1
|
Antunes PM, Stürmer SL, Bever JD, Chagnon PL, Chaudhary VB, Deveautour C, Fahey C, Kokkoris V, Lekberg Y, Powell JR, Aguilar-Trigueros CA, Zhang H. Enhancing consistency in arbuscular mycorrhizal trait-based research to improve predictions of function. MYCORRHIZA 2025; 35:14. [PMID: 40009242 PMCID: PMC11865136 DOI: 10.1007/s00572-025-01187-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Accepted: 02/06/2025] [Indexed: 02/27/2025]
Abstract
Arbuscular mycorrhizal (AM) fungi (phylum Glomeromycota) are obligate symbionts with plants influencing plant health, soil a(biotic) processes, and ecosystem functioning. Despite advancements in molecular techniques, understanding the role of AM fungal communities on a(biotic) processes based on AM fungal taxonomy remains challenging. This review advocates for a standardized trait-based framework to elucidate the life-history traits of AM fungi, focusing on their roles in three dimensions: host plants, soil, and AM fungal ecology. We define morphological, physiological, and genetic key traits, explore their functional roles and propose methodologies for their consistent measurement, enabling cross-study comparisons towards improved predictability of ecological function. We aim for this review to lay the groundwork for establishing a baseline of AM fungal trait responses under varying environmental conditions. Furthermore, we emphasize the need to include underrepresented taxa in research and utilize advances in machine learning and microphotography for data standardization.
Collapse
Affiliation(s)
- Pedro M Antunes
- Biology Department, Algoma University, Sault Ste. Marie, ON, P6A 2G4, Canada.
| | - Sidney L Stürmer
- Departamento de Ciências Naturais, Universidade Regional de Blumenau, Blumenau, SC, 89030-903, Brazil
| | - James D Bever
- Kansas Biological Survey and Center for Ecological Research and Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence, KS, USA
| | - Pierre-Luc Chagnon
- Institut de Recherche en Biologie Vegetale, Universite de Montreal, 4101 Sherbrooke Est, Montreal, QC, H1X2B2, Canada
| | - V Bala Chaudhary
- Department of Environmental Studies, Dartmouth College, Hanover, NH, USA
| | - Coline Deveautour
- Institut Polytechnique UniLaSalle, Unité AGHYLE, Campus Rouen, 76130, Mont-Saint-Aignan, Normandie, France
| | - Catherine Fahey
- Biology Department, Algoma University, Sault Ste. Marie, ON, P6A 2G4, Canada
- Smithsonian Environmental Research Center, Edgewater, MD, USA
| | - Vasilis Kokkoris
- Amsterdam Institute for Life and Environment (A-LIFE), Faculty of Science, Section Systems Ecology, Vrije Universiteit Amsterdam, De Boelelaan 1085, 1081 HV, Amsterdam, the Netherlands
| | - Ylva Lekberg
- MPG Ranch & Department of Ecosystem and Conservation Sciences, W.A. Franke College of Forestry and Conservation, University of Montana, Missoula, MT, USA
| | - Jeff R Powell
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW, Australia
| | | | - Haiyang Zhang
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW, Australia
- School of Life Sciences, Hebei Basic Science Center for Biotic Interaction, Hebei University, Baoding, 071002, China
| |
Collapse
|
2
|
Delavaux CS, Aellen A, Stürmer SL, Primieri S, Schütte UME, Drown DM, Ramos RJ, Crowther TW, Bever JD. Uncovering Diversity within the Glomeromycota: Novel Clades, Family Distributions, and Land Use Sensitivity. Ecol Evol 2025; 15:e70597. [PMID: 39790729 PMCID: PMC11711058 DOI: 10.1002/ece3.70597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Accepted: 11/04/2024] [Indexed: 01/12/2025] Open
Abstract
Arbuscular mycorrhizal fungi (AMF, phylum Glomeromycota) are essential to plant community diversity and ecosystem functioning. However, increasing human land use represents a major threat to native AMF globally. Characterizing the loss of AMF diversity remains challenging because many taxa are undescribed, resulting in poor documentation of their biogeography and family-level disturbance sensitivity. We survey sites representing native and human-altered ecosystems across the American continents-in Alaska, Kansas, and Brazil-to shed light on these gaps. Using a recently developed pipeline for phylogenetic placement of eDNA, we find evidence for three putative novel clades within the Glomeromycota, sister to Entrophosporaceae, Glomeraceae, and Archaeosporaceae, with evidence for geographic structuring. We further find that taxa in the Diversisporaceae, Glomeraceae, and Entrophosporaceae relatively high families are overrepresented and more diverse in temperate samples. By contrast, the diversity of taxa that cannot be placed into a family is higher in tropical samples, suggesting that tropical sites harbor relatively high undescribed AMF diversity. Moreover, we find evidence that Entrophosporaceae is more tolerant, while Glomeraceae is more sensitive to disturbance. These results underscore the vast undescribed diversity of AMF while highlighting a way forward to systematically improve our understanding of AMF biogeography and response to human disturbance.
Collapse
Affiliation(s)
- Camille S. Delavaux
- Institute of Integrative BiologyETH Zurich (Swiss Federal Institute of Technology)ZurichSwitzerland
- Department of Ecology and Evolutionary BiologyThe University of KansasLawrenceKansasUSA
| | - Alexis Aellen
- Institute of Integrative BiologyETH Zurich (Swiss Federal Institute of Technology)ZurichSwitzerland
| | - Sidney L. Stürmer
- Departamento de Ciências NaturaisUniversidade Regional de BlumenauBlumenauSanta CatarinaBrazil
| | - Silmar Primieri
- Instituto Federal de Santa Catarina (IFSC)LagesSanta CatarinaBrazil
| | | | - Devin M. Drown
- Institute of Arctic BiologyUniversity of Alaska FairbanksFairbanksAlaskaUSA
- Department of Biology and WildlifeUniversity of Alaska FairbanksFairbanksAlaskaUSA
| | - Robert J. Ramos
- Department of Ecology and Evolutionary BiologyThe University of KansasLawrenceKansasUSA
- Kansas Biological SurveyThe University of KansasLawrenceKansasUSA
- The Environmental Data Science Innovation & Inclusion lab (ESIIL) at the University of Colorado BoulderBoulderColoradoUSA
| | - Thomas W. Crowther
- Institute of Integrative BiologyETH Zurich (Swiss Federal Institute of Technology)ZurichSwitzerland
| | - James D. Bever
- Department of Ecology and Evolutionary BiologyThe University of KansasLawrenceKansasUSA
- Kansas Biological SurveyThe University of KansasLawrenceKansasUSA
| |
Collapse
|
3
|
Camenzind T, Aguilar-Trigueros CA, Heuck MK, Maerowitz-McMahan S, Rillig MC, Cornwell WK, Powell JR. Progressing beyond colonization strategies to understand arbuscular mycorrhizal fungal life history. THE NEW PHYTOLOGIST 2024; 244:752-759. [PMID: 39229862 DOI: 10.1111/nph.20090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 08/07/2024] [Indexed: 09/05/2024]
Abstract
Knowledge of differential life-history strategies in arbuscular mycorrhizal (AM) fungi is relevant for understanding the ecology of this group and its potential role in sustainable agriculture and carbon sequestration. At present, AM fungal life-history theories often focus on differential investment into intra- vs extraradical structures among AM fungal taxa, and its implications for plant benefits. With this Viewpoint we aim to expand these theories by integrating a mycocentric economics- and resource-based life-history framework. As in plants, AM fungal carbon and nutrient demands are stoichiometrically coupled, though uptake of these elements is spatially decoupled. Consequently, investment in morphological structures for carbon vs nutrient uptake is not in competition. We argue that understanding the ecology and evolution of AM fungal life-history trade-offs requires increased focus on variation among structures foraging for the same element, that is within intra- or extraradical structures (in our view a 'horizontal' axis), not just between them ('vertical' axis). Here, we elaborate on this argument and propose a range of plausible life-history trade-offs that could lead to the evolution of strategies in AM fungi, providing testable hypotheses and creating opportunities to explain AM fungal co-existence, and the context-dependent effects of AM fungi on plant growth and soil carbon dynamics.
Collapse
Affiliation(s)
- Tessa Camenzind
- Institute of Biology, Freie Universität Berlin, Altensteinstr. 6, 14195, Berlin, Germany
- Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), 14195, Berlin, Germany
| | - Carlos A Aguilar-Trigueros
- Department of Biological and Environmental Sciences, University of Jyväskylä, 40014, Jyväskylä, Finland
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, New South Wales, 2751, Australia
| | - Meike K Heuck
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, New South Wales, 2751, Australia
| | - Solomon Maerowitz-McMahan
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, New South Wales, 2751, Australia
| | - Matthias C Rillig
- Institute of Biology, Freie Universität Berlin, Altensteinstr. 6, 14195, Berlin, Germany
- Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), 14195, Berlin, Germany
| | - Will K Cornwell
- Ecology and Evolution Research Centre, School of Biological, Earth, and Environmental Science, University of New South Wales, Sydney, New South Wales, 2052, Australia
| | - Jeff R Powell
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, New South Wales, 2751, Australia
| |
Collapse
|
4
|
Guillen-Otero T, Hertel D, Quintanilla LG, Lehnert M, Schmid M, Kharazishvili D, Fawcett S, Kessler M. Comparative analysis of mycorrhizal communities associated with Struthiopteris spicant (L.) Weiss across Europe and North America. FRONTIERS IN PLANT SCIENCE 2024; 15:1402946. [PMID: 38899157 PMCID: PMC11186384 DOI: 10.3389/fpls.2024.1402946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 05/20/2024] [Indexed: 06/21/2024]
Abstract
Introduction Ferns constitute the second largest group of vascular plants. Previous studies have shown that the diversity and composition of fern communities are influenced by resource availability and water stress, among other factors. However, little is known about the influence of these environmental factors on their biotic interactions, especially regarding the relationship between mycorrhizal fungi and ferns. The present study compares the mycorrhizal communities associated with 36 populations of Struthiopteris spicant L. Weiss across Europe and North America. This species exhibits a great tolerance to variations in light, nutrient, and pH conditions, and it can survive with and without mycorrhizae. Methods With the aim of determining which environmental factors impact the composition and abundance of the root-associated fungal communities in this species, we used an ITS-focused metabarcoding approach to identify the mycorrhizal fungi present and analyzed the influence of climatic and edaphic variables at global and regional scales. Results and discussion We encountered striking differences in the relative abundance of arbuscular mycorrhizal fungi (AMF) between S. spicant populations at both spatial levels. We recorded a total of 902 fungal ASVs, but only 2- 4% of the total fungal diversity was observed in each individual, revealing that each fern had a unique fungal community. Light availability and the interactive action of pH and soil nitrogen concentration showed a positive influence on AMF relative abundance, explaining 89% of the variance. However, environmental factors could only explain 4- 8% of the variability in AMF community composition, indicating that it might be determined by stochastic processes. These results support the hypothesis that ferns may be more independent of mycorrhization than other plant groups and interact with fungi in a more opportunistic manner.
Collapse
Affiliation(s)
- Thais Guillen-Otero
- Department of Systematic and Evolutionary Botany, University of Zurich, Zurich, Switzerland
| | - Dietrich Hertel
- Albrecht von Haller Institute for Plant Sciences, University of Goettingen, Goettingen, Germany
| | - Luis G. Quintanilla
- School of Environmental Sciences and Technology, University Rey Juan Carlos, Móstoles, Spain
| | - Marcus Lehnert
- Geobotany and Botanical Garden Area, Herbarium, Martin-Luther-University Halle-Wittenberg, Halle, Germany
| | - Mattia Schmid
- Department of Systematic and Evolutionary Botany, University of Zurich, Zurich, Switzerland
| | - Davit Kharazishvili
- Deputy Director of Research management of the Batumi Botanical Garden, Batumi, Georgia
| | - Susan Fawcett
- University and Jepson Herbaria, University of California, Berkeley, Berkeley, United States
| | - Michael Kessler
- Department of Systematic and Evolutionary Botany, University of Zurich, Zurich, Switzerland
| |
Collapse
|
5
|
Wu YH, Qin Y, Cai QQ, Liu M, He DM, Chen X, Wang H, Yan ZY. Effect the accumulation of bioactive constituents of a medicinal plant (Salvia Miltiorrhiza Bge.) by arbuscular mycorrhizal fungi community. BMC PLANT BIOLOGY 2023; 23:597. [PMID: 38017446 PMCID: PMC10683245 DOI: 10.1186/s12870-023-04608-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 11/14/2023] [Indexed: 11/30/2023]
Abstract
BACKGROUND Arbuscular mycorrhizal fungi (AMF) form symbiotic relationships with various terrestrial plants and have attracted considerable interest as biofertilizers for improving the quality and yield of medicinal plants. Despite the widespread distribution of AMFs in Salvia miltiorrhiza Bunge's roots, research on the impact of multiple AMFs on biomass and active ingredient accumulations has not been conducted. In this study, the effects of five native AMFs (Glomus formosanum, Septoglomus constrictum, Rhizophagus manihotis, Acaulospora laevis, and Ambispora gerdemannii) and twenty-six communities on the root biomass and active ingredient concentrations of S. miltiorrhiza were assessed using the total factor design method. RESULTS Thirty-one treatment groups formed symbiotic relationships with S. miltiorrhiza based on the pot culture results, and the colonization rate ranged from 54.83% to 89.97%. AMF communities had higher colonization rates and total phenolic acid concentration than single AMF, and communities also appeared to have higher root fresh weight, dry weight, and total phenolic acid concentration than single inoculations. As AMF richness increased, there was a rising trend in root biomass and total tanshinone accumulations (ATTS), while total phenolic acid accumulations (ATP) showed a decreasing trend. This suggests that plant productivity was influenced by the AMF richness, with higher inoculation benefits observed when the communities contained three or four AMFs. Additionally, the affinities of AMF members were also connected to plant productivity. The inoculation effect of closely related AMFs within the same family, such as G. formosanum, S. constrictum, and R. manihotis, consistently yielded lower than that of mono-inoculation when any combinations were applied. The co-inoculation of S. miltiorrhiza with nearby or distant AMFs from two families, such as G. formosanum, R. manihotis, and Ac. laevis or Am. gerdemannii resulted in an increase of ATP and ATTS by more than 50%. AMF communities appear to be more beneficial to the yield of bioactive constituents than the single AMF, but overall community inoculation effects are related to the composition of AMFs and the relationship between members. CONCLUSION This study reveals that the AMF community has great potential to improve the productivity and the accumulation of bioactive constituents in S. miltiorrhiza, indicating that it is an effective way to achieve sustainable agricultural development through using the AMF community.
Collapse
Affiliation(s)
- Yan-Hong Wu
- State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yong Qin
- State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qing-Qing Cai
- State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Min Liu
- State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Dong-Mei He
- State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xin Chen
- State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Hai Wang
- School of Medical Technology, Chengdu University of Chinese Medicine, Chengdu, China.
| | - Zhu-Yun Yan
- State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| |
Collapse
|
6
|
Veresoglou SD, Johnson D. Species-area relationships in microbial-mediated mutualisms. Trends Microbiol 2023; 31:1111-1117. [PMID: 37301688 DOI: 10.1016/j.tim.2023.05.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 05/09/2023] [Accepted: 05/16/2023] [Indexed: 06/12/2023]
Abstract
Symbioses involving microorganisms prevail in nature and are key to regulating numerous ecosystem processes and in driving evolution. A major concern in understanding the ecology of symbioses involving microorganisms arises in the effectiveness of sampling strategies to capture the contrasting size of organisms involved. In many mutualisms, including mycorrhizas and gut systems, hosts interact simultaneously with multiple smaller sized mutualists, the identity of which determines success for the host. This complicates quantifying the diversity of mutualisms because sampling techniques fail to capture effectively the diversity of each partner. Here we propose the use of species-area relationships (SARs) to explicitly consider the spatial scale of microbial partners in symbioses, which we propose will improve our understanding of the ecology of mutualisms.
Collapse
Affiliation(s)
- Stavros D Veresoglou
- State Key Laboratory of Biocontrol, School of Ecology, Sun Yat-sen University, Shenzhen, 518107, China.
| | - David Johnson
- Department of Earth and Environmental Sciences, Michael Smith Building, University of Manchester, Manchester, M139PT, UK
| |
Collapse
|
7
|
Smith AH, Bogar LM, Moeller HV. Fungal Fight Club: phylogeny and growth rate predict competitive outcomes among ectomycorrhizal fungi. FEMS Microbiol Ecol 2023; 99:fiad108. [PMID: 37697652 PMCID: PMC10516346 DOI: 10.1093/femsec/fiad108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 09/01/2023] [Accepted: 09/07/2023] [Indexed: 09/13/2023] Open
Abstract
Ectomycorrhizal fungi are among the most prevalent fungal partners of plants and can constitute up to one-third of forest microbial biomass. As mutualistic partners that supply nutrients, water, and pathogen defense, these fungi impact host plant health and biogeochemical cycling. Ectomycorrhizal fungi are also extremely diverse, and the community of fungal partners on a single plant host can consist of dozens of individuals. However, the factors that govern competition and coexistence within these communities are still poorly understood. In this study, we used in vitro competitive assays between five ectomycorrhizal fungal strains to examine how competition and pH affect fungal growth. We also tested the ability of evolutionary history to predict the outcomes of fungal competition. We found that the effects of pH and competition on fungal performance varied extensively, with changes in growth media pH sometimes reversing competitive outcomes. Furthermore, when comparing the use of phylogenetic distance and growth rate in predicting competitive outcomes, we found that both methods worked equally well. Our study further highlights the complexity of ectomycorrhizal fungal competition and the importance of considering phylogenetic distance, ecologically relevant traits, and environmental conditions in predicting the outcomes of these interactions.
Collapse
Affiliation(s)
- Alexander H Smith
- Department of Integrative Biology, University of Colorado, Denver Auraria Campus Science Building 1150 12th St, Denver CO 80204, USA
| | - Laura M Bogar
- Department of Plant Biology, University of California, Davis, 605 Hutchison Dr Green Hall rm 1002 Davis CA 95616-5720, USA
| | - Holly V Moeller
- Department of Ecology, Evolution and Marine Biology, University of California, Santa Barbara CA 93106-9620, USA
| |
Collapse
|
8
|
Ndinga-Muniania C, Wornson N, Fulcher MR, Borer ET, Seabloom EW, Kinkel L, May G. Cryptic functional diversity within a grass mycobiome. PLoS One 2023; 18:e0287990. [PMID: 37471328 PMCID: PMC10358963 DOI: 10.1371/journal.pone.0287990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 06/17/2023] [Indexed: 07/22/2023] Open
Abstract
Eukaryotic hosts harbor tremendously diverse microbiomes that affect host fitness and response to environmental challenges. Fungal endophytes are prominent members of plant microbiomes, but we lack information on the diversity in functional traits affecting their interactions with their host and environment. We used two culturing approaches to isolate fungal endophytes associated with the widespread, dominant prairie grass Andropogon gerardii and characterized their taxonomic diversity using rDNA barcode sequencing. A randomly chosen subset of fungi representing the diversity of each leaf was then evaluated for their use of different carbon compound resources and growth on those resources. Applying community phylogenetic analyses, we discovered that these fungal endophyte communities are comprised of phylogenetically distinct assemblages of slow- and fast-growing fungi that differ in their use and growth on differing carbon substrates. Our results demonstrate previously undescribed and cryptic functional diversity in carbon resource use and growth in fungal endophyte communities of A. gerardii.
Collapse
Affiliation(s)
- Cedric Ndinga-Muniania
- Plant and Microbial Biology Graduate Program, University of Minnesota, St. Paul, Minnesota, United States of America
- Department of Ecology, Evolution and Behavior, University of Minnesota, St. Paul, Minnesota, United States of America
| | - Nicholas Wornson
- School of Statistics, University of Minnesota, Minneapolis, Minnesota, United States of America
- Department of Plant Pathology, University of Minnesota, Saint Paul, Minnesota, United States of America
| | - Michael R Fulcher
- Foreign Disease-Weed Science Research Unit, United States Department of Agriculture, Frederick, Maryland, United States of America
| | - Elizabeth T Borer
- Department of Ecology, Evolution and Behavior, University of Minnesota, St. Paul, Minnesota, United States of America
| | - Eric W Seabloom
- Department of Ecology, Evolution and Behavior, University of Minnesota, St. Paul, Minnesota, United States of America
| | - Linda Kinkel
- Department of Ecology, Evolution and Behavior, University of Minnesota, St. Paul, Minnesota, United States of America
- Department of Plant Pathology, University of Minnesota, Saint Paul, Minnesota, United States of America
| | - Georgiana May
- Department of Ecology, Evolution and Behavior, University of Minnesota, St. Paul, Minnesota, United States of America
| |
Collapse
|
9
|
Duarte AG, Maherali H. Plant response to arbuscular mycorrhizal fungi at CO2 and temperature levels of the past and present. Symbiosis 2023. [DOI: 10.1007/s13199-023-00906-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
10
|
Fox S, Sikes BA, Brown SP, Cripps CL, Glassman SI, Hughes K, Semenova-Nelsen T, Jumpponen A. Fire as a driver of fungal diversity - A synthesis of current knowledge. Mycologia 2022; 114:215-241. [PMID: 35344467 DOI: 10.1080/00275514.2021.2024422] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Fires occur in most terrestrial ecosystems where they drive changes in the traits, composition, and diversity of fungal communities. Fires range from rare, stand-replacing wildfires to frequent, prescribed fires used to mimic natural fire regimes. Fire regime factors, including burn severity, fire intensity, and timing, vary widely and likely determine how fungi respond to fires. Despite the importance of fungi to post-fire plant communities and ecosystem functioning, attempts to identify common fungal responses and their major drivers are lacking. This synthesis addresses this knowledge gap and ranges from fire adaptations of specific fungi to succession and assembly fungal communities as they respond to spatially heterogenous burning within the landscape. Fires impact fungi directly and indirectly through their effects on fungal survival, substrate and habitat modifications, changes in environmental conditions, and/or physiological responses of the hosts with which fungi interact. Some specific pyrophilous, or "fire-loving," fungi often appear after fire. Our synthesis explores whether such taxa can be considered cosmopolitan, and whether they are truly fire-adapted or simply opportunists adapted to rapidly occupy substrates and habitats made available by fires. We also discuss the possible inoculum sources of post-fire fungi and explore existing conceptual models and ecological frameworks that may be useful in generalizing fungal fire responses. We conclude with identifying research gaps and areas that may best transform the current knowledge and understanding of fungal responses to fire.
Collapse
Affiliation(s)
- Sam Fox
- Division of Biology, Kansas State University, Manhattan, Kansas 66506.,Department of Natural Resources and Society, University of Idaho, Moscow, Idaho 83844
| | - Benjamin A Sikes
- Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence, Kansas 66045
| | - Shawn P Brown
- Department of Biological Sciences, University of Memphis, Memphis, Tennessee 38152
| | - Cathy L Cripps
- Department of Plant Sciences and Plant Pathology, Montana State University, Bozeman, Montana 59717
| | - Sydney I Glassman
- Department of Microbiology & Plant Pathology, University of California at Riverside, Riverside, California 92521
| | - Karen Hughes
- Department of Ecology and Evolutionary Biology, University of Tennessee at Knoxville, Knoxville, Tennessee 37996
| | - Tatiana Semenova-Nelsen
- Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence, Kansas 66045
| | - Ari Jumpponen
- Division of Biology, Kansas State University, Manhattan, Kansas 66506
| |
Collapse
|
11
|
Xu X, Qiu Y, Zhang K, Yang F, Chen M, Luo X, Yan X, Wang P, Zhang Y, Chen H, Guo H, Jiang L, Hu S. Climate warming promotes deterministic assembly of arbuscular mycorrhizal fungal communities. GLOBAL CHANGE BIOLOGY 2022; 28:1147-1161. [PMID: 34668627 DOI: 10.1111/gcb.15945] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 09/20/2021] [Indexed: 06/13/2023]
Abstract
Arbuscular mycorrhizal fungi (AMF) significantly contribute to plant resource acquisition and play important roles in mediating plant interactions and soil carbon (C) dynamics. However, it remains unclear how AMF communities respond to climate change. We assessed impacts of warming and precipitation alterations (30% increase or decrease) on soil AMF communities, and examined major ecological processes shaping the AMF community assemblage in a Tibetan alpine meadow. Our results showed that warming significantly increased root biomass, and available nitrogen (N) and phosphorus (P) in soil. While precipitation alterations increased AMF abundances, they did not significantly affect the composition or diversity of AMF communities. In contrast, warming altered the composition of AMF communities and reduced their Shannon-Wiener index and Pielou's evenness. In particular, warming shifted the AMF community composition in favor of Diversisporaceae over Glomeraceae, likely through its impact on soil N and P availability. In addition, AMF communities were phylogenetically random in the unwarmed control but clustered in warming plots, implying more deterministic community assembly under climate warming. Warming enhancement of root growth, N and P availability likely reduced plant C-allocation to AMF, imposing stronger environmental filtering on AMF communities. We further proposed a conceptual framework that integrates biological and geochemical processes into a mechanistic understanding of warming and precipitation changes' effects on AMF. Taken together, these results suggest that soil AMF communities may be more sensitive to warming than expected, highlighting the need to monitor their community structure and associated functional consequences on plant communities and soil C dynamics under the future warmer climate.
Collapse
Affiliation(s)
- Xinyu Xu
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China
| | - Yunpeng Qiu
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China
| | - Kangcheng Zhang
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China
| | - Fei Yang
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China
| | - Mengfei Chen
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China
| | - Xi Luo
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China
| | - Xuebin Yan
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China
| | - Peng Wang
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China
| | - Yi Zhang
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China
| | - Huaihai Chen
- School of Ecology, Sun Yat-sen University, Guangzhou, China
| | - Hui Guo
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China
| | - Lin Jiang
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Shuijin Hu
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China
- Department of Entomology & Plant Pathology, North Carolina State University, Raleigh, North Carolina, USA
| |
Collapse
|
12
|
Šmilauer P, Košnar J, Kotilínek M, Pecháčková S, Šmilauerová M. Host age and surrounding vegetation affect the community and colonization rates of arbuscular mycorrhizal fungi in a temperate grassland. THE NEW PHYTOLOGIST 2021; 232:290-302. [PMID: 34115391 DOI: 10.1111/nph.17550] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 06/08/2021] [Indexed: 05/04/2023]
Abstract
Arbuscular mycorrhizal fungi (AMF) are important symbionts for the majority of terrestrial vascular plants, yet the drivers of the compositional variation in AMF communities need to be better understood. What effects does the ontogenetic stage of host plants have and do these effects differ between plant functional groups? Are the AMF communities modified by the properties of surrounding vegetation, such as the proportion of different functional groups or nonmycorrhizal plants ? We addressed these questions in a temperate grassland and studied AMF communities using next-generation sequencing and light microscopy, evaluating their composition, taxonomic, phylogenetic and functional diversity, functional traits and root colonization levels. We found important differences between AMF communities and their diversity between seedlings and adults which are larger than the differences among host species or between functional groups. The proportion of nonmycorrhizal plants in the surrounding affected AMF community composition and increased its richness. Our results highlight the need for further investigating the existence of a common mycelial networks. The decision to use seedlings for experimental work can affect the results more than the chosen host species.
Collapse
Affiliation(s)
- Petr Šmilauer
- Faculty of Science, University of South Bohemia, Branišovská 1760, České Budějovice, 370 05, Czech Republic
| | - Jiří Košnar
- Faculty of Science, University of South Bohemia, Branišovská 1760, České Budějovice, 370 05, Czech Republic
| | - Milan Kotilínek
- Faculty of Science, University of South Bohemia, Branišovská 1760, České Budějovice, 370 05, Czech Republic
| | - Sylvie Pecháčková
- The West Bohemian Museum, Kopeckého Sady 2, Plzeň, 301 00, Czech Republic
| | - Marie Šmilauerová
- Faculty of Science, University of South Bohemia, Branišovská 1760, České Budějovice, 370 05, Czech Republic
| |
Collapse
|
13
|
Orrù L, Canfora L, Trinchera A, Migliore M, Pennelli B, Marcucci A, Farina R, Pinzari F. How Tillage and Crop Rotation Change the Distribution Pattern of Fungi. Front Microbiol 2021; 12:634325. [PMID: 34220731 PMCID: PMC8247931 DOI: 10.3389/fmicb.2021.634325] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 05/13/2021] [Indexed: 12/13/2022] Open
Abstract
Massive sequencing of fungal communities showed that climatic factors, followed by edaphic and spatial variables, are feasible predictors of fungal richness and community composition. This study, based on a long-term field experiment with tillage and no-tillage management since 1995 and with a crop rotation introduced in 2009, confirmed that tillage practices shape soil properties and impact soil fungal communities. Results highlighted higher biodiversity of saprotrophic fungi in soil sites with low disturbance and an inverse correlation between the biodiversity of ectomycorrhizal and saprotrophic fungi. We speculated how their mutual exclusion could be due to a substrate-mediated niche partitioning or by space segregation. Moreover, where the soil was ploughed, the species were evenly distributed. There was higher spatial variability in the absence of ploughing, with fungal taxa distributed according to a small-scale pattern, corresponding to micro-niches that probably remained undisturbed and heterogeneously distributed. Many differentially represented OTUs in all the conditions investigated were unidentified species or OTUs matching at high taxa level (i.e., phylum, class, order). Among the fungi with key roles in all the investigated conditions, there were several yeast species known to have pronounced endemism in soil and are also largely unidentified. In addition to yeasts, other fungal species emerged as either indicator of a kind of management or as strongly associated with a specific condition. Plant residues played a substantial role in defining the assortment of species.
Collapse
Affiliation(s)
- Luigi Orrù
- Council for Agricultural Research and Economics, Research Centre for Genomics and Bioinformatics, Fiorenzuola d'Arda, Italy
| | - Loredana Canfora
- Council for Agricultural Research and Economics, Research Centre for Agriculture and Environment, Rome, Italy
| | - Alessandra Trinchera
- Council for Agricultural Research and Economics, Research Centre for Agriculture and Environment, Rome, Italy
| | - Melania Migliore
- Council for Agricultural Research and Economics, Research Centre for Agriculture and Environment, Rome, Italy
| | - Bruno Pennelli
- Council for Agricultural Research and Economics, Research Centre for Agriculture and Environment, Rome, Italy
| | - Andrea Marcucci
- Council for Agricultural Research and Economics, Research Centre for Agriculture and Environment, Rome, Italy
| | - Roberta Farina
- Council for Agricultural Research and Economics, Research Centre for Agriculture and Environment, Rome, Italy
| | - Flavia Pinzari
- National Research Council of Italy, Institute for Biological Systems, Rome, Italy
| |
Collapse
|
14
|
Rincón C, Droh G, Villard L, Masclaux FG, N'guetta A, Zeze A, Sanders IR. Hierarchical spatial sampling reveals factors influencing arbuscular mycorrhizal fungus diversity in Côte d'Ivoire cocoa plantations. MYCORRHIZA 2021; 31:289-300. [PMID: 33638731 PMCID: PMC8068719 DOI: 10.1007/s00572-020-01019-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 12/30/2020] [Indexed: 06/12/2023]
Abstract
While many molecular studies have documented arbuscular mycorrhizal fungi (AMF) communities in temperate ecosystems, very few studies exist in which molecular techniques have been used to study tropical AMF communities. Understanding the composition of AMF communities in tropical areas gains special relevance as crop productivity in typically low fertility tropical soils can be improved with the use of AMF. We used a hierarchical sampling approach in which we sampled soil from cocoa (Theobroma cacao L.) plantations nested in localities, and in which localities were nested within each of three regions of Côte d'Ivoire. This sampling strategy, combined with 18S rRNA gene sequencing and a dedicated de novo OTU-picking model, allowed us to study AMF community composition and how it is influenced at different geographical scales and across environmental gradients. Several factors, including pH, influenced overall AMF alpha diversity and differential abundance of specific taxa and families of the Glomeromycotina. Assemblages and diversity metrics at the local scale did not reliably predict those at regional scales. The amount of variation explained by soil, climate, and geography variables left a large proportion of the variance to be explained by other processes, likely happening at smaller scales than the ones considered in this study. Gaining a better understanding of processes involved in shaping tropical AMF community composition and AMF establishment are much needed and could allow for the development of sustainable, productive tropical agroecosystems.
Collapse
Affiliation(s)
- Cristian Rincón
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
| | - Germain Droh
- Laboratoire de Génétique, UFR Biosciences, Université Félix Houphouët-Boigny, Abidjan, Côte d'Ivoire
| | - Lucas Villard
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
| | - Frédéric G Masclaux
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
| | - Assanvo N'guetta
- Laboratoire de Génétique, UFR Biosciences, Université Félix Houphouët-Boigny, Abidjan, Côte d'Ivoire
| | - Adolphe Zeze
- Laboratoire de Biotechnologies Végétale Et Microbienne, Unité Mixte de Recherche Et D'Innovation en Sciences Agronomiques Et Génie Rual, Institut National Polytechnique Félix Houphouet-Boigny, Yamoussoukro, Côte d'Ivoire
| | - Ian R Sanders
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland.
| |
Collapse
|
15
|
Neuenkamp L, Zobel M, Koorem K, Jairus T, Davison J, Öpik M, Vasar M, Moora M. Light availability and light demand of plants shape the arbuscular mycorrhizal fungal communities in their roots. Ecol Lett 2020; 24:426-437. [PMID: 33319429 DOI: 10.1111/ele.13656] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 11/11/2020] [Accepted: 11/12/2020] [Indexed: 01/01/2023]
Abstract
Plants involved in the arbuscular mycorrhizal (AM) symbiosis trade photosynthetically derived carbon for fungal-provided soil nutrients. However, little is known about how plant light demand and ambient light conditions influence root-associating AM fungal communities. We conducted a manipulative field experiment to test whether plants' shade-tolerance influences their root AM fungal communities in open and shaded grassland sites. We found similar light-dependent shifts in AM fungal community structure for experimental bait plant roots and the surrounding soil. Yet, deviation from the surrounding soil towards lower AM fungal beta-diversity in the roots of shade-intolerant plants in shade suggested preferential carbon allocation to specific AM fungi in conditions where plant-assimilated carbon available to fungi was limited. We conclude that favourable environmental conditions widen the plant biotic niche, as demonstrated here with optimal light availability reducing plants' selectivity for specific AM fungi, and promote compatibility with a larger number of AM fungal taxa.
Collapse
Affiliation(s)
- Lena Neuenkamp
- Institute of Ecology and Earth Sciences, University of Tartu, Lai 40, Tartu, 51005, Estonia.,Institute of Plant Sciences, University of Bern, Altenbergrain 21, Bern, 3013, Switzerland
| | - Martin Zobel
- Institute of Ecology and Earth Sciences, University of Tartu, Lai 40, Tartu, 51005, Estonia
| | - Kadri Koorem
- Institute of Ecology and Earth Sciences, University of Tartu, Lai 40, Tartu, 51005, Estonia
| | - Teele Jairus
- Institute of Ecology and Earth Sciences, University of Tartu, Lai 40, Tartu, 51005, Estonia
| | - John Davison
- Institute of Ecology and Earth Sciences, University of Tartu, Lai 40, Tartu, 51005, Estonia
| | - Maarja Öpik
- Institute of Ecology and Earth Sciences, University of Tartu, Lai 40, Tartu, 51005, Estonia
| | - Martti Vasar
- Institute of Ecology and Earth Sciences, University of Tartu, Lai 40, Tartu, 51005, Estonia
| | - Mari Moora
- Institute of Ecology and Earth Sciences, University of Tartu, Lai 40, Tartu, 51005, Estonia
| |
Collapse
|
16
|
Kokkoris V, Lekberg Y, Antunes PM, Fahey C, Fordyce JA, Kivlin SN, Hart MM. Codependency between plant and arbuscular mycorrhizal fungal communities: what is the evidence? THE NEW PHYTOLOGIST 2020; 228:828-838. [PMID: 32452032 DOI: 10.1111/nph.16676] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 04/26/2020] [Indexed: 05/09/2023]
Abstract
That arbuscular mycorrhizal (AM) fungi covary with plant communities is clear, and many papers report nonrandom associations between symbiotic partners. However, these studies do not test the causal relationship, or 'codependency', whereby the composition of one guild affects the composition of the other. Here we outline underlying requirements for codependency, compare important drivers for both plant and AM fungal communities, and assess how host preference - a pre-requisite for codependency - changes across spatiotemporal scales and taxonomic resolution for both plants and AM fungi. We find few examples in the literature designed to test for codependency and those that do have been conducted within plots or mesocosms. Also, while plants and AM fungi respond similarly to coarse environmental filters, most variation remains unexplained, with host identity explaining less than 30% of the variation in AM fungal communities. These results combined question the likelihood of predictable co-occurrence, and therefore evolution of codependency, between plant and AM fungal taxa across locations. We argue that codependency is most likely to occur in homogeneous environments where specific plant - AM fungal pairings have functional consequences for the symbiosis. We end by outlining critical aspects to consider moving forward.
Collapse
Affiliation(s)
- Vasilis Kokkoris
- Department of Biology, University of Ottawa, Ottawa, ON, K1N 6N5, Canada
| | - Ylva Lekberg
- MPG Ranch and University of Montana, Missoula, MT, 59833, USA
| | - Pedro M Antunes
- Department of Biology, Algoma University, Sault Ste. Marie, ON, P6A 2G4, Canada
| | - Catherine Fahey
- Department of Biology, Algoma University, Sault Ste. Marie, ON, P6A 2G4, Canada
| | - James A Fordyce
- Ecology and Evolutionary Biology, University of Tennessee, Knoxville, Knoxville, TN, 37996, USA
| | - Stephanie N Kivlin
- Ecology and Evolutionary Biology, University of Tennessee, Knoxville, Knoxville, TN, 37996, USA
| | - Miranda M Hart
- Biology, University of British Columbia Okanagan, Kelowna, BC, V1V 1V7, Canada
| |
Collapse
|
17
|
Community Structure of Arbuscular Mycorrhizal Fungi in Soils of Switchgrass Harvested for Bioenergy. Appl Environ Microbiol 2020; 86:AEM.00880-20. [PMID: 32709729 PMCID: PMC7499029 DOI: 10.1128/aem.00880-20] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Accepted: 07/20/2020] [Indexed: 01/08/2023] Open
Abstract
Learning more about the biodiversity and composition of arbuscular mycorrhizal fungi (AMF) under alternative agricultural management scenarios may be important to the sustainable intensification of switchgrass grown as a bioenergy crop. Using PacBio single-molecule sequencing and taxonomic resolution to the level of amplicon sequence variant (ASV), we assessed the effects of nitrogen amendment on AMF associating with switchgrass and explored relationships between AMF and switchgrass yield across three sites of various productivities in Wisconsin. Nitrogen amendment had little effect on AMF diversity metrics or community composition. While AMF ASV diversity was not correlated with switchgrass yield, AMF family richness and switchgrass yield had a strong, positive relationship at one of our three sites. Each of our sites was dominated by unique ASVs of the species Paraglomus brasilianum, indicating regional segregation of AMF at the intraspecific level. Our molecular biodiversity survey identified putative core members of the switchgrass microbiome, as well as novel clades of AMF, especially in the order Paraglomerales and the genus Nanoglomus Furthermore, our phylogenies unite the cosmopolitan, soil-inhabiting clade deemed GS24 with Pervetustaceae, an enigmatic family prevalent in stressful environments. Future studies should isolate and characterize the novel genetic diversity found in switchgrass agroecosystems and explore the potential yield benefits of AMF richness.IMPORTANCE We assessed the different species of beneficial fungi living in agricultural fields of switchgrass, a large grass grown for biofuels, using high-resolution DNA sequencing. Contrary to our expectations, the fungi were not greatly affected by fertilization. However, we found a positive relationship between plant productivity and the number of families of beneficial fungi at one site. Furthermore, we sequenced many species that could not be identified with existing reference databases. One group of fungi was highlighted in an earlier study for being widely distributed but of unknown taxonomy. We discovered that this group belonged to a family called Pervetustaceae, which may benefit switchgrass in stressful environments. To produce higher-yielding switchgrass in a more sustainable manner, it could help to study these undescribed fungi and the ways in which they may contribute to greater switchgrass yield in the absence of fertilization.
Collapse
|
18
|
Barceló M, van Bodegom PM, Tedersoo L, den Haan N, Veen GF(C, Ostonen I, Trimbos K, Soudzilovskaia NA. The abundance of arbuscular mycorrhiza in soils is linked to the total length of roots colonized at ecosystem level. PLoS One 2020; 15:e0237256. [PMID: 32915795 PMCID: PMC7485760 DOI: 10.1371/journal.pone.0237256] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Accepted: 07/22/2020] [Indexed: 11/19/2022] Open
Abstract
Arbuscular mycorrhizal fungi (AMF) strongly affect ecosystem functioning. To understand and quantify the mechanisms of this control, knowledge about the relationship between the actual abundance and community composition of AMF in the soil and in plant roots is needed. We collected soil and root samples in a natural dune grassland to test whether, across a plant community, the abundance of AMF in host roots (measured as the total length of roots colonized) is related to soil AMF abundance (using the neutral lipid fatty acids (NLFA) 16:1ω5 as proxy). Next-generation sequencing was used to explore the role of community composition in abundance patterns. We found a strong positive relationship between the total length of roots colonized by AMF and the amount of NLFA 16:1ω5 in the soil. We provide the first field-based evidence of proportional biomass allocation between intra-and extraradical AMF mycelium, at ecosystem level. We suggest that this phenomenon is made possible by compensatory colonization strategies of individual fungal species. Finally, our findings open the possibility of using AMF total root colonization as a proxy for soil AMF abundances, aiding further exploration of the AMF impacts on ecosystems functioning.
Collapse
Affiliation(s)
- Milagros Barceló
- Environmental Biology Department, Institute of Environmental Sciences, Leiden University, Leiden, Netherlands
| | - Peter M. van Bodegom
- Environmental Biology Department, Institute of Environmental Sciences, Leiden University, Leiden, Netherlands
| | - Leho Tedersoo
- Natural History Museum, University of Tartu, Tartu, Estonia
| | - Nadja den Haan
- Environmental Biology Department, Institute of Environmental Sciences, Leiden University, Leiden, Netherlands
| | - G. F. (Ciska) Veen
- Department of Terrestrial Ecology, Netherlands Institute of Ecology, Wageningen, The Netherlands
| | - Ivika Ostonen
- University of Tartu, Institute of Ecology and Earth Sciences, Tartu, Estonia
| | - Krijn Trimbos
- Environmental Biology Department, Institute of Environmental Sciences, Leiden University, Leiden, Netherlands
| | - Nadejda A. Soudzilovskaia
- Environmental Biology Department, Institute of Environmental Sciences, Leiden University, Leiden, Netherlands
| |
Collapse
|
19
|
Hao M, Jin Q, Meng G, Yang C, Yang S, Shi Z, Tang M, Liu S, Li Y, Li J, Zhang D, Su X, Shih C, Sun Y, Wilson JJ, Zhou X, Zhang A. Using full-length metabarcoding and DNA barcoding to infer community assembly for speciose taxonomic groups: a case study. Evol Ecol 2020. [DOI: 10.1007/s10682-020-10072-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
20
|
Dueñas JF, Camenzind T, Roy J, Hempel S, Homeier J, Suárez JP, Rillig MC. Moderate phosphorus additions consistently affect community composition of arbuscular mycorrhizal fungi in tropical montane forests in southern Ecuador. THE NEW PHYTOLOGIST 2020; 227:1505-1518. [PMID: 32368801 DOI: 10.1111/nph.16641] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 04/20/2020] [Indexed: 06/11/2023]
Abstract
Anthropogenic atmospheric deposition can increase nutrient supply in the most remote ecosystems, potentially affecting soil biodiversity. Arbuscular mycorrhizal fungal (AMF) communities rapidly respond to simulated soil eutrophication in tropical forests. Yet the limited spatio-temporal extent of such manipulations, together with the often unrealistically high fertilization rates employed, impedes generalization of such responses. We sequenced mixed root AMF communities within a seven year-long fully factorial nitrogen (N) and phosphorus (P) addition experiment, replicated at three tropical montane forests in southern Ecuador with differing environmental characteristics. We hypothesized: strong shifts in community composition and species richness after long-term fertilization, site- and clade-specific responses to N vs P additions depending on local soil fertility and clade life history traits respectively. Fertilization consistently shifted AMF community composition across sites, but only reduced richness of Glomeraceae. Compositional changes were mainly driven by increases in P supply while richness reductions were observed only after combined N and P additions. We conclude that moderate increases of N and P exert a mild but consistent effect on tropical AMF communities. To predict the consequences of these shifts, current results need to be supplemented with experiments that characterize local species-specific AMF functionality.
Collapse
Affiliation(s)
- Juan F Dueñas
- Institute of Biology, Freie Universität Berlin, Altensteinstr. 6, Berlin, 14195, Germany
- Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), Berlin, 14195, Germany
| | - Tessa Camenzind
- Institute of Biology, Freie Universität Berlin, Altensteinstr. 6, Berlin, 14195, Germany
- Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), Berlin, 14195, Germany
| | - Julien Roy
- Institute of Biology, Freie Universität Berlin, Altensteinstr. 6, Berlin, 14195, Germany
- Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), Berlin, 14195, Germany
| | - Stefan Hempel
- Institute of Biology, Freie Universität Berlin, Altensteinstr. 6, Berlin, 14195, Germany
- Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), Berlin, 14195, Germany
| | - Jürgen Homeier
- Plant Ecology, University of Göttingen, Göttingen, 37073, Germany
| | - Juan Pablo Suárez
- Departamento de Ciencias Biológicas, Universidad Técnica Particular de Loja, San Cayetano Alto, Loja, Ecuador
| | - Matthias C Rillig
- Institute of Biology, Freie Universität Berlin, Altensteinstr. 6, Berlin, 14195, Germany
- Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), Berlin, 14195, Germany
| |
Collapse
|
21
|
Sandoz FA, Bindschedler S, Dauphin B, Farinelli L, Grant JR, Hervé V. Biotic and abiotic factors shape arbuscular mycorrhizal fungal communities associated with the roots of the widespread fern Botrychium lunaria (Ophioglossaceae). ENVIRONMENTAL MICROBIOLOGY REPORTS 2020; 12:342-354. [PMID: 32216046 DOI: 10.1111/1758-2229.12840] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 03/18/2020] [Accepted: 03/20/2020] [Indexed: 06/10/2023]
Abstract
Arbuscular mycorrhizal fungi (AMF) play central roles in terrestrial ecosystems by interacting with both above and belowground communities as well as by influencing edaphic properties. The AMF communities associated with the roots of the fern Botrychium lunaria (Ophioglossaceae) were sampled in four transects at 2400 m a.s.l. in the Swiss Alps and analyzed using metabarcoding. Members of five Glomeromycota genera were identified across the 71 samples. Our analyses revealed the existence of a core microbiome composed of four abundant Glomus operational taxonomic units (OTUs), as well as a low OTU turnover between samples. The AMF communities were not spatially structured, which contrasts with most studies on AMF associated with angiosperms. pH, microbial connectivity and humus cover significantly shaped AMF beta diversity but only explained a minor fraction of variation in beta diversity. AMF OTUs associations were found to be significant by both cohesion and co-occurrence analyses, suggesting a role for fungus-fungus interactions in AMF community assembly. In particular, OTU co-occurrences were more frequent between different genera than among the same genus, rising the hypothesis of functional complementarity among the AMF associated to B. lunaria. Altogether, our results provide new insights into the ecology of fern symbionts in alpine grasslands.
Collapse
Affiliation(s)
- Frédéric Alexandre Sandoz
- Laboratory of Microbiology, Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland
- Laboratory of Evolutionary Genetics, Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland
- Conservatoire et Jardin botaniques de la Ville de Genève, Chambésy-Genève, Switzerland
| | - Saskia Bindschedler
- Laboratory of Microbiology, Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland
| | - Benjamin Dauphin
- Laboratory of Evolutionary Genetics, Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland
- Swiss Federal Research Institute WSL, Birmensdorf, Switzerland
| | | | - Jason R Grant
- Laboratory of Evolutionary Genetics, Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland
| | - Vincent Hervé
- Laboratory of Microbiology, Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland
- Laboratory of Biogeosciences, Institute of Earth Surface Dynamics, University of Lausanne, Lausanne, Switzerland
- Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| |
Collapse
|
22
|
Šmilauer P, Šmilauerová M, Kotilínek M, Košnar J. Foraging speed and precision of arbuscular mycorrhizal fungi under field conditions: An experimental approach. Mol Ecol 2020; 29:1574-1587. [DOI: 10.1111/mec.15425] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 03/18/2020] [Accepted: 03/24/2020] [Indexed: 01/13/2023]
Affiliation(s)
- Petr Šmilauer
- Faculty of Science University of South Bohemia České Budějovice Czech Republic
| | - Marie Šmilauerová
- Faculty of Science University of South Bohemia České Budějovice Czech Republic
| | - Milan Kotilínek
- Faculty of Science University of South Bohemia České Budějovice Czech Republic
| | - Jiří Košnar
- Faculty of Science University of South Bohemia České Budějovice Czech Republic
| |
Collapse
|
23
|
Li X, Xu M, Li X, Christie P, Wagg C, Zhang J. Linkages between changes in plant and mycorrhizal fungal community composition at high versus low elevation in alpine ecosystems. ENVIRONMENTAL MICROBIOLOGY REPORTS 2020; 12:229-240. [PMID: 32052588 DOI: 10.1111/1758-2229.12827] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 01/06/2020] [Accepted: 01/08/2020] [Indexed: 05/09/2023]
Abstract
Arbuscular mycorrhizal fungi (AMF) play an important role in maintaining plant diversity and productivity in grassland ecosystems. However, very few studies have investigated how AMF and plant communities co-vary between contrasting environments in natural ecosystems. Intensive sampling (50 soil samples) was conducted in natural open grasslands at both 3570 and 4556 m on Mount Segrila on the Southeast Tibetan Plateau. We used 454-pyrosequencing to investigate soil AMF communities and to explore relationships between AMF diversity and plant richness, productivity and community composition. AMF diversity was negatively correlated with plant richness at 3570 m but positively at 4556 m. Differences in AMF community composition between elevations were attributable to plant community composition, soil pH and available phosphorus concentration. The AMF community was more phylogenetically clustered at the higher elevation than the lower elevation. However, greater phylogenetic clustering (under dispersion) of AMF communities at the two elevations was positively correlated with above-ground biomass. Our results indicate that plant community composition and environmental filtering are the primary drivers structuring the AMF community. Phylogenetic relatedness may be important in explaining the function of AMF communities in alpine ecosystems.
Collapse
Affiliation(s)
- Xiaoliang Li
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China
- Key Laboratory of Crop Gene Resources and Germplasm Enhancement in Southern China, Ministry of Agriculture, Haikou, 571101, China
| | - Meng Xu
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China
| | - Xiaolin Li
- College of Resources and Environmental Sciences, Centre for Resources, Environment and Food Security, China Agricultural University, Beijing, 100193, China
| | - Peter Christie
- College of Resources and Environmental Sciences, Centre for Resources, Environment and Food Security, China Agricultural University, Beijing, 100193, China
| | - Cameron Wagg
- Fredericton Research and Development Center, Agriculture and Agri-Food Canada, Fredericton, New Brunswick, E3B4Z7, Canada
| | - Junling Zhang
- College of Resources and Environmental Sciences, Centre for Resources, Environment and Food Security, China Agricultural University, Beijing, 100193, China
| |
Collapse
|
24
|
Goldmann K, Boeddinghaus RS, Klemmer S, Regan KM, Heintz‐Buschart A, Fischer M, Prati D, Piepho H, Berner D, Marhan S, Kandeler E, Buscot F, Wubet T. Unraveling spatiotemporal variability of arbuscular mycorrhizal fungi in a temperate grassland plot. Environ Microbiol 2020; 22:873-888. [PMID: 31087598 PMCID: PMC7065148 DOI: 10.1111/1462-2920.14653] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2018] [Revised: 05/09/2019] [Accepted: 05/10/2019] [Indexed: 12/11/2022]
Abstract
Soils provide a heterogeneous environment varying in space and time; consequently, the biodiversity of soil microorganisms also differs spatially and temporally. For soil microbes tightly associated with plant roots, such as arbuscular mycorrhizal fungi (AMF), the diversity of plant partners and seasonal variability in trophic exchanges between the symbionts introduce additional heterogeneity. To clarify the impact of such heterogeneity, we investigated spatiotemporal variation in AMF diversity on a plot scale (10 × 10 m) in a grassland managed at low intensity in southwest Germany. AMF diversity was determined using 18S rDNA pyrosequencing analysis of 360 soil samples taken at six time points within a year. We observed high AMF alpha- and beta-diversity across the plot and at all investigated time points. Relationships were detected between spatiotemporal variation in AMF OTU richness and plant species richness, root biomass, minimal changes in soil texture and pH. The plot was characterized by high AMF turnover rates with a positive spatiotemporal relationship for AMF beta-diversity. However, environmental variables explained only ≈20% of the variation in AMF communities. This indicates that the observed spatiotemporal richness and community variability of AMF was largely independent of the abiotic environment, but related to plant properties and the cooccurring microbiome.
Collapse
Affiliation(s)
- Kezia Goldmann
- Department of Soil EcologyUFZ – Helmholtz Centre for Environmental ResearchTheodor‐Lieser‐Straße 4, 06120Halle (Saale)Germany
| | - Runa S. Boeddinghaus
- Department of Soil Biology, Institute of Soil Science and Land EvaluationUniversity of HohenheimEmil‐Wolff‐Straße 27, 70599StuttgartGermany
| | - Sandra Klemmer
- Department of Soil EcologyUFZ – Helmholtz Centre for Environmental ResearchTheodor‐Lieser‐Straße 4, 06120Halle (Saale)Germany
| | - Kathleen M. Regan
- Department of Soil Biology, Institute of Soil Science and Land EvaluationUniversity of HohenheimEmil‐Wolff‐Straße 27, 70599StuttgartGermany
- Ecosystems CenterMarine Biological Laboratory, 7 MBL Street, Woods Hole, MA, 02543, USA
| | - Anna Heintz‐Buschart
- Department of Soil EcologyUFZ – Helmholtz Centre for Environmental ResearchTheodor‐Lieser‐Straße 4, 06120Halle (Saale)Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle‐Jena‐LeipzigDeutscher Platz 5e, 04103LeipzigGermany
| | - Markus Fischer
- Institute of Plant Sciences and Botanical GardenUniversity of BernAltenbergrain 21, 3013BernSwitzerland
| | - Daniel Prati
- Institute of Plant Sciences and Botanical GardenUniversity of BernAltenbergrain 21, 3013BernSwitzerland
| | - Hans‐Peter Piepho
- Institute of Crop Science, Biostatistics UnitUniversity of HohenheimFruwirthstraße 23, 70599StuttgartGermany
| | - Doreen Berner
- Department of Soil Biology, Institute of Soil Science and Land EvaluationUniversity of HohenheimEmil‐Wolff‐Straße 27, 70599StuttgartGermany
| | - Sven Marhan
- Department of Soil Biology, Institute of Soil Science and Land EvaluationUniversity of HohenheimEmil‐Wolff‐Straße 27, 70599StuttgartGermany
| | - Ellen Kandeler
- Department of Soil Biology, Institute of Soil Science and Land EvaluationUniversity of HohenheimEmil‐Wolff‐Straße 27, 70599StuttgartGermany
| | - François Buscot
- Department of Soil EcologyUFZ – Helmholtz Centre for Environmental ResearchTheodor‐Lieser‐Straße 4, 06120Halle (Saale)Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle‐Jena‐LeipzigDeutscher Platz 5e, 04103LeipzigGermany
| | - Tesfaye Wubet
- Department of Soil EcologyUFZ – Helmholtz Centre for Environmental ResearchTheodor‐Lieser‐Straße 4, 06120Halle (Saale)Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle‐Jena‐LeipzigDeutscher Platz 5e, 04103LeipzigGermany
| |
Collapse
|
25
|
Pellegrino E, Gamper HA, Ciccolini V, Ercoli L. Forage Rotations Conserve Diversity of Arbuscular Mycorrhizal Fungi and Soil Fertility. Front Microbiol 2020; 10:2969. [PMID: 31998261 PMCID: PMC6962183 DOI: 10.3389/fmicb.2019.02969] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 12/09/2019] [Indexed: 01/07/2023] Open
Abstract
In the Mediterranean, long-term impact of typical land uses on soil fertility have not been quantified yet on replicated mixed crop-livestock farms and considering the variability of soil texture. Here, we report the effects, after 15 years of practice, of two legume-winter cereal rotations, olive orchards and vineyards on microbiological and chemical indicators of soil fertility and the communities of arbuscular mycorrhizal fungi (AMF). We compare the changes among these four agricultural land-use types to woodland reference sites. Root colonization by AMF of English ryegrass (Lolium perenne L.), a grass that occurred under all land use types, was only half as heavy in biannual berseem clover (Trifolium alexandrinum L.)-winter cereal rotations than in 4-year alfalfa (Medicago sativa L.)-winter cereal rotations. In olive (Olea europaea L.) orchards and vineyards (Vitis vinifera L.), where weeds are controlled by frequent surface tillage, the AMF root colonization of ryegrass was again much lower than in the legume-cereal rotations and at the woodland reference sites. All the microbial parameters and soil organic carbon correlated most strongly with differences in occurrence and relative abundance (β-diversity) of AMF genera in soil. The soil pH and mineral nutrients in soil strongly correlated with differences in AMF root colonization and AMF genus richness (α-diversity) in soil. Diversity of AMF was much less affected by soil texture than land use, while the opposite was true for microbial and chemical soil fertility indicators. Land uses that guaranteed a continuous ground cover of herbaceous plants and that involved only infrequent tillage, such as multiyear alfalfa-winter cereal rotation, allowed members of the AMF genus Scutellospora to persist and remain abundant. On the contrary, under land uses accompanied by frequent tillage and hence discontinuous presence of herbaceous plants, such as tilled olive orchard and vineyard, members of the genus Funneliformis dominated. These results suggest that multiyear alfalfa-winter cereal rotation with active plant growth throughout the year is the least detrimental agricultural land use in soil carbon and AMF abundance and diversity, relative to the woodland reference.
Collapse
Affiliation(s)
- Elisa Pellegrino
- Institute of Life Sciences, Scuola Superiore Sant’Anna, Pisa, Italy
| | - Hannes A. Gamper
- Institute of Life Sciences, Scuola Superiore Sant’Anna, Pisa, Italy
| | | | - Laura Ercoli
- Institute of Life Sciences, Scuola Superiore Sant’Anna, Pisa, Italy
| |
Collapse
|
26
|
Šmilauer P, Košnar J, Kotilínek M, Šmilauerová M. Contrasting effects of host identity, plant community, and local species pool on the composition and colonization levels of arbuscular mycorrhizal fungal community in a temperate grassland. THE NEW PHYTOLOGIST 2020; 225:461-473. [PMID: 31408907 DOI: 10.1111/nph.16112] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Accepted: 08/06/2019] [Indexed: 06/10/2023]
Abstract
Arbuscular mycorrhizal fungi (AMFs) are important plant symbionts, but we know little about the effects of plant taxonomic identity or functional group on the AMF community composition. To examine the effects of the surrounding plant community, of the host, and of the AMF pool on the AMF community in plant roots, we manipulated plant community composition in a long-term field experiment. Within four types of manipulated grassland plots, seedlings of eight grassland plant species were planted for 12 wk, and AMFs in their roots were quantified. Additionally, we characterized the AMF community of individual plots (as their AMF pool) and quantified plot abiotic conditions. The largest determinant of AMF community composition was the pool of available AMFs, varying at metre scale due to changing soil conditions. The second strongest predictor was the host functional group. The differences between grasses and dicotyledonous forbs in AMF community variation and diversity were much larger than the differences among species within those groups. High cover of forbs in the surrounding plant community had a strong positive effect on AMF colonization intensity in grass hosts. Using a manipulative field experiment enabled us to demonstrate direct causal effects of plant host and surrounding vegetation.
Collapse
Affiliation(s)
- Petr Šmilauer
- Faculty of Science, University of South Bohemia, Branišovská 1760, 370 05, České Budějovice, Czech Republic
| | - Jiří Košnar
- Faculty of Science, University of South Bohemia, Branišovská 1760, 370 05, České Budějovice, Czech Republic
| | - Milan Kotilínek
- Faculty of Science, University of South Bohemia, Branišovská 1760, 370 05, České Budějovice, Czech Republic
| | - Marie Šmilauerová
- Faculty of Science, University of South Bohemia, Branišovská 1760, 370 05, České Budějovice, Czech Republic
| |
Collapse
|
27
|
Carrillo-Saucedo SM, Gavito ME. Resilience of soil aggregation and exocellular enzymatic functions associated with arbuscular mycorrhizal fungal communities along a successional gradient in a tropical dry forest. MYCORRHIZA 2020; 30:109-120. [PMID: 31836908 DOI: 10.1007/s00572-019-00928-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 11/20/2019] [Indexed: 06/10/2023]
Abstract
Arbuscular mycorrhizal (AM) fungi are well-known contributors to soil aggregation and nutrient cycling functions, but we still know little about their capacity to resist or recover from persistent disturbance. Rangeland management may deteriorate these functions by affecting the activity of soil biota, including AM fungi, among other consequences. If affected, some soil properties show recovery when management stops and natural regeneration is allowed. We conducted an experiment to evaluate if the functions related to soil aggregation and promotion of exocellular enzymatic activities associated with AM fungal communities had been affected by rangeland management and, if they had, whether they recovered with successional time when management stopped. AM fungal communities from ten sites with different successional ages in a tropical dry forest region were inoculated to the same host growing in pots divided by mesh into a plant compartment and an AM mycelium compartment. We examined soil stable aggregates fractions and enzymatic activities produced or promoted by AM fungi. Soil aggregation changed significantly only after the study had run for 3 years, was higher in the hyphosphere than in the root compartment, and showed a low but positive relation with the successional age of the communities. The activity of phosphatase, but not casein-protease and beta-glucosidase, increased with successional age. Therefore, soil aggregation and enzyme activities associated with AM fungal communities seemed resilient because casein-protease and beta-glucosidase were unchanged, and aggregation and phosphatase were reduced by rangeland management but recovered with successional time.
Collapse
Affiliation(s)
- Silvia Margarita Carrillo-Saucedo
- Instituto de Investigaciones en Ecosistemas y Sustentabilidad, Universidad Nacional Autónoma de México, Antigua Carretera a Pátzcuaro No. 8701, Col. Exhacienda San José de la Huerta, C.P. 58190, Morelia, Michoacán, Mexico
| | - Mayra E Gavito
- Instituto de Investigaciones en Ecosistemas y Sustentabilidad, Universidad Nacional Autónoma de México, Antigua Carretera a Pátzcuaro No. 8701, Col. Exhacienda San José de la Huerta, C.P. 58190, Morelia, Michoacán, Mexico.
| |
Collapse
|
28
|
Paymaneh Z, Sarcheshmehpour M, Bukovská P, Jansa J. Could indigenous arbuscular mycorrhizal communities be used to improve tolerance of pistachio to salinity and/or drought? Symbiosis 2019. [DOI: 10.1007/s13199-019-00645-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
29
|
Haug I, Setaro S, Suárez JP. Species composition of arbuscular mycorrhizal communities changes with elevation in the Andes of South Ecuador. PLoS One 2019; 14:e0221091. [PMID: 31419262 PMCID: PMC6697372 DOI: 10.1371/journal.pone.0221091] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Accepted: 07/30/2019] [Indexed: 12/24/2022] Open
Abstract
Arbuscular mycorrhizal fungi (AMF) are the most prominent mycobionts of plants in the tropics, yet little is known about their diversity, species compositions and factors driving AMF distribution patterns. To investigate whether elevation and associated vegetation type affect species composition, we sampled 646 mycorrhizal samples in locations between 1000 and 4000 m above sea level (masl) in the South of Ecuador. We estimated diversity, distribution and species compositions of AMF by cloning and Sanger sequencing the 18S rDNA (the section between AML1 and AML2) and subsequent derivation of fungal OTUs based on 99% sequence similarity. In addition, we analyzed the phylogenetic structure of the sites by computing the mean pairwise distance (MPD) and the mean nearest taxon difference (MNTD) for each elevation level. It revealed that AMF species compositions at 1000 and 2000 masl differ from 3000 and 4000 masl. Lower elevations (1000 and 2000 masl) were dominated by members of Glomeraceae, whereas Acaulosporaceae were more abundant in higher elevations (3000 and 4000 masl). Ordination of OTUs with respect to study sites revealed a correlation to elevation with a continuous turnover of species from lower to higher elevations. Most of the abundant OTUs are not endemic to South Ecuador. We also found a high proportion of rare OTUs at all elevations: 79-85% of OTUs occurred in less than 5% of the samples. Phylogenetic community analysis indicated clustering and evenness for most elevation levels indicating that both, stochastic processes and habitat filtering are driving factors of AMF community compositions.
Collapse
Affiliation(s)
- Ingeborg Haug
- Evolutionary Ecology of Plants, Eberhard-Karls-University, Tübingen, Germany
| | - Sabrina Setaro
- Department of Biology, Wake Forest University, Winston-Salem, North Carolina, United States of America
| | - Juan Pablo Suárez
- Departamento de Ciencias Biológicas, Universidad Técnica Particular de Loja, Loja, Ecuador
| |
Collapse
|
30
|
Montesinos-Navarro A, Valiente-Banuet A, Verdú M. Processes underlying the effect of mycorrhizal symbiosis on plant-plant interactions. FUNGAL ECOL 2019. [DOI: 10.1016/j.funeco.2018.05.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
31
|
Harmon LJ, Andreazzi CS, Débarre F, Drury J, Goldberg EE, Martins AB, Melián CJ, Narwani A, Nuismer SL, Pennell MW, Rudman SM, Seehausen O, Silvestro D, Weber M, Matthews B. Detecting the macroevolutionary signal of species interactions. J Evol Biol 2019; 32:769-782. [DOI: 10.1111/jeb.13477] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 03/26/2019] [Accepted: 04/04/2019] [Indexed: 02/04/2023]
Affiliation(s)
- Luke J. Harmon
- Department of Fish Ecology and Evolution, Center for Ecology, Evolution and Biogeochemistry Eawag Kastanienbaum Switzerland
- Department of Biological Sciences University of Idaho Moscow Idaho
| | | | - Florence Débarre
- Sorbonne Université, UPMC Univ Paris 06, CNRS, IRD, INRA, Université Paris Diderot, Institute of Ecology and Environmental Sciences (UMR7618) Paris France
| | | | - Emma E. Goldberg
- Department of Ecology, Evolution and Behavior University of Minnesota Saint Paul Minnesota
| | - Ayana B. Martins
- Department of Fish Ecology and Evolution, Center for Ecology, Evolution and Biogeochemistry Eawag Kastanienbaum Switzerland
- Instituto de Física ‘Gleb Wataghin’ Universidade Estadual de Campinas Campinas Brazil
| | - Carlos J. Melián
- Department of Fish Ecology and Evolution, Center for Ecology, Evolution and Biogeochemistry Eawag Kastanienbaum Switzerland
| | - Anita Narwani
- Department of Aquatic Ecology Swiss Federal Institute of Aquatic Science and Technology Eawag Dübendorf Switzerland
| | - Scott L. Nuismer
- Department of Biological Sciences University of Idaho Moscow Idaho
| | - Matthew W. Pennell
- Department of Zoology and Biodiversity Research Centre University of British Columbia Vancouver British Columbia
| | - Seth M. Rudman
- Department of Biology University of Pennsylvania Philadelphia Pennsylvania
| | - Ole Seehausen
- Department of Fish Ecology and Evolution, Center for Ecology, Evolution and Biogeochemistry Eawag Kastanienbaum Switzerland
- Institute of Ecology and Evolution University of Bern Bern Switzerland
| | - Daniele Silvestro
- Department of Biological and Environmental Sciences Global Gothenburg Biodiversity Centre University of Gothenburg Gothenburg Sweden
| | - Marjorie Weber
- Department of Plant Biology & Program in Ecology, Evolution, and Behavior Michigan State University East Lansing Michigan
| | - Blake Matthews
- Department of Fish Ecology and Evolution, Center for Ecology, Evolution and Biogeochemistry Eawag Kastanienbaum Switzerland
- Aquatic Ecology and Evolution, Institute of Ecology and Evolution University of Bern Bern Switzerland
| |
Collapse
|
32
|
Hontoria C, García-González I, Quemada M, Roldán A, Alguacil MM. The cover crop determines the AMF community composition in soil and in roots of maize after a ten-year continuous crop rotation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 660:913-922. [PMID: 30743976 DOI: 10.1016/j.scitotenv.2019.01.095] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 01/09/2019] [Accepted: 01/09/2019] [Indexed: 05/06/2023]
Abstract
Intensive agricultural practices are responsible for soil biological degradation. By stimulating indigenous arbuscular mycorrhizal fungi (AMF), cover cropping enhances soil health and promotes agroecosystem sustainability. Still, the legacy effects of cover crops (CCs) and the major factors driving the AM fungal community are not well known; neither is the influence of the specific CC. This work describes a field experiment established in Central Spain to test the effect of replacing winter fallow by barley (Hordeum vulgare L.) or vetch (Vicia sativa L.) during the intercropping of maize (Zea mays L.). We examined the community composition of the AMF in the roots and rhizosphere soil associated with the subsequent cash crop after 10 years of cover cropping, using Illumina technology. The multivariate analysis showed that the AMF communities under the barley treatment differed significantly from those under fallow, whereas no legacy effect of the vetch CC was detected. Soil organic carbon, electrical conductivity, pH, Ca and microbial biomass carbon were identified as major factors shaping soil AMF communities. Specific AMF taxa were found to play a role in plant uptake of P, Fe, Zn, Mn, and Cd, which may shed light on the functionality of these taxa. In our conditions, the use of barley as a winter CC appears to be an appropriate choice with respect to promotion of AMF populations and biological activity in agricultural soils with intercropping systems. However, more research on CC species and their legacy effect on the microbial community composition and functionality are needed to guide decisions in knowledge-based agriculture.
Collapse
Affiliation(s)
- C Hontoria
- Department of Agricultural Production, Universidad Politécnica de Madrid, Avda. Puerta de Hierro, n° 2-4, 28040 Madrid, Spain
| | - I García-González
- Department of Agricultural Production, Universidad Politécnica de Madrid, Avda. Puerta de Hierro, n° 2-4, 28040 Madrid, Spain
| | - M Quemada
- Department of Agricultural Production, Universidad Politécnica de Madrid, Avda. Puerta de Hierro, n° 2-4, 28040 Madrid, Spain; Centro de Estudios e Investigación para la Gestión de Riesgos Agrarios y Medioambientales, CEIGRAM-UPM, Senda del Rey 13, 28040 Madrid, Spain
| | - A Roldán
- Department of Soil and Water Conservation, CSIC-Centro de Edafología y Biología Aplicada del Segura, P.O. Box 164, Campus de Espinardo, 30100 Murcia, Spain
| | - M M Alguacil
- Soil Microbiology and Symbiotic Systems Department, Estación Experimental del Zaidín, CSIC, Profesor Albareda 1, Granada 18008, Spain; Department of Soil and Water Conservation, CSIC-Centro de Edafología y Biología Aplicada del Segura, P.O. Box 164, Campus de Espinardo, 30100 Murcia, Spain.
| |
Collapse
|
33
|
Matthews A, Pierce S, Hipperson H, Raymond B. Rhizobacterial Community Assembly Patterns Vary Between Crop Species. Front Microbiol 2019; 10:581. [PMID: 31019492 PMCID: PMC6458290 DOI: 10.3389/fmicb.2019.00581] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Accepted: 03/06/2019] [Indexed: 02/01/2023] Open
Abstract
Currently our limited understanding of crop rhizosphere community assembly hinders attempts to manipulate it beneficially. Variation in root communities has been attributed to plant host effects, soil type, and plant condition, but it is hard to disentangle the relative importance of soil and host without experimental manipulation. To examine the effects of soil origin and host plant on root associated bacterial communities we experimentally manipulated four crop species in split-plot mesocosms and surveyed variation in bacterial diversity by Illumina amplicon sequencing. Overall, plant species had a greater impact than soil type on community composition. While plant species associated with different Operational Taxonomic Units (OTUs) in different soils, plants tended to recruit bacteria from similar, higher order, taxonomic groups in different soils. However, the effect of soil on root-associated communities varied between crop species: Onion had a relatively invariant bacterial community while other species (maize and pea) had a more variable community structure. Dynamic communities could result from environment specific recruitment, differential bacterial colonization or reflect broader symbiont host range; while invariant community assembly implies tighter evolutionary or ecological interactions between plants and root-associated bacteria. Irrespective of mechanism, it appears both communities and community assembly rules vary between crop species.
Collapse
Affiliation(s)
- Andrew Matthews
- College of Life and Environmental Sciences, University of Exeter, Penryn, United Kingdom.,Department of Life Sciences, Imperial College London, Ascot, United Kingdom
| | - Sarah Pierce
- Department of Life Sciences, Imperial College London, Ascot, United Kingdom.,School of Life Sciences, University of Nottingham, Nottingham, United Kingdom
| | - Helen Hipperson
- Department of Life Sciences, Imperial College London, Ascot, United Kingdom.,Department of Animal and Plant Sciences, P3 Institute for Plant and Soil Biology, The University of Sheffield, Sheffield, United Kingdom
| | - Ben Raymond
- College of Life and Environmental Sciences, University of Exeter, Penryn, United Kingdom.,Department of Life Sciences, Imperial College London, Ascot, United Kingdom
| |
Collapse
|
34
|
Lovera M, Cuenca G, Lau P, Mavárez J. Ecology and Biogeography of Arbuscular Mycorrhizal Fungi Belonging to the Family Gigasporaceae in La Gran Sabana Region (Guayana Shield), Venezuela. Fungal Biol 2019. [DOI: 10.1007/978-3-030-15228-4_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
35
|
Powell JR, Rillig MC. Biodiversity of arbuscular mycorrhizal fungi and ecosystem function. THE NEW PHYTOLOGIST 2018; 220:1059-1075. [PMID: 29603232 DOI: 10.1111/nph.15119] [Citation(s) in RCA: 174] [Impact Index Per Article: 24.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2017] [Accepted: 02/19/2018] [Indexed: 05/22/2023]
Abstract
Contents Summary 1059 I. Introduction: pathways of influence and pervasiveness of effects 1060 II. AM fungal richness effects on ecosystem functions 1062 III. Other dimensions of biodiversity 1062 IV. Back to basics - primary axes of niche differentiation by AM fungi 1066 V. Functional diversity of AM fungi - a role for biological stoichiometry? 1067 VI. Past, novel and future ecosystems 1068 VII. Opportunities and the way forward 1071 Acknowledgements 1072 References 1072 SUMMARY: Arbuscular mycorrhizal (AM) fungi play important functional roles in ecosystems, including the uptake and transfer of nutrients, modification of the physical soil environment and alteration of plant interactions with other biota. Several studies have demonstrated the potential for variation in AM fungal diversity to also affect ecosystem functioning, mainly via effects on primary productivity. Diversity in these studies is usually characterized in terms of the number of species, unique evolutionary lineages or complementary mycorrhizal traits, as well as the ability of plants to discriminate among AM fungi in space and time. However, the emergent outcomes of these relationships are usually indirect, and thus context dependent, and difficult to predict with certainty. Here, we advocate a fungal-centric view of AM fungal biodiversity-ecosystem function relationships that focuses on the direct and specific links between AM fungal fitness and consequences for their roles in ecosystems, especially highlighting functional diversity in hyphal resource economics. We conclude by arguing that an understanding of AM fungal functional diversity is fundamental to determine whether AM fungi have a role in the exploitation of marginal/novel environments (whether past, present or future) and highlight avenues for future research.
Collapse
Affiliation(s)
- Jeff R Powell
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW, 2751, Australia
| | - Matthias C Rillig
- Freie Universität Berlin, Institut für Biologie, Altensteinstr. 6, D-14195, Berlin, Germany
- Berlin-Brandenburg Institute of Advanced Biodiversity Research, D-14195, Berlin, Germany
| |
Collapse
|
36
|
Li X, Xu M, Christie P, Li X, Zhang J. Large elevation and small host plant differences in the arbuscular mycorrhizal communities of montane and alpine grasslands on the Tibetan Plateau. MYCORRHIZA 2018; 28:605-619. [PMID: 29961129 DOI: 10.1007/s00572-018-0850-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 06/22/2018] [Indexed: 06/08/2023]
Abstract
Understanding the diversity and community structure of arbuscular mycorrhizal fungi (AMF) in extreme conditions is fundamental to predict the occurrence and evolution of either symbiotic partner in alpine ecosystems. We investigated the AMF associations of three plant species at elevations ranging between 3105 and 4556 m a.s.l. on Mount Segrila on the Tibetan Plateau. Three of four locations were studied in two consecutive years. The AMF diversity and community composition in the roots of Carex pseudofoetida, Pennisetum centrasiaticum, and Fragaria moupinensis differed little. However, at high elevations, the abundance of members of Acaulosporaceae increased relative to that of Glomeraceae. Plants at lower elevation sites, where Glomeraceae predominated as root symbionts, had higher leaf nitrogen and phosphorus concentrations than plants at higher elevation sites, where Acaulosporaceae predominated. The overall phylogenetic relatedness of the AMF increased with increasing elevation. This suggests that abiotic filtering may play an important role in the structuring of symbiotic AMF communities along elevational gradients. The functional role of Acaulosporaceae whose relative abundance was found to increase with elevation in alpine environments needs to be clarified in future studies.
Collapse
Affiliation(s)
- Xiaoliang Li
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences / Key Laboratory of Crop Gene Resources and Germplasm Enhancement in Southern China, Ministry of Agriculture, Danzhou, 571700, Hainan, People's Republic of China.
| | - Meng Xu
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China
| | - Peter Christie
- College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China
| | - Xiaolin Li
- College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China
| | - Junling Zhang
- College of Resources and Environmental Sciences, Centre for Resources, Environment and Food Security, China Agricultural University, Beijing, 100193, China
| |
Collapse
|
37
|
House GL, Bever JD. Disturbance reduces the differentiation of mycorrhizal fungal communities in grasslands along a precipitation gradient. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2018; 28:736-748. [PMID: 29314434 DOI: 10.1002/eap.1681] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 11/22/2017] [Accepted: 12/11/2017] [Indexed: 05/14/2023]
Abstract
Given that mycorrhizal fungi play key roles in shaping plant communities, greater attention should be focused on factors that determine the composition of mycorrhizal fungal communities and their sensitivity to anthropogenic disturbance. We investigate changes in arbuscular mycorrhizal (AM) fungal community composition across a precipitation gradient in North American grasslands as well as changes occurring with varying degrees of site disturbance that have resulted in invasive plant establishment. We find strong differentiation of AM fungal communities in undisturbed remnant grasslands across the precipitation gradient, whereas communities in disturbed grasslands were more homogeneous. These changes in community differentiation with disturbance are consistent with more stringent environmental filtering of AM fungal communities in undisturbed sites that may also be promoted by more rigid functional constraints imposed on AM fungi by the native plant communities in these areas. The AM fungal communities in eastern grasslands were particularly sensitive to anthropogenic disturbance, with disturbed sites having low numbers of AM fungal operational taxonomic units (OTUs) commonly found in undisturbed sites, and also the proliferation of AM fungal OTUs in disturbed sites. This proliferation of AM fungi in eastern disturbed sites coincided with increased soil phosphorus availability and is consistent with evidence suggesting the fungi represented by these OTUs would provide reduced benefits to native plants. The differentiation of AM fungal communities along the precipitation gradient in undisturbed grasslands but not in disturbed sites is consistent with AM fungi aiding plant adaptation to climate, and suggests they may be especially important targets for conservation and restoration in order to help maintain or re-establish diverse grassland plant communities.
Collapse
Affiliation(s)
- Geoffrey L House
- Department of Biology, Indiana University, 1001 East Third Street, Bloomington, Indiana, 47405, USA
| | - James D Bever
- Department of Ecology and Evolutionary Biology and Kansas Biological Survey, The University of Kansas, 2041 Haworth Hall, 1200 Sunnyside Avenue, Lawrence, Kansas, 66045, USA
| |
Collapse
|
38
|
Arbuscular mycorrhizal fungal spore communities of a tropical dry forest ecosystem show resilience to land-use change. FUNGAL ECOL 2018. [DOI: 10.1016/j.funeco.2017.11.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
39
|
López-García Á, Varela-Cervero S, Vasar M, Öpik M, Barea JM, Azcón-Aguilar C. Plant traits determine the phylogenetic structure of arbuscular mycorrhizal fungal communities. Mol Ecol 2017; 26:6948-6959. [DOI: 10.1111/mec.14403] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Revised: 10/09/2017] [Accepted: 10/16/2017] [Indexed: 01/08/2023]
Affiliation(s)
- Álvaro López-García
- Department of Soil Microbiology and Symbiotic Systems; Estación Experimental del Zaidín; CSIC; Granada Spain
| | - Sara Varela-Cervero
- Department of Soil Microbiology and Symbiotic Systems; Estación Experimental del Zaidín; CSIC; Granada Spain
| | - Martti Vasar
- Department of Botany; University of Tartu; Tartu Estonia
| | - Maarja Öpik
- Department of Botany; University of Tartu; Tartu Estonia
| | - José M. Barea
- Department of Soil Microbiology and Symbiotic Systems; Estación Experimental del Zaidín; CSIC; Granada Spain
| | - Concepción Azcón-Aguilar
- Department of Soil Microbiology and Symbiotic Systems; Estación Experimental del Zaidín; CSIC; Granada Spain
| |
Collapse
|
40
|
Hart MM, Antunes PM, Chaudhary VB, Abbott LK. Fungal inoculants in the field: Is the reward greater than the risk? Funct Ecol 2017. [DOI: 10.1111/1365-2435.12976] [Citation(s) in RCA: 120] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
41
|
Janoušková M, Krak K, Vosátka M, Püschel D, Štorchová H. Inoculation effects on root-colonizing arbuscular mycorrhizal fungal communities spread beyond directly inoculated plants. PLoS One 2017; 12:e0181525. [PMID: 28738069 PMCID: PMC5524347 DOI: 10.1371/journal.pone.0181525] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Accepted: 07/03/2017] [Indexed: 12/18/2022] Open
Abstract
Inoculation with arbuscular mycorrhizal fungi (AMF) may improve plant performance at disturbed sites, but inoculation may also suppress root colonization by native AMF and decrease the diversity of the root-colonizing AMF community. This has been shown for the roots of directly inoculated plants, but little is known about the stability of inoculation effects, and to which degree the inoculant and the inoculation-induced changes in AMF community composition spread into newly emerging seedlings that were not in direct contact with the introduced propagules. We addressed this topic in a greenhouse experiment based on the soil and native AMF community of a post-mining site. Plants were cultivated in compartmented pots with substrate containing the native AMF community, where AMF extraradical mycelium radiating from directly inoculated plants was allowed to inoculate neighboring plants. The abundances of the inoculated isolate and of native AMF taxa were monitored in the roots of the directly inoculated plants and the neighboring plants by quantitative real-time PCR. As expected, inoculation suppressed root colonization of the directly inoculated plants by other AMF taxa of the native AMF community and also by native genotypes of the same species as used for inoculation. In the neighboring plants, high abundance of the inoculant and the suppression of native AMF were maintained. Thus, we demonstrate that inoculation effects on native AMF propagate into plants that were not in direct contact with the introduced inoculum, and are therefore likely to persist at the site of inoculation.
Collapse
Affiliation(s)
- Martina Janoušková
- Institute of Botany, The Czech Academy of Sciences, Průhonice, Czech Republic
| | - Karol Krak
- Institute of Botany, The Czech Academy of Sciences, Průhonice, Czech Republic
| | - Miroslav Vosátka
- Institute of Botany, The Czech Academy of Sciences, Průhonice, Czech Republic
| | - David Püschel
- Institute of Botany, The Czech Academy of Sciences, Průhonice, Czech Republic
| | - Helena Štorchová
- Institute of Experimental Botany, The Czech Academy of Sciences, Praha, Czech Republic
| |
Collapse
|
42
|
Salazar D, Jaramillo MA, Marquis RJ. Chemical similarity and local community assembly in the species rich tropical genus Piper. Ecology 2017; 97:3176-3183. [PMID: 27870051 DOI: 10.1002/ecy.1536] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Revised: 03/30/2016] [Accepted: 05/12/2016] [Indexed: 11/06/2022]
Abstract
Community ecologists have strived to find mechanisms that mediate the assembly of natural communities. Recent evidence suggests that natural enemies could play an important role in the assembly of hyper-diverse tropical plant systems. Classic ecological theory predicts that in order for coexistence to occur, species differences must be maximized across biologically important niche dimensions. For plant-herbivore interactions, it has been recently suggested that, within a particular community, plant species that maximize the difference in chemical defense profiles compared to neighboring taxa will have a relative competitive advantage. Here we tested the hypothesis that plant chemical diversity can affect local community composition in the hyper-diverse genus Piper at a lowland wet forest location in Costa Rica. We first characterized the chemical composition of 27 of the most locally abundant species of Piper. We then tested whether species with different chemical compositions were more likely to coexist. Finally, we assessed the degree to which Piper phylogenetic relationships are related to differences in secondary chemical composition and community assembly. We found that, on average, co-occurring species were more likely to differ in chemical composition than expected by chance. Contrary to expectations, there was no phylogenetic signal for overall secondary chemical composition. In addition we found that species in local communities were, on average, more phylogenetically closely related than expected by chance, suggesting that functional traits other than those measured here also influence local assembly. We propose that selection by herbivores for divergent chemistries between closely related species facilitates the coexistence of a high diversity of congeneric taxa via apparent competition.
Collapse
Affiliation(s)
- Diego Salazar
- Department of Integrative Biology, University of California-Berkeley, 1005 Valley Life Sciences Building #3140, Berkeley, California, 94720-3140, USA.,Department of Biology and the Whitney R. Harris World Ecology Center, University of Missouri-St. Louis, St. Louis, Missouri, 63121, USA
| | | | - Robert J Marquis
- Department of Biology and the Whitney R. Harris World Ecology Center, University of Missouri-St. Louis, St. Louis, Missouri, 63121, USA
| |
Collapse
|
43
|
Delavaux CS, Camenzind T, Homeier J, Jiménez-Paz R, Ashton M, Queenborough SA. Nutrient enrichment effects on mycorrhizal fungi in an Andean tropical montane Forest. MYCORRHIZA 2017; 27:311-319. [PMID: 27924430 DOI: 10.1007/s00572-016-0749-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Accepted: 11/21/2016] [Indexed: 06/06/2023]
Abstract
Nitrogen (N) and phosphorus (P) deposition are increasing worldwide largely due to increased fertilizer use and fossil fuel combustion. Most work with N and P deposition in natural ecosystems has focused on temperate, highly industrialized, regions. Tropical regions are becoming more developed, releasing large amounts of these nutrients into the atmosphere. Nutrient enrichment in nutrient-poor systems such as tropical montane forest can represent a relatively large shift in nutrient availability, especially for sensitive microorganisms such as arbuscular mycorrhizal fungi (AMF). These symbiotic fungi are particularly critical, given their key role in ecosystem processes affecting plant community structure and function.To better understand the consequences of nutrient deposition in plant communities, a long-term nutrient addition experiment was set up in a tropical montane forest in the Andes of southern Ecuador. In this study, we investigated the impacts of 7 years of elevated N and P on AMF root colonization potential (AMF-RCP) through a greenhouse bait plant method in which we quantified root colonization. We also examined the relationship between AMF-RCP and rarefied tree diversity.After 7 years of nutrient addition, AMF-RCP was negatively correlated with soil P, positively correlated with soil N, and positively correlated with rarefied tree diversity. Our results show that AMF in this tropical montane forest are directly affected by soil N and P concentrations, but may also be indirectly impacted by shifts in rarefied tree diversity. Our research also highlights the need to fully understand the benefits and drawbacks of using different sampling methods (e.g., AMF-RCP versus direct root sampling) to robustly examine AMF-plant interactions in the future.
Collapse
Affiliation(s)
- Camille S Delavaux
- Yale School of Forestry and Environmental Studies, Yale University, 195 Prospect St, New Haven, CT, 06511, USA.
- Ecology and Evolutionary Biology, University of Kansas, Room 9, Takeru Higuchi Hall, Lawrence, KS, 66047, USA.
| | - Tessa Camenzind
- Institute of Biology, Freie Universität Berlin, Altensteinstr. 6, 14195, Berlin, Germany
- Berlin- Brandenburg Institute of Advanced Biodiversity Research, Plant Ecology, 14195, Berlin, Germany
| | - Jürgen Homeier
- Albrecht von Haller Institute of Plant Sciences, University of Göttingen, Untere Karspüle 2, 37073, Göttingen, Germany
| | - Rosa Jiménez-Paz
- Laboratorio de Ecología de Plantas, Escuela de Ciencias Biológicas, Pontificia Universidad Católica del Ecuador, Av. 12 de octubre 1076 y Roca, Apdo. 17-01-2184, Quito, Ecuador
| | - Mark Ashton
- Yale School of Forestry and Environmental Studies, Yale University, 195 Prospect St, New Haven, CT, 06511, USA
| | - Simon A Queenborough
- Yale School of Forestry and Environmental Studies, Yale University, 195 Prospect St, New Haven, CT, 06511, USA
| |
Collapse
|
44
|
Pena R, Lang C, Lohaus G, Boch S, Schall P, Schöning I, Ammer C, Fischer M, Polle A. Phylogenetic and functional traits of ectomycorrhizal assemblages in top soil from different biogeographic regions and forest types. MYCORRHIZA 2017; 27:233-245. [PMID: 27885418 DOI: 10.1007/s00572-016-0742-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Accepted: 10/28/2016] [Indexed: 05/05/2023]
Abstract
Ectomycorrhizal (EM) fungal taxonomic, phylogenetic, and trait diversity (exploration types) were analyzed in beech and conifer forests along a north-to-south gradient in three biogeographic regions in Germany. The taxonomic community structures of the ectomycorrhizal assemblages in top soil were influenced by stand density and forest type, by biogeographic environmental factors (soil physical properties, temperature, and precipitation), and by nitrogen forms (amino acids, ammonium, and nitrate). While α-diversity did not differ between forest types, β-diversity increased, leading to higher γ-diversity on the landscape level when both forest types were present. The highest taxonomic diversity of EM was found in forests in cool, moist climate on clay and silty soils and the lowest in the forests in warm, dry climate on sandy soils. In the region with higher taxonomic diversity, phylogenetic clustering was found, but not trait clustering. In the warm region, trait clustering occurred despite neutral phylogenetic effects. These results suggest that different forest types and favorable environmental conditions in forests promote high EM species richness in top soil presumably with both high functional diversity and phylogenetic redundancy, while stressful environmental conditions lead to lower species richness and functional redundancy.
Collapse
Affiliation(s)
- Rodica Pena
- Forstbotanik und Baumphysiologie, Büsgen-Institut, Georg-August Universität Göttingen, Büsgenweg 2, 37077, Göttingen, Germany
| | - Christa Lang
- Forstbotanik und Baumphysiologie, Büsgen-Institut, Georg-August Universität Göttingen, Büsgenweg 2, 37077, Göttingen, Germany
- Faculty of Communication and Environment, Rhine-Waal University of Applied Science, Friedrich-Heinrich-Allee 24, 47475, Kamp-Lintfort, Germany
| | - Gertrud Lohaus
- Forstbotanik und Baumphysiologie, Büsgen-Institut, Georg-August Universität Göttingen, Büsgenweg 2, 37077, Göttingen, Germany
- Bergische Universität Wuppertal, Molekulare Pflanzenforschung/Pflanzenbiochemie, Gaußstr. 20, 42119, Wuppertal, Germany
| | - Steffen Boch
- Institute of Plant Sciences and Botanical Garden, University of Bern, Altenbergrain 21, 3013, Bern, Switzerland
| | - Peter Schall
- Waldbau und Waldökologie der gemäßigten Zonen, Burkhard Institut, Georg-August Universität Göttingen, Büsgenweg 1, 37077, Göttingen, Germany
| | - Ingo Schöning
- Max-Planck-Institute for Biogeochemistry, Department Biogeochemical Processes, Hans-Knöll-Str. 10, 07745, Jena, Germany
| | - Christian Ammer
- Waldbau und Waldökologie der gemäßigten Zonen, Burkhard Institut, Georg-August Universität Göttingen, Büsgenweg 1, 37077, Göttingen, Germany
| | - Markus Fischer
- Institute of Plant Sciences and Botanical Garden, University of Bern, Altenbergrain 21, 3013, Bern, Switzerland
| | - Andrea Polle
- Forstbotanik und Baumphysiologie, Büsgen-Institut, Georg-August Universität Göttingen, Büsgenweg 2, 37077, Göttingen, Germany.
| |
Collapse
|
45
|
Egan CP, Callaway RM, Hart MM, Pither J, Klironomos J. Phylogenetic structure of arbuscular mycorrhizal fungal communities along an elevation gradient. MYCORRHIZA 2017; 27:273-282. [PMID: 27909817 DOI: 10.1007/s00572-016-0752-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2016] [Accepted: 11/23/2016] [Indexed: 06/06/2023]
Abstract
Despite the importance of arbuscular mycorrhizal (AM) fungi within terrestrial ecosystems, we know little about how natural AM fungal communities are structured. To date, the majority of studies examining AM fungal community diversity have focused on single habitats with similar environmental conditions, with relatively few studies having assessed the diversity of AM fungi over large-scale environmental gradients. In this study, we characterized AM fungal communities in the soil along a high-elevation gradient in the North American Rocky Mountains. We focused on phylogenetic patterns of AM fungal communities to gain insight into how AM fungal communities are naturally assembled. We found that alpine AM fungal communities had lower phylogenetic diversity relative to lower elevation communities, as well as being more heterogeneous in composition than either treeline or subalpine communities. AM fungal communities were phylogenetically clustered at all elevations sampled, suggesting that environmental filtering, either selection by host plants or fungal niches, is the primary ecological process structuring communities along the gradient.
Collapse
Affiliation(s)
- Cameron P Egan
- Department of Biology, University of British Columbia, Okanagan campus, 3333 University Way, Kelowna, BC, V1V 1V7, Canada.
| | - Ragan M Callaway
- Division of Biological Sciences and the Institute on Ecosystems, University of Montana, Missoula, MT, 59812, USA
| | - Miranda M Hart
- Department of Biology, University of British Columbia, Okanagan campus, 3333 University Way, Kelowna, BC, V1V 1V7, Canada
| | - Jason Pither
- Department of Biology, University of British Columbia, Okanagan campus, 3333 University Way, Kelowna, BC, V1V 1V7, Canada
| | - John Klironomos
- Department of Biology, University of British Columbia, Okanagan campus, 3333 University Way, Kelowna, BC, V1V 1V7, Canada
| |
Collapse
|
46
|
Kia SH, Glynou K, Nau T, Thines M, Piepenbring M, Maciá-Vicente JG. Influence of phylogenetic conservatism and trait convergence on the interactions between fungal root endophytes and plants. THE ISME JOURNAL 2017; 11:777-790. [PMID: 27801904 PMCID: PMC5322293 DOI: 10.1038/ismej.2016.140] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Revised: 08/26/2016] [Accepted: 09/05/2016] [Indexed: 01/27/2023]
Abstract
Plants associate through their roots with fungal assemblages that impact their abundance and productivity. Non-mycorrhizal endophytes constitute an important component of such fungal diversity, but their implication in ecosystem processes is little known. Using a selection of 128 root-endophytic strains, we defined functional groups based on their traits and plant interactions with potential to predict community assembly and symbiotic association processes. In vitro tests of the strains' interactions with Arabidopsis thaliana, Microthlaspi erraticum and Hordeum vulgare showed a net negative effect of fungal colonization on plant growth. The effects partly depended on the phylogenetic affiliation of strains, but also varied considerably depending on the plant-strain combination. The variation was partly explained by fungal traits shared by different lineages, like growth rates or melanization. The origin of strains also affected their symbioses, with endophytes isolated from Microthlaspi spp. populations being more detrimental to M. erraticum than strains from other sources. Our findings suggest that plant-endophyte associations are subject to local processes of selection, in which particular combinations of symbionts are favored across landscapes. We also show that different common endophytic taxa have differential sets of traits found to affect interactions, hinting to a functional complementarity that can explain their frequent co-existence in natural communities.
Collapse
Affiliation(s)
- Sevda Haghi Kia
- Institute of Ecology, Evolution and Diversity, Goethe University Frankfurt, Frankfurt am Main, Germany
- Integrative Fungal Research Cluster (IPF), Frankfurt am Main, Germany
| | - Kyriaki Glynou
- Institute of Ecology, Evolution and Diversity, Goethe University Frankfurt, Frankfurt am Main, Germany
- Integrative Fungal Research Cluster (IPF), Frankfurt am Main, Germany
| | - Thomas Nau
- Institute of Ecology, Evolution and Diversity, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Marco Thines
- Institute of Ecology, Evolution and Diversity, Goethe University Frankfurt, Frankfurt am Main, Germany
- Integrative Fungal Research Cluster (IPF), Frankfurt am Main, Germany
- Biodiversity and Climate Research Centre (BiK-F), Senckenberg Gesellschaft für Naturforschung, Frankfurt am Main, Germany
| | - Meike Piepenbring
- Institute of Ecology, Evolution and Diversity, Goethe University Frankfurt, Frankfurt am Main, Germany
- Integrative Fungal Research Cluster (IPF), Frankfurt am Main, Germany
| | - Jose G Maciá-Vicente
- Institute of Ecology, Evolution and Diversity, Goethe University Frankfurt, Frankfurt am Main, Germany
- Integrative Fungal Research Cluster (IPF), Frankfurt am Main, Germany
| |
Collapse
|
47
|
Gomes SIF, Aguirre‐Gutiérrez J, Bidartondo MI, Merckx VSFT. Arbuscular mycorrhizal interactions of mycoheterotrophic Thismia are more specialized than in autotrophic plants. THE NEW PHYTOLOGIST 2017; 213:1418-1427. [PMID: 27739593 PMCID: PMC5248637 DOI: 10.1111/nph.14249] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Accepted: 09/05/2016] [Indexed: 05/30/2023]
Abstract
In general, plants and arbuscular mycorrhizal (AM) fungi exchange photosynthetically fixed carbon for soil nutrients, but occasionally nonphotosynthetic plants obtain carbon from AM fungi. The interactions of these mycoheterotrophic plants with AM fungi are suggested to be more specialized than those of green plants, although direct comparisons are lacking. We investigated the mycorrhizal interactions of both green and mycoheterotrophic plants. We used next-generation DNA sequencing to compare the AM communities from roots of five closely related mycoheterotrophic species of Thismia (Thismiaceae), roots of surrounding green plants, and soil, sampled over the entire temperate distribution of Thismia in Australia and New Zealand. We observed that the fungal communities of mycoheterotrophic and green plants are phylogenetically more similar within than between these groups of plants, suggesting a specific association pattern according to plant trophic mode. Moreover, mycoheterotrophic plants follow a more restricted association with their fungal partners in terms of phylogenetic diversity when compared with green plants, targeting more clustered lineages of fungi, independent of geographic origin. Our findings demonstrate that these mycoheterotrophic plants target more narrow lineages of fungi than green plants, despite the larger fungal pool available in the soil, and thus they are more specialized towards mycorrhizal fungi than autotrophic plants.
Collapse
Affiliation(s)
- Sofia I. F. Gomes
- Naturalis Biodiversity Centerpostbus 9517Leiden2300 RAthe Netherlands
- Institute of Environmental Sciences (CML)University of Leidenpostbus 9500Leiden2300 RAthe Netherlands
| | - Jesús Aguirre‐Gutiérrez
- Naturalis Biodiversity Centerpostbus 9517Leiden2300 RAthe Netherlands
- Institute for Biodiversity and Ecosystem Dynamics (IBED)Computational Geo‐EcologyUniversity of AmsterdamScience Park 904Amsterdam1098 HXthe Netherlands
| | - Martin I. Bidartondo
- Department of Life SciencesImperial College LondonLondonSW7 2AZUK
- Royal Botanic Gardens, KewRichmondSurreyTW9 3DSUK
| | | |
Collapse
|
48
|
Gorzelak MA, Pickles BJ, Hart MM. Exploring the symbiont diversity of ancient western redcedars: arbuscular mycorrhizal fungi of long-lived hosts. Mol Ecol 2017; 26:1586-1597. [PMID: 28099772 DOI: 10.1111/mec.14023] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2016] [Revised: 12/26/2016] [Accepted: 01/03/2017] [Indexed: 11/28/2022]
Abstract
Arbuscular mycorrhizal fungi (AMF) are globally distributed, monophyletic root symbionts with ancient origins. Their contribution to carbon cycling and nutrient dynamics is ecologically important, given their obligate association with over 70% of vascular plant species. Current understanding of AMF species richness and community structure is based primarily on studies of grasses, herbs and agricultural crops, typically in disturbed environments. Few studies have considered AMF interactions with long-lived woody perennial species in undisturbed ecosystems. Here we examined AMF communities associated with roots and soils of young, mature and old western redcedar (Thuja plicata) at two sites in the old-growth temperate rainforests of British Columbia. Due to the unique biology of AMF, community richness and structure were assessed using a conservative, clade-based approach. We found 91 AMF OTUs across all samples, with significantly greater AMF richness in the southern site, but no differences in richness along the host chronosequence at either site. All host age classes harboured AMF communities that were overdispersed (more different to each other than expected by chance), with young tree communities most resembling old tree communities. A comparison with similar clade richness data obtained from the literature indicates that western redcedar AMF communities are as rich as those of grasses, tropical trees and palms. Our examination of undisturbed temperate old-growth rainforests suggests that priority effects, rather than succession, are an important aspect of AMF community assembly in this ecosystem.
Collapse
Affiliation(s)
- Monika A Gorzelak
- Department of Forest and Conservation Science, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Brian J Pickles
- School of Biological Sciences, University of Reading, Harborne Building, Whiteknights, Reading, RG6 8AS, UK
| | - Miranda M Hart
- Department of Biology, University of British Columbia Okanagan, Kelowna, BC, V1V 1V7, Canada
| |
Collapse
|
49
|
Kivlin SN, Muscarella R, Hawkes CV, Treseder KK. The Predictive Power of Ecological Niche Modeling for Global Arbuscular Mycorrhizal Fungal Biogeography. BIOGEOGRAPHY OF MYCORRHIZAL SYMBIOSIS 2017. [DOI: 10.1007/978-3-319-56363-3_7] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
50
|
Stanescu S, Maherali H. Arbuscular mycorrhizal fungi alter the competitive hierarchy among old-field plant species. Oecologia 2016; 183:479-491. [DOI: 10.1007/s00442-016-3771-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Accepted: 11/05/2016] [Indexed: 11/30/2022]
|