1
|
Anderson ZT, Dawson AD, Slominski AT, Harris ML. Current Insights Into the Role of Neuropeptide Y in Skin Physiology and Pathology. Front Endocrinol (Lausanne) 2022; 13:838434. [PMID: 35418942 PMCID: PMC8996770 DOI: 10.3389/fendo.2022.838434] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 02/21/2022] [Indexed: 11/13/2022] Open
Abstract
Neuropeptide Y is widely distributed within the body and has long been implicated as a contributor to skin disease based on the correlative clinical data. However, until recently, there have been few empirical investigations to determine whether NPY has a pathophysiological role in the skin. Due to appearance-altering phenotypes of atopic dermatitis, psoriasis, and vitiligo, those suffering from these diseases often face multiple forms of negative social attention. This often results in psychological stress, which has been shown to exacerbate inflammatory skin diseases - creating a vicious cycle that perpetuates disease. This has been shown to drive severe depression, which has resulted in suicidal ideation being a comorbidity of these diseases. Herein, we review what is currently known about the associations of NPY with skin diseases and stress. We also review and provide educated guessing what the effects NPY can have in the skin. Inflammatory skin diseases can affect physical appearance to have significant, negative impacts on quality of life. No cure exists for these conditions, highlighting the need for identification of novel proteins/neuropetides, like NPY, that can be targeted therapeutically. This review sets the stage for future investigations into the role of NPY in skin biology and pathology to stimulate research on therapeutic targeting NPY signaling in order to combat inflammatory skin diseases.
Collapse
Affiliation(s)
- Zoya T. Anderson
- Department of Biology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Alex D. Dawson
- Department of Biology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Andrzej T. Slominski
- Department of Dermatology, Comprehensive Cancer Center, Cancer Chemoprevention Program, University of Alabama at Birmingham, Birmingham, AL, United States
- Veteran Administration Medical Center, Birmingham, AL, United States
| | - Melissa L. Harris
- Department of Biology, University of Alabama at Birmingham, Birmingham, AL, United States
| |
Collapse
|
2
|
Lv X, Gao F, Li TP, Xue P, Wang X, Wan M, Hu B, Chen H, Jain A, Shao Z, Cao X. Skeleton interoception regulates bone and fat metabolism through hypothalamic neuroendocrine NPY. eLife 2021; 10:e70324. [PMID: 34468315 PMCID: PMC8439655 DOI: 10.7554/elife.70324] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 05/21/2021] [Indexed: 01/04/2023] Open
Abstract
The central nervous system regulates activity of peripheral organs through interoception. In our previous study, we have demonstrated that PGE2/EP4 skeleton interception regulate bone homeostasis. Here, we show that ascending skeleton interoceptive signaling downregulates expression of hypothalamic neuropeptide Y (NPY) and induce lipolysis of adipose tissue for osteoblastic bone formation. Specifically, the ascending skeleton interoceptive signaling induces expression of small heterodimer partner-interacting leucine zipper protein (SMILE) in the hypothalamus. SMILE binds to pCREB as a transcriptional heterodimer on Npy promoters to inhibit NPY expression. Knockout of EP4 in sensory nerve increases expression of NPY causing bone catabolism and fat anabolism. Importantly, inhibition of NPY Y1 receptor (Y1R) accelerated oxidation of free fatty acids in osteoblasts and rescued bone loss in AvilCre:Ptger4fl/fl mice. Thus, downregulation of hypothalamic NPY expression lipolyzes free fatty acids for anabolic bone formation through a neuroendocrine descending interoceptive regulation.
Collapse
Affiliation(s)
- Xiao Lv
- Department of Orthopaedic Surgery, Institute of Cell Engineering, and Department of Biomedical Engineering, The Johns Hopkins UniversityBaltimoreUnited States
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhanChina
| | - Feng Gao
- Department of Orthopaedic Surgery, Institute of Cell Engineering, and Department of Biomedical Engineering, The Johns Hopkins UniversityBaltimoreUnited States
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhanChina
| | - Tuo Peter Li
- Department of Orthopaedic Surgery, Institute of Cell Engineering, and Department of Biomedical Engineering, The Johns Hopkins UniversityBaltimoreUnited States
| | - Peng Xue
- Department of Orthopaedic Surgery, Institute of Cell Engineering, and Department of Biomedical Engineering, The Johns Hopkins UniversityBaltimoreUnited States
| | - Xiao Wang
- Department of Orthopaedic Surgery, Institute of Cell Engineering, and Department of Biomedical Engineering, The Johns Hopkins UniversityBaltimoreUnited States
| | - Mei Wan
- Department of Orthopaedic Surgery, Institute of Cell Engineering, and Department of Biomedical Engineering, The Johns Hopkins UniversityBaltimoreUnited States
| | - Bo Hu
- Department of Orthopaedic Surgery, Institute of Cell Engineering, and Department of Biomedical Engineering, The Johns Hopkins UniversityBaltimoreUnited States
| | - Hao Chen
- Department of Orthopaedic Surgery, Institute of Cell Engineering, and Department of Biomedical Engineering, The Johns Hopkins UniversityBaltimoreUnited States
| | - Amit Jain
- Department of Orthopaedic Surgery, Institute of Cell Engineering, and Department of Biomedical Engineering, The Johns Hopkins UniversityBaltimoreUnited States
| | - Zengwu Shao
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhanChina
| | - Xu Cao
- Department of Orthopaedic Surgery, Institute of Cell Engineering, and Department of Biomedical Engineering, The Johns Hopkins UniversityBaltimoreUnited States
| |
Collapse
|
3
|
Hu B, Lv X, Chen H, Xue P, Gao B, Wang X, Zhen G, Crane JL, Pan D, Liu S, Ni S, Wu P, Su W, Liu X, Ling Z, Yang M, Deng R, Li Y, Wang L, Zhang Y, Wan M, Shao Z, Chen H, Yuan W, Cao X. Sensory nerves regulate mesenchymal stromal cell lineage commitment by tuning sympathetic tones. J Clin Invest 2020; 130:3483-3498. [PMID: 32191640 PMCID: PMC7324175 DOI: 10.1172/jci131554] [Citation(s) in RCA: 88] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 03/11/2020] [Indexed: 12/30/2022] Open
Abstract
The sensory nerve was recently identified as being involved in regulation of bone mass accrual. We previously discovered that prostaglandin E2 (PGE2) secreted by osteoblasts could activate sensory nerve EP4 receptor to promote bone formation by inhibiting sympathetic activity. However, the fundamental units of bone formation are active osteoblasts, which originate from mesenchymal stromal/stem cells (MSCs). Here, we found that after sensory denervation, knockout of the EP4 receptor in sensory nerves, or knockout of COX-2 in osteoblasts, could significantly promote adipogenesis and inhibit osteogenesis in adult mice. Furthermore, injection of SW033291 (a small molecule that locally increases the PGE2 level) or propranolol (a beta blocker) significantly promoted osteogenesis and inhibited adipogenesis. This effect of SW033291, but not propranolol, was abolished in conditional EP4-KO mice under normal conditions or in the bone repair process. We conclude that the PGE2/EP4 sensory nerve axis could regulate MSC differentiation in bone marrow of adult mice.
Collapse
Affiliation(s)
- Bo Hu
- Department of Orthopaedic Surgery, Johns Hopkins University, Baltimore, Maryland, USA
- Section of Spine Surgery, Department of Orthopaedics, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Xiao Lv
- Department of Orthopaedic Surgery, Johns Hopkins University, Baltimore, Maryland, USA
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hao Chen
- Department of Orthopaedic Surgery, Johns Hopkins University, Baltimore, Maryland, USA
| | - Peng Xue
- Department of Orthopaedic Surgery, Johns Hopkins University, Baltimore, Maryland, USA
| | - Bo Gao
- Department of Orthopaedic Surgery, Johns Hopkins University, Baltimore, Maryland, USA
| | - Xiao Wang
- Department of Orthopaedic Surgery, Johns Hopkins University, Baltimore, Maryland, USA
| | - Gehua Zhen
- Department of Orthopaedic Surgery, Johns Hopkins University, Baltimore, Maryland, USA
| | - Janet L. Crane
- Department of Orthopaedic Surgery, Johns Hopkins University, Baltimore, Maryland, USA
| | - Dayu Pan
- Department of Orthopaedic Surgery, Johns Hopkins University, Baltimore, Maryland, USA
| | - Shen Liu
- Department of Orthopaedic Surgery, Johns Hopkins University, Baltimore, Maryland, USA
| | - Shuangfei Ni
- Department of Orthopaedic Surgery, Johns Hopkins University, Baltimore, Maryland, USA
| | - Panfeng Wu
- Department of Orthopaedic Surgery, Johns Hopkins University, Baltimore, Maryland, USA
| | - Weiping Su
- Department of Orthopaedic Surgery, Johns Hopkins University, Baltimore, Maryland, USA
| | - Xiaonan Liu
- Department of Orthopaedic Surgery, Johns Hopkins University, Baltimore, Maryland, USA
| | - Zemin Ling
- Department of Orthopaedic Surgery, Johns Hopkins University, Baltimore, Maryland, USA
| | - Mi Yang
- Department of Orthopaedic Surgery, Johns Hopkins University, Baltimore, Maryland, USA
| | - Ruoxian Deng
- Department of Orthopaedic Surgery, Johns Hopkins University, Baltimore, Maryland, USA
| | - Yusheng Li
- Department of Orthopaedic Surgery, Johns Hopkins University, Baltimore, Maryland, USA
| | - Lei Wang
- Department of Orthopaedic Surgery, Johns Hopkins University, Baltimore, Maryland, USA
| | - Ying Zhang
- Section of Spine Surgery, Department of Orthopaedics, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Mei Wan
- Department of Orthopaedic Surgery, Johns Hopkins University, Baltimore, Maryland, USA
| | - Zengwu Shao
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Huajiang Chen
- Section of Spine Surgery, Department of Orthopaedics, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Wen Yuan
- Section of Spine Surgery, Department of Orthopaedics, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Xu Cao
- Department of Orthopaedic Surgery, Johns Hopkins University, Baltimore, Maryland, USA
| |
Collapse
|
4
|
Sun WW, ShangGuan T, Zhu P, Li HK, Jiang M, Yang P, Li LY, Zhang ZH. Role of hepatic neuropeptide Y-Y1 receptors in a methionine-choline-deficient model of non-alcoholic steatohepatitis. Life Sci 2020; 245:117356. [PMID: 31991181 DOI: 10.1016/j.lfs.2020.117356] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 01/21/2020] [Accepted: 01/23/2020] [Indexed: 01/07/2023]
Abstract
AIMS NPY-Y1R plays an important role in dietary regulation. Although germline knockdown of NPY-Y1R in mice alleviates high-fat-diet-induced obesity and increases CPT1α levels in the liver, the role of the Y1 receptor in specific tissues has not been studied. MAIN METHODS MCD diet is the most widely used method to establish a model of lean NASH in a short time. We therefore evaluated the role of liver NPY-Y1R in NASH progression. KEY FINDINGS In mice with liver-specific knockout of NPY-Y1R (LivKO) and wild-type control littermates fed MCD diet for 4 weeks, NPY-Y1R deficiency significantly decreased body and liver weight. Moreover, NPY-Y1R deletion protected mice against hepatic steatosis and injury. LivKO decreased TG, TC, and FFA levels in the liver and alanine aminotransferase activity in plasma. To clarify the mechanism, we evaluated the key enzymes involved in triglyceride hydrolase and fatty-acid oxidase. Expression of ATGL, CPT1α, and ACO was significantly increased in LivKO mice, whereas expression of fatty-acid synthase was significantly decreased. mRNA expression analysis revealed a marked reduction of genes involved in de-novo lipogenesis and monosaturated fatty-acid synthesis, including sterol-regulatory element-binding protein 1c and fatty-acid synthase. Moreover, liver injury-related factors were significantly decreased in LivKO mice, such as TNF-α, inducible nitric oxide synthase, and MCP-1. Thus, NPY-Y1R deficiency in the liver alleviates lipid deposition and injury. However, NPY-Y1R did not affect inflammation and fibrosis. SIGNIFICANCE NPY-Y1R deficiency in the liver directly suppresses not only hepatic steatosis, but also liver injury, and thus provides a treatment option for NASH.
Collapse
Affiliation(s)
- Wei-Wei Sun
- Department of Cardiology, Southwest Hospital, Third Military Medical University, China
| | - Tao ShangGuan
- Department of Cardiology, Southwest Hospital, Third Military Medical University, China
| | - Ping Zhu
- Department of Cardiology, Southwest Hospital, Third Military Medical University, China
| | - Hua-Kang Li
- Department of Cardiology, Southwest Hospital, Third Military Medical University, China
| | - Min Jiang
- Department of Cardiology, Southwest Hospital, Third Military Medical University, China
| | - Pan Yang
- Department of Cardiology, Southwest Hospital, Third Military Medical University, China
| | - Lin-Yu Li
- Department of Cardiology, Southwest Hospital, Third Military Medical University, China
| | - Zhi-Hui Zhang
- Department of Cardiology, Southwest Hospital, Third Military Medical University, China.
| |
Collapse
|
5
|
Effects of Neuropeptide Y on Stem Cells and Their Potential Applications in Disease Therapy. Stem Cells Int 2017; 2017:6823917. [PMID: 29109742 PMCID: PMC5646323 DOI: 10.1155/2017/6823917] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Revised: 08/01/2017] [Accepted: 08/08/2017] [Indexed: 01/04/2023] Open
Abstract
Neuropeptide Y (NPY), a 36-amino acid peptide, is widely distributed in the central and peripheral nervous systems and other peripheral tissues. It takes part in regulating various biological processes including food intake, circadian rhythm, energy metabolism, and neuroendocrine secretion. Increasing evidence indicates that NPY exerts multiple regulatory effects on stem cells. As a kind of primitive and undifferentiated cells, stem cells have the therapeutic potential to replace damaged cells, secret paracrine molecules, promote angiogenesis, and modulate immunity. Stem cell-based therapy has been demonstrated effective and considered as one of the most promising treatments for specific diseases. However, several limitations still hamper its application, such as poor survival and low differentiation and integration rates of transplanted stem cells. The regulatory effects of NPY on stem cell survival, proliferation, and differentiation may be helpful to overcome these limitations and facilitate the application of stem cell-based therapy. In this review, we summarized the regulatory effects of NPY on stem cells and discussed their potential applications in disease therapy.
Collapse
|
6
|
Shi YC, Ip CK, Reed F, Sarruf DA, Wulff BS, Herzog H. Y5 receptor signalling counteracts the anorectic effects of PYY3-36 in diet-induced obese mice. J Neuroendocrinol 2017; 29. [PMID: 28485050 DOI: 10.1111/jne.12483] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Revised: 05/03/2017] [Accepted: 05/03/2017] [Indexed: 12/14/2022]
Abstract
Peptide YY 3-36 (PYY3-36) is known as a critical satiety factor that reduces food intake both in rodents and humans. Although the anorexic effect of PYY3-36 is assumed to be mediated mainly by the Y2 receptor, the involvement of other Y-receptors in this process has never been conclusively resolved. Amongst them, the Y5 receptor (Y5R) is the most likely candidate to also be a target for PYY3-36, which is considered to counteract the anorectic effects of Y2R activation. In the present study, we show that short-term treatment of diet-induced obese wild-type (WT) and Y5R knockout mice (Y5KO) with PYY3-36 leads to a significantly reduced food intake in both genotypes, which is more pronounced in Y5R KO mice. Interestingly, chronic PYY3-36 infusion via minipumps to WT mice causes an increased cumulative food intake, which is associated with increased body weight gain. By contrast, lack of Y5R reversed this effect. Consistent with the observed increased body weight and fat mass in WT-treated mice, glucose tolerance was also impaired by chronic PYY3-36 treatment. Again, this was less affected in Y5KO mice, suggestive of a role of Y5R in the regulation of glucose homeostasis. Taken together, our data suggest that PYY3-36 mediated signalling via Y5 receptors may counteract the anorectic effects that it mediates via the Y2 receptor (Y2R), consequently lowering bodyweight in the absence of Y5 signalling. These findings open the potential of combination therapy using PYY3-36 and Y5R antagonists to enhance the food intake reducing effects of PYY3-36.
Collapse
Affiliation(s)
- Y-C Shi
- Neuroscience Division, Garvan Institute of Medical Research, St Vincent's Hospital, Sydney, NSW, Australia
- Faculty of Medicine, UNSW Australia, Sydney, NSW, Australia
| | - C K Ip
- Neuroscience Division, Garvan Institute of Medical Research, St Vincent's Hospital, Sydney, NSW, Australia
| | - F Reed
- Neuroscience Division, Garvan Institute of Medical Research, St Vincent's Hospital, Sydney, NSW, Australia
| | - D A Sarruf
- Incretin and Obesity Research, Novo Nordisk, Maaloev, Denmark
| | - B S Wulff
- Incretin and Obesity Research, Novo Nordisk, Maaloev, Denmark
| | - H Herzog
- Neuroscience Division, Garvan Institute of Medical Research, St Vincent's Hospital, Sydney, NSW, Australia
- Faculty of Medicine, UNSW Australia, Sydney, NSW, Australia
| |
Collapse
|
7
|
Galli S, Naranjo A, Van Ryn C, Tilan JU, Trinh E, Yang C, Tsuei J, Hong SH, Wang H, Izycka-Swieszewska E, Lee YC, Rodriguez OC, Albanese C, Kitlinska J. Neuropeptide Y as a Biomarker and Therapeutic Target for Neuroblastoma. THE AMERICAN JOURNAL OF PATHOLOGY 2016; 186:3040-3053. [PMID: 27743558 DOI: 10.1016/j.ajpath.2016.07.019] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Revised: 07/06/2016] [Accepted: 07/11/2016] [Indexed: 12/17/2022]
Abstract
Neuroblastoma (NB) is a pediatric malignant neoplasm of sympathoadrenal origin. Challenges in its management include stratification of this heterogeneous disease and a lack of both adequate treatments for high-risk patients and noninvasive biomarkers of disease progression. Our previous studies have identified neuropeptide Y (NPY), a sympathetic neurotransmitter expressed in NB, as a potential therapeutic target for these tumors by virtue of its Y5 receptor (Y5R)-mediated chemoresistance and Y2 receptor (Y2R)-mediated proliferative and angiogenic activities. The goal of this study was to determine the clinical relevance and utility of these findings. Expression of NPY and its receptors was evaluated in corresponding samples of tumor RNA, tissues, and sera from 87 patients with neuroblastic tumors and in tumor tissues from the TH-MYCN NB mouse model. Elevated serum NPY levels correlated with an adverse clinical presentation, poor survival, metastasis, and relapse, whereas strong Y5R immunoreactivity was a marker of angioinvasive tumor cells. In NB tissues from TH-MYCN mice, high immunoreactivity of both NPY and Y5R marked angioinvasive NB cells. Y2R was uniformly expressed in undifferentiated tumor cells, which supports its previously reported role in NB cell proliferation. Our findings validate NPY as a therapeutic target for advanced NB and implicate the NPY/Y5R axis in disease dissemination. The correlation between elevated systemic NPY and NB progression identifies serum NPY as a novel NB biomarker.
Collapse
Affiliation(s)
- Susana Galli
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University Medical Center, Washington, District of Columbia
| | - Arlene Naranjo
- Department of Biostatistics, Children's Oncology Group Statistics & Data Center, University of Florida, Gainesville, Florida
| | - Collin Van Ryn
- Department of Biostatistics, Children's Oncology Group Statistics & Data Center, University of Florida, Gainesville, Florida
| | - Jason U Tilan
- Department of Nursing, School of Nursing and Health Studies, Georgetown University, Washington, District of Columbia; Department of Human Science, School of Nursing and Health Studies, Georgetown University, Washington, District of Columbia
| | - Emily Trinh
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University Medical Center, Washington, District of Columbia
| | - Chao Yang
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University Medical Center, Washington, District of Columbia
| | - Jessica Tsuei
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University Medical Center, Washington, District of Columbia
| | - Sung-Hyeok Hong
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, District of Columbia
| | - Hongkun Wang
- Department of Biostatistics and Bioinformatics, Georgetown University Medical Center, Washington, District of Columbia
| | - Ewa Izycka-Swieszewska
- Department of Pathology and Neuropathology, Medical University of Gdańsk, Gdańsk, Poland
| | - Yi-Chien Lee
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, District of Columbia
| | - Olga C Rodriguez
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, District of Columbia
| | - Chris Albanese
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, District of Columbia; Department of Pathology, Georgetown University Medical Center, Washington, District of Columbia
| | - Joanna Kitlinska
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University Medical Center, Washington, District of Columbia.
| |
Collapse
|
8
|
Shipp SL, Cline MA, Gilbert ER. Recent advances in the understanding of how neuropeptide Y and α-melanocyte stimulating hormone function in adipose physiology. Adipocyte 2016; 5:333-350. [PMID: 27994947 DOI: 10.1080/21623945.2016.1208867] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Revised: 06/28/2016] [Accepted: 06/28/2016] [Indexed: 12/20/2022] Open
Abstract
Communication between the brain and the adipose tissue has been the focus of many studies in recent years, with the "brain-fat axis" identified as a system that orchestrates the assimilation and usage of energy to maintain body mass and adequate fat stores. It is now well-known that appetite-regulating peptides that were studied as neurotransmitters in the central nervous system can act both on the hypothalamus to regulate feeding behavior and also on the adipose tissue to modulate the storage of energy. Energy balance is thus partly controlled by factors that can alter both energy intake and storage/expenditure. Two such factors involved in these processes are neuropeptide Y (NPY) and α-melanocyte stimulating hormone (α-MSH). NPY, an orexigenic factor, is associated with promoting adipogenesis in both mammals and chickens, while α-MSH, an anorexigenic factor, stimulates lipolysis in rodents. There is also evidence of interaction between the 2 peptides. This review aims to summarize recent advances in the study of NPY and α-MSH regarding their role in adipose tissue physiology, with an emphasis on the cellular and molecular mechanisms. A greater understanding of the brain-fat axis and regulation of adiposity by bioactive peptides may provide insights on strategies to prevent or treat obesity and also enhance nutrient utilization efficiency in agriculturally-important species.
Collapse
|
9
|
Lemche E, Chaban OS, Lemche AV. Neuroendocrinological and Epigenetic Mechanisms Subserving Autonomic Imbalance and HPA Dysfunction in the Metabolic Syndrome. Front Neurosci 2016; 10:142. [PMID: 27147943 PMCID: PMC4830841 DOI: 10.3389/fnins.2016.00142] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Accepted: 03/21/2016] [Indexed: 12/18/2022] Open
Abstract
Impact of environmental stress upon pathophysiology of the metabolic syndrome (MetS) has been substantiated by epidemiological, psychophysiological, and endocrinological studies. This review discusses recent advances in the understanding of causative roles of nutritional factors, sympathomedullo-adrenal (SMA) and hypothalamic-pituitary adrenocortical (HPA) axes, and adipose tissue chronic low-grade inflammation processes in MetS. Disturbances in the neuroendocrine systems for leptin, melanocortin, and neuropeptide Y (NPY)/agouti-related protein systems have been found resulting directly in MetS-like conditions. The review identifies candidate risk genes from factors shown critical for the functioning of each of these neuroendocrine signaling cascades. In its meta-analytic part, recent studies in epigenetic modification (histone methylation, acetylation, phosphorylation, ubiquitination) and posttranscriptional gene regulation by microRNAs are evaluated. Several studies suggest modification mechanisms of early life stress (ELS) and diet-induced obesity (DIO) programming in the hypothalamic regions with populations of POMC-expressing neurons. Epigenetic modifications were found in cortisol (here HSD11B1 expression), melanocortin, leptin, NPY, and adiponectin genes. With respect to adiposity genes, epigenetic modifications were documented for fat mass gene cluster APOA1/C3/A4/A5, and the lipolysis gene LIPE. With regard to inflammatory, immune and subcellular metabolism, PPARG, NKBF1, TNFA, TCF7C2, and those genes expressing cytochrome P450 family enzymes involved in steroidogenesis and in hepatic lipoproteins were documented for epigenetic modifications.
Collapse
Affiliation(s)
- Erwin Lemche
- Section of Cognitive Neuropsychiatry, Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London London, UK
| | - Oleg S Chaban
- Section of Psychosomatic Medicine, Bogomolets National Medical University Kiev, Ukraine
| | - Alexandra V Lemche
- Department of Medical Science, Institute of Clinical Research Berlin, Germany
| |
Collapse
|
10
|
Tilan J, Kitlinska J. Neuropeptide Y (NPY) in tumor growth and progression: Lessons learned from pediatric oncology. Neuropeptides 2016; 55:55-66. [PMID: 26549645 PMCID: PMC4755837 DOI: 10.1016/j.npep.2015.10.005] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Revised: 10/25/2015] [Accepted: 10/25/2015] [Indexed: 12/11/2022]
Abstract
Neuropeptide Y (NPY) is a sympathetic neurotransmitter with pleiotropic actions, many of which are highly relevant to tumor biology. Consequently, the peptide has been implicated as a factor regulating the growth of a variety of tumors. Among them, two pediatric malignancies with high endogenous NPY synthesis and release - neuroblastoma and Ewing sarcoma - became excellent models to investigate the role of NPY in tumor growth and progression. The stimulatory effect on tumor cell proliferation, survival, and migration, as well as angiogenesis in these tumors, is mediated by two NPY receptors, Y2R and Y5R, which are expressed in either a constitutive or inducible manner. Of particular importance are interactions of the NPY system with the tumor microenvironment, as hypoxic conditions commonly occurring in solid tumors strongly activate the NPY/Y2R/Y5R axis. This activation is triggered by hypoxia-induced up-regulation of Y2R/Y5R expression and stimulation of dipeptidyl peptidase IV (DPPIV), which converts NPY to a selective Y2R/Y5R agonist, NPY(3-36). While previous studies focused mainly on the effects of NPY on tumor growth and vascularization, they also provided insight into the potential role of the peptide in tumor progression into a metastatic and chemoresistant phenotype. This review summarizes our current knowledge of the role of NPY in neuroblastoma and Ewing sarcoma and its interactions with the tumor microenvironment in the context of findings in other malignancies, as well as discusses future directions and potential clinical implications of these discoveries.
Collapse
Affiliation(s)
- Jason Tilan
- Department of Nursing, School of Nursing and Health Studies, Georgetown University, Washington, DC 20057, USA; Department of Human Science, School of Nursing and Health Studies, Georgetown University, Washington, DC 20057, USA
| | - Joanna Kitlinska
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University Medical Center, Washington, DC 20057, USA.
| |
Collapse
|
11
|
Hong SH, Tilan JU, Galli S, Izycka-Swieszewska E, Polk T, Horton M, Mahajan A, Christian D, Jenkins S, Acree R, Connors K, Ledo P, Lu C, Lee YC, Rodriguez O, Toretsky JA, Albanese C, Kitlinska J. High neuropeptide Y release associates with Ewing sarcoma bone dissemination - in vivo model of site-specific metastases. Oncotarget 2016; 6:7151-65. [PMID: 25714031 PMCID: PMC4466675 DOI: 10.18632/oncotarget.3345] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Accepted: 01/13/2015] [Indexed: 11/25/2022] Open
Abstract
Ewing sarcoma (ES) develops in bones or soft tissues of children and adolescents. The presence of bone metastases is one of the most adverse prognostic factors, yet the mechanisms governing their formation remain unclear. As a transcriptional target of EWS-FLI1, the fusion protein driving ES transformation, neuropeptide Y (NPY) is highly expressed and released from ES tumors. Hypoxia up-regulates NPY and activates its pro-metastatic functions. To test the impact of NPY on ES metastatic pattern, ES cell lines, SK-ES1 and TC71, with high and low peptide release, respectively, were used in an orthotopic xenograft model. ES cells were injected into gastrocnemius muscles of SCID/beige mice, the primary tumors excised, and mice monitored for the presence of metastases. SK-ES1 xenografts resulted in thoracic extra-osseous metastases (67%) and dissemination to bone (50%) and brain (25%), while TC71 tumors metastasized to the lungs (70%). Bone dissemination in SK-ES1 xenografts associated with increased NPY expression in bone metastases and its accumulation in bone invasion areas. The genetic silencing of NPY in SK-ES1 cells reduced bone degradation. Our study supports the role for NPY in ES bone invasion and provides new models for identifying pathways driving ES metastases to specific niches and testing anti-metastatic therapeutics.
Collapse
Affiliation(s)
- Sung-Hyeok Hong
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Georgetown University, Washington DC, USA
| | - Jason U Tilan
- Department of Nursing, School of Nursing and Health Studies, Georgetown University, Washington DC, USA.,Department of Human Science, School of Nursing and Health Studies, Georgetown University, Washington DC, USA
| | - Susana Galli
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University Medical Center, Georgetown University, Washington DC, USA
| | | | - Taylor Polk
- Department of Human Science, School of Nursing and Health Studies, Georgetown University, Washington DC, USA
| | - Meredith Horton
- Department of Human Science, School of Nursing and Health Studies, Georgetown University, Washington DC, USA
| | - Akanksha Mahajan
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Georgetown University, Washington DC, USA.,Department of Biochemistry and Molecular & Cellular Biology, Georgetown University Medical Center, Georgetown University, Washington DC, USA
| | - David Christian
- Department of Human Science, School of Nursing and Health Studies, Georgetown University, Washington DC, USA
| | - Shari Jenkins
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University Medical Center, Georgetown University, Washington DC, USA
| | - Rachel Acree
- Department of Human Science, School of Nursing and Health Studies, Georgetown University, Washington DC, USA
| | - Katherine Connors
- Department of Human Science, School of Nursing and Health Studies, Georgetown University, Washington DC, USA
| | - Phuong Ledo
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University Medical Center, Georgetown University, Washington DC, USA
| | - Congyi Lu
- McGovern Institute, Massachusetts Institute of Technology, Boston, MA, USA
| | - Yi-Chien Lee
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Georgetown University, Washington DC, USA
| | - Olga Rodriguez
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Georgetown University, Washington DC, USA
| | - Jeffrey A Toretsky
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Georgetown University, Washington DC, USA
| | - Chris Albanese
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Georgetown University, Washington DC, USA.,Department of Pathology, Georgetown University Medical Center, Georgetown University, Washington DC, USA
| | - Joanna Kitlinska
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University Medical Center, Georgetown University, Washington DC, USA
| |
Collapse
|
12
|
Chronic administration of methamphetamine promotes atherosclerosis formation in ApoE−/− knockout mice fed normal diet. Atherosclerosis 2015; 243:268-77. [DOI: 10.1016/j.atherosclerosis.2015.09.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Revised: 08/22/2015] [Accepted: 09/02/2015] [Indexed: 11/19/2022]
|
13
|
Han R, Wang X, Bachovchin W, Zukowska Z, Osborn JW. Inhibition of dipeptidyl peptidase 8/9 impairs preadipocyte differentiation. Sci Rep 2015; 5:12348. [PMID: 26242871 PMCID: PMC4525143 DOI: 10.1038/srep12348] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Accepted: 06/26/2015] [Indexed: 12/23/2022] Open
Abstract
Adipocytes are the primary cells in adipose tissue, and adipocyte dysfunction causes lipodystrophy, obesity and diabetes. The dipeptidyl peptidase (DPP) 4 family includes four enzymes, DPP4, DPP8, DPP9 and fibroblast activation protein (FAP). DPP4 family inhibitors have been used for the treatment of type 2 diabetes patients, but their role in adipocyte formation are poorly understood. Here we demonstrate that the DPP8/9 selective inhibitor 1G244 blocks adipogenesis in preadipocyte 3T3-L1 and 3T3-F422A, while DPP4 and FAP inhibitors have no effect. In addition, knockdown of DPP8 or DPP9 significantly impairs adipocyte differentiation in preadipocytes. We further uncovered that blocking the expression or activities of DPP8 and DPP9 attenuates PPARγ2 induction during preadipocyte differentiation. Addition of PPARγ agonist thiazolidinediones (TZDs), or ectopic expression of PPARγ2, is able to rescue the adipogenic defect caused by DPP8/9 inhibition in preadipocytes. These results indicate the importance of DPP8 and DPP9 on adipogenesis.
Collapse
Affiliation(s)
- Ruijun Han
- Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, MN, USA
| | - Xinying Wang
- Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, MN, USA
| | - William Bachovchin
- Sackler School of Biomedical Sciences, Tufts University School of Medicine, Boston, MA, USA
| | - Zofia Zukowska
- Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, MN, USA
| | - John W Osborn
- Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
14
|
Loh K, Herzog H, Shi YC. Regulation of energy homeostasis by the NPY system. Trends Endocrinol Metab 2015; 26:125-35. [PMID: 25662369 DOI: 10.1016/j.tem.2015.01.003] [Citation(s) in RCA: 206] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Revised: 01/11/2015] [Accepted: 01/12/2015] [Indexed: 01/01/2023]
Abstract
Obesity develops when energy intake exceeds energy expenditure over time. Numerous neurotransmitters, hormones, and factors have been implicated to coordinately control energy homeostasis, centrally and peripherally. However, the neuropeptide Y (NPY) system has emerged as the one with the most critical functions in this process. While NPY centrally promotes feeding and reduces energy expenditure, peptide YY (PYY) and pancreatic polypeptide (PP), the other family members, mediate satiety. Importantly, recent research has uncovered additional functions for these peptides that go beyond the simple feeding/satiety circuits and indicate a more extensive function in controlling energy homeostasis. In this review, we will discuss the actions of the NPY system in the regulation of energy balance, with a particular focus on energy expenditure.
Collapse
Affiliation(s)
- Kim Loh
- Neuroscience Division, Garvan Institute of Medical Research, St Vincent's Hospital, Sydney, 2010, Australia; Faculty of Medicine, UNSW Australia, Sydney, 2052, Australia
| | - Herbert Herzog
- Neuroscience Division, Garvan Institute of Medical Research, St Vincent's Hospital, Sydney, 2010, Australia; Faculty of Medicine, UNSW Australia, Sydney, 2052, Australia.
| | - Yan-Chuan Shi
- Neuroscience Division, Garvan Institute of Medical Research, St Vincent's Hospital, Sydney, 2010, Australia; Faculty of Medicine, UNSW Australia, Sydney, 2052, Australia.
| |
Collapse
|
15
|
Abstract
Central and sympathetic nervous systems govern functional activities of many organs. Solid tumors like organs are also innervated by sympathetic nerve fibers. Neurotransmitters released from sympathetic nerve fibers can modulate biological behaviors of tumor cells. Multiple physiologic processes of tumor development may be dominated by central and sympathetic nervous systems as well. Recent studies suggest that dysfunction of central and sympathetic nervous systems and disorder of the hormone network induced by psychological stress may influence malignant progression of cancer by inhibiting the functions of immune system, regulating metabolic reprogramming of tumor cells, and inducing interactions between tumor and stromal cells. Over-release of inflammatory cytokines by tumors may aggravate emotional disorder, triggering the vicious cycles in tumor microenvironment and host macroenvironment. It is reasonable to hypothesize that cancer progression may be controlled by central and sympathetic nervous systems. In this review, we will focus on the recent information about the impacts of central and sympathetic nervous systems on tumor invasion and metastasis.
Collapse
|
16
|
Hypoxia shifts activity of neuropeptide Y in Ewing sarcoma from growth-inhibitory to growth-promoting effects. Oncotarget 2014; 4:2487-501. [PMID: 24318733 PMCID: PMC3926843 DOI: 10.18632/oncotarget.1604] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Ewing sarcoma (ES) is an aggressive malignancy driven by an oncogenic fusion protein, EWS-FLI1. Neuropeptide Y (NPY), and two of its receptors, Y1R and Y5R are up-regulated by EWS-FLI1 and abundantly expressed in ES cells. Paradoxically, NPY acting via Y1R and Y5R stimulates ES cell death. Here, we demonstrate that these growth-inhibitory actions of NPY are counteracted by hypoxia, which converts the peptide to a growth-promoting factor. In ES cells, hypoxia induces another NPY receptor, Y2R, and increases expression of dipeptidyl peptidase IV (DPPIV), an enzyme that cleaves NPY to a shorter form, NPY3-36. This truncated peptide no longer binds to Y1R and, therefore, does not stimulate ES cell death. Instead, NPY3-36 acts as a selective Y2R/Y5R agonist. The hypoxia-induced increase in DPPIV activity is most evident in a population of ES cells with high aldehyde dehydrogenase (ALDH) activity, rich in cancer stem cells (CSCs). Consequently, NPY, acting via Y2R/Y5Rs, preferentially stimulates proliferation and migration of hypoxic ALDHhigh cells. Hypoxia also enhances the angiogenic potential of ES by inducing Y2Rs in endothelial cells and increasing the release of its ligand, NPY3-36, from ES cells. In summary, hypoxia acts as a molecular switch shifting NPY activity away from Y1R/Y5R-mediated cell death and activating the Y2R/Y5R/DPPIV/NPY3-36 axis, which stimulates ES CSCs and promotes angiogenesis. Hypoxia-driven actions of the peptide such as these may contribute to ES progression. Due to the receptor-specific and multifaceted nature of NPY actions, these findings may inform novel therapeutic approaches to ES.
Collapse
|
17
|
Zhang W, Cline MA, Gilbert ER. Hypothalamus-adipose tissue crosstalk: neuropeptide Y and the regulation of energy metabolism. Nutr Metab (Lond) 2014; 11:27. [PMID: 24959194 PMCID: PMC4066284 DOI: 10.1186/1743-7075-11-27] [Citation(s) in RCA: 92] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2014] [Accepted: 06/02/2014] [Indexed: 01/24/2023] Open
Abstract
Neuropeptide Y (NPY) is an orexigenic neuropeptide that plays a role in regulating adiposity by promoting energy storage in white adipose tissue and inhibiting brown adipose tissue activation in mammals. This review describes mechanisms underlying NPY's effects on adipose tissue energy metabolism, with an emphasis on cellular proliferation, adipogenesis, lipid deposition, and lipolysis in white adipose tissue, and brown fat activation and thermogenesis. In general, NPY promotes adipocyte differentiation and lipid accumulation, leading to energy storage in adipose tissue, with effects mediated mainly through NPY receptor sub-types 1 and 2. This review highlights hypothalamus-sympathetic nervous system-adipose tissue innervation and adipose tissue-hypothalamus feedback loops as pathways underlying these effects. Potential sources of NPY that mediate adipose effects include the bloodstream, sympathetic nerve terminals that innervate the adipose tissue, as well as adipose tissue-derived cells. Understanding the role of central vs. peripherally-derived NPY in whole-body energy balance could shed light on mechanisms underlying the pathogenesis of obesity. This information may provide some insight into searching for alternative therapeutic strategies for the treatment of obesity and associated diseases.
Collapse
Affiliation(s)
- Wei Zhang
- 3200 Litton-Reaves, Animal & Poultry Sciences Department, Virginia Tech, Blacksburg, VA 24061-0306, USA
| | - Mark A Cline
- 3200 Litton-Reaves, Animal & Poultry Sciences Department, Virginia Tech, Blacksburg, VA 24061-0306, USA
| | - Elizabeth R Gilbert
- 3200 Litton-Reaves, Animal & Poultry Sciences Department, Virginia Tech, Blacksburg, VA 24061-0306, USA
| |
Collapse
|
18
|
Kim JH, Lee JH, Park MC, Yoon I, Kim K, Lee M, Choi HS, Kim S, Han JM. AIMP1/p43 negatively regulates adipogenesis by inhibiting peroxisome proliferator-activated receptor gamma. J Cell Sci 2014; 127:4483-93. [DOI: 10.1242/jcs.154930] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Adipogenesis is known to be controlled by the concerted actions of transcription factors and co-regulators. However, little is known about the regulation mechanism of transcription factors that control adipogenesis. In addition, the adipogenic roles of translational factors remain unclear. Here, we show that aminoacyl-tRNA synthetase-interacting multifunctional protein 1 (AIMP1), an auxiliary factor that is associated with a macromolecular tRNA synthetase complex, negatively regulates adipogenesis via a direct interaction with the DNA-binding domain of peroxisome proliferator-activated receptor γ (PPARγ). AIMP1 expression increased during adipocyte differentiation. Adipogenesis was augmented in AIMP1-deficient cells, as compared with control cells. AIMP1 exhibited high affinity for active PPARγ and interacted with the DNA-binding domain of PPARγ, thereby inhibiting its transcriptional activity. Thus, AIMP1 appears to function as a novel inhibitor of PPARγ that regulates adipocyte differentiation by preventing the transcriptional activation of PPARγ.
Collapse
|
19
|
Lukaszewski MA, Eberlé D, Vieau D, Breton C. Nutritional manipulations in the perinatal period program adipose tissue in offspring. Am J Physiol Endocrinol Metab 2013; 305:E1195-207. [PMID: 24045869 DOI: 10.1152/ajpendo.00231.2013] [Citation(s) in RCA: 89] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Epidemiological studies demonstrated initially that maternal undernutrition results in low birth weight with increased risk for long-lasting energy balance disorders. Maternal obesity and diabetes associated with high birth weight, excessive nutrition in neonates, and rapid catchup growth also increase the risk of adult-onset obesity. As stated by the Developmental Origin of Health and Disease concept, nutrient supply perturbations in the fetus or neonate result in long-term programming of individual body weight set point. Adipose tissue is a key fuel storage unit involved mainly in the maintenance of energy homeostasis. Studies in numerous animal models have demonstrated that the adipose tissue is the focus of developmental programming events in a sex- and depot-specific manner. In rodents, adipose tissue development is particularly active during the perinatal period, especially during the last week of gestation and during early postnatal life. In contrast to rodents, this process essentially takes place before birth in bigger mammals. Despite these different developmental time windows, altricial and precocial species share several mechanisms of adipose tissue programming. Offspring from malnourished dams present adipose tissue with a series of alterations: impaired glucose uptake, insulin and leptin resistance, low-grade inflammation, modified sympathetic activity with reduced noradrenergic innervations, and thermogenesis. These modifications reprogram adipose tissue metabolism by changing fat distribution and composition and by enhancing adipogenesis, predisposing the offspring to fat accumulation. Subtle adipose tissue circadian rhythm changes are also observed. Inappropriate hormone levels, modified tissue sensitivity (especially glucocorticoid system), and epigenetic mechanisms are key factors for adipose tissue programming during the perinatal period.
Collapse
Affiliation(s)
- Marie-Amélie Lukaszewski
- Unité Environnement Périnatal et Croissance, UPRES EA 4489, Equipe Dénutritions Maternelles Périnatales, Université Lille-Nord de France, Villeneuve d'Ascq, France
| | | | | | | |
Collapse
|
20
|
Lin CY, Yang JR, Teng SL, Tsai S, Chen MH. Microarray analysis of gene expression of bone marrow stem cells cocultured with salivary acinar cells. J Formos Med Assoc 2013; 112:713-20. [DOI: 10.1016/j.jfma.2012.08.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2012] [Revised: 08/02/2012] [Accepted: 08/09/2012] [Indexed: 11/30/2022] Open
|
21
|
Abstract
Preadipocyte factor 1 (Pref-1, also called Dlk1/FA1) is a molecular gatekeeper of adipogenesis which acts by maintaining the preadipocyte state and preventing adipocyte differentiation. Pref-1 is made as an epidermal growth factor-like repeat containing transmembrane protein, and is cleaved by TNFα-converting enzyme (TACE) to generate a soluble form, which acts as an autocrine/paracrine factor. Pref-1 upregulates Sox9 expression by activating the ERK/MAPK pathway and the Pref-1 interaction with fibronectin is required for inhibition of adipogenesis. Pref-1 also prevents brown adipocyte differentiation and its thermogenic function. Here, we highlight the recent evidence for the role of Pref-1 in adipogenesis.
Collapse
Affiliation(s)
- Carolyn S. Hudak
- Department of Nutritional Sciences and Toxicology, University of California, Berkeley, CA, USA
| | - Hei Sook Sul
- Department of Nutritional Sciences and Toxicology, University of California, Berkeley, CA, USA
- *Correspondence: Hei Sook Sul, Department of Nutritional Sciences and Toxicology, University of California, 219 Morgan Hall, Berkeley, CA 94720, USA e-mail:
| |
Collapse
|
22
|
Rosmaninho-Salgado J, Cortez V, Estrada M, Santana MM, Gonçalves A, Marques AP, Cavadas C. Intracellular mechanisms coupled to NPY Y2 and Y5 receptor activation and lipid accumulation in murine adipocytes. Neuropeptides 2012; 46:359-66. [PMID: 22981159 DOI: 10.1016/j.npep.2012.08.006] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2012] [Revised: 07/28/2012] [Accepted: 08/08/2012] [Indexed: 12/23/2022]
Abstract
The formation of adipose tissue is a process that includes the pre-adipocyte proliferation and differentiation to adipocytes that are cells specialized in lipid accumulation. The adipocyte differentiation is a process driven by the coordinated expression of various transcription factors, such as peroxisome proliferator-activated receptor (PPAR-γ). Neuropeptide Y (NPY) induces adipocyte proliferation and differentiation but the NPY receptors and the intracellular pathways involved in these processes are still not clear. In the present work we studied the role of NPY receptors and the intracellular pathways involved in the stimulatory effect of NPY on lipid accumulation. The murine pre-adipocyte cell line, 3T3-L1, was used as a cell model. Adipogenesis was evaluated by quantifying lipid accumulation by Oil red-O assay and by analyzing PPAR-γ expression using the Western blotting assay. Adipocytes were incubated with NPY (100nM) and a decrease on lipid accumulation and PPAR-γ expression was observed in the presence of NPY Y(2) receptor antagonist (BIIE0246, 1μM) or NPY Y(5) antagonist. Furthermore, NPY Y(2) (NPY(3-36), 100nM) or NPY Y(5) (NPY(19-23)(GLY(1), Ser(3), Gln(4), Thr(6), Ala(31), Aib(32), Gln(34)) PP, 100nM) receptor agonists increased lipid accumulation and PPAR-γ expression. We further investigate the intracellular pathways associated with NPY Y(2) and NPY Y(5) receptor activation. Our results show NPY induces PPAR-γ expression and lipid accumulation through NPY Y(2) and NPY Y(5) receptors activation. PKC and PLC inhibitors inhibit lipid accumulation induced by NPY Y(5) receptor agonist. Moreover, our results suggest that lipid accumulation induced by NPY Y(2) receptor activation occurs through PKA, MAPK and PI3K pathways. In conclusion, this study contributes to a step forward on the knowledge of intracellular mechanisms associated with NPY receptors activation on adipocytes and contributes to a better understanding and the development of new therapeutic targets for obesity treatment.
Collapse
|
23
|
Holvoet P. Stress in obesity and associated metabolic and cardiovascular disorders. SCIENTIFICA 2012; 2012:205027. [PMID: 24278677 PMCID: PMC3820434 DOI: 10.6064/2012/205027] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2012] [Accepted: 11/11/2012] [Indexed: 05/15/2023]
Abstract
Obesity has significant implications for healthcare, since it is a major risk factor for both type 2 diabetes and the metabolic syndrome. This syndrome is a common and complex disorder combining obesity, dyslipidemia, hypertension, and insulin resistance. It is associated with high atherosclerotic cardiovascular risk, which can only partially be explained by its components. Therefore, to explain how obesity contributes to the development of metabolic and cardiovascular disorders, more and better insight is required into the effects of personal and environmental stress on disease processes. In this paper, we show that obesity is a chronic inflammatory disease, which has many molecular mechanisms in common with atherosclerosis. Furthermore, we focus on the role of oxidative stress associated with obesity in the development of the metabolic syndrome. We discuss how several stress conditions are related to inflammation and oxidative stress in association with obesity and its complications. We also emphasize the relation between stress conditions and the deregulation of epigenetic control mechanisms by means of microRNAs and show how this impairment further contributes to the development of obesity, closing the vicious circle. Finally, we discuss the limitations of current anti-inflammation and antioxidant therapy to treat obesity.
Collapse
Affiliation(s)
- Paul Holvoet
- Atherosclerosis and Metabolism Unit, Department of Cardiovascular Sciences, KU Leuven, Herestraat 49, P.O. Box 705, 3000 Leuven, Belgium
- *Paul Holvoet:
| |
Collapse
|