1
|
Dasi S, Naab TJ, Kwabi-Addo B, Apprey V, Beyene D, Dewitty RL, Nagel S, Williams R, Bolden K, Hayes-Dixon A, Shokrani B, Stewart DA, Kassim OO, Copeland RL, Kanaan YM. Methylation of ESRα Promoters in Benign Breast Tumors Could Be a Signature for Progression to Breast Cancer in African American Women. Cancer Genomics Proteomics 2025; 22:208-230. [PMID: 39993808 PMCID: PMC11880923 DOI: 10.21873/cgp.20497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 01/20/2025] [Accepted: 01/22/2025] [Indexed: 02/26/2025] Open
Abstract
BACKGROUND/AIM Methylation in the estrogen receptor alpha (ESRα) promoter is an epigenetic abnormality associated with breast cancer (BCa), whereas hypermethylation results in the loss of ER expression. MATERIALS AND METHODS Pyrosequencing was used to investigate a potential link between aberrant methylation in the P0/P1 promoters of ESRα and the risk of progression of benign fibrocystic and fibroadenoma tumors to BCa. RESULTS Results showed a significantly elevated level of DNA methylation in ESRα P1 promoter (p=0.0001) in fibroadenoma compared to ER-negative BCa tumors and a two-fold increased ESRα expression in fibrocystic and fibroadenoma benign tissues. In addition, methylation levels of HIN-1 and RASSF1A promoters were elevated in ER-positive compared to ER-negative BCa (p-value<0.04). ANOVA Mixed Model revealed significantly higher methylation levels in the promoter of RASSF1A for fibroadenoma and ER-positive BCa (p=0.004) compared to ER-negative BCa. Tumors with unclassified molecular subtypes (ER-positive, PR-negative, HER2-negative) had elevated levels of methylation (p=0.046) in the P0 promoter compared with luminal B (ER-positive, PR-positive, HER2-positive) tumors. Grade 3 tumors showed a borderline association with ESRα P1 promoter methylation when compared with grade 2 tumors (p=0.056). CONCLUSION ESRα P0 promoter hypermethylation may occur in the early stages of breast carcinogenesis, while P1 promoter methylation appears in later stages with a poor prognosis. Therefore, methylation of the ESRα promoter and other tumor-related genes could serve as a potential biomarker for predicting fibroadenoma progression risk to BCa.
Collapse
Affiliation(s)
- Sylvia Dasi
- Howard University Cancer Center, Howard University, Washington, DC, U.S.A
| | | | - Bernard Kwabi-Addo
- Department of Biochemistry and Molecular Biology, Howard University College of Medicine, Howard University, Washington, DC, U.S.A
| | - Victor Apprey
- Howard University Cancer Center, Howard University, Washington, DC, U.S.A
| | - Desta Beyene
- Howard University Cancer Center, Howard University, Washington, DC, U.S.A
| | - Robert L Dewitty
- Department of Surgery, Howard University Hospital, Washington, DC, U.S.A
| | - Steven Nagel
- Department of Surgery, Howard University Hospital, Washington, DC, U.S.A
| | - Robin Williams
- Department of Surgery, Howard University Hospital, Washington, DC, U.S.A
| | - Kelly Bolden
- Department of Surgery, Howard University Hospital, Washington, DC, U.S.A
| | - Andrea Hayes-Dixon
- Department of Surgery, Howard University Hospital, Washington, DC, U.S.A
| | - Babak Shokrani
- Department of Pathology, Howard University Hospital, Washington, DC, U.S.A
| | - Delisha A Stewart
- Department of Microbiology, Howard University College of Medicine, Howard University, Washington, DC, U.S.A
| | - Olakunle O Kassim
- Department of Microbiology, Howard University College of Medicine, Howard University, Washington, DC, U.S.A
| | - Robert L Copeland
- Department of Pharmacology, Howard University College of Medicine, Howard University, Washington, DC, U.S.A
| | - Yasmine M Kanaan
- Howard University Cancer Center, Howard University, Washington, DC, U.S.A.;
- Department of Microbiology, Howard University College of Medicine, Howard University, Washington, DC, U.S.A
| |
Collapse
|
2
|
Kooragayala K, Wang M, Spitz FJ, Gandhi TV, Dibato J, Hong YK. Unmasking Disparities in Gallbladder Cancer Outcomes in the Disaggregated Asian American Population. Ann Surg Oncol 2024; 31:8699-8711. [PMID: 39259371 PMCID: PMC11549147 DOI: 10.1245/s10434-024-16168-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 08/23/2024] [Indexed: 09/13/2024]
Abstract
BACKGROUND Gallbladder cancer (GBC) is associated with a high mortality rate. Asian American (AsA) are among the fastest-growing populations in the United States, yet little is known about the disparity of GBC within this cohort. This study identified trends in treatment and outcomes for GBC in a disaggregated fashion, specifically for this population. METHODS A retrospective analysis of the National Cancer Database (NCDB) between 2010 and 2019 examining all patients treated for gallbladder cancer was performed. Basic demographic factors were identified for patients of Caucasian, African American, and disaggregated Asian subpopulations. Survival curves were used to identify differences in median overall survival, and a multivariate analysis was performed to determine which factors impact overall survival. RESULTS A total of 1317 (5%) patients were of AsA origin. Median survival for the overall AsA population is 15.1 months compared with Caucasian (11.5 months) and African Americans (11.4 months) (p < 0.0001). Within the AsA groups, the Korean subpopulation had the lowest survival at 12.6 months, whereas Filipinos had the longest survival at 19.1 months (p < 0.0001). Patients of Filipino descent had the highest rate of surgical resection but lower chemotherapy utilization. Conversely, Korean patients had the highest utilization of multimodality therapy. Multivariate analysis demonstrated that belonging to Chinese, Filipino, or Indian ethnicity was associated with decreased risk of mortality. CONCLUSIONS There are disparate differences in survival for patients with GBC between AsA groups. Socioeconomic, genetic, and epigenetic factors may influence these differences. Further research is needed to delineate the causes of this disparity.
Collapse
Affiliation(s)
| | - Michael Wang
- Department of Surgery, Cooper University Hospital, Camden, NJ, USA
| | - Francis J Spitz
- Department of Surgery, Cooper University Hospital, Camden, NJ, USA
| | | | - John Dibato
- Cooper Medical School of Rowan University, Camden, NJ, USA
| | - Young Ki Hong
- Department of Surgery, Cooper University Hospital, Camden, NJ, USA.
- Cooper Medical School of Rowan University, Camden, NJ, USA.
| |
Collapse
|
3
|
Maleknia M, Ahmadirad N, Golab F, Katebi Y, Haj Mohamad Ebrahim Ketabforoush A. DNA Methylation in Cancer: Epigenetic View of Dietary and Lifestyle Factors. Epigenet Insights 2023; 16:25168657231199893. [PMID: 37720354 PMCID: PMC10504848 DOI: 10.1177/25168657231199893] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 08/22/2023] [Indexed: 09/19/2023] Open
Abstract
Background Alterations in DNA methylation play an important role in cancer development and progression. Dietary nutrients and lifestyle behaviors can influence DNA methylation patterns and thereby modulate cancer risk. Introduction To comprehensively review available evidence on how dietary and lifestyle factors impact DNA methylation and contribute to carcinogenesis through epigenetic mechanisms. Materials and methods A literature search was conducted using PubMed to identify relevant studies published between 2005 and 2022 that examined relationships between dietary/lifestyle factors and DNA methylation in cancer. Studies investigating the effects of dietary components (eg, micronutrients, phytochemicals), physical activity, smoking, and obesity on global and gene-specific DNA methylation changes in animal and human cancer models were included. Data on specific dietary/lifestyle exposures, cancer types, DNA methylation targets and underlying mechanisms were extracted. Results Multiple dietary and lifestyle factors were found to influence DNA methylation patterns through effects on DNA methyltransferase activity, methyl donor availability, and generation of oxidative stress. Altered methylation of specific genes regulating cell proliferation, apoptosis, and inflammation were linked to cancer development and progression. Conclusion Dietary and lifestyle interventions aimed at modulating DNA methylation have potential for both cancer prevention and treatment through epigenetic mechanisms. Further research is needed to identify actionable targets for nutrition and lifestyle-based epigenetic therapies.
Collapse
Affiliation(s)
- Mohsen Maleknia
- Noorgene Genetic & Clinical Laboratory, Molecular Research Center, Ahvaz, Iran
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Nooshin Ahmadirad
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Fereshteh Golab
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Yasmina Katebi
- Faculty of Life Sciences and Biotechnology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | |
Collapse
|
4
|
Chen J, Higgins MJ, Hu Q, Khoury T, Liu S, Ambrosone CB, Gong Z. DNA methylation differences in noncoding regions in ER negative breast tumors between Black and White women. Front Oncol 2023; 13:1167815. [PMID: 37293596 PMCID: PMC10244512 DOI: 10.3389/fonc.2023.1167815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 05/09/2023] [Indexed: 06/10/2023] Open
Abstract
Introduction Incidence of estrogen receptor (ER)-negative breast cancer, an aggressive tumor subtype associated with worse prognosis, is higher among African American/Black women than other US racial and ethnic groups. The reasons for this disparity remain poorly understood but may be partially explained by differences in the epigenetic landscape. Methods We previously conducted genome-wide DNA methylation profiling of ER- breast tumors from Black and White women and identified a large number of differentially methylated loci (DML) by race. Our initial analysis focused on DML mapping to protein-coding genes. In this study, motivated by increasing appreciation for the biological importance of the non-protein coding genome, we focused on 96 DMLs mapping to intergenic and noncoding RNA regions, using paired Illumina Infinium Human Methylation 450K array and RNA-seq data to assess the relationship between CpG methylation and RNA expression of genes located up to 1Mb away from the CpG site. Results Twenty-three (23) DMLs were significantly correlated with the expression of 36 genes (FDR<0.05), with some DMLs associated with the expression of single gene and others associated with more than one gene. One DML (cg20401567), hypermethylated in ER- tumors from Black versus White women, mapped to a putative enhancer/super-enhancer element located 1.3 Kb downstream of HOXB2. Increased methylation at this CpG correlated with decreased expression of HOXB2 (Rho=-0.74, FDR<0.001) and other HOXB/HOXB-AS genes. Analysis of an independent set of 207 ER- breast cancers from TCGA similarly confirmed hypermethylation at cg20401567 and reduced HOXB2 expression in tumors from Black versus White women (Rho=-0.75, FDR<0.001). Discussion Our findings indicate that epigenetic differences in ER- tumors between Black and White women are linked to altered gene expression and may hold functional significance in breast cancer pathogenesis.
Collapse
Affiliation(s)
- Jianhong Chen
- Department of Cancer Prevention and Control, Roswell Park Comprehensive Cancer Center, Buffalo, NY, United States
| | - Michael J. Higgins
- Department of Molecular and Cellular Biology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, United States
| | - Qiang Hu
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, United States
| | - Thaer Khoury
- Department of Pathology & Laboratory Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, NY, United States
| | - Song Liu
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, United States
| | - Christine B. Ambrosone
- Department of Cancer Prevention and Control, Roswell Park Comprehensive Cancer Center, Buffalo, NY, United States
| | - Zhihong Gong
- Department of Cancer Prevention and Control, Roswell Park Comprehensive Cancer Center, Buffalo, NY, United States
| |
Collapse
|
5
|
Racial Disparity in Quadruple Negative Breast Cancer: Aggressive Biology and Potential Therapeutic Targeting and Prevention. Cancers (Basel) 2022; 14:cancers14184484. [PMID: 36139643 PMCID: PMC9497140 DOI: 10.3390/cancers14184484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 09/08/2022] [Accepted: 09/13/2022] [Indexed: 12/02/2022] Open
Abstract
Simple Summary Quadruple negative breast cancer (QNBC), a subgroup of triple negative BC, has emerged as a highly aggressive BC subtype that disproportionately afflicts and impacts Black/African-American (AA) women. In this article, we review molecular distinctions in Black/AA and White/European-American (EA) QNBC biology as well as address potential non-genetic risk factors that could be underlying this racially disparate burden. We aim to provide deeper insight and provide a framework for novel discovery of actionable therapeutic targets and identify lifestyle changes to improve outcomes for Black/AA QNBC patients. Abstract Black/African-American (AA) women, relative to their White/European-American (EA) counterparts, experience disproportionately high breast cancer mortality. Central to this survival disparity, Black/AA women have an unequal burden of aggressive breast cancer subtypes, such as triple-negative breast cancer (ER/PR-, HER2-wild type; TNBC). While TNBC has been well characterized, recent studies have identified a highly aggressive androgen receptor (AR)-negative subtype of TNBC, quadruple-negative breast cancer (ER/PR-, HER2-wildtype, AR-; QNBC). Similar to TNBC, QNBC disproportionately impacts Black/AA women and likely plays an important role in the breast cancer survival disparities experienced by Black/AA women. Here, we discuss the racial disparities of QNBC and molecular signaling pathways that may contribute to the aggressive biology of QNBC in Black/AA women. Our immediate goal is to spotlight potential prevention and therapeutic targets for Black/AA QNBC; ultimately our goal is to provide greater insight into reducing the breast cancer survival burden experienced by Black/AA women.
Collapse
|
6
|
Saadatmand F, Abbas M, Apprey V, Tailor K, Kwabi-Addo B. Sex differences in saliva-based DNA methylation changes and environmental stressor in young African American adults. PLoS One 2022; 17:e0273717. [PMID: 36067197 PMCID: PMC9447871 DOI: 10.1371/journal.pone.0273717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 08/02/2022] [Indexed: 11/21/2022] Open
Abstract
BACKGROUND Low socioeconomic status neighborhood exposure to stress and violence may be sources of negative stimuli that poses significant health risks for children, adolescents and throughout the life course of an individual. The study aims to investigate if aberrant epigenetic DNA methylation changes may be a potential mechanism for regulating neighborhood exposures and health outcomes. METHODS Exposure to environmental stressors identified in 98 young African American (AA) adults aged 18-25 years old from the Washington D.C., area were used in the study. We correlated the association between stress markers; cortisol, CRP, IgG, IGA, IgM, and self-reported exposure to violence and stress, with quantitative DNA methylation changes in a panel of gene-specific loci using saliva DNA. RESULTS In all participants studied, the exposure to violence was significant and negatively correlated with DNA methylation of MST1R loci (p = 0.032; r = -0.971) and nominally significant with NR3C1 loci (p = 0.053; r = -0.948). In addition, we observed significant and negative correlation of DNA methylation changes of LINE1 (p = 0.044; r = -0.248); NR3C1 (p = 0.017; r = -0.186); MSTR1 (p = 0.022; r = -0.192); and DRD2 (p = 0.056; r = -0.184; albeit nominal significant correlation) with IgA expression. On the other hand, we observed a significant and position correlation of DNA methylation changes in DRD2 (p = 0.037; r = 0.184) with IgG expression. When participants were stratified by sex, we observed in AA young male adults, significant DNA methylation changes of MST1R (p< 0.05) and association with exposure to violence and IgG level. We also observed significant DNA methylation levels of DRD2 (p< 0.05) and association with IgA, IgG, and cortisol level. Furthermore, we observed significant DNA methylation changes of NR3C1 (p< 0.05) with stress, IgA, and IgG in the male participants only. On the other hand, we only observed significant and a positive association of IgG with DNA methylation levels of ESR1 (p = 0.041) in the young AA female participants. CONCLUSION Our preliminary observation of significant DNA methylation changes in neuronal and immune genes in saliva samples supports our recently published genome-wide DNA methylations changes in blood samples from young AA male adults indicating that saliva offers a non-invasive means for DNA methylation prediction of exposure to environmental stressors in a gender-specific manner.
Collapse
Affiliation(s)
- Forough Saadatmand
- Department of Pediatrics, Howard University, Washington, D.C., United States of America
| | - Muneer Abbas
- Department of Microbiology & The National Human Genome Center, Howard University, Washington, D.C., United States of America
| | - Victor Apprey
- Department of Biochemistry and Molecular Biology, College of Medicine, Howard University, Washington, D.C., United States of America
| | - Krishma Tailor
- Department of Biochemistry and Molecular Biology, College of Medicine, Howard University, Washington, D.C., United States of America
| | - Bernard Kwabi-Addo
- Department of Biochemistry and Molecular Biology, College of Medicine, Howard University, Washington, D.C., United States of America
- * E-mail:
| |
Collapse
|
7
|
Joshi S, Garlapati C, Aneja R. Epigenetic Determinants of Racial Disparity in Breast Cancer: Looking beyond Genetic Alterations. Cancers (Basel) 2022; 14:cancers14081903. [PMID: 35454810 PMCID: PMC9025441 DOI: 10.3390/cancers14081903] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 04/03/2022] [Accepted: 04/04/2022] [Indexed: 12/10/2022] Open
Abstract
Simple Summary A substantial disparity in breast cancer incidence and mortality exists between African American (AA) and European American (EA) women. However, the basis for these disparities is poorly understood. In this article, we describe that gene–environment interactions mediated through epigenetic modifications may play a significant role in racial disparities in BC incidence and outcomes. Our in silico analyses and an in-depth literature survey suggest that there exists a significant difference in epigenetic patterns between AA and EA women with breast cancer. Herein, we describe the environmental factors that contribute to these epigenetic changes, which may underlie the disparate racial burden in patients with breast cancer. We suggest that AA women with higher basal epigenetic changes, may have higher pre-disposition to cancer onset, and an aggressive disease course. Pre-existing racial differences in epigenetic profiles of breast tissues raises the possibility of examining these profiles for early diagnosis. Abstract Breast cancer (BC) is the most commonly diagnosed cancer in women. Despite advancements in BC screening, prevention, and treatment, BC incidence and mortality remain high among African American (AA) women. Compared with European American (EA) women, AA women tend to be diagnosed with more advanced and aggressive tumors and exhibit worse survival outcomes. Most studies investigating the determinants of racial disparities in BC have focused on genetic factors associated with African ancestry. However, various environmental and social stressors over an individual’s life course can also shape racial stratification in BC. These social and environmental exposures result in long-term changes in gene expression mediated by epigenetic mechanisms. Epigenetics is often portrayed as an intersection of socially patterned stress and genetic expression. The enduring nature of epigenetic changes makes them suitable for studying the effects of different environmental exposures over an individual’s life course on gene expression. The role of differential social and environmental exposures in racial disparities in BC suggests varied epigenetic profiles or signatures associated with specific BC subtypes in AA and EA women. These epigenetic profiles in EA and AA women could be used as biomarkers for early BC diagnosis and disease prognosis and may prove valuable for the development of targeted therapies for BC. This review article discusses the current state of knowledge regarding epigenetic differences between AA and EA women with BC. We also discuss the role of socio-environmental factors, including psychosocial stress, environmental toxicants, and dietary factors, in delineating the different epigenetic profiles in AA and EA patients with BC.
Collapse
Affiliation(s)
- Shriya Joshi
- Department of Biology, Georgia State University, Atlanta, GA 30303, USA; (S.J.); (C.G.)
| | | | - Ritu Aneja
- Department of Biology, Georgia State University, Atlanta, GA 30303, USA; (S.J.); (C.G.)
- Department of Clinical and Diagnostics Sciences, School of Health Professions, University of Alabama at Birmingham, Birmingham, AL 35294, USA
- Correspondence: or
| |
Collapse
|
8
|
Martin CL, Ghastine L, Lodge EK, Dhingra R, Ward-Caviness CK. Understanding Health Inequalities Through the Lens of Social Epigenetics. Annu Rev Public Health 2022; 43:235-254. [PMID: 35380065 PMCID: PMC9584166 DOI: 10.1146/annurev-publhealth-052020-105613] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Longstanding racial/ethnic inequalities in morbidity and mortality persist in the United States. Although the determinants of health inequalities are complex, social and structural factors produced by inequitable and racialized systems are recognized as contributing sources. Social epigenetics is an emerging area of research that aims to uncover biological pathways through which social experiences affect health outcomes. A growing body of literature links adverse social exposures to epigenetic mechanisms, namely DNA methylation, offering a plausible pathway through which health inequalities may arise. This review provides an overview of social epigenetics and highlights existing literature linking social exposures-i.e., psychosocial stressors, racism, discrimination, socioeconomic position, and neighborhood social environment-to DNA methylation in humans. We conclude with a discussion of social epigenetics as a mechanistic link to health inequalities and provide suggestions for future social epigenetics research on health inequalities.
Collapse
Affiliation(s)
- Chantel L Martin
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA;
- Carolina Population Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Lea Ghastine
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA;
| | - Evans K Lodge
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA;
- Carolina Population Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Radhika Dhingra
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Institute of Environmental Health Solutions, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Cavin K Ward-Caviness
- Center for Public Health and Environmental Assessment, US Environmental Protection Agency, Chapel Hill, North Carolina, USA
| |
Collapse
|
9
|
Keith SW, Kwabi-Addo B, Zeigler-Johnson C. Interactions Between Obesity and One-Carbon Metabolism Genes in Predicting Prostate Cancer Outcomes Among White and Black Patients. J Racial Ethn Health Disparities 2022; 9:305-314. [PMID: 33432479 DOI: 10.1007/s40615-020-00958-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 12/26/2020] [Accepted: 12/28/2020] [Indexed: 12/31/2022]
Abstract
BACKGROUND One-carbon metabolism genes are linked to several cancers, but the association with prostate cancer (PCa) is less clear. Studies examining the relationship have not accounted for obesity, a risk factor for advanced PCa and altered methylation patterns. We hypothesized that obesity could moderate the association between one-carbon metabolism genes and PCa outcomes. METHODS We conducted secondary data analyses of the Study of Clinical Outcomes, Risk and Ethnicity. Obesity was included as a primary exposure and modifier (interacting with genetic polymorphisms) in the analytic models. We used logistic regression to determine associations of common one-carbon metabolism genotypes with odds of high stage (T3/T4) and high grade (Gleason score ≥ 7). We used Cox regression to examine associations of genotypes with biochemical recurrence. RESULTS There were 808 patients (632 White and 176 Black.) Among White men, we observed associations of TCN2_R259P with increased odds of high stage (OR = 0.64, 95% CI = 0.41-1.00), but no significant interactions with obesity. Among Black men, the SCL19A1_61bpdel and CBS_68bpINS variants were associated with high grade (OR = 2.61, 95% CI = 1.39-4.89 and OR = 0.29, 95% CI = 0.09-0.91, respectively.) Both the CBS_68bpINS and MTHFR_E429A variants interacted with obesity in Black men, where the highest risk for biochemical failure and odds of high grade, respectively, occurred among obese patients with variants. CONCLUSIONS We observed associations of one-carbon metabolism genes with different associations by race. We also observed interactions with obesity related to PCa outcomes in Black men only. Therefore, the involvement of one-carbon metabolism on PCa was dependent upon obesity status for Black men. These novel results could help identify patients that might benefit from effective weight management targeting one-carbon metabolism effects.
Collapse
Affiliation(s)
- Scott W Keith
- Division of Biostatistics, Department of Pharmacology and Experimental Therapeutics, Thomas Jefferson University, Philadelphia, PA, USA
| | - Bernard Kwabi-Addo
- Department of Biochemistry and Molecular Biology, Howard University, Washington, DC, USA
| | - Charnita Zeigler-Johnson
- Division of Population Science, Department of Medical Oncology, Thomas Jefferson University, Suite 314, 834 Chestnut Street, Philadelphia, PA, 19107, USA.
| |
Collapse
|
10
|
Patel A, García-Closas M, Olshan AF, Perou CM, Troester MA, Love MI, Bhattacharya A. Gene-Level Germline Contributions to Clinical Risk of Recurrence Scores in Black and White Patients with Breast Cancer. Cancer Res 2022; 82:25-35. [PMID: 34711612 PMCID: PMC8732329 DOI: 10.1158/0008-5472.can-21-1207] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 09/30/2021] [Accepted: 10/25/2021] [Indexed: 01/09/2023]
Abstract
Continuous risk of recurrence scores (CRS) based on tumor gene expression are vital prognostic tools for breast cancer. Studies have shown that Black women (BW) have higher CRS than White women (WW). Although systemic injustices contribute substantially to breast cancer disparities, evidence of biological and germline contributions is emerging. In this study, we investigated germline genetic associations with CRS and CRS disparity using approaches modeled after transcriptome-wide association studies (TWAS). In the Carolina Breast Cancer Study, using race-specific predictive models of tumor expression from germline genetics, we performed race-stratified (N = 1,043 WW, 1,083 BW) linear regressions of three CRS (ROR-S: PAM50 subtype score; proliferation score; ROR-P: ROR-S plus proliferation score) on imputed tumor genetically regulated tumor expression (GReX). Bayesian multivariate regression and adaptive shrinkage tested GReX-prioritized genes for associations with tumor PAM50 expression and subtype to elucidate patterns of germline regulation underlying GReX-CRS associations. At FDR-adjusted P < 0.10, 7 and 1 GReX prioritized genes among WW and BW, respectively. Among WW, CRS were positively associated with MCM10, FAM64A, CCNB2, and MMP1 GReX and negatively associated with VAV3, PCSK6, and GNG11 GReX. Among BW, higher MMP1 GReX predicted lower proliferation score and ROR-P. GReX-prioritized gene and PAM50 tumor expression associations highlighted potential mechanisms for GReX-prioritized gene to CRS associations. Among patients with breast cancer, differential germline associations with CRS were found by race, underscoring the need for larger, diverse datasets in molecular studies of breast cancer. These findings also suggest possible germline trans-regulation of PAM50 tumor expression, with potential implications for CRS interpretation in clinical settings. SIGNIFICANCE: This study identifies race-specific genetic associations with breast cancer risk of recurrence scores and suggests mediation of these associations by PAM50 subtype and expression, with implications for clinical interpretation of these scores.
Collapse
Affiliation(s)
- Achal Patel
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina-Chapel Hill, Chapel Hill, North Carolina
| | - Montserrat García-Closas
- Division of Cancer Epidemiology and Genetics, NCI, Bethesda, Maryland
- Division of Genetics and Epidemiology, Institute of Cancer Research, London, United Kingdom
| | - Andrew F Olshan
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina-Chapel Hill, Chapel Hill, North Carolina
- Lineberger Comprehensive Cancer Center, University of North Carolina-Chapel Hill, Chapel Hill, North Carolina
| | - Charles M Perou
- Lineberger Comprehensive Cancer Center, University of North Carolina-Chapel Hill, Chapel Hill, North Carolina
- Department of Genetics, University of North Carolina-Chapel Hill, Chapel Hill, North Carolina
- Department of Pathology and Laboratory Medicine, University of North Carolina-Chapel Hill, Chapel Hill, North Carolina
| | - Melissa A Troester
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina-Chapel Hill, Chapel Hill, North Carolina
- Department of Pathology and Laboratory Medicine, University of North Carolina-Chapel Hill, Chapel Hill, North Carolina
| | - Michael I Love
- Department of Genetics, University of North Carolina-Chapel Hill, Chapel Hill, North Carolina
- Department of Biostatistics, Gillings School of Global Public Health, University of North Carolina-Chapel Hill, Chapel Hill, North Carolina
| | - Arjun Bhattacharya
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California-Los Angeles, Los Angeles, California.
- Institute for Quantitative and Computational Biosciences, David Geffen School of Medicine, University of California-Los Angeles, Los Angeles, Carolina
| |
Collapse
|
11
|
Salas LA, Peres LC, Thayer ZM, Smith RWA, Guo Y, Chung W, Si J, Liang L. A transdisciplinary approach to understand the epigenetic basis of race/ethnicity health disparities. Epigenomics 2021; 13:1761-1770. [PMID: 33719520 PMCID: PMC8579937 DOI: 10.2217/epi-2020-0080] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 04/07/2020] [Indexed: 11/21/2022] Open
Abstract
Health disparities correspond to differences in disease burden and mortality among socially defined population groups. Such disparities may emerge according to race/ethnicity, socioeconomic status and a variety of other social contexts, and are documented for a wide range of diseases. Here, we provide a transdisciplinary perspective on the contribution of epigenetics to the understanding of health disparities, with a special emphasis on disparities across socially defined racial/ethnic groups. Scientists in the fields of biological anthropology, bioinformatics and molecular epidemiology provide a summary of theoretical, statistical and practical considerations for conducting epigenetic health disparities research, and provide examples of successful applications from cancer research using this approach.
Collapse
Affiliation(s)
- Lucas A Salas
- Department of Epidemiology, Geisel School of Medicine, Dartmouth College, Lebanon, NH 03756, USA
| | - Lauren C Peres
- Department of Cancer Epidemiology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA
| | - Zaneta M Thayer
- Department of Anthropology, Dartmouth College, Hanover, NH 03755, USA
| | - Rick WA Smith
- Department of Anthropology, Dartmouth College, Hanover, NH 03755, USA
- The William H. Neukom Institute for Computational Science, Dartmouth College, Hanover, NH 03755, USA
| | | | - Wonil Chung
- Department of Statistics & Actuarial Science, Soongsil University, Seoul, 06478, Korea
- Program in Genetic Epidemiology & Statistical Genetics, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Jiahui Si
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
- Department of Biostatistics & Epidemiology, Peking University School of Public Health, Beijing, 100191, China
| | - Liming Liang
- Program in Genetic Epidemiology & Statistical Genetics, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| |
Collapse
|
12
|
Varghese RS, Barefoot ME, Jain S, Chen Y, Zhang Y, Alley A, Kroemer AH, Tadesse MG, Kumar D, Sherif ZA, Ressom HW. Integrative Analysis of DNA Methylation and microRNA Expression Reveals Mechanisms of Racial Heterogeneity in Hepatocellular Carcinoma. Front Genet 2021; 12:708326. [PMID: 34557219 PMCID: PMC8453167 DOI: 10.3389/fgene.2021.708326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 08/05/2021] [Indexed: 11/13/2022] Open
Abstract
Pathologic alterations in epigenetic regulation have long been considered a hallmark of many cancers, including hepatocellular carcinoma (HCC). In a healthy individual, the relationship between DNA methylation and microRNA (miRNA) expression maintains a fine balance; however, disruptions in this harmony can aid in the genesis of cancer or the propagation of existing cancers. The balance between DNA methylation and microRNA expression and its potential disturbance in HCC can vary by race. There is emerging evidence linking epigenetic events including DNA methylation and miRNA expression to cancer disparities. In this paper, we evaluate the epigenetic mechanisms of racial heterogenity in HCC through an integrated analysis of DNA methylation, miRNA, and combined regulation of gene expression. Specifically, we generated DNA methylation, mRNA-seq, and miRNA-seq data through the analysis of tumor and adjacent non-tumor liver tissues from African Americans (AA) and European Americans (EA) with HCC. Using mixed ANOVA, we identified cytosine-phosphate-guanine (CpG) sites, mRNAs, and miRNAs that are significantly altered in HCC vs. adjacent non-tumor tissue in a race-specific manner. We observed that the methylome was drastically changed in EA with a significantly larger number of differentially methylated and differentially expressed genes than in AA. On the other hand, the miRNA expression was altered to a larger extent in AA than in EA. Pathway analysis functionally linked epigenetic regulation in EA to processes involved in immune cell maturation, inflammation, and vascular remodeling. In contrast, cellular proliferation, metabolism, and growth pathways are found to predominate in AA as a result of this epigenetic analysis. Furthermore, through integrative analysis, we identified significantly differentially expressed genes in HCC with disparate epigenetic regulation, associated with changes in miRNA expression for AA and DNA methylation for EA.
Collapse
Affiliation(s)
- Rency S. Varghese
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, United States
| | - Megan E. Barefoot
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, United States
| | - Sidharth Jain
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, United States
| | - Yifan Chen
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, United States
| | - Yunxi Zhang
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, United States
| | - Amber Alley
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, United States
| | | | - Mahlet G. Tadesse
- Department of Mathematics and Statistics, Georgetown University, Washington, DC, United States
| | - Deepak Kumar
- Department of Pharmaceutical Sciences, North Carolina Central University, Durham, NC, United States
| | - Zaki A. Sherif
- Department of Biochemistry and Molecular Biology, College of Medicine, Howard University, Washington, DC, United States
| | - Habtom W. Ressom
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, United States
| |
Collapse
|
13
|
Gong Z, Chen J, Wang J, Liu S, Ambrosone CB, Higgins MJ. Differential methylation and expression patterns of microRNAs in relation to breast cancer subtypes among American women of African and European ancestry. PLoS One 2021; 16:e0249229. [PMID: 33784351 PMCID: PMC8009363 DOI: 10.1371/journal.pone.0249229] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 03/12/2021] [Indexed: 12/19/2022] Open
Abstract
Aggressive high-grade, estrogen receptor negative (ER-) breast cancer is more common among American women of African ancestry (AA) than those of European ancestry (EA). Epigenetic mechanisms, particularly DNA methylation and altered microRNA (miRNA) expression, may contribute to racial differences in breast cancer. However, few studies have specifically characterized genome-wide DNA methylation-based modifications at the miRNA level in relation to ER+ and ER- subtype, and their functional role in the regulation of miRNA expression, especially among high risk AA women. In this study, we evaluated DNA methylation patterns of miRNA encoding genes and their effect on expression in breast tumors from both AA and EA women. The genome-wide methylation screen identified a total of 7,191 unique CpGs mapped to 1,292 miRNA genes, corresponding to 2,035 unique mature miRNAs. We identified differentially methylated loci (DMLs: (|delta β|)>0.10, FDR<0.05) between ER- and ER+ tumor subtypes, including 290 DMLs shared in both races, 317 and 136 were specific to AA and EA women, respectively. Integrated analysis identified certain DMLs whose methylation levels were significantly correlated with the expression of relevant miRNAs, such as multiple CpGs within miR-190b and miR-135b highly negatively correlated with their expression. These results were then validated in the TCGA dataset. Target prediction and pathway analysis showed that these DNA methylation-dysregulated miRNAs are involved in multiple cancer-related pathways, including cell cycle G1-S growth factor regulation, cytoskeleton remodeling, angiogenesis, EMT, and ESR1-mediated signaling pathways. In summary, our results suggest that DNA methylation changes within miRNA genes are associated with altered miRNA expression, which may contribute to the network of subtype- and race-related tumor biological differences in breast cancer. These findings support the involvement of epigenetic regulation of miRNA expression and provide insights into the relations of clinical-relevant miRNAs to their target genes, which may serve as potential preventative and therapeutic targets.
Collapse
Affiliation(s)
- Zhihong Gong
- Department of Cancer Prevention and Control, Roswell Park Comprehensive Cancer Center, Buffalo, New York, United States of America
| | - Jianhong Chen
- Department of Cancer Prevention and Control, Roswell Park Comprehensive Cancer Center, Buffalo, New York, United States of America
| | - Jie Wang
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, New York, United States of America
| | - Song Liu
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, New York, United States of America
| | - Christine B. Ambrosone
- Department of Cancer Prevention and Control, Roswell Park Comprehensive Cancer Center, Buffalo, New York, United States of America
| | - Michael J. Higgins
- Department of Molecular and Cellular Biology, Roswell Park Comprehensive Cancer Center, Buffalo, New York, United States of America
| |
Collapse
|
14
|
Xing F, Zhao D, Wu SY, Tyagi A, Wu K, Sharma S, Liu Y, Deshpande R, Wang Y, Cleary J, Miller LD, Chittiboyina AG, Yalamanchili C, Mo YY, Watabe K. Epigenetic and Posttranscriptional Modulation of SOS1 Can Promote Breast Cancer Metastasis through Obesity-Activated c-Met Signaling in African-American Women. Cancer Res 2021; 81:3008-3021. [PMID: 33446575 DOI: 10.1158/0008-5472.can-19-4031] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 07/28/2020] [Accepted: 01/07/2021] [Indexed: 11/16/2022]
Abstract
Ethnicity is considered to be one of the major risk factors in certain subtypes of breast cancer. However, the mechanism of this racial disparity remains poorly understood. Here, we demonstrate that SOS1, a key regulator of Ras pathway, is highly expressed in African-American (AA) patients with breast cancer compared with Caucasian-American patients. Because of the higher obesity rate in AA women, increased levels of SOS1 facilitated signal transduction of the c-Met pathway, which was highly activated in AA patients with breast cancer via hepatocyte growth factor secreted from adipocytes. Elevated expression of SOS1 also enhanced cancer stemness through upregulation of PTTG1 and promoted M2 polarization of macrophages by CCL2 in metastatic sites. SOS1 was epigenetically regulated by a super-enhancer identified by H3K27ac in AA patients. Knockout of the super-enhancer by CRISPR in AA cell lines significantly reduced SOS1 expression. Furthermore, SOS1 was posttranscriptionally regulated by miR-483 whose expression is reduced in AA patients through histone trimethylation (H3K27me3) on its promoter. The natural compound, taxifolin, suppressed signaling transduction of SOS1 by blocking the interaction between SOS1 and Grb2, suggesting a potential utility of this compound as a therapeutic agent for AA patients with breast cancer. SIGNIFICANCE: These findings elucidate the signaling network of SOS1-mediated metastasis in African-American patients, from the epigenetic upregulation of SOS1 to the identification of taxifolin as a potential therapeutic strategy against SOS1-driven tumor progression.
Collapse
Affiliation(s)
- Fei Xing
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, North Carolina.
| | - Dan Zhao
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, North Carolina
| | - Shih-Ying Wu
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, North Carolina
| | - Abhishek Tyagi
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, North Carolina
| | - Kerui Wu
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, North Carolina
| | - Sambad Sharma
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, North Carolina
| | - Yin Liu
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, North Carolina
| | - Ravindra Deshpande
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, North Carolina
| | - Yuezhu Wang
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, North Carolina
| | - Jacob Cleary
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, North Carolina
| | - Lance D Miller
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, North Carolina
| | - Amar G Chittiboyina
- National Center for Natural Products Research, School of Pharmacy, The University of Mississippi, Oxford, Mississippi
| | - Chinni Yalamanchili
- National Center for Natural Products Research, School of Pharmacy, The University of Mississippi, Oxford, Mississippi
| | - Yin-Yuan Mo
- Cancer Institute, University of Mississippi Medical Center, Jackson, Mississippi
| | - Kounosuke Watabe
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, North Carolina.
| |
Collapse
|
15
|
Shiu BH, Lu WY, Tantoh DM, Chou MC, Nfor ON, Huang CC, Liaw YP. Interactive association between dietary fat and sex on CDH13 cg02263260 methylation. BMC Med Genomics 2021; 14:13. [PMID: 33407434 PMCID: PMC7788866 DOI: 10.1186/s12920-020-00858-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 12/14/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND DNA methylation of Cadherin 13 (CDH13), a tumor suppressor gene is associated with gene repression and carcinogenesis. We determined the relation of dietary fat and sex with CDH13 cg02263260 methylation in Taiwanese adults. METHODS Data of 870 eligible participants (430 men and 440 women) between 30 and 70 years were obtained from the Taiwan Biobank (TWB) database. The association of dietary fat and sex with CDH13 cg02263260 methylation was determined using multiple linear regression. RESULTS The association between sex and cg02263260 methylation was significant: beta-coefficient (β) = 0.00532; 95% confidence interval (CI) = 0.00195-0.00868. Moreover, the interaction between sex and dietary fat on cg02263260 methylation was significant (P-value = 0.0145). After stratification by sex, the association of dietary fat with cg02263260 methylation was significant only in women. Specifically, high dietary fat was positively associated with cg02263260 methylation in women (β = 0.00597; 95% CI = 0.00061-0.01133) and the test for trend was significant (P-value = 0.0283). CONCLUSION High fat intake was significantly associated with higher cg02263260 methylation in women and the test for trend was significant. These findings suggest that the association of fat intake and CDH13 cg02263260 might vary by sex and CDH13 cg02263260 methylation levels in women might increase as fat intake increases.
Collapse
Affiliation(s)
- Bei-Hao Shiu
- Institute of Medicine, Chung Shan Medical University, Taichung City, 40201, Taiwan
- Division of Colon-Rectal Surgery, Department of Surgery, Chung Shan Medical University Hospital, Taichung City, 40201, Taiwan
| | - Wen-Yu Lu
- Department of Public Health and Institute of Public Health, Chung Shan Medical University, No. 110 Sec. 1 Jianguo N. Road, Taichung City, 40201, Taiwan
| | - Disline Manli Tantoh
- Department of Public Health and Institute of Public Health, Chung Shan Medical University, No. 110 Sec. 1 Jianguo N. Road, Taichung City, 40201, Taiwan
- Department of Medical Imaging, Chung Shan Medical University Hospital, Taichung City, 40201, Taiwan
| | - Ming-Chih Chou
- Institute of Medicine, Chung Shan Medical University, Taichung City, 40201, Taiwan
| | - Oswald Ndi Nfor
- Department of Public Health and Institute of Public Health, Chung Shan Medical University, No. 110 Sec. 1 Jianguo N. Road, Taichung City, 40201, Taiwan
| | - Chi-Chou Huang
- Division of Colon-Rectal Surgery, Department of Surgery, Chung Shan Medical University Hospital, Taichung City, 40201, Taiwan.
- School of Medicine, Chung Shan Medical University, No. 110 Sec. 1 Jianguo N. Road, Taichung City, 40201, Taiwan.
| | - Yung-Po Liaw
- Department of Public Health and Institute of Public Health, Chung Shan Medical University, No. 110 Sec. 1 Jianguo N. Road, Taichung City, 40201, Taiwan.
- Department of Medical Imaging, Chung Shan Medical University Hospital, Taichung City, 40201, Taiwan.
| |
Collapse
|
16
|
Zavala VA, Bracci PM, Carethers JM, Carvajal-Carmona L, Coggins NB, Cruz-Correa MR, Davis M, de Smith AJ, Dutil J, Figueiredo JC, Fox R, Graves KD, Gomez SL, Llera A, Neuhausen SL, Newman L, Nguyen T, Palmer JR, Palmer NR, Pérez-Stable EJ, Piawah S, Rodriquez EJ, Sanabria-Salas MC, Schmit SL, Serrano-Gomez SJ, Stern MC, Weitzel J, Yang JJ, Zabaleta J, Ziv E, Fejerman L. Cancer health disparities in racial/ethnic minorities in the United States. Br J Cancer 2021; 124:315-332. [PMID: 32901135 PMCID: PMC7852513 DOI: 10.1038/s41416-020-01038-6] [Citation(s) in RCA: 573] [Impact Index Per Article: 143.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 07/16/2020] [Accepted: 08/03/2020] [Indexed: 02/06/2023] Open
Abstract
There are well-established disparities in cancer incidence and outcomes by race/ethnicity that result from the interplay between structural, socioeconomic, socio-environmental, behavioural and biological factors. However, large research studies designed to investigate factors contributing to cancer aetiology and progression have mainly focused on populations of European origin. The limitations in clinicopathological and genetic data, as well as the reduced availability of biospecimens from diverse populations, contribute to the knowledge gap and have the potential to widen cancer health disparities. In this review, we summarise reported disparities and associated factors in the United States of America (USA) for the most common cancers (breast, prostate, lung and colon), and for a subset of other cancers that highlight the complexity of disparities (gastric, liver, pancreas and leukaemia). We focus on populations commonly identified and referred to as racial/ethnic minorities in the USA-African Americans/Blacks, American Indians and Alaska Natives, Asians, Native Hawaiians/other Pacific Islanders and Hispanics/Latinos. We conclude that even though substantial progress has been made in understanding the factors underlying cancer health disparities, marked inequities persist. Additional efforts are needed to include participants from diverse populations in the research of cancer aetiology, biology and treatment. Furthermore, to eliminate cancer health disparities, it will be necessary to facilitate access to, and utilisation of, health services to all individuals, and to address structural inequities, including racism, that disproportionally affect racial/ethnic minorities in the USA.
Collapse
Affiliation(s)
- Valentina A Zavala
- Division of General Internal Medicine, Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Paige M Bracci
- Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, CA, USA
| | - John M Carethers
- Departments of Internal Medicine and Human Genetics, and Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA
| | - Luis Carvajal-Carmona
- University of California Davis Comprehensive Cancer Center and Department of Biochemistry and Molecular Medicine, School of Medicine, University of California Davis, Sacramento, CA, USA
- Genome Center, University of California Davis, Davis, CA, USA
| | | | - Marcia R Cruz-Correa
- Department of Cancer Biology, University of Puerto Rico Comprehensive Cancer Center, San Juan, Puerto Rico
| | - Melissa Davis
- Division of Breast Surgery, Department of Surgery, NewYork-Presbyterian/Weill Cornell Medical Center, New York, NY, USA
| | - Adam J de Smith
- Center for Genetic Epidemiology, University of Southern California Keck School of Medicine, Los Angeles, CA, USA
| | - Julie Dutil
- Cancer Biology Division, Ponce Research Institute, Ponce Health Sciences University, Ponce, Puerto Rico
| | - Jane C Figueiredo
- Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Rena Fox
- Division of General Internal Medicine, Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Kristi D Graves
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, USA
| | - Scarlett Lin Gomez
- Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, CA, USA
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, USA
| | - Andrea Llera
- Laboratorio de Terapia Molecular y Celular, IIBBA, Fundación Instituto Leloir, CONICET, Buenos Aires, Argentina
| | - Susan L Neuhausen
- Department of Population Sciences, Beckman Research Institute of City of Hope, Duarte, CA, USA
| | - Lisa Newman
- Division of Breast Surgery, Department of Surgery, NewYork-Presbyterian/Weill Cornell Medical Center, New York, NY, USA
- Interdisciplinary Breast Program, New York-Presbyterian/Weill Cornell Medical Center, New York, NY, USA
| | - Tung Nguyen
- Division of General Internal Medicine, Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Julie R Palmer
- Slone Epidemiology Center at Boston University, Boston, MA, USA
| | - Nynikka R Palmer
- Department of Medicine, Zuckerberg San Francisco General Hospital and Trauma Center, University of California, San Francisco, San Francisco, CA, USA
| | - Eliseo J Pérez-Stable
- Division of Intramural Research, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
- Office of the Director, National Institute on Minority Health and Health Disparities, National Institutes of Health, Bethesda, MD, USA
| | - Sorbarikor Piawah
- Division of General Internal Medicine, Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
- Division of Hematology/Oncology, Department of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Erik J Rodriquez
- Division of Intramural Research, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | | | - Stephanie L Schmit
- Department of Cancer Epidemiology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Silvia J Serrano-Gomez
- Grupo de investigación en biología del cáncer, Instituto Nacional de Cancerología, Bogotá, Colombia
| | - Mariana C Stern
- Departments of Preventive Medicine and Urology, Keck School of Medicine of USC, Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA, USA
| | - Jeffrey Weitzel
- Department of Population Sciences, Beckman Research Institute of City of Hope, Duarte, CA, USA
- Department of Medical Oncology and Therapeutics Research, City of Hope Comprehensive Cancer Center, Duarte, CA, USA
| | - Jun J Yang
- Department of Pharmaceutical Sciences, Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Jovanny Zabaleta
- Department of Pediatrics and Stanley S. Scott Cancer Center LSUHSC, New Orleans, LA, USA
| | - Elad Ziv
- Division of General Internal Medicine, Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Laura Fejerman
- Division of General Internal Medicine, Department of Medicine, University of California, San Francisco, San Francisco, CA, USA.
| |
Collapse
|
17
|
de Ruijter TC, van der Heide F, Smits KM, Aarts MJ, van Engeland M, Heijnen VCG. Prognostic DNA methylation markers for hormone receptor breast cancer: a systematic review. Breast Cancer Res 2020; 22:13. [PMID: 32005275 PMCID: PMC6993426 DOI: 10.1186/s13058-020-1250-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 01/15/2020] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND In patients with hormone receptor-positive breast cancer, differentiating between patients with a low and a high risk of recurrence is an ongoing challenge. In current practice, prognostic clinical parameters are used for risk prediction. DNA methylation markers have been proven to be of additional prognostic value in several cancer types. Numerous prognostic DNA methylation markers for breast cancer have been published in the literature. However, to date, none of these markers are used in clinical practice. METHODS We conducted a systematic review of PubMed and EMBASE to assess the number and level of evidence of published DNA methylation markers for hormone receptor-positive breast cancer. To obtain an overview of the reporting quality of the included studies, all were scored according to the REMARK criteria that were established as reporting guidelines for prognostic biomarker studies. RESULTS A total of 74 studies were identified reporting on 87 different DNA methylation markers. Assessment of the REMARK criteria showed variation in reporting quality of the studies. Eighteen single markers and one marker panel were studied in multiple independent populations. Hypermethylation of the markers RASSF1, BRCA, PITX2, CDH1, RARB, PCDH10 and PGR, and the marker panel GSTP1, RASSF1 and RARB showed a statistically significant correlation with poor disease outcome that was confirmed in at least one other, independent study. CONCLUSION This systematic review provides an overview on published prognostic DNA methylation markers for hormone receptor-positive breast cancer and identifies eight markers that have been independently validated. Analysis of the reporting quality of included studies suggests that future research on this topic would benefit from standardised reporting guidelines.
Collapse
Affiliation(s)
- Tim C. de Ruijter
- Division of Medical Oncology, Maastricht University Medical Center, PO Box 5800, 6202 AZ Maastricht, The Netherlands
- GROW – School for Oncology and Developmental Biology, Maastricht University Medical Center, 6200 MD Maastricht, The Netherlands
| | - Frank van der Heide
- Division of Medical Oncology, Maastricht University Medical Center, PO Box 5800, 6202 AZ Maastricht, The Netherlands
| | - Kim M. Smits
- Division of Medical Oncology, Maastricht University Medical Center, PO Box 5800, 6202 AZ Maastricht, The Netherlands
- GROW – School for Oncology and Developmental Biology, Maastricht University Medical Center, 6200 MD Maastricht, The Netherlands
- Department of Pathology, Maastricht University Medical Centre, 6202 AZ Maastricht, The Netherlands
| | - Maureen J. Aarts
- Division of Medical Oncology, Maastricht University Medical Center, PO Box 5800, 6202 AZ Maastricht, The Netherlands
- GROW – School for Oncology and Developmental Biology, Maastricht University Medical Center, 6200 MD Maastricht, The Netherlands
| | - Manon van Engeland
- GROW – School for Oncology and Developmental Biology, Maastricht University Medical Center, 6200 MD Maastricht, The Netherlands
- Department of Pathology, Maastricht University Medical Centre, 6202 AZ Maastricht, The Netherlands
| | - Vivianne C. G. Heijnen
- Division of Medical Oncology, Maastricht University Medical Center, PO Box 5800, 6202 AZ Maastricht, The Netherlands
- GROW – School for Oncology and Developmental Biology, Maastricht University Medical Center, 6200 MD Maastricht, The Netherlands
| |
Collapse
|
18
|
Donovan MG, Wren SN, Cenker M, Selmin OI, Romagnolo DF. Dietary fat and obesity as modulators of breast cancer risk: Focus on DNA methylation. Br J Pharmacol 2020; 177:1331-1350. [PMID: 31691272 DOI: 10.1111/bph.14891] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 09/23/2019] [Accepted: 09/24/2019] [Indexed: 12/13/2022] Open
Abstract
Breast cancer (BC) is the most common cancer and second leading cause of cancer mortality in women worldwide. Validated biomarkers enhance efforts for early detection and treatment, which reduce the risk of mortality. Epigenetic signatures have been suggested as good biomarkers for early detection, prognosis and targeted therapy of BC. Here, we highlight studies documenting the modifying effects of dietary fatty acids and obesity on BC biomarkers associated with DNA methylation. We focus our analysis on changes elicited in writers of DNA methylation (i.e., DNA methyltransferases), global DNA methylation and gene-specific DNA methylation. To provide context, we precede this discussion with a review of the available evidence for an association between BC incidence and both dietary fat consumption and obesity. We also include a review of well-vetted BC biomarkers related to cytosine-guanine dinucleotides methylation and how they influence BC risk, prognosis, tumour characteristics and response to treatment. LINKED ARTICLES: This article is part of a themed section on The Pharmacology of Nutraceuticals. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v177.6/issuetoc.
Collapse
Affiliation(s)
- Micah G Donovan
- Interdisciplinary Cancer Biology Graduate Program, University of Arizona, Tucson, Arizona
| | - Spencer N Wren
- Department of Nutritional Sciences, University of Arizona, Tucson, Arizona
| | - Mikia Cenker
- Department of Nutritional Sciences, University of Arizona, Tucson, Arizona
| | - Ornella I Selmin
- Department of Nutritional Sciences, University of Arizona, Tucson, Arizona.,The University of Arizona Cancer Center, Tucson, Arizona
| | - Donato F Romagnolo
- Department of Nutritional Sciences, University of Arizona, Tucson, Arizona.,The University of Arizona Cancer Center, Tucson, Arizona
| |
Collapse
|
19
|
Schäfer SA, Hülsewig C, Barth P, von Wahlde MK, Tio J, Kolberg HC, Bernemann C, Blohmer JU, Kiesel L, Kolberg-Liedtke C. Correlation between SFRP1 expression and clinicopathological parameters in patients with triple-negative breast cancer. Future Oncol 2019; 15:1921-1938. [DOI: 10.2217/fon-2018-0564] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Aim: Breast cancer is a heterogeneous disease with distinct molecular and clinical behavior demanding reliable biomarkers, especially in triple-negative breast cancer (TNBC). This study seeks to improve the understanding of SFRP1 as a potential biomarker in breast cancer focusing on TNBC. Materials & methods: SFRP1 expression was investigated via immunohistochemistry with two anti-SFRP1-antibodies on tissue-microarrays of 376 invasive breast cancers. Results: Statistical analysis revealed a highly significant association between TNBC (n = 36) and SFRP1 expression (p < 0.001). SFRP1 expression was significantly associated with younger age, higher tumor stage, size and grade. Conclusion: SFRP1 expression is strongly correlated with TNBC on protein level. Associations with age and tumor grade support the role of SFRP1 as a biomarker for chemotherapy response in TNBC.
Collapse
Affiliation(s)
- Sarah Alexandra Schäfer
- Department of Pediatrics, Sana Kliniken Duisburg, Zu den Rehwiesen 9, 47055 Duisburg, Germany
| | - Carolin Hülsewig
- Molecular Health GmbH, Kurfürstenanlage 21, 69115 Heidelberg, Germany
| | - Peter Barth
- Gerhard-Domagk Departement for Pathology, University Münster, Albert-Schweitzer Campus 1 D17, 48149 Münster, Germany
| | - Marie-Kristin von Wahlde
- Department of Gynecology & Obstetrics, University Hospital Münster, Albert-Schweitzer Campus 1 A1, 48149 Münster, Germany
| | - Joke Tio
- Department of Gynecology & Obstetrics, University Hospital Münster, Albert-Schweitzer Campus 1 A1, 48149 Münster, Germany
| | - Hans-Christian Kolberg
- Department of Gynecology & Obstetrics, Marienhospital Bottrop, Josef-Albers-Str. 70, 46236 Bottrop, Germany
| | - Christof Bernemann
- Department of Urology, University Hospital Münster, Albert-Schweitzer Campus 1 A1, University Münster, Medical Faculty, Domagkstr, 48149 Münster, Germany
| | - Jens-Uwe Blohmer
- Department of Gynecology & Breast Center, Charité University Hospital Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Ludwig Kiesel
- Department of Gynecology & Obstetrics, University Hospital Münster, Albert-Schweitzer Campus 1 A1, 48149 Münster, Germany
| | - Cornelia Kolberg-Liedtke
- Department of Gynecology & Breast Center, Charité University Hospital Berlin, Charitéplatz 1, 10117 Berlin, Germany
| |
Collapse
|
20
|
DNA Methylation Profiles and Their Diagnostic Utility in BC. DISEASE MARKERS 2019; 2019:6328503. [PMID: 31198475 PMCID: PMC6526564 DOI: 10.1155/2019/6328503] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 01/31/2019] [Accepted: 02/18/2019] [Indexed: 01/02/2023]
Abstract
Biomarkers, including DNA methylation, have shown a great potential for use in personalized medicine for BC and especially for the diagnosis of BC in developing countries. According to the bisulfite sequencing PCR in twelve specimens (BC and matched normal tissues), nine genetic probes were designed to detect the frequency of methylation of the promoters in a total of 302 paired cases of BC and matched normal breast tissues. Finally, a total of 900 serum samples were used to validate the use of these methylation biomarkers for clinical diagnosis of BC. A high frequency of promoter methylation of SFN, HOXA11, P16, RARβ, PCDHGB7, hMLH1, WNT5a, HOXD13, and RASSF1a was observed in BC tissues. The methylation frequencies of HOXD13 and hMLH1 increased with the progression of BC. The methylation frequencies of HOXD13 and WNT5a were significantly higher in BC. We found that methylation modification-positive samples were most consistently associated with luminal BC. Finally, we confirmed that RASSF1a, P16, and PCDHGB7 displayed a significant sensitivity and specificity as diagnostic biomarkers for BC (P < 0.001), and a panel that combined these three genes displayed increased significance (AUC, 0.781; P < 0.001). These data suggest that epigenetic markers in serum can potentially be used to diagnose BC. The identification of additional BC-specific methylated genes would improve the sensitivity and specificity of this approach. This study could also indicate that different molecular subtypes of BC are caused by distinct genetic and epigenetic mechanisms.
Collapse
|
21
|
Watson KS, Hulbert A, Henderson V, Chukwudozie IB, Aponte-Soto L, Lerner L, Martinez E, Kim S, Winn RA. Lung Cancer Screening and Epigenetics in African Americans: The Role of the Socioecological Framework. Front Oncol 2019; 9:87. [PMID: 30915271 PMCID: PMC6423082 DOI: 10.3389/fonc.2019.00087] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Accepted: 01/30/2019] [Indexed: 11/13/2022] Open
Abstract
Lung cancer is the leading cause of cancer morbidity and mortality in the U.S. and racial/ethnic minorities carry the greatest burden of lung cancer disparities with African Americans (AAs) impacted disproportionately. Inequities in lung cancer health disparities are often associated with multiple bio-behavioral and socio-cultural factors among racial/ethnic minorities. Epigenetic research has advanced the understanding of the intersectionality between biological and socio-cultural factors in lung cancer disparities among AAs. However, gaps exist in the engagement of diverse populations in epigenetic lung cancer research, which poses a challenge in ensuring the generalizability and implementation of epigenetic research in populations that carry an unequal cancer burden. Grounding epigenetic lung cancer research within a socio-ecological framework may prove promising in implementing a multi-level approach to community engagement, screening, navigation, and research participation among AAs. The University of Illinois Cancer Center (UI Cancer Center) is employing an evidence–based (EB) model of community/patient engagement utilizing the socio-ecological model (SEM) to develop a culturally sensitive epigenetic lung cancer research program that addresses multiple factors that impact lung cancer outcomes in AAs. By implementing epigenetic research within a group of Federally Qualified Health Centers (FQHCs) guided by the SEM, the UI Cancer Center is proposing a new pathway in mitigating lung cancer disparities in underserved communities. At the individual level, the framework examines tobacco use among patients at FQHCs (the organizational level) and also tailors epigenetic research to explore innovative biomarkers in high risk populations. Interpersonal interventions use Patient Navigators to support navigation to EB tobacco cessation resources and lung cancer screening. Community level support within the SEM is developed by ongoing partnerships with local and national partners such as the American Lung Association (ALA) and the American Cancer Society (ACS). Lastly, at the policy level, the UI Cancer Center acknowledges the role of policy implications in lung cancer screening and advocates for policies and screening recommendations that examine the current guidelines from the United States Preventive Services Task Force (USPTF).
Collapse
Affiliation(s)
| | - Alicia Hulbert
- Cancer Center, University of Illinois at Chicago, Chicago, IL, United States.,Department of Surgery, University of Illinois at Chicago, Chicago, IL, United States
| | - Vida Henderson
- Cancer Center, University of Illinois at Chicago, Chicago, IL, United States
| | | | - Lisa Aponte-Soto
- Cancer Center, University of Illinois at Chicago, Chicago, IL, United States
| | - Lane Lerner
- Cancer Center, University of Illinois at Chicago, Chicago, IL, United States
| | - Erica Martinez
- Cancer Center, University of Illinois at Chicago, Chicago, IL, United States
| | - Sage Kim
- Division of Health Policy and Administration, School of Public Health, University of Illinois at Chicago, Chicago, IL, United States
| | - Robert A Winn
- Cancer Center, University of Illinois at Chicago, Chicago, IL, United States.,Department of Surgery, University of Illinois at Chicago, Chicago, IL, United States.,Division of Pulmonary, Critical Care, Sleep and Allergy, University of Illinois at Chicago, Chicago, IL, United States
| |
Collapse
|
22
|
Moses-Fynn E, Tang W, Beyene D, Apprey V, Copeland R, Kanaan Y, Kwabi-Addo B. Correlating blood-based DNA methylation markers and prostate cancer risk in African-American men. PLoS One 2018; 13:e0203322. [PMID: 30204798 PMCID: PMC6133349 DOI: 10.1371/journal.pone.0203322] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Accepted: 08/17/2018] [Indexed: 12/13/2022] Open
Abstract
The objective of this work was to investigate the clinical significance of promoter gene DNA methylation changes in whole blood from African-American (AA) men with prostate cancer (PCa). We used high throughput pyrosequencing analysis to quantify percentage DNA methylation levels in a panel of 8 genes (RARβ2, TIMP3, SPARC, CDH13, HIN1, LINE1, CYB5R2 and DRD2) in blood DNA obtained from PCa and non-cancerous controls cases. Correlations of methylation status and various clinicopathological features were evaluated. Six genes tested achieved significant difference in DNA methylation levels between the PCa compared to control cases (P < 0.05). The TIMP3 loci demonstrated significant correlation of DNA methylation with age for all cases analyzed (p < 0.05). We observed an inverse correlation between CDH13 methylation (p = 0.045; r = -0.21) and serum vitamin D level whereas TIMP3 methylation (p = 0.021; r = -0.24) and DRD2 methylation (p = 0.056; r = -0.201) showed inverse correlation with supplementary vitamin D in the cancer cases. We also observed a direct correlation between methylation of RARβ2 (p = 0.0036; r = 0.293) and SPARC (p = 0.0134; r = 0.20) loci with PSA level in the controls but not the cancer cases. In addition, alcohol cases significantly correlated with higher RARβ2 methylation (p = 0.0314) in comparison with non-alcohol cases. Furthermore, we observed an inverse correlation of DRD2 methylation (p = 0.0349; r = -0.343) and Gleason score. Our data suggests that promoter methylation occurred more frequently in the blood of AA PCa and is associated with various clinicopathological features in AA men with PCa.
Collapse
Affiliation(s)
- Emmanuel Moses-Fynn
- Department of Biomedical Sciences, University of Maine, Orono, Maine, United States of America
| | - Wei Tang
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, Maryland, United States of America
| | - Desta Beyene
- Department of Microbiology, Howard University, Washington, D.C., United States of America
| | - Victor Apprey
- Department of Microbiology, Howard University, Washington, D.C., United States of America
| | - Robert Copeland
- Department of Pharmacology, Howard University, Washington, D.C., United States of America
| | - Yasmine Kanaan
- Department of Microbiology, Howard University, Washington, D.C., United States of America
| | - Bernard Kwabi-Addo
- Department of Biochemistry and Molecular Biology, Howard University, Washington, D.C., United States of America
- * E-mail:
| |
Collapse
|
23
|
Targeting the Epigenome as a Novel Therapeutic Approach for Breast Cancer. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1026:287-313. [DOI: 10.1007/978-981-10-6020-5_14] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
24
|
Promoter methylation of TCF21 may repress autophagy in the progression of lung cancer. J Cell Commun Signal 2017; 12:423-432. [PMID: 29086202 DOI: 10.1007/s12079-017-0418-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Accepted: 10/12/2017] [Indexed: 02/04/2023] Open
Abstract
Lung cancer is a leading cause of cancer mortality worldwide. Promoter methylation of transcription factor 21 (TCF21) was frequently observed in the early stage of non-small cell lung cancer (NSCLC). However, clinical relevance and molecular functions of TCF21 in NSCLC progression remain unclear. In this study, we analyzed the associations between TCF21 expression and clinicopathological features in 100 patients with NSCLC and revealed the underlying molecular mechanisms of TCF21 methylation on cell viability, apoptosis and invasion of H1299 cells. We found that the expression of TCF21 was significantly regulated by its methylation level in patients with NSCLC and was associated with tumor stage, metastasis and invasion. Demethylation of H1299 cells by 5-aza-2'-deoxycytine (5-Aza) demonstrated that a higher level of TCF21 expression led to remarkable decreases of cell viability and invasion ability but an increase of cell apoptosis. Accordingly, TCF21 knockdown showed converse results to high expression of TCF21. TCF21 knockdown cells exhibited significantly upregulated ATG-9, BECLIN-1, and LC3-I/II expressions but decreased p62 expression compared to wildtype cells. Inhibition of autophagy by 3-methyladenine (3-MA) elevated TCF21 expression and increased cell apoptosis. TCF21 expression is clinically related to the progress of lung cancer and may inhibit autophagy by suppressing ATG-9 and BECLIN-1. In turn, autophagy may also play an important role in regulation TCF21 expression.
Collapse
|
25
|
Abstract
PURPOSE OF REVIEW African Americans disproportionately suffer from leading causes of morbidity and mortality including cardiovascular disease (CVD), cancer, and preterm birth. Disparities can arise from multiple social and environmental exposures, but how the human body responds to these exposures to result in pathophysiologic states is incompletely understood. RECENT FINDINGS Epigenetic mechanisms, particularly DNA methylation, can be altered in response to exposures such as air pollution, psychosocial stress, and smoking. Each of these exposures has been linked to the above health states (CVD, cancer, and preterm birth) with striking racial disparities in exposure levels. DNA methylation patterns have also been shown to be associated with each of these health outcomes. SUMMARY Whether DNA methylation mediates exposure-disease relationships and can help explain racial disparities in health is not known. However, because many environmental and adverse social exposures disproportionately affect minorities, understanding the role that epigenetics plays in the human response to these exposures that often result in disease, is critical to reducing disparities in morbidity and mortality.
Collapse
Affiliation(s)
- Alexis D. Vick
- Department of Neonatology, Beth Israel Deaconess Medical
Center, Boston, MA
- University of Toledo College of Medicine, Toledo, OH
| | - Heather H. Burris
- Department of Neonatology, Beth Israel Deaconess Medical
Center, Boston, MA
- Departments of Pediatrics and Obstetrics, Gynecology, and
Reproductive Biology, Harvard Medical School, Boston, MA
- Department of Environmental Health, Harvard TH Chan School
of Public Health, Boston, MA
| |
Collapse
|
26
|
Epigenetic basis of cancer health disparities: Looking beyond genetic differences. Biochim Biophys Acta Rev Cancer 2017; 1868:16-28. [PMID: 28108348 DOI: 10.1016/j.bbcan.2017.01.001] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Revised: 01/07/2017] [Accepted: 01/16/2017] [Indexed: 12/18/2022]
Abstract
Despite efforts at various levels, racial health disparities still exist in cancer patients. These inequalities in incidence and/or clinical outcome can only be explained by a multitude of factors, with genetic basis being one of them. Several investigations have provided convincing evidence to support epigenetic regulation of cancer-associated genes, which results in the differential transcriptome and proteome, and may be linked to a pre-disposition of individuals of certain race/ethnicity to early or more aggressive cancers. Recent technological advancements and the ability to quickly analyze whole genome have aided in these efforts, and owing to their relatively easy detection, methylation events are much well-characterized, than the acetylation events, across human populations. The early trend of investigating a pre-determined set of genes for differential epigenetic regulation is paving way for more unbiased screening. This review summarizes our current understanding of the epigenetic events that have been tied to the racial differences in cancer incidence and mortality. A better understanding of the epigenetics of racial diversity holds promise for the design and execution of novel strategies targeting the human epigenome for reducing the disparity gaps.
Collapse
|
27
|
Song MA, Brasky TM, Marian C, Weng DY, Taslim C, Dumitrescu RG, Llanos AA, Freudenheim JL, Shields PG. Racial differences in genome-wide methylation profiling and gene expression in breast tissues from healthy women. Epigenetics 2016; 10:1177-87. [PMID: 26680018 DOI: 10.1080/15592294.2015.1121362] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Abstract
Breast cancer is more common in European Americans (EAs) than in African Americans (AAs) but mortality from breast cancer is higher among AAs. While there are racial differences in DNA methylation and gene expression in breast tumors, little is known whether such racial differences exist in breast tissues of healthy women. Genome-wide DNA methylation and gene expression profiling was performed in histologically normal breast tissues of healthy women. Linear regression models were used to identify differentially-methylated CpG sites (CpGs) between EAs (n = 61) and AAs (n = 22). Correlations for methylation and expression were assessed. Biological functions of the differentially-methylated genes were assigned using the Ingenuity Pathway Analysis. Among 485 differentially-methylated CpGs by race, 203 were hypermethylated in EAs, and 282 were hypermethylated in AAs. Promoter-related differentially-methylated CpGs were more frequently hypermethylated in EAs (52%) than AAs (27%) while gene body and intergenic CpGs were more frequently hypermethylated in AAs. The differentially-methylated CpGs were enriched for cancer-associated genes with roles in cell death and survival, cellular development, and cell-to-cell signaling. In a separate analysis for correlation in EAs and AAs, different patterns of correlation were found between EAs and AAs. The correlated genes showed different biological networks between EAs and AAs; networks were connected by Ubiquitin C. To our knowledge, this is the first comprehensive genome-wide study to identify differences in methylation and gene expression between EAs and AAs in breast tissues from healthy women. These findings may provide further insights regarding the contribution of epigenetic differences to racial disparities in breast cancer.
Collapse
Affiliation(s)
- Min-Ae Song
- a Comprehensive Cancer Center; The Ohio State University and James Cancer Hospital ; Columbus , Ohio , USA
| | - Theodore M Brasky
- a Comprehensive Cancer Center; The Ohio State University and James Cancer Hospital ; Columbus , Ohio , USA
| | - Catalin Marian
- a Comprehensive Cancer Center; The Ohio State University and James Cancer Hospital ; Columbus , Ohio , USA.,b Biochemistry and Pharmacology Department ; Victor Babes University of Medicine and Pharmacy ; 300041 Timisoara , Romania
| | - Daniel Y Weng
- a Comprehensive Cancer Center; The Ohio State University and James Cancer Hospital ; Columbus , Ohio , USA
| | - Cenny Taslim
- a Comprehensive Cancer Center; The Ohio State University and James Cancer Hospital ; Columbus , Ohio , USA
| | | | - Adana A Llanos
- d Department of Epidemiology ; Rutgers School of Public Health and Rutgers Cancer Institute of New Jersey ; New Brunswick , NJ 08903 , USA
| | - Jo L Freudenheim
- e Department of Epidemiology and Environmental Health; School of Public Health and Health Professions ; University at Buffalo ; Buffalo , NY 14214 , USA
| | - Peter G Shields
- a Comprehensive Cancer Center; The Ohio State University and James Cancer Hospital ; Columbus , Ohio , USA
| |
Collapse
|
28
|
Martinez L, Thames E, Kim J, Chaudhuri G, Singh R, Pervin S. Increased sensitivity of African American triple negative breast cancer cells to nitric oxide-induced mitochondria-mediated apoptosis. BMC Cancer 2016; 16:559. [PMID: 27473585 PMCID: PMC4966744 DOI: 10.1186/s12885-016-2547-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Accepted: 07/11/2016] [Indexed: 02/07/2023] Open
Abstract
Background Breast cancer is a complex heterogeneous disease where many distinct subtypes are found. Younger African American (AA) women often present themselves with aggressive form of breast cancer with unique biology which is very difficult to treat. Better understanding the biology of AA breast tumors could lead to development of effective treatment strategies. Our previous studies indicate that AA but not Caucasian (CA) triple negative (TN) breast cancer cells were sensitive to nitrosative stress-induced cell death. In this study, we elucidate possible mechanisms that contribute to nitric oxide (NO)-induced apoptosis in AA TN breast cancer cells. Methods Breast cancer cells were treated with various concentrations of long-acting NO donor, DETA-NONOate and cell viability was determined by trypan blue exclusion assay. Apoptosis was determined by TUNEL and caspase 3 activity as well as changes in mitochondrial membrane potential. Caspase 3 and Bax cleavage, levels of Cu/Zn superoxide dismutase (SOD) and Mn SOD was assessed by immunoblot analysis. Inhibition of Bax cleavage by Calpain inhibitor, and levels of reactive oxygen species (ROS) as well as SOD activity was measured in NO-induced apoptosis. In vitro and in vivo effect of NO treatment on mammary cancer stem cells (MCSCs) was assessed. Results and discussion NO induced mitocondria-mediated apoptosis in all AA but not in CA TN breast cancer cells. We found significant TUNEL-positive cells, cleavage of Bax and caspase-3 activation as well as depolarization mitochondrial membrane potential only in AA TN breast cancer cells exposed to NO. Inhibition of Bax cleavage and quenching of ROS partially inhibited NO-induced apoptosis in AA TN cells. Increase in ROS coincided with reduction in SOD activity in AA TN breast cancer cells. Furthermore, NO treatment of AA TN breast cancer cells dramatically reduced aldehyde dehydrogenase1 (ALDH1) expressing MCSCs and xenograft formation but not in breast cancer cells from CA origin. Conclusions Ethnic differences in breast tumors dictate a need for tailoring treatment options more suited to the unique biology of the disease.
Collapse
Affiliation(s)
- Luis Martinez
- California State University, Dominguez Hills, Los Angeles, CA, USA
| | - Easter Thames
- Columbia University New York, New York, NY, 10027, USA
| | - Jinna Kim
- Charles R. Drew University of Medicine and Science, Los Angeles, CA, 90059, USA
| | - Gautam Chaudhuri
- Department of Obstetrics and Gynecology, David Geffen School of Medicine at UCLA, Los Angeles, CA, 90095, USA.,Jonsson Comprehensive Cancer Center at UCLA, Los Angeles, CA, 90095, USA
| | - Rajan Singh
- Charles R. Drew University of Medicine and Science, Los Angeles, CA, 90059, USA.,Department of Obstetrics and Gynecology, David Geffen School of Medicine at UCLA, Los Angeles, CA, 90095, USA.,Jonsson Comprehensive Cancer Center at UCLA, Los Angeles, CA, 90095, USA
| | - Shehla Pervin
- Charles R. Drew University of Medicine and Science, Los Angeles, CA, 90059, USA. .,Department of Obstetrics and Gynecology, David Geffen School of Medicine at UCLA, Los Angeles, CA, 90095, USA. .,Jonsson Comprehensive Cancer Center at UCLA, Los Angeles, CA, 90095, USA. .,Division of Endocrinology and Metabolism, Charles R. Drew University of Medicine and Science, 1731 East 120th Street, Los Angeles, CA, 90059, USA.
| |
Collapse
|
29
|
Hobbs A, Ramsay M. Epigenetics and the burden of noncommunicable disease: a paucity of research in Africa. Epigenomics 2016; 7:627-39. [PMID: 26111033 DOI: 10.2217/epi.15.17] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Epidemiological evidence suggests that an adverse in utero environment is associated with an increased risk for developing adult onset diseases. The molecular mechanisms for susceptibility to chronic noncommunicable diseases are not fully understood, although recent research has proposed that epigenetic modifications play an important role in fetal programming. Genetic and environmental factors contribute to interindividual and spatiotemporal tissue-specific methylation patterns. Although the diverse environments and high genetic diversity of African populations provide unparalleled potential to investigate the effects of environmental change on the epigenetic profile in humans, only a small percentage of genomic and epigenetic studies have focused on populations from this continent. This emphasizes the need to build capacity in Africa for research that leads to an understanding of the association between genetic, epigenetic and environmental risk factors for noncommunicable diseases on the continent.
Collapse
Affiliation(s)
- Angela Hobbs
- Division of Human Genetics, National Health Laboratory Service & School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Michèle Ramsay
- Division of Human Genetics, National Health Laboratory Service & School of Pathology, Faculty of Health Sciences & the Sydney Brenner Institute for Molecular Bioscience, University of the Witwatersrand, Johannesburg, South Africa
| |
Collapse
|
30
|
Callahan CL, Wang Y, Marian C, Weng DY, Eng KH, Tao MH, Ambrosone CB, Nie J, Trevisan M, Smiraglia D, Edge SB, Shields PG, Freudenheim JL. DNA methylation and breast tumor clinicopathological features: The Western New York Exposures and Breast Cancer (WEB) study. Epigenetics 2016; 11:643-652. [PMID: 27245195 DOI: 10.1080/15592294.2016.1192735] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
We evaluated the association between methylation of 9 genes, SCGB3A1, GSTP1, RARB, SYK, FHIT, CDKN2A, CCND2, BRCA1, and SFN in tumor samples from 720 breast cancer cases with clinicopathological features of the tumors and survival. Logistic regression was used to estimate odds ratios (OR) of methylation and Cox proportional hazards models to estimate hazard ratios (HR) between methylation and breast cancer related mortality. Estrogen receptor (ER) and progesterone receptor (PR) positivity were associated with increased SCGB3A1 methylation among pre- and post-menopausal cases. Among premenopausal women, compared with Stage 0 cases, cases of invasive cancer were more likely to have increased methylation of RARB (Stage I OR = 4.7, 95% CI: 1.1-19.0; Stage IIA/IIB OR = 9.7, 95% CI: 2.4-39.9; Stage III/IV OR = 5.6, 95% CI: 1.1-29.4) and lower methylation of FHIT (Stage I OR = 0.2, 95% CI: 0.1-0.9; Stage IIA/IIB OR = 0.2, 95% CI: 0.1-0.8; Stage III/IV OR = 0.6, 95% CI: 0.1-3.4). Among postmenopausal women, methylation of SYK was associated with increased tumor size (OR = 1.7, 95% CI: 1.0-2.7) and higher nuclear grade (OR = 2.0, 95% CI 1.2-3.6). Associations between methylation and breast cancer related mortality were observed among pre- but not post-menopausal women. Methylation of SCGB3A1 was associated with reduced risk of death from breast cancer (HR = 0.41, 95% CI: 0.17-0.99) as was BRCA1 (HR = 0.41, 95% CI: 0.16-0.97). CCND2 methylation was associated with increased risk of breast cancer mortality (HR = 3.4, 95% CI: 1.1-10.5). We observed differences in methylation associated with tumor characteristics; methylation of these genes was also associated with breast cancer survival among premenopausal cases. Understanding of the associations of DNA methylation with other clinicopathological features may have implications for prevention and treatment.
Collapse
Affiliation(s)
- Catherine L Callahan
- a Department of Epidemiology and Environmental Health , School of Public Health and Health Professions, University at Buffalo , Buffalo , NY , USA
| | - Youjin Wang
- a Department of Epidemiology and Environmental Health , School of Public Health and Health Professions, University at Buffalo , Buffalo , NY , USA
| | - Catalin Marian
- b Division of Cancer Prevention and Control , College of Medicine and The Ohio State University Comprehensive Cancer Center , Columbus , OH , USA.,c Department of Biochemistry and Pharmacology , University of Medicine and Pharmacy Timisoara , Timisoara , Romania
| | - Daniel Y Weng
- b Division of Cancer Prevention and Control , College of Medicine and The Ohio State University Comprehensive Cancer Center , Columbus , OH , USA
| | - Kevin H Eng
- d Department of Biostatistics and Bioinformatics , Roswell Park Cancer Institute , Buffalo , NY , USA
| | - Meng-Hua Tao
- e Department of Biostatistics and Epidemiology , University of North Texas Health Science Center , Fort Worth , TX , USA
| | - Christine B Ambrosone
- f Department of Cancer Prevention and Control , Roswell Park Cancer Institute , Buffalo , NY , USA
| | - Jing Nie
- a Department of Epidemiology and Environmental Health , School of Public Health and Health Professions, University at Buffalo , Buffalo , NY , USA
| | | | - Dominic Smiraglia
- h Department of Cancer Genetics , Roswell Park Cancer Institute , Buffalo , NY , USA
| | - Stephen B Edge
- i Department of Healthcare Outcomes and Policy , Roswell Park Cancer Institute , Buffalo , NY , USA
| | - Peter G Shields
- b Division of Cancer Prevention and Control , College of Medicine and The Ohio State University Comprehensive Cancer Center , Columbus , OH , USA
| | - Jo L Freudenheim
- a Department of Epidemiology and Environmental Health , School of Public Health and Health Professions, University at Buffalo , Buffalo , NY , USA
| |
Collapse
|
31
|
Yang J, Niu H, Huang Y, Yang K. A Systematic Analysis of the Relationship of CDH13 Promoter Methylation and Breast Cancer Risk and Prognosis. PLoS One 2016; 11:e0149185. [PMID: 27153114 PMCID: PMC4859545 DOI: 10.1371/journal.pone.0149185] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Accepted: 01/04/2016] [Indexed: 12/31/2022] Open
Abstract
Background CDH13 (cadherin 13) is a special cadherin cell adhesion molecule, and the methylation of its promoter causes inactivation in a considerable number of human cancers. To explore the association between CDH13 promoter methylation and breast cancer risk and prognosis, we systematically integrated published articles to investigate the diagnostic performance of the CDH13 methylation test for breast cancer. An independent DNA methylation microarray dataset from The Cancer Genome Atlas project (TCGA) project was used to validate the results of the meta-analysis. Methods The relevant literature was searched using the PubMed, Cochrane Library, Web of Science and Google Scholar databases for articles published in English up to May 2015. Data were analyzed using random effect or fixed effect models. The effect sizes were estimated by measuring an odds ratio (OR) or hazard ratio (HR) with a 95% confidence interval (CI). A chi-squared based Q test and sensitivity analysis were performed to examine the between-study heterogeneity and the contribution of single studies to the final results, respectively. Funnel plots were constructed to evaluate publication bias. Results Seven hundred and twenty-six breast tumor samples and 422 controls were collected from 13 published studies. The data from the TCGA set include both tumor and normal samples. A significant association was observed between CDH13 promoter methylation and breast cancer, with an aggregated OR equal to 13.73 (95%CI: 8.09~23.31, z = 9.70, p<0.0001) as measured using the fixed effect model and 14.23 (95%CI: 5.06~40.05, z = 5.03, p<0.0001) as measured using a random effect model. The HR values were calculated as 0.77 (95%CI: 0.27~2.21, z = -0.49, p = 0.622) and 0.38 (95%CI: 0.09~1.69, z = -1.27, p = 0.20) for overall survival (OS) and disease-free survival (DFS), respectively, using the random effect model. This result indicated that breast cancer patients with CDH13 promoter methylation correlated non-significantly with prognosis and is therefore similar to the findings of the TCGA project. Conclusions The methylation status of CDH13 promoter was strongly associated with breast cancer risk. However, CDH13 promoter methylation was not significantly related to the OS and DFS of breast cancer and may have limited prognostic value for breast cancer patients.
Collapse
Affiliation(s)
- Jingyu Yang
- Chest surgery, the First People's Hospital of Yunnan Province, Panlong Campus, 157 Jinbi Road, Kunming, Yunnan, 650000, P.R.C
| | - Heng Niu
- Chest surgery, the First People's Hospital of Yunnan Province, Panlong Campus, 157 Jinbi Road, Kunming, Yunnan, 650000, P.R.C
| | - Yingze Huang
- Medical Faculty, Kunming University of Science and Technology, Kunming, Yunnan 650500, P.R.C
- * E-mail:
| | - Kunxian Yang
- Chest surgery, the First People's Hospital of Yunnan Province, Panlong Campus, 157 Jinbi Road, Kunming, Yunnan, 650000, P.R.C
| |
Collapse
|
32
|
Qiu X, Hu B, Huang Y, Deng Y, Wang X, Zheng F. Hypermethylation of ACP1, BMP4, and TSPYL5 in Hepatocellular Carcinoma and Their Potential Clinical Significance. Dig Dis Sci 2016; 61:149-57. [PMID: 26386860 DOI: 10.1007/s10620-015-3878-3] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Accepted: 09/08/2015] [Indexed: 02/07/2023]
Abstract
BACKGROUND AND AIM Aberrant methylation of specific genes is frequent event in hepatocellular carcinoma (HCC). Our present study aims to explore the methylation levels of acid phosphatase locus 1 (ACP1), bone morphogenetic protein 4 (BMP4), and testis-specific protein, Y-encoded-like 5 (TSPYL5) and their potential clinical applications in HCC. METHODS The methylation levels of ACP1, BMP4 and TSPYL5 were analyzed in 188 HCC tissues, 163 matched adjacent non-tumor tissues, and 29 normal liver tissues using a method of methylation-sensitive restriction enzyme-based quantitative PCR, and their associations with clinicopathological features and prognosis were evaluated. RESULTS Compared with adjacent non-tumor tissues and normal liver tissues, the methylation levels of ACP1, BMP4, and TSPYL5 were significantly increased in HCC tissues (All p < 0.0001). The methylation of each individual gene could distinguish HCC tissues well from adjacent non-tumor tissues with the area under the receiver operating characteristic curves (AUC) of 0.753, 0.785 and 0.917, respectively. Furthermore, a higher methylation of BMP4 was statistically associated with worse disease-free survival (p = 0.006) and might be an independent unfavorable factor for disease-free survival by univariate and multivariate analysis (p = 0.011, HR 3.431, 95 % CI 1.333-8.833). CONCLUSIONS Our findings suggest that hypermethylation of ACP1, BMP4, and TSPYL5 are common events in HCC and could be used as potentially detectable biomarkers in HCC tissues. Moreover, BMP4 could be potentially served as a methylated biomarker to predict recurrence and metastasis after hepatectomy for HCC patients. However, their potential clinical application value need to be further clarified.
Collapse
Affiliation(s)
- Xueping Qiu
- Center for Gene Diagnosis, Zhongnan Hospital of Wuhan University, Donghu Rd 169, Wuchang District, Wuhan, 430071, China.
| | - Bo Hu
- The Third Affiliated Hospital of Sun Yat-sen University, Guanzhou, Guandong, China.
| | - Yifang Huang
- Center for Gene Diagnosis, Zhongnan Hospital of Wuhan University, Donghu Rd 169, Wuchang District, Wuhan, 430071, China.
| | - Yunte Deng
- Department of Pathology, Hubei Cancer Hospital, Wuhan, Hubei, China.
| | - Xuebin Wang
- Center for Gene Diagnosis, Zhongnan Hospital of Wuhan University, Donghu Rd 169, Wuchang District, Wuhan, 430071, China.
| | - Fang Zheng
- Center for Gene Diagnosis, Zhongnan Hospital of Wuhan University, Donghu Rd 169, Wuchang District, Wuhan, 430071, China.
| |
Collapse
|
33
|
Fang C, Jian ZY, Shen XF, Wei XM, Yu GZ, Zeng XT. Promoter Methylation of the Retinoic Acid Receptor Beta2 (RARβ2) Is Associated with Increased Risk of Breast Cancer: A PRISMA Compliant Meta-Analysis. PLoS One 2015; 10:e0140329. [PMID: 26451736 PMCID: PMC4599915 DOI: 10.1371/journal.pone.0140329] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Accepted: 09/24/2015] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Epigenetic studies demonstrate that an association may exist between methylation of the retinoic acid receptor beta2 (RARβ2) gene promoter and breast cancer onset risk, tumor stage, and histological grade, however the results of these studies are not consistent. Hence, we performed this meta-analysis to ascertain a more comprehensive and accurate association. MATERIALS AND METHODS Relevant studies were retrieved from the PubMed, Embase and Chinese National Knowledge Infrastructure databases up to February 28, 2015. After two independent reviewers screened the studies and extracted the necessary data, meta-analysis was performed using Review Manager 5.2 software. RESULTS Nineteen eligible articles, including 20 studies, were included in our analysis. Compared to non-cancerous controls, the frequency of RARβ2 methylation was 7.27 times higher in patients with breast cancer (odds ratio (OR) = 7.27, 95% confidence interval (CI) = 3.01-17.52). Compared to late-stage RARβ2 methylated patients, the pooled OR of early-stage ones was 0.81 (OR = 0.81, 95% CI = 0.55-1.17). The OR of low-grade RARβ2 methylated patients was 0.96 (OR = 0.96, 95% CI = 0.74-1.25) compared to high-grade RARβ2 methylated patients. CONCLUSION RARβ2 methylation is significantly increased in breast cancer samples when compared to non-cancerous controls. RARβ2 could serve as a potential epigenetic marker for breast cancer detection and management.
Collapse
Affiliation(s)
- Cheng Fang
- Center for Evidence-Based Medicine and Translational Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Zhi-Yuan Jian
- Department of General Surgery, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Xian-Feng Shen
- Department of General Surgery, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Xue-Mei Wei
- Department of Nursing, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000, P.R. China
| | - Guo-Zheng Yu
- Center for Evidence-Based Medicine and Translational Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Xian-Tao Zeng
- Center for Evidence-Based Medicine and Translational Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
34
|
Grawenda AM, O'Neill E. Clinical utility of RASSF1A methylation in human malignancies. Br J Cancer 2015; 113:372-81. [PMID: 26158424 PMCID: PMC4522630 DOI: 10.1038/bjc.2015.221] [Citation(s) in RCA: 93] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Revised: 05/11/2015] [Accepted: 05/13/2015] [Indexed: 02/06/2023] Open
Abstract
The high frequency of RASSF1A methylation has been noted in a vast number of patients in a broad spectrum of malignancies, suggesting that RASSF1A inactivation is associated with cancer pathogenesis. However, whether this recurrent incidence of RASSF1A hypermethylation in human malignancies and its association with more aggressive tumour phenotype is a frequent event across different cancer types has not yet been discussed. In this review, we interrogated existing evidence for association of RASSF1A hypermethylation with clinicopathological characteristics that can indicate more invasive lesions.
Collapse
Affiliation(s)
- A M Grawenda
- CRUK/MRC Oxford Institute, Department of Oncology, University of Oxford, Oxford, UK
| | - E O'Neill
- CRUK/MRC Oxford Institute, Department of Oncology, University of Oxford, Oxford, UK
| |
Collapse
|
35
|
Tao L, Gomez SL, Keegan THM, Kurian AW, Clarke CA. Breast Cancer Mortality in African-American and Non-Hispanic White Women by Molecular Subtype and Stage at Diagnosis: A Population-Based Study. Cancer Epidemiol Biomarkers Prev 2015; 24:1039-45. [PMID: 25969506 PMCID: PMC4490947 DOI: 10.1158/1055-9965.epi-15-0243] [Citation(s) in RCA: 97] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Accepted: 05/05/2015] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Higher breast cancer mortality rates for African-American than non-Hispanic White women are well documented; however, it remains uncertain if this disparity occurs in disease subgroups defined by tumor molecular markers and stage at diagnosis. We examined racial differences in outcome according to subtype and stage in a diverse, population-based series of 103,498 patients. METHODS We obtained data for all invasive breast cancers diagnosed between January 1, 2005, and December 31, 2012, and followed through December 31, 2012, among 93,760 non-Hispanic White and 9,738 African-American women in California. Molecular subtypes were categorized according to tumor expression of hormone receptor (HR, based on estrogen and progesterone receptors) and human epidermal growth factor receptor 2 (HER2). Cox proportional hazards models were used to calculate relative hazard (RH) and 95% confidence intervals (CI) for breast cancer-specific mortality. RESULTS After adjustment for patient, tumor, and treatment characteristics, outcomes were comparable by race for stage I or IV cancer regardless of subtype, and HR(+)/HER2(+) or HR(-)/HER2(+) cancer regardless of stage. We found substantially higher hazards of breast cancer death among African-American women with stage II/III HR(+)/HER2(-) (RH, 1.31; 95% CI, 1.03-1.65; and RH, 1.39; 95% CI, 1.10-1.75, respectively) and stage III triple-negative cancers relative to Whites. CONCLUSIONS There are substantial racial/ethnic disparities among patients with stages II/III HR(+)/HER2(-) and stage III triple-negative breast cancers but not for other subtype and stage. IMPACT These data provide insights to assess barriers to targeted treatment (e.g., trastuzumab or endocrine therapy) of particular subtypes of breast cancer among African-American patients.
Collapse
Affiliation(s)
- Li Tao
- Cancer Prevention Institute of California, Fremont, California
| | - Scarlett Lin Gomez
- Cancer Prevention Institute of California, Fremont, California. Department of Health Research and Policy, Stanford University School of Medicine, Stanford, California
| | - Theresa H M Keegan
- Cancer Prevention Institute of California, Fremont, California. Department of Health Research and Policy, Stanford University School of Medicine, Stanford, California
| | - Allison W Kurian
- Department of Health Research and Policy, Stanford University School of Medicine, Stanford, California. Medicine, Stanford University School of Medicine, Stanford, California
| | - Christina A Clarke
- Cancer Prevention Institute of California, Fremont, California. Department of Health Research and Policy, Stanford University School of Medicine, Stanford, California.
| |
Collapse
|
36
|
Conway K, Edmiston SN, Tse CK, Bryant C, Kuan PF, Hair BY, Parrish EA, May R, Swift-Scanlan T. Racial variation in breast tumor promoter methylation in the Carolina Breast Cancer Study. Cancer Epidemiol Biomarkers Prev 2015; 24:921-30. [PMID: 25809865 PMCID: PMC4452445 DOI: 10.1158/1055-9965.epi-14-1228] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Accepted: 03/03/2015] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND African American (AA) women are diagnosed with more advanced breast cancers and have worse survival than white women, but a comprehensive understanding of the basis for this disparity remains unclear. Analysis of DNA methylation, an epigenetic mechanism that can regulate gene expression, could help to explain racial differences in breast tumor clinical biology and outcomes. METHODS DNA methylation was evaluated at 1,287 CpGs in the promoters of cancer-related genes in 517 breast tumors of AA (n = 216) or non-AA (n = 301) cases in the Carolina Breast Cancer Study (CBCS). RESULTS Multivariable linear regression analysis of all tumors, controlling for age, menopausal status, stage, intrinsic subtype, and multiple comparisons [false discovery rate (FDR)], identified seven CpG probes that showed significant (adjusted P < 0.05) differential methylation between AAs and non-AAs. Stratified analyses detected an additional four CpG probes differing by race within hormone receptor-negative (HR(-)) tumors. Genes differentially methylated by race included DSC2, KCNK4, GSTM1, AXL, DNAJC15, HBII-52, TUSC3, and TES; the methylation state of several of these genes may be associated with worse survival in AAs. TCGA breast tumor data confirmed the differential methylation by race and negative correlations with expression for most of these genes. Several loci also showed racial differences in methylation in peripheral blood leukocytes (PBL) from CBCS cases, indicating that these variations were not necessarily tumor-specific. CONCLUSIONS Racial differences in the methylation of cancer-related genes are detectable in both tumors and PBLs from breast cancer cases. IMPACT Epigenetic variation could contribute to differences in breast tumor development and outcomes between AAs and non-AAs.
Collapse
Affiliation(s)
- Kathleen Conway
- Department of Epidemiology, School of Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina. Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina.
| | - Sharon N Edmiston
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Chiu-Kit Tse
- Department of Epidemiology, School of Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Christopher Bryant
- Department of Biostatistics, School of Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Pei Fen Kuan
- Department of Applied Mathematics and Statistics, State University of New York, Stony Brook, New York
| | - Brionna Y Hair
- Department of Epidemiology, School of Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Eloise A Parrish
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Ryan May
- The EMMES Corporation, Rockville, Maryland
| | - Theresa Swift-Scanlan
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina. School of Nursing, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| |
Collapse
|
37
|
Cappetta M, Berdasco M, Hochmann J, Bonilla C, Sans M, Hidalgo PC, Artagaveytia N, Kittles R, Martínez M, Esteller M, Bertoni B. Effect of genetic ancestry on leukocyte global DNA methylation in cancer patients. BMC Cancer 2015; 15:434. [PMID: 26012346 PMCID: PMC4445803 DOI: 10.1186/s12885-015-1461-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Accepted: 05/21/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The study of genetic variants alone is not enough to explain a complex disease like cancer. Alterations in DNA methylation patterns have been associated with different types of tumor. In order to detect markers of susceptibility for the development of cutaneous melanoma and breast cancer in the Uruguayan population, we integrated genetic and epigenetic information of patients and controls. METHODS We performed two case-control studies that included 49 individuals with sporadic cutaneous melanoma and 73 unaffected controls, and 179 women with sporadic breast cancer and 209 women controls. We determined the level of global leukocyte DNA methylation using relative quantification of 5mdC by HPLC, and we compared methylation levels between cases and controls with nonparametric statistical tests. Since the Uruguayan population is admixed and both melanoma and breast cancer have very high incidences in Uruguay compared to other populations, we examined whether individual ancestry influences global leucocyte DNA methylation status. We carried out a correlation analysis between the percentage of African, European and Native American individual ancestries, determined using 59 ancestry informative markers, and global DNA methylation in all participants. RESULTS We detected global DNA hypomethylation in leukocytes of melanoma and breast cancer patients compared with healthy controls (p < 0.001). Additionally, we found a negative correlation between African ancestry and global DNA methylation in cancer patients (p <0.005). CONCLUSIONS These results support the potential use of global DNA methylation as a biomarker for cancer risk. In addition, our findings suggest that the ancestral genome structure generated by the admixture process influences DNA methylation patterns, and underscore the importance of considering genetic ancestry as a modifying factor in epigenetic association studies in admixed populations such as Latino ones.
Collapse
Affiliation(s)
- Mónica Cappetta
- Departamento de Genética, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay.
| | - María Berdasco
- Cancer Epigenetics and Biology Program (PEBC), Bellvitge Biomedical Research Institute (IDIBELL), 08908 L'Hospitalet de LLobregat, Barcelona, Catalonia, Spain.
| | - Jimena Hochmann
- Departamento de Genética, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay.
| | - Carolina Bonilla
- School of Social and Community Medicine, University of Bristol, Bristol, UK.
| | - Mónica Sans
- Departamento de Antropología Biológica, Facultad de Humanidades y Ciencias de la Educación, Universidad de la República, Montevideo, Uruguay.
| | - Pedro C Hidalgo
- Departamento de Antropología Biológica, Facultad de Humanidades y Ciencias de la Educación, Universidad de la República, Montevideo, Uruguay.
- Centro Universitario de Tacuarembó, Universidad de la República, Tacuarembó, Uruguay.
| | - Nora Artagaveytia
- Departamento Básico de Medicina, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay.
| | - Rick Kittles
- Department of Surgery and Public Health, University of Arizona, Tucson, USA.
| | - Miguel Martínez
- Cátedra de Dermatología, Hospital de Clínicas "Manuel Quintela", Universidad de la República, Montevideo, Uruguay.
| | - Manel Esteller
- Cancer Epigenetics and Biology Program (PEBC), Bellvitge Biomedical Research Institute (IDIBELL), 08908 L'Hospitalet de LLobregat, Barcelona, Catalonia, Spain.
- Department of Physiological Sciences II, School of Medicine, University of Barcelona, Barcelona, Spain.
- Institucio Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Catalonia, Spain.
| | - Bernardo Bertoni
- Departamento de Genética, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay.
| |
Collapse
|
38
|
Huang X, Dugo M, Callari M, Sandri M, De Cecco L, Valeri B, Carcangiu ML, Xue J, Bi R, Veneroni S, Daidone MG, Ménard S, Tagliabue E, Shao Z, Wu J, Orlandi R. Molecular portrait of breast cancer in China reveals comprehensive transcriptomic likeness to Caucasian breast cancer and low prevalence of luminal A subtype. Cancer Med 2015; 4:1016-30. [PMID: 25787708 PMCID: PMC4529340 DOI: 10.1002/cam4.442] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Revised: 12/29/2014] [Accepted: 01/13/2015] [Indexed: 01/02/2023] Open
Abstract
The recent dramatic increase in breast cancer incidence across China with progressive urbanization and economic development has signaled the urgent need for molecular and clinical detailing of breast cancer in the Chinese population. Our analyses of a unique transethnic collection of breast cancer frozen specimens from Shanghai Fudan Cancer Center (Chinese Han) profiled simultaneously with an analogous Caucasian Italian series revealed consistent transcriptomic data lacking in batch effects. The prevalence of Luminal A subtype was significantly lower in Chinese series, impacting the overall prevalence of estrogen receptor (ER)-positive disease in a large cohort of Chinese/Caucasian patients. Unsupervised and supervised comparison of gene and microRNA (miRNA) profiles of Chinese and Caucasian samples revealed extensive similarity in the comprehensive taxonomy of transcriptional elements regulating breast cancer biology. Partition of gene expression data using gene lists relevant to breast cancer as "intrinsic" and "extracellular matrix" genes identified Chinese and Caucasian subgroups with equivalent global gene and miRNA profiles. These findings indicate that in the Chinese and Caucasian groups, breast neoplasia and the surrounding stromal characteristics undergo the same differentiation and molecular processes. Transcriptional similarity across transethnic cohorts may simplify translational medicine approaches and clinical management of breast cancer patients worldwide.
Collapse
Affiliation(s)
- Xiaoyan Huang
- Department of Breast Surgery, Fudan University Shanghai Cancer Center and Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Matteo Dugo
- Functional Genomics and Bioinformatics, Department of Experimental Oncology and Molecular Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Maurizio Callari
- Biomarkers Unit, Department of Experimental Oncology and Molecular Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Marco Sandri
- Molecular Targeting Unit, Department of Experimental Oncology and Molecular Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Loris De Cecco
- Functional Genomics and Bioinformatics, Department of Experimental Oncology and Molecular Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Barbara Valeri
- Department of Pathology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Maria Luisa Carcangiu
- Department of Pathology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Jingyan Xue
- Department of Breast Surgery, Fudan University Shanghai Cancer Center and Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Rui Bi
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Silvia Veneroni
- Biomarkers Unit, Department of Experimental Oncology and Molecular Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Maria Grazia Daidone
- Biomarkers Unit, Department of Experimental Oncology and Molecular Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Sylvie Ménard
- Molecular Targeting Unit, Department of Experimental Oncology and Molecular Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Elda Tagliabue
- Molecular Targeting Unit, Department of Experimental Oncology and Molecular Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Zhimin Shao
- Department of Breast Surgery, Fudan University Shanghai Cancer Center and Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Jiong Wu
- Department of Breast Surgery, Fudan University Shanghai Cancer Center and Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Rosaria Orlandi
- Molecular Targeting Unit, Department of Experimental Oncology and Molecular Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| |
Collapse
|
39
|
Ambrosone CB, Young AC, Sucheston LE, Wang D, Yan L, Liu S, Tang L, Hu Q, Freudenheim JL, Shields PG, Morrison CD, Demissie K, Higgins MJ. Genome-wide methylation patterns provide insight into differences in breast tumor biology between American women of African and European ancestry. Oncotarget 2014; 5:237-48. [PMID: 24368439 PMCID: PMC3960204 DOI: 10.18632/oncotarget.1599] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
American women of African ancestry (AA) are more likely than European-Americans (EA) to be diagnosed with aggressive, estrogen receptor (ER) negative breast tumors; mechanisms underlying these disparities are poorly understood. We conducted a genome wide (450K loci) methylation analysis to determine if there were differences in DNA methylation patterns between tumors from AA and EA women and if these differences were similar for both ER positive and ER negative breast cancer. Methylation levels at CpG loci within CpG islands (CGI)s and CGI-shores were significantly higher in tumors (n=138) than in reduction mammoplasty samples (n=124). In hierarchical cluster analysis, there was separation between tumor and normal samples, and in tumors, there was delineation by ER status, but not by ancestry. However, differential methylation analysis identified 157 CpG loci with a mean β value difference of at least 0.17 between races, with almost twice as many differences in ER-negative tumors compared to ER-positive cancers. This first genome-wide methylation study to address disparities indicates that there are likely differing etiologic pathways for the development of ER negative breast cancer between AA and EA women. Further investigation of the genes most differentially methylated by race in ER negative tumors can guide new approaches for cancer prevention and targeted therapies, and elucidate the biologic basis of breast cancer disparities.
Collapse
Affiliation(s)
- Christine B Ambrosone
- Department of Cancer Prevention and Control, Roswell Park Cancer Institute, Buffalo, NY
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Liu C, Li N, Lu H, Wang Z, Chen C, Wu L, Liu J, Lu Y, Wang F. Circulating SFRP1 promoter methylation status in gastric adenocarcinoma and esophageal square cell carcinoma. Biomed Rep 2014; 3:123-127. [PMID: 25469261 DOI: 10.3892/br.2014.388] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2014] [Accepted: 11/11/2014] [Indexed: 02/07/2023] Open
Abstract
The secreted frizzled-related protein 1 (SFRP1) gene plays an important role in carcinogenesis of digestive system cancer. Previous studies proved that circulating DNA promoter methylation may be a suitable biomarker for cancer patients. The aim of the present study was to investigate whether the promoter methylation status of serum SFRP1 is a potential biomarker for gastric adenocarcinoma (GAC) and esophageal square cell carcinoma (ESCC). The blood samples obtained from 42 GAC and 36 ESCC patients were detected for the promoter methylation status of SFRP1 by methylation-specific polymerase chain reaction. The control group included 42 benign gastrointestinal disease volunteers (24 benign gastric disease and 18 benign esophageal disease) and 20 healthy volunteers. Serum SFRP1 methylation was evident in 30.95% (13/42) GAC patients and 38.89% (14/36) ESCC patients, which is clearly higher compared to 8.33% (2/24) in benign gastric disease, 11.11% (2/18) in benign esophageal disease and 5% (1/20) in healthy volunteers (P<0.05). The association between the serum SFRP1 promoter methylation status and the clinical pathological features were further analyzed and methylation of the SFRP1 gene was significantly associated with age >60 years in GAC patients (P=0.027). However, no correlations between the SFRP1 methylation status and other clinicopathological parameters were found. In conclusion, the SFRP1 promoter was detected frequently in the serum of GAC and ESCC patients. The detection of circulating methylated SFRP1 in the serum may be a useful biomarker for upper gastrointestinal cancer patients.
Collapse
Affiliation(s)
- Chang Liu
- Department of Gastroenterology and Hepatology, Jinling Hospital, School of Medicine, Southern Medical University, Nanjing, Jiangsu 210002, P.R. China
| | - Nan Li
- Department of Gastroenterology and Hepatology, Jinling Hospital, School of Medicine, Southern Medical University, Nanjing, Jiangsu 210002, P.R. China
| | - Heng Lu
- Department of Gastroenterology and Hepatology, Jinling Hospital, School of Medicine, Southern Medical University, Nanjing, Jiangsu 210002, P.R. China
| | - Zhengkai Wang
- Department of Gastroenterology and Hepatology, Jinling Hospital, School of Medicine, Southern Medical University, Nanjing, Jiangsu 210002, P.R. China
| | - Chunyan Chen
- Department of Gastroenterology and Hepatology, Jinling Hospital, School of Medicine, Southern Medical University, Nanjing, Jiangsu 210002, P.R. China
| | - Lin Wu
- Department of Gastroenterology and Hepatology, Jinling Hospital, School of Medicine, Southern Medical University, Nanjing, Jiangsu 210002, P.R. China
| | - Jiong Liu
- Department of Gastroenterology and Hepatology, Jinling Hospital, School of Medicine, Southern Medical University, Nanjing, Jiangsu 210002, P.R. China
| | - Youke Lu
- Department of Gastroenterology and Hepatology, Jinling Hospital, School of Medicine, Southern Medical University, Nanjing, Jiangsu 210002, P.R. China
| | - Fangyu Wang
- Department of Gastroenterology and Hepatology, Jinling Hospital, School of Medicine, Southern Medical University, Nanjing, Jiangsu 210002, P.R. China
| |
Collapse
|
41
|
Sina AAI, Carrascosa LG, Palanisamy R, Rauf S, Shiddiky MJA, Trau M. Methylsorb: A Simple Method for Quantifying DNA Methylation Using DNA–Gold Affinity Interactions. Anal Chem 2014; 86:10179-85. [DOI: 10.1021/ac502214z] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Abu Ali Ibn Sina
- Centre
for Personalised Nanomedicine, Australian Institute for Bioengineering
and Nanotechnology (AIBN), The University of Queensland, Corner College and Cooper
Roads (Building 75), Brisbane QLD 4072, Australia
| | - Laura G. Carrascosa
- Centre
for Personalised Nanomedicine, Australian Institute for Bioengineering
and Nanotechnology (AIBN), The University of Queensland, Corner College and Cooper
Roads (Building 75), Brisbane QLD 4072, Australia
| | - Ramkumar Palanisamy
- Centre
for Personalised Nanomedicine, Australian Institute for Bioengineering
and Nanotechnology (AIBN), The University of Queensland, Corner College and Cooper
Roads (Building 75), Brisbane QLD 4072, Australia
| | - Sakandar Rauf
- Centre
for Personalised Nanomedicine, Australian Institute for Bioengineering
and Nanotechnology (AIBN), The University of Queensland, Corner College and Cooper
Roads (Building 75), Brisbane QLD 4072, Australia
| | - Muhammad J. A. Shiddiky
- Centre
for Personalised Nanomedicine, Australian Institute for Bioengineering
and Nanotechnology (AIBN), The University of Queensland, Corner College and Cooper
Roads (Building 75), Brisbane QLD 4072, Australia
| | - Matt Trau
- Centre
for Personalised Nanomedicine, Australian Institute for Bioengineering
and Nanotechnology (AIBN), The University of Queensland, Corner College and Cooper
Roads (Building 75), Brisbane QLD 4072, Australia
- School
of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland QLD
4072, Australia
| |
Collapse
|
42
|
Carvalho FM, Bacchi LM, Pincerato KM, Van de Rijn M, Bacchi CE. Geographic differences in the distribution of molecular subtypes of breast cancer in Brazil. BMC WOMENS HEALTH 2014; 14:102. [PMID: 25174527 PMCID: PMC4153008 DOI: 10.1186/1472-6874-14-102] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2014] [Accepted: 08/19/2014] [Indexed: 01/05/2023]
Abstract
Background To compare the distribution of the intrinsic molecular subtypes of breast cancer based on immunohistochemical profile in the five major geographic regions of Brazil, a country of continental dimension, with a wide racial variation of people. Methods The study was retrospective observational. We classified 5,687 invasive breast cancers by molecular subtype based on immunohistochemical expression of estrogen-receptor (ER), progesterone-receptor (PR), human epidermal growth factor receptor 2 (HER2), and Ki-67 proliferation index. Cases were classified as luminal A (ER and/or PR positive and HER2 negative, Ki-67 < 14%), luminal B (ER and/or PR positive, HER2 negative, and Ki-67 > 14%), triple-positive (ER and/or PR positive and HER2 positive), HER2-enriched (ER and PR negative, and HER2- positive), and triple-negative (TN) (ER negative, PR negative, and HER2- negative). Comparisons of the ages of patients and molecular subtypes between different geographic regions were performed. Results South and Southeast regions with a higher percentage of European ancestry and higher socioeconomic status presented with the highest proportion of luminal tumors. The North region presented with more aggressive subtypes (HER2-enriched and triple-negative), while the Central-West region predominated triple-positive carcinomas. The Northeast—a region with a high African influence—presented intermediate frequency of the different molecular subtypes. The differences persisted in subgroups of patients under and over 50 years. Conclusions The geographic regions differ according to the distribution of molecular subtypes of breast cancer. However, other differences, beside those related to African ancestry, such as socioeconomic, climatic, nutritional, and geographic, have to be considered to explain our results. The knowledge of the differences in breast cancer characteristics among the geographic regions may help to organize healthcare programs in large countries like Brazil with diverse economic and race composition among different geographic regions.
Collapse
Affiliation(s)
- Filomena M Carvalho
- Department of Pathology, Faculdade de Medicina da Universidade de São Paulo, Av, Dr, Arnaldo, 455 - room 1149, São Paulo, SP 01246-903, Brazil.
| | | | | | | | | |
Collapse
|
43
|
Racial/ethnic disparities in human DNA methylation. Biochim Biophys Acta Rev Cancer 2014; 1846:258-62. [PMID: 25016140 DOI: 10.1016/j.bbcan.2014.07.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Revised: 07/01/2014] [Accepted: 07/03/2014] [Indexed: 01/23/2023]
Abstract
The racial/ethnic disparities in DNA methylation patterns indicate that molecular markers may play a role in determining the individual susceptibility to diseases in different ethnic groups. Racial disparities in DNA methylation patterns have been identified in prostate cancer, breast cancer and colorectal cancer and are related to racial differences in cancer prognosis and survival.
Collapse
|
44
|
Clinicopathological characteristics and outcomes of surgically excised renal masses in African Americans. Urol Oncol 2014; 32:555-60. [DOI: 10.1016/j.urolonc.2013.11.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2013] [Revised: 11/21/2013] [Accepted: 11/21/2013] [Indexed: 11/21/2022]
|
45
|
Galrão AL, Camargo RY, Friguglietti CU, Moraes L, Cerutti JM, Serrano-Nascimento C, Suzuki MF, Medeiros-Neto G, Rubio IGS. Hypermethylation of a New Distal Sodium/Iodide Symporter (NIS) enhancer (NDE) is associated with reduced NIS expression in thyroid tumors. J Clin Endocrinol Metab 2014; 99:E944-52. [PMID: 24432988 DOI: 10.1210/jc.2013-1450] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
CONTEXT In thyroid tumors, reduced radioiodine uptake is associated with worse patient outcome concomitantly with low sodium/iodide symporter (NIS) mRNA expression. Previous studies showed that CpG-island methylation in the NIS proximal promoter does not correlate with mRNA expression. OBJECTIVES The aim of the study was to identify new CpG-islands within the NIS 5'region and investigate the involvement of their methylation in NIS expression. DESIGN DNA was obtained from 30 pairs of thyroid samples: tumor (T) and surrounding nontumor (NT) samples. All T samples had reduced NIS mRNA expression compared to NT samples. MAIN OUTCOME MEASURES Methylation degree was quantified by bisulfite sequencing, and NIS expression by real-time PCR and Western blot. Reporter gene assays were performed to determine CpG-island functionality. Tumor cell cultures were treated with 5-Aza demethylating agent to determine NIS expression, methylation status, and (125)I uptake. RESULTS We identified a new CpG-island2 with 14 CpG sites, located -2152/-1887 relative to ATG site. CpG-island2 was hypermethylated in T compared to NT samples, in both benign and malignant tumor groups. There was a significant inverse correlation between NIS mRNA expression and degree of CpG-island2 methylation in NT and T samples. This sequence increased the expression of a reporter gene; thus, it was considered a new enhancer. Cell culture treatments with 5-Aza reduced CpG-island2 methylation levels concomitantly with restoration of NIS mRNA and protein expression and (125)I uptake. CONCLUSIONS We identified a new distal enhancer, NIS distal enhancer, that regulates gene expression through DNA methylation. This enhancer is hypermethylated in T compared to NT samples and is associated with decreased NIS expression in tumors. This epigenetic deregulation may be an early event in tumorigenesis.
Collapse
Affiliation(s)
- Ana Luiza Galrão
- Thyroid Unit (A.L.G., R.Y.C., G.M.-N.), Cellular and Molecular Endocrine Laboratory, LIM-25, University of São Paulo Medical School (FM-USP), 01246-903 São Paulo, Brazil; Head and Neck Surgery of Santa Catarina Hospital (C.U.F.), 01310-000 São Paulo, Brazil; Genetic Bases of Thyroid Tumors Laboratory (L.M., J.M.C.), Division of Genetics, Department of Morphology and Genetics, Federal University of São Paulo (UNIFESP), 04039-032 São Paulo, Brazil; Department of Physiology and Biophysics (C.S.-N.), Institute of Biomedical Sciences, University of São Paulo, 05508-900 São Paulo, Brazil; Center of Biotechnology (M.F.S.), Instituto de Pesquisas Energéticas e Nucleares, IPEN-CNEN/SP, 05508-000 São Paulo, Brazil; and Department of Biological Sciences (I.G.S.R.), UNIFESP, 09972-270 São Paulo, Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Lai RK, Chen Y, Guan X, Nousome D, Sharma C, Canoll P, Bruce J, Sloan AE, Cortes E, Vonsattel JP, Su T, Delgado-Cruzata L, Gurvich I, Santella RM, Ostrom Q, Lee A, Gregersen P, Barnholtz-Sloan J. Genome-wide methylation analyses in glioblastoma multiforme. PLoS One 2014; 9:e89376. [PMID: 24586730 PMCID: PMC3931727 DOI: 10.1371/journal.pone.0089376] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2013] [Accepted: 01/20/2014] [Indexed: 01/30/2023] Open
Abstract
Few studies had investigated genome-wide methylation in glioblastoma multiforme (GBM). Our goals were to study differential methylation across the genome in gene promoters using an array-based method, as well as repetitive elements using surrogate global methylation markers. The discovery sample set for this study consisted of 54 GBM from Columbia University and Case Western Reserve University, and 24 brain controls from the New York Brain Bank. We assembled a validation dataset using methylation data of 162 TCGA GBM and 140 brain controls from dbGAP. HumanMethylation27 Analysis Bead-Chips (Illumina) were used to interrogate 26,486 informative CpG sites in both the discovery and validation datasets. Global methylation levels were assessed by analysis of L1 retrotransposon (LINE1), 5 methyl-deoxycytidine (5m-dC) and 5 hydroxylmethyl-deoxycytidine (5hm-dC) in the discovery dataset. We validated a total of 1548 CpG sites (1307 genes) that were differentially methylated in GBM compared to controls. There were more than twice as many hypomethylated genes as hypermethylated ones. Both the discovery and validation datasets found 5 tumor methylation classes. Pathway analyses showed that the top ten pathways in hypomethylated genes were all related to functions of innate and acquired immunities. Among hypermethylated pathways, transcriptional regulatory network in embryonic stem cells was the most significant. In the study of global methylation markers, 5m-dC level was the best discriminant among methylation classes, whereas in survival analyses, high level of LINE1 methylation was an independent, favorable prognostic factor in the discovery dataset. Based on a pathway approach, hypermethylation in genes that control stem cell differentiation were significant, poor prognostic factors of overall survival in both the discovery and validation datasets. Approaches that targeted these methylated genes may be a future therapeutic goal.
Collapse
Affiliation(s)
- Rose K. Lai
- Departments of Neurology, Neurosurgery and Preventive Medicine, University of Southern California, Los Angeles, California, United States of America
- * E-mail:
| | - Yanwen Chen
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Xiaowei Guan
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Darryl Nousome
- Departments of Neurology, Neurosurgery and Preventive Medicine, University of Southern California, Los Angeles, California, United States of America
| | - Charu Sharma
- Department of Radiation Oncology, Columbia University, New York, New York, United States of America
| | - Peter Canoll
- Departments of Pathology, Columbia University, New York, New York, United States of America
| | - Jeffrey Bruce
- Departments of Neurosurgery, Columbia University & Bartoli Brain Tumor Research Laboratory, Columbia University, New York, New York, United States of America
| | - Andrew E. Sloan
- Department of Neurological Surgery, University Hospitals-Case Medical Center, Case Western Reserve University, United States of America
| | - Etty Cortes
- New York Brain Bank, Columbia University, New York, New York, United States of America
| | - Jean-Paul Vonsattel
- Departments of Pathology, Columbia University, New York, New York, United States of America
- New York Brain Bank, Columbia University, New York, New York, United States of America
| | - Tao Su
- Pathology Core, Herbert Irving Cancer Center, Columbia University, New York, New York, United States of America
| | - Lissette Delgado-Cruzata
- Department of Environmental Health Sciences, Columbia University & Biomarker Core, Herbert Irving Comprehensive Cancer Center, Columbia University, New York, New York, United States of America
| | - Irina Gurvich
- Department of Environmental Health Sciences, Columbia University & Biomarker Core, Herbert Irving Comprehensive Cancer Center, Columbia University, New York, New York, United States of America
| | - Regina M. Santella
- Department of Environmental Health Sciences, Columbia University & Biomarker Core, Herbert Irving Comprehensive Cancer Center, Columbia University, New York, New York, United States of America
| | - Quinn Ostrom
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Annette Lee
- Feinstein Institute of Medical Genetics, North Shore University Hospital, Manhasset, New York, United States of America
| | - Peter Gregersen
- Feinstein Institute of Medical Genetics, North Shore University Hospital, Manhasset, New York, United States of America
| | - Jill Barnholtz-Sloan
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, Ohio, United States of America
| |
Collapse
|
47
|
Abstract
OBJECTIVE: To determine whether the availability of mammography resources
affected breast cancer incidence rates, stage of disease at initial diagnosis,
mortality rates and/or mortality-to-incidence ratios throughout Mississippi.
METHODS: Mammography facilities were geocoded and the numbers of residents
residing within a thirty minute drive of a mammography facility were calculated.
Other data were extracted from the Mississippi Cancer Registry, the U.S. Census,
and the Mississippi Behavioral Risk Factor Surveillance Survey (BRFSS). RESULTS
& DISCUSSION: There were no statistically-significant differences between
breast cancer incidence rates in Black versus White females in Mississippi;
however, there were significant differences in the use of mammography,
percentages of advanced-stage initial diagnoses, mortality rates, and
mortality-to-incidence ratios, where Black females fared worse in each category.
No statistically-significant correlations were observed between breast cancer
outcomes and the availability of mammography facilities. The use of mammography
was negatively correlated with advanced stage of disease at initial diagnosis.
By combining Black and White subsets, a correlation between mammography use and
improved survival was detected; this was not apparent in either subset alone.
There was also a correlation between breast cancer mortality-to-incidence ratios
and the percentage of the population living below the poverty level.
CONCLUSIONS: The accessibility and use of mammography resources has a greater
impact on breast cancer in Mississippi than does the geographic resource
distribution per se. Therefore, intensified mammography
campaigns to reduce the percentage of advanced-stage breast cancers initially
diagnosed in Black women, especially in communities with high levels of poverty,
are warranted in Mississippi.
Collapse
|
48
|
Chavez-MacGregor M, Liu S, De Melo-Gagliato D, Chen H, Do KA, Pusztai L, Symmans WF, Nair L, Hortobagyi GN, Mills GB, Meric-Bernstam F, Gonzalez-Angulo AM. Differences in gene and protein expression and the effects of race/ethnicity on breast cancer subtypes. Cancer Epidemiol Biomarkers Prev 2014; 23:316-23. [PMID: 24296856 PMCID: PMC3946290 DOI: 10.1158/1055-9965.epi-13-0929] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Differences in gene or protein expression patterns between breast cancers according to race/ethnicity and cancer subtype. METHODS Transcriptional profiling was performed using Affymetrix HG-U133A platform in 376 patients and reverse phase protein array analysis (RPPA) was done for 177 proteins in 255 patients from a separate cohort. Unsupervised clustering was conducted, as well as supervised comparison by race and tumor subtype. Standard statistical methods, BRB-Array tools, and Ingenuity Pathways software packages were used to analyze the data. RESULTS Median age was 50 years in both the cohorts. In the RPPA cohort, 54.5% of the tumors were hormone receptor-positive (HR-positive), 20.7% HER2-positive, and 24.71% triple-negative (TNBC). One hundred and forty-seven (57.6%), 47 (18.43%), and 46 (18.1%) of the patients were White, Hispanic, and Black, respectively. Unsupervised hierarchical clustering of the protein expression data showed no distinct clusters by race (P values were 0.492, 0.489, and 0.494 for the HR-positive, HER2-positive, and TNBC tumors respectively). In the gene expression cohort, 54.2% of the tumors were HR-positive, 16.5% HER2-positive, and 29.3% TNBC. Two hundred and sixteen (57.5%), 111 (29.52%), and 32 (8.52%) patients were White, Hispanic, and Black, respectively. No probe set with a false discovery rate (FDR) of <0.05 showed an association with race by breast cancer subtype; similar results were obtained using pathway and gene set enrichment analysis methods. CONCLUSIONS We did not detect a significant variation in RNA or protein expression comparing different race/ethnicity groups of women with breast cancer. IMPACT More research on the complex network of factors that result in outcomes differences among race/ethnicities is needed.
Collapse
Affiliation(s)
- Mariana Chavez-MacGregor
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Shuying Liu
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Debora De Melo-Gagliato
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Huiqin Chen
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Kim-Anh Do
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Lajos Pusztai
- Division of Hematology-Oncology, Yale University, New Haven, CT, USA
| | - W. Fraser Symmans
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Lakshmy Nair
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Gabriel N. Hortobagyi
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Gordon B. Mills
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Funda Meric-Bernstam
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ana M. Gonzalez-Angulo
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
49
|
Epigenetic analysis of neurocognitive development at 1 year of age in a community-based pregnancy cohort. Behav Genet 2014; 44:113-25. [PMID: 24452678 DOI: 10.1007/s10519-014-9641-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2013] [Accepted: 01/09/2014] [Indexed: 10/25/2022]
Abstract
Multiple studies show that molecular genetic changes and epigenetic modifications affect the risk of cognitive disability or impairment. However, the role of epigenetic variation in cognitive development of neurotypical young children remains largely unknown. Using data from a prospective, community-based study of mother-infant pairs, we investigated the association of DNA methylation patterns in neonatal umbilical cord blood with cognitive and language development at 1 year of age. No CpG loci achieved genome-wide significance, although a small number of weakly suggestive associations with Bayley-III Receptive Communication scales were noted. While umbilical cord blood is a convenient resource for genetic analyses of birth outcomes, our results do not provide conclusive evidence that its use for DNA methylation profiling yields epigenetic markers that are directly related to postnatal neurocognitive outcomes at 1 year of age.
Collapse
|
50
|
Jung EJ, Kim IS, Lee EY, Kang JE, Lee SM, Kim DC, Kim JY, Park ST. Comparison of methylation profiling in cancerous and their corresponding normal tissues from korean patients with breast cancer. Ann Lab Med 2013; 33:431-40. [PMID: 24205493 PMCID: PMC3819443 DOI: 10.3343/alm.2013.33.6.431] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2012] [Revised: 06/20/2013] [Accepted: 08/20/2013] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Aberrant DNA hypermethylation plays a pivotal role in carcinogenesis and disease progression; therefore, accurate measurement of differential gene methylation patterns among many genes is likely to reveal biomarkers for improved risk assessment. We evaluated the gene hypermethylation profiles of primary breast tumors and their corresponding normal tissues and investigated the association between major clinicopathological features and gene hypermethylation. METHODS A single reaction using methylation-specific multiplex ligation-dependent probe amplification was used to analyze the DNA methylation status of 24 tumor suppressor genes in 60 cancerous tissues and their corresponding normal tissues from patients with primary breast cancer. RESULTS In cancerous breast tissues, 21 of 24 genes displayed promoter methylation in one or more samples. The most frequently methylated genes included RASSF1 (43.3%), APC (31.7%), CDKN2B (25.0%), CDH13 (23.3%), GSTP1 (16.7%), and BRCA1 (10%). APC was associated with lymph node metastasis, and BRCA1 was associated with negative estrogen receptor and negative progesterone receptor expression. In normal breast tissues, 8 of 24 tumor suppressor genes displayed promoter hypermethylation; CDKN2B (28.3%) and RASSF1 (8.3%) hypermethylation were most frequently observed. CONCLUSIONS RASSF1 and CDKN2B hypermethylation in Korean breast cancer patients were the most frequent in cancerous tissue and corresponding normal tissue, respectively. Our data indicates that methylation of specific genes is a frequent event in morphologically normal breast tissues adjacent to breast tumors as well as the corresponding breast cancers. This study also suggests that gene methylation is linked to various pathological features of breast cancer; however, this requires confirmation in a larger study.
Collapse
Affiliation(s)
- Eun-Jung Jung
- Division of Surgical Oncology, Department of Surgery, Gyeongsang National University Hospital, Jinju, Korea
| | - In-Suk Kim
- Department of Laboratory Medicine, Biomedical Research Institute, Pusan National University Hospital, Busan, Korea
| | - Eun Yup Lee
- Department of Laboratory Medicine, Biomedical Research Institute, Pusan National University Hospital, Busan, Korea
| | - Jeong-Eun Kang
- Department of Laboratory Medicine, Pusan National University Yangsan Hospital, Yangsan, Korea
| | - Sun-Min Lee
- Department of Laboratory Medicine, Pusan National University Yangsan Hospital, Yangsan, Korea
| | - Dong Chul Kim
- Department of Pathology, Gyeongsang National University Hospital, Jinju, Korea
| | - Ju-Yeon Kim
- Division of Surgical Oncology, Department of Surgery, Gyeongsang National University Hospital, Jinju, Korea
| | - Soon-Tae Park
- Division of Surgical Oncology, Department of Surgery, Gyeongsang National University Hospital, Jinju, Korea
| |
Collapse
|