1
|
Solovev IA, Golubev DA. Chronobiotics: classifications of existing circadian clock modulators, future perspectives. BIOMEDITSINSKAIA KHIMIIA 2024; 70:381-393. [PMID: 39718101 DOI: 10.18097/pbmc20247006381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2024]
Abstract
The review summarizes recent achievements and future prospects in the use of chronobiotics for regulating circadian rhythms regulation. Special attention is paid to the mechanisms' action, their classification, and the impact of chemical interventions on the biological clock. Chronobiotics defined as a diverse group of compounds capable of restoring disrupted circadian functions, addressing challenges such as irregular work schedules, artificial light exposure or ageing. The review categorizes these compounds by their pharmacological effects, molecular targets, and chemical structures, underlining their ability to enhance or inhibit key circadian components like CLOCK, BMAL1, PER, and CRY. A particular focus is placed on the therapeutic applications of chronobiotics, including their potential for treating sleep disorders, metabolic issues, and age-related rhythm disturbances, underscoring their wide-ranging applicability in health care. Chronobiotic compounds have promising roles in maintaining physiological rhythms, supporting healthy aging, and enhancing personalised health care. Given their diverse therapeutic potential, chronobiotics are positioned as a significant avenue for further clinical application, marking them as a crucial area of ongoing research and innovation.
Collapse
Affiliation(s)
- I A Solovev
- Pitirim Sorokin Syktyvkar State University, Medical Institute, Laboratory of Translational bioinformatics and systems biology, Syktyvkar, Russia
| | - D A Golubev
- Pitirim Sorokin Syktyvkar State University, Medical Institute, Laboratory of Translational bioinformatics and systems biology, Syktyvkar, Russia
| |
Collapse
|
2
|
Manoogian ENC, Bahiru MS, Wang EJ, Holder M, Bittman EL. Neuroendocrine effects of the duper mutation in Syrian hamsters: a role for Cryptochrome 1. Front Physiol 2024; 15:1351682. [PMID: 38444761 PMCID: PMC10912188 DOI: 10.3389/fphys.2024.1351682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 01/31/2024] [Indexed: 03/07/2024] Open
Abstract
Molecular and physiological determinants of the timing of reproductive events, including the pre-ovulatory LH surge and seasonal fluctuations in fertility, are incompletely understood. We used the Cryptochrome 1-deficient duper mutant to examine the role of this core circadian clock gene in Syrian hamsters. We find that the phase of the LH surge and its stability upon shifts of the light: dark cycle are altered in duper mutants. The intensity of immunoreactive PER1 in GnRH cells of the preoptic area peaks earlier in the day in duper than wild type hamsters. We note that GnRH fibers coursing through the suprachiasmatic nucleus (SCN) contact vasopressin- and VIP-immunoreactive cells, suggesting a possible locus of circadian control of the LH surge. Unlike wild types, duper hamsters do not regress their gonads within 8 weeks of constant darkness, despite evidence of melatonin secretion during the subjective night. In light of the finding that the duper allele is a stop codon in Cryptochrome 1, our results suggest important neuroendocrine functions of this core circadian clock gene.
Collapse
Affiliation(s)
| | | | | | | | - Eric L. Bittman
- Department of Biology and Program in Neuroscience, University of Massachusetts, Amherst, MA, United States
| |
Collapse
|
3
|
Smolensky MH, Hermida RC, Sackett-Lundeen L, Hermida-Ayala RG, Geng YJ. Does Patient-Applied Testosterone Replacement Therapy Pose Risk for Blood Pressure Elevation? Circadian Medicine Perspectives. Compr Physiol 2022; 12:4165-4184. [PMID: 35950658 DOI: 10.1002/cphy.c220014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
We reviewed medication package inserts, US Food and Drug Administration (FDA) reports, and journal publications concerning the 10 nonbiosimilar patient-applied (PA) testosterone (T) replacement therapies (TRTs) for intraday serum T patterning and blood pressure (BP) effects. Blood T concentration is circadian rhythmic in young adult eugonadal males, being highest around awakening and lowest before bedtime. T level and 24 h variation are blunted in primary and secondary hypogonadism. Utilized as recommended, most PA-TRTs achieve nonphysiologic T 24 h patterning. Only Androderm® , an evening PA transdermal patch, closely replicates the normal T circadian rhythmicity. Accurate determination of risk for BP elevation and hypertension (HTN) by PA-TRTs is difficult due to limitations of office BP measurements (OBPM) and suboptimal methods and endpoints of ambulatory BP monitoring (ABPM). OBPM is subject to "White Coat" pressor effect resulting in unrepresentative BP values plus masked normotension and masked HTN, causing misclassification of approximately 45% of trial participants, both before and during treatment. Change in guideline-recommended diagnostic thresholds over time causes misclassification of an additional approximately 15% of participants. ABPM is improperly incorporated into TRT safety trials. It is done for 24 h rather than preferred 48 h; BP is oversampled during wakefulness, biasing derived 24 h mean values; 24 h mean systolic and diastolic BP (SBP, DBP) are inappropriate primary outcomes, because of not being best predictors of risk for major acute cardiovascular events (MACE); "daytime" and "nighttime" BP means referenced to clock time are reported rather than biologically relevant wake-time and sleep-time BP means; most importantly, asleep SBP mean and dipping, strongest predictors of MACE, are disregarded. © 2022 American Physiological Society. Compr Physiol 12: 1-20, 2022.
Collapse
Affiliation(s)
- Michael H Smolensky
- Department of Biomedical Engineering, Cockrell School of Engineering, The University of Texas at Austin, Austin, Texas, USA.,The Center for Cardiovascular Biology and Atherosclerosis Research, Division of Cardiovascular Medicine, Department of Internal Medicine, McGovern School of Medicine, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Ramon C Hermida
- Bioengineering & Chronobiology Laboratories, Atlantic Research Center for Telecommunication Technologies (atlanTTic), University of Vigo, Vigo, Spain
| | - Linda Sackett-Lundeen
- American Association for Medical Chronobiology and Chronotherapeutics, Roseville, Minnesota, USA
| | - Ramon G Hermida-Ayala
- Circadian Ambulatory Technology & Diagnostics (CAT&D), Santiago de Compostela, Spain
| | - Yong-Jian Geng
- The Center for Cardiovascular Biology and Atherosclerosis Research, Division of Cardiovascular Medicine, Department of Internal Medicine, McGovern School of Medicine, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| |
Collapse
|
4
|
Naven MA, Zeef LA, Li S, Humphreys PA, Smith CA, Pathiranage D, Cain S, Woods S, Bates N, Au M, Wen C, Kimber SJ, Meng QJ. Development of human cartilage circadian rhythm in a stem cell-chondrogenesis model. Theranostics 2022; 12:3963-3976. [PMID: 35664072 PMCID: PMC9131279 DOI: 10.7150/thno.70893] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 04/15/2022] [Indexed: 11/30/2022] Open
Abstract
The circadian clock in murine articular cartilage is a critical temporal regulatory mechanism for tissue homeostasis and osteoarthritis. However, translation of these findings into humans has been hampered by the difficulty in obtaining circadian time series human cartilage tissues. As such, a suitable model is needed to understand the initiation and regulation of circadian rhythms in human cartilage. Methods: We used a chondrogenic differentiation protocol on human embryonic stem cells (hESCs) as a proxy for early human chondrocyte development. Chondrogenesis was validated using histology and expression of pluripotency and differentiation markers. The molecular circadian clock was tracked in real time by lentiviral transduction of human clock gene luciferase reporters. Differentiation-coupled gene expression was assessed by RNAseq and differential expression analysis. Results: hESCs lacked functional circadian rhythms in clock gene expression. During chondrogenic differentiation, there was an expected reduction of pluripotency markers (e.g., NANOG and OCT4) and a significant increase of chondrogenic genes (SOX9, COL2A1 and ACAN). Histology of the 3D cartilage pellets at day 21 showed a matrix architecture resembling human cartilage, with readily detectable core clock proteins (BMAL1, CLOCK and PER2). Importantly, the circadian clocks in differentiating hESCs were activated between day 11 (end of the 2D stage) and day 21 (10 days after 3D differentiation) in the chondrogenic differentiation protocol. RNA sequencing revealed striking differentiation coupled changes in the expression levels of most clock genes and a range of clock regulators. Conclusions: The circadian clock is gradually activated through a differentiation-coupled mechanism in a human chondrogenesis model. These findings provide a human 3D chondrogenic model to investigate the role of the circadian clock during normal homeostasis and in diseases such as osteoarthritis.
Collapse
Affiliation(s)
- Mark A Naven
- Wellcome Centre for Cell Matrix Research, Faculty of Biology, Medicine and Health, University of Manchester, Oxford Road, Manchester, UK
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Leo A.H. Zeef
- Bioinformatics Core Facility, Faculty of Biology, Medicine and Health, University of Manchester, Oxford Road, Manchester, UK
| | - Shiyang Li
- Wellcome Centre for Cell Matrix Research, Faculty of Biology, Medicine and Health, University of Manchester, Oxford Road, Manchester, UK
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Paul A Humphreys
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Christopher A Smith
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Dharshika Pathiranage
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Stuart Cain
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Steven Woods
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Nicola Bates
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Manting Au
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, China
| | - Chunyi Wen
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, China
| | - Susan J Kimber
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Qing-Jun Meng
- Wellcome Centre for Cell Matrix Research, Faculty of Biology, Medicine and Health, University of Manchester, Oxford Road, Manchester, UK
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| |
Collapse
|
5
|
Oyama Y, Shuff SR, Burns N, Vohwinkel CU, Eckle T. Intense light-elicited alveolar type 2-specific circadian PER2 protects from bacterial lung injury via BPIFB1. Am J Physiol Lung Cell Mol Physiol 2022; 322:L647-L661. [PMID: 35272486 PMCID: PMC9037706 DOI: 10.1152/ajplung.00301.2021] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Circadian amplitude enhancement has the potential to be organ protective but has not been studied in acute lung injury (ALI). Consistent light and dark cycles are crucial for the amplitude regulation of the circadian rhythm protein Period2 (PER2). Housing mice under intense instead of ambient light for 1 wk (light: dark cycle:14h:10h), we demonstrated a robust increase of pulmonary PER2 trough and peak levels, which is consistent with circadian amplitude enhancement. A search for the affected lung cell type suggested alveolar type 2 (ATII) cells as strong candidates for light induction of PER2. A head-to-head comparison of mice with cell-type-specific deletion of Per2 in ATII, endothelial, or myeloid cells uncovered a dramatic phenotype in mice with an ATII-specific deletion of Per2. During Pseudomonas aeruginosa-induced ALI, mice with Per2 deletion in ATII cells showed 0% survival, whereas 85% of control mice survived. Subsequent studies demonstrated that intense light therapy dampened lung inflammation or improved the alveolar barrier function during P. aeruginosa-induced ALI, which was abolished in mice with an ATII-specific deletion of Per2. A genome-wide mRNA array uncovered bactericidal/permeability-increasing fold-containing family B member 1 (BPIFB1) as a downstream target of intense light-elicited ATII-PER2 mediated lung protection. Using the flavonoid and PER2 amplitude enhancer nobiletin, we recapitulated the lung-protective and anti-inflammatory effects of light and BPIFB1, respectively. Together, our studies demonstrate that light-elicited amplitude enhancement of ATII-specific PER2 is a critical control point of inflammatory pathways during bacterial ALI.
Collapse
Affiliation(s)
- Yoshimasa Oyama
- 1Department of Anesthesiology, University of Colorado Denver School of Medicine, Aurora, Colorado,2Department of Anesthesiology and Intensive Care Medicine, Oita University Faculty of Medicine, Oita, Japan
| | - Sydney R. Shuff
- 1Department of Anesthesiology, University of Colorado Denver School of Medicine, Aurora, Colorado
| | - Nana Burns
- 3Developmental Lung Biology, Cardiovascular Pulmonary Research Laboratories, Division of Pediatric Critical Care, Department of Medicine and Pediatrics, University of Colorado, Aurora, Colorado
| | - Christine U. Vohwinkel
- 3Developmental Lung Biology, Cardiovascular Pulmonary Research Laboratories, Division of Pediatric Critical Care, Department of Medicine and Pediatrics, University of Colorado, Aurora, Colorado
| | - Tobias Eckle
- 1Department of Anesthesiology, University of Colorado Denver School of Medicine, Aurora, Colorado,4Department of Cell and Developmental Biology, University of Colorado Denver School of Medicine, Aurora, Colorado
| |
Collapse
|
6
|
Bittman EL. Anatomical Methods to Study the Suprachiasmatic Nucleus. Methods Mol Biol 2022; 2482:191-210. [PMID: 35610428 PMCID: PMC10752494 DOI: 10.1007/978-1-0716-2249-0_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The mammalian suprachiasmatic nucleus (SCN) functions as a master circadian pacemaker. In order to examine mechanisms by which it keeps time, entrains to periodic environmental signals (zeitgebers), and regulates subordinate oscillators elsewhere in the brain and in the periphery, a variety of molecular methods have been applied. Multiple label immunocytochemistry and in situ hybridization provide anatomical insights that complement physiological approaches (such as ex vivo electrophysiology and luminometry) widely used to study the SCN.The anatomical methods require interpretation of data gathered from groups of individual animals sacrificed at different time points. This imposes constraints on the design of the experiments that aim to observe changes that occur with circadian phase in free-running conditions. It is essential in such experiments to account for differences in the periods of the subjects. Nevertheless, it is possible to resolve intracellular colocalization and regional expression of functionally important transcripts and/or their peptide products that serve as neuromodulators or neurotransmitters. Armed with these tools and others, understanding of the mechanisms by which the hypothalamic pacemaker regulates circadian function is progressing apace.
Collapse
Affiliation(s)
- Eric L Bittman
- Department of Biology and Program in Neuroscience & Behavior, University of Massachusetts, Amherst, MA, USA.
| |
Collapse
|
7
|
Saad L, Kalsbeek A, Zwiller J, Anglard P. Rhythmic Regulation of DNA Methylation Factors and Core-Clock Genes in Brain Structures Activated by Cocaine or Sucrose: Potential Role of Chromatin Remodeling. Genes (Basel) 2021; 12:genes12081195. [PMID: 34440369 PMCID: PMC8392220 DOI: 10.3390/genes12081195] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 07/28/2021] [Accepted: 07/29/2021] [Indexed: 12/25/2022] Open
Abstract
The circadian system interacts with the mesocorticolimbic reward system to modulate reward and memory in a time-of-day dependent manner. The circadian discrimination of reward, however, remains difficult to address between natural reinforcers and drugs of abuse. Circadian rhythms control cocaine sensitization and conversely cocaine causes long-term alteration in circadian periodicity in part through the serotonergic neurotransmission. Since neural circuits activated by cocaine and natural reinforcers do not completely overlap, we compared the effect of cocaine with that of sucrose, a strong reinforcer in rodents, by using passive chronic administration. The expression of fifteen genes playing a major role in DNA methylation (Dnmts, Tets), circadian rhythms (Clock, Bmal1, Per1/2, Cry1/2, Rev-Erbβ, Dbp1), appetite, and satiety (Orexin, Npy) was analyzed in dopamine projection areas like the prefrontal cortex, the caudate putamen, and the hypothalamus interconnected with the reward system. The corresponding proteins of two genes (Orexin, Per2) were examined by IHC. For many factors controlling biological and cognitive functions, striking opposite responses were found between the two reinforcers, notably for genes controlling DNA methylation/demethylation processes and in global DNA methylation involved in chromatin remodeling. The data are consistent with a repression of critical core-clock genes by cocaine, suggesting that, consequently, both agents differentially modulate day/night cycles. Whether observed cocaine and sucrose-induced changes in DNA methylation in a time dependent manner are long lasting or contribute to the establishment of addiction requires further neuroepigenetic investigation. Understanding the mechanisms dissociating drugs of abuse from natural reinforcers remains a prerequisite for the design of selective therapeutic tools for compulsive behaviors.
Collapse
Affiliation(s)
- Lamis Saad
- Laboratoire de Neurosciences Cognitives et Adaptatives (LNCA), UMR 7364 CNRS, Université de Strasbourg, Neuropôle de Strasbourg, 67000 Strasbourg, France; (L.S.); (J.Z.)
- The Netherlands Institute for Neuroscience (NIN), Royal Netherlands Academy of Arts and Sciences (KNAW), 1105 BA Amsterdam, The Netherlands
- Department of Endocrinology and Metabolism, Amsterdam UMC, University of Amsterdam, 1066 EA Amsterdam, The Netherlands
| | - Andries Kalsbeek
- The Netherlands Institute for Neuroscience (NIN), Royal Netherlands Academy of Arts and Sciences (KNAW), 1105 BA Amsterdam, The Netherlands
- Department of Endocrinology and Metabolism, Amsterdam UMC, University of Amsterdam, 1066 EA Amsterdam, The Netherlands
- Correspondence: (A.K.); or (P.A.)
| | - Jean Zwiller
- Laboratoire de Neurosciences Cognitives et Adaptatives (LNCA), UMR 7364 CNRS, Université de Strasbourg, Neuropôle de Strasbourg, 67000 Strasbourg, France; (L.S.); (J.Z.)
- CNRS, Centre National de la Recherche Scientifique, 75016 Paris, France
| | - Patrick Anglard
- Laboratoire de Neurosciences Cognitives et Adaptatives (LNCA), UMR 7364 CNRS, Université de Strasbourg, Neuropôle de Strasbourg, 67000 Strasbourg, France; (L.S.); (J.Z.)
- INSERM, Institut National de la Santé et de la Recherche Médicale, 75013 Paris, France
- Correspondence: (A.K.); or (P.A.)
| |
Collapse
|
8
|
Gile J, Oyama Y, Shuff S, Eckle T. A Role for the Adenosine ADORA2B Receptor in Midazolam Induced Cognitive Dysfunction. Curr Pharm Des 2020; 26:4330-4337. [PMID: 32294028 DOI: 10.2174/1381612826666200415171622] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 04/01/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND We recently reported a role for the circadian rhythm protein Period 2 (PER2) in midazolam induced cognitive dysfunction. Based on previous studies showing a critical role for the adenosine A2B receptor (ADORA2B) in PER2 regulation, we hypothesized that hippocampal ADORA2B is crucial for cognitive function. METHODS Midazolam treated C57BL/6J mice were analyzed for Adora2b hippocampal mRNA expression levels, and spontaneous T-maze alternation was determined in Adora2b-/- mice. Using the specific ADORA2B agonist BAY-60-6583 in midazolam treated C57BL/6J mice, we analyzed hippocampal Per2 mRNA expression levels and spontaneous T-maze alternation. Finally, Adora2b-/- mice were assessed for mRNA expression of markers for inflammation or cognitive function in the hippocampus. RESULTS Midazolam treatment significantly downregulated Adora2b or Per2 mRNA in the hippocampus of C57BL/6J mice, and hippocampal PER2 protein expression or T-maze alternation was significantly reduced in Adora2b-/- mice. ADORA2B agonist BAY-60-6583 restored midazolam mediated reduction in spontaneous alternation in C57BL/6J mice. Analysis of hippocampal Tnf-α or Il-6 mRNA levels in Adora2b-/- mice did not reveal an inflammatory phenotype. However, C-fos, a critical component of hippocampus-dependent learning and memory, was significantly downregulated in the hippocampus of Adora2b-/- mice. CONCLUSION These results suggest a role of ADORA2B in midazolam induced cognitive dysfunction. Further, our data demonstrate that BAY-60-6583 treatment restores midazolam induced cognitive dysfunction, possibly via increases of Per2. Additional mechanistic studies hint towards C-FOS as another potential underlying mechanism of memory impairment in Adora2b-/- mice. These findings suggest the ADORA2B agonist as a potential therapy in patients with midazolam induced cognitive dysfunction.
Collapse
Affiliation(s)
- Jennifer Gile
- Department of Anesthesiology, University of Colorado School of Medicine, Aurora, CO 80045, United States
| | - Yoshimasa Oyama
- Department of Anesthesiology, University of Colorado School of Medicine, Aurora, CO 80045, United States
| | - Sydney Shuff
- Department of Anesthesiology, University of Colorado School of Medicine, Aurora, CO 80045, United States
| | - Tobias Eckle
- Department of Anesthesiology, University of Colorado School of Medicine, Aurora, CO 80045, United States
| |
Collapse
|
9
|
Manoogian ENC, Kumar A, Obed D, Bergan J, Bittman EL. Suprachiasmatic function in a circadian period mutant: Duper alters light-induced activation of vasoactive intestinal peptide cells and PERIOD1 immunostaining. Eur J Neurosci 2019; 48:3319-3334. [PMID: 30346078 DOI: 10.1111/ejn.14214] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 09/07/2018] [Accepted: 09/18/2018] [Indexed: 11/28/2022]
Abstract
Mammalian circadian rhythms are entrained by photic stimuli that are relayed by retinal projections to the core of the suprachiasmatic nucleus (SCN). Neuronal activation, as demonstrated by expression of the immediate early gene c-fos, leads to transcription of the core clock gene per1. The duper mutation in hamsters shortens circadian period and amplifies light-induced phase shifts. We performed two experiments to compare the number of c-FOS immunoreactive (ir) and PER1-ir cells, and the intensity of staining, in the SCN of wild-type (WT) and duper hamsters at various intervals after presentation of a 15-min light pulse in the early subjective night. Light-induced c-FOS-ir within 1 hr in the dorsocaudal SCN of duper, but not WT hamsters. In cells that express vasoactive intestinal peptide (VIP), which plays a critical role in synchronization of SCN cellular oscillators, light-induced c-FOS-ir was greater in duper than WT hamsters. After the light pulse, PER1-ir cells were found in more medial portions of the SCN than FOS-ir, and appeared with a longer latency and over a longer time course, in VIP cells of duper than wild-type hamsters. Our results indicate that the duper allele alters SCN function in ways that may contribute to changes in free running period and phase resetting.
Collapse
Affiliation(s)
- Emily N C Manoogian
- Program in Neuroscience and Behavior, University of Massachusetts, Amherst, Massachusetts
| | - Ajay Kumar
- Program in Neuroscience and Behavior, University of Massachusetts, Amherst, Massachusetts
| | - Doha Obed
- Department of Biology, University of Massachusetts, Amherst, Massachusetts
| | - Joseph Bergan
- Psychological and Brain Sciences and Program in Neuroscience and Behavior, University of Massachusetts, Amherst, Massachusetts
| | - Eric L Bittman
- Department of Biology, Program in Neuroscience and Behavior, University of Massachusetts, Amherst, Massachusetts
| |
Collapse
|
10
|
The Period 2 Enhancer Nobiletin as Novel Therapy in Murine Models of Circadian Disruption Resembling Delirium. Crit Care Med 2019; 46:e600-e608. [PMID: 29489460 DOI: 10.1097/ccm.0000000000003077] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
OBJECTIVES Delirium occurs in approximately 30% of critically ill patients, and the risk of dying during admission doubles in those patients. Molecular mechanisms causing delirium are largely unknown. However, critical illness and the ICU environment consistently disrupt circadian rhythms, and circadian disruptions are strongly associated with delirium. Exposure to benzodiazepines and constant light are suspected risk factors for the development of delirium. Thus, we tested the functional role of the circadian rhythm protein Period 2 (PER2) in different mouse models resembling delirium. DESIGN Animal study. SETTING University experimental laboratory. SUBJECTS Wildtype, Per2 mice. INTERVENTIONS Midazolam, lipopolysaccharide (lipopolysaccharide), constant light, nobiletin, or sham-treated animals. MEASUREMENTS AND MAIN RESULTS Midazolam significantly reduced the expression of PER2 in the suprachiasmatic nucleus and the hippocampus of wild-type mice. Behavioral tests following midazolam exposure revealed a robust phenotype including executive dysfunction and memory impairment suggestive of delirium. These findings indicated a critical role of hippocampal expressed PER2. Similar results were obtained in mice exposed to lipopolysaccharide or constant light. Subsequent studies in Per2 mice confirmed a functional role of PER2 in a midazolam-induced delirium-like phenotype. Using the small molecule nobiletin to enhance PER2 function, the cognitive deficits induced by midazolam or constant light were attenuated in wild-type mice. CONCLUSIONS These experiments identify a novel role for PER2 during a midazolam- or constant light-induced delirium-like state, highlight the importance of hippocampal PER2 expression for cognitive function, and suggest the PER2 enhancer nobiletin as potential therapy in delirium-like conditions associated with circadian disruption.
Collapse
|
11
|
Gladanac B, Jonkman J, Shapiro CM, Brown TJ, Ralph MR, Casper RF, Rahman SA. Removing Short Wavelengths From Polychromatic White Light Attenuates Circadian Phase Resetting in Rats. Front Neurosci 2019; 13:954. [PMID: 31551702 PMCID: PMC6746919 DOI: 10.3389/fnins.2019.00954] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 08/23/2019] [Indexed: 11/13/2022] Open
Abstract
Visible light is the principal stimulus for resetting the mammalian central circadian pacemaker. Circadian phase resetting is most sensitive to short-wavelength (blue) visible light. We examined the effects of removing short-wavelengths < 500 nm from polychromatic white light using optical filters on circadian phase resetting in rats. Under high irradiance conditions, both long- (7 h) and short- (1 h) duration short-wavelength filtered (< 500 nm) light exposure attenuated phase-delay shifts in locomotor activity rhythms by (∼40-50%) as compared to unfiltered light exposure. However, there was no attenuation in phase resetting under low irradiance conditions. Additionally, the reduction in phase-delay shifts corresponded to regionally specific attenuation in molecular markers of pacemaker activation in response to light exposure, including c-FOS, Per1 and Per2. These results demonstrate that removing short-wavelengths from polychromatic white light can attenuate circadian phase resetting in an irradiance dependent manner. These results have important implications for designing and optimizing lighting interventions to enhance circadian adaptation.
Collapse
Affiliation(s)
- Bojana Gladanac
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada.,Institute of Medical Sciences, University of Toronto, Toronto, ON, Canada
| | - James Jonkman
- Advanced Optical Microscopy Facility, University Health Network, Toronto, ON, Canada
| | - Colin M Shapiro
- Department of Psychiatry and Ophthalmology, University of Toronto, Toronto, ON, Canada.,Youthdale Child and Adolescent Sleep Centre, Toronto, ON, Canada
| | - Theodore J Brown
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada.,Institute of Medical Sciences, University of Toronto, Toronto, ON, Canada.,Division of Reproductive Endocrinology and Infertility, University of Toronto, Toronto, ON, Canada
| | - Martin R Ralph
- Department of Psychology, University of Toronto, Toronto, ON, Canada
| | - Robert F Casper
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada.,Institute of Medical Sciences, University of Toronto, Toronto, ON, Canada.,Division of Reproductive Endocrinology and Infertility, University of Toronto, Toronto, ON, Canada
| | - Shadab A Rahman
- Division of Sleep and Circadian Disorders, Departments of Medicine and Neurology, Brigham and Women's Hospital, Boston, MA, United States.,Division of Sleep Medicine, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
12
|
Weaver DR, van der Vinne V, Giannaris EL, Vajtay TJ, Holloway KL, Anaclet C. Functionally Complete Excision of Conditional Alleles in the Mouse Suprachiasmatic Nucleus by Vgat-ires-Cre. J Biol Rhythms 2019; 33:179-191. [PMID: 29671710 DOI: 10.1177/0748730418757006] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Mice with targeted gene disruption have provided important information about the molecular mechanisms of circadian clock function. A full understanding of the roles of circadian-relevant genes requires manipulation of their expression in a tissue-specific manner, ideally including manipulation with high efficiency within the suprachiasmatic nuclei (SCN). To date, conditional manipulation of genes within the SCN has been difficult. In a previously developed mouse line, Cre recombinase was inserted into the vesicular GABA transporter (Vgat) locus. Since virtually all SCN neurons are GABAergic, this Vgat-Cre line seemed likely to have high efficiency at disrupting conditional alleles in SCN. To test this premise, the efficacy of Vgat-Cre in excising conditional (fl, for flanked by LoxP) alleles in the SCN was examined. Vgat-Cre-mediated excision of conditional alleles of Clock or Bmal1 led to loss of immunostaining for products of the targeted genes in the SCN. Vgat-Cre+; Clockfl/fl; Npas2m/m mice and Vgat-Cre+; Bmal1fl/fl mice became arrhythmic immediately upon exposure to constant darkness, as expected based on the phenotype of mice in which these genes are disrupted throughout the body. The phenotype of mice with other combinations of Vgat-Cre+, conditional Clock, and mutant Npas2 alleles also resembled the corresponding whole-body knockout mice. These data indicate that the Vgat-Cre line is useful for Cre-mediated recombination within the SCN, making it useful for Cre-enabled technologies including gene disruption, gene replacement, and opto- and chemogenetic manipulation of the SCN circadian clock.
Collapse
Affiliation(s)
- David R Weaver
- Department of Neurobiology, University of Massachusetts Medical School, Worcester, Massachusetts.,Graduate Program in Neuroscience, Graduate School of Biomedical Sciences, University of Massachusetts Medical School, Worcester, Massachusetts
| | - Vincent van der Vinne
- Department of Neurobiology, University of Massachusetts Medical School, Worcester, Massachusetts
| | - E Lela Giannaris
- Department of Neurobiology, University of Massachusetts Medical School, Worcester, Massachusetts.,2. Department of Radiology, University of Massachusetts Medical School, Worcester, MA 01655
| | - Thomas J Vajtay
- Department of Neurobiology, University of Massachusetts Medical School, Worcester, Massachusetts
| | - Kristopher L Holloway
- Department of Neurobiology, University of Massachusetts Medical School, Worcester, Massachusetts.,Graduate Program in Neuroscience, Graduate School of Biomedical Sciences, University of Massachusetts Medical School, Worcester, Massachusetts
| | - Christelle Anaclet
- Department of Neurobiology, University of Massachusetts Medical School, Worcester, Massachusetts.,Graduate Program in Neuroscience, Graduate School of Biomedical Sciences, University of Massachusetts Medical School, Worcester, Massachusetts
| |
Collapse
|
13
|
Li P, Fu X, Smith NA, Ziobro J, Curiel J, Tenga MJ, Martin B, Freedman S, Cea-Del Rio CA, Oboti L, Tsuchida TN, Oluigbo C, Yaun A, Magge SN, O'Neill B, Kao A, Zelleke TG, Depositario-Cabacar DT, Ghimbovschi S, Knoblach S, Ho CY, Corbin JG, Goodkin HP, Vicini S, Huntsman MM, Gaillard WD, Valdez G, Liu JS. Loss of CLOCK Results in Dysfunction of Brain Circuits Underlying Focal Epilepsy. Neuron 2017; 96:387-401.e6. [PMID: 29024662 PMCID: PMC6233318 DOI: 10.1016/j.neuron.2017.09.044] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Revised: 06/20/2017] [Accepted: 09/25/2017] [Indexed: 01/09/2023]
Abstract
Because molecular mechanisms underlying refractory focal epilepsy are poorly defined, we performed transcriptome analysis on human epileptogenic tissue. Compared with controls, expression of Circadian Locomotor Output Cycles Kaput (CLOCK) is decreased in epileptogenic tissue. To define the function of CLOCK, we generated and tested the Emx-Cre; Clockflox/flox and PV-Cre; Clockflox/flox mouse lines with targeted deletions of the Clock gene in excitatory and parvalbumin (PV)-expressing inhibitory neurons, respectively. The Emx-Cre; Clockflox/flox mouse line alone has decreased seizure thresholds, but no laminar or dendritic defects in the cortex. However, excitatory neurons from the Emx-Cre; Clockflox/flox mouse have spontaneous epileptiform discharges. Both neurons from Emx-Cre; Clockflox/flox mouse and human epileptogenic tissue exhibit decreased spontaneous inhibitory postsynaptic currents. Finally, video-EEG of Emx-Cre; Clockflox/flox mice reveals epileptiform discharges during sleep and also seizures arising from sleep. Altogether, these data show that disruption of CLOCK alters cortical circuits and may lead to generation of focal epilepsy.
Collapse
Affiliation(s)
- Peijun Li
- Center for Neuroscience Research, Children's Research Institute, Children's National Medical Center, Washington, DC 20010, USA.
| | - Xiaoqin Fu
- Center for Neuroscience Research, Children's Research Institute, Children's National Medical Center, Washington, DC 20010, USA; The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Nathan A Smith
- Center for Neuroscience Research, Children's Research Institute, Children's National Medical Center, Washington, DC 20010, USA
| | - Julie Ziobro
- Center for Neuroscience Research, Children's Research Institute, Children's National Medical Center, Washington, DC 20010, USA
| | - Julian Curiel
- Center for Neuroscience Research, Children's Research Institute, Children's National Medical Center, Washington, DC 20010, USA
| | - Milagros J Tenga
- Virginia Tech Carillion Research Institute; Roanoke, VA 24014, USA
| | - Brandon Martin
- Center for Neuroscience Research, Children's Research Institute, Children's National Medical Center, Washington, DC 20010, USA
| | - Samuel Freedman
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, Department of Pediatrics, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Christian A Cea-Del Rio
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, Department of Pediatrics, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Livio Oboti
- Center for Neuroscience Research, Children's Research Institute, Children's National Medical Center, Washington, DC 20010, USA
| | - Tammy N Tsuchida
- Comprehensive Pediatric Epilepsy Program, Division of Neurophysiology and Epilepsy, Children's National Health Medical Center; Washington, DC 20010 USA
| | - Chima Oluigbo
- Comprehensive Pediatric Epilepsy Program, Division of Neurophysiology and Epilepsy, Children's National Health Medical Center; Washington, DC 20010 USA; Division of Neurosurgery, Children's National Medical Center, Washington, DC 20010, USA
| | - Amanda Yaun
- Comprehensive Pediatric Epilepsy Program, Division of Neurophysiology and Epilepsy, Children's National Health Medical Center; Washington, DC 20010 USA; Division of Neurosurgery, Children's National Medical Center, Washington, DC 20010, USA
| | - Suresh N Magge
- Comprehensive Pediatric Epilepsy Program, Division of Neurophysiology and Epilepsy, Children's National Health Medical Center; Washington, DC 20010 USA; Division of Neurosurgery, Children's National Medical Center, Washington, DC 20010, USA
| | - Brent O'Neill
- Division of Pediatric Neurosurgery, School of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Amy Kao
- Comprehensive Pediatric Epilepsy Program, Division of Neurophysiology and Epilepsy, Children's National Health Medical Center; Washington, DC 20010 USA
| | - Tesfaye G Zelleke
- Comprehensive Pediatric Epilepsy Program, Division of Neurophysiology and Epilepsy, Children's National Health Medical Center; Washington, DC 20010 USA
| | - Dewi T Depositario-Cabacar
- Comprehensive Pediatric Epilepsy Program, Division of Neurophysiology and Epilepsy, Children's National Health Medical Center; Washington, DC 20010 USA
| | - Svetlana Ghimbovschi
- Center for Genetic Medicine, Children's Research Institute, Children's National Medical Center, Washington, DC 20010, USA
| | - Susan Knoblach
- Center for Genetic Medicine, Children's Research Institute, Children's National Medical Center, Washington, DC 20010, USA
| | - Chen-Ying Ho
- Center for Genetic Medicine, Children's Research Institute, Children's National Medical Center, Washington, DC 20010, USA; Division of Pathology, Children's National Medical Center; Washington, DC 20010, USA
| | - Joshua G Corbin
- Center for Neuroscience Research, Children's Research Institute, Children's National Medical Center, Washington, DC 20010, USA
| | - Howard P Goodkin
- Departments of Neurology and Pediatrics, University of Virginia Health System, Charlottesville, VA 22908, USA
| | - Stefano Vicini
- Department of Pharmacology and Physiology, Georgetown University, Washington, DC 20057, USA
| | - Molly M Huntsman
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, Department of Pediatrics, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - William D Gaillard
- Center for Neuroscience Research, Children's Research Institute, Children's National Medical Center, Washington, DC 20010, USA; Comprehensive Pediatric Epilepsy Program, Division of Neurophysiology and Epilepsy, Children's National Health Medical Center; Washington, DC 20010 USA
| | - Gregorio Valdez
- Virginia Tech Carillion Research Institute; Roanoke, VA 24014, USA; Department of Biological Sciences, Virginia Tech; Blacksburg, VA 24061, USA
| | - Judy S Liu
- Center for Neuroscience Research, Children's Research Institute, Children's National Medical Center, Washington, DC 20010, USA.
| |
Collapse
|
14
|
Blancas-Velazquez A, la Fleur SE, Mendoza J. Effects of a free-choice high-fat high-sugar diet on brain PER2 and BMAL1 protein expression in mice. Appetite 2017; 117:263-269. [PMID: 28687372 DOI: 10.1016/j.appet.2017.07.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Revised: 06/30/2017] [Accepted: 07/02/2017] [Indexed: 01/04/2023]
Abstract
The suprachiasmatic nucleus (SCN) times the daily rhythms of behavioral processes including feeding. Beyond the SCN, the hypothalamic arcuate nucleus (ARC), involved in feeding regulation and metabolism, and the epithalamic lateral habenula (LHb), implicated in reward processing, show circadian rhythmic activity. These brain oscillators are functionally coupled to coordinate the daily rhythm of food intake. In rats, a free choice high-fat high-sugar (fcHFHS) diet leads to a rapid increase of calorie intake and body weight gain. Interestingly, under a fcHFHS condition, rats ingest a similar amount of sugar during day time (rest phase) as during night time (active phase), but keep the rhythmic intake of regular chow-food. The out of phase between feeding patterns of regular (chow) and highly rewarding food (sugar) may involve alterations of brain circadian oscillators regulating feeding. Here, we report that the fcHFHS diet is a successful model to induce calorie intake, body weight gain and fat tissue accumulation in mice, extending its effectiveness as previously reported in rats. Moreover, we observed that whereas in the SCN the day-night difference in the PER2 clock protein expression was similar between chow-fed and fcHFHS-fed animals, in the LHb, this day-night difference was altered in fcHFHS-exposed animals compared to control chow mice. These findings confirm previous observations in rats showing disrupted daily patterns of feeding behavior under a fcHFHS diet exposure, and extend our insights on the effects of the diet on circadian gene expression in brain clocks.
Collapse
Affiliation(s)
- Aurea Blancas-Velazquez
- Institute of Cellular and Integrative Neurosciences, CNRS UPR-3212, University of Strasbourg, France; Department of Endocrinology and Metabolism, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Susanne E la Fleur
- Department of Endocrinology and Metabolism, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Jorge Mendoza
- Institute of Cellular and Integrative Neurosciences, CNRS UPR-3212, University of Strasbourg, France.
| |
Collapse
|
15
|
Riddle M, Mezias E, Foley D, LeSauter J, Silver R. Differential localization of PER1 and PER2 in the brain master circadian clock. Eur J Neurosci 2016; 45:1357-1367. [PMID: 27740710 DOI: 10.1111/ejn.13441] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Revised: 09/15/2016] [Accepted: 10/10/2016] [Indexed: 01/13/2023]
Abstract
The hypothalamic suprachiasmatic nucleus (SCN), locus of the master circadian clock, bears many neuronal types. At the cellular-molecular level, the clock is comprised of feedback loops involving 'clock' genes including Period1 and Period2, and their protein products, PERIOD1 and PERIOD2 (PER1/2). In the canonical model of circadian oscillation, the PER1/2 proteins oscillate together. While their rhythmic expression in the SCN as a whole has been described, the possibility of regional differences remains unknown. To explore these clock proteins in distinct SCN regions, we assessed their expression through the rostro-caudal extent of the SCN in sagittal sections. We developed an automated method for tracking three fluorophores in digital images of sections triply labeled for PER1, PER2, and gastrin-releasing peptide (used to locate the core). In the SCN as a whole, neurons expressing high levels of PER2 were concentrated in the rostral, rostrodorsal, and caudal portions of the nucleus, and those expressing high levels of PER1 lay in a broad central area. Within these overall patterns, adjacent cells differed in expression levels of the two proteins. The results demonstrate spatially distinct localization of high PER1 vs. PER2 expression, raising the possibility that their distribution is functionally significant in encoding and communicating temporal information. The findings provoke the question of whether there are fundamental differences in PER1/2 levels among SCN neurons and/or whether topographical differences in protein expression are a product of SCN network organization rather than intrinsic differences among neurons.
Collapse
Affiliation(s)
- Malini Riddle
- Neuroscience Program, Barnard College of Columbia University, New York, NY, USA
| | - Erica Mezias
- Neuroscience Program, Barnard College of Columbia University, New York, NY, USA
| | - Duncan Foley
- Department of Economics, New School for Social Research, New York, NY, USA
| | - Joseph LeSauter
- Neuroscience Program, Barnard College of Columbia University, New York, NY, USA
| | - Rae Silver
- Neuroscience Program, Barnard College of Columbia University, New York, NY, USA.,Department of Psychology, Columbia University, Mail Code 5501, 1190 Amsterdam Avenue, 406 Schermerhorn Hall, New York, NY, 10027, USA.,Department of Pathology and Cell Biology, Columbia University Health Sciences, New York, NY, USA
| |
Collapse
|
16
|
Pfeffer M, Gispert S, Auburger G, Wicht H, Korf HW. Impact of Ataxin-2 knock out on circadian locomotor behavior and PER immunoreaction in the SCN of mice. Chronobiol Int 2016; 34:129-137. [PMID: 27791392 DOI: 10.1080/07420528.2016.1245666] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
In Drosophila melanogaster, Ataxin-2 is a crucial activator of Period and is involved in the control of circadian rhythms. However, in mammals the function of Ataxin-2 is unknown despite its involvement in the inherited neurogenerative disease Spinocerebellar Ataxia type 2 in humans. Therefore, we analyzed locomotor behavior of Atxn2-deficient mice and their WT littermates under entrained- and free-running conditions as well as after experimental jet lag. Furthermore, we compared the PER1 and PER2 immunoreaction (IR) in the SCN. Atxn2-/- mice showed an unstable rhythmicity of locomotor activity, but the level of PER1 and PER2 IR in the SCN did not differ between genotypes.
Collapse
Affiliation(s)
- Martina Pfeffer
- a Dr. Senckenbergische Anatomie II, Fachbereich Medizin , Goethe-Universität Frankfurt , Frankfurt am Main , Germany.,b Dr. Senckenbergisches Chronomedizinisches Institut , Goethe-Universität Frankfurt , Frankfurt am Main , Germany
| | - Suzana Gispert
- c Experimental Neurology, Department of Neurology , Goethe-Universität Frankfurt , Frankfurt am Main , Germany
| | - Georg Auburger
- c Experimental Neurology, Department of Neurology , Goethe-Universität Frankfurt , Frankfurt am Main , Germany
| | - Helmut Wicht
- a Dr. Senckenbergische Anatomie II, Fachbereich Medizin , Goethe-Universität Frankfurt , Frankfurt am Main , Germany
| | - Horst-Werner Korf
- a Dr. Senckenbergische Anatomie II, Fachbereich Medizin , Goethe-Universität Frankfurt , Frankfurt am Main , Germany.,b Dr. Senckenbergisches Chronomedizinisches Institut , Goethe-Universität Frankfurt , Frankfurt am Main , Germany
| |
Collapse
|
17
|
Kudo T, Block GD, Colwell CS. The Circadian Clock Gene Period1 Connects the Molecular Clock to Neural Activity in the Suprachiasmatic Nucleus. ASN Neuro 2015; 7:7/6/1759091415610761. [PMID: 26553726 PMCID: PMC4710129 DOI: 10.1177/1759091415610761] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
The neural activity patterns of suprachiasmatic nucleus (SCN) neurons are dynamically regulated throughout the circadian cycle with highest levels of spontaneous action potentials during the day. These rhythms in electrical activity are critical for the function of the circadian timing system and yet the mechanisms by which the molecular clockwork drives changes in the membrane are not well understood. In this study, we sought to examine how the clock gene Period1 (Per1) regulates the electrical activity in the mouse SCN by transiently and selectively decreasing levels of PER1 through use of an antisense oligodeoxynucleotide. We found that this treatment effectively reduced SCN neural activity. Direct current injection to restore the normal membrane potential partially, but not completely, returned firing rate to normal levels. The antisense treatment also reduced baseline [Ca2+]i levels as measured by Fura2 imaging technique. Whole cell patch clamp recording techniques were used to examine which specific potassium currents were altered by the treatment. These recordings revealed that the large conductance [Ca2+]i-activated potassium currents were reduced in antisense-treated neurons and that blocking this current mimicked the effects of the anti-sense on SCN firing rate. These results indicate that the circadian clock gene Per1 alters firing rate in SCN neurons and raise the possibility that the large conductance [Ca2+]i-activated channel is one of the targets.
Collapse
Affiliation(s)
- Takashi Kudo
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, CA, USA
| | - Gene D Block
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, CA, USA
| | - Christopher S Colwell
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, CA, USA
| |
Collapse
|
18
|
Henry FE, Sugino K, Tozer A, Branco T, Sternson SM. Cell type-specific transcriptomics of hypothalamic energy-sensing neuron responses to weight-loss. eLife 2015; 4. [PMID: 26329458 PMCID: PMC4595745 DOI: 10.7554/elife.09800] [Citation(s) in RCA: 180] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Accepted: 09/02/2015] [Indexed: 12/13/2022] Open
Abstract
Molecular and cellular processes in neurons are critical for sensing and responding to energy deficit states, such as during weight-loss. Agouti related protein (AGRP)-expressing neurons are a key hypothalamic population that is activated during energy deficit and increases appetite and weight-gain. Cell type-specific transcriptomics can be used to identify pathways that counteract weight-loss, and here we report high-quality gene expression profiles of AGRP neurons from well-fed and food-deprived young adult mice. For comparison, we also analyzed Proopiomelanocortin (POMC)-expressing neurons, an intermingled population that suppresses appetite and body weight. We find that AGRP neurons are considerably more sensitive to energy deficit than POMC neurons. Furthermore, we identify cell type-specific pathways involving endoplasmic reticulum-stress, circadian signaling, ion channels, neuropeptides, and receptors. Combined with methods to validate and manipulate these pathways, this resource greatly expands molecular insight into neuronal regulation of body weight, and may be useful for devising therapeutic strategies for obesity and eating disorders. DOI:http://dx.doi.org/10.7554/eLife.09800.001 Humans and other animals must get adequate nutrition in order to survive. As a result, the body has several systems that work side by side to maintain a healthy body weight and ensure that enough food gets eaten to provide the energy that the body needs. Problems with these systems can contribute towards obesity and other eating disorders. Certain types of cells in the brain play important roles in controlling weight and appetite, although the genes and cellular mechanisms that underlie these abilities are not well understood. When an animal is deprived of food, so-called AGRP neurons produce molecules that increase appetite and make it easier to gain weight. These neurons also go through structural changes and increase their electrical activity during weight loss. Another group of cells, called the POMC neurons, becomes less active when an animal is deprived of energy. Using a technique called cell type-specific transcriptomics, Henry, Sugino et al. have now revealed that the expression of hundreds of genes in AGRP and POMC neurons changes depending on whether mice are well fed or food deprived. Food deprivation also affects more genes in AGRP neurons than has been seen in other types of brain cell, and the AGRP neurons are also more sensitive to a change in food intake than POMC neurons. In the future, this gene expression data and knowledge of the pathways affected by the genes could help researchers to develop new treatments for obesity and other disorders that affect appetite. Henry, Sugino et al. then mapped how these changes in gene expression trigger molecular “pathways” in the neurons that alter how the cells work. These affect many parts of the cells, including ion channels, transcription factors, receptors, and secreted proteins. In addition, food deprivation activated pathways in AGRP neurons that protect the cells from damage and death caused by elevated neuron activity and also triggered signaling pathways that increase body weight. In the future, this gene expression data and knowledge of the pathways affected by the genes could help researchers to develop new treatments for obesity and other disorders that affect appetite. DOI:http://dx.doi.org/10.7554/eLife.09800.002
Collapse
Affiliation(s)
- Fredrick E Henry
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - Ken Sugino
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - Adam Tozer
- Division of Neurobiology, Medical Research Council Laboratory of Molecular Biology, Cambridge, United Kingdom
| | - Tiago Branco
- Division of Neurobiology, Medical Research Council Laboratory of Molecular Biology, Cambridge, United Kingdom
| | - Scott M Sternson
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| |
Collapse
|
19
|
Kobayashi Y, Ye Z, Hensch TK. Clock genes control cortical critical period timing. Neuron 2015; 86:264-75. [PMID: 25801703 PMCID: PMC4392344 DOI: 10.1016/j.neuron.2015.02.036] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2014] [Revised: 01/25/2015] [Accepted: 02/18/2015] [Indexed: 01/05/2023]
Abstract
Circadian rhythms control a variety of physiological processes, but whether they may also time brain development remains largely unknown. Here, we show that circadian clock genes control the onset of critical period plasticity in the neocortex. Within visual cortex of Clock-deficient mice, the emergence of circadian gene expression was dampened, and the maturation of inhibitory parvalbumin (PV) cell networks slowed. Loss of visual acuity in response to brief monocular deprivation was concomitantly delayed and rescued by direct enhancement of GABAergic transmission. Conditional deletion of Clock or Bmal1 only within PV cells recapitulated the results of total Clock-deficient mice. Unique downstream gene sets controlling synaptic events and cellular homeostasis for proper maturation and maintenance were found to be mis-regulated by Clock deletion specifically within PV cells. These data demonstrate a developmental role for circadian clock genes outside the suprachiasmatic nucleus, which may contribute mis-timed brain plasticity in associated mental disorders.
Collapse
Affiliation(s)
- Yohei Kobayashi
- Center for Brain Science, Department of Molecular Cellular Biology, Harvard University, 52 Oxford Street, Cambridge, MA 02138, USA; F.M. Kirby Neurobiology Center, Department of Neurology, Boston Children's Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA
| | - Zhanlei Ye
- Center for Brain Science, Department of Molecular Cellular Biology, Harvard University, 52 Oxford Street, Cambridge, MA 02138, USA
| | - Takao K Hensch
- Center for Brain Science, Department of Molecular Cellular Biology, Harvard University, 52 Oxford Street, Cambridge, MA 02138, USA; F.M. Kirby Neurobiology Center, Department of Neurology, Boston Children's Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA.
| |
Collapse
|
20
|
Fonken LK, Aubrecht TG, Meléndez-Fernández OH, Weil ZM, Nelson RJ. Dim light at night disrupts molecular circadian rhythms and increases body weight. J Biol Rhythms 2013; 28:262-71. [PMID: 23929553 DOI: 10.1177/0748730413493862] [Citation(s) in RCA: 212] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
With the exception of high latitudes, life has evolved under bright days and dark nights. Most organisms have developed endogenously driven circadian rhythms that are synchronized to this daily light/dark cycle. In recent years, humans have shifted away from the naturally occurring solar light cycle in favor of artificial and sometimes irregular light schedules produced by electric lighting. Exposure to unnatural light cycles is increasingly associated with obesity and metabolic syndrome; however, the means by which environmental lighting alters metabolism are poorly understood. Thus, we exposed mice to dim light at night and investigated changes in the circadian system and metabolism. Here we report that exposure to ecologically relevant levels of dim (5 lux) light at night altered core circadian clock rhythms in the hypothalamus at both the gene and protein level. Circadian rhythms in clock expression persisted during light at night; however, the amplitude of Per1 and Per2 rhythms was attenuated in the hypothalamus. Circadian oscillations were also altered in peripheral tissues critical for metabolic regulation. Exposure to dimly illuminated, as compared to dark, nights decreased the rhythmic expression in all but one of the core circadian clock genes assessed in the liver. Additionally, mice exposed to dim light at night attenuated Rev-Erb expression in the liver and adipose tissue. Changes in the circadian clock were associated with temporal alterations in feeding behavior and increased weight gain. These results are significant because they provide evidence that mild changes in environmental lighting can alter circadian and metabolic function. Detailed analysis of temporal changes induced by nighttime light exposure may provide insight into the onset and progression of obesity and metabolic syndrome, as well as other disorders involving sleep and circadian rhythm disruption.
Collapse
Affiliation(s)
- Laura K Fonken
- Department of Neuroscience and Institute for Behavioral Medicine Research, Wexner Medical Center, The Ohio State University, Columbus, OH 43210, USA.
| | | | | | | | | |
Collapse
|
21
|
Luca A, Luca M, Calandra C. Sleep disorders and depression: brief review of the literature, case report, and nonpharmacologic interventions for depression. Clin Interv Aging 2013; 8:1033-1039. [PMID: 24019746 PMCID: PMC3760296 DOI: 10.2147/cia.s47230] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Sleep disorders are so frequently associated with depression that, in the absence of sleep complaints, a diagnosis of depression should be made with caution. Insomnia, in particular, may occur in 60%-80% of depressed patients. Depressive symptoms are important risk factors for insomnia, and depression is considered an important comorbid condition in patients with chronic insomnia of any etiology. In addition, some drugs commonly prescribed for the treatment of depression may worsen insomnia and impair full recovery from the illness. The aim of this paper is to review briefly and discuss the following topics: common sleep disturbances during depression (in particular pavor nocturnus, nightmares, hypersomnia, and insomnia); circadian sleep disturbances; and treatment of depression by manipulation of the sleep-wake rhythm (chronotherapy, light therapy, cycles of sleep, and manipulation of the sleep-wake rhythm itself). Finally, we present a case report of a 65-year-old Caucasian woman suffering from insomnia associated with depression who was successfully treated with sleep deprivation.
Collapse
Affiliation(s)
- Antonina Luca
- Department GF Ingrassia, Section of Neuroscience, University Hospital
Policlinico-Vittorio Emanuele, Catania, Sicily, Italy
| | - Maria Luca
- Department of Medical and Surgery Specialties, Psychiatry Unit, University Hospital
Policlinico-Vittorio Emanuele, Catania, Sicily, Italy
| | - Carmela Calandra
- Department of Medical and Surgery Specialties, Psychiatry Unit, University Hospital
Policlinico-Vittorio Emanuele, Catania, Sicily, Italy
| |
Collapse
|
22
|
Fonken LK, Aubrecht TG, Meléndez-Fernández OH, Weil ZM, Nelson RJ. Dim light at night disrupts molecular circadian rhythms and increases body weight. J Biol Rhythms 2013. [PMID: 23929553 DOI: 10.1177/0748730413493862.dim] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2023]
Abstract
With the exception of high latitudes, life has evolved under bright days and dark nights. Most organisms have developed endogenously driven circadian rhythms that are synchronized to this daily light/dark cycle. In recent years, humans have shifted away from the naturally occurring solar light cycle in favor of artificial and sometimes irregular light schedules produced by electric lighting. Exposure to unnatural light cycles is increasingly associated with obesity and metabolic syndrome; however, the means by which environmental lighting alters metabolism are poorly understood. Thus, we exposed mice to dim light at night and investigated changes in the circadian system and metabolism. Here we report that exposure to ecologically relevant levels of dim (5 lux) light at night altered core circadian clock rhythms in the hypothalamus at both the gene and protein level. Circadian rhythms in clock expression persisted during light at night; however, the amplitude of Per1 and Per2 rhythms was attenuated in the hypothalamus. Circadian oscillations were also altered in peripheral tissues critical for metabolic regulation. Exposure to dimly illuminated, as compared to dark, nights decreased the rhythmic expression in all but one of the core circadian clock genes assessed in the liver. Additionally, mice exposed to dim light at night attenuated Rev-Erb expression in the liver and adipose tissue. Changes in the circadian clock were associated with temporal alterations in feeding behavior and increased weight gain. These results are significant because they provide evidence that mild changes in environmental lighting can alter circadian and metabolic function. Detailed analysis of temporal changes induced by nighttime light exposure may provide insight into the onset and progression of obesity and metabolic syndrome, as well as other disorders involving sleep and circadian rhythm disruption.
Collapse
Affiliation(s)
- Laura K Fonken
- Department of Neuroscience and Institute for Behavioral Medicine Research, Wexner Medical Center, The Ohio State University, Columbus, OH 43210, USA.
| | | | | | | | | |
Collapse
|
23
|
Bedrosian TA, Galan A, Vaughn CA, Weil ZM, Nelson RJ. Light at night alters daily patterns of cortisol and clock proteins in female Siberian hamsters. J Neuroendocrinol 2013; 25:590-6. [PMID: 23489976 DOI: 10.1111/jne.12036] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2013] [Revised: 02/27/2013] [Accepted: 03/07/2013] [Indexed: 01/06/2023]
Abstract
Humans and other organisms have adapted to a 24-h solar cycle in response to life on Earth. The rotation of the planet on its axis and its revolution around the sun cause predictable daily and seasonal patterns in day length. To successfully anticipate and adapt to these patterns in the environment, a variety of biological processes oscillate with a daily rhythm of approximately 24 h in length. These rhythms arise from hierarchally-coupled cellular clocks generated by positive and negative transcription factors of core circadian clock gene expression. From these endogenous cellular clocks, overt rhythms in activity and patterns in hormone secretion and other homeostatic processes emerge. These circadian rhythms in physiology and behaviour can be organised by a variety of cues, although they are most potently entrained by light. In recent history, there has been a major change from naturally-occurring light cycles set by the sun, to artificial and sometimes erratic light cycles determined by the use of electric lighting. Virtually every individual living in an industrialised country experiences light at night (LAN) but, despite its prevalence, the biological effects of such unnatural lighting have not been fully considered. Using female Siberian hamsters (Phodopus sungorus), we investigated the effects of chronic nightly exposure to dim light on daily rhythms in locomotor activity, serum cortisol concentrations and brain expression of circadian clock proteins (i.e. PER1, PER2, BMAL1). Although locomotor activity remained entrained to the light cycle, the diurnal fluctuation of cortisol concentrations was blunted and the expression patterns of clock proteins in the suprachiasmatic nucleus and hippocampus were altered. These results demonstrate that chronic exposure to dim LAN can dramatically affect fundamental cellular function and emergent physiology.
Collapse
Affiliation(s)
- T A Bedrosian
- Department of Neuroscience, Ohio State University Wexner Medical Center, Columbus, OH, USA.
| | | | | | | | | |
Collapse
|
24
|
Liu X, Zhang Z, Ribelayga CP. Heterogeneous expression of the core circadian clock proteins among neuronal cell types in mouse retina. PLoS One 2012. [PMID: 23189207 PMCID: PMC3506613 DOI: 10.1371/journal.pone.0050602] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Circadian rhythms in metabolism, physiology, and behavior originate from cell-autonomous circadian clocks located in many organs and structures throughout the body and that share a common molecular mechanism based on the clock genes and their protein products. In the mammalian neural retina, despite evidence supporting the presence of several circadian clocks regulating many facets of retinal physiology and function, the exact cellular location and genetic signature of the retinal clock cells remain largely unknown. Here we examined the expression of the core circadian clock proteins CLOCK, BMAL1, NPAS2, PERIOD 1(PER1), PERIOD 2 (PER2), and CRYPTOCHROME2 (CRY2) in identified neurons of the mouse retina during daily and circadian cycles. We found concurrent clock protein expression in most retinal neurons, including cone photoreceptors, dopaminergic amacrine cells, and melanopsin-expressing intrinsically photosensitive ganglion cells. Remarkably, diurnal and circadian rhythms of expression of all clock proteins were observed in the cones whereas only CRY2 expression was found to be rhythmic in the dopaminergic amacrine cells. Only a low level of expression of the clock proteins was detected in the rods at any time of the daily or circadian cycle. Our observations provide evidence that cones and not rods are cell-autonomous circadian clocks and reveal an important disparity in the expression of the core clock components among neuronal cell types. We propose that the overall temporal architecture of the mammalian retina does not result from the synchronous activity of pervasive identical clocks but rather reflects the cellular and regional heterogeneity in clock function within retinal tissue.
Collapse
Affiliation(s)
- Xiaoqin Liu
- Department of Ophthalmology and Visual Science, The University of Texas Health Science Center at Houston, Medical School, Houston, Texas, United States of America
| | - Zhijing Zhang
- Department of Ophthalmology and Visual Science, The University of Texas Health Science Center at Houston, Medical School, Houston, Texas, United States of America
| | - Christophe P. Ribelayga
- Department of Ophthalmology and Visual Science, The University of Texas Health Science Center at Houston, Medical School, Houston, Texas, United States of America
- The University of Texas Health Science Center at Houston, Graduate School of Biomedical Sciences, Houston, Texas, United States of America
- * E-mail:
| |
Collapse
|
25
|
O'Callaghan EK, Anderson ST, Moynagh PN, Coogan AN. Long-lasting effects of sepsis on circadian rhythms in the mouse. PLoS One 2012; 7:e47087. [PMID: 23071720 PMCID: PMC3469504 DOI: 10.1371/journal.pone.0047087] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2012] [Accepted: 09/07/2012] [Indexed: 12/26/2022] Open
Abstract
Daily patterns of activity and physiology are termed circadian rhythms and are driven primarily by an endogenous biological timekeeping system, with the master clock located in the suprachiasmatic nucleus. Previous studies have indicated reciprocal relationships between the circadian and the immune systems, although to date there have been only limited explorations of the long-term modulation of the circadian system by immune challenge, and it is to this question that we addressed ourselves in the current study. Sepsis was induced by peripheral treatment with lipopolysaccharide (5 mg/kg) and circadian rhythms were monitored following recovery. The basic parameters of circadian rhythmicity (free-running period and rhythm amplitude, entrainment to a light/dark cycle) were unaltered in post-septic animals compared to controls. Animals previously treated with LPS showed accelerated re-entrainment to a 6 hour advance of the light/dark cycle, and showed larger phase advances induced by photic stimulation in the late night phase. Photic induction of the immediate early genes c-FOS, EGR-1 and ARC was not altered, and neither was phase-shifting in response to treatment with the 5-HT-1a/7 agonist 8-OH-DPAT. Circadian expression of the clock gene product PER2 was altered in the suprachiasmatic nucleus of post-septic animals, and PER1 and PER2 expression patterns were altered also in the hippocampus. Examination of the suprachiasmatic nucleus 3 months after treatment with LPS showed persistent upregulation of the microglial markers CD-11b and F4/80, but no changes in the expression of various neuropeptides, cytokines, and intracellular signallers. The effects of sepsis on circadian rhythms does not seem to be driven by cell death, as 24 hours after LPS treatment there was no evidence for apoptosis in the suprachiasmatic nucleus as judged by TUNEL and cleaved-caspase 3 staining. Overall these data provide novel insight into how septic shock exerts chronic effects on the mammalian circadian system.
Collapse
Affiliation(s)
- Emma K. O'Callaghan
- Department of Psychology, National University of Ireland Maynooth, Maynooth, County Kildare, Republic of Ireland
| | - Sean T. Anderson
- Department of Psychology, National University of Ireland Maynooth, Maynooth, County Kildare, Republic of Ireland
| | - Paul N. Moynagh
- Institute of Immunology, National University of Ireland Maynooth, Maynooth, County Kildare, Republic of Ireland
| | - Andrew N. Coogan
- Department of Psychology, National University of Ireland Maynooth, Maynooth, County Kildare, Republic of Ireland
- * E-mail:
| |
Collapse
|