Abstract
Androdioecious Caenorhabditis have a high frequency of self-compatible hermaphrodites and a low frequency of males. The effects of mutations on male fitness are of interest for two reasons. First, when males are rare, selection on male-specific mutations is less efficient than in hermaphrodites. Second, males may present a larger mutational target than hermaphrodites because of the different ways in which fitness accrues in the two sexes. We report the first estimates of male-specific mutational effects in an androdioecious organism. The rate of male-specific inviable or sterile mutations is ⩽5 × 10-4/generation, below the rate at which males would be lost solely due to those kinds of mutations. The rate of mutational decay of male competitive fitness is ~ 0.17%/generation; that of hermaphrodite competitive fitness is ~ 0.11%/generation. The point estimate of ~ 1.5X faster rate of mutational decay of male fitness is nearly identical to the same ratio in Drosophila. Estimates of mutational variance (VM) for male mating success and competitive fitness are not significantly different from zero, whereas VM for hermaphrodite competitive fitness is similar to that of non-competitive fitness. Two independent estimates of the average selection coefficient against mutations affecting hermaphrodite competitive fitness agree to within two-fold, 0.33-0.5%.
Collapse
|
44
|
Dutilleul M, Réale D, Goussen B, Lecomte C, Galas S, Bonzom J. Adaptation costs to constant and alternating polluted environments. Evol Appl 2017; 10:839-851. [PMID: 29151875 PMCID: PMC5680423 DOI: 10.1111/eva.12510] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Accepted: 06/19/2017] [Indexed: 11/28/2022] Open
Abstract
Some populations quickly adapt to strong and novel selection pressures caused by anthropogenic stressors. However, this short-term evolutionary response to novel and harsh environmental conditions may lead to adaptation costs, and evaluating these costs is important if we want to understand the evolution of resistance to anthropogenic stressors. In this experimental evolution study, we exposed Caenorhabditis elegans populations to uranium (U populations), salt (NaCl populations) and alternating uranium/salt treatments (U/NaCl populations) and to a control environment (C populations), over 22 generations. In parallel, we ran common-garden and reciprocal-transplant experiments to assess the adaptive costs for populations that have evolved in the different environmental conditions. Our results showed rapid evolutionary changes in life history characteristics of populations exposed to the different pollution regimes. Furthermore, adaptive costs depended on the type of pollutant: pollution-adapted populations had lower fitness than C populations, when the populations were returned to their original environment. Fitness in uranium environments was lower for NaCl populations than for U populations. In contrast, fitness in salt environments was similar between U and NaCl populations. Moreover, fitness of U/NaCl populations showed similar or higher fitness in both the uranium and the salt environments compared to populations adapted to constant uranium or salt environments. Our results show that adaptive evolution to a particular stressor can lead to either adaptive costs or benefits once in contact with another stressor. Furthermore, we did not find any evidence that adaptation to alternating stressors was associated with additional adaption costs. This study highlights the need to incorporate adaptive cost assessments when undertaking ecological risk assessments of pollutants.
Collapse
Affiliation(s)
- Morgan Dutilleul
- Laboratoire d’écotoxicologie des radionucléidesInstitut de Radioprotection et de Sûreté Nucléaire, CadaracheSaint‐Paul‐lez‐Durance CedexFrance
- Département des Sciences BiologiquesUniversité du Québec À MontréalMontréalQCCanada
- Faculté de pharmacieLaboratoire de ToxicologieUniversité de Montpellier 1Montpellier Cedex 5France
- Present address:
Environment DepartmentUniversity of YorkHeslingtonYorkUK
| | - Denis Réale
- Département des Sciences BiologiquesUniversité du Québec À MontréalMontréalQCCanada
| | - Benoit Goussen
- Laboratoire d’écotoxicologie des radionucléidesInstitut de Radioprotection et de Sûreté Nucléaire, CadaracheSaint‐Paul‐lez‐Durance CedexFrance
- Unit “Models for ecotoxicology and toxicology” (METO) INERIS Parc ALATAVerneuil‐en‐HalatteFrance
- Present address:
Environment DepartmentUniversity of YorkHeslingtonYorkUK
- Present address:
Safety and Environmental Assurance CentreUnileverSharnbrookBedfordshireUK
| | - Catherine Lecomte
- Laboratoire d’écotoxicologie des radionucléidesInstitut de Radioprotection et de Sûreté Nucléaire, CadaracheSaint‐Paul‐lez‐Durance CedexFrance
| | - Simon Galas
- Faculté de pharmacieLaboratoire de ToxicologieUniversité de Montpellier 1Montpellier Cedex 5France
| | - Jean‐Marc Bonzom
- Laboratoire d’écotoxicologie des radionucléidesInstitut de Radioprotection et de Sûreté Nucléaire, CadaracheSaint‐Paul‐lez‐Durance CedexFrance
| |
Collapse
|
45
|
Wharam B, Weldon L, Viney M. Pheromone modulates two phenotypically plastic traits - adult reproduction and larval diapause - in the nematode Caenorhabditis elegans. BMC Evol Biol 2017; 17:197. [PMID: 28830356 PMCID: PMC5568714 DOI: 10.1186/s12862-017-1033-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Accepted: 08/04/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Animals use information from their environment to make decisions, ultimately to maximize their fitness. The nematode C. elegans has a pheromone signalling system, which hitherto has principally been thought to be used by worms in deciding whether or not to arrest their development as larvae. Recent studies have suggested that this pheromone can have other roles in the C. elegans life cycle. RESULTS Here we demonstrate a new role for the C. elegans pheromone, showing that it accelerates hermaphrodites' reproductive rate, a phenomenon which we call pheromone-dependent reproductive plasticity (PDRP). We also find that pheromone accelerates larval growth rates, but this depends on a live bacterial food source, while PDRP does not. Different C. elegans strains all show PDRP, though the magnitude of these effects differ among the strains, which is analogous to the diversity of arrested larval phenotypes that this pheromone also induces. Using a selection experiment we also show that selection for PDRP or for larval arrest affects both the target and the non-target trait, suggesting that there is cross-talk between these two pheromone-dependent traits. CONCLUSIONS Together, these results show that C. elegans' pheromone is a signal that acts at two key life cycle points, controlling alternative larval fates and affecting adult hermaphrodites' reproduction. More broadly, these results suggest that to properly understand and interpret the biology of pheromone signalling in C. elegans and other nematodes, the life-history biology of these organisms in their natural environment needs to be considered.
Collapse
Affiliation(s)
- Barney Wharam
- School of Biological Sciences, University of Bristol, Tyndall Avenue, Bristol, BS8 1TQ, UK
| | - Laura Weldon
- School of Biological Sciences, University of Bristol, Tyndall Avenue, Bristol, BS8 1TQ, UK
| | - Mark Viney
- School of Biological Sciences, University of Bristol, Tyndall Avenue, Bristol, BS8 1TQ, UK.
| |
Collapse
|
46
|
Kloesener MH, Bose J, Schulte RD. Experimental evolution with a multicellular host causes diversification within and between microbial parasite populations-Differences in emerging phenotypes of two different parasite strains. Evolution 2017; 71:2194-2205. [PMID: 28714591 DOI: 10.1111/evo.13306] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Revised: 06/15/2017] [Accepted: 06/27/2017] [Indexed: 02/06/2023]
Abstract
Host-parasite coevolution is predicted to have complex evolutionary consequences, potentially leading to the emergence of genetic and phenotypic diversity for both antagonists. However, little is known about variation in phenotypic responses to coevolution between different parasite strains exposed to the same experimental conditions. We infected Caenorhabditis elegans with one of two strains of Bacillus thuringiensis and either allowed the host and the parasite to experimentally coevolve (coevolution treatment) or allowed only the parasite to adapt to the host (one-sided parasite adaptation). By isolating single parasite clones from evolved populations, we found phenotypic diversification of the ancestral strain into distinct clones, which varied in virulence toward ancestral hosts and competitive ability against other parasite genotypes. Parasite phenotypes differed remarkably not only between the two strains, but also between and within different replicate populations, indicating diversification of the clonal population caused by selection. This study highlights that the evolutionary selection pressure mediated by a multicellular host causes phenotypic diversification, but not necessarily with the same phenotypic outcome for different parasite strains.
Collapse
Affiliation(s)
- Michaela H Kloesener
- Department of Behavioural Biology, University of Osnabrueck, 49076, Osnabrueck, Germany
| | - Joy Bose
- Department of Behavioural Biology, University of Osnabrueck, 49076, Osnabrueck, Germany.,Evolutionary Biology Laboratory, Evolutionary and Integrative Biology Unit (EIBU), Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur P. O., Bangalore, 560064, India
| | - Rebecca D Schulte
- Department of Behavioural Biology, University of Osnabrueck, 49076, Osnabrueck, Germany
| |
Collapse
|
47
|
Penley MJ, Ha GT, Morran LT. Evolution of Caenorhabditis elegans host defense under selection by the bacterial parasite Serratia marcescens. PLoS One 2017; 12:e0181913. [PMID: 28792961 PMCID: PMC5549931 DOI: 10.1371/journal.pone.0181913] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Accepted: 04/21/2017] [Indexed: 01/13/2023] Open
Abstract
Parasites can impose strong selection on hosts. In response, some host populations have adapted via the evolution of defenses that prevent or impede infection by parasites. However, host populations have also evolved life history shifts that maximize host fitness despite infection. Outcrossing and self-fertilization can have contrasting effects on evolutionary trajectories of host populations. While selfing and outcrossing are known to affect the rate at which host populations adapt in response to parasites, these mating systems may also influence the specific traits that underlie adaptation to parasites. Here, we determined the role of evolved host defense versus altered life history,in mixed mating (selfing and outcrossing) and obligately outcrossing C. elegans host populations after experimental evolution with the bacterial parasite, S. marcescens. Similar to previous studies, we found that both mixed mating and obligately outcrossing host populations adapted to S. marcescens exposure, and that the obligately outcrossing populations exhibited the greatest rates of adaptation. Regardless of the host population mating system, exposure to parasites did not significantly alter reproductive timing or total fecundity over the course of experimental evolution. However, both mixed mating and obligately outcrossing host populations exhibited significantly reduced mortality rates in the presence of the parasite after experimental evolution. Therefore, adaptation in both the mixed mating and obligately outcrossing populations was driven, at least in part, by the evolution of increased host defense and not changes in host life history. Thus, the host mating system altered the rate of adaptation, but not the nature of adaptive change in the host populations.
Collapse
Affiliation(s)
- McKenna J. Penley
- Department of Biology, Emory University, Atlanta, Georgia, United States of America
| | - Giang T. Ha
- Department of Biology, Emory University, Atlanta, Georgia, United States of America
| | - Levi T. Morran
- Department of Biology, Emory University, Atlanta, Georgia, United States of America
- * E-mail:
| |
Collapse
|
48
|
Host mating system and coevolutionary dynamics shape the evolution of parasite avoidance in Caenorhabditis elegans host populations. Parasitology 2017; 145:724-730. [DOI: 10.1017/s0031182017000804] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
AbstractHosts exhibit a variety of defence mechanisms against parasites, including avoidance. Both host–parasite coevolutionary dynamics and the host mating system can alter the evolutionary trajectories of populations. Does the nature of host–parasite interactions and the host mating system affect the mechanisms that evolve to confer host defence? In a previous experimental evolution study, mixed mating and obligately outcrossing Caenorhabditis elegans host populations adapted to either coevolving or static Serratia marcescens parasite populations. Here, we assessed parasite avoidance as a mechanism underlying host adaptation. We measured host feeding preference for the coevolved and static parasites vs preference for Escherichia coli, to assess the evolution of avoidance behaviour within our experiment. We found that mixed mating host populations evolved a preference for E. coli relative to the static parasite strain; therefore, the hosts evolved parasite avoidance as a defence. However, mixed mating hosts did not exhibit E. coli preference when exposed to coevolved parasites, so avoidance cannot account for host adaptation to coevolving parasites. Further, the obligately outcrossing host populations did not exhibit parasite avoidance in the presence of either static or coevolved parasites. Therefore, both the nature of host–parasite interactions and the host mating system shaped the evolution of host defence.
Collapse
|
49
|
Teotónio H, Estes S, Phillips PC, Baer CF. Experimental Evolution with Caenorhabditis Nematodes. Genetics 2017; 206:691-716. [PMID: 28592504 PMCID: PMC5499180 DOI: 10.1534/genetics.115.186288] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2016] [Accepted: 03/07/2017] [Indexed: 12/17/2022] Open
Abstract
The hermaphroditic nematode Caenorhabditis elegans has been one of the primary model systems in biology since the 1970s, but only within the last two decades has this nematode also become a useful model for experimental evolution. Here, we outline the goals and major foci of experimental evolution with C. elegans and related species, such as C. briggsae and C. remanei, by discussing the principles of experimental design, and highlighting the strengths and limitations of Caenorhabditis as model systems. We then review three exemplars of Caenorhabditis experimental evolution studies, underlining representative evolution experiments that have addressed the: (1) maintenance of genetic variation; (2) role of natural selection during transitions from outcrossing to selfing, as well as the maintenance of mixed breeding modes during evolution; and (3) evolution of phenotypic plasticity and its role in adaptation to variable environments, including host-pathogen coevolution. We conclude by suggesting some future directions for which experimental evolution with Caenorhabditis would be particularly informative.
Collapse
Affiliation(s)
- Henrique Teotónio
- Institut de Biologie de l´École Normale Supérieure (IBENS), Institut National de la Santé et de la Recherche Médicale U1024, Centre Nationnal de la Recherche Scientifique Unité Mixte de Recherche 8197, Paris Sciences et Lettres Research University, 75005 Paris, France
| | - Suzanne Estes
- Department of Biology, Portland State University, Oregon 97201
| | - Patrick C Phillips
- Institute of Ecology and Evolution, 5289 University of Oregon, Eugene, Oregon 97403, and
| | - Charles F Baer
- Department of Biology, and
- University of Florida Genetics Institute, University of Florida, Gainesville, Florida 32611
| |
Collapse
|
50
|
Schulenburg H, Félix MA. The Natural Biotic Environment of Caenorhabditis elegans. Genetics 2017; 206:55-86. [PMID: 28476862 PMCID: PMC5419493 DOI: 10.1534/genetics.116.195511] [Citation(s) in RCA: 264] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 02/28/2017] [Indexed: 01/05/2023] Open
Abstract
Organisms evolve in response to their natural environment. Consideration of natural ecological parameters are thus of key importance for our understanding of an organism's biology. Curiously, the natural ecology of the model species Caenorhabditis elegans has long been neglected, even though this nematode has become one of the most intensively studied models in biological research. This lack of interest changed ∼10 yr ago. Since then, an increasing number of studies have focused on the nematode's natural ecology. Yet many unknowns still remain. Here, we provide an overview of the currently available information on the natural environment of C. elegans We focus on the biotic environment, which is usually less predictable and thus can create high selective constraints that are likely to have had a strong impact on C. elegans evolution. This nematode is particularly abundant in microbe-rich environments, especially rotting plant matter such as decomposing fruits and stems. In this environment, it is part of a complex interaction network, which is particularly shaped by a species-rich microbial community. These microbes can be food, part of a beneficial gut microbiome, parasites and pathogens, and possibly competitors. C. elegans is additionally confronted with predators; it interacts with vector organisms that facilitate dispersal to new habitats, and also with competitors for similar food environments, including competitors from congeneric and also the same species. Full appreciation of this nematode's biology warrants further exploration of its natural environment and subsequent integration of this information into the well-established laboratory-based research approaches.
Collapse
Affiliation(s)
- Hinrich Schulenburg
- Zoological Institute, Christian-Albrechts Universitaet zu Kiel, 24098 Kiel, Germany
| | - Marie-Anne Félix
- Institut de Biologie de l'Ecole Normale Supérieure, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, École Normale Supérieure, L'université de Recherche Paris Sciences et Lettres, 75005, France
| |
Collapse
|