1
|
Li X, Png GK, Zhang Z, Guo F, Li Y, Li F, Luo S, Ostle NJ, Quinton JN, Schaffner UA, Hou X, Wardle DA, Bardgett RD. Higher Plant Diversity Does Not Moderate the Influence of Changing Rainfall Regimes on Plant-Soil Feedback of a Semi-Arid Grassland. GLOBAL CHANGE BIOLOGY 2025; 31:e70084. [PMID: 40035346 PMCID: PMC11877630 DOI: 10.1111/gcb.70084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 01/15/2025] [Accepted: 01/20/2025] [Indexed: 03/05/2025]
Abstract
Climate change is expected to increase the frequency of severe droughts, but it remains unclear whether soil biotic conditioning by plant communities with varying species richness or functional group diversity moderate plant-soil feedback (PSF)-an important ecosystem process driving plant community dynamics-under altered rainfall regimes. We conducted a two-phase PSF experiment to test how plant diversity affects biotic PSF under different rainfall regimes. In Phase 1, we set up mesocosms with 15 plant assemblages composed of two grasses, two forbs and two nitrogen-fixing legumes [one, two, three, or six species from one, two, or three functional group(s)] common to the semi-arid eastern Eurasian Steppe. Mesocosms were subjected to two rainfall amounts (ambient, 50% reduction) crossed with two frequencies (ambient, 50% reduction) for a growing season (~3 months). Conditioned soil from each mesocosm was then used in Phase 2 to inoculate (7% v/v) sterilised mesocosms planted with the same species as in Phase 1 and grown for 8 weeks. Simultaneously, the same plant assemblages were grown in sterilised soil to calculate PSF based on plant biomass measured at the end of Phase 2. Feedback effects differed amongst plant assemblages, but were not significantly altered by reduced rainfall treatments within any plant assemblage. This suggests that the examined interactions between plant and soil microbial communities were resistant to simulated rainfall reductions and that increasing plant diversity did not moderate PSF under altered rainfall regimes. Moreover, increasing plant species richness or functional group diversity did not lessen the magnitude of PSF differences between ambient and reduced rainfall treatments. Collectively, these findings advance our understanding of plant diversity's potential to mitigate climate change effects on PSF, showing that in semi-arid grasslands, higher plant diversity may not moderate PSF responses to altered rainfall regimes and highlighting the importance of considering species-specific traits and interaction stability.
Collapse
Affiliation(s)
- Xiliang Li
- Institute of Grassland ResearchChinese Academy of Agricultural SciencesHohhotChina
| | - G. Kenny Png
- Department of Earth and Environmental SciencesThe University of ManchesterManchesterUK
| | - Zhen Zhang
- Institute of Grassland ResearchChinese Academy of Agricultural SciencesHohhotChina
| | - Fenghui Guo
- Institute of Grassland ResearchChinese Academy of Agricultural SciencesHohhotChina
- The Industrial Crop InstituteShanxi Agriculture UniversityTaiyuanChina
| | - Yuanheng Li
- Institute of Grassland ResearchChinese Academy of Agricultural SciencesHohhotChina
| | - Fang Li
- Institute of Grassland ResearchChinese Academy of Agricultural SciencesHohhotChina
| | - Shan Luo
- Lancaster Environment CentreLancaster UniversityLancasterUK
- Department of Evolution, Ecology and BehaviourUniversity of LiverpoolLiverpoolUK
| | | | | | - Urs A. Schaffner
- Centre for Agriculture and Biosciences InternationalDelémontSwitzerland
| | - Xiangyang Hou
- Institute of Grassland ResearchChinese Academy of Agricultural SciencesHohhotChina
- College of Grassland ScienceShanxi Agriculture UniversityTaiguChina
| | - David A. Wardle
- Department of Ecology and Environmental ScienceUmeå UniversitetUmeåSweden
| | - Richard D. Bardgett
- Department of Earth and Environmental SciencesThe University of ManchesterManchesterUK
- Lancaster Environment CentreLancaster UniversityLancasterUK
| |
Collapse
|
2
|
Souza C, Valadão-Mendes LB, Schulze-Albuquerque I, Bergamo PJ, Souza DD, Nogueira A. Nitrogen-fixing bacteria boost floral attractiveness in a tropical legume species during nutrient limitation. AMERICAN JOURNAL OF BOTANY 2024; 111:e16363. [PMID: 38956859 DOI: 10.1002/ajb2.16363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 04/30/2024] [Accepted: 05/01/2024] [Indexed: 07/04/2024]
Abstract
PREMISE Legumes establish mutualistic interactions with pollinators and nitrogen (N)-fixing bacteria that are critical for plant reproduction and ecosystem functioning. However, we know little about how N-fixing bacteria and soil nutrient availability affect plant attractiveness to pollinators. METHODS In a two-factorial greenhouse experiment to assess the impact of N-fixing bacteria and soil types on floral traits and attractiveness to pollinators in Chamaecrista latistipula (Fabaceae), plants were inoculated with N-fixing bacteria (NF+) or not (NF-) and grown in N-rich organic soil (+N organic soil) or N-poor sand soil (-N sand soil). We counted buds and flowers and measured plant size during the experiment. We also measured leaf, petal, and anther reflectance with a spectrophotometer and analyzed reflectance curves. Using the bee hexagon model, we estimated chromatic contrasts, a crucial visual cues for attracting bees that are nearby and more distant. RESULTS NF+ plants in -N sand soil had a high floral display and color contrasts. On the other hand, NF- plants and/or plants in +N organic soil had severely reduced floral display and color contrasts, decreasing floral attractiveness to bee pollinators. CONCLUSIONS Our findings indicate that the N-fixing bacteria positively impact pollination, particularly when nutrients are limited. This study provides insights into the dynamics of plant-pollinator interactions and underscores the significant influence of root symbionts on key floral traits within tropical ecosystems. These results contribute to understanding the mechanisms governing mutualisms and their consequences for plant fitness and ecological dynamics.
Collapse
Affiliation(s)
- Caroline Souza
- Laboratório de Interações Planta-Animal (LIPA), Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, Brazil
- Programa de Pós-Graduação em Evolução e Diversidade, Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, São Bernardo do Campo, SP, Brazil
| | - Lorena B Valadão-Mendes
- Programa de Pós-graduação em Ecologia, Conservação e Manejo da Vida Silvestre, Universidade Federal de Minas Gerais, Belo Horizonte, Brasil
| | - Isadora Schulze-Albuquerque
- Departamento de Botânica, Programa de Pós-Graduação em Biologia Vegetal, Universidade Federal de Pernambuco, Recife, Pernambuco, Brazil
| | - Pedro J Bergamo
- Instituto de Biociências, Universidade Estadual Paulista, Rio Claro, Av 24 1515, São Paulo, Brasil
| | - Douglas D Souza
- Laboratório de Interações Planta-Animal (LIPA), Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, Brazil
- Programa de Pós-Graduação em Evolução e Diversidade, Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, São Bernardo do Campo, SP, Brazil
| | - Anselmo Nogueira
- Laboratório de Interações Planta-Animal (LIPA), Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, Brazil
- Programa de Pós-Graduação em Evolução e Diversidade, Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, São Bernardo do Campo, SP, Brazil
| |
Collapse
|
3
|
Janczarek M, Adamczyk P, Gromada A, Polakowski C, Wengerska K, Bieganowski A. Adaptation of Rhizobium leguminosarum sv. trifolii strains to low temperature stress in both free-living stage and during symbiosis with clover. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 951:175554. [PMID: 39151610 DOI: 10.1016/j.scitotenv.2024.175554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 08/12/2024] [Accepted: 08/13/2024] [Indexed: 08/19/2024]
Abstract
Legume-rhizobial symbiosis plays an important role in agriculture and ecological restoration. This process occurs within special new structures, called nodules, formed mainly on legume roots. Soil bacteria, commonly known as rhizobia, fix atmospheric dinitrogen, converting it into a form that can be assimilated by plants. Various environmental factors, including a low temperature, have an impact on the symbiotic efficiency. Nevertheless, the effect of temperature on the phenotypic and symbiotic traits of rhizobia has not been determined in detail to date. Therefore, in this study, the influence of temperature on different cell surface and symbiotic properties of rhizobia was estimated. In total, 31 Rhizobium leguminosarum sv. trifolii strains isolated from root nodules of red clover plants growing in the subpolar and temperate climate regions, which essentially differ in year and day temperature profiles, were chosen for this analysis. Our results showed that temperature has a significant effect on several surface properties of rhizobial cells, such as hydrophobicity, aggregation, and motility. Low temperature also stimulated EPS synthesis and biofilm formation in R. leguminosarum sv. trifolii. This extracellular polysaccharide is known to play an important protective role against different environmental stresses. The strains produced large amounts of EPS under tested temperature conditions that facilitated adherence of rhizobial cells to different surfaces. The high adaptability of these strains to cold stress was also confirmed during symbiosis. Irrespective of their climatic origin, the strains proved to be highly effective in attachment to legume roots and were efficient microsymbionts of clover plants. However, some diversity in the response to low temperature stress was found among the strains. Among them, M16 and R137 proved to be highly competitive and efficient in nodule occupancy and biomass production; thus, they can be potential yield-enhancing inoculants of legumes.
Collapse
Affiliation(s)
- Monika Janczarek
- Department of Industrial and Environmental Microbiology, Institute of Biological Sciences, Maria Curie-Skłodowska University, 19 Akademicka, 20-033 Lublin, Poland.
| | - Paulina Adamczyk
- Department of Industrial and Environmental Microbiology, Institute of Biological Sciences, Maria Curie-Skłodowska University, 19 Akademicka, 20-033 Lublin, Poland.
| | - Anna Gromada
- Department of Industrial and Environmental Microbiology, Institute of Biological Sciences, Maria Curie-Skłodowska University, 19 Akademicka, 20-033 Lublin, Poland.
| | - Cezary Polakowski
- Department of Natural Environment Biogeochemistry, Institute of Agrophysics, Polish Academy of Sciences, 4 Doświadczalna, 20-290 Lublin, Poland.
| | - Karolina Wengerska
- Institute of Biological Basis of Animal Production, University of Life Sciences in Lublin, 13 Akademicka Street, 20-950 Lublin, Poland.
| | - Andrzej Bieganowski
- Department of Natural Environment Biogeochemistry, Institute of Agrophysics, Polish Academy of Sciences, 4 Doświadczalna, 20-290 Lublin, Poland.
| |
Collapse
|
4
|
Gandolfi I, Canedoli C, Rosatelli A, Covino S, Cappelletti D, Sebastiani B, Tatangelo V, Corengia D, Pittino F, Padoa-Schioppa E, Báez-Matus X, Hernández L, Seeger M, Saati-Santamaría Z, García-Fraile P, López-Mondéjar R, Ambrosini R, Papacchini M, Franzetti A. Microbiomes of urban trees: unveiling contributions to atmospheric pollution mitigation. Front Microbiol 2024; 15:1470376. [PMID: 39588101 PMCID: PMC11586189 DOI: 10.3389/fmicb.2024.1470376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 10/15/2024] [Indexed: 11/27/2024] Open
Abstract
Urban trees are crucial in delivering essential ecosystem services, including air pollution mitigation. This service is influenced by plant associated microbiomes, which can degrade hydrocarbons, support tree health, and influence ecological processes. Yet, our understanding of tree microbiomes remains limited, thus affecting our ability to assess and quantify the ecosystem services provided by trees as complex systems. The main hypothesis of this work was that tree microbiomes concur to hydrocarbon biodegradation, and was tested through three case studies, which collectively investigated two tree micro-habitats (phyllosphere and tree cavity organic soil-TCOS) under various conditions representing diverse ecological scenarios, by applying different culture-based and molecular techniques and at different scales. The integration of all results provided a more comprehensive understanding of the role of microbiomes in urban trees. Firstly, bacterial strains isolated from the phyllosphere of Quercus ilex were characterized, indicating the presence of Plant-Growth Promoting bacteria and strains able to catabolize PAHs, particularly naphthalene and phenanthrene. Secondly, naphthalene biodegradation on artificially spiked Hedera helix leaves was quantified in greenhouse experiments on inoculated and untreated plants. The persistence of the inoculated strain and community structure of epiphytic bacteria were assessed by Illumina sequencing of V5-V6 hypervariable regions of 16S rRNA gene. Results showed that naphthalene degradation was initially faster on inoculated plants but later the degradation rates became similar, probably because bacterial populations with hydrocarbon-degrading abilities gradually developed also on non-inoculated plants. Finally, we explored bacterial and fungal biodiversity hosted by TCOS samples, collected from six large trees located in an urban park and belonging to different species. Microbial communities were characterized by Illumina sequencing of V5-V6 hypervariable regions of bacterial gene 16S rRNA and of fungal ITS1. Results indicated TCOS as a distinct substrate, whose microbiome is determined both by the host tree and by canopy environmental conditions and has a pronounced aerobic hydrocarbon degradation potential. Overall, a better assessment of biodiversity associated with trees and the subsequent provision of ecosystem services constitute a first step toward developing future new microbe-driven sustainable solutions, especially in terms of support for urban green planning and management policy.
Collapse
Affiliation(s)
- Isabella Gandolfi
- Department of Earth and Environmental Sciences (DISAT), University of Milano-Bicocca, Milan, Italy
| | - Claudia Canedoli
- Department of Earth and Environmental Sciences (DISAT), University of Milano-Bicocca, Milan, Italy
| | - Asia Rosatelli
- Department of Earth and Environmental Sciences (DISAT), University of Milano-Bicocca, Milan, Italy
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Perugia, Italy
| | - Stefano Covino
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Perugia, Italy
| | - David Cappelletti
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Perugia, Italy
| | - Bartolomeo Sebastiani
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Perugia, Italy
| | - Valeria Tatangelo
- Department of Earth and Environmental Sciences (DISAT), University of Milano-Bicocca, Milan, Italy
| | | | - Francesca Pittino
- Department of Earth and Environmental Sciences (DISAT), University of Milano-Bicocca, Milan, Italy
| | - Emilio Padoa-Schioppa
- Department of Earth and Environmental Sciences (DISAT), University of Milano-Bicocca, Milan, Italy
| | - Ximena Báez-Matus
- Departamento de Química and Centro de Biotecnología Daniel Alkalay Lowitt, Universidad Técnica Federico Santa María, Valparaíso, Chile
- Millenium Nucleus Bioproducts, Genomics and Environmental Genomics (BioGEM), Valparaíso, Chile
| | - Lisette Hernández
- Departamento de Química and Centro de Biotecnología Daniel Alkalay Lowitt, Universidad Técnica Federico Santa María, Valparaíso, Chile
- Millenium Nucleus Bioproducts, Genomics and Environmental Genomics (BioGEM), Valparaíso, Chile
| | - Michael Seeger
- Departamento de Química and Centro de Biotecnología Daniel Alkalay Lowitt, Universidad Técnica Federico Santa María, Valparaíso, Chile
- Millenium Nucleus Bioproducts, Genomics and Environmental Genomics (BioGEM), Valparaíso, Chile
| | - Zaki Saati-Santamaría
- Departamento de Microbiología y Genética, Universidad de Salamanca, Salamanca, Spain
- Instituto de Investigación en Agrobiotecnología (CIALE), Universidad de Salamanca, Salamanca, Spain
- Institute of Microbiology of the Czech Academy of Sciences, Prague, Czechia
| | - Paula García-Fraile
- Departamento de Microbiología y Genética, Universidad de Salamanca, Salamanca, Spain
- Instituto de Investigación en Agrobiotecnología (CIALE), Universidad de Salamanca, Salamanca, Spain
- Unidad Asociada Grupo de Interacción Planta-Microorganismo, Universidad de Salamanca-IRNASA-CSIC, Salamanca, Spain
| | - Rubén López-Mondéjar
- Department of Soil and Water Conservation and Waste Management, CEBAS-CSIC, Campus Universitario de Espinardo, Murcia, Spain
| | - Roberto Ambrosini
- Department of Environmental Science and Policy, University of Milan, Milan, Italy
| | - Maddalena Papacchini
- Department of Technological Innovations and Safety of Plants, Products and Anthropic Settlements, Italian National Institute for Insurance against Accidents at Work (INAIL), Rome, Italy
| | - Andrea Franzetti
- Department of Earth and Environmental Sciences (DISAT), University of Milano-Bicocca, Milan, Italy
| |
Collapse
|
5
|
Kantsurova ES, Bovin AD, Dymo AM, Komolkina NA, Shalyakina AA, Salnikova EA, Pavlova OA, Yuzikhin OS, Vishnevskaya NA, Dolgikh EA. Influence of Enhanced Synthesis of Exopolysaccharides in Rhizobium ruizarguesonis and Overproduction of Plant Receptor to these Compounds on Colonizing Activity of Rhizobia in Legume and Non-Legume Plants and Plant Resistance to Phytopathogenic Fungi. Curr Microbiol 2024; 81:416. [PMID: 39432167 DOI: 10.1007/s00284-024-03929-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 09/29/2024] [Indexed: 10/22/2024]
Abstract
Rhizobial exopolysaccharides (EPS) may provide stabilization of membranes against external factors, as well as improved surface adhesion, but their role in interaction with legume and non-legume plants is still far from understanding. In this work, the transcriptional regulator RosR of Rhizobium ruizarguesonis, which regulates the synthesis of EPS, was overproduced in a pHC60 plasmid and expressed in the RCAM 1026 strain. This resulted in an improved production of EPS by this recombinant strain. Comparative analysis of the inoculation of pea Pisum sativum plants with R. ruizarguesonis pHC60-rosR and strain carrying the empty plasmid revealed an essential increase in the number of nodules, root length and biomass in plants inoculated with this EPS-overproducing strain. It demonstrates that the enhanced EPS synthesis by rhizobia may stimulate plant root colonization and subsequent nodule formation in pea plants. The influence of enhanced EPS synthesis in rhizobia on colonizing activity was also estimated in non-legume plant tomato Solanum lycopersicum. Our findings shown the increased colonization of the root surface and stimulation of the shoot biomass of inoculated plants. Inoculation of pea and tomato with EPS-overproducing rhizobial strain essentially increased plant resistance to phytopathogenic fungi Fusarium culmorum and F. oxysporum in both legume and non-legume plants, demonstrating a significant biocontrol effect of this recombinant strain. Furthermore, we have identified the PsLYK10 gene that encodes a putative EPS receptor in P. sativum, although no significant effect of PsLYK10 overexpression on nodulation in legume (pea P. sativum) and colonization of roots of non-legume plants by rhizobia was found compared to enhanced production of EPS by rhizobia.
Collapse
Affiliation(s)
- Elizaveta S Kantsurova
- All-Russia Research Institute for Agricultural Microbiology, Podbelsky Chausse 3, 196608, St.-Petersburg, Russia
| | - Andrey D Bovin
- All-Russia Research Institute for Agricultural Microbiology, Podbelsky Chausse 3, 196608, St.-Petersburg, Russia
| | - Alina M Dymo
- All-Russia Research Institute for Agricultural Microbiology, Podbelsky Chausse 3, 196608, St.-Petersburg, Russia
| | - Natalya A Komolkina
- All-Russia Research Institute for Agricultural Microbiology, Podbelsky Chausse 3, 196608, St.-Petersburg, Russia
| | - Alexandra A Shalyakina
- All-Russia Research Institute for Agricultural Microbiology, Podbelsky Chausse 3, 196608, St.-Petersburg, Russia
| | - Elizaveta A Salnikova
- All-Russia Research Institute for Agricultural Microbiology, Podbelsky Chausse 3, 196608, St.-Petersburg, Russia
| | - Olga A Pavlova
- All-Russia Research Institute for Agricultural Microbiology, Podbelsky Chausse 3, 196608, St.-Petersburg, Russia
| | - Oleg S Yuzikhin
- All-Russia Research Institute for Agricultural Microbiology, Podbelsky Chausse 3, 196608, St.-Petersburg, Russia
| | - Nadezhda A Vishnevskaya
- All-Russia Research Institute for Agricultural Microbiology, Podbelsky Chausse 3, 196608, St.-Petersburg, Russia
| | - Elena A Dolgikh
- All-Russia Research Institute for Agricultural Microbiology, Podbelsky Chausse 3, 196608, St.-Petersburg, Russia.
| |
Collapse
|
6
|
Jabborova D, Mamarasulov B, Davranov K, Enakiev Y, Bisht N, Singh S, Stoyanov S, Garg AP. Diversity and Plant Growth Properties of Rhizospheric Bacteria Associated with Medicinal Plants. Indian J Microbiol 2024; 64:409-417. [PMID: 39010983 PMCID: PMC11246357 DOI: 10.1007/s12088-024-01275-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 03/28/2024] [Indexed: 07/17/2024] Open
Abstract
Microbes in the rhizosphere play a significant role in the growth, development, and efficiency of plants and trees. The rhizospheric area's microbes are reliant on the soil's characteristics and the substances that the plants release. The majority of previous research on medicinal plants concentrated on their bioactive phytochemicals, but this is changing now that it is understood that a large proportion of phytotherapeutic substances are actually created by related microorganisms or through contact with their host. The roots of medicinal plants secrete a large number of secondary metabolites that determine the diversity of microbial communities in their rhizosphere. The dominant bacteria isolated from a variety of medicinal plants include various species of Bacillus, Rhizobium, Pseudomonas, Azotobacter, Burkholderia, Enterobacte, Microbacterium, Serratia, Burkholderia, and Beijerinckia. Actinobacteria also colonize the rhizosphere of medicinal plants that release low molecular weight organic solute that facilitate the solubilisation of inorganic phosphate. Root exudates of medicinal plants resist abiotic stress and accumulate in soil to produce autotoxic effects that exhibit strong obstacles to continuous cropping. Although having a vast bioresource that may be used in agriculture and modern medicine, medicinal plants' microbiomes are largely unknown. The purpose of this review is to (i) Present new insights into the plant microbiome with a focus on medicinal plants, (ii) Provide information about the components of medicinal plants derived from plants and microbes, and (iii) Discuss options for promoting plant growth and protecting plants for commercial cultivation of medicinal plants. The scientific community has paid a lot of attention to the use of rhizobacteria, particularly plant growth-promoting rhizobacteria (PGPR), as an alternative to chemical pesticides. By a variety of processes, these rhizobacteria support plant growth, manage plant pests, and foster resilience to a range of abiotic challenges. It also focuses on how PGPR inoculation affects plant growth and survival in stressful environments.
Collapse
Affiliation(s)
- Dilfuza Jabborova
- Institute of Genetics and Plant Experimental Biology, Uzbekistan Academy of Sciences, 111208 Qibray, Uzbekistan
- Faculty of Biology, National University of Uzbekistan, 100174 Tashkent, Uzbekistan
- School of Biological Engineering and Life Sciences, Shobhit Institute of Engineering and Technology (NAAC Accredited Grade 'A', Deemed to-be-University), NH-58, Modipuram, Meerut, 250110 India
| | - Bakhodir Mamarasulov
- Institute of Microbiology of the Academy of Sciences of Uzbekistan, 100128 Tashkent, Uzbekistan
| | - Kakhramon Davranov
- Institute of Microbiology of the Academy of Sciences of Uzbekistan, 100128 Tashkent, Uzbekistan
| | - Yuriy Enakiev
- Nikola Pushkarov Institute of Soil Science, Agrotechnologies and Plant Protection, Agricultural Academy, Sofia, Bulgaria
| | - Neha Bisht
- School of Biological Engineering and Life Sciences, Shobhit Institute of Engineering and Technology (NAAC Accredited Grade 'A', Deemed to-be-University), NH-58, Modipuram, Meerut, 250110 India
| | - Sachidanand Singh
- Department of Biotechnology School of Energy and Technology, Pandit Deendayal Energy University, Knowledge Corridor, Raisan Village, PDPU Rd, Gandhinagar, 382007 Gujarat India
| | - Svilen Stoyanov
- Dobrudzha College of Technology, Technical University of Varna, 9010 Varna, Bulgaria
| | - Amar P Garg
- Swami Vivekanand Subharti University, NH-58, Subhartipuram, Meerut, 250005 India
| |
Collapse
|
7
|
Ajeethan N, Yurgel SN, Abbey L. Role of Bacteria-Derived Flavins in Plant Growth Promotion and Phytochemical Accumulation in Leafy Vegetables. Int J Mol Sci 2023; 24:13311. [PMID: 37686117 PMCID: PMC10488295 DOI: 10.3390/ijms241713311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/23/2023] [Accepted: 08/25/2023] [Indexed: 09/10/2023] Open
Abstract
Sinorhizobium meliloti 1021 bacteria secretes a considerable amount of flavins (FLs) and can form a nitrogen-fixing symbiosis with legumes. This strain is also associated with non-legume plants. However, its role in plant growth promotion (PGP) of non-legumes is not well understood. The present study evaluated the growth and development of lettuce (Lactuca sativa) and kale (Brassica oleracea var. acephala) plants inoculated with S. meliloti 1021 (FL+) and its mutant 1021ΔribBA, with a limited ability to secrete FLs (FL-). The results from this study indicated that inoculation with 1021 significantly (p < 0.05) increased the lengths and surface areas of the roots and hypocotyls of the seedlings compared to 1021ΔribBA. The kale and lettuce seedlings recorded 19% and 14% increases in total root length, respectively, following inoculation with 1021 compared to 1021ΔribBA. A greenhouse study showed that plant growth, photosynthetic rate, and yield were improved by 1021 inoculation. Moreover, chlorophylls a and b, and total carotenoids were more significantly (p < 0.05) increased in kale plants associated with 1021 than non-inoculated plants. In kale, total phenolics and flavonoids were significantly (p < 0.05) increased by 6% and 23%, respectively, and in lettuce, the increments were 102% and 57%, respectively, following 1021 inoculation. Overall, bacterial-derived FLs enhanced kale and lettuce plant growth, physiological indices, and yield. Future investigation will use proteomic approaches combined with plant physiological responses to better understand host-plant responses to bacteria-derived FLs.
Collapse
Affiliation(s)
- Nivethika Ajeethan
- Department of Plant, Food, and Environmental Sciences, Faculty of Agriculture, Dalhousie University, Halifax, NS B2N 5E3, Canada
| | - Svetlana N. Yurgel
- USDA, ARS, Grain Legume Genetics and Physiology Research Unit, Prosser, WA 99350, USA;
| | - Lord Abbey
- Department of Plant, Food, and Environmental Sciences, Faculty of Agriculture, Dalhousie University, Halifax, NS B2N 5E3, Canada
| |
Collapse
|
8
|
Gen-Jiménez A, Flores-Félix JD, Rincón-Molina CI, Manzano-Gomez LA, Rogel MA, Ruíz-Valdiviezo VM, Rincón-Molina FA, Rincón-Rosales R. Enhance of tomato production and induction of changes on the organic profile mediated by Rhizobium biofortification. Front Microbiol 2023; 14:1235930. [PMID: 37601341 PMCID: PMC10433389 DOI: 10.3389/fmicb.2023.1235930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 07/18/2023] [Indexed: 08/22/2023] Open
Abstract
Introduction The extensive use of chemical fertilizers has served as a response to the increasing need for crop production in recent decades. While it addresses the demand for food, it has resulted in a decline in crop productivity and a heightened negative environmental impact. In contrast, plant probiotic bacteria (PPB) offer a promising alternative to mitigate the negative consequences of chemical fertilizers. PPB can enhance nutrient availability, promote plant growth, and improve nutrient uptake efficiency, thereby reducing the reliance on chemical fertilizers. Methods This study aimed to evaluate the impact of native Rhizobium strains, specifically Rhizobium calliandrae LBP2-1, Rhizobium mayense NSJP1-1, and Rhizobium jaguaris SJP1- 2, on the growth, quality, and rhizobacterial community of tomato crops. Various mechanisms promoting plant growth were investigated, including phosphate solubilization, siderophore production, indole acetic acid synthesis, and cellulose and cellulase production. Additionally, the study involved the assessment of biofilm formation and root colonization by GFP-tagged strains, conducted a microcosm experiment, and analyzed the microbial community using metagenomics of rhizospheric soil. Results The results showed that the rhizobial strains LBP2-1, NSJP1-1 and SJP1-2 had the ability to solubilize dicalcium phosphate, produce siderophores, synthesize indole acetic acid, cellulose production, biofilm production, and root colonization. Inoculation of tomato plants with native Rhizobium strains influenced growth, fruit quality, and plant microbiome composition. Metagenomic analysis showed increased Proteobacteria abundance and altered alpha diversity indices, indicating changes in rhizospheric bacterial community. Discussion Our findings demonstrate the potential that native Rhizobium strains have to be used as a plant probiotic in agricultural crops for the generation of safe food and high nutritional value.
Collapse
Affiliation(s)
- Adriana Gen-Jiménez
- Laboratorio de Ecología Genómica, Tecnológico Nacional de México, Instituto Tecnológico de Tuxtla Gutiérrez, Tuxtla Gutiérrez, Chiapas, Mexico
| | | | - Clara Ivette Rincón-Molina
- Laboratorio de Ecología Genómica, Tecnológico Nacional de México, Instituto Tecnológico de Tuxtla Gutiérrez, Tuxtla Gutiérrez, Chiapas, Mexico
| | - Luis Alberto Manzano-Gomez
- Laboratorio de Ecología Genómica, Tecnológico Nacional de México, Instituto Tecnológico de Tuxtla Gutiérrez, Tuxtla Gutiérrez, Chiapas, Mexico
- Departamento de Investigación y Desarrollo, 3R Biotec SA de CV, Tuxtla Gutiérrez, Chiapas, Mexico
| | - Marco Antonio Rogel
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, Mexico
| | - Víctor Manuel Ruíz-Valdiviezo
- Laboratorio de Ecología Genómica, Tecnológico Nacional de México, Instituto Tecnológico de Tuxtla Gutiérrez, Tuxtla Gutiérrez, Chiapas, Mexico
| | - Francisco Alexander Rincón-Molina
- Laboratorio de Ecología Genómica, Tecnológico Nacional de México, Instituto Tecnológico de Tuxtla Gutiérrez, Tuxtla Gutiérrez, Chiapas, Mexico
| | - Reiner Rincón-Rosales
- Laboratorio de Ecología Genómica, Tecnológico Nacional de México, Instituto Tecnológico de Tuxtla Gutiérrez, Tuxtla Gutiérrez, Chiapas, Mexico
| |
Collapse
|
9
|
Silva-Gigante M, Hinojosa-Reyes L, Rosas-Castor JM, Quero-Jiménez PC, Pino-Sandoval DA, Guzmán-Mar JL. Heavy metals and metalloids accumulation in common beans (Phaseolus vulgaris L.): A review. CHEMOSPHERE 2023:139010. [PMID: 37236281 DOI: 10.1016/j.chemosphere.2023.139010] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 04/30/2023] [Accepted: 05/21/2023] [Indexed: 05/28/2023]
Abstract
This review focuses on evaluating the accumulation and translocation of As, Cd, Hg, and Pb in Phaseolus vulgaris L. plants and on the possible effects of these elements on the growth of Phaseolus vulgaris L. in soil contaminated with these elements. Heavy metals (HMs) and metalloids (Ms) such as arsenic (As), cadmium (Cd), mercury (Hg), and lead (Pb) represent serious environmental threats due to their wide abundance and high toxicity. HMs and Ms contamination in water and soils from natural or anthropogenic sources, is of great concern in agricultural production due to their toxic effects on plants, adversely affecting food safety and plant growth. The uptake of HMs and Ms by Phaseolus vulgaris L. plants depends on several factors including soil properties such as pH, phosphate, and organic matter. High concentrations of HMs and Ms could be toxic to plants due to the increased generation of ROS such as (O2•-), (•OH), (H2O2), and (1O2) and oxidative stress due to an imbalance between ROS generation and antioxidant enzyme activity. To minimize the effects of ROS, plants have developed a complex defense mechanism based on the activity of antioxidant enzymes such as SOD, CAT, GPX, etc., and phytohormones, especially salicylic acid (SA) that can reduce the toxicity of HMs and Ms in the factors that affect the uptake of these elements by bean plants, and in addition, defense mechanisms under oxidative stress caused by the presence of As, Cd, Hg, and Pb.
Collapse
Affiliation(s)
- M Silva-Gigante
- Universidad Autónoma de Nuevo León, UANL, Facultad de Ciencias Químicas, Cd. Universitaria, Ave. Universidad S/N, San Nicolás de Los Garza, Nuevo León, 66455, Mexico
| | - L Hinojosa-Reyes
- Universidad Autónoma de Nuevo León, UANL, Facultad de Ciencias Químicas, Cd. Universitaria, Ave. Universidad S/N, San Nicolás de Los Garza, Nuevo León, 66455, Mexico
| | - J M Rosas-Castor
- Universidad Autónoma de Nuevo León, UANL, Facultad de Ciencias Químicas, Cd. Universitaria, Ave. Universidad S/N, San Nicolás de Los Garza, Nuevo León, 66455, Mexico
| | - P C Quero-Jiménez
- Universidad Autónoma de Nuevo León, UANL, Facultad de Ciencias Químicas, Cd. Universitaria, Ave. Universidad S/N, San Nicolás de Los Garza, Nuevo León, 66455, Mexico
| | - D A Pino-Sandoval
- Universidad Autónoma de Nuevo León, UANL, Facultad de Ciencias Químicas, Cd. Universitaria, Ave. Universidad S/N, San Nicolás de Los Garza, Nuevo León, 66455, Mexico
| | - J L Guzmán-Mar
- Universidad Autónoma de Nuevo León, UANL, Facultad de Ciencias Químicas, Cd. Universitaria, Ave. Universidad S/N, San Nicolás de Los Garza, Nuevo León, 66455, Mexico.
| |
Collapse
|
10
|
Huang X, Zeng Z, Chen Z, Tong X, Jiang J, He C, Xiang T. Deciphering the potential of a plant growth promoting endophyte Rhizobium sp. WYJ-E13, and functional annotation of the genes involved in the metabolic pathway. Front Microbiol 2022; 13:1035167. [PMID: 36406393 PMCID: PMC9671153 DOI: 10.3389/fmicb.2022.1035167] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 10/17/2022] [Indexed: 09/24/2023] Open
Abstract
Plant growth-promoting rhizobacteria (PGPR) are well-acknowledged root endophytic bacteria used for plant growth promotion. However, which metabolites produced by PGPR could promote plant growth remains unclear. Additionally, which genes are responsible for plant growth-promoting traits is also not elucidated. Thus, as comprehensive understanding of the mechanism of endophyte in growth promotion is limited, this study aimed to determine the metabolites and genes involved in plant growth-promotion. We isolated an endophytic Rhizobium sp. WYJ-E13 strain from the roots of Curcuma wenyujin Y.H. Chen et C. Ling, a perennial herb and medicinal plant. The tissue culture experiment showed its plant growth-promoting ability. The bacterium colonization in the root was confirmed by scanning electron microscopy and paraffin sectioning. Furthermore, it was noted that the WYJ-E13 strain produced cytokinin, anthranilic acid, and L-phenylalanine by metabolome analysis. Whole-genome analysis of the strain showed that it consists of a circular chromosome of 4,350,227 bp with an overall GC content of 60.34%, of a 2,149,667 bp plasmid1 with 59.86% GC, and of a 406,180 bp plasmid2 with 58.05% GC. Genome annotation identified 4,349 putative protein-coding genes, 51 tRNAs, and 9 rRNAs. The CDSs number allocated to the Kyoto Encyclopedia of Genes and Genomes, Gene Ontology, and Clusters of Orthologous Genes databases were 2027, 3,175 and 3,849, respectively. Comparative genome analysis displayed that Rhizobium sp. WYJ-E13 possesses the collinear region among three species: Rhizobium acidisoli FH23, Rhizobium gallicum R602 and Rhizobium phaseoli R650. We recognized a total set of genes that are possibly related to plant growth promotion, including genes involved in nitrogen metabolism (nifU, gltA, gltB, gltD, glnA, glnD), hormone production (trp ABCDEFS), sulfur metabolism (cysD, cysE, cysK, cysN), phosphate metabolism (pstA, pstC, phoB, phoH, phoU), and root colonization. Collectively, these findings revealed the roles of WYJ-E13 strain in plant growth-promotion. To the best of our knowledge, this was the first study using whole-genome sequencing for Rhizobium sp. WYJ-E13 associated with C. wenyujin. WYJ-E13 strain has a high potential to be used as Curcuma biofertilizer for sustainable agriculture.
Collapse
Affiliation(s)
- Xiaoping Huang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
- Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, Hangzhou, China
| | - Zhanghui Zeng
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
- Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, Hangzhou, China
| | - Zhehao Chen
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
- Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, Hangzhou, China
| | - Xiaxiu Tong
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| | - Jie Jiang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| | - Chenjing He
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| | - Taihe Xiang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
- Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, Hangzhou, China
| |
Collapse
|
11
|
Elsayed A, Abdelsattar AM, Heikal YM, El-Esawi MA. Synergistic effects of Azospirillum brasilense and Bacillus cereus on plant growth, biochemical attributes and molecular genetic regulation of steviol glycosides biosynthetic genes in Stevia rebaudiana. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2022; 189:24-34. [PMID: 36041365 DOI: 10.1016/j.plaphy.2022.08.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 07/29/2022] [Accepted: 08/17/2022] [Indexed: 06/15/2023]
Abstract
The current study aimed to scale up the favorable bio-stimulants for enhancing the growth and breeding strategies of Stevia rebaudiana to increase sugar productivity. Inoculation of 45-day-old S. rebaudiana plantlets with Bacillus cereus and Azospirillum brasilense alone or in combination for 30 days allowed comparisons among their effects on enhancement and improvement of plant growth, production of bioactive compounds and expression of steviol glycoside genes. B. cereus SrAM1 isolated from surface-sterilized Stevia rebaudiana leaves was molecularly identified using 16s rRNA and tested for its ability to promote plant growth. Beneficial endophytic B. cereus SrAM1 induced all plant growth-promoting traits, except solubilization of phosphate, therefore it showed high effectiveness in the promotion of growth and production of bioactive compounds. Treatment of plants with B. cereus SrAM1 alone revealed carbohydrates content of 278.99 mg/g, total soluble sugar of 114.17 mg/g, total phenolics content of 34.05 mg gallic acid equivalent (GAE)/g dry weight) and total antioxidants activity of 32.33 mg (A.A)/g dry weight). Thus, plantlets inoculated with B. cereus SrAM1 alone exhibited the greatest responses in physiological and morphological parameters, but plantlets inoculated with B. cereus SrAM1 + A. brasilense showed a maximal upregulation of genes responsible for the biosynthesis of steviol glycosides (Kaurene oxidase, ent-KO; UDP-dependent glycosyl transferases of UGT85C2, UGT74G1, UGT76G1). Taken together, the used bacterial strains, particularly B. cereus SrAM1 could significantly improve the growth of S. rebaudiana via dynamic interactions in plants.
Collapse
Affiliation(s)
- Ashraf Elsayed
- Botany Department, Faculty of Science, Mansoura University, 35516, Mansoura, Egypt
| | - Amal M Abdelsattar
- Botany Department, Faculty of Science, Mansoura University, 35516, Mansoura, Egypt
| | - Yasmin M Heikal
- Botany Department, Faculty of Science, Mansoura University, 35516, Mansoura, Egypt
| | - Mohamed A El-Esawi
- Botany Department, Faculty of Science, Tanta University, Tanta, 31527, Egypt.
| |
Collapse
|
12
|
Fusco GM, Nicastro R, Rouphael Y, Carillo P. The Effects of the Microbial Biostimulants Approved by EU Regulation 2019/1009 on Yield and Quality of Vegetable Crops. Foods 2022; 11:2656. [PMID: 36076841 PMCID: PMC9455239 DOI: 10.3390/foods11172656] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 08/26/2022] [Accepted: 08/28/2022] [Indexed: 12/04/2022] Open
Abstract
The use of microbial biostimulants such as plant growth-promoting rhizobacteria (PGPB) and arbuscular mycorrhizal fungi (AMF) has gained popularity in recent years as a sustainable approach to boost yield as well as the quality of produce. The beneficial effects of microbial biostimulants have been reported numerous times. However, information is missing concerning quantitative assessment of the overall impact of microbial biostimulants on the yield and quality of vegetable crops. Here we provide for the first time a comprehensive, semi-systematic review of the effects of microbial biostimulants allowed by Regulation (EU) 2019/1009, including microorganisms belonging to the AMF (phylum Glomeromycota), or to Azospirillum, Azotobacter and Rhizobium genera, on vegetable crops' quality and yield, with rigorous inclusion and exclusion criteria based on the PRISMA method. We identified, selected and critically evaluated all the relevant research studies from 2010 onward in order to provide a critical appraisal of the most recent findings related to these EU-allowed microbial biostimulants and their effects on vegetable crops' quality and yield. Moreover, we highlighted which vegetable crops received more beneficial effects from specific microbial biostimulants and the protocols employed for plant inoculation. Our study is intended to draw more attention from the scientific community to this important instrument to produce nutrient-dense vegetables in a sustainable manner. Finally, our semi-systematic review provides important microbial biostimulant application guidelines and gives extension specialists and vegetable growers insights into achieving an additional benefit from microbial biostimulant application.
Collapse
Affiliation(s)
- Giovanna Marta Fusco
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania “Luigi Vanvitelli”, Via Vivaldi 43, 81100 Caserta, Italy
| | - Rosalinda Nicastro
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania “Luigi Vanvitelli”, Via Vivaldi 43, 81100 Caserta, Italy
| | - Youssef Rouphael
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Italy
| | - Petronia Carillo
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania “Luigi Vanvitelli”, Via Vivaldi 43, 81100 Caserta, Italy
| |
Collapse
|
13
|
Leitão F, Pinto G, Amaral J, Monteiro P, Henriques I. New insights into the role of constitutive bacterial rhizobiome and phenolic compounds in two Pinus spp. with contrasting susceptibility to pine pitch canker. TREE PHYSIOLOGY 2022; 42:600-615. [PMID: 34508603 DOI: 10.1093/treephys/tpab119] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Revised: 08/06/2021] [Accepted: 09/01/2021] [Indexed: 05/24/2023]
Abstract
The rhizobiome is being increasingly acknowledged as a key player in plant health and breeding strategies. The pine pitch canker (PPC), caused by the fungus Fusarium circinatum, affects pine species with varying susceptibility degrees. Our aims were to explore the bacterial rhizobiome of a susceptible (Pinus radiata) and a resistant (Pinus pinea) species together with other physiological traits, and to analyze shifts upon F. circinatum inoculation. Pinus seedlings were stem inoculated with F. circinatum spores and needle gas exchange and antioxidant-related parameters were analyzed in non-inoculated and inoculated plants. Rhizobiome structure was evaluated through 16S rRNA gene massive parallel sequencing. Species (non-inoculated plants) harbored distinct rhizobiomes (<40% similarity), where P. pinea displayed a rhizobiome with increased abundance of taxa described in suppressive soils, displaying plant growth promoting (PGP) traits and/or anti-fungal activity. Plants of this species also displayed higher levels of phenolic compounds. F. circinatum induced slight changes in the rhizobiome of both species and a negative impact in photosynthetic-related parameters in P. radiata. We concluded that the rhizobiome of each pine species is distinct and higher abundance of bacterial taxa associated to disease protection was registered for the PPC-resistant species. Furthermore, differences in the rhizobiome are paralleled by a distinct content in phenolic compounds, which are also linked to plants' resistance against PPC. This study unveils a species-specific rhizobiome and provides insights to exploit the rhizobiome for plant selection in nurseries and for rhizobiome-based plant-growth-promoting strategies, boosting environmentally friendly disease control strategies.
Collapse
Affiliation(s)
- Frederico Leitão
- Biology Department, Centre for Environmental and Marine Studies (CESAM), University of Aveiro, Aveiro, Portugal
| | - Glória Pinto
- Biology Department, Centre for Environmental and Marine Studies (CESAM), University of Aveiro, Aveiro, Portugal
| | - Joana Amaral
- Biology Department, Centre for Environmental and Marine Studies (CESAM), University of Aveiro, Aveiro, Portugal
| | - Pedro Monteiro
- Biology Department, Centre for Environmental and Marine Studies (CESAM), University of Aveiro, Aveiro, Portugal
| | - Isabel Henriques
- Faculty of Science and Technology, Department of Life Sciences and CESAM, University of Coimbra, Coimbra, Portugal
| |
Collapse
|
14
|
Chai YN, Futrell S, Schachtman DP. Assessment of Bacterial Inoculant Delivery Methods for Cereal Crops. Front Microbiol 2022; 13:791110. [PMID: 35154049 PMCID: PMC8826558 DOI: 10.3389/fmicb.2022.791110] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 01/04/2022] [Indexed: 11/18/2022] Open
Abstract
Despite growing evidence that plant growth-promoting bacteria can be used to improve crop vigor, a comparison of the different methods of delivery to determine which is optimal has not been published. An optimal inoculation method ensures that the inoculant colonizes the host plant so that its potential for plant growth-promotion is fully evaluated. The objective of this study was to compare the efficacy of three seed coating methods, seedling priming, and soil drench for delivering three bacterial inoculants to the sorghum rhizosphere and root endosphere. The methods were compared across multiple time points under axenic conditions and colonization efficiency was determined by quantitative polymerase chain reaction (qPCR). Two seed coating methods were also assessed in the field to test the reproducibility of the greenhouse results under non-sterile conditions. In the greenhouse seed coating methods were more successful in delivering the Gram-positive inoculant (Terrabacter sp.) while better colonization from the Gram-negative bacteria (Chitinophaga pinensis and Caulobacter rhizosphaerae) was observed with seedling priming and soil drench. This suggested that Gram-positive bacteria may be more suitable for the seed coating methods possibly because of their thick peptidoglycan cell wall. We also demonstrated that prolonged seed coating for 12 h could effectively enhance the colonization of C. pinensis, an endophytic bacterium, but not the rhizosphere colonizing C. rhizosphaerae. In the field only a small amount of inoculant was detected in the rhizosphere. This comparison demonstrates the importance of using the appropriate inoculation method for testing different types of bacteria for their plant growth-promotion potential.
Collapse
Affiliation(s)
- Yen Ning Chai
- Department of Agronomy and Horticulture and Center for Plant Science Innovation, University of Nebraska - Lincoln, Lincoln, NE, United States
| | - Stephanie Futrell
- Department of Agronomy and Horticulture and Center for Plant Science Innovation, University of Nebraska - Lincoln, Lincoln, NE, United States
| | - Daniel P Schachtman
- Department of Agronomy and Horticulture and Center for Plant Science Innovation, University of Nebraska - Lincoln, Lincoln, NE, United States
| |
Collapse
|
15
|
Tulumello J, Chabert N, Rodriguez J, Long J, Nalin R, Achouak W, Heulin T. Rhizobium alamii improves water stress tolerance in a non-legume. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 797:148895. [PMID: 34346368 DOI: 10.1016/j.scitotenv.2021.148895] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 07/01/2021] [Accepted: 07/04/2021] [Indexed: 06/13/2023]
Abstract
With the increasing demand for alternative solutions to replace or optimize the use of synthetic fertilizers and pesticides, the inoculation of bacteria that can contribute to the growth and health of plants (PGPR) is essential. The properties classically sought in PGPR are the production of phytohormones and other growth-promoting molecules, and more rarely the production of exopolysaccharides. We compared the effect of two strains of exopolysaccharide-producing Rhizobium alamii on rapeseed grown in a calcareous silty-clay soil under water stress conditions or not. The effect of factors 'water stress' and 'inoculation' were evaluated on plant growth parameters and the diversity of microbiota associated to root and root-adhering soil compartments. Water stress resulted in a significant decrease in leaf area, shoot biomass and RAS/RT ratio (root-adhering soil/root tissues), as well as overall beta-diversity. Inoculation with R. alamii YAS34 and GBV030 under water-stress conditions produced the same shoot dry biomass compared to uninoculated treatment in absence of water stress, and both strains increased shoot biomass under water-stressed conditions (+7% and +15%, respectively). Only R. alamii GBV030 significantly increased shoot biomass under unstressed or water-stressed conditions compared to the non-inoculated control (+39% and +15%, respectively). Alpha-diversity of the root-associated microbiota after inoculation with R. alamii YAS34 was significantly reduced. Beta-diversity was significantly modified after inoculation with R. alamii GBV030 under unstressed conditions. LEfSe analysis identified characteristic bacterial families, Flavobacteriaceae and Comamonadaceae, in the RT and RAS compartments for the treatment inoculated by R. alamii GBV030 under unstressed conditions, as well as Halomonadaceae (RT) and several species belonging to Actinomycetales (RAS). We showed that R. alamii GBV030 had a PGPR effect on rapeseed growth, increasing its tolerance to water stress, probably involving its capacity to produce exopolysaccharides, and other plant growth-promoting (PGP) traits.
Collapse
Affiliation(s)
- Joris Tulumello
- Aix Marseille Univ, CEA, CNRS, BIAM, LEMiRE, Laboratory of Microbial Ecology of the Rhizosphere, ECCOREV FR 3098, Saint Paul-Lez-Durance F-13108, France; BioIntrant 139, Rue Philippe de Girard, Pertuis F-84120, France.
| | - Nicolas Chabert
- BioIntrant 139, Rue Philippe de Girard, Pertuis F-84120, France.
| | - Julie Rodriguez
- Aix Marseille Univ, CEA, CNRS, BIAM, LEMiRE, Laboratory of Microbial Ecology of the Rhizosphere, ECCOREV FR 3098, Saint Paul-Lez-Durance F-13108, France; BioIntrant 139, Rue Philippe de Girard, Pertuis F-84120, France.
| | - Justine Long
- BioIntrant 139, Rue Philippe de Girard, Pertuis F-84120, France.
| | - Renaud Nalin
- BioIntrant 139, Rue Philippe de Girard, Pertuis F-84120, France.
| | - Wafa Achouak
- Aix Marseille Univ, CEA, CNRS, BIAM, LEMiRE, Laboratory of Microbial Ecology of the Rhizosphere, ECCOREV FR 3098, Saint Paul-Lez-Durance F-13108, France.
| | - Thierry Heulin
- Aix Marseille Univ, CEA, CNRS, BIAM, LEMiRE, Laboratory of Microbial Ecology of the Rhizosphere, ECCOREV FR 3098, Saint Paul-Lez-Durance F-13108, France.
| |
Collapse
|
16
|
Hernández I, Taulé C, Pérez-Pérez R, Battistoni F, Fabiano E, Rivero D, Nápoles MC. Endophytic rhizobia promote the growth of Cuban rice cultivar. Symbiosis 2021. [DOI: 10.1007/s13199-021-00803-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
17
|
Jiménez-Gómez A, García-Estévez I, Escribano-Bailón MT, García-Fraile P, Rivas R. Bacterial Fertilizers Based on Rhizobium laguerreae and Bacillus halotolerans Enhance Cichorium endivia L. Phenolic Compound and Mineral Contents and Plant Development. Foods 2021; 10:foods10020424. [PMID: 33671987 PMCID: PMC7919373 DOI: 10.3390/foods10020424] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 02/10/2021] [Accepted: 02/12/2021] [Indexed: 11/16/2022] Open
Abstract
Today there is an urgent need to find new ways to satisfy the current and growing food demand and to maintain crop protection and food safety. One of the most promising changes is the replacement of chemical fertilizers with biofertilizers, which include plant root-associated beneficial bacteria. This work describes and shows the use of B. halotolerans SCCPVE07 and R. laguerreae PEPV40 strains as efficient biofertilizers for escarole crops, horticultural species that are widely cultivated. An in silico genome study was performed where coding genes related to plant growth promoting (PGP) mechanisms or different enzymes implicated in the metabolism of phenolic compounds were identified. An efficient bacterial root colonization process was also analyzed through fluorescence microscopy. SCCPVE07 and PEPV40 promote plant development under normal conditions and saline stress. Moreover, inoculated escarole plants showed not only an increase in potassium, iron and magnesium content but also a significant improvement in protocatechuic acid, caffeic acid or kaempferol 3-O-glucuronide plant content. Our results show for the first time the beneficial effects in plant development and the food quality of escarole crops and highlight a potential and hopeful change in the current agricultural system even under saline stress, one of the major non-biological stresses.
Collapse
Affiliation(s)
- Alejandro Jiménez-Gómez
- Departamento de Microbiología y Genética, Universidad de Salamanca, Edificio Departamental de Biología, 37007 Salamanca, Spain; (P.G.-F.); (R.R.)
- Spanish-Portuguese Institute for Agricultural Research (CIALE), 37185 Salamanca, Spain
- Correspondence:
| | - Ignacio García-Estévez
- Grupo de Investigación en Polifenoles (GIP), Departamento de Química Analítica, Nutrición y Bromatología, Faculty of Pharmacy, Universidad de Salamanca, 37007 Salamanca, Spain; (I.G.-E.); (M.T.E.-B.)
| | - M. Teresa Escribano-Bailón
- Grupo de Investigación en Polifenoles (GIP), Departamento de Química Analítica, Nutrición y Bromatología, Faculty of Pharmacy, Universidad de Salamanca, 37007 Salamanca, Spain; (I.G.-E.); (M.T.E.-B.)
| | - Paula García-Fraile
- Departamento de Microbiología y Genética, Universidad de Salamanca, Edificio Departamental de Biología, 37007 Salamanca, Spain; (P.G.-F.); (R.R.)
- Spanish-Portuguese Institute for Agricultural Research (CIALE), 37185 Salamanca, Spain
| | - Raúl Rivas
- Departamento de Microbiología y Genética, Universidad de Salamanca, Edificio Departamental de Biología, 37007 Salamanca, Spain; (P.G.-F.); (R.R.)
- Spanish-Portuguese Institute for Agricultural Research (CIALE), 37185 Salamanca, Spain
- Associated Unit USAL-CSIC (IRNASA), 37008 Salamanca, Spain
| |
Collapse
|
18
|
Chaudhary T, Gera R, Shukla P. Deciphering the Potential of Rhizobium pusense MB-17a, a Plant Growth-Promoting Root Endophyte, and Functional Annotation of the Genes Involved in the Metabolic Pathway. Front Bioeng Biotechnol 2021; 8:617034. [PMID: 33537293 PMCID: PMC7848175 DOI: 10.3389/fbioe.2020.617034] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 11/30/2020] [Indexed: 11/13/2022] Open
Abstract
Plant growth-promoting rhizobacteria (PGPR) are root endophytic bacteria used for growth promotion, and they have broader applications in enhancing specific crop yield as a whole. In the present study, we have explored the potential of Rhizobium pusense MB-17a as an endophytic bacterium isolated from the roots of the mung bean (Vigna radiata) plant. Furthermore, this bacterium was sequenced and assembled to reveal its genomic potential associated with plant growth-promoting traits. Interestingly, the root endophyte R. pusense MB-17a showed all essential PGPR traits which were determined by biochemical and PGPR tests. It was noted that this root endophytic bacterium significantly produced siderophores, indole acetic acid (IAA), ammonia, and ACC deaminase and efficiently solubilized phosphate. The maximum IAA and ammonia produced were observed to be 110.5 and 81 μg/ml, respectively. Moreover, the PGPR potential of this endophytic bacterium was also confirmed by a pot experiment for mung bean (V. radiata), whose results show a substantial increase in the plant's fresh weight by 76.1% and dry weight by 76.5% on the 60th day after inoculation of R. pusense MB-17a. Also, there is a significant enhancement in the nodule number by 66.1% and nodule fresh weight by 162% at 45th day after inoculation with 100% field capacity after the inoculation of R. pusense MB-17a. Besides this, the functional genomic annotation of R. pusense MB-17a determined the presence of different proteins and transporters that are responsible for its stress tolerance and its plant growth-promoting properties. It was concluded that the unique presence of genes like rpoH, otsAB, and clpB enhances the symbiosis process during adverse conditions in this endophyte. Through Rapid Annotation using Subsystem Technology (RAST) analysis, the key genes involved in the production of siderophores, volatile compounds, indoles, nitrogenases, and amino acids were also predicted. In conclusion, the strain described in this study gives a novel idea of using such type of endophytes for improving plant growth-promoting traits under different stress conditions for sustainable agriculture.
Collapse
Affiliation(s)
- Twinkle Chaudhary
- Enzyme Technology and Protein Bioinformatics Laboratory, Department of Microbiology, Maharshi Dayanand University, Rohtak, India
| | - Rajesh Gera
- Department of Microbiology, Chaudhary Charan Singh Haryana Agricultural University, Hisar, India
| | - Pratyoosh Shukla
- Enzyme Technology and Protein Bioinformatics Laboratory, Department of Microbiology, Maharshi Dayanand University, Rohtak, India
| |
Collapse
|
19
|
The rhizosphere microbiome plays a role in the resistance to soil-borne pathogens and nutrient uptake of strawberry cultivars under field conditions. Sci Rep 2021; 11:3188. [PMID: 33542451 PMCID: PMC7862632 DOI: 10.1038/s41598-021-82768-2] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 01/19/2021] [Indexed: 11/21/2022] Open
Abstract
Microbial-root associations are important to help plants cope with abiotic and biotic stressors. Managing these interactions offers an opportunity for improving the efficiency and sustainability of agricultural production. By characterizing the bacterial and archaeal community (via 16S rRNA sequencing) associated with bulk and rhizosphere soil of sixteen strawberry cultivars in two controlled field studies, we explored the relationships between the soil microbiome and plant resistance to two soil-borne fungal pathogens (Verticillium dahliae and Macrophomina phaseolina). Overall, the plants had a distinctive and genotype-dependent rhizosphere microbiome with higher abundances of known beneficial bacteria such as Pseudomonads and Rhizobium. The rhizosphere microbiome played a significant role in the resistance to the two soil-borne pathogens as shown by the differences in microbiome between high and low resistance cultivars. Resistant cultivars were characterized by higher abundances of known biocontrol microorganisms including actinobacteria (Arthrobacter, Nocardioides and Gaiella) and unclassified acidobacteria (Gp6, Gp16 and Gp4), in both pathogen trials. Additionally, cultivars that were resistant to V. dahliae had higher rhizosphere abundances of Burkholderia and cultivars resistant to M. phaseolina had higher abundances of Pseudomonas. The mechanisms involved in these beneficial plant-microbial interactions and their plasticity in different environments should be studied further for the design of low-input disease management strategies.
Collapse
|
20
|
Romero-Perdomo F, Beltrán I, Mendoza-Labrador J, Estrada-Bonilla G, Bonilla R. Phosphorus Nutrition and Growth of Cotton Plants Inoculated With Growth-Promoting Bacteria Under Low Phosphate Availability. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2021. [DOI: 10.3389/fsufs.2020.618425] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The low availability of phosphorus (P) in the soil drastically limits the world productivity of crops such as cotton. In order to contribute sustainably to the solution of this problem, the current study aimed to evaluate the capacity of phosphate-solubilising bacteria to improve plant growth and its relationship with physiological parameters, as well as the shoot P content in cotton plants in a soil with low P availability amended with rock phosphate. The results showed that, of the six plant growth-promoting bacteria strains evaluated under greenhouse conditions, the Rhizobium strain B02 significantly promoted growth, shoot P content and photosynthetic rate. This strain also improved the transpiration rate and the relative content of chlorophyll but without significant differences. Remarkably, Rhizobium sp. B02 had a more significant effect on plant growth compared to the P nutrition. Furthermore, the effect of its inoculation was more pronounced on the roots' growth compared to the shoot. Finally, application of Rhizobium strain B02 showed the capacity to optimize the use of low-solubility fertilizer as the rock phosphate. These findings could be associated with the metabolic activities of plant growth promotion exhibited by phosphate-solubilising strains, such as phosphate solubilisation, production of indole compounds and siderophores synthesis. In conclusion, this research provides evidence of the biotechnological potential of the Rhizobium genus as phosphate-solubilising bacteria with multiple plant growth-promoting activities capable of improving the plant growth and phosphate nutrition of non-leguminous crops such as cotton in soil with low P availability amended with rock phosphate.
Collapse
|
21
|
Alibrandi P, Schnell S, Perotto S, Cardinale M. Diversity and Structure of the Endophytic Bacterial Communities Associated With Three Terrestrial Orchid Species as Revealed by 16S rRNA Gene Metabarcoding. Front Microbiol 2020; 11:604964. [PMID: 33519751 PMCID: PMC7839077 DOI: 10.3389/fmicb.2020.604964] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 11/23/2020] [Indexed: 01/13/2023] Open
Abstract
The endophytic microbiota can establish mutualistic or commensalistic interactions within the host plant tissues. We investigated the bacterial endophytic microbiota in three species of Mediterranean orchids (Neottia ovata, Serapias vomeracea, and Spiranthes spiralis) by metabarcoding of the 16S rRNA gene. We examined whether the different orchid species and organs, both underground and aboveground, influenced the endophytic bacterial communities. A total of 1,930 operational taxonomic units (OTUs) were obtained, mainly Proteobacteria and Actinobacteria, whose distribution model indicated that the plant organ was the main determinant of the bacterial community structure. The co-occurrence network was not modular, suggesting a relative homogeneity of the microbiota between both plant species and organs. Moreover, the decrease in species richness and diversity in the aerial vegetative organs may indicate a filtering effect by the host plant. We identified four hub OTUs, three of them already reported as plant-associated taxa (Pseudoxanthomonas, Rhizobium, and Mitsuaria), whereas Thermus was an unusual member of the plant microbiota. Core microbiota analysis revealed a selective and systemic ascent of bacterial communities from the vegetative to the reproductive organs. The core microbiota was also maintained in the S. spiralis seeds, suggesting a potential vertical transfer of the microbiota. Surprisingly, some S. spiralis seed samples displayed a very rich endophytic microbiota, with a large number of OTUs shared with the roots, a situation that may lead to a putative restoring process of the root-associated microbiota in the progeny. Our results indicate that the bacterial community has adapted to colonize the orchid organs selectively and systemically, suggesting an active involvement in the orchid holobiont.
Collapse
Affiliation(s)
- Pasquale Alibrandi
- Department of Life Sciences and Systems Biology, University of Turin, Turin, Italy
- Institute of Applied Microbiology, Justus-Liebig-University Giessen, Giessen, Germany
| | - Sylvia Schnell
- Institute of Applied Microbiology, Justus-Liebig-University Giessen, Giessen, Germany
| | - Silvia Perotto
- Department of Life Sciences and Systems Biology, University of Turin, Turin, Italy
| | - Massimiliano Cardinale
- Institute of Applied Microbiology, Justus-Liebig-University Giessen, Giessen, Germany
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Lecce, Italy
| |
Collapse
|
22
|
Analysis of the Interaction between Pisum sativum L. and Rhizobium laguerreae Strains Nodulating This Legume in Northwest Spain. PLANTS 2020; 9:plants9121755. [PMID: 33322342 PMCID: PMC7763339 DOI: 10.3390/plants9121755] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 12/08/2020] [Accepted: 12/09/2020] [Indexed: 01/01/2023]
Abstract
Pisum sativum L. (pea) is one of the most cultivated grain legumes in European countries due to the high protein content of its seeds. Nevertheless, the rhizobial microsymbionts of this legume have been scarcely studied in these countries. In this work, we analyzed the rhizobial strains nodulating the pea in a region from Northwestern Spain, where this legume is widely cultivated. The isolated strains were genetically diverse, and the phylogenetic analysis of core and symbiotic genes showed that these strains belong to different clusters related to R. laguerreae sv. viciae. Representative strains of these clusters were able to produce cellulose and cellulases, which are two key molecules in the legume infection process. They formed biofilms and produced acyl-homoserine lactones (AHLs), which are involved in the quorum sensing regulation process. They also exhibited several plant growth promotion mechanisms, including phosphate solubilization, siderophore, and indole acetic acid production and symbiotic atmospheric nitrogen fixation. All strains showed high symbiotic efficiency on pea plants, indicating that strains of R. laguerreae sv. viciae are promising candidates for the biofertilization of this legume worldwide.
Collapse
|
23
|
Seraj MF, Rahman T, Lawrie AC, Reichman SM. Assessing the Plant Growth Promoting and Arsenic Tolerance Potential of Bradyrhizobium japonicum CB1809. ENVIRONMENTAL MANAGEMENT 2020; 66:930-939. [PMID: 32918111 DOI: 10.1007/s00267-020-01351-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 08/21/2020] [Indexed: 06/11/2023]
Abstract
Accumulation of heavy metals in soil is of concern to the agricultural production sector, because of the potential threat to food quality and quantity. Inoculation with plant growth-promoting bacteria (PGPR) has previously been shown to alleviate heavy metal stress but the mechanisms are unclear. Potential mechanisms by which inoculation with Bradyrhizobium japonicum CB1809 affected the legume soybean (Glycine max cv. Zeus) and the non-legume sunflower (Helianthus annus cv. Hyoleic 41) were investigated in solution culture under 5 μM As stress. Adding As resulted in As tissue concentrations of up to 5 mg kg-1 (shoots) and 250 mg kg-1 (roots) in both species but did not reduce shoot or root biomass. Inoculation increased root biomass but only in the legume (soybean) and only with As. Inoculation resulted in large (up to 100%) increases in siderophore concentration but relatively small changes (±10-15%) in auxin concentration in the rhizosphere. However, the increase in siderophore concentration in the rhizosphere did not result in the expected increases in tissue N or Fe, especially in soybean, suggesting that their function was different. In conclusion, siderophores and auxins may be some of the mechanisms by which both soybean and sunflower maintained plant growth in As-contaminated media.
Collapse
Affiliation(s)
- Md Ferdous Seraj
- School of Engineering, RMIT University, Melbourne, VIC, Australia
- Department of Environmental Science and Management, North South University, Dhaka, Bangladesh
| | - Tania Rahman
- Department of Biochemistry and Molecular Biology, University of Dhaka, Dhaka, Bangladesh
| | - Ann C Lawrie
- School of Science, RMIT University, Bundoora, VIC, Australia
| | - Suzie M Reichman
- School of Engineering, RMIT University, Melbourne, VIC, Australia.
- Centre for Anthropogenic Pollution Impact and Management, School of BioSciences, University of Melbourne, Parkville, VIC, Australia.
| |
Collapse
|
24
|
Ayuso-Calles M, García-Estévez I, Jiménez-Gómez A, Flores-Félix JD, Escribano-Bailón MT, Rivas R. Rhizobium laguerreae Improves Productivity and Phenolic Compound Content of Lettuce ( Lactuca sativa L.) under Saline Stress Conditions. Foods 2020; 9:foods9091166. [PMID: 32847018 PMCID: PMC7555320 DOI: 10.3390/foods9091166] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 08/19/2020] [Accepted: 08/20/2020] [Indexed: 11/27/2022] Open
Abstract
Lettuce (Lactuca sativa L.) is a widely consumed horticultural species. Its significance lies in a high polyphenolic compound content, including phenolic acids and flavonols. In this work, we have probed the ability of Rhizobium laguerreae HUTR05 to promote lettuce growth, under in vitro and greenhouse conditions (both non-saline and saline conditions). This strain has shown several in vitro plant growth promotion mechanisms, as well as capacity to colonize lettuce seedlings roots. We have analyzed the effect of the rhizobacterium inoculation on mineral and bioactive compounds in lettuce, under greenhouse conditions, and found a rise in the content of certain phenolic acids and flavonoids, such as derivatives of caffeoyl acid and quercetin. The genome analysis of the strain has shown the presence of genes related to plant growth-promoting rhizobacteria (PGPR) mechanisms, defense from saline stress, and phenolic compound metabolism (such as naringenin-chalcone synthase or phenylalanine aminotransferase).
Collapse
Affiliation(s)
- Miguel Ayuso-Calles
- Departamento de Microbiología y Genética, Universidad de Salamanca, Edificio Departamental de Biología, 37007 Salamanca, Spain; (M.A.-C.); (J.D.F.-F.); (R.R.)
- Spanish-Portuguese Institute for Agricultural Research (CIALE), 37185 Salamanca, Spain
| | - Ignacio García-Estévez
- Grupo de Investigación en Polifenoles (GIP), Departamento de Química Analítica, Nutrición y Bromatología, Facultad de Farmacia, Universidad de Salamanca, 37007 Salamanca, Spain; (I.G.-E.); (M.T.E.-B.)
| | - Alejandro Jiménez-Gómez
- Departamento de Microbiología y Genética, Universidad de Salamanca, Edificio Departamental de Biología, 37007 Salamanca, Spain; (M.A.-C.); (J.D.F.-F.); (R.R.)
- Spanish-Portuguese Institute for Agricultural Research (CIALE), 37185 Salamanca, Spain
- Correspondence: ; Tel.: +34-923294500 (ext. 1919)
| | - José D. Flores-Félix
- Departamento de Microbiología y Genética, Universidad de Salamanca, Edificio Departamental de Biología, 37007 Salamanca, Spain; (M.A.-C.); (J.D.F.-F.); (R.R.)
- Spanish-Portuguese Institute for Agricultural Research (CIALE), 37185 Salamanca, Spain
| | - M. Teresa Escribano-Bailón
- Grupo de Investigación en Polifenoles (GIP), Departamento de Química Analítica, Nutrición y Bromatología, Facultad de Farmacia, Universidad de Salamanca, 37007 Salamanca, Spain; (I.G.-E.); (M.T.E.-B.)
| | - Raúl Rivas
- Departamento de Microbiología y Genética, Universidad de Salamanca, Edificio Departamental de Biología, 37007 Salamanca, Spain; (M.A.-C.); (J.D.F.-F.); (R.R.)
- Spanish-Portuguese Institute for Agricultural Research (CIALE), 37185 Salamanca, Spain
- Associated Unit University of Salamanca CSIC (IRNASA), 37008 Salamanca, Spain
| |
Collapse
|
25
|
Batanony NHE, Castellano-Hinojosa A, Mamdouh A, Ashraf N, Bedmar EJ. Agronomical parameters of host and non-host legumes inoculated with Melilotus indicus-isolated rhizobial strains in desert unreclaimed soil. Arch Microbiol 2020; 202:1929-1938. [PMID: 32448966 DOI: 10.1007/s00203-020-01907-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 04/22/2020] [Accepted: 05/11/2020] [Indexed: 10/24/2022]
Abstract
In a search for identification of rhizobial strains with superior N2-fixation efficiency and improved plant agronomic characteristics upon inoculation, four strains, 4.21, 9.17, 11.2 and 14.1, isolated from root nodules of wild-grown Melilotus indicus have been used to inoculate field-grown common bean, pea, cowpea and fenugreek plants. Uninoculated plants and those inoculated with host-specific commercial inoculants were used as a control. The root length, shoot height, shoot dry weight and root dry weight and the grain yield of the plants were determined after harvest. The content of N, organic C and carbohydrates content of the grain were also recorded. The inoculation with the strains 4.21 and 14.1 increased the grain yield of the fenugreek compared both with the uninoculated plants and those inoculated with the commercial strain ARC-1. The grain yield of the common bean treated with the strains 9.17 and 14.1 was also higher than that of the uninoculated and the commercial strains ARC-301. In contrast, none of the strains increased the grain yield of the pea and cowpea plants compared to the commercial strains ARC-201 and ARC-169, respectively. Significant increases of some agronomical parameters were observed in some plant-bacterium couples, albeit nodulation was not observed. It is possible that the positive effects of rhizobial inoculation on the agronomical parameters of the non-nodule forming legumes could be due to plant growth promotion characteristic of the strains used for inoculation. Analysis of the phylogeny of the almost complete 16S rRNA sequence of the rhizobial inoculants revealed that the strains 4.21 and 9.17 clustered together with R. skierniewicense and R. rosettiformans, respectively, and that the strains 11.2 and 14.1 grouped with E. meliloti. All the four strains produced IAA, and showed biocontrol activity against Rhizotocnia solani, Fusarium oxysporum, Pythium ultimum, Alternaria alternata and Sclerotonia rolsfi, albeit to a different extent.
Collapse
Affiliation(s)
- Nadia H El Batanony
- Environmental Studies and Research Institute (ESRI), University of Sadat City, Sadat City, Menoufiya, Egypt
| | - Antonio Castellano-Hinojosa
- Department of Soil Microbiology and Symbiotic Systems, Estación Experimental del Zaidín, CSIC, 419, Granada, Spain.
| | - Arafa Mamdouh
- Environmental Studies and Research Institute (ESRI), University of Sadat City, Sadat City, Menoufiya, Egypt
| | - Nofal Ashraf
- Environmental Studies and Research Institute (ESRI), University of Sadat City, Sadat City, Menoufiya, Egypt
| | - Eulogio J Bedmar
- Department of Soil Microbiology and Symbiotic Systems, Estación Experimental del Zaidín, CSIC, 419, Granada, Spain
| |
Collapse
|
26
|
Isolation, Identification and Characterization of Endophytic Bacterium Rhizobium oryzihabitans sp. nov., from Rice Root with Biotechnological Potential in Agriculture. Microorganisms 2020; 8:microorganisms8040608. [PMID: 32331293 PMCID: PMC7232506 DOI: 10.3390/microorganisms8040608] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Revised: 04/06/2020] [Accepted: 04/16/2020] [Indexed: 01/31/2023] Open
Abstract
A flagellate, rod–shaped bacterium designated strain M15T was isolated from rice roots. Phylogenetic analysis based on the sequences of the 16S rRNA, housekeeping genes and genomes showed that the isolate belonged to the genus Rhizobium, with the highest 16S rRNA similarity to Rhizobium radiobacter LMG140T (99.64%) and Rhizobium pusense NRCPB10T (99.36%), respectively. The complete genome of the strain M15T has a 59.28% G+C content, and the highest average nucleotide identity (ANI) and DNA-DNA relatedness (DDH) values were obtained with R. radiobacter LMG140T (88.11%, 54.80%), R. pusense NRCPB10T (86.00%, 53.00%) and R. nepotum 39/7T (88.80%, 49.80%), respectively. Plant growth-promoting characteristics tests showed that the strain M15T produced siderophore, 1–aminocyclopropane–1–carboxylate (ACC) deaminase and indole-3-acetic acid (IAA) and also produced some secondary metabolites according to the analysis of the comparative genomes. Based on the data mentioned above, we proposed that the strain M15T represented a novel species of the genus Rhizobium, named Rhizobium oryzihabitans sp. nov. The type strain is M15T (=JCM 32903T = ACCC 60121T), and the strain M15T can be a novel biofertilizer Rhizobium to reduce the use of synthetic fertilizers for plant growth promotion.
Collapse
|
27
|
Jiménez-Gómez A, García-Estévez I, García-Fraile P, Escribano-Bailón MT, Rivas R. Increase in phenolic compounds of Coriandrum sativum L. after the application of a Bacillus halotolerans biofertilizer. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2020; 100:2742-2749. [PMID: 32003001 DOI: 10.1002/jsfa.10306] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 01/21/2020] [Accepted: 01/31/2020] [Indexed: 06/10/2023]
Abstract
BACKGROUND There is an urgent need for a new sustainable way of satisfying the increasing demand for food worldwide. One of the main challenges is replacing chemical fertilizers with biofertilizers, which include plant root-associated beneficial microorganisms. The present study reports, for the first time, the effects of SCCPVE07 bacterial strain with respect to improving not only plant development, but also the nutritional content and bioactive compounds content of Coriandrum sativum L., one of the most economically important crops, even for plant growth under salinity stress. RESULTS Innoculated coriander plants (C. sativum L.) showed an increase in potassium, carbon, calcium and iron content. A significant improvement in phenolic compounds contents was also observed. The contents of 5-O-caffeoylquinic acid, cinnamic acid, 4-methoxy-cinnamic acid hexoside, K-3-O rutinoside, Q-3-O-rutinoside, Q-3-O-glucoside and Q-3-O-glucuronide were significantly enhanced. Moreover, an efficient bacterial root colonization and a noted growth promotion were demonstrated. Bacterial genome was sequenced and analysed. Gene coding related to Plant growth promotion (PGP) mechanisms and proteins involved in plant defence from salinity or in the metabolism of phenolic compounds, such as quercetin 2,3-dioxygenase and phenolic acid decarboxylase, were identified. CONCLUSION The results obtained in the present study show, for the first time, the beneficial effects of the inoculation of a bacterial Bacillus halotolerans biofertilizer on coriander crops with respect to increasing the content in bioactive compounds and plant development. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Alejandro Jiménez-Gómez
- Departamento de Microbiología y Genética, Universidad de Salamanca, Salamanca, Spain
- Spanish-Portuguese Institute for Agricultural Research (CIALE), Salamanca, Spain
| | - Ignacio García-Estévez
- Grupo de Investigación en Polifenoles (GIP), Departamento de Química Analítica, Nutrición y Bromatología, Faculty of Pharmacy, Universidad de Salamanca, Salamanca, Spain
| | - Paula García-Fraile
- Departamento de Microbiología y Genética, Universidad de Salamanca, Salamanca, Spain
- Spanish-Portuguese Institute for Agricultural Research (CIALE), Salamanca, Spain
| | - M Teresa Escribano-Bailón
- Grupo de Investigación en Polifenoles (GIP), Departamento de Química Analítica, Nutrición y Bromatología, Faculty of Pharmacy, Universidad de Salamanca, Salamanca, Spain
| | - Raúl Rivas
- Departamento de Microbiología y Genética, Universidad de Salamanca, Salamanca, Spain
- Spanish-Portuguese Institute for Agricultural Research (CIALE), Salamanca, Spain
- Associated Unit, USAL-CSIC (IRNASA), Salamanca, Spain
| |
Collapse
|
28
|
Menéndez E, Pérez-Yépez J, Hernández M, Rodríguez-Pérez A, Velázquez E, León-Barrios M. Plant Growth Promotion Abilities of Phylogenetically Diverse Mesorhizobium Strains: Effect in the Root Colonization and Development of Tomato Seedlings. Microorganisms 2020; 8:microorganisms8030412. [PMID: 32183288 PMCID: PMC7144016 DOI: 10.3390/microorganisms8030412] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 03/11/2020] [Accepted: 03/12/2020] [Indexed: 11/21/2022] Open
Abstract
Mesorhizobium contains species widely known as nitrogen-fixing bacteria with legumes, but their ability to promote the growth of non-legumes has been poorly studied. Here, we analyzed the production of indole acetic acid (IAA), siderophores and the solubilization of phosphate and potassium in a collection of 24 strains belonging to different Mesorhizobium species. All these strains produce IAA, 46% solubilized potassium, 33% solubilize phosphate and 17% produce siderophores. The highest production of IAA was found in the strains Mesorhizobiumciceri CCANP14 and Mesorhizobiumtamadayense CCANP122, which were also able to solubilize potassium. Moreover, the strain CCANP14 showed the maximum phosphate solubilization index, and the strain CCANP122 was able to produce siderophores. These two strains were able to produce cellulases and cellulose and to originate biofilms in abiotic surfaces and tomato root surface. Tomato seedlings responded positively to the inoculation with these two strains, showing significantly higher plant growth traits than uninoculated seedlings. This is the first report about the potential of different Mesorhizobium species to promote the growth of a vegetable. Considering their use as safe for humans, animals and plants, they are an environmentally friendly alternative to chemical fertilizers for non-legume crops in the framework of sustainable agriculture.
Collapse
Affiliation(s)
- Esther Menéndez
- Mediterranean Institute for Agriculture, Environment and Development (MED), Instituto de Investigação e Formação Avançada, Universidade de Évora, 7006-554 Évora, Portugal;
| | - Juan Pérez-Yépez
- Departamento de Bioquímica, Microbiología, Biología Celular y Genética, Universidad de La Laguna, 38200 Tenerife, Canary Islands, Spain; (J.P.-Y.); (A.R.-P.); (M.L.-B.)
| | - Mercedes Hernández
- Instituto de Productos Naturales y Agrobiología-CSIC, La Laguna, 38206 Tenerife, Canary Islands, Spain;
| | - Ana Rodríguez-Pérez
- Departamento de Bioquímica, Microbiología, Biología Celular y Genética, Universidad de La Laguna, 38200 Tenerife, Canary Islands, Spain; (J.P.-Y.); (A.R.-P.); (M.L.-B.)
| | - Encarna Velázquez
- Departamento de Microbiología y Genética and Instituto Hispanoluso de Investigaciones Agrarias (CIALE), Universidad de Salamanca, 37007 Salamanca, Spain
- Unidad Asociada Grupo de Interacción Planta-Microorganismo, Universidad de Salamanca-IRNASA-CSIC), 37007 Salamanca, Spain
- Correspondence: ; Tel.: +34-923-294-532
| | - Milagros León-Barrios
- Departamento de Bioquímica, Microbiología, Biología Celular y Genética, Universidad de La Laguna, 38200 Tenerife, Canary Islands, Spain; (J.P.-Y.); (A.R.-P.); (M.L.-B.)
| |
Collapse
|
29
|
Menéndez E, Paço A. Is the Application of Plant Probiotic Bacterial Consortia Always Beneficial for Plants? Exploring Synergies between Rhizobial and Non-Rhizobial Bacteria and Their Effects on Agro-Economically Valuable Crops. Life (Basel) 2020; 10:E24. [PMID: 32178383 PMCID: PMC7151578 DOI: 10.3390/life10030024] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 03/03/2020] [Accepted: 03/09/2020] [Indexed: 12/13/2022] Open
Abstract
The overgrowth of human population and the demand for high-quality foods necessitate the search for sustainable alternatives to increase crop production. The use of biofertilizers, mostly based on plant probiotic bacteria (PPB), represents a reliable and eco-friendly solution. This heterogeneous group of bacteria possesses many features with positive effects on plants; however, how these bacteria with each other and with the environment when released into a field has still barely been studied. In this review, we focused on the diversity of root endophytic rhizobial and non-rhizobial bacteria existing within plant root tissues, and also on their potential applications as consortia exerting benefits for plants and the environment. We demonstrated the benefits of using bacterial inoculant consortia instead of single-strain inoculants. We then critically discussed several considerations that farmers, companies, governments, and the scientific community should take into account when a biofertilizer based on those PPBs is proposed, including (i) a proper taxonomic identification, (ii) the characterization of the beneficial features of PPB strains, and (iii) the ecological impacts on plants, environment, and plant/soil microbiomes. Overall, the success of a PPB consortium depends on many factors that must be considered and analyzed before its application as a biofertilizer in an agricultural system.
Collapse
Affiliation(s)
- Esther Menéndez
- MED—Mediterranean Institute for Agriculture, Environment and Development, Institute for Advanced Studies and Research (IIFA), University of Évora, Pólo da Mitra, Ap. 94, 7006-554 Évora, Portugal;
| | | |
Collapse
|
30
|
Kumar V, Sharma N, Maitra SS, Lakkaboyana SK. In vivo removal of profenofos in agricultural soil and plant growth promoting activity on Vigna radiata by efficient bacterial formulation. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2019; 22:585-593. [PMID: 31823647 DOI: 10.1080/15226514.2019.1696743] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
This study evaluated the plant growth and profenofos (PF) removal efficiency of Acinetobacter sp.33F and Comamonas sp. 51 F bacteria as individual strains and in combination F1. Plant growth-promoting activities such as indole 3 acetic acid (IAA) production, 1-aminocyclopropane-1-carboxylate (ACC) deaminase, phosphate solubilization, ammonia production, and exopolysaccharide (EPS) production were observed in Acinetobacter sp. 33 F and Comamonas sp. 51 F. However, PGP properties observed were higher in Acinetobacter sp. 33 F as compared to the Comamonas sp. 51 F. In pot sand and pot soil studies, the physiological parameters such as sprout length, shoot length, root length, chlorophyll a, chlorophyll b, and carotenoids were higher for combination F1. PF degradation in pot sand and pot soil resulted in highest degradation by combination F1. In pot soil study, soil enzyme activities such as cellulase, dehydrogenase, urease, protease, and phosphate activities and root cross-section area, total stele area and xylem vessel area were recorded higher for the formulation F1. The study demonstrated that the together Acinetobacter sp. 33 F and Comamonas sp. 51 F as formulation has higher plant growth-promoting activities as compared to the individual bacteria.
Collapse
Affiliation(s)
- Vinay Kumar
- Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| | - Neha Sharma
- Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| | - S S Maitra
- School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| | | |
Collapse
|
31
|
Mayer E, Dörr de Quadros P, Fulthorpe R. Plantibacter flavus, Curtobacterium herbarum, Paenibacillus taichungensis, and Rhizobium selenitireducens Endophytes Provide Host-Specific Growth Promotion of Arabidopsis thaliana, Basil, Lettuce, and Bok Choy Plants. Appl Environ Microbiol 2019; 85:e00383-19. [PMID: 31350315 PMCID: PMC6752021 DOI: 10.1128/aem.00383-19] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Accepted: 07/06/2019] [Indexed: 11/20/2022] Open
Abstract
A collection of bacterial endophytes isolated from stem tissues of plants growing in soils highly contaminated with petroleum hydrocarbons were screened for plant growth-promoting capabilities. Twenty-seven endophytic isolates significantly improved the growth of Arabidopsis thaliana plants in comparison to that of uninoculated control plants. The five most beneficial isolates, one strain each of Curtobacterium herbarum, Paenibacillus taichungensis, and Rhizobium selenitireducens and two strains of Plantibacter flavus were further examined for growth promotion in Arabidopsis, lettuce, basil, and bok choy plants. Host-specific plant growth promotion was observed when plants were inoculated with the five bacterial strains. P. flavus strain M251 increased the total biomass and total root length of Arabidopsis plants by 4.7 and 5.8 times, respectively, over that of control plants and improved lettuce and basil root growth, while P. flavus strain M259 promoted Arabidopsis shoot and root growth, lettuce and basil root growth, and bok choy shoot growth. A genome comparison between P. flavus strains M251 and M259 showed that both genomes contain up to 70 actinobacterial putative plant-associated genes and genes involved in known plant-beneficial pathways, such as those for auxin and cytokinin biosynthesis and 1-aminocyclopropane-1-carboxylate deaminase production. This study provides evidence of direct plant growth promotion by Plantibacter flavusIMPORTANCE The discovery of new plant growth-promoting bacteria is necessary for the continued development of biofertilizers, which are environmentally friendly and cost-efficient alternatives to conventional chemical fertilizers. Biofertilizer effects on plant growth can be inconsistent due to the complexity of plant-microbe interactions, as the same bacteria can be beneficial to the growth of some plant species and neutral or detrimental to others. We examined a set of bacterial endophytes isolated from plants growing in a unique petroleum-contaminated environment to discover plant growth-promoting bacteria. We show that strains of Plantibacter flavus exhibit strain-specific plant growth-promoting effects on four different plant species.
Collapse
Affiliation(s)
- Evan Mayer
- University of Toronto Scarborough, Toronto, Ontario, Canada
| | | | | |
Collapse
|
32
|
Edmonds JW, Sackett JD, Lomprey H, Hudson HL, Moser DP. The aeroponic rhizosphere microbiome: community dynamics in early succession suggest strong selectional forces. Antonie van Leeuwenhoek 2019; 113:83-99. [PMID: 31531746 DOI: 10.1007/s10482-019-01319-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 08/08/2019] [Indexed: 01/01/2023]
Abstract
In the last decade there has been increased interest in the manipulation of rhizosphere microbial communities in soilless systems (hydroponics) through the addition of plant growth promoting microbes (PGPMs) to increase plant nutrition, lower plant stress response, and control pathogens. This method of crop management requires documenting patterns in communities living in plant roots throughout the growing season to inform decisions on timing of application and composition of the supplemental PGPM consortium. As a contribution to this effort, we measured changes in the bacterial community through early succession (first 26 days) in plant root biofilms growing in an indoor commercial aeroponic system where roots were sprayed with a mist of nutrient-amended water. By 12 days following seed germination, a root-associated community had established that was distinct from the source communities found circulating in the system. Successional patterns in the community over the following 2 weeks (12-26 days) included changes in abundance of bacterial groups that have been documented in published literature as able to utilize plant root exudates, release plant hormones, or augment nutrient availability. Six bacterial families/genera (Hydrogenophilaceae, Rhizobium, Legionellaceae, Methylophilus, Massilia, or Herbaspirillum) were the most abundant in each root sample, comprising 8-37% of the microbiome. Given the absence of soil-associated microbial communities in hydroponic systems, they provide an ideal design for isolating plant-microbial interactions and identifying key components possibly contributing to plant health.
Collapse
Affiliation(s)
- Jennifer W Edmonds
- Physical and Life Sciences, Nevada State College, 1300 Nevada State Dr., Henderson, NV, USA
| | - Joshua D Sackett
- Division of Earth and Ecosystems Sciences, Desert Research Institute, 755 E Flamingo Rd., Las Vegas, NV, USA
- Division of Hydrologic Sciences, Desert Research Institute, 755 E Flamingo Rd., Las Vegas, NV, USA
- School of Life Sciences, University of Nevada, Las Vegas, 4505 S. Maryland Pkwy, Las Vegas, NV, USA
| | - Hunter Lomprey
- Physical and Life Sciences, Nevada State College, 1300 Nevada State Dr., Henderson, NV, USA
| | - Heather L Hudson
- Physical and Life Sciences, Nevada State College, 1300 Nevada State Dr., Henderson, NV, USA
| | - Duane P Moser
- Division of Earth and Ecosystems Sciences, Desert Research Institute, 755 E Flamingo Rd., Las Vegas, NV, USA.
- Division of Hydrologic Sciences, Desert Research Institute, 755 E Flamingo Rd., Las Vegas, NV, USA.
| |
Collapse
|
33
|
Vershinina ZR, Khakimova LR, Lavina AM, Karimova LR, Serbaeva ER, Safronova VI, Shaposhnikov AI, Baimiev AK, Baimiev AK. Effect of Constitutive Expression of the rapA1 Gene on Formation of Bacterial Biofilms and Growth-Stimulating Activity of Rhizobia. Microbiology (Reading) 2019. [DOI: 10.1134/s0026261719010090] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
34
|
Becker M, Patz S, Becker Y, Berger B, Drungowski M, Bunk B, Overmann J, Spröer C, Reetz J, Tchuisseu Tchakounte GV, Ruppel S. Comparative Genomics Reveal a Flagellar System, a Type VI Secretion System and Plant Growth-Promoting Gene Clusters Unique to the Endophytic Bacterium Kosakonia radicincitans. Front Microbiol 2018; 9:1997. [PMID: 30214433 PMCID: PMC6125372 DOI: 10.3389/fmicb.2018.01997] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Accepted: 08/08/2018] [Indexed: 01/04/2023] Open
Abstract
The recent worldwide discovery of plant growth-promoting (PGP) Kosakonia radicincitans in a large variety of crop plants suggests that this species confers significant influence on plants, both in terms of yield increase and product quality improvement. We provide a comparative genome analysis which helps to unravel the genetic basis for K. radicincitans' motility, competitiveness and plant growth-promoting capacities. We discovered that K. radicincitans carries multiple copies of complex gene clusters, among them two flagellar systems and three type VI secretion systems (T6SSs). We speculate that host invasion may be facilitated by different flagella, and bacterial competitor suppression by effector proteins ejected via T6SSs. We found a large plasmid in K. radicincitans DSM 16656T, the species type strain, that confers the potential to exploit plant-derived carbon sources. We propose that multiple copies of complex gene clusters in K. radicincitans are metabolically expensive but provide competitive advantage over other bacterial strains in nutrient-rich environments. The comparison of the DSM 16656T genome to genomes of other genera of enteric plant growth-promoting bacteria (PGPB) exhibits traits unique to DSM 16656T and K. radicincitans, respectively, and traits shared between genera. We used the output of the in silico analysis for predicting the purpose of genomic features unique to K. radicincitans and performed microarray, PhyloChip, and microscopical analyses to gain deeper insight into the interaction of DSM 16656T, plants and associated microbiota. The comparative genome analysis will facilitate the future search for promising candidates of PGPB for sustainable crop production.
Collapse
Affiliation(s)
- Matthias Becker
- Leibniz Institute of Vegetable and Ornamental Crops, Grossbeeren, Germany
| | - Sascha Patz
- Leibniz Institute of Vegetable and Ornamental Crops, Grossbeeren, Germany.,Algorithms in Bioinformatics, Center for Bioinformatics, University of Tübingen, Tübingen, Germany
| | - Yvonne Becker
- Leibniz Institute of Vegetable and Ornamental Crops, Grossbeeren, Germany.,Institute for Epidemiology and Pathogen Diagnostics, Julius Kühn-Institute-Federal Research Centre for Cultivated Plants, Braunschweig, Germany
| | - Beatrice Berger
- Leibniz Institute of Vegetable and Ornamental Crops, Grossbeeren, Germany.,Institute for National and International Plant Health, Julius Kühn-Institute-Federal Research Centre for Cultivated Plants, Braunschweig, Germany
| | - Mario Drungowski
- Leibniz Institute of Vegetable and Ornamental Crops, Grossbeeren, Germany
| | - Boyke Bunk
- Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Jörg Overmann
- Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Cathrin Spröer
- Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Jochen Reetz
- Federal Institute for Risk Assessment, Berlin, Germany
| | | | - Silke Ruppel
- Leibniz Institute of Vegetable and Ornamental Crops, Grossbeeren, Germany
| |
Collapse
|
35
|
Jacoby RP, Martyn A, Kopriva S. Exometabolomic Profiling of Bacterial Strains as Cultivated Using Arabidopsis Root Extract as the Sole Carbon Source. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2018; 31:803-813. [PMID: 29457542 DOI: 10.1094/mpmi-10-17-0253-r] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The ability of microorganisms to use root-derived metabolites as growth substrates is a key trait for success in the rhizospheric niche. However, few studies describe which specific metabolites are consumed or to what degree microbial strains differ in their substrate consumption patterns. Here, we present a liquid chromatography-mass spectrometry (MS) exometabolomic study of three bacterial strains cultivated using either glucose or Arabidopsis thaliana root extract as the sole carbon source. Two of the strains were previously isolated from field-grown Arabidopsis roots, the other is Escherichia coli, included as a comparison. When cultivated on root extract, a set of 62 MS features were commonly taken up by all three strains, with m/z values matching components of central metabolism (including amino acids and purine or pyrimidine derivatives). Escherichia coli took up very few MS features outside this commonly consumed set, whereas the root-inhabiting strains took up a much larger number of MS features, many with m/z values matching plant-specific metabolites. These measurements define the metabolic niche that each strain potentially occupies in the rhizosphere. Furthermore, we document many MS features released by these strains that could play roles in cross-feeding, antibiosis, or signaling. We present our methodological approach as a foundation for future studies of rhizosphere exometabolomics.
Collapse
Affiliation(s)
- Richard P Jacoby
- Botanical Institute, Cluster of Excellence on Plant Sciences (CEPLAS), University of Cologne, D-50674 Cologne, Germany
| | - Anna Martyn
- Botanical Institute, Cluster of Excellence on Plant Sciences (CEPLAS), University of Cologne, D-50674 Cologne, Germany
| | - Stanislav Kopriva
- Botanical Institute, Cluster of Excellence on Plant Sciences (CEPLAS), University of Cologne, D-50674 Cologne, Germany
| |
Collapse
|
36
|
Fukami J, Cerezini P, Hungria M. Azospirillum: benefits that go far beyond biological nitrogen fixation. AMB Express 2018; 8:73. [PMID: 29728787 PMCID: PMC5935603 DOI: 10.1186/s13568-018-0608-1] [Citation(s) in RCA: 144] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 04/30/2018] [Indexed: 12/25/2022] Open
Abstract
The genus Azospirillum comprises plant-growth-promoting bacteria (PGPB), which have been broadly studied. The benefits to plants by inoculation with Azospirillum have been primarily attributed to its capacity to fix atmospheric nitrogen, but also to its capacity to synthesize phytohormones, in particular indole-3-acetic acid. Recently, an increasing number of studies has attributed an important role of Azospirillum in conferring to plants tolerance of abiotic and biotic stresses, which may be mediated by phytohormones acting as signaling molecules. Tolerance of biotic stresses is controlled by mechanisms of induced systemic resistance, mediated by increased levels of phytohormones in the jasmonic acid/ethylene pathway, independent of salicylic acid (SA), whereas in the systemic acquired resistance-a mechanism previously studied with phytopathogens-it is controlled by intermediate levels of SA. Both mechanisms are related to the NPR1 protein, acting as a co-activator in the induction of defense genes. Azospirillum can also promote plant growth by mechanisms of tolerance of abiotic stresses, named as induced systemic tolerance, mediated by antioxidants, osmotic adjustment, production of phytohormones, and defense strategies such as the expression of pathogenesis-related genes. The study of the mechanisms triggered by Azospirillum in plants can help in the search for more-sustainable agricultural practices and possibly reveal the use of PGPB as a major strategy to mitigate the effects of biotic and abiotic stresses on agricultural productivity.
Collapse
Affiliation(s)
- Josiane Fukami
- Embrapa Soja, C.P. 231, Londrina, Paraná 86001-970 Brazil
- Department Biochemistry and Biotechnology, Universidade Estadual de Londrina, C.P. 60001, Londrina, Paraná 86051-990 Brazil
| | - Paula Cerezini
- Embrapa Soja, C.P. 231, Londrina, Paraná 86001-970 Brazil
| | - Mariangela Hungria
- Embrapa Soja, C.P. 231, Londrina, Paraná 86001-970 Brazil
- Department Biochemistry and Biotechnology, Universidade Estadual de Londrina, C.P. 60001, Londrina, Paraná 86051-990 Brazil
| |
Collapse
|
37
|
Fukami J, de la Osa C, Ollero FJ, Megías M, Hungria M. Co-inoculation of maize with Azospirillum brasilense and Rhizobium tropici as a strategy to mitigate salinity stress. FUNCTIONAL PLANT BIOLOGY : FPB 2018; 45:328-339. [PMID: 32290956 DOI: 10.1071/fp17167] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2017] [Accepted: 09/09/2017] [Indexed: 05/15/2023]
Abstract
Plants are highly affected by salinity, but some plant growth-promoting bacteria (PGPB) may trigger induced systemic tolerance (IST), conferring protection against abiotic stresses. We investigated plant mechanisms under saline stress (170mM NaCl) when maize was singly or co-inoculated with Azospirillum brasilense strains Ab-V5 and Ab-V6 and Rhizobium tropici strain CIAT 899. Under greenhouse conditions, plants responded positively to inoculation and co-inoculation, but with differences between strains. Inoculation affected antioxidant enzymes that detoxify reactive oxygen species (ROS) - ascorbate peroxidase (APX), catalase (CAT) and superoxide dismutase (SOD) - mainly in leaves. Proline contents in leaves and roots and malondialdehyde (MDA) in leaves - plant-stress-marker molecules - were significantly reduced due to the inoculation, indicating reduced need for the synthesis of these molecules. Significant differences were attributed to inoculation in the expression of genes related to antioxidant activity, in general with upregulation of APX1, CAT1, SOD2 and SOD4 in leaves, and APX2 in roots. Pathogenesis-related genes PR1, prp2, prp4 and heat-shock protein hsp70 were downregulated in leaves and roots, indicating that inoculation with PGPB might reduce the need for this protection. Together the results indicate that inoculation with PGPB might provide protection from the negative effects of saline stress. However, differences were observed between strains, as A. brasilense Ab-V5 did not show salt tolerance, while the best inoculation treatments to mitigate saline stress were with Ab-V6 and co-inoculation with Ab-V6+CIAT 899. Inoculation with these strains may represent an effective strategy to mitigate salinity stress.
Collapse
Affiliation(s)
- Josiane Fukami
- Embrapa Soja, CP 231, 86001-970, Londrina, Paraná, Brazil
| | - Clara de la Osa
- Universidad de Sevilla, Facultad de Biología, Dept. de Fisiología Vegetal, CP 41012 Sevilla, Spain
| | - Francisco Javier Ollero
- Universidad de Sevilla, Facultad de Biología, Dept. de Microbiología, CP 41012 Sevilla, Spain
| | - Manuel Megías
- Universidad de Sevilla, Facultad de Biología, Dept. de Microbiología, CP 41012 Sevilla, Spain
| | | |
Collapse
|
38
|
Jiménez-Gómez A, Flores-Félix JD, García-Fraile P, Mateos PF, Menéndez E, Velázquez E, Rivas R. Probiotic activities of Rhizobium laguerreae on growth and quality of spinach. Sci Rep 2018; 8:295. [PMID: 29321563 PMCID: PMC5762915 DOI: 10.1038/s41598-017-18632-z] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Accepted: 12/14/2017] [Indexed: 12/15/2022] Open
Abstract
The growing interest in a healthy lifestyle and in environmental protection is changing habits regarding food consumption and agricultural practices. Good agricultural practice is indispensable, particularly for raw vegetables, and can include the use of plant probiotic bacteria for the purpose of biofertilization. In this work we analysed the probiotic potential of the rhizobial strain PEPV40, identified as Rhizobium laguerreae through the analysis of the recA and atpD genes, on the growth of spinach plants. This strain presents several in vitro plant growth promotion mechanisms, such as phosphate solubilisation and the production of indole acetic acid and siderophores. The strain PEPV40 produces cellulose and forms biofilms on abiotic surfaces. GFP labelling of this strain showed that PEPV40 colonizes the roots of spinach plants, forming microcolonies typical of biofilm initiation. Inoculation with this strain significantly increases several vegetative parameters such as leaf number, size and weight, as well as chlorophyll and nitrogen contents. Therefore, our findings indicate, for the first time, that Rhizobium laguerreae is an excellent plant probiotic, which increases the yield and quality of spinach, a vegetable that is increasingly being consumed raw worldwide.
Collapse
Affiliation(s)
- Alejandro Jiménez-Gómez
- Microbiology and Genetics Department, University of Salamanca, 37007, Salamanca, Spain
- Spanish-Portuguese Institute for Agricultural Research (CIALE), Villamayor, Salamanca, Spain
| | - José David Flores-Félix
- Microbiology and Genetics Department, University of Salamanca, 37007, Salamanca, Spain
- Spanish-Portuguese Institute for Agricultural Research (CIALE), Villamayor, Salamanca, Spain
| | - Paula García-Fraile
- Microbiology and Genetics Department, University of Salamanca, 37007, Salamanca, Spain
- Institute of Microbiology ASCR,v.v.i., Vídeňská 1083, 142 20, Prague, Czech Republic
| | - Pedro F Mateos
- Microbiology and Genetics Department, University of Salamanca, 37007, Salamanca, Spain
- Spanish-Portuguese Institute for Agricultural Research (CIALE), Villamayor, Salamanca, Spain
- Associated R&D Unit, USAL-CSIC (IRNASA), Salamanca, Spain
| | - Esther Menéndez
- Microbiology and Genetics Department, University of Salamanca, 37007, Salamanca, Spain
- ICAAM - Instituto de Ciências Agrárias e Ambientais Mediterrânicas, Universidade de Évora, Pólo da Mitra, Ap. 94, 7002-554, Évora, Portugal
| | - Encarna Velázquez
- Microbiology and Genetics Department, University of Salamanca, 37007, Salamanca, Spain
- Spanish-Portuguese Institute for Agricultural Research (CIALE), Villamayor, Salamanca, Spain
- Associated R&D Unit, USAL-CSIC (IRNASA), Salamanca, Spain
| | - Raúl Rivas
- Microbiology and Genetics Department, University of Salamanca, 37007, Salamanca, Spain.
- Spanish-Portuguese Institute for Agricultural Research (CIALE), Villamayor, Salamanca, Spain.
- Associated R&D Unit, USAL-CSIC (IRNASA), Salamanca, Spain.
| |
Collapse
|
39
|
Cruz-González X, Laza-Pérez N, Mateos PF, Rivas R. Analysis and effect of the use of biofertilizers on Trifolium rubens L., a preferential attention species in Castile and Leon, Spain, with the aim of increasing the plants conservation status. AIMS Microbiol 2017; 3:733-746. [PMID: 31294185 PMCID: PMC6604960 DOI: 10.3934/microbiol.2017.4.733] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Accepted: 08/14/2017] [Indexed: 11/18/2022] Open
Abstract
Trifolium rubens L. is a leguminous plant "Preferential Attention", according to the Catalog of Protected Flora of Castile and Leon (Spain). In this study we aimed to analyze the potential of three bacterial strains of the genus Rhizobium to improve the growth and development of this plant. All three strains produced 3-indoleacetic acid (IAA), but the strain ATCC 14480 produced the most. In addition, all strains produced biofilms and cellulases, although in different quantities. The synthesis of these products has been described as being related to the processes of the adherence of bacteria to the plant root surface and their entrance into the plant, respectively. In addition, in vitro assays and assays conducted under controlled and sterile conditions were performed, showing that the three strains were capable of nodulating T. rubens L. and effectively fixed nitrogen for the plant. These results were corroborated by morphological and histological analysis of nodules. Finally, greenhouse assays determined the effects of the strains under more competitive conditions, and it was concluded that inoculated plants presented greater lengths and weights, both aerial and radicular, and also chlorophyll and nitrogen content compared to the uninoculated controls.
Collapse
Affiliation(s)
- Xavier Cruz-González
- Department of Microbiology and Genetics, University of Salamanca, Salamanca, Castile & Leon, Spain.,Spanish-Portuguese Institute for Agricultural Research (CIALE), Salamanca, Castile & Leon, Spain
| | - Nereha Laza-Pérez
- Department of Microbiology and Genetics, University of Salamanca, Salamanca, Castile & Leon, Spain
| | - Pedro F Mateos
- Department of Microbiology and Genetics, University of Salamanca, Salamanca, Castile & Leon, Spain.,Spanish-Portuguese Institute for Agricultural Research (CIALE), Salamanca, Castile & Leon, Spain.,Associated I + D Unit, USAL-CSIC (IRNASA), Salamanca, Castile & Leon, Spain
| | - Raúl Rivas
- Department of Microbiology and Genetics, University of Salamanca, Salamanca, Castile & Leon, Spain.,Spanish-Portuguese Institute for Agricultural Research (CIALE), Salamanca, Castile & Leon, Spain.,Associated I + D Unit, USAL-CSIC (IRNASA), Salamanca, Castile & Leon, Spain
| |
Collapse
|
40
|
Menendez E, Garcia-Fraile P. Plant probiotic bacteria: solutions to feed the world. AIMS Microbiol 2017; 3:502-524. [PMID: 31294173 PMCID: PMC6604988 DOI: 10.3934/microbiol.2017.3.502] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Accepted: 06/12/2017] [Indexed: 01/10/2023] Open
Abstract
The increasing human population expected in the next decades, the growing demand of livestock products-which production requires higher amounts of feed products fabrication, the collective concern about food quality in industrialized countries together with the need to protect the fertility of soils, in particular, and the environment, in general, constitute as a whole big challenge that worldwide agriculture has to face nowadays. Some soil bacteria harbor mechanisms to promote plant growth, which include phytostimulation, nutrient mobilization, biocontrol of plant pathogens and abiotic stresses protection. These bacteria have also been proved as promoters of vegetable food quality. Therefore, these microbes, also so-called Plant Probiotic Bacteria, applied as biofertilizers in crop production, constitute an environmental friendly manner to contribute to produce the food and feed needed to sustain world population. In this review, we summarize some of the best-known mechanisms of plant probiotic bacteria to improve plant growth and develop a more sustainable agriculture.
Collapse
Affiliation(s)
- Esther Menendez
- Instituto de Ciências Agrárias e Ambientais Mediterrânicas (ICAAM), Universidade de Évora, Évora, Portugal
| | - Paula Garcia-Fraile
- Laboratory of Fungal Genetics and Metabolism, Institute of Microbiology, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| |
Collapse
|
41
|
Jiménez-Gómez A, Celador-Lera L, Fradejas-Bayón M, Rivas R. Plant probiotic bacteria enhance the quality of fruit and horticultural crops. AIMS Microbiol 2017; 3:483-501. [PMID: 31294172 PMCID: PMC6604990 DOI: 10.3934/microbiol.2017.3.483] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Accepted: 06/12/2017] [Indexed: 01/11/2023] Open
Abstract
The negative effects on the environment and human health caused by the current farming systems based on the overuse of chemical fertilizers have been reported in many studies. By contrast, bacterial inoculations produce positive effects on yields without causing this type of harm. Hence, during recent years, the commercialization of biofertilizers has been on the increase, and the number of companies and products available are expanding worldwide every year. In addition to the notable enhancement of crop production, many studies have shown how the application of bacteria has positive effects on food quality such as improved vitamin, flavonoid and antioxidant content, among other benefits. This advantage is interesting with respect to food that is consumed raw, such as fruits and many vegetables, as these bioactive molecules are maintained up until the moment the food is consumed. As regards this review focuses on the collection of studies that demonstrate that microorganisms can act as plant probiotics of fruit and horticultural crops, essential types of food that form part of a healthy diet.
Collapse
Affiliation(s)
- Alejandro Jiménez-Gómez
- Department of Microbiology and Genetics, University of Salamanca, 37007 Salamanca, Spain.,Spanish-Portuguese Institute for Agricultural Research (CIALE), Spain
| | - Lorena Celador-Lera
- Department of Microbiology and Genetics, University of Salamanca, 37007 Salamanca, Spain.,Spanish-Portuguese Institute for Agricultural Research (CIALE), Spain
| | - María Fradejas-Bayón
- Department of Microbiology and Genetics, University of Salamanca, 37007 Salamanca, Spain.,Spanish-Portuguese Institute for Agricultural Research (CIALE), Spain
| | - Raúl Rivas
- Department of Microbiology and Genetics, University of Salamanca, 37007 Salamanca, Spain.,Spanish-Portuguese Institute for Agricultural Research (CIALE), Spain.,Associated I + D Unit, USAL-CSIC (IRNASA), Salamanca, Spain
| |
Collapse
|
42
|
Carro L, Nouioui I. Taxonomy and systematics of plant probiotic bacteria in the genomic era. AIMS Microbiol 2017; 3:383-412. [PMID: 31294168 PMCID: PMC6604993 DOI: 10.3934/microbiol.2017.3.383] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Accepted: 05/22/2017] [Indexed: 12/20/2022] Open
Abstract
Recent decades have predicted significant changes within our concept of plant endophytes, from only a small number specific microorganisms being able to colonize plant tissues, to whole communities that live and interact with their hosts and each other. Many of these microorganisms are responsible for health status of the plant, and have become known in recent years as plant probiotics. Contrary to human probiotics, they belong to many different phyla and have usually had each genus analysed independently, which has resulted in lack of a complete taxonomic analysis as a group. This review scrutinizes the plant probiotic concept, and the taxonomic status of plant probiotic bacteria, based on both traditional and more recent approaches. Phylogenomic studies and genes with implications in plant-beneficial effects are discussed. This report covers some representative probiotic bacteria of the phylum Proteobacteria, Actinobacteria, Firmicutes and Bacteroidetes, but also includes minor representatives and less studied groups within these phyla which have been identified as plant probiotics.
Collapse
Affiliation(s)
- Lorena Carro
- School of Biology, Newcastle University, Newcastle upon Tyne, UK
| | - Imen Nouioui
- School of Biology, Newcastle University, Newcastle upon Tyne, UK
| |
Collapse
|
43
|
Díez-Méndez A, Rivas R. Improvement of saffron production using Curtobacterium herbarum as a bioinoculant under greenhouse conditions. AIMS Microbiol 2017; 3:354-364. [PMID: 31294166 PMCID: PMC6604984 DOI: 10.3934/microbiol.2017.3.354] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Accepted: 05/16/2017] [Indexed: 11/18/2022] Open
Abstract
Plant Growth Promoting Rhizobacteria (PGPR) are natural soil bacteria which establish a beneficial relationship with their host. This microbiota community exists in the rhizosphere and inside plant tissues and stimulates plant growth by a variety of direct or indirect mechanisms. These bacterial plant promoters are frequently present in different environments, and are associated with many plant species, both wild and agricultural. Saffron is the dried stigmas of Crocus sativus (L.) and is the most expensive spice in the world. Remarkably, saffron cultivation and collection is carried out by hand and does not involve the use of machines. Additionally, 150 flowers are needed to produce one gram of dried stigmas. Hence, a slight increase in the size of the saffron filaments per plant would result in a significant increase in the production of this spice. In this study, we report the improved production of saffron using Curtobacterium herbarum Cs10, isolated from Crocus seronitus subs clusii, as a bioinoculant. The bacterial strain was selected owing to its multifunctional ability to produce siderophores, solubilize phosphate and to produce plant growth hormones like IAA. Furthermore, the isolate was tested on saffron producing plants under greenhouse conditions. The results indicate that Curtobacterium herbarum Cs10 improves the number of flowers and significantly enhances the length of the saffron filaments and overall saffron production compared to the control treated plants.
Collapse
Affiliation(s)
- Alexandra Díez-Méndez
- Department of Microbiology and Genetics, Edificio Departamental de Biología, Universidad de Salamanca, (USAL) Dres. de la Reina s/n, 37007, Salamanca, Spain.,Instituto Hispano Luso de Investigaciones Agrarias (CIALE), Salamanca, Spain
| | - Raul Rivas
- Department of Microbiology and Genetics, Edificio Departamental de Biología, Universidad de Salamanca, (USAL) Dres. de la Reina s/n, 37007, Salamanca, Spain.,Instituto Hispano Luso de Investigaciones Agrarias (CIALE), Salamanca, Spain.,Associated Unit USAL-CSIC (IRNASA), Salamanca, Spain
| |
Collapse
|
44
|
Poitout A, Martinière A, Kucharczyk B, Queruel N, Silva-Andia J, Mashkoor S, Gamet L, Varoquaux F, Paris N, Sentenac H, Touraine B, Desbrosses G. Local signalling pathways regulate the Arabidopsis root developmental response to Mesorhizobium loti inoculation. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:1199-1211. [PMID: 28199673 DOI: 10.1093/jxb/erw502] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Numerous reports have shown that various rhizobia can interact with non-host plant species, improving mineral nutrition and promoting plant growth. To further investigate the effects of such non-host interactions on root development and functions, we inoculated Arabidopsis thaliana with the model nitrogen fixing rhizobacterium Mesorhizobium loti (strain MAFF303099). In vitro, we show that root colonization by M. loti remains epiphytic and that M. loti cells preferentially grow at sites where primary and secondary roots intersect. Besides resulting in an increase in shoot biomass production, colonization leads to transient inhibition of primary root growth, strong promotion of root hair elongation and increased apoplasmic acidification in periphery cells of a sizeable part of the root system. Using auxin mutants, axr1-3 and aux1-100, we show that a plant auxin pathway plays a major role in inhibiting root growth but not in promoting root hair elongation, indicating that root developmental responses involve several distinct pathways. Finally, using a split root device, we demonstrate that root colonization by M. loti, as well as by the bona fide plant growth promoting rhizobacteria Azospirillum brasilense and Pseudomonas, affect root development via local transduction pathways restricted to the colonised regions of the root system.
Collapse
Affiliation(s)
- A Poitout
- LSTM, Univ. Montpellier, IRD, CIRAD, Montpellier SupAgro, Montpellier, France
| | - A Martinière
- BPMP, Univ. Montpellier, INRA, CNRS, Montpellier SupAgro, Montpellier, France
| | - B Kucharczyk
- LSTM, Univ. Montpellier, IRD, CIRAD, Montpellier SupAgro, Montpellier, France
| | - N Queruel
- LSTM, Univ. Montpellier, IRD, CIRAD, Montpellier SupAgro, Montpellier, France
| | - J Silva-Andia
- LSTM, Univ. Montpellier, IRD, CIRAD, Montpellier SupAgro, Montpellier, France
| | - S Mashkoor
- BPMP, Univ. Montpellier, INRA, CNRS, Montpellier SupAgro, Montpellier, France
| | - L Gamet
- LSTM, Univ. Montpellier, IRD, CIRAD, Montpellier SupAgro, Montpellier, France
| | - F Varoquaux
- LSTM, Univ. Montpellier, IRD, CIRAD, Montpellier SupAgro, Montpellier, France
| | - N Paris
- BPMP, Univ. Montpellier, INRA, CNRS, Montpellier SupAgro, Montpellier, France
| | - H Sentenac
- BPMP, Univ. Montpellier, INRA, CNRS, Montpellier SupAgro, Montpellier, France
| | - B Touraine
- LSTM, Univ. Montpellier, IRD, CIRAD, Montpellier SupAgro, Montpellier, France
| | - G Desbrosses
- LSTM, Univ. Montpellier, IRD, CIRAD, Montpellier SupAgro, Montpellier, France
| |
Collapse
|
45
|
Radhakrishnan R, Lee IJ. Gibberellins producing Bacillus methylotrophicus KE2 supports plant growth and enhances nutritional metabolites and food values of lettuce. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2016; 109:181-189. [PMID: 27721133 DOI: 10.1016/j.plaphy.2016.09.018] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Revised: 08/15/2016] [Accepted: 09/29/2016] [Indexed: 05/02/2023]
Abstract
The nutritional quality of green leafy vegetables can be enhanced by application of plant beneficial micro-organisms. The present study was aimed to increase the food values of lettuce leaves by bacterial treatment. We isolated bacterial strain KE2 from Kimchi food and identified as Bacillus methylotrophicus by phylogenetic analysis. The beneficial effect of B. methylotrophicus KE2 on plants was confirmed by increasing the percentage of seed germination of Lactuca sativa L., Cucumis melo L., Glycine max L. and Brassica juncea L. It might be the secretion of array of gibberellins (GA1, GA3, GA7, GA8, GA9, GA12, GA19, GA20, GA24, GA34 and GA53) and indole-acetic acid from B. methylotrophicus KE2. The mechanism of plant growth promotion via their secreted metabolites was confirmed by a significant increase of GA deficient mutant rice plant growth. Moreover, the bacterial association was favor to enhance shoot length, shoot fresh weight and leaf width of lettuce. The higher concentration of protein, amino acids (Asp, Thr, Ser, Glu, Gly, Ala, Leu, Tyr and His), gama-aminobutric acid and fructose was found in bacterial culture (KE2) applied plants. The macro and micro minerals such as K, Mg, Na, P, Fe, Zn and N were also detected as significantly higher quantities in bacteria treated plants than untreated control plants. In addition, the carotenoids and chlorophyll a were also increased in lettuce at bacterial inoculation. The results of this study suggest that B. methylotrophicus KE2 application to soil helps to increase the plant growth and food values of lettuce.
Collapse
Affiliation(s)
| | - In-Jung Lee
- School of Applied Biosciences, Kyungpook National University, Republic of Korea.
| |
Collapse
|
46
|
Lopes LD, Pereira E Silva MDC, Andreote FD. Bacterial Abilities and Adaptation Toward the Rhizosphere Colonization. Front Microbiol 2016; 7:1341. [PMID: 27610108 PMCID: PMC4997060 DOI: 10.3389/fmicb.2016.01341] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Accepted: 08/15/2016] [Indexed: 11/13/2022] Open
Abstract
The rhizosphere harbors one of the most complex, diverse, and active plant-associated microbial communities. This community can be recruited by the plant host to either supply it with nutrients or to help in the survival under stressful conditions. Although selection for the rhizosphere community is evident, the specific bacterial traits that make them able to colonize this environment are still poorly understood. Thus, here we used a combination of community level physiological profile (CLPP) analysis and 16S rRNA gene quantification and sequencing (coupled with in silico analysis and metagenome prediction), to get insights on bacterial features and processes involved in rhizosphere colonization of sugarcane. CLPP revealed a higher metabolic activity in the rhizosphere compared to bulk soil, and suggested that D-galacturonic acid plays a role in bacterial selection by the plant roots (supported by results of metagenome prediction). Quantification of the 16S rRNA gene confirmed the higher abundance of bacteria in the rhizosphere. Sequence analysis showed that of the 252 classified families sampled, 24 were significantly more abundant in the bulk soil and 29 were more abundant in the rhizosphere. Furthermore, metagenomes predicted from the 16S rRNA gene sequences revealed a significant higher abundance of predicted genes associated with biofilm formation and with horizontal gene transfer (HGT) processes. In sum, this study identified major bacterial groups and their potential abilities to occupy the sugarcane rhizosphere, and indicated that polygalacturonase activity and HGT events may be important features for rhizosphere colonization.
Collapse
Affiliation(s)
- Lucas D Lopes
- Soil Microbiology Lab, Department of Soil Science, "Luiz de Queiroz" College of Agriculture, University of São Paulo Piracicaba, Brazil
| | - Michele de Cássia Pereira E Silva
- Soil Microbiology Lab, Department of Soil Science, "Luiz de Queiroz" College of Agriculture, University of São Paulo Piracicaba, Brazil
| | - Fernando D Andreote
- Soil Microbiology Lab, Department of Soil Science, "Luiz de Queiroz" College of Agriculture, University of São Paulo Piracicaba, Brazil
| |
Collapse
|
47
|
Flores-Félix J, Menéndez E, Marcos-García M, Mateos P, Martínez-Molina E, Velázquez M, Rivas R. PGPR-based biofertilizers increase carrot production. N Biotechnol 2016. [DOI: 10.1016/j.nbt.2015.10.047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
48
|
Celador-Lera L, Rubio-Canalejas A, Cruz-Gonzalez X, Menendez E, Rivas R. PGPRs, an alternative to chemical fertilizers in arugula crops. N Biotechnol 2016. [DOI: 10.1016/j.nbt.2015.10.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
49
|
Celador-Lera L, Menéndez E, Flores-Félix JD, Velázquez ME, Rivas R. Increased cereal root surface using bacterial biofertilizer. N Biotechnol 2016. [DOI: 10.1016/j.nbt.2015.10.074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
50
|
Role of Plant Growth Promoting Rhizobacteria in Agricultural Sustainability-A Review. Molecules 2016; 21:molecules21050573. [PMID: 27136521 PMCID: PMC6273255 DOI: 10.3390/molecules21050573] [Citation(s) in RCA: 448] [Impact Index Per Article: 49.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2016] [Revised: 04/18/2016] [Accepted: 04/26/2016] [Indexed: 12/04/2022] Open
Abstract
Plant growth promoting rhizobacteria (PGPR) shows an important role in the sustainable agriculture industry. The increasing demand for crop production with a significant reduction of synthetic chemical fertilizers and pesticides use is a big challenge nowadays. The use of PGPR has been proven to be an environmentally sound way of increasing crop yields by facilitating plant growth through either a direct or indirect mechanism. The mechanisms of PGPR include regulating hormonal and nutritional balance, inducing resistance against plant pathogens, and solubilizing nutrients for easy uptake by plants. In addition, PGPR show synergistic and antagonistic interactions with microorganisms within the rhizosphere and beyond in bulk soil, which indirectly boosts plant growth rate. There are many bacteria species that act as PGPR, described in the literature as successful for improving plant growth. However, there is a gap between the mode of action (mechanism) of the PGPR for plant growth and the role of the PGPR as biofertilizer—thus the importance of nano-encapsulation technology in improving the efficacy of PGPR. Hence, this review bridges the gap mentioned and summarizes the mechanism of PGPR as a biofertilizer for agricultural sustainability.
Collapse
|