1
|
Moeller AH, Sanders JG, Sprockett DD, Landers A. Assessing co-diversification in host-associated microbiomes. J Evol Biol 2023; 36:1659-1668. [PMID: 37750599 PMCID: PMC10843161 DOI: 10.1111/jeb.14221] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 08/08/2023] [Accepted: 08/29/2023] [Indexed: 09/27/2023]
Abstract
When lineages of hosts and microbial symbionts engage in intimate interactions over evolutionary timescales, they can diversify in parallel (i.e., co-diversify), producing associations between the lineages' phylogenetic histories. Tests for co-diversification of individual microbial lineages and their hosts have been developed previously, and these have been applied to discover ancient symbioses in diverse branches of the tree of life. However, most host-microbe relationships are not binary but multipartite, in that a single host-associated microbiota can contain many microbial lineages, generating challenges for assessing co-diversification. Here, we review recent evidence for co-diversification in complex microbiota, highlight the limitations of prior studies, and outline a hypothesis testing approach designed to overcome some of these limitations. We advocate for the use of microbiota-wide scans for co-diversifying symbiont lineages and discuss tools developed for this purpose. Tests for co-diversification for simple host symbiont systems can be extended to entire phylogenies of microbial lineages (e.g., metagenome-assembled or isolate genomes, amplicon sequence variants) sampled from host clades, thereby providing a means for identifying co-diversifying symbionts present within complex microbiota. The relative ages of symbiont clades can corroborate co-diversification, and multi-level permutation tests can account for multiple comparisons and phylogenetic non-independence introduced by repeated sampling of host species. Discovering co-diversifying lineages will generate powerful opportunities for interrogating the molecular evolution and lineage turnover of ancestral, host-species specific symbionts within host-associated microbiota.
Collapse
Affiliation(s)
- Andrew H. Moeller
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY 14850, USA
| | - Jon G. Sanders
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY 14850, USA
| | - Daniel D. Sprockett
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY 14850, USA
| | - Abigail Landers
- Department of Microbiology, Cornell University, Ithaca, NY 14850, USA
| |
Collapse
|
2
|
Cruz-Laufer AJ, Artois T, Koblmüller S, Pariselle A, Smeets K, Van Steenberge M, Vanhove MPM. Explosive networking: The role of adaptive host radiations and ecological opportunity in a species-rich host-parasite assembly. Ecol Lett 2022; 25:1795-1812. [PMID: 35726545 DOI: 10.1111/ele.14059] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 02/22/2022] [Accepted: 05/13/2022] [Indexed: 01/09/2023]
Abstract
Many species-rich ecological communities emerge from adaptive radiation events. Yet the effects of adaptive radiation on community assembly remain poorly understood. Here, we explore the well-documented radiations of African cichlid fishes and their interactions with the flatworm gill parasites Cichlidogyrus spp., including 10,529 reported infections and 477 different host-parasite combinations collected through a survey of peer-reviewed literature. We assess how evolutionary, ecological, and morphological parameters determine host-parasite meta-communities affected by adaptive radiation events through network metrics, host repertoire measures, and network link prediction. The hosts' evolutionary history mostly determined host repertoires of the parasites. Ecological and evolutionary parameters predicted host-parasite interactions. Generally, ecological opportunity and fitting have shaped cichlid-Cichlidogyrus meta-communities suggesting an invasive potential for hosts used in aquaculture. Meta-communities affected by adaptive radiations are increasingly specialised with higher environmental stability. These trends should be verified across other systems to infer generalities in the evolution of species-rich host-parasite networks.
Collapse
Affiliation(s)
- Armando J Cruz-Laufer
- Faculty of Sciences, Centre for Environmental Sciences, Research Group Zoology: Biodiversity and Toxicology, UHasselt - Hasselt University, Diepenbeek, Belgium
| | - Tom Artois
- Faculty of Sciences, Centre for Environmental Sciences, Research Group Zoology: Biodiversity and Toxicology, UHasselt - Hasselt University, Diepenbeek, Belgium
| | | | - Antoine Pariselle
- ISEM, CNRS, IRD, Université de Montpellier, Montpellier, France.,Faculty of Sciences, Laboratory "Biodiversity, Ecology and Genome", Research Centre "Plant and Microbial Biotechnology, Biodiversity and Environment", Mohammed V University, Rabat, Morocco
| | - Karen Smeets
- Faculty of Sciences, Centre for Environmental Sciences, Research Group Zoology: Biodiversity and Toxicology, UHasselt - Hasselt University, Diepenbeek, Belgium
| | - Maarten Van Steenberge
- Faculty of Sciences, Centre for Environmental Sciences, Research Group Zoology: Biodiversity and Toxicology, UHasselt - Hasselt University, Diepenbeek, Belgium.,Laboratory of Biodiversity and Evolutionary Genomics, KU Leuven, Leuven, Belgium.,Operational Directorate Taxonomy and Phylogeny, Royal Belgian Institute of Natural Sciences, Brussels, Belgium
| | - Maarten P M Vanhove
- Faculty of Sciences, Centre for Environmental Sciences, Research Group Zoology: Biodiversity and Toxicology, UHasselt - Hasselt University, Diepenbeek, Belgium.,Laboratory of Biodiversity and Evolutionary Genomics, KU Leuven, Leuven, Belgium
| |
Collapse
|
3
|
Host diversification is concurrent with linear motif evolution in a Mastadenovirus hub protein. J Mol Biol 2022; 434:167563. [PMID: 35351519 DOI: 10.1016/j.jmb.2022.167563] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 02/28/2022] [Accepted: 03/22/2022] [Indexed: 12/23/2022]
Abstract
Over one hundred Mastadenovirus types infect seven orders of mammals. Virus-host coevolution may involve cospeciation, duplication, host switch and partial extinction events. We reconstruct Mastadenovirus diversification, finding that while cospeciation is dominant, the other three events are also common in Mastadenovirus evolution. Linear motifs are fast-evolving protein functional elements and key mediators of virus-host interactions, thus likely to partake in adaptive viral evolution. We study the evolution of eleven linear motifs in the Mastadenovirus E1A protein, a hub of virus-host protein-protein interactions, in the context of host diversification. The reconstruction of linear motif gain and loss events shows fast linear motif turnover, corresponding a virus-host protein-protein interaction turnover orders of magnitude faster than in model host proteomes. Evolution of E1A linear motifs is coupled, indicating functional coordination at the protein scale, yet presents motif-specific patterns suggestive of convergent evolution. We report a pervasive association between Mastadenovirus host diversification events and the evolution of E1A linear motifs. Eight of 17 host switches associate with the gain of one linear motif and the loss of four different linear motifs, while five of nine partial extinctions associate with the loss of one linear motif. The specific changes in E1A linear motifs during a host switch or a partial extinction suggest that changes in the host molecular environment lead to modulation of the interactions with the retinoblastoma protein and host transcriptional regulators. Altogether, changes in the linear motif repertoire of a viral hub protein are associated with adaptive evolution events during Mastadenovirus evolution.
Collapse
|
4
|
Balbuena JA, Pérez-Escobar ÓA, Llopis-Belenguer C, Blasco-Costa I. Random Tanglegram Partitions (Random TaPas): An Alexandrian Approach to the Cophylogenetic Gordian Knot. Syst Biol 2021; 69:1212-1230. [PMID: 32298451 DOI: 10.1093/sysbio/syaa033] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 04/09/2020] [Accepted: 04/09/2020] [Indexed: 01/14/2023] Open
Abstract
Symbiosis is a key driver of evolutionary novelty and ecological diversity, but our understanding of how macroevolutionary processes originate extant symbiotic associations is still very incomplete. Cophylogenetic tools are used to assess the congruence between the phylogenies of two groups of organisms related by extant associations. If phylogenetic congruence is higher than expected by chance, we conclude that there is cophylogenetic signal in the system under study. However, how to quantify cophylogenetic signal is still an open issue. We present a novel approach, Random Tanglegram Partitions (Random TaPas) that applies a given global-fit method to random partial tanglegrams of a fixed size to identify the associations, terminals, and nodes that maximize phylogenetic congruence. By means of simulations, we show that the output value produced is inversely proportional to the number and proportion of cospeciation events employed to build simulated tanglegrams. In addition, with time-calibrated trees, Random TaPas can also distinguish cospeciation from pseudocospeciation. Random TaPas can handle large tanglegrams in affordable computational time and incorporates phylogenetic uncertainty in the analyses. We demonstrate its application with two real examples: passerine birds and their feather mites, and orchids and bee pollinators. In both systems, Random TaPas revealed low cophylogenetic signal, but mapping its variation onto the tanglegram pointed to two different coevolutionary processes. We suggest that the recursive partitioning of the tanglegram buffers the effect of phylogenetic nonindependence occurring in current global-fit methods and therefore Random TaPas is more reliable than regular global-fit methods to identify host-symbiont associations that contribute most to cophylogenetic signal. Random TaPas can be implemented in the public-domain statistical software R with scripts provided herein. A User's Guide is also available at GitHub.[Codiversification; coevolution; cophylogenetic signal; Symbiosis.].
Collapse
Affiliation(s)
- Juan Antonio Balbuena
- Cavanilles Institute of Biodiversity and Evolutionary Biology, University of Valencia, Official P.O. Box 22085, 46071 Valencia, Spain
| | | | - Cristina Llopis-Belenguer
- Cavanilles Institute of Biodiversity and Evolutionary Biology, University of Valencia, Official P.O. Box 22085, 46071 Valencia, Spain
| | - Isabel Blasco-Costa
- Department of Invertebrates, Natural History Museum of Geneva, P.O. Box 6134, CH-1211 Geneva, Switzerland
| |
Collapse
|
5
|
Moest M, Van Belleghem SM, James JE, Salazar C, Martin SH, Barker SL, Moreira GRP, Mérot C, Joron M, Nadeau NJ, Steiner FM, Jiggins CD. Selective sweeps on novel and introgressed variation shape mimicry loci in a butterfly adaptive radiation. PLoS Biol 2020; 18:e3000597. [PMID: 32027643 PMCID: PMC7029882 DOI: 10.1371/journal.pbio.3000597] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 02/19/2020] [Accepted: 01/15/2020] [Indexed: 11/21/2022] Open
Abstract
Natural selection leaves distinct signatures in the genome that can reveal the targets and history of adaptive evolution. By analysing high-coverage genome sequence data from 4 major colour pattern loci sampled from nearly 600 individuals in 53 populations, we show pervasive selection on wing patterns in the Heliconius adaptive radiation. The strongest signatures correspond to loci with the greatest phenotypic effects, consistent with visual selection by predators, and are found in colour patterns with geographically restricted distributions. These recent sweeps are similar between co-mimics and indicate colour pattern turn-over events despite strong stabilising selection. Using simulations, we compare sweep signatures expected under classic hard sweeps with those resulting from adaptive introgression, an important aspect of mimicry evolution in Heliconius butterflies. Simulated recipient populations show a distinct 'volcano' pattern with peaks of increased genetic diversity around the selected target, characteristic of sweeps of introgressed variation and consistent with diversity patterns found in some populations. Our genomic data reveal a surprisingly dynamic history of colour pattern selection and co-evolution in this adaptive radiation.
Collapse
Affiliation(s)
- Markus Moest
- Department of Zoology, University of Cambridge, Cambridge, United Kingdom
- Department of Ecology, University of Innsbruck, Innsbruck, Austria
| | - Steven M. Van Belleghem
- Department of Zoology, University of Cambridge, Cambridge, United Kingdom
- Department of Biology, University of Puerto Rico, Rio Piedras, Puerto Rico
| | - Jennifer E. James
- Department of Zoology, University of Cambridge, Cambridge, United Kingdom
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, Arizona, United States of America
| | - Camilo Salazar
- Biology Program, Faculty of Natural Sciences and Mathematics, Universidad del Rosario, Bogota D.C., Colombia
| | - Simon H. Martin
- Department of Zoology, University of Cambridge, Cambridge, United Kingdom
- Institute of Evolutionary Biology, University of Edinburgh, Edinburgh, United Kingdom
| | - Sarah L. Barker
- Department of Zoology, University of Cambridge, Cambridge, United Kingdom
| | - Gilson R. P. Moreira
- Departamento de Zoologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Claire Mérot
- IBIS, Department of Biology, Université Laval, Québec, Canada
| | - Mathieu Joron
- Centre d'Ecologie Fonctionnelle et Evolutive, UMR 5175 CNRS—Université de Montpellier—Université Paul Valéry Montpellier—EPHE, Montpellier, France
| | - Nicola J. Nadeau
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield, United Kingdom
| | | | - Chris D. Jiggins
- Department of Zoology, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
6
|
Parallel evolution of ancient, pleiotropic enhancers underlies butterfly wing pattern mimicry. Proc Natl Acad Sci U S A 2019; 116:24174-24183. [PMID: 31712408 DOI: 10.1073/pnas.1907068116] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Color pattern mimicry in Heliconius butterflies is a classic case study of complex trait adaptation via selection on a few large effect genes. Association studies have linked color pattern variation to a handful of noncoding regions, yet the presumptive cis-regulatory elements (CREs) that control color patterning remain unknown. Here we combine chromatin assays, DNA sequence associations, and genome editing to functionally characterize 5 cis-regulatory elements of the color pattern gene optix We were surprised to find that the cis-regulatory architecture of optix is characterized by pleiotropy and regulatory fragility, where deletion of individual cis-regulatory elements has broad effects on both color pattern and wing vein development. Remarkably, we found orthologous cis-regulatory elements associate with wing pattern convergence of distantly related comimics, suggesting that parallel coevolution of ancestral elements facilitated pattern mimicry. Our results support a model of color pattern evolution in Heliconius where changes to ancient, multifunctional cis-regulatory elements underlie adaptive radiation.
Collapse
|
7
|
Wang A, Peng Y, Harder LD, Huang J, Yang D, Zhang D, Liao W. The nature of interspecific interactions and co-diversification patterns, as illustrated by the fig microcosm. THE NEW PHYTOLOGIST 2019; 224:1304-1315. [PMID: 31494940 PMCID: PMC6856861 DOI: 10.1111/nph.16176] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 09/02/2019] [Indexed: 05/05/2023]
Abstract
Interactions between mutualists, competitors, and antagonists have contrasting ecological effects that, sustained over generations, can influence micro- and macroevolution. Dissimilar benefits and costs for these interactions should cause contrasting co-diversification patterns between interacting clades, with prevalent co-speciation by mutualists, association loss by competitors, and host switching by antagonists. We assessed these expectations for a local assemblage of 26 fig species (Moraceae: Ficus), 26 species of mutualistic (pollinating), and 33 species of parasitic (galling) wasps (Chalcidoidea). Using newly acquired gene sequences, we inferred the phylogenies for all three clades. We then compared the three possible pairs of phylogenies to assess phylogenetic congruence and the relative frequencies of co-speciation, association duplication, switching, and loss. The paired phylogenies of pollinators with their mutualists and competitors were significantly congruent, unlike that of figs and their parasites. The distributions of macroevolutionary events largely agreed with expectations for mutualists and antagonists. By contrast, that for competitors involved relatively frequent association switching, as expected, but also unexpectedly frequent co-speciation. The latter result likely reflects the heterogeneous nature of competition among fig wasps. These results illustrate the influence of different interspecific interactions on co-diversification, while also revealing its dependence on specific characteristics of those interactions.
Collapse
Affiliation(s)
- Ai‐Ying Wang
- State Key Laboratory of Earth Surface Processes and Resource EcologyMinistry of Education Key Laboratory for Biodiversity Science and Ecological EngineeringBeijing Normal UniversityBeijingChina
| | - Yan‐Qiong Peng
- CAS Key Laboratory of Tropical Forest EcologyXishuangbanna Tropical Botanical GardenChinese Academy of SciencesKunmingChina
| | - Lawrence D. Harder
- Department of Biological SciencesUniversity of Calgary2500 University Drive NWCalgaryABCanada
| | - Jian‐Feng Huang
- CAS Key Laboratory of Tropical Forest EcologyXishuangbanna Tropical Botanical GardenChinese Academy of SciencesKunmingChina
| | - Da‐Rong Yang
- CAS Key Laboratory of Tropical Forest EcologyXishuangbanna Tropical Botanical GardenChinese Academy of SciencesKunmingChina
| | - Da‐Yong Zhang
- State Key Laboratory of Earth Surface Processes and Resource EcologyMinistry of Education Key Laboratory for Biodiversity Science and Ecological EngineeringBeijing Normal UniversityBeijingChina
| | - Wan‐Jin Liao
- State Key Laboratory of Earth Surface Processes and Resource EcologyMinistry of Education Key Laboratory for Biodiversity Science and Ecological EngineeringBeijing Normal UniversityBeijingChina
| |
Collapse
|
8
|
Zhang W, Leon-Ricardo BX, van Schooten B, Van Belleghem SM, Counterman BA, McMillan WO, Kronforst MR, Papa R. Comparative Transcriptomics Provides Insights into Reticulate and Adaptive Evolution of a Butterfly Radiation. Genome Biol Evol 2019; 11:2963-2975. [PMID: 31518398 PMCID: PMC6821300 DOI: 10.1093/gbe/evz202] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/09/2019] [Indexed: 12/14/2022] Open
Abstract
Butterfly eyes are complex organs that are composed of a diversity of proteins and they play a central role in visual signaling and ultimately, speciation, and adaptation. Here, we utilized the whole eye transcriptome to obtain a more holistic view of the evolution of the butterfly eye while accounting for speciation events that co-occur with ancient hybridization. We sequenced and assembled transcriptomes from adult female eyes of eight species representing all major clades of the Heliconius genus and an additional outgroup species, Dryas iulia. We identified 4,042 orthologous genes shared across all transcriptome data sets and constructed a transcriptome-wide phylogeny, which revealed topological discordance with the mitochondrial phylogenetic tree in the Heliconius pupal mating clade. We then estimated introgression among lineages using additional genome data and found evidence for ancient hybridization leading to the common ancestor of Heliconius hortense and Heliconius clysonymus. We estimated the Ka/Ks ratio for each orthologous cluster and performed further tests to demonstrate genes showing evidence of adaptive protein evolution. Furthermore, we characterized patterns of expression for a subset of these positively selected orthologs using qRT-PCR. Taken together, we identified candidate eye genes that show signatures of adaptive molecular evolution and provide evidence of their expression divergence between species, tissues, and sexes. Our results demonstrate: 1) greater evolutionary changes in younger Heliconius lineages, that is, more positively selected genes in the cydno-melpomene-hecale group as opposed to the sara-hortense-erato group, and 2) suggest an ancient hybridization leading to speciation among Heliconius pupal-mating species.
Collapse
Affiliation(s)
- Wei Zhang
- State Key Laboratory of Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences, and School of Life Sciences, Peking University, Beijing, China
- Department of Ecology and Evolution, University of Chicago
| | | | - Bas van Schooten
- Department of Biology, University of Puerto Rico
- Molecular Sciences and Research Center, University of Puerto Rico
| | | | | | | | | | - Riccardo Papa
- Department of Biology, University of Puerto Rico
- Molecular Sciences and Research Center, University of Puerto Rico
| |
Collapse
|
9
|
Vaughan ER, Teshera MS, Kusamba C, Edmonston TR, Greenbaum E. A remarkable example of suspected Batesian mimicry of Gaboon Vipers (Reptilia: Viperidae: Bitis gabonica) by Congolese Giant Toads (Amphibia: Bufonidae: Sclerophrys channingi). J NAT HIST 2019. [DOI: 10.1080/00222933.2019.1669730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Eugene R. Vaughan
- Department of Biological Sciences, University of Texas at El Paso, El Paso, TX, USA
| | - Mark S. Teshera
- Department of Biological Sciences, University of Texas at El Paso, El Paso, TX, USA
| | - Chifundera Kusamba
- Laboratoire d’Herpétologie, Département de Biologie, Centre de Recherche en Sciences Naturelles, Lwiro, Democratic Republic of Congo
| | - Theresa R. Edmonston
- Department of Biological Sciences, University of Texas at El Paso, El Paso, TX, USA
| | - Eli Greenbaum
- Department of Biological Sciences, University of Texas at El Paso, El Paso, TX, USA
| |
Collapse
|
10
|
Hoyal Cuthill JF, Guttenberg N, Ledger S, Crowther R, Huertas B. Deep learning on butterfly phenotypes tests evolution's oldest mathematical model. SCIENCE ADVANCES 2019; 5:eaaw4967. [PMID: 31453326 PMCID: PMC6693915 DOI: 10.1126/sciadv.aaw4967] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Accepted: 07/08/2019] [Indexed: 05/09/2023]
Abstract
Traditional anatomical analyses captured only a fraction of real phenomic information. Here, we apply deep learning to quantify total phenotypic similarity across 2468 butterfly photographs, covering 38 subspecies from the polymorphic mimicry complex of Heliconius erato and Heliconius melpomene. Euclidean phenotypic distances, calculated using a deep convolutional triplet network, demonstrate significant convergence between interspecies co-mimics. This quantitatively validates a key prediction of Müllerian mimicry theory, evolutionary biology's oldest mathematical model. Phenotypic neighbor-joining trees are significantly correlated with wing pattern gene phylogenies, demonstrating objective, phylogenetically informative phenome capture. Comparative analyses indicate frequency-dependent mutual convergence with coevolutionary exchange of wing pattern features. Therefore, phenotypic analysis supports reciprocal coevolution, predicted by classical mimicry theory but since disputed, and reveals mutual convergence as an intrinsic generator for the unexpected diversity of Müllerian mimicry. This demonstrates that deep learning can generate phenomic spatial embeddings, which enable quantitative tests of evolutionary hypotheses previously only testable subjectively.
Collapse
Affiliation(s)
- Jennifer F. Hoyal Cuthill
- Earth-Life Science Institute, Tokyo Institute of Technology, Tokyo 152-8550, Japan
- Department of Earth Sciences, University of Cambridge, Cambridge CB2 3EQ, UK
- Institute of Analytics and Data Science and School of Life Sciences, University of Essex, Wivenhoe Park, Colchester CO4 3SQ, UK
| | - Nicholas Guttenberg
- Earth-Life Science Institute, Tokyo Institute of Technology, Tokyo 152-8550, Japan
| | - Sophie Ledger
- Department of Entomology, Natural History Museum, Cromwell Road, London SW7 5BD, UK
| | - Robyn Crowther
- Department of Entomology, Natural History Museum, Cromwell Road, London SW7 5BD, UK
| | - Blanca Huertas
- Department of Entomology, Natural History Museum, Cromwell Road, London SW7 5BD, UK
| |
Collapse
|
11
|
Lewis JJ, Reed RD. Genome-Wide Regulatory Adaptation Shapes Population-Level Genomic Landscapes in Heliconius. Mol Biol Evol 2019; 36:159-173. [PMID: 30452724 PMCID: PMC6340471 DOI: 10.1093/molbev/msy209] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Cis-regulatory evolution is an important engine of organismal diversification. Although recent studies have looked at genomic patterns of regulatory evolution between species, we still have a poor understanding of the magnitude and nature of regulatory variation within species. Here, we examine the evolution of regulatory element activity over wing development in three Heliconius erato butterfly populations to determine how regulatory variation is associated with population structure. We show that intraspecific divergence in chromatin accessibility and regulatory activity is abundant, and that regulatory variants are spatially clustered in the genome. Regions with strong population structure are highly enriched for regulatory variants, and enrichment patterns are associated with developmental stage and gene expression. We also found that variable regulatory elements are particularly enriched in species-specific genomic regions and long interspersed nuclear elements. Our findings suggest that genome-wide selection on chromatin accessibility and regulatory activity is an important force driving patterns of genomic divergence within Heliconius species. This work also provides a resource for the study of gene regulatory evolution in H. erato and other heliconiine butterflies.
Collapse
Affiliation(s)
- James J Lewis
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY
| | - Robert D Reed
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY
| |
Collapse
|
12
|
Hoyal Cuthill JF, Sewell KB, Cannon LRG, Charleston MA, Lawler S, Littlewood DTJ, Olson PD, Blair D. Australian spiny mountain crayfish and their temnocephalan ectosymbionts: an ancient association on the edge of coextinction? Proc Biol Sci 2017; 283:rspb.2016.0585. [PMID: 27226467 DOI: 10.1098/rspb.2016.0585] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Accepted: 04/27/2016] [Indexed: 12/29/2022] Open
Abstract
Australian spiny mountain crayfish (Euastacus, Parastacidae) and their ecotosymbiotic temnocephalan flatworms (Temnocephalida, Platyhelminthes) may have co-occurred and interacted through deep time, during a period of major environmental change. Therefore, reconstructing the history of their association is of evolutionary, ecological, and conservation significance. Here, time-calibrated Bayesian phylogenies of Euastacus species and their temnocephalans (Temnohaswellia and Temnosewellia) indicate near-synchronous diversifications from the Cretaceous. Statistically significant cophylogeny correlations between associated clades suggest linked evolutionary histories. However, there is a stronger signal of codivergence and greater host specificity in Temnosewellia, which co-occurs with Euastacus across its range. Phylogeography and analyses of evolutionary distinctiveness (ED) suggest that regional differences in the impact of climate warming and drying had major effects both on crayfish and associated temnocephalans. In particular, Euastacus and Temnosewellia show strong latitudinal gradients in ED and, conversely, in geographical range size, with the most distinctive, northern lineages facing the greatest risk of extinction. Therefore, environmental change has, in some cases, strengthened ecological and evolutionary associations, leaving host-specific temnocephalans vulnerable to coextinction with endangered hosts. Consequently, the extinction of all Euastacus species currently endangered (75%) predicts coextinction of approximately 60% of the studied temnocephalans, with greatest loss of the most evolutionarily distinctive lineages.
Collapse
Affiliation(s)
- Jennifer F Hoyal Cuthill
- Department of Earth Sciences, University of Cambridge, Cambridge CB2 3EQ, UK Earth-Life Science Institute, Tokyo Institute of Technology, Tokyo 152-8550, Japan
| | - Kim B Sewell
- Centre for Microscopy and Microanalysis (CMM), The University of Queensland, St Lucia, Queensland 4072, Australia
| | | | | | - Susan Lawler
- Department of Ecology, Environment and Evolution, La Trobe University, Wodonga, Victoria 3690, Australia
| | | | - Peter D Olson
- Department of Life Sciences, Natural History Museum, Cromwell Road, London SW7 5BD, UK
| | - David Blair
- College of Marine and Environmental Sciences, James Cook University, Townsville, Queensland 4811, Australia
| |
Collapse
|
13
|
Cruaud A, Rasplus JY. Testing cospeciation through large-scale cophylogenetic studies. CURRENT OPINION IN INSECT SCIENCE 2016; 18:53-59. [PMID: 27939711 DOI: 10.1016/j.cois.2016.10.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Accepted: 10/12/2016] [Indexed: 06/06/2023]
Abstract
Insects are involved in a multitude of interactions with other organisms, which make them ideal models for large-scale cophylogenetic studies. Once phylogenies of interacting lineages have been inferred, there are a number of questions we may wish to ask, such as what was the relationship between the partners in the past? Have they co-evolved for thousands or millions of years, or has one of the partners switched among different host species? To answer such questions, researchers may conduct cophylogenetic analysis, to explore the relationships between the phylogenies of interacting lineages and determine whether the match is significant or find explanations for observed differences. When combined with dating analyses, cophylogenetic analyses may support cospeciation of the partners or phylogenetic tracking. As they may reveal dynamics of host-pathogen coevolution, cophylogenetic studies may also help tackle global health issues (e.g. document the spread of disease causing pathogens). Cophylogenetic studies of parasitoids and their insect hosts may also help identify effective biocontrol agents. With the advent of next generation sequencing technologies and keeping in mind that systematic errors may occur, cophylogenetics will benefit from better-resolved trees, allowing more accurate reconciliation. However as trees become larger, current algorithms also become more computationally challenging. Nevertheless, both theoretical and methodological developments are leading to more accurate and powerful tests of cospeciation through cophylogenetic analysis.
Collapse
Affiliation(s)
- Astrid Cruaud
- INRA, UMR1062 CBGP, F-34988 Montferrier-sur-Lez, France.
| | | |
Collapse
|
14
|
Kjer K, Borowiec ML, Frandsen PB, Ware J, Wiegmann BM. Advances using molecular data in insect systematics. CURRENT OPINION IN INSECT SCIENCE 2016; 18:40-47. [PMID: 27939709 DOI: 10.1016/j.cois.2016.09.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Accepted: 09/26/2016] [Indexed: 06/06/2023]
Abstract
The size of molecular datasets has been growing exponentially since the mid 1980s, and new technologies have now dramatically increased the slope of this increase. New datasets include genomes, transcriptomes, and hybrid capture data, producing hundreds or thousands of loci. With these datasets, we are approaching a consensus on the higher level insect phylogeny. Huge datasets can produce new challenges in interpreting branch support, and new opportunities in developing better models and more sophisticated partitioning schemes. Dating analyses are improving as we recognize the importance of careful fossil calibration selection. With thousands of genes now available, coalescent methods have come of age. Barcode libraries continue to expand, and new methods are being developed for incorporating them into phylogenies with tens of thousands of individuals.
Collapse
Affiliation(s)
- Karl Kjer
- Rutgers University, Department of Biological Sciences, 415 Boyden Hall, Newark, NJ 07012, USA
| | - Marek L Borowiec
- University of Rochester, 226 Hutchison Hall, Rochester, NY 14627, USA
| | - Paul B Frandsen
- Smithsonian Institution, Office of Research Information Services, Office of the Chief Information Officer, Washington, D.C. 20024, USA
| | - Jessica Ware
- Rutgers University, Department of Biological Sciences, 415 Boyden Hall, Newark, NJ 07012, USA
| | - Brian M Wiegmann
- Department of Entomology & Plant Pathology, North Carolina State University, Raleigh, NC 27695, USA.
| |
Collapse
|
15
|
Martínez-Aquino A. Phylogenetic framework for coevolutionary studies: a compass for exploring jungles of tangled trees. Curr Zool 2016; 62:393-403. [PMID: 29491928 PMCID: PMC5804275 DOI: 10.1093/cz/zow018] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2015] [Accepted: 11/17/2015] [Indexed: 01/19/2023] Open
Abstract
Phylogenetics is used to detect past evolutionary events, from how species originated to how their ecological interactions with other species arose, which can mirror cophylogenetic patterns. Cophylogenetic reconstructions uncover past ecological relationships between taxa through inferred coevolutionary events on trees, for example, codivergence, duplication, host-switching, and loss. These events can be detected by cophylogenetic analyses based on nodes and the length and branching pattern of the phylogenetic trees of symbiotic associations, for example, host-parasite. In the past 2 decades, algorithms have been developed for cophylogetenic analyses and implemented in different software, for example, statistical congruence index and event-based methods. Based on the combination of these approaches, it is possible to integrate temporal information into cophylogenetical inference, such as estimates of lineage divergence times between 2 taxa, for example, hosts and parasites. Additionally, the advances in phylogenetic biogeography applying methods based on parametric process models and combined Bayesian approaches, can be useful for interpreting coevolutionary histories in a scenario of biogeographical area connectivity through time. This article briefly reviews the basics of parasitology and provides an overview of software packages in cophylogenetic methods. Thus, the objective here is to present a phylogenetic framework for coevolutionary studies, with special emphasis on groups of parasitic organisms. Researchers wishing to undertake phylogeny-based coevolutionary studies can use this review as a "compass" when "walking" through jungles of tangled phylogenetic trees.
Collapse
Affiliation(s)
- Andrés Martínez-Aquino
- División Zoología Invertebrados, Museo de La Plata, FCNyM, UNLP, Paseo del Bosque s/n, 1900 La Plata, Argentina
| |
Collapse
|
16
|
Drinkwater B, Charleston MA. Towards sub-quadratic time and space complexity solutions for the dated tree reconciliation problem. Algorithms Mol Biol 2016; 11:15. [PMID: 27213010 PMCID: PMC4875752 DOI: 10.1186/s13015-016-0077-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Accepted: 05/03/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Recent coevolutionary analysis has considered tree topology as a means to reduce the asymptotic complexity associated with inferring the complex coevolutionary interrelationships that arise between phylogenetic trees. Targeted algorithmic design for specific tree topologies has to date been highly successful, with one recent formulation providing a logarithmic space complexity reduction for the dated tree reconciliation problem. METHODS In this work we build on this prior analysis providing a further asymptotic space reduction, by providing a new formulation for the dynamic programming table used by a number of popular coevolutionary analysis techniques. This model gives rise to a sub quadratic running time solution for the dated tree reconciliation problem for selected tree topologies, and is shown to be, in practice, the fastest method for solving the dated tree reconciliation problem for expected evolutionary trees. This result is achieved through the analysis of not only the topology of the trees considered for coevolutionary analysis, but also the underlying structure of the dynamic programming algorithms that are traditionally applied to such analysis. CONCLUSION The newly inferred theoretical complexity bounds introduced herein are then validated using a combination of synthetic and biological data sets, where the proposed model is shown to provide an [Formula: see text] space saving, while it is observed to run in half the time compared to the fastest known algorithm for solving the dated tree reconciliation problem. What is even more significant is that the algorithm derived herein is able to guarantee the optimality of its inferred solution, something that algorithms of comparable speed have to date been unable to achieve.
Collapse
Affiliation(s)
- Benjamin Drinkwater
- />School of Information Technologies, University of Sydney, 1 Cleveland St, Sydney, 2006 NSW Australia
| | - Michael A. Charleston
- />School of Information Technologies, University of Sydney, 1 Cleveland St, Sydney, 2006 NSW Australia
- />School of Physical Sciences, University Of Tasmania, Hobart, 7005 Tasmania Australia
| |
Collapse
|
17
|
The functional basis of wing patterning in Heliconius butterflies: the molecules behind mimicry. Genetics 2016; 200:1-19. [PMID: 25953905 DOI: 10.1534/genetics.114.172387] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Wing-pattern mimicry in butterflies has provided an important example of adaptation since Charles Darwin and Alfred Russell Wallace proposed evolution by natural selection >150 years ago. The neotropical butterfly genus Heliconius played a central role in the development of mimicry theory and has since been studied extensively in the context of ecology and population biology, behavior, and mimicry genetics. Heliconius species are notable for their diverse color patterns, and previous crossing experiments revealed that much of this variation is controlled by a small number of large-effect, Mendelian switch loci. Recent comparative analyses have shown that the same switch loci control wing-pattern diversity throughout the genus, and a number of these have now been positionally cloned. Using a combination of comparative genetic mapping, association tests, and gene expression analyses, variation in red wing patterning throughout Heliconius has been traced back to the action of the transcription factor optix. Similarly, the signaling ligand WntA has been shown to control variation in melanin patterning across Heliconius and other butterflies. Our understanding of the molecular basis of Heliconius mimicry is now providing important insights into a variety of additional evolutionary phenomena, including the origin of supergenes, the interplay between constraint and evolvability, the genetic basis of convergence, the potential for introgression to facilitate adaptation, the mechanisms of hybrid speciation in animals, and the process of ecological speciation.
Collapse
|
18
|
Drinkwater B, Charleston MA. RASCAL: A Randomized Approach for Coevolutionary Analysis. J Comput Biol 2016; 23:218-27. [PMID: 26828619 DOI: 10.1089/cmb.2015.0111] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
A popular method for coevolutionary inference is cophylogenetic reconstruction where the branch length of the phylogenies have been previously derived. This approach, unlike the more generalized reconstruction techniques that are NP-Hard, can reconcile the shared evolutionary history of a pair of phylogenetic trees in polynomial time. This approach, while proven to be highly successful, requires a high polynomial running time. This is quickly becoming a limiting factor of this approach due to the continual increase in size of coevolutionary data sets. One existing method that combats this issue proposes a trade-off of accuracy for an asymptotic time complexity reduction. This technique in almost 70% of cases converges on Pareto optimal solutions in linear time. We build on this prior work by proposing an alternate linear time algorithm (RASCAL) that offers a significant accuracy increase, with RASCAL converging on Pareto optimal solutions in 85% of cases and unlike prior methods can ensure, with high probability, that all optimal solutions can be recovered, provided sufficient replicates are performed.
Collapse
Affiliation(s)
- Benjamin Drinkwater
- 1 School of Information Technologies, The University of Sydney , Sydney, Australia .,2 School of Physical Sciences, University of Tasmania , Tasmania, Australia
| | - Michael A Charleston
- 1 School of Information Technologies, The University of Sydney , Sydney, Australia .,2 School of Physical Sciences, University of Tasmania , Tasmania, Australia
| |
Collapse
|
19
|
Hoyal Cuthill JF, Charleston M. Wing patterning genes and coevolution of Müllerian mimicry inHeliconiusbutterflies: Support from phylogeography, cophylogeny, and divergence times. Evolution 2015; 69:3082-96. [DOI: 10.1111/evo.12812] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Revised: 10/09/2015] [Accepted: 10/26/2015] [Indexed: 11/30/2022]
|
20
|
Drinkwater B, Charleston MA. A time and space complexity reduction for coevolutionary analysis of trees generated under both a Yule and Uniform model. Comput Biol Chem 2015; 57:61-71. [DOI: 10.1016/j.compbiolchem.2015.02.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2015] [Accepted: 02/03/2015] [Indexed: 11/30/2022]
|
21
|
Merrill RM, Dasmahapatra KK, Davey JW, Dell'Aglio DD, Hanly JJ, Huber B, Jiggins CD, Joron M, Kozak KM, Llaurens V, Martin SH, Montgomery SH, Morris J, Nadeau NJ, Pinharanda AL, Rosser N, Thompson MJ, Vanjari S, Wallbank RWR, Yu Q. The diversification of Heliconius butterflies: what have we learned in 150 years? J Evol Biol 2015; 28:1417-38. [PMID: 26079599 DOI: 10.1111/jeb.12672] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Revised: 06/03/2015] [Accepted: 06/07/2015] [Indexed: 11/27/2022]
Abstract
Research into Heliconius butterflies has made a significant contribution to evolutionary biology. Here, we review our understanding of the diversification of these butterflies, covering recent advances and a vast foundation of earlier work. Whereas no single group of organisms can be sufficient for understanding life's diversity, after years of intensive study, research into Heliconius has addressed a wide variety of evolutionary questions. We first discuss evidence for widespread gene flow between Heliconius species and what this reveals about the nature of species. We then address the evolution and diversity of warning patterns, both as the target of selection and with respect to their underlying genetic basis. The identification of major genes involved in mimetic shifts, and homology at these loci between distantly related taxa, has revealed a surprising predictability in the genetic basis of evolution. In the final sections, we consider the evolution of warning patterns, and Heliconius diversity more generally, within a broader context of ecological and sexual selection. We consider how different traits and modes of selection can interact and influence the evolution of reproductive isolation.
Collapse
Affiliation(s)
- R M Merrill
- Department of Zoology, University of Cambridge, Cambridge, UK.,Smithsonian Tropical Research Institute, Panama City, Panama
| | | | - J W Davey
- Department of Zoology, University of Cambridge, Cambridge, UK
| | - D D Dell'Aglio
- Department of Zoology, University of Cambridge, Cambridge, UK
| | - J J Hanly
- Department of Zoology, University of Cambridge, Cambridge, UK
| | - B Huber
- Department of Biology, University of York, York, UK.,Institut de Systématique, Évolution, Biodiversité, ISYEB - UMR 7205 - CNRS, MNHN, UPMC, EPHE, Muséum national d'Histoire naturelle, Sorbonne Universités, Paris, France
| | - C D Jiggins
- Department of Zoology, University of Cambridge, Cambridge, UK.,Smithsonian Tropical Research Institute, Panama City, Panama
| | - M Joron
- Smithsonian Tropical Research Institute, Panama City, Panama.,Institut de Systématique, Évolution, Biodiversité, ISYEB - UMR 7205 - CNRS, MNHN, UPMC, EPHE, Muséum national d'Histoire naturelle, Sorbonne Universités, Paris, France.,Centre d'Ecologie Fonctionnelle et Evolutive, CEFE UMR 5175, CNRS - Université de Montpellier - Université Paul-Valéry Montpellier - EPHE, Montpellier 5, France
| | - K M Kozak
- Department of Zoology, University of Cambridge, Cambridge, UK
| | - V Llaurens
- Institut de Systématique, Évolution, Biodiversité, ISYEB - UMR 7205 - CNRS, MNHN, UPMC, EPHE, Muséum national d'Histoire naturelle, Sorbonne Universités, Paris, France
| | - S H Martin
- Department of Zoology, University of Cambridge, Cambridge, UK
| | - S H Montgomery
- Department of Genetics, Evolution and Environment, University College London, London, UK
| | - J Morris
- Department of Biology, University of York, York, UK
| | - N J Nadeau
- Department of Zoology, University of Cambridge, Cambridge, UK.,Department of Animal and Plant Sciences, University of Sheffield, Sheffield, UK
| | - A L Pinharanda
- Department of Zoology, University of Cambridge, Cambridge, UK
| | - N Rosser
- Department of Biology, University of York, York, UK
| | - M J Thompson
- Department of Zoology, University of Cambridge, Cambridge, UK.,Department of Life Sciences, Natural History Museum, London, UK
| | - S Vanjari
- Department of Zoology, University of Cambridge, Cambridge, UK
| | - R W R Wallbank
- Department of Zoology, University of Cambridge, Cambridge, UK
| | - Q Yu
- Department of Zoology, University of Cambridge, Cambridge, UK.,School of Life Sciences, Chongqing University, Shapingba District, Chongqing, China
| |
Collapse
|
22
|
Kozak KM, Wahlberg N, Neild AFE, Dasmahapatra KK, Mallet J, Jiggins CD. Multilocus species trees show the recent adaptive radiation of the mimetic heliconius butterflies. Syst Biol 2015; 64:505-24. [PMID: 25634098 PMCID: PMC4395847 DOI: 10.1093/sysbio/syv007] [Citation(s) in RCA: 139] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Accepted: 01/23/2015] [Indexed: 11/25/2022] Open
Abstract
Müllerian mimicry among Neotropical Heliconiini butterflies is an excellent example of natural selection, associated with the diversification of a large continental-scale radiation. Some of the processes driving the evolution of mimicry rings are likely to generate incongruent phylogenetic signals across the assemblage, and thus pose a challenge for systematics. We use a data set of 22 mitochondrial and nuclear markers from 92% of species in the tribe, obtained by Sanger sequencing and de novo assembly of short read data, to re-examine the phylogeny of Heliconiini with both supermatrix and multispecies coalescent approaches, characterize the patterns of conflicting signal, and compare the performance of various methodological approaches to reflect the heterogeneity across the data. Despite the large extent of reticulate signal and strong conflict between markers, nearly identical topologies are consistently recovered by most of the analyses, although the supermatrix approach failed to reflect the underlying variation in the history of individual loci. However, the supermatrix represents a useful approximation where multiple rare species represented by short sequences can be incorporated easily. The first comprehensive, time-calibrated phylogeny of this group is used to test the hypotheses of a diversification rate increase driven by the dramatic environmental changes in the Neotropics over the past 23 myr, or changes caused by diversity-dependent effects on the rate of diversification. We find that the rate of diversification has increased on the branch leading to the presently most species-rich genus Heliconius, but the change occurred gradually and cannot be unequivocally attributed to a specific environmental driver. Our study provides comprehensive comparison of philosophically distinct species tree reconstruction methods and provides insights into the diversification of an important insect radiation in the most biodiverse region of the planet.
Collapse
Affiliation(s)
- Krzysztof M Kozak
- Butterfly Genetics Group, Department of Zoology, University of Cambridge, CB2 3EJ Cambridge, UK; Laboratory of Genetics, Department of Biology, University of Turku, 20014 Turku, Finland; Department of Entomology, The Natural History Museum, London SW7 5BD, UK; Department of Biology, University of York, YO10 5DD Heslington, York, UK; and Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA
| | - Niklas Wahlberg
- Butterfly Genetics Group, Department of Zoology, University of Cambridge, CB2 3EJ Cambridge, UK; Laboratory of Genetics, Department of Biology, University of Turku, 20014 Turku, Finland; Department of Entomology, The Natural History Museum, London SW7 5BD, UK; Department of Biology, University of York, YO10 5DD Heslington, York, UK; and Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA
| | - Andrew F E Neild
- Butterfly Genetics Group, Department of Zoology, University of Cambridge, CB2 3EJ Cambridge, UK; Laboratory of Genetics, Department of Biology, University of Turku, 20014 Turku, Finland; Department of Entomology, The Natural History Museum, London SW7 5BD, UK; Department of Biology, University of York, YO10 5DD Heslington, York, UK; and Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA
| | - Kanchon K Dasmahapatra
- Butterfly Genetics Group, Department of Zoology, University of Cambridge, CB2 3EJ Cambridge, UK; Laboratory of Genetics, Department of Biology, University of Turku, 20014 Turku, Finland; Department of Entomology, The Natural History Museum, London SW7 5BD, UK; Department of Biology, University of York, YO10 5DD Heslington, York, UK; and Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA
| | - James Mallet
- Butterfly Genetics Group, Department of Zoology, University of Cambridge, CB2 3EJ Cambridge, UK; Laboratory of Genetics, Department of Biology, University of Turku, 20014 Turku, Finland; Department of Entomology, The Natural History Museum, London SW7 5BD, UK; Department of Biology, University of York, YO10 5DD Heslington, York, UK; and Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA
| | - Chris D Jiggins
- Butterfly Genetics Group, Department of Zoology, University of Cambridge, CB2 3EJ Cambridge, UK; Laboratory of Genetics, Department of Biology, University of Turku, 20014 Turku, Finland; Department of Entomology, The Natural History Museum, London SW7 5BD, UK; Department of Biology, University of York, YO10 5DD Heslington, York, UK; and Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA
| |
Collapse
|
23
|
Drinkwater B, Charleston MA. Introducing TreeCollapse: a novel greedy algorithm to solve the cophylogeny reconstruction problem. BMC Bioinformatics 2014; 15 Suppl 16:S14. [PMID: 25521705 PMCID: PMC4290644 DOI: 10.1186/1471-2105-15-s16-s14] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Cophylogeny mapping is used to uncover deep coevolutionary associations between two or more phylogenetic histories at a macro coevolutionary scale. As cophylogeny mapping is NP-Hard, this technique relies heavily on heuristics to solve all but the most trivial cases. One notable approach utilises a metaheuristic to search only a subset of the exponential number of fixed node orderings possible for the phylogenetic histories in question. This is of particular interest as it is the only known heuristic that guarantees biologically feasible solutions. This has enabled research to focus on larger coevolutionary systems, such as coevolutionary associations between figs and their pollinator wasps, including over 200 taxa. Although able to converge on solutions for problem instances of this size, a reduction from the current cubic running time is required to handle larger systems, such as Wolbachia and their insect hosts. RESULTS Rather than solving this underlying problem optimally this work presents a greedy algorithm called TreeCollapse, which uses common topological patterns to recover an approximation of the coevolutionary history where the internal node ordering is fixed. This approach offers a significant speed-up compared to previous methods, running in linear time. This algorithm has been applied to over 100 well-known coevolutionary systems converging on Pareto optimal solutions in over 68% of test cases, even where in some cases the Pareto optimal solution has not previously been recoverable. Further, while TreeCollapse applies a local search technique, it can guarantee solutions are biologically feasible, making this the fastest method that can provide such a guarantee. CONCLUSION As a result, we argue that the newly proposed algorithm is a valuable addition to the field of coevolutionary research. Not only does it offer a significantly faster method to estimate the cost of cophylogeny mappings but by using this approach, in conjunction with existing heuristics, it can assist in recovering a larger subset of the Pareto front than has previously been possible.
Collapse
Affiliation(s)
- Benjamin Drinkwater
- School of Information Technologies, 1 Cleveland St, 2006 University of Sydney, Australia Full list of author information is available at the end of the article
| | - Michael A Charleston
- School of Information Technologies, 1 Cleveland St, 2006 University of Sydney, Australia Full list of author information is available at the end of the article
| |
Collapse
|
24
|
Rodriguez J, Pitts JP, von Dohlen CD, Wilson JS. Müllerian mimicry as a result of codivergence between velvet ants and spider wasps. PLoS One 2014; 9:e112942. [PMID: 25396424 PMCID: PMC4232588 DOI: 10.1371/journal.pone.0112942] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Accepted: 10/11/2014] [Indexed: 11/19/2022] Open
Abstract
Recent studies have delineated a large Nearctic Müllerian mimicry complex in Dasymutilla velvet ants. Psorthaspis spider wasps live in areas where this mimicry complex is found and are phenotypically similar to Dasymutilla. We tested the idea that Psorthaspis spider wasps are participating in the Dasymutilla mimicry complex and that they codiverged with Dasymutilla. We performed morphometric analyses and human perception tests, and tabulated distributional records to determine the fit of Psorthaspis to the Dasymutilla mimicry complex. We inferred a dated phylogeny using nuclear molecular markers (28S, elongation factor 1-alpha, long-wavelength rhodopsin and wingless) for Psorthaspis species and compared it to a dated phylogeny of Dasymutilla. We tested for codivergence between the two groups using two statistical analyses. Our results show that Psorthaspis spider wasps are morphologically similar to the Dasymutilla mimicry rings. In addition, our tests indicate that Psorthaspis and Dasymutilla codiverged to produce similar color patterns. This study expands the breadth of the Dasymutilla Müllerian mimicry complex and provides insights about how codivergence influenced the evolution of mimicry in these groups.
Collapse
Affiliation(s)
- Juanita Rodriguez
- Department of Biology, Utah State University, Logan, Utah, United States of America
| | - James P. Pitts
- Department of Biology, Utah State University, Logan, Utah, United States of America
| | - Carol D. von Dohlen
- Department of Biology, Utah State University, Logan, Utah, United States of America
| | - Joseph S. Wilson
- Department of Biology, Utah State University - Tooele, Tooele, Utah, United States of America
| |
Collapse
|
25
|
Buckley HL, Rafat A, Ridden JD, Cruickshank RH, Ridgway HJ, Paterson AM. Phylogenetic congruence of lichenised fungi and algae is affected by spatial scale and taxonomic diversity. PeerJ 2014; 2:e573. [PMID: 25250218 PMCID: PMC4168761 DOI: 10.7717/peerj.573] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2014] [Accepted: 08/20/2014] [Indexed: 11/20/2022] Open
Abstract
The role of species' interactions in structuring biological communities remains unclear. Mutualistic symbioses, involving close positive interactions between two distinct organismal lineages, provide an excellent means to explore the roles of both evolutionary and ecological processes in determining how positive interactions affect community structure. In this study, we investigate patterns of co-diversification between fungi and algae for a range of New Zealand lichens at the community, genus, and species levels and explore explanations for possible patterns related to spatial scale and pattern, taxonomic diversity of the lichens considered, and the level sampling replication. We assembled six independent datasets to compare patterns in phylogenetic congruence with varied spatial extent of sampling, taxonomic diversity and level of specimen replication. For each dataset, we used the DNA sequences from the ITS regions of both the fungal and algal genomes from lichen specimens to produce genetic distance matrices. Phylogenetic congruence between fungi and algae was quantified using distance-based redundancy analysis and we used geographic distance matrices in Moran's eigenvector mapping and variance partitioning to evaluate the effects of spatial variation on the quantification of phylogenetic congruence. Phylogenetic congruence was highly significant for all datasets and a large proportion of variance in both algal and fungal genetic distances was explained by partner genetic variation. Spatial variables, primarily at large and intermediate scales, were also important for explaining genetic diversity patterns in all datasets. Interestingly, spatial structuring was stronger for fungal than algal genetic variation. As the spatial extent of the samples increased, so too did the proportion of explained variation that was shared between the spatial variables and the partners' genetic variation. Different lichen taxa showed some variation in their phylogenetic congruence and spatial genetic patterns and where greater sample replication was used, the amount of variation explained by partner genetic variation increased. Our results suggest that the phylogenetic congruence pattern, at least at small spatial scales, is likely due to reciprocal co-adaptation or co-dispersal. However, the detection of these patterns varies among different lichen taxa, across spatial scales and with different levels of sample replication. This work provides insight into the complexities faced in determining how evolutionary and ecological processes may interact to generate diversity in symbiotic association patterns at the population and community levels. Further, it highlights the critical importance of considering sample replication, taxonomic diversity and spatial scale in designing studies of co-diversification.
Collapse
Affiliation(s)
- Hannah L. Buckley
- Department of Ecology, Lincoln University, Lincoln, Canterbury, New Zealand
| | - Arash Rafat
- Department of Ecology, Lincoln University, Lincoln, Canterbury, New Zealand
| | | | | | - Hayley J. Ridgway
- Department of Ecology, Lincoln University, Lincoln, Canterbury, New Zealand
| | - Adrian M. Paterson
- Department of Ecology, Lincoln University, Lincoln, Canterbury, New Zealand
| |
Collapse
|
26
|
Arias CF, Salazar C, Rosales C, Kronforst MR, Linares M, Bermingham E, McMillan WO. Phylogeography of Heliconius cydno and its closest relatives: disentangling their origin and diversification. Mol Ecol 2014; 23:4137-52. [PMID: 24962067 DOI: 10.1111/mec.12844] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2014] [Revised: 06/14/2014] [Accepted: 06/16/2014] [Indexed: 11/28/2022]
Abstract
The origins of the extraordinary diversity within the Neotropics have long fascinated biologists and naturalists. Yet, the underlying factors that have given rise to this diversity remain controversial. To test the relative importance of Quaternary climatic change and Neogene tectonic and paleogeographic reorganizations in the generation of biodiversity, we examine intraspecific variation across the Heliconius cydno radiation and compare this variation to that within the closely related Heliconius melpomene and Heliconius timareta radiations. Our data, which consist of both mtDNA and genome-scan data from nearly 2250 amplified fragment length polymorphism (AFLP) loci, reveal a complex history of differentiation and admixture at different geographic scales. Both mtDNA and AFLP phylogenies suggest that H. timareta and H. cydno are probably geographic extremes of the same radiation that probably diverged from H. melpomene prior to the Pliocene-Pleistocene boundary, consistent with hypotheses of diversification that rely on geological events in the Pliocene. The mtDNA suggests that this radiation originated in Central America or the northwestern region of South America, with a subsequent colonization of the eastern and western slopes of the Andes. Our genome-scan data indicate significant admixture among sympatric H. cydno/H. timareta and H. melpomene populations across the extensive geographic ranges of the two radiations. Within H. cydno, both mtDNA and AFLP data indicate significant population structure at local scales, with strong genetic differences even among adjacent H. cydno colour pattern races. These genetic patterns highlight the importance of past geoclimatic events, intraspecific gene flow, and local population differentiation in the origin and establishment of new adaptive forms.
Collapse
Affiliation(s)
- Carlos F Arias
- Department of Biology, McGill University, 1205 Ave. Dr. Penfield, Montreal, QC, Canada, H3A 1B1; Smithsonian Tropical Research Institute, Apartado 0843-03092, Panamá, Panamá
| | | | | | | | | | | | | |
Collapse
|
27
|
Nadeau NJ, Ruiz M, Salazar P, Counterman B, Medina JA, Ortiz-Zuazaga H, Morrison A, McMillan WO, Jiggins CD, Papa R. Population genomics of parallel hybrid zones in the mimetic butterflies, H. melpomene and H. erato. Genome Res 2014; 24:1316-33. [PMID: 24823669 PMCID: PMC4120085 DOI: 10.1101/gr.169292.113] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Hybrid zones can be valuable tools for studying evolution and identifying genomic regions responsible for adaptive divergence and underlying phenotypic variation. Hybrid zones between subspecies of Heliconius butterflies can be very narrow and are maintained by strong selection acting on color pattern. The comimetic species, H. erato and H. melpomene, have parallel hybrid zones in which both species undergo a change from one color pattern form to another. We use restriction-associated DNA sequencing to obtain several thousand genome-wide sequence markers and use these to analyze patterns of population divergence across two pairs of parallel hybrid zones in Peru and Ecuador. We compare two approaches for analysis of this type of data—alignment to a reference genome and de novo assembly—and find that alignment gives the best results for species both closely (H. melpomene) and distantly (H. erato, ∼15% divergent) related to the reference sequence. Our results confirm that the color pattern controlling loci account for the majority of divergent regions across the genome, but we also detect other divergent regions apparently unlinked to color pattern differences. We also use association mapping to identify previously unmapped color pattern loci, in particular the Ro locus. Finally, we identify a new cryptic population of H. timareta in Ecuador, which occurs at relatively low altitude and is mimetic with H. melpomene malleti.
Collapse
Affiliation(s)
- Nicola J Nadeau
- Department of Zoology, University of Cambridge, Cambridge CB2 3EJ, United Kingdom; Department of Animal and Plant Sciences, University of Sheffield, Sheffield, S10 2TN, United Kingdom
| | - Mayté Ruiz
- Department of Biology and Center for Applied Tropical Ecology and Conservation, University of Puerto Rico, Rio Piedras, San Juan, Puerto Rico 00921
| | - Patricio Salazar
- Department of Zoology, University of Cambridge, Cambridge CB2 3EJ, United Kingdom; Centro de Investigación en Biodiversidad y Cambio Climático (BioCamb), Universidad Tecnológica Indoamérica, Quito, Ecuador
| | - Brian Counterman
- Department of Biology, Mississippi State University, Mississippi 39762, USA
| | - Jose Alejandro Medina
- High Performance Computing Facility, University of Puerto Rico, San Juan, Puerto Rico, 00921
| | - Humberto Ortiz-Zuazaga
- High Performance Computing Facility, University of Puerto Rico, San Juan, Puerto Rico, 00921; Department of Computer Science, University of Puerto Rico, Rio Piedras, San Juan, Puerto Rico 00921
| | - Anna Morrison
- Department of Zoology, University of Cambridge, Cambridge CB2 3EJ, United Kingdom
| | - W Owen McMillan
- Smithsonian Tropical Research Institute, Apartado 0843-03092, Balboa, Ancón, Panama
| | - Chris D Jiggins
- Department of Zoology, University of Cambridge, Cambridge CB2 3EJ, United Kingdom; Smithsonian Tropical Research Institute, Apartado 0843-03092, Balboa, Ancón, Panama
| | - Riccardo Papa
- Department of Biology and Center for Applied Tropical Ecology and Conservation, University of Puerto Rico, Rio Piedras, San Juan, Puerto Rico 00921
| |
Collapse
|
28
|
Drinkwater B, Charleston MA. An improved node mapping algorithm for the cophylogeny reconstruction problem. ACTA ACUST UNITED AC 2014. [DOI: 10.1080/23256214.2014.906070] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
29
|
Millanes AM, Truong C, Westberg M, Diederich P, Wedin M. Host switching promotes diversity in host-specialized mycoparasitic fungi: uncoupled evolution in the Biatoropsis-usnea system. Evolution 2014; 68:1576-93. [PMID: 24495034 DOI: 10.1111/evo.12374] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2013] [Accepted: 01/24/2014] [Indexed: 12/15/2022]
Abstract
Fungal mycoparasitism-fungi parasitizing other fungi-is a common lifestyle in some basal lineages of the basidiomycetes, particularly within the Tremellales. Relatively nonaggressive mycoparasitic fungi of this group are in general highly host specific, suggesting cospeciation as a plausible speciation mode in these associations. Species delimitation in the Tremellales is often challenging because morphological characters are scant. Host specificity is therefore a great aid to discriminate between species but appropriate species delimitation methods that account for actual diversity are needed to identify both specialist and generalist taxa and avoid inflating or underestimating diversity. We use the Biatoropsis-Usnea system to study factors inducing parasite diversification. We employ morphological, ecological, and molecular data-methods including genealogical concordance phylogenetic species recognition (GCPSR) and the general mixed Yule-coalescent (GMYC) model-to assess the diversity of fungi currently assigned to Biatoropsis usnearum. The degree of cospeciation in this association is assessed with two cophylogeny analysis tools (ParaFit and Jane 4.0). Biatoropsis constitutes a species complex formed by at least seven different independent lineages and host switching is a prominent force driving speciation, particularly in host specialists. Combining ITS and nLSU is recommended as barcode system in tremellalean fungi.
Collapse
Affiliation(s)
- Ana M Millanes
- Departamento de Biología y Geología, Universidad Rey Juan Carlos, E-28933 Móstoles, Spain.
| | | | | | | | | |
Collapse
|
30
|
Papa R, Kapan DD, Counterman BA, Maldonado K, Lindstrom DP, Reed RD, Nijhout HF, Hrbek T, McMillan WO. Multi-allelic major effect genes interact with minor effect QTLs to control adaptive color pattern variation in Heliconius erato. PLoS One 2013; 8:e57033. [PMID: 23533571 PMCID: PMC3606360 DOI: 10.1371/journal.pone.0057033] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2012] [Accepted: 01/21/2013] [Indexed: 11/19/2022] Open
Abstract
Recent studies indicate that relatively few genomic regions are repeatedly involved in the evolution of Heliconius butterfly wing patterns. Although this work demonstrates a number of cases where homologous loci underlie both convergent and divergent wing pattern change among different Heliconius species, it is still unclear exactly how many loci underlie pattern variation across the genus. To address this question for Heliconius erato, we created fifteen independent crosses utilizing the four most distinct color pattern races and analyzed color pattern segregation across a total of 1271 F2 and backcross offspring. Additionally, we used the most variable brood, an F2 cross between H. himera and the east Ecuadorian H. erato notabilis, to perform a quantitative genetic analysis of color pattern variation and produce a detailed map of the loci likely involved in the H. erato color pattern radiation. Using AFLP and gene based markers, we show that fewer major genes than previously envisioned control the color pattern variation in H. erato. We describe for the first time the genetic architecture of H. erato wing color pattern by assessing quantitative variation in addition to traditional linkage mapping. In particular, our data suggest three genomic intervals modulate the bulk of the observed variation in color. Furthermore, we also identify several modifier loci of moderate effect size that contribute to the quantitative wing pattern variation. Our results are consistent with the two-step model for the evolution of mimetic wing patterns in Heliconius and support a growing body of empirical data demonstrating the importance of major effect loci in adaptive change.
Collapse
Affiliation(s)
- Riccardo Papa
- Department of Biology and Center for Applied Tropical Ecology and Conservation, University of Puerto Rico, Rio Piedras, Puerto Rico.
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Brower AVZ. Introgression of wing pattern alleles and speciation via homoploid hybridization in Heliconius butterflies: a review of evidence from the genome. Proc Biol Sci 2012; 280:20122302. [PMID: 23235702 DOI: 10.1098/rspb.2012.2302] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The diverse Müllerian mimetic wing patterns of neotropical Heliconius (Nymphalidae) have been proposed to be not only aposematic signals to potential predators, but also intra- and interspecific recognition signals that allow the butterflies to maintain their specific identities, and which perhaps drive the process of speciation, as well. Adaptive features under differential selection that also serve as cues for assortative mating have been referred to as 'magic traits', which can drive ecological speciation. Such traits are expected to exhibit allelic differentiation between closely related species with ongoing gene flow, whereas unlinked neutral traits are expected to be homogenized to a greater degree by introgression. However, recent evidence suggests that interspecific hybridization among Heliconius butterflies may have resulted in adaptive introgression of these very same traits across species boundaries, and in the evolution of new species by homoploid hybrid speciation. The theory and data supporting various aspects of the apparent paradox of 'magic trait' introgression are reviewed, with emphasis on population genomic comparisons of Heliconius melpomene and its close relatives.
Collapse
Affiliation(s)
- Andrew V Z Brower
- Evolution and Ecology Group, Department of Biology, Middle Tennessee State University, Murfreesboro, TN 37132, USA.
| |
Collapse
|