1
|
Roy PK, Deepak K, Das CK, Das A, Biswas A, Jena BC, Mandal M. PSMC2 promotes resistance against temozolomide in glioblastoma via suppressing JNK-mediated autophagic cell death. Biochem Pharmacol 2025; 233:116755. [PMID: 39824465 DOI: 10.1016/j.bcp.2025.116755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 01/06/2025] [Accepted: 01/13/2025] [Indexed: 01/20/2025]
Abstract
Temozolomide is universally used to treat glioblastoma due to its unique ability to cross the blood-brain barrier and inhibit tumor growth through DNA alkylation. However, over time, the inevitable emergence of resistance to temozolomide impedes successful treatment of this cancer. As a result, there is an urgent need to identify new therapeutic targets to improve treatment outcomes for this malignancy. In this work, acquired temozolomide-resistant glioblastoma cell lines LN18 (LN18-TR) and T98G (T98G-TR) exhibited stronger aggressiveness and lower endoplasmic reticulum (ER) stress than their parental cells.. Besides, temozolomide resistance was associated with elevated proteasome activity that suppressed ER stress, which was restored upon inhibition of the proteasome with MG132. Specifically, our study revealed that the 19S proteasomal regulatory subunit PSMC2, which was overexpressed in adapted temozolomide-resistant glioblastoma cells, reduced pro-death autophagy and decreased temozolomide sensitivity in parental cells when overexpressed. While autophagy increased in parental cells following temozolomide treatment, it was not elevated in temozolomide-resistant glioblastoma cells. Genetic suppression of PSMC2 triggered the JNK signalling pathway causing phosphorylation of BCL2, allowing Beclin1 to be released from the BCL2-Beclin1 complex. This boosted autophagosome nucleation, increased pro-death autophagy, and restored apoptosis in temozolomide-resistant glioblastoma cells. Finally, targeting PSMC2 provided a unique method for interrupting autophagy-mediated ER stress maintenance and temozolomide resistance in glioblastoma.
Collapse
Affiliation(s)
- Pritam Kumar Roy
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur, India
| | - K Deepak
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur, India
| | - Chandan Kanta Das
- Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, 421 Curie Boulevard, BRBII/III, Philadelphia, PA, 19104, USA
| | - Abhijit Das
- School of Bioscience, Indian Institute of Technology Kharagpur, Kharagpur, India
| | - Angana Biswas
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur, India
| | - Bikash Chandra Jena
- Borch Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, IN 47907, USA
| | - Mahitosh Mandal
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur, India.
| |
Collapse
|
2
|
Liao H, Liu S, Ma Q, Huang H, Goel A, Torabian P, Mohan CD, Duan C. Endoplasmic reticulum stress induced autophagy in cancer and its potential interactions with apoptosis and ferroptosis. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2025; 1872:119869. [PMID: 39490702 DOI: 10.1016/j.bbamcr.2024.119869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 10/19/2024] [Accepted: 10/24/2024] [Indexed: 11/05/2024]
Abstract
The endoplasmic reticulum (ER) is a dynamic organelle that is a site of the synthesis of proteins and lipids, contributing to the regulation of proteostasis, lipid metabolism, redox balance, and calcium storage/-dependent signaling events. The disruption of ER homeostasis due to the accumulation of misfolded proteins in the ER causes ER stress which activates the unfolded protein response (UPR) system through the activation of IRE1, PERK, and ATF6. Activation of UPR is observed in various cancers and therefore, its association with process of carcinogenesis has been of importance. Tumor cells effectively utilize the UPR system to overcome ER stress. Moreover, ER stress and autophagy are the stress response mechanisms operating together to maintain cellular homeostasis. In human cancers, ER stress-driven autophagy can function as either pro-survival or pro-death in a context-dependent manner. ER stress-mediated autophagy can have crosstalk with other types of cell death pathways including apoptosis and ferroptosis. In this connection, the present review has evaluated the role of ER stress in the regulation of autophagy-mediated tumorigenesis and its interactions with other cell death mechanisms such as apoptosis and ferroptosis. We have also comprehensively discussed the effect of ER stress-mediated autophagy on cancer progression and chemotherapeutic resistance.
Collapse
Affiliation(s)
- Haitang Liao
- Department of Anesthesiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China; Department of Intensive Care Unit, Chongqing Traditional Chinese Medicine Hospital, Chongqing 400021, China
| | - Shuang Liu
- Department of Ultrasound, Chongqing Health Center for Women and Children/Women and Children's Hospital of Chongqing Medical University, Chongqing 401147, China
| | - Qiang Ma
- Department of Oncology, the Second Affiliated Hospital of Anhui Medical University, Hefei 230022, China
| | - He Huang
- Department of Anesthesiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| | - Arul Goel
- University of California Santa Barbara, Santa Barbara, CA, USA
| | - Pedram Torabian
- Arnie Charbonneau Cancer Research Institute, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4Z6, Canada; Department of Medical Sciences, University of Calgary, Calgary, AB T2N 4Z6, Canada
| | - Chakrabhavi Dhananjaya Mohan
- Systems Toxicology Group, FEST Division, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow 226 001, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| | - Chenyang Duan
- Department of Anesthesiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China.
| |
Collapse
|
3
|
Cao Z, Tian K, Ran Y, Zhou H, Zhou L, Ding Y, Tang X. Beclin-1: a therapeutic target at the intersection of autophagy, immunotherapy, and cancer treatment. Front Immunol 2024; 15:1506426. [PMID: 39650649 PMCID: PMC11621085 DOI: 10.3389/fimmu.2024.1506426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Accepted: 11/01/2024] [Indexed: 12/11/2024] Open
Abstract
The significant identification of Beclin-1's function in regulating autophagy flow signified a significant progression in our understanding of cellular operations. Beclin-1 acts as a scaffold for forming the PI3KC3 complex, controlling autophagy and cellular trafficking processes in a complicated way. This intricate protein has garnered considerable attention due to its substantial impact on the development of tumors. Strong evidence indicates Beclin-1 plays a critical role in controlling autophagy in various human cancer types and its intricate connection with apoptosis and ferroptosis. The potential of Beclin-1 as a viable target for cancer therapy is highlighted by its associations with key autophagy regulators such as AMPK, mTOR, and ATGs. Beclin-1 controls the growth and dissemination of tumors by autophagy. It also affects how tumors react to therapies such as chemotherapy and radiation therapy. The role of Beclin-1 in autophagy can influence apoptosis, depending on whether it supports cell survival or leads to cell death. Beclin-1 plays a crucial role in ferroptosis by increasing ATG5 levels, which in turn promotes autophagy-triggered ferroptosis. Finally, we analyzed the possible function of Beclin-1 in tumor immunology and drug sensitivity in cancers. In general, Beclin-1 has a significant impact on regulating autophagy, offering various potentials for medical intervention and altering our understanding of cancer biology.
Collapse
Affiliation(s)
- Zhumin Cao
- Department of Hepatobiliary Surgery, The Seventh People’s Hospital of Chongqing, Chongqing, China
| | - Ke Tian
- Department of Hepatobiliary Surgery, The Seventh People’s Hospital of Chongqing, Chongqing, China
| | - Yincheng Ran
- Department of Hepatobiliary Surgery, The Seventh People’s Hospital of Chongqing, Chongqing, China
| | - Haonan Zhou
- Department of Hepatobiliary Surgery, The Seventh People’s Hospital of Chongqing, Chongqing, China
| | - Lei Zhou
- Department of Hepatobiliary Surgery, The Seventh People’s Hospital of Chongqing, Chongqing, China
| | - Yana Ding
- Department of Hepatobiliary Surgery, District Traditional Chinese Medicine Hospital, Chongqing, China
| | - Xiaowei Tang
- Department of Hepatobiliary Surgery, District Traditional Chinese Medicine Hospital, Chongqing, China
| |
Collapse
|
4
|
Hwang YK, Lee DH, Lee EC, Oh JS. Importance of Autophagy Regulation in Glioblastoma with Temozolomide Resistance. Cells 2024; 13:1332. [PMID: 39195222 PMCID: PMC11353125 DOI: 10.3390/cells13161332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 08/01/2024] [Accepted: 08/08/2024] [Indexed: 08/29/2024] Open
Abstract
Glioblastoma (GBM) is the most aggressive and common malignant and CNS tumor, accounting for 47.7% of total cases. Glioblastoma has an incidence rate of 3.21 cases per 100,000 people. The regulation of autophagy, a conserved cellular process involved in the degradation and recycling of cellular components, has been found to play an important role in GBM pathogenesis and response to therapy. Autophagy plays a dual role in promoting tumor survival and apoptosis, and here we discuss the complex interplay between autophagy and GBM. We summarize the mechanisms underlying autophagy dysregulation in GBM, including PI3K/AKT/mTOR signaling, which is most active in brain tumors, and EGFR and mutant EGFRvIII. We also review potential therapeutic strategies that target autophagy for the treatment of GBM, such as autophagy inhibitors used in combination with the standard of care, TMZ. We discuss our current understanding of how autophagy is involved in TMZ resistance and its role in glioblastoma development and survival.
Collapse
Affiliation(s)
- Young Keun Hwang
- Department of Medical Life Sciences, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea; (Y.K.H.); (E.C.L.)
| | - Dong-Hun Lee
- Industry-Academic Cooperation Foundation, The Catholic University of Korea, 222, Banpo-daro, Seocho-gu, Seoul 06591, Republic of Korea;
| | - Eun Chae Lee
- Department of Medical Life Sciences, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea; (Y.K.H.); (E.C.L.)
| | - Jae Sang Oh
- Department of Neurosurgery, Uijeongbu St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| |
Collapse
|
5
|
Radin DP, Shifman S, Outhwaite IR, Sharma A, Bases R, Seeliger MA, Tsirka SE. Lucanthone, a Potential PPT1 Inhibitor, Perturbs Stemness, Reduces Tumor Microtube Formation, and Slows the Growth of Temozolomide-Resistant Gliomas In Vivo. J Pharmacol Exp Ther 2024; 389:51-60. [PMID: 38296645 PMCID: PMC10949164 DOI: 10.1124/jpet.123.002021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 12/28/2023] [Accepted: 01/12/2024] [Indexed: 02/02/2024] Open
Abstract
Glioblastoma (GBM) is the most frequently diagnosed primary central nervous system tumor in adults. Despite the standard of care therapy, which includes surgical resection, temozolomide chemotherapy, radiation and the newly added tumor-treating fields, median survival remains only ∼20 months. Unfortunately, GBM has a ∼100% recurrence rate, but after recurrence there are no Food and Drug Administration-approved therapies to limit tumor growth and enhance patient survival, as these tumors are resistant to temozolomide (TMZ). Recently, our laboratory reported that lucanthone slows GBM by inhibiting autophagic flux through lysosome targeting and decreases the number of Olig2+ glioma stem-like cells (GSC) in vitro and in vivo. We now additionally report that lucanthone efficiently abates stemness in patient-derived GSC and reduces tumor microtube formation in GSC, an emerging hallmark of treatment resistance in GBM. In glioma tumors derived from cells with acquired resistance to TMZ, lucanthone retains the ability to perturb tumor growth, inhibits autophagy by targeting lysosomes, and reduces Olig2 positivity. We also find that lucanthone may act as an inhibitor of palmitoyl protein thioesterase 1. Our results suggest that lucanthone may function as a potential treatment option for GBM tumors that are not amenable to TMZ treatment. SIGNIFICANCE STATEMENT: We report that the antischistosome agent lucanthone impedes tumor growth in a preclinical model of temozolomide-resistant glioblastoma and reduces the numbers of stem-like glioma cells. In addition, it acts as an autophagy inhibitor, and its mechanism of action may be via inhibition of palmitoyl protein thioesterase 1. As there are no defined therapies approved for recurrent, TMZ-resistant tumor, lucanthone could emerge as a treatment for glioblastoma tumors that may not be amenable to TMZ both in the newly diagnosed and recurrent settings.
Collapse
Affiliation(s)
- Daniel P Radin
- Department of Pharmacological Sciences (D.P.R., S.S., I.R.O., A.S., M.A.S., S.E.T.) and Stony Brook Medical Scientist Training Program (D.P.R., S.S., I.R.O.), Renaissance School of Medicine at Stony Brook University, Stony Brook, New York
| | - Sophie Shifman
- Department of Pharmacological Sciences (D.P.R., S.S., I.R.O., A.S., M.A.S., S.E.T.) and Stony Brook Medical Scientist Training Program (D.P.R., S.S., I.R.O.), Renaissance School of Medicine at Stony Brook University, Stony Brook, New York
| | - Ian R Outhwaite
- Department of Pharmacological Sciences (D.P.R., S.S., I.R.O., A.S., M.A.S., S.E.T.) and Stony Brook Medical Scientist Training Program (D.P.R., S.S., I.R.O.), Renaissance School of Medicine at Stony Brook University, Stony Brook, New York
| | - Aryan Sharma
- Department of Pharmacological Sciences (D.P.R., S.S., I.R.O., A.S., M.A.S., S.E.T.) and Stony Brook Medical Scientist Training Program (D.P.R., S.S., I.R.O.), Renaissance School of Medicine at Stony Brook University, Stony Brook, New York
| | - Robert Bases
- Department of Pharmacological Sciences (D.P.R., S.S., I.R.O., A.S., M.A.S., S.E.T.) and Stony Brook Medical Scientist Training Program (D.P.R., S.S., I.R.O.), Renaissance School of Medicine at Stony Brook University, Stony Brook, New York
| | - Markus A Seeliger
- Department of Pharmacological Sciences (D.P.R., S.S., I.R.O., A.S., M.A.S., S.E.T.) and Stony Brook Medical Scientist Training Program (D.P.R., S.S., I.R.O.), Renaissance School of Medicine at Stony Brook University, Stony Brook, New York
| | - Stella E Tsirka
- Department of Pharmacological Sciences (D.P.R., S.S., I.R.O., A.S., M.A.S., S.E.T.) and Stony Brook Medical Scientist Training Program (D.P.R., S.S., I.R.O.), Renaissance School of Medicine at Stony Brook University, Stony Brook, New York
| |
Collapse
|
6
|
Singh S, Ghosh P, Roy R, Behera A, Sahadevan R, Kar P, Sadhukhan S, Sonawane A. 4″-Alkyl EGCG Derivatives Induce Cytoprotective Autophagy Response by Inhibiting EGFR in Glioblastoma Cells. ACS OMEGA 2024; 9:2286-2301. [PMID: 38250397 PMCID: PMC10795032 DOI: 10.1021/acsomega.3c06110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 11/08/2023] [Accepted: 11/16/2023] [Indexed: 01/23/2024]
Abstract
Epidermal growth factor receptor (EGFR)-targeted therapy has been proven vital in the last two decades for the treatment of multiple cancer types, including nonsmall cell lung cancer, glioblastoma, breast cancer and head and neck squamous cell carcinoma. Unfortunately, the majority of approved EGFR inhibitors fall into the drug resistance category because of continuous mutations and acquired resistance. Recently, autophagy has surfaced as one of the emerging underlying mechanisms behind resistance to EGFR-tyrosine kinase inhibitors (TKIs). Previously, we developed a series of 4″-alkyl EGCG (4″-Cn EGCG, n = 6, 8, 10, 12, 14, 16, and 18) derivatives with enhanced anticancer effects and stability. Therefore, the current study hypothesized that 4″-alkyl EGCG might induce cytoprotective autophagy upon EGFR inhibition, and inhibition of autophagy may lead to improved cytotoxicity. In this study, we have observed growth inhibition and caspase-3-dependent apoptosis in 4″-alkyl EGCG derivative-treated glioblastoma cells (U87-MG). We also confirmed that 4″-alkyl EGCG could inhibit EGFR in the cells, as well as mutant L858R/T790M EGFR, through an in vitro kinase assay. Furthermore, we have found that EGFR inhibition with 4″-alkyl EGCG induces cytoprotective autophagic responses, accompanied by the blockage of the AKT/mTOR signaling pathway. In addition, cytotoxicity caused by 4″-C10 EGCG, 4″-C12 EGCG, and 4″-C14 EGCG was significantly increased after the inhibition of autophagy by the pharmacological inhibitor chloroquine. These findings enhance our understanding of the autophagic response toward EGFR inhibitors in glioblastoma cells and suggest a potent combinatorial strategy to increase the therapeutic effectiveness of EGFR-TKIs.
Collapse
Affiliation(s)
- Satyam Singh
- Department
of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Indore, Madhya Pradesh 453 552, India
| | - Priya Ghosh
- Department
of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Indore, Madhya Pradesh 453 552, India
| | - Rajarshi Roy
- Department
of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Indore, Madhya Pradesh 453 552, India
| | - Ananyaashree Behera
- School
of Biotechnology, KIIT Deemed to be University, Bhubaneswar, Orissa 751 024, India
| | - Revathy Sahadevan
- Department
of Chemistry, Indian Institute of Technology
Palakkad, Palakkad, Kerala 678 623, India
| | - Parimal Kar
- Department
of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Indore, Madhya Pradesh 453 552, India
| | - Sushabhan Sadhukhan
- Department
of Chemistry, Indian Institute of Technology
Palakkad, Palakkad, Kerala 678 623, India
| | - Avinash Sonawane
- Department
of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Indore, Madhya Pradesh 453 552, India
| |
Collapse
|
7
|
Sauer B, Lorenz NI, Divé I, Klann K, Luger AL, Urban H, Schröder JH, Steinbach JP, Münch C, Ronellenfitsch MW. Mammalian target of rapamycin inhibition protects glioma cells from temozolomide-induced cell death. Cell Death Discov 2024; 10:8. [PMID: 38182566 PMCID: PMC10770336 DOI: 10.1038/s41420-023-01779-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 11/30/2023] [Accepted: 12/14/2023] [Indexed: 01/07/2024] Open
Abstract
Glioblastoma is an incurable brain tumor with a median survival below two years. Trials investigating targeted therapy with inhibitors of the kinase mTOR have produced ambiguous results. Especially combination of mTOR inhibition with standard temozolomide radiochemotherapy has resulted in reduced survival in a phase II clinical trial. To date, this phenomenon is only poorly understood. To recreate the therapeutic setting in vitro, we exposed glioblastoma cell lines to co-treatment with rapamycin and temozolomide and assessed cell viability, DNA damage and reactive oxygen species. Additionally, we employed a novel translatomic based mass spectrometry approach ("mePROD") to analyze acute changes in translated proteins. mTOR inhibition with rapamycin protected glioblastoma cells from temozolomide toxicity. Following co-treatment of temozolomide with rapamycin, an increased translation of reactive oxygen species (ROS)-detoxifying proteins was detected by mass spectrometry. This was accompanied by improved ROS-homeostasis and reduced DNA damage. Additionally, rapamycin induced the expression of the DNA repair enzyme O-6-methylguanine-DNA methyltransferase (MGMT) in glioblastoma cells with an unmethylated MGMT gene promotor. Inhibition of mTOR antagonized the cytotoxic effects of temozolomide in vitro. The induction of antioxidant defences and MGMT are two underlying candidate mechanisms. Further functional experiments in vitro and in vivo are warranted to characterize this effect that appears relevant for combinatorial therapeutic strategies.
Collapse
Affiliation(s)
- Benedikt Sauer
- Dr. Senckenberg Institute of Neurooncology, University Hospital Frankfurt, Goethe University, Frankfurt am Main, Germany
- University Cancer Center Frankfurt (UCT), Frankfurt am Main, Germany
- German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz, a partnership between DKFZ and University Hospital Frankfurt, Frankfurt am Main, Germany
- Frankfurt Cancer Institute (FCI), University Hospital Frankfurt, Goethe University, Frankfurt am Main, Germany
- Institute of Biochemistry II, Goethe University, Frankfurt am Main, Germany
| | - Nadja I Lorenz
- Dr. Senckenberg Institute of Neurooncology, University Hospital Frankfurt, Goethe University, Frankfurt am Main, Germany
- University Cancer Center Frankfurt (UCT), Frankfurt am Main, Germany
| | - Iris Divé
- Dr. Senckenberg Institute of Neurooncology, University Hospital Frankfurt, Goethe University, Frankfurt am Main, Germany
- University Cancer Center Frankfurt (UCT), Frankfurt am Main, Germany
- German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz, a partnership between DKFZ and University Hospital Frankfurt, Frankfurt am Main, Germany
- Frankfurt Cancer Institute (FCI), University Hospital Frankfurt, Goethe University, Frankfurt am Main, Germany
- Institute of Biochemistry II, Goethe University, Frankfurt am Main, Germany
| | - Kevin Klann
- Institute of Biochemistry II, Goethe University, Frankfurt am Main, Germany
- Cardio-Pulmonary Institute, Frankfurt am Main, Germany
| | - Anna-Luisa Luger
- Dr. Senckenberg Institute of Neurooncology, University Hospital Frankfurt, Goethe University, Frankfurt am Main, Germany
- University Cancer Center Frankfurt (UCT), Frankfurt am Main, Germany
- German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz, a partnership between DKFZ and University Hospital Frankfurt, Frankfurt am Main, Germany
- Frankfurt Cancer Institute (FCI), University Hospital Frankfurt, Goethe University, Frankfurt am Main, Germany
| | - Hans Urban
- Dr. Senckenberg Institute of Neurooncology, University Hospital Frankfurt, Goethe University, Frankfurt am Main, Germany
- University Cancer Center Frankfurt (UCT), Frankfurt am Main, Germany
- German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz, a partnership between DKFZ and University Hospital Frankfurt, Frankfurt am Main, Germany
- Frankfurt Cancer Institute (FCI), University Hospital Frankfurt, Goethe University, Frankfurt am Main, Germany
| | - Jan-Hendrik Schröder
- Dr. Senckenberg Institute of Neurooncology, University Hospital Frankfurt, Goethe University, Frankfurt am Main, Germany
- University Cancer Center Frankfurt (UCT), Frankfurt am Main, Germany
| | - Joachim P Steinbach
- Dr. Senckenberg Institute of Neurooncology, University Hospital Frankfurt, Goethe University, Frankfurt am Main, Germany
- University Cancer Center Frankfurt (UCT), Frankfurt am Main, Germany
- German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz, a partnership between DKFZ and University Hospital Frankfurt, Frankfurt am Main, Germany
- Frankfurt Cancer Institute (FCI), University Hospital Frankfurt, Goethe University, Frankfurt am Main, Germany
| | - Christian Münch
- Frankfurt Cancer Institute (FCI), University Hospital Frankfurt, Goethe University, Frankfurt am Main, Germany
- Institute of Biochemistry II, Goethe University, Frankfurt am Main, Germany
- Cardio-Pulmonary Institute, Frankfurt am Main, Germany
| | - Michael W Ronellenfitsch
- Dr. Senckenberg Institute of Neurooncology, University Hospital Frankfurt, Goethe University, Frankfurt am Main, Germany.
- University Cancer Center Frankfurt (UCT), Frankfurt am Main, Germany.
- German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz, a partnership between DKFZ and University Hospital Frankfurt, Frankfurt am Main, Germany.
- Frankfurt Cancer Institute (FCI), University Hospital Frankfurt, Goethe University, Frankfurt am Main, Germany.
| |
Collapse
|
8
|
Kusaczuk M, Ambel ET, Naumowicz M, Velasco G. Cellular stress responses as modulators of drug cytotoxicity in pharmacotherapy of glioblastoma. Biochim Biophys Acta Rev Cancer 2024; 1879:189054. [PMID: 38103622 DOI: 10.1016/j.bbcan.2023.189054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 11/21/2023] [Accepted: 12/08/2023] [Indexed: 12/19/2023]
Abstract
Despite the extensive efforts to find effective therapeutic strategies, glioblastoma (GBM) remains a therapeutic challenge with dismal prognosis of survival. Over the last decade the role of stress responses in GBM therapy has gained a great deal of attention, since depending on the duration and intensity of these cellular programs they can be cytoprotective or promote cancer cell death. As such, initiation of the UPR, autophagy or oxidative stress may either impede or facilitate drug-mediated cell killing. In this review, we summarize the mechanisms that regulate ER stress, autophagy, and oxidative stress during GBM development and progression to later discuss the involvement of these stress pathways in the response to different treatments. We also discuss how a precise understanding of the molecular mechanisms regulating stress responses evoked by different pharmacological agents could decisively contribute to the design of novel and more effective combinational treatments against brain malignancies.
Collapse
Affiliation(s)
- Magdalena Kusaczuk
- Department of Pharmaceutical Biochemistry, Medical University of Bialystok, Mickiewicza 2A, 15-222 Bialystok, Poland.
| | - Elena Tovar Ambel
- Department of Biochemistry and Molecular Biology, School of Biology, Complutense University, Instituto de Investigación Sanitaria San Carlos IdISSC, 28040 Madrid, Spain
| | - Monika Naumowicz
- Department of Physical Chemistry, Faculty of Chemistry, University of Bialystok, K. Ciolkowskiego 1K, 15-245 Bialystok, Poland
| | - Guillermo Velasco
- Department of Biochemistry and Molecular Biology, School of Biology, Complutense University, Instituto de Investigación Sanitaria San Carlos IdISSC, 28040 Madrid, Spain.
| |
Collapse
|
9
|
Yiyun Li, Wan Y, Yu N, Zhao Y, Li M. Galangin (GLN) Promotes Temozolomide-Induced Apoptosis in Glioma Cells. BIOL BULL+ 2022. [DOI: 10.1134/s1062359022060085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
10
|
Rupprecht A, Theisen U, Wendt F, Frank M, Hinz B. The Combination of Δ9-Tetrahydrocannabinol and Cannabidiol Suppresses Mitochondrial Respiration of Human Glioblastoma Cells via Downregulation of Specific Respiratory Chain Proteins. Cancers (Basel) 2022; 14:cancers14133129. [PMID: 35804909 PMCID: PMC9265124 DOI: 10.3390/cancers14133129] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 05/25/2022] [Accepted: 06/01/2022] [Indexed: 11/21/2022] Open
Abstract
Simple Summary Cannabidiol (CBD) is a phytocannabinoid from Cannabis sativa L. that exhibits no psychoactivity and, like the psychoactive cannabinoid Δ9-tetrahydrocannabinol (THC), shows anticancer effects in preclinical cell and animal models. Previous studies have indicated a stronger cancer-targeting effect when THC and CBD are combined. Here, we investigated how the combination of THC and CBD in a 1:1 ratio affects glioblastoma cell survival. The compounds were found to synergistically enhance cell death, which was attributed to mitochondrial damage and disruption of energy metabolism. A detailed look at the mitochondrial electron transfer chain showed that THC/CBD selectively decreased certain subunits of complexes I and IV. These data highlight the fundamental changes in cellular energy metabolism when cancer cells are exposed to a mixture of cannabinoids and underscore the potential of combining cannabinoids in cancer treatment. Abstract Phytocannabinoids represent a promising approach in glioblastoma therapy. Previous work has shown that a combined treatment of glioblastoma cells with submaximal effective concentrations of psychoactive Δ9-tetrahydrocannabinol (THC) and non-psychoactive cannabidiol (CBD) greatly increases cell death. In the present work, the glioblastoma cell lines U251MG and U138MG were used to investigate whether the combination of THC and CBD in a 1:1 ratio is associated with a disruption of cellular energy metabolism, and whether this is caused by affecting mitochondrial respiration. Here, the combined administration of THC and CBD (2.5 µM each) led to an inhibition of oxygen consumption rate and energy metabolism. These effects were accompanied by morphological changes to the mitochondria, a release of mitochondrial cytochrome c into the cytosol and a marked reduction in subunits of electron transport chain complexes I (NDUFA9, NDUFB8) and IV (COX2, COX4). Experiments with receptor antagonists and inhibitors showed that the degradation of NDUFA9 occurred independently of the activation of the cannabinoid receptors CB1, CB2 and TRPV1 and of usual degradation processes mediated via autophagy or the proteasomal system. In summary, the results describe a previously unknown mitochondria-targeting mechanism behind the toxic effect of THC and CBD on glioblastoma cells that should be considered in future cancer therapy, especially in combination strategies with other chemotherapeutics.
Collapse
Affiliation(s)
- Anne Rupprecht
- Institute of Pharmacology and Toxicology, Rostock University Medical Centre, 18057 Rostock, Germany; (A.R.); (U.T.); (F.W.)
| | - Ulrike Theisen
- Institute of Pharmacology and Toxicology, Rostock University Medical Centre, 18057 Rostock, Germany; (A.R.); (U.T.); (F.W.)
| | - Franziska Wendt
- Institute of Pharmacology and Toxicology, Rostock University Medical Centre, 18057 Rostock, Germany; (A.R.); (U.T.); (F.W.)
| | - Marcus Frank
- Electron Microscopy Centre, Rostock University Medical Centre, 18057 Rostock, Germany;
- Department Life, Light and Matter, University of Rostock, 18059 Rostock, Germany
| | - Burkhard Hinz
- Institute of Pharmacology and Toxicology, Rostock University Medical Centre, 18057 Rostock, Germany; (A.R.); (U.T.); (F.W.)
- Correspondence:
| |
Collapse
|
11
|
Vilar JB, Christmann M, Tomicic MT. Alterations in Molecular Profiles Affecting Glioblastoma Resistance to Radiochemotherapy: Where Does the Good Go? Cancers (Basel) 2022; 14:cancers14102416. [PMID: 35626024 PMCID: PMC9139489 DOI: 10.3390/cancers14102416] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 05/06/2022] [Accepted: 05/10/2022] [Indexed: 02/06/2023] Open
Abstract
Simple Summary Glioblastoma is a type of brain cancer that remains incurable. Despite multiple past and ongoing preclinical studies and clinical trials, involving adjuvants to the conventional therapy and based on molecular targeting, no relevant benefit for patients’ survival has been achieved so far. The current first-line treatment regimen is based on ionizing radiation and the monoalkylating compound, temozolomide, and has been administered for more than 15 years. Glioblastoma is extremely resistant to most agents due to a mutational background that elicits quick response to insults and adapts to microenvironmental and metabolic changes. Here, we present the most recent evidence concerning the molecular features and their alterations governing pathways involved in GBM response to the standard radio-chemotherapy and discuss how they collaborate with acquired GBM’s resistance. Abstract Glioblastoma multiforme (GBM) is a brain tumor characterized by high heterogeneity, diffuse infiltration, aggressiveness, and formation of recurrences. Patients with this kind of tumor suffer from cognitive, emotional, and behavioral problems, beyond exhibiting dismal survival rates. Current treatment comprises surgery, radiotherapy, and chemotherapy with the methylating agent, temozolomide (TMZ). GBMs harbor intrinsic mutations involving major pathways that elicit the cells to evade cell death, adapt to the genotoxic stress, and regrow. Ionizing radiation and TMZ induce, for the most part, DNA damage repair, autophagy, stemness, and senescence, whereas only a small fraction of GBM cells undergoes treatment-induced apoptosis. Particularly upon TMZ exposure, most of the GBM cells undergo cellular senescence. Increased DNA repair attenuates the agent-induced cytotoxicity; autophagy functions as a pro-survival mechanism, protecting the cells from damage and facilitating the cells to have energy to grow. Stemness grants the cells capacity to repopulate the tumor, and senescence triggers an inflammatory microenvironment favorable to transformation. Here, we highlight this mutational background and its interference with the response to the standard radiochemotherapy. We discuss the most relevant and recent evidence obtained from the studies revealing the molecular mechanisms that lead these cells to be resistant and indicate some future perspectives on combating this incurable tumor.
Collapse
|
12
|
Tai SH, Lin YW, Huang TY, Chang CC, Chao LC, Wu TS, Lee EJ. Cinnamophilin enhances temozolomide-induced cytotoxicity against malignant glioma: the roles of ROS and cell cycle arrest. Transl Cancer Res 2022; 10:3906-3920. [PMID: 35116690 PMCID: PMC8798401 DOI: 10.21037/tcr-20-3426] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Accepted: 07/14/2021] [Indexed: 11/15/2022]
Abstract
Background Temozolomide (TMZ) has been widely used to treat glioblastoma multiforme (GBM). However, many mechanisms are known to quickly adapt GBM cells to chemotherapy with TMZ, leading to drug resistance and expansion of tumor cell populations. Methods We subjected human glioblastoma cell lines and an animal model of glioblastoma xenografts with TMZ-based adjuvant treatments to evaluate the synergistic effect of cinnamophilin (CINN), a free radical scavenger. Results Our results showed that the combined treatment of CINN and TMZ potentiated the anticancer effect and apoptotic cell death in glioma cell lines and enhanced antitumor action in glioma xenografts. TMZ induced reactive oxygen species (ROS) burst and elevated G2 arrest in glioma cells. The CINN-suppressed ROS burst in TMZ-treated glioma cells might be associated with increased apoptosis, as indicated by the upregulation of TUNEL-positive glioma cells. CINN-pretreated glioma cells exhibited increased cyclin B expression and reduced phosphorylation of Cdk1, suggesting reduced G2 arrest in the combined treatment group. Moreover, CINN lowered the protein level of LC3, a hallmark of autophagy, in TMZ-treated cells. Conclusions These findings suggest that CINN may restore TMZ toxicity in glioma cancer by suppressing the ROS/G2 arrest pathway.
Collapse
Affiliation(s)
- Shih-Hang Tai
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan.,Neurophysiology Laboratory and Department of Surgery, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan
| | - Yu-Wen Lin
- Neurophysiology Laboratory and Department of Surgery, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan
| | - Tung-Yi Huang
- Neurophysiology Laboratory and Department of Surgery, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan
| | - Che-Chao Chang
- Neurophysiology Laboratory and Department of Surgery, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan
| | - Liang-Chun Chao
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan.,Neurophysiology Laboratory and Department of Surgery, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan
| | - Tian-Shung Wu
- School of Pharmacy, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan
| | - E-Jian Lee
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan.,Neurophysiology Laboratory and Department of Surgery, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan
| |
Collapse
|
13
|
Zampieri LX, Sboarina M, Cacace A, Grasso D, Thabault L, Hamelin L, Vazeille T, Dumon E, Rossignol R, Frédérick R, Sonveaux E, Lefranc F, Sonveaux P. Olaparib Is a Mitochondrial Complex I Inhibitor That Kills Temozolomide-Resistant Human Glioblastoma Cells. Int J Mol Sci 2021; 22:ijms222111938. [PMID: 34769368 PMCID: PMC8584761 DOI: 10.3390/ijms222111938] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 10/28/2021] [Accepted: 10/29/2021] [Indexed: 12/15/2022] Open
Abstract
Glioblastoma represents the highest grade of brain tumors. Despite maximal resection surgery associated with radiotherapy and concomitant followed by adjuvant chemotherapy with temozolomide (TMZ), patients have a very poor prognosis due to the rapid recurrence and the acquisition of resistance to TMZ. Here, initially considering that TMZ is a prodrug whose activation is pH-dependent, we explored the contribution of glioblastoma cell metabolism to TMZ resistance. Using isogenic TMZ-sensitive and TMZ-resistant human glioblastoma cells, we report that the expression of O6-methylguanine DNA methyltransferase (MGMT), which is known to repair TMZ-induced DNA methylation, does not primarily account for TMZ resistance. Rather, fitter mitochondria in TMZ-resistant glioblastoma cells are a direct cause of chemoresistance that can be targeted by inhibiting oxidative phosphorylation and/or autophagy/mitophagy. Unexpectedly, we found that PARP inhibitor olaparib, but not talazoparib, is also a mitochondrial Complex I inhibitor. Hence, we propose that the anticancer activities of olaparib in glioblastoma and other cancer types combine DNA repair inhibition and impairment of cancer cell respiration.
Collapse
Affiliation(s)
- Luca X. Zampieri
- Pole of Pharmacology and Therapeutics, Institut de Recherche Expérimentale et Clinique (IREC), Université Catholique de Louvain (UCLouvain), 1200 Brussels, Belgium; (L.X.Z.); (M.S.); (A.C.); (D.G.); (L.T.); (L.H.); (T.V.)
| | - Martina Sboarina
- Pole of Pharmacology and Therapeutics, Institut de Recherche Expérimentale et Clinique (IREC), Université Catholique de Louvain (UCLouvain), 1200 Brussels, Belgium; (L.X.Z.); (M.S.); (A.C.); (D.G.); (L.T.); (L.H.); (T.V.)
| | - Andrea Cacace
- Pole of Pharmacology and Therapeutics, Institut de Recherche Expérimentale et Clinique (IREC), Université Catholique de Louvain (UCLouvain), 1200 Brussels, Belgium; (L.X.Z.); (M.S.); (A.C.); (D.G.); (L.T.); (L.H.); (T.V.)
| | - Debora Grasso
- Pole of Pharmacology and Therapeutics, Institut de Recherche Expérimentale et Clinique (IREC), Université Catholique de Louvain (UCLouvain), 1200 Brussels, Belgium; (L.X.Z.); (M.S.); (A.C.); (D.G.); (L.T.); (L.H.); (T.V.)
| | - Léopold Thabault
- Pole of Pharmacology and Therapeutics, Institut de Recherche Expérimentale et Clinique (IREC), Université Catholique de Louvain (UCLouvain), 1200 Brussels, Belgium; (L.X.Z.); (M.S.); (A.C.); (D.G.); (L.T.); (L.H.); (T.V.)
- Louvain Drug Research Institute (LDRI), UCLouvain, 1200 Brussels, Belgium; (R.F.); (E.S.)
| | - Loïc Hamelin
- Pole of Pharmacology and Therapeutics, Institut de Recherche Expérimentale et Clinique (IREC), Université Catholique de Louvain (UCLouvain), 1200 Brussels, Belgium; (L.X.Z.); (M.S.); (A.C.); (D.G.); (L.T.); (L.H.); (T.V.)
| | - Thibaut Vazeille
- Pole of Pharmacology and Therapeutics, Institut de Recherche Expérimentale et Clinique (IREC), Université Catholique de Louvain (UCLouvain), 1200 Brussels, Belgium; (L.X.Z.); (M.S.); (A.C.); (D.G.); (L.T.); (L.H.); (T.V.)
| | - Elodie Dumon
- INSERM U1211, Laboratory of Rare Diseases, Metabolism and Genetics (MRGM), Ecole des Sages Femmes, Bordeaux University, 33076 Bordeaux, France; (E.D.); (R.R.)
| | - Rodrigue Rossignol
- INSERM U1211, Laboratory of Rare Diseases, Metabolism and Genetics (MRGM), Ecole des Sages Femmes, Bordeaux University, 33076 Bordeaux, France; (E.D.); (R.R.)
| | - Raphaël Frédérick
- Louvain Drug Research Institute (LDRI), UCLouvain, 1200 Brussels, Belgium; (R.F.); (E.S.)
| | - Etienne Sonveaux
- Louvain Drug Research Institute (LDRI), UCLouvain, 1200 Brussels, Belgium; (R.F.); (E.S.)
| | - Florence Lefranc
- Service de Neurochirurgie, Hôpital Erasme, Université Libre de Bruxelles (ULB), 1070 Brussels, Belgium;
| | - Pierre Sonveaux
- Pole of Pharmacology and Therapeutics, Institut de Recherche Expérimentale et Clinique (IREC), Université Catholique de Louvain (UCLouvain), 1200 Brussels, Belgium; (L.X.Z.); (M.S.); (A.C.); (D.G.); (L.T.); (L.H.); (T.V.)
- Correspondence:
| |
Collapse
|
14
|
Fan Y, Wang Y, Zhang J, Dong X, Gao P, Liu K, Ma C, Zhao G. Breaking Bad: Autophagy Tweaks the Interplay Between Glioma and the Tumor Immune Microenvironment. Front Immunol 2021; 12:746621. [PMID: 34671362 PMCID: PMC8521049 DOI: 10.3389/fimmu.2021.746621] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Accepted: 09/17/2021] [Indexed: 02/06/2023] Open
Abstract
Though significant strides in tumorigenic comprehension and therapy modality have been witnessed over the past decades, glioma remains one of the most common and malignant brain tumors characterized by recurrence, dismal prognosis, and therapy resistance. Immunotherapy advance holds promise in glioma recently. However, the efficacy of immunotherapy varies among individuals with glioma, which drives researchers to consider the modest levels of immunity in the central nervous system, as well as the immunosuppressive tumor immune microenvironment (TIME). Considering the highly conserved property for sustaining energy homeostasis in mammalian cells and repeatedly reported links in malignancy and drug resistance, autophagy is determined as a cutting angle to elucidate the relations between glioma and the TIME. In this review, heterogeneity of TIME in glioma is outlined along with the reciprocal impacts between them. In addition, controversies on whether autophagy behaves cytoprotectively or cytotoxically in cancers are covered. How autophagy collapses from its homeostasis and aids glioma malignancy, which may depend on the cell type and the cellular context such as reactive oxygen species (ROS) and adenosine triphosphate (ATP) level, are briefly discussed. The consecutive application of autophagy inducers and inhibitors may improve the drug resistance in glioma after overtreatments. It also highlights that autophagy plays a pivotal part in modulating glioma and the TIME, respectively, and the intricate interactions among them. Specifically, autophagy is manipulated by either glioma or tumor-associated macrophages to conform one side to the other through exosomal microRNAs and thereby adjust the interactions. Given that some of the crosstalk between glioma and the TIME highly depend on the autophagy process or autophagic components, there are interconnections influenced by the status and well-being of cells presumably associated with autophagic flux. By updating the most recent knowledge concerning glioma and the TIME from an autophagic perspective enhances comprehension and inspires more applicable and effective strategies targeting TIME while harnessing autophagy collaboratively against cancer.
Collapse
Affiliation(s)
- Yuxiang Fan
- Department of Neurosurgery, The First Hospital of Jilin University, Changchun, China
| | - Yubo Wang
- Department of Neurosurgery, The First Hospital of Jilin University, Changchun, China
| | - Jian Zhang
- Department of Neurosurgery, The First Hospital of Jilin University, Changchun, China
| | - Xuechao Dong
- Department of Neurosurgery, The First Hospital of Jilin University, Changchun, China
| | - Pu Gao
- Department of Neurosurgery, The First Hospital of Jilin University, Changchun, China
| | - Kai Liu
- Department of Neurosurgery, The First Hospital of Jilin University, Changchun, China
| | - Chengyuan Ma
- Department of Neurosurgery, The First Hospital of Jilin University, Changchun, China
| | - Gang Zhao
- Department of Neurosurgery, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
15
|
Zhang X, Deibert CP, Kim WJ, Jaman E, Rao AV, Lotze MT, Amankulor NM. Autophagy inhibition is the next step in the treatment of glioblastoma patients following the Stupp era. Cancer Gene Ther 2021; 28:971-983. [PMID: 32759988 DOI: 10.1038/s41417-020-0205-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 07/17/2020] [Accepted: 07/22/2020] [Indexed: 01/30/2023]
Abstract
It has now been nearly 15 years since the last major advance in the treatment of patients with glioma. "The addition of temozolomide to radiotherapy for newly diagnosed glioblastoma resulted in a clinically meaningful and statistically significant survival benefit with minimal additional toxicity". Autophagy is primarily a survival pathway, literally self-eating, that is utilized in response to stress (such as radiation and chemotherapy), enabling clearance of effete protein aggregates and multimolecular assemblies. Promising results have been observed in patients with glioma for over a decade now when autophagy inhibition with chloroquine derivatives coupled with conventional therapy. The application of autophagy inhibitors, the role of immune cell-induced autophagy, and the potential role of novel cellular and gene therapies, should now be considered for development as part of this well-established regimen.
Collapse
Affiliation(s)
- Xiaoran Zhang
- Department of Neurological Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Christopher P Deibert
- Department of Neurological Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Wi-Jin Kim
- Department of Neurological Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Emade Jaman
- Department of Neurological Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Aparna V Rao
- Department of Neurological Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Michael T Lotze
- Department of Surgery, University of Pittsburgh Cancer Institute, Pittsburgh, PA, USA
| | - Nduka M Amankulor
- Department of Neurological Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA, USA.
| |
Collapse
|
16
|
Jena BC, Rout L, Dey A, Mandal M. Active autophagy in cancer-associated fibroblasts: Recent advances in understanding the novel mechanism of tumor progression and therapeutic response. J Cell Physiol 2021; 236:7887-7902. [PMID: 34008184 DOI: 10.1002/jcp.30419] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 05/03/2021] [Accepted: 05/06/2021] [Indexed: 12/11/2022]
Abstract
Autophagy is primarily a homeostatic and catabolic process that is increasingly being recognized to have a pivotal role in the initiation and maintenance of cancer cells, as well as in the emergence of therapeutic resistance. Moreover, in the tumor microenvironment (TME) autophagy plays a crucial and sometimes dichotomous role in tumor progression. Recent studies show that during the early stages of tumor initiation, autophagy suppresses tumorigenesis. However, in the advanced stage of tumorigenesis, autophagy promotes cancer progression by protecting cancer cells against stressful conditions and therapeutic assault. Specifically, in cancer-associated fibroblasts (CAFs), autophagy promotes tumorigenesis not only by providing nutrients to the cancerous cells but also by inducing epithelial to mesenchymal transition, angiogenesis, stemness, and metastatic dissemination of the cancer cells, whereas in the immune cells, autophagy induces the tumor-localized immune response. In the TME, CAFs play a crucial role in cancer cell metabolism, immunoreaction, and growth. Therefore, targeting autophagy in CAFs by several pharmacological inducers like rapamycin or the inhibitor such as chloroquine has gained importance in preclinical and clinical trials. In the present review, we summarized the basic mechanism of autophagy in CAFs along with its role in driving tumorigenic progression through several emerging as well as classical hallmarks of cancer. We also addressed various autophagy inducers as well as inhibitors of autophagy for more efficient cancer management. Eventually, we prioritized some of the outstanding issues that must be addressed with utmost priority in the future to elucidate the role of autophagy in CAFs on tumor progression and therapeutic intervention.
Collapse
Affiliation(s)
- Bikash Chandra Jena
- Cancer Biology Lab, School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, India
| | - Lipsa Rout
- Department of Chemistry, Institute of Technical Education and Research, Siksha'O'Anusandhan Deemed to be University, Bhubaneswar, Odisha, India
| | - Ankita Dey
- Cancer Biology Lab, School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, India
| | - Mahitosh Mandal
- Cancer Biology Lab, School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, India
| |
Collapse
|
17
|
Ho KH, Lee YT, Chen PH, Shih CM, Cheng CH, Chen KC. Guanabenz Sensitizes Glioblastoma Cells to Sunitinib by Inhibiting GADD34-Mediated Autophagic Signaling. Neurotherapeutics 2021; 18:1371-1392. [PMID: 33410111 PMCID: PMC8423979 DOI: 10.1007/s13311-020-00961-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/24/2020] [Indexed: 12/14/2022] Open
Abstract
Limited therapeutic efficacy of temozolomide (TMZ) against glioblastomas highlights the importance of exploring new drugs for clinical therapy. Sunitinib, a multitargeted receptor tyrosine kinase inhibitor, is currently being tested as therapy for glioblastomas. Unfortunately, sunitinib still has insufficient activity to cure glioblastomas. Our aim was to determine the molecular mechanisms counteracting sunitinib drug sensitivity and find potential adjuvant drugs for glioblastoma therapy. Through in vitro experiments, transcriptome screening by RNA sequencing, and in silico analyses, we found that sunitinib induced glioma apoptotic death, and downregulated genes were enriched in oncogenic genes of glioblastoma. Meanwhile, sunitinib-upregulated genes were highly associated with the protective autophagy process. Blockade of autophagy significantly enhanced sunitinib's cytotoxicity. Growth arrest and DNA damage-inducible protein (GADD) 34 was identified as a candidate involved in sunitinib-promoted autophagy through activating p38-mitogen-activated protein kinase (MAPK) signaling. Higher GADD34 levels predicted poor survival of glioblastoma patients and induced autophagy formation in desensitizing sunitinib cytotoxicity. Guanabenz, an alpha2-selective adrenergic agonist and GADD34 functional inhibitor, was identified to enhance the efficacy of sunitinib by targeting GADD34-induced protective autophagy in glioblastoma cells, TMZ-resistant cells, hypoxic cultured cells, sphere-forming cells, and colony formation abilities. A better combined treatment effect with sunitinib and guanabenz was also observed by using xenograft mice. Taken together, the sunitinib therapy combined with guanabenz in the inhibition of GADD34-enhanced protective autophagy may provide a new therapeutic strategy for glioblastoma.
Collapse
Affiliation(s)
- Kuo-Hao Ho
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Department of Biochemistry and Molecular Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, 250 Wu-Hsing Street, Xinyi District, Taipei, 11031, Taiwan
| | - Yi-Ting Lee
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Department of Biochemistry and Molecular Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, 250 Wu-Hsing Street, Xinyi District, Taipei, 11031, Taiwan
| | - Peng-Hsu Chen
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Department of Biochemistry and Molecular Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, 250 Wu-Hsing Street, Xinyi District, Taipei, 11031, Taiwan
| | - Chwen-Ming Shih
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Department of Biochemistry and Molecular Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, 250 Wu-Hsing Street, Xinyi District, Taipei, 11031, Taiwan
| | - Chia-Hsiung Cheng
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Department of Biochemistry and Molecular Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, 250 Wu-Hsing Street, Xinyi District, Taipei, 11031, Taiwan
| | - Ku-Chung Chen
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan.
- Department of Biochemistry and Molecular Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, 250 Wu-Hsing Street, Xinyi District, Taipei, 11031, Taiwan.
| |
Collapse
|
18
|
Singh N, Miner A, Hennis L, Mittal S. Mechanisms of temozolomide resistance in glioblastoma - a comprehensive review. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2021; 4:17-43. [PMID: 34337348 PMCID: PMC8319838 DOI: 10.20517/cdr.2020.79] [Citation(s) in RCA: 131] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Glioblastoma (GBM) is the most common primary malignant brain tumor in adults and has an exceedingly low median overall survival of only 15 months. Current standard-of-care for GBM consists of gross total surgical resection followed by radiation with concurrent and adjuvant chemotherapy. Temozolomide (TMZ) is the first-choice chemotherapeutic agent in GBM; however, the development of resistance to TMZ often becomes the limiting factor in effective treatment. While O6-methylguanine-DNA methyltransferase repair activity and uniquely resistant populations of glioma stem cells are the most well-known contributors to TMZ resistance, many other molecular mechanisms have come to light in recent years. Key emerging mechanisms include the involvement of other DNA repair systems, aberrant signaling pathways, autophagy, epigenetic modifications, microRNAs, and extracellular vesicle production. This review aims to provide a comprehensive overview of the clinically relevant molecular mechanisms and their extensive interconnections to better inform efforts to combat TMZ resistance.
Collapse
Affiliation(s)
- Neha Singh
- Division of Neurosurgery, Virginia Tech Carilion School of Medicine, Roanoke, VA 24014, USA.,Fralin Biomedical Research Institute at VTC, Roanoke, VA 24014, USA
| | - Alexandra Miner
- Division of Neurosurgery, Virginia Tech Carilion School of Medicine, Roanoke, VA 24014, USA.,Fralin Biomedical Research Institute at VTC, Roanoke, VA 24014, USA
| | - Lauren Hennis
- Division of Neurosurgery, Virginia Tech Carilion School of Medicine, Roanoke, VA 24014, USA.,Fralin Biomedical Research Institute at VTC, Roanoke, VA 24014, USA
| | - Sandeep Mittal
- Division of Neurosurgery, Virginia Tech Carilion School of Medicine, Roanoke, VA 24014, USA.,Fralin Biomedical Research Institute at VTC, Roanoke, VA 24014, USA.,Carilion Clinic - Neurosurgery, Roanoke, VA 24014, USA
| |
Collapse
|
19
|
Zhai Z, Vaddi PK, Samson JM, Takegami T, Fujita M. NLRP1 Functions Downstream of the MAPK/ERK Signaling via ATF4 and Contributes to Acquired Targeted Therapy Resistance in Human Metastatic Melanoma. Pharmaceuticals (Basel) 2020; 14:ph14010023. [PMID: 33396632 PMCID: PMC7823742 DOI: 10.3390/ph14010023] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 12/17/2020] [Accepted: 12/26/2020] [Indexed: 12/16/2022] Open
Abstract
The BRAF V600E mutation leads to constitutive activation of the mitogen-activated protein kinase (MAPK)/extracellular signal-regulated kinase (ERK) pathway and its downstream effector responses. Uncovering the hidden downstream effectors can aid in understanding melanoma biology and improve targeted therapy efficacy. The inflammasome sensor, NACHT, LRR, and PYD domains-containing protein 1 (NLRP1), is responsible for IL-1β maturation and itself is a melanoma tumor promoter. Here, we report that NLRP1 is a downstream effector of MAPK/ERK signaling through the activating transcription factor 4 (ATF4), creating regulation in metastatic melanoma cells. We confirmed that the NLRP1 gene is a target of ATF4. Interestingly, ATF4/NLRP1 regulation by the MAPK/ERK pathway uses distinct mechanisms in melanoma cells before and after the acquired resistance to targeted therapy. In parental cells, ATF4/NLRP1 is regulated by the MAPK/ERK pathway through the ribosomal S6 kinase 2 (RSK2). However, vemurafenib (VEM) and trametinib (TRA)-resistant cells lose the signaling via RSK2 and activate the cAMP/protein kinase A (PKA) pathway to redirect ATF4/NLRP1. Therefore, NLRP1 expression and IL-1β secretion were downregulated in response to VEM and TRA in parental cells but enhanced in drug-resistant cells. Lastly, silencing NLRP1 in drug-resistant cells reduced their cell growth and inhibited colony formation. In summary, we demonstrated that NLRP1 functions downstream of the MAPK/ERK signaling via ATF4 and is a player of targeted therapy resistance in melanoma. Targeting NLRP1 may improve the therapeutic efficacy of targeted therapy in melanoma.
Collapse
Affiliation(s)
- Zili Zhai
- Department of Dermatology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (Z.Z.); (P.K.V.); (J.M.S.); (T.T.)
| | - Prasanna K. Vaddi
- Department of Dermatology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (Z.Z.); (P.K.V.); (J.M.S.); (T.T.)
| | - Jenny Mae Samson
- Department of Dermatology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (Z.Z.); (P.K.V.); (J.M.S.); (T.T.)
| | - Tomoya Takegami
- Department of Dermatology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (Z.Z.); (P.K.V.); (J.M.S.); (T.T.)
| | - Mayumi Fujita
- Department of Dermatology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (Z.Z.); (P.K.V.); (J.M.S.); (T.T.)
- Department of Veterans Affairs Medical Center, VA Eastern Colorado Health Care System, Aurora, CO 80045, USA
- Department of Immunology & Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
- Correspondence: ; Tel.: +1-303-724-4045; Fax: +1-303-724-4048
| |
Collapse
|
20
|
Lv QL, Wang LC, Li DC, Lin QX, Shen XL, Liu HY, Li M, Ji YL, Qin CZ, Chen SH. Knockdown lncRNA DLEU1 Inhibits Gliomas Progression and Promotes Temozolomide Chemosensitivity by Regulating Autophagy. Front Pharmacol 2020; 11:560543. [PMID: 33362537 PMCID: PMC7756250 DOI: 10.3389/fphar.2020.560543] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 10/15/2020] [Indexed: 12/11/2022] Open
Abstract
Gliomas are the most fatal malignant cerebral tumors. Temozolomide (TMZ), as the primary chemotherapy drug, has been widely used in clinics. However, resistance of TMZ still remains to poor defined. LncRNAs have been reported to play crucial roles in progression of various cancers and resistance of multiple drugs. However, the biological function and underlying mechanisms of most lncRNAs in glioma still remains unclear. Based on the TCGA database, a total of 94 differentially expressed lncRNAs, including 16 up-regulated genes and 78 downregulated genes were identified between gliomas and normal brain tissues. Subsequently, lncRNA DLEU1, HOTAIR, and LOC00132111 were tested to be significantly related to overall survival (OS) between high- and low-expression groups. Additionally, we verified that lncRNA DLEU1 was high expressed in 108 gliomas, compared with 19 normal brain tissues. And high expression of lncRNA DLEU1 predicted a poor prognosis (HR = 1.703, 95%CI: 1.133–2.917, p-value = 0.0159). Moreover, functional assays revealed that knockdown of lncRNA DLEU1 could suppress the proliferation by inducing cell cycle arrest at G1 phase and reducing the S phase by down-regulating the CyclinD1 and p-AKT, as the well as migration and invasion by inhibiting the epithelial–mesenchymal transition (EMT) markers, such as ZEB1, N-cadherin, β-catenin and snail in glioma cells. Furthermore, silencing lncRNA DLEU1 suppressed TMZ-activated autophagy via regulating the expression of P62 and LC3, and promoted sensitivity of glioma cells to TMZ by triggering apoptosis. Conclusively, our study indicated that lncRNA DLEU1 might perform as a prognostic potential target and underlying therapeutic target for sensitivity of glioma to TMZ.
Collapse
Affiliation(s)
- Qiao-Li Lv
- Jiangxi Key Laboratory of Translational Cancer Research, Department of Head and Neck Surgery, Jiangxi Cancer Hospital of Nanchang University, Nanchang, China
| | - Li-Chong Wang
- Jiangxi Key Laboratory of Translational Cancer Research, Department of Head and Neck Surgery, Jiangxi Cancer Hospital of Nanchang University, Nanchang, China.,Department of Neurosurgery, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Dang-Chi Li
- Jiangxi University of Technology High School, Nanchang, China
| | - Qian-Xia Lin
- Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Xiao-Li Shen
- Department of Neurosurgery, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Hai-Yun Liu
- Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Min Li
- Department of Head and Neck Surgery, Jiangxi Cancer Hospital, Nanchang, China
| | - Yu-Long Ji
- Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Chong-Zhen Qin
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Shu-Hui Chen
- Department of Radiation Oncology, Jiangxi Cancer Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
21
|
Xia Q, Xu M, Zhang P, Liu L, Meng X, Dong L. Therapeutic Potential of Autophagy in Glioblastoma Treatment With Phosphoinositide 3-Kinase/Protein Kinase B/Mammalian Target of Rapamycin Signaling Pathway Inhibitors. Front Oncol 2020; 10:572904. [PMID: 33123479 PMCID: PMC7567033 DOI: 10.3389/fonc.2020.572904] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 08/20/2020] [Indexed: 12/13/2022] Open
Abstract
Glioblastoma (GB) is the most malignant and aggressive form of brain tumor, characterized by frequent hyperactivation of the phosphoinositide 3-kinase (PI3K)/protein kinase B (AKT)/mammalian target of rapamycin (mTOR) signaling pathway. PI3K/AKT/mTOR inhibitors have a promising clinical efficacy theoretically. However, strong drug resistance is developed in GB against the PI3K/AKT/mTOR inhibitors due to the cytoprotective effect and the adaptive response of autophagy during the treatment of GB. Activation of autophagy by the PI3K/AKT/mTOR inhibitors not only enhances treatment sensitivity but also leads to cell survival when drug resistance develops in cancer cells. In this review, we analyze how to increase the antitumor effect of the PI3K/AKT/mTOR inhibitors in GB treatment, which is achieved by various mechanisms, among which targeting autophagy is an important mechanism. We review the dual role of autophagy in both GB therapy and resistance against inhibitors of the PI3K/AKT/mTOR signaling pathway, and further discuss the possibility of using combinations of autophagy and PI3K/AKT/mTOR inhibitors to improve the treatment efficacy for GB. Finally, we provide new perspectives for targeting autophagy in GB therapy.
Collapse
Affiliation(s)
- Qin Xia
- School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Mengchuan Xu
- School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Pei Zhang
- School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Liqun Liu
- School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Xinyi Meng
- School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Lei Dong
- School of Life Science, Beijing Institute of Technology, Beijing, China
| |
Collapse
|
22
|
Compter I, Eekers DBP, Hoeben A, Rouschop KMA, Reymen B, Ackermans L, Beckervordersantforth J, Bauer NJC, Anten MM, Wesseling P, Postma AA, De Ruysscher D, Lambin P. Chloroquine combined with concurrent radiotherapy and temozolomide for newly diagnosed glioblastoma: a phase IB trial. Autophagy 2020; 17:2604-2612. [PMID: 32866424 PMCID: PMC8496728 DOI: 10.1080/15548627.2020.1816343] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Treatment of glioblastoma xenografts with chloroquine results in macroautophagy/autophagy inhibition, resulting in a reduction of tumor hypoxia and sensitization to radiation. Preclinical data show that EGFRvIII-expressing glioblastoma may benefit most from chloroquine because of autophagy dependency. This study is the first to explore the safety, pharmacokinetics and maximum tolerated dose of chloroquine in combination with radiotherapy and concurrent daily temozolomide in patients with a newly diagnosed glioblastoma. This study is a single-center, open-label, dose-finding phase I trial. Patients received oral chloroquine daily starting one week before the course of chemoradiation (temozolomide 75 mg/m2/d) until the end of radiotherapy (59.4 Gy/33 fractions). Thirteen patients were included in the study (n = 6: 200 mg, n = 3: 300 mg, n = 4: 400 mg chloroquine). A total of 44 adverse events, possibly related to chloroquine, were registered including electrocardiogram QTc prolongation, irreversible blurred vision and nausea/vomiting resulting in cessation of temozolomide or delay of adjuvant cycles. The maximum tolerated dose was 200 mg chloroquine. Median overall survival was 16 months (range 2–32). Median survival was 11.5 months for EGFRvIII- patients and 20 months for EGFRvIII+ patients. A daily dose of 200 mg chloroquine was determined to be the maximum tolerated dose when combined with radiotherapy and concurrent temozolomide for newly diagnosed glioblastoma. Favorable toxicity and promising overall survival support further clinical studies. Abbreviations: AE: adverse events; CQ: chloroquine; DLT: dose-limiting toxicities; EGFR: epidermal growth factor receptor; GBM: glioblastoma; HCQ: hydroxychloroquine; IDH1/2: isocitrate dehydrogenase (NADP(+)) 1/2; MTD: maximum tolerated dose; CTC: National Cancer Institute Common Toxicity Criteria; MGMT: O-6-methylguanine-DNA methyltransferase; OS: overall survival; po qd: per os quaque die; SAE: serious adverse events; TMZ: temozolomide; WHO: World Health Organization
Collapse
Affiliation(s)
- Inge Compter
- Department of Radiation Oncology (Maastro), GROW School for Oncology, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Danielle B P Eekers
- Department of Radiation Oncology (Maastro), GROW School for Oncology, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Ann Hoeben
- Department of Medical Oncology, GROW School for Oncology, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Kasper M A Rouschop
- Department of Radiotherapy, GROW School for Oncology, Maastricht University, Maastricht, The Netherlands
| | - Bart Reymen
- Department of Radiation Oncology (Maastro), GROW School for Oncology, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Linda Ackermans
- Department of Neurosurgery, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | | | - Noel J C Bauer
- Department of Ophthalmology, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Monique M Anten
- Department of Neurology, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Pieter Wesseling
- Department of Pathology, Amsterdam University Medical Centers/VUmc, Amsterdam, The Netherlands.,Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - Alida A Postma
- Department of Radiology and Nuclear Medicine, School for Mental Health and Sciences, Maastricht University Medical Centre+, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Dirk De Ruysscher
- Department of Radiation Oncology (Maastro), GROW School for Oncology, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Philippe Lambin
- Department of Radiology and Nuclear Medicine, School for Mental Health and Sciences, Maastricht University Medical Centre+, Maastricht University Medical Center, Maastricht, The Netherlands.,The D-Lab & the M-lab, Dpt of Precision Medicine, GROW - School for Oncology, Maastricht University Medical Centre+, Maastricht, The Netherlands
| |
Collapse
|
23
|
Valtorta S, Salvatore D, Rainone P, Belloli S, Bertoli G, Moresco RM. Molecular and Cellular Complexity of Glioma. Focus on Tumour Microenvironment and the Use of Molecular and Imaging Biomarkers to Overcome Treatment Resistance. Int J Mol Sci 2020; 21:E5631. [PMID: 32781585 PMCID: PMC7460665 DOI: 10.3390/ijms21165631] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 07/31/2020] [Accepted: 08/03/2020] [Indexed: 02/08/2023] Open
Abstract
This review highlights the importance and the complexity of tumour biology and microenvironment in the progression and therapy resistance of glioma. Specific gene mutations, the possible functions of several non-coding microRNAs and the intra-tumour and inter-tumour heterogeneity of cell types contribute to limit the efficacy of the actual therapeutic options. In this scenario, identification of molecular biomarkers of response and the use of multimodal in vivo imaging and in particular the Positron Emission Tomography (PET) based molecular approach, can help identifying glioma features and the modifications occurring during therapy at a regional level. Indeed, a better understanding of tumor heterogeneity and the development of diagnostic procedures can favor the identification of a cluster of patients for personalized medicine in order to improve the survival and their quality of life.
Collapse
Affiliation(s)
- Silvia Valtorta
- Department of Medicine and Surgery and Tecnomed Foundation, University of Milano—Bicocca, 20900 Monza, Italy; (S.V.); (D.S.); (P.R.)
- Nuclear Medicine Department, San Raffaele Scientific Institute (IRCCS), 20132 Milan, Italy;
| | - Daniela Salvatore
- Department of Medicine and Surgery and Tecnomed Foundation, University of Milano—Bicocca, 20900 Monza, Italy; (S.V.); (D.S.); (P.R.)
- Nuclear Medicine Department, San Raffaele Scientific Institute (IRCCS), 20132 Milan, Italy;
| | - Paolo Rainone
- Department of Medicine and Surgery and Tecnomed Foundation, University of Milano—Bicocca, 20900 Monza, Italy; (S.V.); (D.S.); (P.R.)
- Nuclear Medicine Department, San Raffaele Scientific Institute (IRCCS), 20132 Milan, Italy;
| | - Sara Belloli
- Nuclear Medicine Department, San Raffaele Scientific Institute (IRCCS), 20132 Milan, Italy;
- Institute of Molecular Bioimaging and Physiology (IBFM), CNR, 20090 Segrate, Italy
| | - Gloria Bertoli
- Institute of Molecular Bioimaging and Physiology (IBFM), CNR, 20090 Segrate, Italy
| | - Rosa Maria Moresco
- Department of Medicine and Surgery and Tecnomed Foundation, University of Milano—Bicocca, 20900 Monza, Italy; (S.V.); (D.S.); (P.R.)
- Nuclear Medicine Department, San Raffaele Scientific Institute (IRCCS), 20132 Milan, Italy;
- Institute of Molecular Bioimaging and Physiology (IBFM), CNR, 20090 Segrate, Italy
| |
Collapse
|
24
|
Chaicharoenaudomrung N, Kunhorm P, Promjantuek W, Rujanapun N, Heebkaew N, Soraksa N, Noisa P. Transcriptomic Profiling of 3D Glioblastoma Tumoroids for the Identification of Mechanisms Involved in Anticancer Drug Resistance. In Vivo 2020; 34:199-211. [PMID: 31882480 DOI: 10.21873/invivo.11762] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 10/07/2019] [Accepted: 10/11/2019] [Indexed: 12/18/2022]
Abstract
BACKGROUND/AIM Among various types of brain tumors, glioblastoma is the most malignant and highly aggressive brain tumor that possesses a high resistance against anticancer drugs. To understand the underlined mechanisms of tumor drug resistance, a new and more effective research approach is required. The three dimensional (3D) in vitro cell culture models could be a potential approach to study cancer features and biology, as well as screen for anti-cancer agents due to the close mimicry of the 3D tumor microenvironments. MATERIALS AND METHODS With our developed 3D alginate scaffolds, Ilumina RNA-sequencing was used to transcriptomically analyze and compare the gene expression profiles between glioblastoma cells in traditional 2-dimensional (2D) monolayer and in 3D Ca-alginate scaffolds at day 14. To verify the reliability and accuracy of Illumina RNA-Sequencing data, ATP-binding cassette transporter genes were chosen for quantitative real-time polymerase chain reaction) verification. RESULTS The results showed that 7,411 and 3,915 genes of the 3D glioblastoma were up-regulated and down-regulated, respectively, compared with the 2D-cultured glioblastoma. Furthermore, the Kyoto Encyclopaedia of Genes and Genomes pathway analysis revealed that genes related to the cell cycle and DNA replication were enriched in the group of down-regulated gene. On the other hand, the genes involved in mitogen-activated protein kinase signaling, autophagy, drug metabolism through cytochrome P450, and ATP-binding cassette transporter were found in the up-regulated gene collection. CONCLUSION 3D glioblastoma tumoroids might potentially serve as a powerful platform for exploring glioblastoma biology. They can also be valuable in anti-glioblastoma drug screening, as well as the identification of novel molecular targets in clinical treatment of human glioblastoma.
Collapse
Affiliation(s)
- Nipha Chaicharoenaudomrung
- Laboratory of Cell-Based Assays and Innovations, School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima, Thailand
| | - Phongsakorn Kunhorm
- Laboratory of Cell-Based Assays and Innovations, School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima, Thailand
| | - Wilasinee Promjantuek
- Laboratory of Cell-Based Assays and Innovations, School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima, Thailand
| | - Narawadee Rujanapun
- Laboratory of Cell-Based Assays and Innovations, School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima, Thailand
| | - Nudjanad Heebkaew
- Laboratory of Cell-Based Assays and Innovations, School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima, Thailand
| | - Natchadaporn Soraksa
- Laboratory of Cell-Based Assays and Innovations, School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima, Thailand
| | - Parinya Noisa
- Laboratory of Cell-Based Assays and Innovations, School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima, Thailand
| |
Collapse
|
25
|
Lo WL, Hsu TI, Yang WB, Kao TJ, Wu MH, Huang YN, Yeh SH, Chuang JY. Betulinic Acid-Mediated Tuning of PERK/CHOP Signaling by Sp1 Inhibition as a Novel Therapeutic Strategy for Glioblastoma. Cancers (Basel) 2020; 12:cancers12040981. [PMID: 32326583 PMCID: PMC7226172 DOI: 10.3390/cancers12040981] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 04/14/2020] [Indexed: 02/06/2023] Open
Abstract
Patients with glioblastoma are at high risk of local recurrences after initial treatment with standard therapy, and recurrent tumor cells appear to be resistant to first-line drug temozolomide. Thus, finding an effective second-line agent for treating primary and recurrent glioblastomas is critical. Betulinic acid (BA), a natural product of plant origin, can cross the blood-brain barrier. Here, we investigated the antitumor effects of BA on typical glioblastoma cell lines and primary glioblastoma cells from patients, as well as corresponding temozolomide-resistant cells. Our findings verified that BA significantly reduced growth in all examined cells. Furthermore, gene-expression array analysis showed that the unfolded-protein response was significantly affected by BA. Moreover, BA treatment increased activation of the protein kinase RNA-like endoplasmic reticulum kinase (PERK)/C/EBP homologous protein (CHOP) apoptotic pathway, and reduced specificity protein 1 (Sp1) expression. However, Sp1 overexpression reversed the observed cell-growth inhibition and PERK/CHOP signaling activation induced by BA. Because temozolomide-resistant cells exhibited significantly increased Sp1 expression, we concluded that Sp1-mediated PERK/CHOP signaling inhibition protects glioblastoma against cancer therapies; hence, BA treatment targeting this pathway can be considered as an effective therapeutic strategy to overcome such chemoresistance and tumor relapse.
Collapse
Affiliation(s)
- Wei-Lun Lo
- The Ph.D. Program for Neural Regenerative Medicine, College of Medical Science and Technology, Taipei Medical University and National Health Research Institutes, Taipei 11031, Taiwan; (W.-L.L.); (T.-I.H.); (W.-B.Y.); (T.-J.K.); (Y.-N.H.)
- Division of Neurosurgery, Taipei Medical University-Shuang-Ho Hospital, New Taipei 23561, Taiwan;
| | - Tsung-I Hsu
- The Ph.D. Program for Neural Regenerative Medicine, College of Medical Science and Technology, Taipei Medical University and National Health Research Institutes, Taipei 11031, Taiwan; (W.-L.L.); (T.-I.H.); (W.-B.Y.); (T.-J.K.); (Y.-N.H.)
- TMU Research Center of Neuroscience, Taipei Medical University, Taipei 11031, Taiwan
- TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei 11031, Taiwan
- Cell Physiology and Molecular Image Research Center, Wan Fang Hospital, Taipei Medical University, Taipei 11031, Taiwan
| | - Wen-Bin Yang
- The Ph.D. Program for Neural Regenerative Medicine, College of Medical Science and Technology, Taipei Medical University and National Health Research Institutes, Taipei 11031, Taiwan; (W.-L.L.); (T.-I.H.); (W.-B.Y.); (T.-J.K.); (Y.-N.H.)
| | - Tzu-Jen Kao
- The Ph.D. Program for Neural Regenerative Medicine, College of Medical Science and Technology, Taipei Medical University and National Health Research Institutes, Taipei 11031, Taiwan; (W.-L.L.); (T.-I.H.); (W.-B.Y.); (T.-J.K.); (Y.-N.H.)
- TMU Research Center of Neuroscience, Taipei Medical University, Taipei 11031, Taiwan
| | - Ming-Hsiao Wu
- Division of Neurosurgery, Taipei Medical University-Shuang-Ho Hospital, New Taipei 23561, Taiwan;
| | - Yung-Ning Huang
- The Ph.D. Program for Neural Regenerative Medicine, College of Medical Science and Technology, Taipei Medical University and National Health Research Institutes, Taipei 11031, Taiwan; (W.-L.L.); (T.-I.H.); (W.-B.Y.); (T.-J.K.); (Y.-N.H.)
| | - Shiu-Hwa Yeh
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli 35053, Taiwan;
| | - Jian-Ying Chuang
- The Ph.D. Program for Neural Regenerative Medicine, College of Medical Science and Technology, Taipei Medical University and National Health Research Institutes, Taipei 11031, Taiwan; (W.-L.L.); (T.-I.H.); (W.-B.Y.); (T.-J.K.); (Y.-N.H.)
- TMU Research Center of Neuroscience, Taipei Medical University, Taipei 11031, Taiwan
- TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei 11031, Taiwan
- Cell Physiology and Molecular Image Research Center, Wan Fang Hospital, Taipei Medical University, Taipei 11031, Taiwan
- Correspondence: ; Tel.: +886-2-2736-1661 (ext. 7623)
| |
Collapse
|
26
|
Sabet NS, Atashbar S, Khanlou EM, Kahrizi F, Salimi A. Curcumin attenuates bevacizumab-induced toxicity via suppressing oxidative stress and preventing mitochondrial dysfunction in heart mitochondria. Naunyn Schmiedebergs Arch Pharmacol 2020; 393:1447-1457. [PMID: 32172286 DOI: 10.1007/s00210-020-01853-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 03/06/2020] [Indexed: 12/18/2022]
Abstract
Heart failure was subsequently noted in 2-4% of patients on bevacizumab (BEV). Whereas mitochondria play an important role in myocardial tissue homeostasis, deterioration in mitochondrial function will eventually lead to cardiomyocyte cell death and consequently cardiovascular dysfunction. Therefore, the aim of our study is to search the effects of BEV on isolated rat heart mitochondria and cardiomyocytes, and survey the effect of curcumin as a mitochondrial protective and cardioprotective agent. Rat heart mitochondria and cardiomyocytes were isolated from adult rat heart ventricular. By using biochemical and flow cytometry evaluations, the parameters of mitochondrial toxicity including succinate dehydrogenase (SDH) activity, mitochondrial swelling, mitochondrial membrane potential (MMP) collapse, reactive oxygen species (ROS) formation and lipid peroxidation (LP), and cellular assays such as cytotoxicity and MMP collapse were evaluated. Results revealed that BEV (up to 50 μg/ml) induced a concentration- and time-dependent rise in mitochondrial ROS formation, MMP collapse, mitochondrial swelling, LP, and inhibition of SDH in rat heart mitochondria. Our results showed that curcumin (10-100 μM) significantly ameliorated BEV-induced mitochondrial toxicities. Also, our results in cellular assays confirmed amelioration effect of curcumin against BEV toxicity. These results indicate that the cardiotoxic effects of BEV are associated with mitochondrial dysfunction and ROS formation, which finally ends in MMP collapse and mitochondrial swelling as the "point of no return" in the cascade of events leading to apoptosis. Also, results of this study suggest that probably the combination therapy of BEV and curcumin could decrease mitochondrial effects of this drug.
Collapse
Affiliation(s)
- Nima Shokouhi Sabet
- Department of Pharmacology and Toxicology, School of Pharmacy, Ardabil University of Medical Sciences, P.O. Box: 56189-53141, Ardabil, Iran
| | - Saman Atashbar
- Department of Pharmacology and Toxicology, School of Pharmacy, Ardabil University of Medical Sciences, P.O. Box: 56189-53141, Ardabil, Iran
| | - Elham Mohammad Khanlou
- Department of Pharmacology and Toxicology, School of Pharmacy, Ardabil University of Medical Sciences, P.O. Box: 56189-53141, Ardabil, Iran
| | - Farzad Kahrizi
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Damghan Islamic Azad University, Damghan, Iran
| | - Ahmad Salimi
- Department of Pharmacology and Toxicology, School of Pharmacy, Ardabil University of Medical Sciences, P.O. Box: 56189-53141, Ardabil, Iran.
| |
Collapse
|
27
|
Halim AB. Do We have a Satisfactory Cell Viability Assay? Review of the Currently Commercially-Available Assays. Curr Drug Discov Technol 2020; 17:2-22. [PMID: 30251606 DOI: 10.2174/1570163815666180925095433] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Revised: 09/13/2018] [Accepted: 09/18/2018] [Indexed: 06/08/2023]
Abstract
Cell-based assays are an important part of the drug discovery process and clinical research. One of the main hurdles is to design sufficiently robust assays with adequate signal to noise parameters while maintaining the inherent physiology of the cells and not interfering with the pharmacology of target being investigated. A plethora of assays that assess cell viability (or cell heath in general) are commercially available and can be classified under different categories according to their concepts and principle of reactions. The assays are valuable tools, however, suffer from a large number of limitations. Some of these limitations can be procedural or operational, but others can be critical as those related to a poor concept or the lack of proof of concept of an assay, e.g. those relying on differential permeability of dyes in-and-out of viable versus compromised cell membranes. While the assays can differentiate between dead and live cells, most, if not all, of them can just assess the relative performance of cells rather than providing a clear distinction between healthy and dying cells. The possible impact of relatively high molecular weight dyes, used in most of the assay, on cell viability has not been addressed. More innovative assays are needed, and until better alternatives are developed, setup of current cell-based studies and data interpretation should be made with the limitations in mind. Negative and positive control should be considered whenever feasible. Also, researchers should use more than one orthogonal method for better assessment of cell health.
Collapse
Affiliation(s)
- Abdel-Baset Halim
- VP Translational Medicine, Biomarkers & Diagnostics, Celldex Therapeutics, 53 Frontage Road, Suite 220, Hampton, NJ 08827-4032, United States
| |
Collapse
|
28
|
Chu X, Wu S, Raju R. NLRX1 Regulation Following Acute Mitochondrial Injury. Front Immunol 2019; 10:2431. [PMID: 31736938 PMCID: PMC6830126 DOI: 10.3389/fimmu.2019.02431] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Accepted: 09/30/2019] [Indexed: 12/17/2022] Open
Abstract
Several metabolic, cardiovascular, and neurological disorders are characterized by mitochondrial dysfunction followed by dysregulation of cellular energetics. Mitochondria play an important role in ATP production and cell death regulation. NLRX1, a mitochondria-targeted protein, is known to negatively regulate innate immunity, and cell death responses. However, the role of this protein in cellular homeostasis following mitochondrial injury is not well-understood. To understand the mechanisms underlying the effect of acute injury in regulating NLRX1 signaling pathways, we used an in vitro model of mitochondrial injury wherein, rat pulmonary microvascular endothelial cells were subjected to sodium azide treatment or glucose starvation. Both sodium azide and glucose starvation activated NF-κB and TBK1 associated innate immune response. Moreover, increased TBK1, IKK, IκB, and TRAF6 were recruited to mitochondria and interacted with NLRX1. Depletion of endogenous NLRX1 resulted in exacerbated NF-κB and TBK1 associated innate immune response and apoptosis. Our results suggest that NLRX1 participates in the regulation of innate immune response in mitochondria, and plays an important role in the maintenance of cellular homeostasis following acute mitochondrial injury. We propose that the mitochondrial recruitment of inflammatory mediators and their interaction with NLRX1 are protective responses to maintain cellular homeostasis following injury.
Collapse
Affiliation(s)
- Xiaogang Chu
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Songwei Wu
- Department of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Raghavan Raju
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, GA, United States
| |
Collapse
|
29
|
Lovastatin Enhances Cytotoxicity of Temozolomide via Impairing Autophagic Flux in Glioblastoma Cells. BIOMED RESEARCH INTERNATIONAL 2019; 2019:2710693. [PMID: 31662972 PMCID: PMC6778891 DOI: 10.1155/2019/2710693] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 08/18/2019] [Accepted: 09/01/2019] [Indexed: 12/11/2022]
Abstract
Drug resistance to temozolomide (TMZ) contributes to the majority of tumor recurrence and treatment failure in patients with glioblastoma multiforme (GBM). Autophagy has been reported to play a role in chemoresistance in various types of cancer, including GBM. The anticancer effect of statins is arousing great research interests and has been demonstrated to modulate autophagic function. In this study, we investigated the combinational effects of lovastatin and TMZ on treating U87 and U251 GBM cell lines. Cytotoxicity was measured by MTT and colony formation assays; apoptosis was measured by flow cytometry; the cellular autophagic function was detected by the EGFP-mRFP-LC3 reporter and western blot assay. The results showed that lovastatin might enhance the cytotoxicity of TMZ, increase the TMZ-induced cellular apoptosis, and impair the autophagic flux in GBM cells. Lovastatin triggered autophagy initiation possibly by inhibiting the Akt/mTOR signaling pathway. Moreover, lovastatin might impair the autophagosome-lysosome fusion machinery by suppressing LAMP2 and dynein. These results suggested that lovastatin could enhance the chemotherapy efficacy of TMZ in treating GBM cells. The mechanism may be associated with impaired autophagic flux and thereby the enhancement of cellular apoptosis. Combining TMZ with lovastatin could be a promising strategy for GBM treatment.
Collapse
|
30
|
Chen YS, Liu F, Luo YH, Fan Y, Xu FG, Li P, Zhou B, Pan XY, Wang CC, Cui L. EDNRB isoform 3 confers Temozolomide resistance in A375 melanoma cells by modulating membrane potential, reactive oxygen species and mitochondrial Ca 2. Cancer Manag Res 2019; 11:7353-7367. [PMID: 31496797 PMCID: PMC6689146 DOI: 10.2147/cmar.s208604] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Accepted: 07/10/2019] [Indexed: 12/24/2022] Open
Abstract
Background The role of endothelin receptor type B (EDNRB) isoform 3 involved in Temozolomide (TMZ)-induced melanoma cell death has not yet been elucidated. Methods The subcellular localization of EDNRB isoform 3 was determined by confocal and immunoblotting assays. Silencing EDNRB isoform 3 was performed by CRISPR/Cas9. Apoptosis was assessed by annexin V/propium iodide staining and caspases 3/7/9 activity. Mitochondrial membrane potential, reactive oxygen species and mitochondrial Ca2+ were measured by flow cytometry. Apoptosis protein array was applied. Results Confocal and immunoblot analyses indicate mitochondrial localization of EDNRB isoform 3 and the first N-terminal (1–22) amino acids are sufficient for its mitochondrial targeting. EDNRB isoform 3 depleted A375 cells significantly confers chemoresistance with mitochondrial depolarization, reduced reactive oxygen species, enhanced mitochondrial Ca2+ uptake and decreased caspase 9 activation. Additionally, apoptosis array shows that lack of EDNRB isoform 3 has relatively lower expression of phosphorylation of p53 at S392 and a slightly higher expression of Paraoxonase 2. Conclusion Our findings raise the possibility of targeting EDNRB isoform 3 as a new therapeutic strategy in combination with TMZ for melanoma treatment.
Collapse
Affiliation(s)
- Yun Shan Chen
- Department of Obstetrics and Gynaecology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, Guangdong, People's Republic of China
| | - Fen Liu
- Department of Obstetrics and Gynaecology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, Guangdong, People's Republic of China
| | - Yi Hong Luo
- Department of Obstetrics and Gynaecology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, Guangdong, People's Republic of China
| | - Yue Fan
- Department of Obstetrics and Gynaecology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, Guangdong, People's Republic of China
| | - Fang Gui Xu
- Department of Obstetrics and Gynaecology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, Guangdong, People's Republic of China
| | - Pin Li
- Department of Obstetrics and Gynaecology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, Guangdong, People's Republic of China
| | - Bei Zhou
- Department of Obstetrics and Gynaecology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, Guangdong, People's Republic of China
| | - Xiu Yu Pan
- Department of Obstetrics and Gynaecology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, Guangdong, People's Republic of China
| | - Chi Chiu Wang
- Reproduction and Development Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong.,School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong.,Department of Obstetrics and Gynaecology, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Long Cui
- Department of Obstetrics and Gynaecology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, Guangdong, People's Republic of China.,Department of Obstetrics and Gynaecology, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, Hong Kong
| |
Collapse
|
31
|
Medroxyprogesterone effects on colony growth, autophagy and mitochondria of C6 glioma cells are augmented with tibolone and temozolomide. Clin Neurol Neurosurg 2019; 177:77-85. [DOI: 10.1016/j.clineuro.2018.12.022] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2018] [Revised: 12/07/2018] [Accepted: 12/29/2018] [Indexed: 02/06/2023]
|
32
|
Vu HT, Kobayashi M, Hegazy AM, Tadokoro Y, Ueno M, Kasahara A, Takase Y, Nomura N, Peng H, Ito C, Ino Y, Todo T, Nakada M, Hirao A. Autophagy inhibition synergizes with calcium mobilization to achieve efficient therapy of malignant gliomas. Cancer Sci 2018; 109:2497-2508. [PMID: 29902340 PMCID: PMC6113445 DOI: 10.1111/cas.13695] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Revised: 06/03/2018] [Accepted: 06/08/2018] [Indexed: 01/02/2023] Open
Abstract
Autophagy plays a critical role in tumorigenesis, but how autophagy contributes to cancer cells' responses to chemotherapeutics remains controversial. To investigate the roles of autophagy in malignant gliomas, we used CRISPR/CAS9 to knock out the ATG5 gene, which is essential for autophagosome formation, in tumor cells derived from patients with glioblastoma. While ATG5 disruption inhibited autophagy, it did not change the phenotypes of glioma cells and did not alter their sensitivity to temozolomide, an agent used for glioblastoma patient therapy. Screening of an anticancer drug library identified compounds that showed greater efficacy to ATG5-knockout glioma cells compared to control. While several selected compounds, including nigericin and salinomycin, remarkably induced autophagy, potent autophagy inducers by mTOR inhibition did not exhibit the ATG5-dependent cytoprotective effects. Nigericin in combination with ATG5 deficiency synergistically suppressed spheroid formation by glioma cells in a manner mitigated by Ca2+ chelation or CaMKK inhibition, indicating that, in combination with autophagy inhibition, calcium-mobilizing compounds contribute to efficient anticancer therapeutics. ATG5-knockout cells treated with nigericin showed increased mitochondria-derived reactive oxygen species and apoptosis compared to controls, indicating that autophagy protects glioma cells from mitochondrial reactive oxygen species-mediated damage. Finally, using a patient-derived xenograft model, we demonstrated that chloroquine, a pharmacological autophagy inhibitor, dramatically enhanced the efficacy of compounds selected in this study. Our findings propose a novel therapeutic strategy in which calcium-mobilizing compounds are combined with autophagy inhibitors to treat patients with glioblastoma.
Collapse
Affiliation(s)
- Ha Thi Vu
- Cancer and Stem Cell Research ProgramDivision of Molecular GeneticsCancer Research InstituteKanazawa UniversityKanazawaIshikawaJapan
| | - Masahiko Kobayashi
- Cancer and Stem Cell Research ProgramDivision of Molecular GeneticsCancer Research InstituteKanazawa UniversityKanazawaIshikawaJapan
- WPI Nano Life Science Institute (WPI‐Nano LSI)Kanazawa UniversityKanazawaIshikawaJapan
| | - Ahmed M. Hegazy
- Cancer and Stem Cell Research ProgramDivision of Molecular GeneticsCancer Research InstituteKanazawa UniversityKanazawaIshikawaJapan
| | - Yuko Tadokoro
- Cancer and Stem Cell Research ProgramDivision of Molecular GeneticsCancer Research InstituteKanazawa UniversityKanazawaIshikawaJapan
- WPI Nano Life Science Institute (WPI‐Nano LSI)Kanazawa UniversityKanazawaIshikawaJapan
| | - Masaya Ueno
- Cancer and Stem Cell Research ProgramDivision of Molecular GeneticsCancer Research InstituteKanazawa UniversityKanazawaIshikawaJapan
- WPI Nano Life Science Institute (WPI‐Nano LSI)Kanazawa UniversityKanazawaIshikawaJapan
| | - Atsuko Kasahara
- Cancer and Stem Cell Research ProgramDivision of Molecular GeneticsCancer Research InstituteKanazawa UniversityKanazawaIshikawaJapan
- Institute for Frontier Science InitiativeKanazawa UniversityKanazawaIshikawaJapan
| | - Yusuke Takase
- Cancer and Stem Cell Research ProgramDivision of Molecular GeneticsCancer Research InstituteKanazawa UniversityKanazawaIshikawaJapan
| | - Naho Nomura
- Cancer and Stem Cell Research ProgramDivision of Molecular GeneticsCancer Research InstituteKanazawa UniversityKanazawaIshikawaJapan
| | - Hui Peng
- Cancer and Stem Cell Research ProgramDivision of Molecular GeneticsCancer Research InstituteKanazawa UniversityKanazawaIshikawaJapan
| | - Chiaki Ito
- Cancer and Stem Cell Research ProgramDivision of Molecular GeneticsCancer Research InstituteKanazawa UniversityKanazawaIshikawaJapan
| | - Yasushi Ino
- Division of Innovative Cancer TherapyInstitute of Medical ScienceUniversity of TokyoTokyoJapan
| | - Tomoki Todo
- Division of Innovative Cancer TherapyInstitute of Medical ScienceUniversity of TokyoTokyoJapan
| | - Mitsutoshi Nakada
- Department of NeurosurgeryGraduate School of Medical ScienceKanazawa UniversityKanazawaIshikawaJapan
| | - Atsushi Hirao
- Cancer and Stem Cell Research ProgramDivision of Molecular GeneticsCancer Research InstituteKanazawa UniversityKanazawaIshikawaJapan
- WPI Nano Life Science Institute (WPI‐Nano LSI)Kanazawa UniversityKanazawaIshikawaJapan
| |
Collapse
|
33
|
Li H, Chen L, Li JJ, Zhou Q, Huang A, Liu WW, Wang K, Gao L, Qi ST, Lu YT. miR-519a enhances chemosensitivity and promotes autophagy in glioblastoma by targeting STAT3/Bcl2 signaling pathway. J Hematol Oncol 2018; 11:70. [PMID: 29843746 PMCID: PMC5975545 DOI: 10.1186/s13045-018-0618-0] [Citation(s) in RCA: 148] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 05/14/2018] [Indexed: 01/01/2023] Open
Abstract
Background Chemoresistance to temozolomide (TMZ) is a major challenge in the treatment of glioblastoma (GBM). We previously found that miR-519a functions as a tumor suppressor in glioma by targeting the signal transducer and activator of transcription 3 (STAT3)-mediated autophagy oncogenic pathway. Here, we investigated the effects of miR-519a on TMZ chemosensitivity and autophagy in GBM cells. Furthermore, the underlying molecular mechanisms and signaling pathways were explored. Methods In the present study, two stable TMZ-resistant GBM cell lines were successfully generated by exposure of parental cells to a gradually increasing TMZ concentration. After transfecting U87-MG/TMZ and U87-MG cells with miR-519a mimic or inhibitor, a series of biochemical assays such as MTT, apoptosis, and colony formation were performed to determine the chemosensitive response to TMZ. The autophagy levels in GBM cells were detected by transmission electron microscopy, LC3B protein immunofluorescence, and Western blotting analysis. Stable knockdown and overexpression of miR-519a in GBM cells were established using lentivirus. A xenograft nude mouse model and in situ brain model were used to examine the in vivo effects of miR-519a. Tumor tissue samples were collected from 48 patients with GBM and were used to assess the relationship between miR-519a and STAT3 expression. Results TMZ treatment significantly upregulated miR-519a in U87-MG cells but not in U87-MG/TMZ cells. Moreover, the expression of miR-519a and baseline autophagy levels was lower in U87-MG/TMZ cells as compared to U87-MG cells. miR-519a dramatically enhanced TMZ-induced autophagy and apoptotic cell death in U87-MG/TMZ cells, while inhibition of miR-519a promoted TMZ resistance and reduced TMZ-induced autophagy in U87-MG cells. Furthermore, miR-519a induced autophagy through modification of STAT3 expression. The in vivo results showed that miR-519a can enhance apoptosis and sensitized GBM to TMZ treatment by promoting autophagy and targeting the STAT3/Bcl-2/Beclin-1 pathway. In human GBM tissues, we found an inverse correlation between miR-519a and STAT3 expression. Conclusions Our results suggested that miR-519a increased the sensitivity of GBM cells to TMZ therapy. The positive effects of miR-519a may be mediated through autophagy. In addition, miR-519a overexpression can induce autophagy by inhibiting STAT3/Bcl-2 pathway. Therefore, a combination of miR-519a and TMZ may represent an effective therapeutic strategy in GBM. Electronic supplementary material The online version of this article (10.1186/s13045-018-0618-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Hong Li
- Department of Neurosurgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, People's Republic of China
| | - Lei Chen
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong Province, People's Republic of China
| | - Jun-Jie Li
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong Province, People's Republic of China
| | - Qiang Zhou
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong Province, People's Republic of China
| | - Annie Huang
- Brain Tumor Research Center, The Hospital for Sick Children, Toronto, Canada
| | - Wei-Wen Liu
- Department of Plastic and Aesthetic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong Province, People's Republic of China
| | - Ke Wang
- Department of Neurosurgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, People's Republic of China
| | - Liang Gao
- Department of Neurosurgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, People's Republic of China
| | - Song-Tao Qi
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong Province, People's Republic of China.,Nanfang Neurology Research Institution, Nanfang Hospital, Guangzhou, 510515, Guangdong Province, People's Republic of China.,Nanfang Glioma Center, Guangzhou, 510515, Guangdong Province, People's Republic of China
| | - Yun-Tao Lu
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong Province, People's Republic of China. .,Nanfang Neurology Research Institution, Nanfang Hospital, Guangzhou, 510515, Guangdong Province, People's Republic of China. .,Nanfang Glioma Center, Guangzhou, 510515, Guangdong Province, People's Republic of China.
| |
Collapse
|
34
|
Chu CW, Yang MC, Chou CH, Huang WS, Hsiao BX, Wang YT, Chiou SJ, Loh JK, Hong YR. GSK3β‑mediated Ser156 phosphorylation modulates a BH3‑like domain in BCL2L12 during TMZ‑induced apoptosis and autophagy in glioma cells. Int J Mol Med 2018; 42:905-918. [PMID: 29749471 PMCID: PMC6034918 DOI: 10.3892/ijmm.2018.3672] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Accepted: 05/10/2018] [Indexed: 01/06/2023] Open
Abstract
BH3 domains, classified initially as BCL2 homology domains, participate in both apoptosis and autophagy. Beclin-1 contains a BH3 domain, which is required for binding to antiapoptotic BCL2 homologs and BCL2-mediated inhibition of autophagy. BCL2-like 12 (BCL2L12) also harbors a BH3-like domain, which is 12 residues long and contains a LXXXAE/D motif. In a yeast two-hybrid system performed in the present study, BCL2L12 shared similar binding partnerships to antiapoptotic BCL2 homologs, such as Beclin-1. In addition, this BH3-like domain was involved in antiapoptosis and drug-induced autophagy in glioma cell lines. Mutations in S156 and hydrophobic L213 to alanine counteracted the antiapoptotic properties of BCL2L12 and downregulated the activation of microtubule associated protein 1 light chain 3B (LC3B), autophagy-related (ATG)12-ATG5 conjugates and Beclin-1, compared with a BCL2L12 wild-type group. Molecular dynamics simulations revealed that phosphorylation at Ser156 of BCL2L12 (within α-6 and α-7 helices) influenced the BH3-like domain conformation (α-9 helix), indicating that glycogen synthase kinase (GSK) 3β-mediated Ser156 phosphorylation modulated a BH3-like domain in BCL2L12. Altogether, the present findings indicated that BCL2L12 may participate in anti-apoptosis and autophagy via a BH3-like domain and GSK3β-mediated phosphorylation at Ser156. Furthermore, blockade of temozolomide (TMZ)-induced autophagy by 3-methyladenine (3-MA) resulted in enhanced activation of apoptotic markers, as well as tumor suppresor protein p53 (p53) expression in U87MG cells. The present results suggested that p53 and O6-methylguanine DNA methyltransferase activation, and BCL2, BCL-extra large, Beclin-1 and BCL2L12 expression may be used as a detection panel to determine which patients can benefit from TMZ and ABT-737 combination treatment.
Collapse
Affiliation(s)
- Cheng-Wei Chu
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan, R.O.C
| | - Ming-Chang Yang
- Laboratories of Medical Research, Center for Education and Faculty Development, Kaohsiung Armed Forces General Hospital, Kaohsiung 80284, Taiwan, R.O.C
| | - Chia-Hua Chou
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan, R.O.C
| | - Wen-Sheng Huang
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan, R.O.C
| | - Bo-Xiu Hsiao
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan, R.O.C
| | - Yeng-Tseng Wang
- Department of Biochemistry, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan, R.O.C
| | - Shean-Jaw Chiou
- Department of Biochemistry, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan, R.O.C
| | - Joon-Khim Loh
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan, R.O.C
| | - Yi-Ren Hong
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan, R.O.C
| |
Collapse
|
35
|
Zhang J, Liu L, Xue Y, Ma Y, Liu X, Li Z, Li Z, Liu Y. Endothelial Monocyte-Activating Polypeptide-II Induces BNIP3-Mediated Mitophagy to Enhance Temozolomide Cytotoxicity of Glioma Stem Cells via Down-Regulating MiR-24-3p. Front Mol Neurosci 2018; 11:92. [PMID: 29632473 PMCID: PMC5879952 DOI: 10.3389/fnmol.2018.00092] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Accepted: 03/08/2018] [Indexed: 01/06/2023] Open
Abstract
Preliminary studies have shown that endothelial-monocyte-activating polypeptide-II (EMAP-II) and temozolomide (TMZ) alone can exert cytotoxic effects on glioma cells. This study explored whether EMAP-II can enhance the cytotoxic effects of TMZ on glioma stem cells (GSCs) and the possible mechanisms associated with Bcl-2/adenovirus E1B 19 kDa protein-interacting protein 3 (BNIP3)-mediated mitophagy facilitated by miR-24-3p regulation. The combination of TMZ and EMAP-II significantly inhibited GSCs viability, migration, and invasion, resulting in upregulation of the autophagy biomarker microtubule-associated protein one light chain 3 (LC3)-II/I but down-regulation of the proteins P62, TOMM 20 and CYPD, changes indicative of the occurrence of mitophagy. BNIP3 expression increased significantly in GSCs after treatment with the combination of TMZ and EMAP-II. BNIP3 overexpression strengthened the cytotoxic effects of EMAP-II and TMZ by inducing mitophagy. The combination of EMAP-II and TMZ decreased the expression of miR-24-3p, whose target gene was BNIP3. MiR-24-3p inhibited mitophagy and promoted proliferation, migration and invasion by down-regulating BNIP3 in GSCs. Furthermore, nude mice subjected to miR-24-3p silencing combined with EMAP-II and TMZ treatment displayed the smallest tumors and the longest survival rate. According to the above results, we concluded that EMAP-II enhanced the cytotoxic effects of TMZ on GSCs' proliferation, migration and invasion both in vitro and in vivo.
Collapse
Affiliation(s)
- Jian Zhang
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, China.,Liaoning Research Center for Translational Medicine in Nervous System Disease, Shenyang, China
| | - Libo Liu
- Department of Neurobiology, College of Basic Medicine, China Medical University, Shenyang, China.,Key Laboratory of Cell Biology, Ministry of Public Health of China, and Key Laboratory of Medical Cell Biology, Ministry of Education of China, Shenyang, China
| | - Yixue Xue
- Department of Neurobiology, College of Basic Medicine, China Medical University, Shenyang, China.,Key Laboratory of Cell Biology, Ministry of Public Health of China, and Key Laboratory of Medical Cell Biology, Ministry of Education of China, Shenyang, China
| | - Yawen Ma
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, China.,Liaoning Research Center for Translational Medicine in Nervous System Disease, Shenyang, China
| | - Xiaobai Liu
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, China.,Liaoning Research Center for Translational Medicine in Nervous System Disease, Shenyang, China
| | - Zhen Li
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, China.,Liaoning Research Center for Translational Medicine in Nervous System Disease, Shenyang, China
| | - Zhiqing Li
- Department of Neurobiology, College of Basic Medicine, China Medical University, Shenyang, China.,Key Laboratory of Cell Biology, Ministry of Public Health of China, and Key Laboratory of Medical Cell Biology, Ministry of Education of China, Shenyang, China
| | - Yunhui Liu
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, China.,Liaoning Research Center for Translational Medicine in Nervous System Disease, Shenyang, China
| |
Collapse
|
36
|
Predicting the cell death responsiveness and sensitization of glioma cells to TRAIL and temozolomide. Oncotarget 2018; 7:61295-61311. [PMID: 27494880 PMCID: PMC5308652 DOI: 10.18632/oncotarget.10973] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Accepted: 07/18/2016] [Indexed: 12/28/2022] Open
Abstract
Genotoxic chemotherapy with temozolomide (TMZ) is a mainstay of treatment for glioblastoma (GBM); however, at best, TMZ provides only modest survival benefit to a subset of patients. Recent insight into the heterogeneous nature of GBM suggests a more personalized approach to treatment may be necessary to overcome cancer drug resistance and improve patient care. These include novel therapies that can be used both alone and with TMZ to selectively reactivate apoptosis within malignant cells. For this approach to work, reliable molecular signatures that can accurately predict treatment responsiveness need to be identified first. Here, we describe the first proof-of-principle study that merges quantitative protein-based analysis of apoptosis signaling networks with data- and knowledge-driven mathematical systems modeling to predict treatment responsiveness of GBM cell lines to various apoptosis-inducing stimuli. These include monotherapies with TMZ and TRAIL, which activate the intrinsic and extrinsic apoptosis pathways, respectively, as well as combination therapies of TMZ+TRAIL. We also successfully employed this approach to predict whether individual GBM cell lines could be sensitized to TMZ or TRAIL via the selective targeting of Bcl-2/Bcl-xL proteins with ABT-737. Our findings suggest that systems biology-based approaches could assist in personalizing treatment decisions in GBM to optimize cell death induction.
Collapse
|
37
|
Rosa P, Catacuzzeno L, Sforna L, Mangino G, Carlomagno S, Mincione G, Petrozza V, Ragona G, Franciolini F, Calogero A. BK channels blockage inhibits hypoxia-induced migration and chemoresistance to cisplatin in human glioblastoma cells. J Cell Physiol 2018; 233:6866-6877. [PMID: 29319175 DOI: 10.1002/jcp.26448] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Accepted: 01/05/2018] [Indexed: 12/25/2022]
Abstract
Glioblastoma (GBM) cells express large-conductance, calcium-activated potassium (BK) channels, whose activity is important for several critical aspects of the tumor, such as migration/invasion and cell death. GBMs are also characterized by a heavy hypoxic microenvironment that exacerbates tumor aggressiveness. Since hypoxia modulates the activity of BK channels in many tissues, we hypothesized that a hypoxia-induced modulation of these channels may contribute to the hypoxia-induced GBM aggressiveness. In U87-MG cells, hypoxia induced a functional upregulation of BK channel activity, without interfering with their plasma membrane expression. Wound healing and transwell migration assays showed that hypoxia increased the migratory ability of U87-MG cells, an effect that could be prevented by BK channel inhibition. Toxicological experiments showed that hypoxia was able to induce chemoresistance to cisplatin in U87-MG cells and that the inhibition of BK channels prevented the hypoxia-induced chemoresistance. Clonogenic assays showed that BK channels are also used to increase the clonogenic ability of U87-MG GBM cells in presence, but not in absence, of cisplatin. BK channels were also found to be essential for the hypoxia-induced de-differentiation of GBM cells. Finally, using immunohistochemical analysis, we highlighted the presence of BK channels in hypoxic areas of human GBM tissues, suggesting that our findings may have physiopathological relevance in vivo. In conclusion, our data show that BK channels promote several aspects of the aggressive potential of GBM cells induced by hypoxia, such as migration and chemoresistance to cisplatin, suggesting it as a potential therapeutic target in the treatment of GBM.
Collapse
Affiliation(s)
- Paolo Rosa
- Department of Medical-Surgical Sciences and Biotechnologies, University of Rome "Sapienza", Polo Pontino, Latina, Italy
| | - Luigi Catacuzzeno
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Perugia, Italy
| | - Luigi Sforna
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Perugia, Italy
| | - Giorgio Mangino
- Department of Medical-Surgical Sciences and Biotechnologies, University of Rome "Sapienza", Polo Pontino, Latina, Italy
| | - Silvia Carlomagno
- Department of Medical-Surgical Sciences and Biotechnologies, University of Rome "Sapienza", Polo Pontino, Latina, Italy
| | - Gabriella Mincione
- Department of Medical, Oral and Biotechnological Sciences, University "G. d'Annunzio" Chieti-Pescara, Italy
| | - Vincenzo Petrozza
- Department of Medical-Surgical Sciences and Biotechnologies, University of Rome "Sapienza", Polo Pontino, Latina, Italy.,Istituto Chirurgico Ortopedico Traumatologico, ICOT, Latina, Italy
| | - Giuseppe Ragona
- Istituto Chirurgico Ortopedico Traumatologico, ICOT, Latina, Italy.,Department of Experimental Medicine, University of Rome "Sapienza", Rome, Italy
| | - Fabio Franciolini
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Perugia, Italy
| | - Antonella Calogero
- Department of Medical-Surgical Sciences and Biotechnologies, University of Rome "Sapienza", Polo Pontino, Latina, Italy.,Istituto Chirurgico Ortopedico Traumatologico, ICOT, Latina, Italy
| |
Collapse
|
38
|
Robke L, Futamura Y, Konstantinidis G, Wilke J, Aono H, Mahmoud Z, Watanabe N, Wu YW, Osada H, Laraia L, Waldmann H. Discovery of the novel autophagy inhibitor aumitin that targets mitochondrial complex I. Chem Sci 2018; 9:3014-3022. [PMID: 29732085 PMCID: PMC5916016 DOI: 10.1039/c7sc05040b] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Accepted: 02/20/2018] [Indexed: 12/14/2022] Open
Abstract
Macroautophagy is a conserved eukaryotic process for degradation of cellular components in response to lack of nutrients. It is involved in the development of diseases, notably cancer and neurological disorders including Parkinson's disease. Small molecule autophagy modulators have proven to be valuable tools to dissect and interrogate this crucial metabolic pathway and are in high demand. Phenotypic screening for autophagy inhibitors led to the discovery of the novel autophagy inhibitor aumitin. Target identification and confirmation revealed that aumitin inhibits mitochondrial respiration by targeting complex I. We show that inhibition of autophagy by impairment of mitochondrial respiration is general for several mitochondrial inhibitors that target different mitochondrial complexes. Our findings highlight the importance of mitochondrial respiration for autophagy regulation.
Collapse
Affiliation(s)
- Lucas Robke
- Max-Planck-Institute of Molecular Physiology , Department of Chemical Biology , Otto-Hahn-Str. 11 , 44227 Dortmund , Germany
- Faculty of Chemistry and Chemical Biology , TU Dortmund University , Otto-Hahn-Str. 4a , 44227 Dortmund , Germany .
- RIKEN-Max Planck Joint Research Division for Systems Chemical Biology , RIKEN CSRS , 2-1, Hirosawa, Wako , Saitama 351-0198 , Japan
| | - Yushi Futamura
- Chemical Biology Research Group , RIKEN CSRS , 2-1, Hirosawa, Wako , Saitama 351-0198 , Japan
| | - Georgios Konstantinidis
- Chemical Genomics Centre of the Max-Planck-Society , Otto-Hahn-Str. 15 , 44227 Dortmund , Germany
| | - Julian Wilke
- Max-Planck-Institute of Molecular Physiology , Department of Chemical Biology , Otto-Hahn-Str. 11 , 44227 Dortmund , Germany
- Faculty of Chemistry and Chemical Biology , TU Dortmund University , Otto-Hahn-Str. 4a , 44227 Dortmund , Germany .
| | - Harumi Aono
- Chemical Biology Research Group , RIKEN CSRS , 2-1, Hirosawa, Wako , Saitama 351-0198 , Japan
| | - Zhwan Mahmoud
- Faculty of Chemistry and Chemical Biology , TU Dortmund University , Otto-Hahn-Str. 4a , 44227 Dortmund , Germany .
| | - Nobumoto Watanabe
- RIKEN-Max Planck Joint Research Division for Systems Chemical Biology , RIKEN CSRS , 2-1, Hirosawa, Wako , Saitama 351-0198 , Japan
- Bio-Active Compounds Discovery Research Unit , RIKEN CSRS , 2-1, Hirosawa, Wako , Saitama 351-0198 , Japan
| | - Yao-Wen Wu
- Chemical Genomics Centre of the Max-Planck-Society , Otto-Hahn-Str. 15 , 44227 Dortmund , Germany
| | - Hiroyuki Osada
- RIKEN-Max Planck Joint Research Division for Systems Chemical Biology , RIKEN CSRS , 2-1, Hirosawa, Wako , Saitama 351-0198 , Japan
- Chemical Biology Research Group , RIKEN CSRS , 2-1, Hirosawa, Wako , Saitama 351-0198 , Japan
| | - Luca Laraia
- Max-Planck-Institute of Molecular Physiology , Department of Chemical Biology , Otto-Hahn-Str. 11 , 44227 Dortmund , Germany
| | - Herbert Waldmann
- Max-Planck-Institute of Molecular Physiology , Department of Chemical Biology , Otto-Hahn-Str. 11 , 44227 Dortmund , Germany
- Faculty of Chemistry and Chemical Biology , TU Dortmund University , Otto-Hahn-Str. 4a , 44227 Dortmund , Germany .
| |
Collapse
|
39
|
Wang R, Wei J, Zhang S, Wu X, Guo J, Liu M, Du K, Xu J, Peng L, Lv Z, You W, Xiong Y, Fu Z. Peroxiredoxin 2 is essential for maintaining cancer stem cell-like phenotype through activation of Hedgehog signaling pathway in colon cancer. Oncotarget 2018; 7:86816-86828. [PMID: 27894099 PMCID: PMC5349956 DOI: 10.18632/oncotarget.13559] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Accepted: 11/11/2016] [Indexed: 12/12/2022] Open
Abstract
Cancer stem cells (CSCs) are a key target for reducing tumor growth, metastasis, and recurrence. Redox status is a critical factor in the maintenance of CSCs, and the antioxidant enzyme Peroxiredoxin 2 (Prdx2) plays an important role in the development of colon cancer. Therefore, we investigated the contribution of Prdx2 to the maintenance of stemness of colon CSCs. Here, we used short-hairpin RNAs and a Prdx2-overexpression vector to determine the effects of Prdx2. We demonstrated that knockdown of Prdx2 reduced the self-renewal and sphere formation and resulted in increased 5-FU-induced apoptosis in human colon CSCs. Prdx2 overexpression induced reversion of the self-renewal and sphere formation. Furthermore, the effects of Prdx2 resulted in an altered expression of stemness associated with the Hh/Gli1 signaling pathway. Finally, knockdown of Prdx2 in CD133+ cells reduced the volume of xenograft tumors in BALB/c-nu mice. Taken together, colon CSCs overexpress Prdx2, which promotes their stem cell properties via the Hh/Gli1 signaling pathway. The results suggest that Prdx2 may be an effective therapeutic target for the elimination of CSCs in colorectal cancer.
Collapse
Affiliation(s)
- Rong Wang
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Chongqing Medical University, Chongqing 400016, China
| | - Jinlai Wei
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Chongqing Medical University, Chongqing 400016, China
| | - Shouru Zhang
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Chongqing Medical University, Chongqing 400016, China
| | - Xingye Wu
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Chongqing Medical University, Chongqing 400016, China
| | - Jinbao Guo
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Chongqing Medical University, Chongqing 400016, China
| | - Maoxi Liu
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Chongqing Medical University, Chongqing 400016, China
| | - Kunli Du
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Chongqing Medical University, Chongqing 400016, China
| | - Jun Xu
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Chongqing Medical University, Chongqing 400016, China
| | - Linglong Peng
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Chongqing Medical University, Chongqing 400016, China
| | - Zhenbing Lv
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Chongqing Medical University, Chongqing 400016, China
| | - Wenxian You
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Chongqing Medical University, Chongqing 400016, China
| | - Yongfu Xiong
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Chongqing Medical University, Chongqing 400016, China
| | - Zhongxue Fu
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Chongqing Medical University, Chongqing 400016, China
| |
Collapse
|
40
|
Garza-Morales R, Yaddanapudi K, Perez-Hernandez R, Riedinger E, McMasters KM, Shirwan H, Yolcu E, Montes de Oca-Luna R, Gomez-Gutierrez JG. Temozolomide renders murine cancer cells susceptible to oncolytic adenovirus replication and oncolysis. Cancer Biol Ther 2018; 19:188-197. [PMID: 29252087 PMCID: PMC5836815 DOI: 10.1080/15384047.2017.1416274] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Revised: 12/07/2017] [Accepted: 12/07/2017] [Indexed: 12/25/2022] Open
Abstract
The preclinical evaluation of oncolytic adenoviruses (OAds) has been limited to cancer xenograft mouse models because OAds replicate poorly in murine cancer cells. The alkylating agent temozolomide (TMZ) has been shown to enhance oncolytic virotherapy in human cancer cells; therefore, we investigated whether TMZ could increase OAd replication and oncolysis in murine cancer cells. To test our hypothesis, three murine cancer cells were infected with OAd (E1b-deleted) alone or in combination with TMZ. TMZ increased OAd-mediated oncolysis in all three murine cancer cells tested. This increased oncolysis was, at least in part, due to productive virus replication, apoptosis, and autophagy induction. Most importantly, murine lung non-cancerous cells were not affected by OAd+TMZ. Moreover, TMZ increased Ad transduction efficiency. However, TMZ did not increase coxsackievirus and adenovirus receptor; therefore, other mechanism could be implicated on the transduction efficiency. These results showed, for the first time, that TMZ could render murine tumor cells more susceptible to oncolytic virotherapy. The proposed combination of OAds with TMZ presents an attractive approach towards the evaluation of OAd potency and safety in syngeneic mouse models using these murine cancer cell-lines in vivo.
Collapse
Affiliation(s)
- Rodolfo Garza-Morales
- The Hiram C. Polk Jr, MD, Department of Surgery, University of Louisville School of Medicine, Louisville, KY, USA
- Department of Histology, School of Medicine, Autonomous University of Nuevo León, Monterrey, N.L. México
| | - Kavitha Yaddanapudi
- James Graham Brown Cancer Center, University of Louisville School of Medicine, Louisville, KY, USA
| | - Rigoberto Perez-Hernandez
- The Hiram C. Polk Jr, MD, Department of Surgery, University of Louisville School of Medicine, Louisville, KY, USA
| | - Eric Riedinger
- The Hiram C. Polk Jr, MD, Department of Surgery, University of Louisville School of Medicine, Louisville, KY, USA
| | - Kelly M. McMasters
- The Hiram C. Polk Jr, MD, Department of Surgery, University of Louisville School of Medicine, Louisville, KY, USA
- James Graham Brown Cancer Center, University of Louisville School of Medicine, Louisville, KY, USA
| | - Haval Shirwan
- Department of Microbiology and Immunology, Institute for Cellular Therapeutics, University of Louisville, Louisville, KY, USA
| | - Esma Yolcu
- Department of Microbiology and Immunology, Institute for Cellular Therapeutics, University of Louisville, Louisville, KY, USA
| | - Roberto Montes de Oca-Luna
- Department of Histology, School of Medicine, Autonomous University of Nuevo León, Monterrey, N.L. México
| | - Jorge G. Gomez-Gutierrez
- The Hiram C. Polk Jr, MD, Department of Surgery, University of Louisville School of Medicine, Louisville, KY, USA
- James Graham Brown Cancer Center, University of Louisville School of Medicine, Louisville, KY, USA
| |
Collapse
|
41
|
Stojcheva N, Schechtmann G, Sass S, Roth P, Florea AM, Stefanski A, Stühler K, Wolter M, Müller NS, Theis FJ, Weller M, Reifenberger G, Happold C. MicroRNA-138 promotes acquired alkylator resistance in glioblastoma by targeting the Bcl-2-interacting mediator BIM. Oncotarget 2017; 7:12937-50. [PMID: 26887050 PMCID: PMC4914333 DOI: 10.18632/oncotarget.7346] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Accepted: 01/26/2016] [Indexed: 11/25/2022] Open
Abstract
Glioblastoma is the most aggressive brain tumor in adults with a median survival below 12 months in population-based studies. The main reason for tumor recurrence and progression is constitutive or acquired resistance to the standard of care of surgical resection followed by radiotherapy with concomitant and adjuvant temozolomide (TMZ/RT→TMZ). Here, we investigated the role of microRNA (miRNA) alterations as mediators of alkylator resistance in glioblastoma cells. Using microarray-based miRNA expression profiling of parental and TMZ-resistant cultures of three human glioma cell lines, we identified a set of differentially expressed miRNA candidates. From these, we selected miR-138 for further functional analyses as this miRNA was not only upregulated in TMZ-resistant versus parental cells, but also showed increased expression in vivo in recurrent glioblastoma tissue samples after TMZ/RT→TMZ treatment. Transient transfection of miR-138 mimics in glioma cells with low basal miR-138 expression increased glioma cell proliferation. Moreover, miR-138 overexpression increased TMZ resistance in long-term glioblastoma cell lines and glioma initiating cell cultures. The apoptosis regulator BIM was identified as a direct target of miR-138, and its silencing mediated the induced TMZ resistance phenotype. Altered sensitivity to apoptosis played only a minor role in this resistance mechanism. Instead, we identified the induction of autophagy to be regulated downstream of the miR-138/BIM axis and to promote cell survival following TMZ exposure. Our data thus define miR-138 as a glioblastoma cell survival-promoting miRNA associated with resistance to TMZ therapy in vitro and with tumor progression in vivo.
Collapse
Affiliation(s)
- Nina Stojcheva
- Laboratory of Molecular Neuro-Oncology, Department of Neurology, University Hospital and University of Zurich, Zurich, Switzerland.,Neuroscience Center Zurich, University of Zurich, Zurich, Switzerland
| | - Gennadi Schechtmann
- Department of Neuropathology, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Steffen Sass
- Institute of Computational Biology, Helmholtz Center Munich, German Research Center for Environmental Health, Neuherberg, Germany
| | - Patrick Roth
- Laboratory of Molecular Neuro-Oncology, Department of Neurology, University Hospital and University of Zurich, Zurich, Switzerland.,Neuroscience Center Zurich, University of Zurich, Zurich, Switzerland
| | - Ana-Maria Florea
- Department of Neuropathology, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Anja Stefanski
- Molecular Proteomics Laboratory, Biological and Medical Research Center (BMFZ), Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Kai Stühler
- Molecular Proteomics Laboratory, Biological and Medical Research Center (BMFZ), Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Marietta Wolter
- Department of Neuropathology, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Nikola S Müller
- Institute of Computational Biology, Helmholtz Center Munich, German Research Center for Environmental Health, Neuherberg, Germany
| | - Fabian J Theis
- Institute of Computational Biology, Helmholtz Center Munich, German Research Center for Environmental Health, Neuherberg, Germany.,Department of Mathematics, Technische Universität München, Garching, Germany
| | - Michael Weller
- Laboratory of Molecular Neuro-Oncology, Department of Neurology, University Hospital and University of Zurich, Zurich, Switzerland.,Neuroscience Center Zurich, University of Zurich, Zurich, Switzerland
| | - Guido Reifenberger
- Department of Neuropathology, Heinrich Heine University Düsseldorf, Düsseldorf, Germany.,German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ) Heidelberg, partner site Essen/Düsseldorf, Germany
| | - Caroline Happold
- Laboratory of Molecular Neuro-Oncology, Department of Neurology, University Hospital and University of Zurich, Zurich, Switzerland.,Neuroscience Center Zurich, University of Zurich, Zurich, Switzerland
| |
Collapse
|
42
|
Al-Keilani MS, Al-Sawalha NA. Potential of Phenylbutyrate as Adjuvant Chemotherapy: An Overview of Cellular and Molecular Anticancer Mechanisms. Chem Res Toxicol 2017; 30:1767-1777. [DOI: 10.1021/acs.chemrestox.7b00149] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Maha S. Al-Keilani
- Jordan University of Science and Technology, College
of Pharmacy, Department of Clinical Pharmacy, P.O. Box 3030, Irbid 22110, Jordan
| | - Nour A. Al-Sawalha
- Jordan University of Science and Technology, College
of Pharmacy, Department of Clinical Pharmacy, P.O. Box 3030, Irbid 22110, Jordan
| |
Collapse
|
43
|
Chemical chaperone, TUDCA unlike PBA, mitigates protein aggregation efficiently and resists ER and non-ER stress induced HepG2 cell death. Sci Rep 2017. [PMID: 28630443 PMCID: PMC5476595 DOI: 10.1038/s41598-017-03940-1] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Stress induced BSA (bovine serum albumin) protein aggregation is effectively mitigated in vitro by TUDCA (tauroursodeoxycholic acid) than by PBA (4- phenylbutyric acid), chemical chaperones approved by FDA for the treatment of biliary cirrhosis and urea cycle disorders respectively. TUDCA, unlike PBA, enhances trypsin mediated digestion of BSA. TUDCA activates PERK, an ER-resident kinase that phosphorylates the alpha-subunit of eukaryotic initiation factor2 (eIF2α) and promotes the expression of activated transcription factor 4 (ATF4) in HepG2 cells. In contrast, PBA induced eIF2α phosphorylation is not mediated by PERK activation and results in low ATF4 expression. Neither chaperones promote expression of BiP, an ER chaperone, and CHOP (C/EBP homologous protein), downstream target of eIF2α-ATF4 pathway. Both chaperones mitigate tunicamycin induced PERK-eIF2α-ATF4-CHOP arm of UPR and expression of BiP. TUDCA, unlike PBA does not decrease cell viability and it also mitigates tunicamycin, UV-irradiation and PBA induced PARP (poly ADP-ribose polymerase) cleavage and cell death. These findings therefore suggest that TUDCA’s antiapoptotic activity to protect HepG2 cells and PBA’s activity that limits tumor cell progression may be important while considering their therapeutic potential.
Collapse
|
44
|
MiR-125a regulates mitochondrial homeostasis through targeting mitofusin 1 to control hypoxic pulmonary vascular remodeling. J Mol Med (Berl) 2017; 95:977-993. [PMID: 28593577 DOI: 10.1007/s00109-017-1541-5] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Revised: 03/14/2017] [Accepted: 04/28/2017] [Indexed: 10/19/2022]
Abstract
Abnormal pulmonary arterial smooth muscle cells (PASMCs) proliferation is an important pathological process in hypoxic pulmonary arterial hypertension. Mitochondrial dynamics and quality control have a central role in the maintenance of the cell proliferation-apoptosis balance. However, the molecular mechanism is still unknown. We used hypoxic animal models, cell biology, and molecular biology to determine the effect of mitofusin 1 (Mfn1) on hypoxia-mediated PASMCs mitochondrial homeostasis. We found that Mfn1 expression was increased in hypoxia, which was crucial for hypoxia-induced mitochondrial dysfunction and smooth muscle cell proliferation as well as hypoxia-stimulated cell-cycle transition from the G0/G1 phase to S phase. Subsequently, we studied the role of microRNAs in mitochondrial function associated with PASMC proliferation under hypoxic conditions. The promotive effect of Mfn1 on pulmonary vascular remodeling was alleviated in the presence of miR-125a agomir, and miR-125a antagomir mimicked the hypoxic damage effects to mitochondrial homeostasis. Moreover, in vivo and in vitro treatment with miR-125a agomir protected the pulmonary vessels from mitochondrial dysfunction and abnormal remodeling. In the present study, we determined that mitochondrial homeostasis, particularly Mfn1, played an important role in PASMCs proliferation. MiR-125a, an important underlying factor, which inhibited Mfn1 expression and decreased PASMCs disordered growth during hypoxia. These results provide a theoretical basis for the prevention and treatment of pulmonary vascular remodeling. KEY MESSAGES Hypoxia leads to upregulation of mitofusin 1 (Mfn1) both in vivo and in vitro. Mfn1 is involved in hypoxia-induced PASMCs proliferation. Mfn1-mediated mitochondrial homeostasis is regulated by miR-125a. MiR-125a plays a role in PASMCs oxidative phosphorylation and glycolysis.
Collapse
|
45
|
Rutin increases the cytotoxicity of temozolomide in glioblastoma via autophagy inhibition. J Neurooncol 2017; 132:393-400. [PMID: 28293765 DOI: 10.1007/s11060-017-2387-y] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Accepted: 02/23/2017] [Indexed: 12/18/2022]
Abstract
The chemotherapeutic agent temozolomide (TMZ) is widely used in the treatment of glioblastoma multiforme (GBM). Rutin, a citrus flavonoid ecglycoside found in edible plants, has neuroprotective and anticancer activities. This study aimed to investigate the efficacy and the underlying mechanisms of rutin used in combination with TMZ in GBM. In vitro cell viability assay demonstrated that rutin alone had generally low cytotoxic effect, but it enhanced the efficacy of TMZ in a dose-dependent manner. Subcutaneous and orthotopic xenograft studies also showed that tumor volumes were significantly lower in mice receiving combined TMZ/Rutin treatment as compared to TMZ or rutin alone treatment. Moreover, immunoblotting analysis showed that TMZ activated JNK activity to induce protective response autophagy, which was blocked by rutin, resulting in decreased autophagy and increased apoptosis, suggesting that rutin enhances TMZ efficacy both in vitro and in vivo via inhibiting JNK-mediated autophagy in GBM. The combination rutin with TMZ may be a potentially useful therapeutic approach for GBM patient.
Collapse
|
46
|
An X, Sarmiento C, Tan T, Zhu H. Regulation of multidrug resistance by microRNAs in anti-cancer therapy. Acta Pharm Sin B 2017; 7:38-51. [PMID: 28119807 PMCID: PMC5237711 DOI: 10.1016/j.apsb.2016.09.002] [Citation(s) in RCA: 151] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Revised: 05/30/2016] [Accepted: 07/06/2016] [Indexed: 12/31/2022] Open
Abstract
Multidrug resistance (MDR) remains a major clinical obstacle to successful cancer treatment. Although diverse mechanisms of MDR have been well elucidated, such as dysregulation of drugs transporters, defects of apoptosis and autophagy machinery, alterations of drug metabolism and drug targets, disrupti on of redox homeostasis, the exact mechanisms of MDR in a specific cancer patient and the cross-talk among these different mechanisms and how they are regulated are poorly understood. MicroRNAs (miRNAs) are a new class of small noncoding RNAs that could control the global activity of the cell by post-transcriptionally regulating a large variety of target genes and proteins expression. Accumulating evidence shows that miRNAs play a key regulatory role in MDR through modulating various drug resistant mechanisms mentioned above, thereby holding much promise for developing novel and more effective individualized therapies for cancer treatment. This review summarizes the various MDR mechanisms and mainly focuses on the role of miRNAs in regulating MDR in cancer treatment.
Collapse
Affiliation(s)
- Xin An
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China
- Department of Surgery, Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - Cesar Sarmiento
- Department of Surgery, Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - Tao Tan
- Department of Surgery, Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
- Corresponding authors..
| | - Hua Zhu
- Department of Surgery, Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
- Corresponding authors..
| |
Collapse
|
47
|
Chen PH, Cheng CH, Shih CM, Ho KH, Lin CW, Lee CC, Liu AJ, Chang CK, Chen KC. The Inhibition of microRNA-128 on IGF-1-Activating mTOR Signaling Involves in Temozolomide-Induced Glioma Cell Apoptotic Death. PLoS One 2016; 11:e0167096. [PMID: 27893811 PMCID: PMC5125683 DOI: 10.1371/journal.pone.0167096] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Accepted: 11/07/2016] [Indexed: 12/11/2022] Open
Abstract
Temozolomide (TMZ), an alkylating agent of the imidazotetrazine series, is a first-line chemotherapeutic drug used in the clinical therapy of glioblastoma multiforme, the most common and high-grade primary glioma in adults. Micro (mi)RNAs, which are small noncoding RNAs, post-transcriptionally regulate gene expressions and are involved in gliomagenesis. However, no studies have reported relationships between TMZ and miRNA gene regulation. We investigated TMZ-mediated miRNA profiles and its molecular mechanisms underlying the induction of glioma cell death. By performing miRNA microarray and bioinformatics analyses, we observed that expression of 248 miRNAs was altered, including five significantly upregulated and 17 significantly downregulated miRNAs, in TMZ-treated U87MG cells. miR-128 expression levels were lower in different glioma cells and strongly associated with poor survival. TMZ treatment significantly upregulated miR-128 expression. TMZ significantly enhanced miR-128-1 promoter activity and transcriptionally regulated miR-128 levels through c-Jun N-terminal kinase 2/c-Jun pathways. The overexpression and knockdown of miR-128 expression significantly affected TMZ-mediated cell viability and apoptosis-related protein expression. Furthermore, the overexpression of miR-128 alone enhanced apoptotic death of glioma cells through caspase-3/9 activation, poly(ADP ribose) polymerase degradation, reactive oxygen species generation, mitochondrial membrane potential loss, and non-protective autophagy formation. Finally, we identified that key members in mammalian target of rapamycin (mTOR) signaling including mTOR, rapamycin-insensitive companion of mTOR, insulin-like growth factor 1, and PIK3R1, but not PDK1, were direct target genes of miR-128. TMZ inhibited mTOR signaling through miR-128 regulation. These results indicate that miR-128-inhibited mTOR signaling is involved in TMZ-mediated cytotoxicity. Our findings may provide a better understanding of cytotoxic mechanisms of TMZ involved in glioblastoma development.
Collapse
Affiliation(s)
- Peng-Hsu Chen
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Chia-Hsiung Cheng
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Department of Biochemistry and Molecular Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Chwen-Ming Shih
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Department of Biochemistry and Molecular Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Kuo-Hao Ho
- Department of Clinical Pharmacy, School of Pharmacy, Taipei Medical University, Taipei, Taiwan
| | - Cheng-Wei Lin
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Department of Biochemistry and Molecular Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Chin-Cheng Lee
- Department of Pathology and Laboratory Medicine, Shin Kong Wu Ho-Su Memorial Hospital, Taipei, Taiwan
| | - Ann-Jeng Liu
- Department of Neurosurgery, Taipei City Hospital Ren-Ai Branch, Taipei, Taiwan
| | - Cheng-Kuei Chang
- Department of Neurosurgery, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan
- Graduate Institute of Injury Prevention and Control, Taipei Medical University, Taipei, Taiwan
| | - Ku-Chung Chen
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Department of Biochemistry and Molecular Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- * E-mail:
| |
Collapse
|
48
|
Reactive oxygen species contribute toward Smac mimetic/temozolomide-induced cell death in glioblastoma cells. Anticancer Drugs 2016; 27:953-959. [PMID: 27669171 DOI: 10.1097/cad.0000000000000412] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Small-molecule inhibitors of Inhibitor of Apoptosis proteins such as Smac mimetics have been reported to provide a promising tool to sensitize glioblastoma (GBM) cells to cytotoxic therapies including chemotherapeutic drugs. However, the underlying molecular mechanisms of action have not yet been fully unraveled. In the present study, we therefore investigated the role of reactive oxygen species (ROS) in the regulation of Smac mimetic/temozolomide (TMZ)-induced cell death in GBM cells. Here, we show that the Smac mimetic BV6 and TMZ act in concert to stimulate the production of both cytosolic and mitochondrial ROS. This accumulation of ROS contributes toward the activation of the proapoptotic factor BAX upon BV6/TMZ cotreatment as several ROS scavengers (i.e. N-acetyl-L-cysteine, MnTBAP, or α-tocopherol) protect GBM cells against BV6/TMZ-mediated BAX activation. In addition, ROS scavengers significantly rescue GBM cells from BV6/TMZ-triggered cell death, indicating that ROS generation is required for the induction of cell death. By showing that ROS play an important role in the regulation of Smac mimetic/TMZ-induced cell death, our work sheds light on the crucial role of the oxidative system in the cooperative antitumor activity of Smac mimetic/TMZ combination therapy against GBM cells.
Collapse
|
49
|
Leung G, Papademetriou M, Chang S, Arena F, Katz S. Interactions Between Inflammatory Bowel Disease Drugs and Chemotherapy. ACTA ACUST UNITED AC 2016; 14:507-534. [DOI: 10.1007/s11938-016-0109-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
50
|
Liu Y, Li Q, Zhou L, Xie N, Nice EC, Zhang H, Huang C, Lei Y. Cancer drug resistance: redox resetting renders a way. Oncotarget 2016; 7:42740-42761. [PMID: 27057637 PMCID: PMC5173169 DOI: 10.18632/oncotarget.8600] [Citation(s) in RCA: 129] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Accepted: 03/28/2016] [Indexed: 02/05/2023] Open
Abstract
Disruption of redox homeostasis is a crucial factor in the development of drug resistance, which is a major problem facing current cancer treatment. Compared with normal cells, tumor cells generally exhibit higher levels of reactive oxygen species (ROS), which can promote tumor progression and development. Upon drug treatment, some tumor cells can undergo a process of 'Redox Resetting' to acquire a new redox balance with higher levels of ROS accumulation and stronger antioxidant systems. Evidence has accumulated showing that the 'Redox Resetting' enables cancer cells to become resistant to anticancer drugs by multiple mechanisms, including increased rates of drug efflux, altered drug metabolism and drug targets, activated prosurvival pathways and inefficient induction of cell death. In this article, we provide insight into the role of 'Redox Resetting' on the emergence of drug resistance that may contribute to pharmacological modulation of resistance.
Collapse
Affiliation(s)
- Yuan Liu
- State Key Laboratory for Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center of Biotherapy, Chengdu, P. R. China
- Department of Neurology, The Affiliated Hospital of Hainan Medical College, Haikou, Hainan, P. R. China
| | - Qifu Li
- Department of Neurology, The Affiliated Hospital of Hainan Medical College, Haikou, Hainan, P. R. China
| | - Li Zhou
- State Key Laboratory for Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center of Biotherapy, Chengdu, P. R. China
| | - Na Xie
- State Key Laboratory for Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center of Biotherapy, Chengdu, P. R. China
| | - Edouard C. Nice
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia
| | - Haiyuan Zhang
- Department of Neurology, The Affiliated Hospital of Hainan Medical College, Haikou, Hainan, P. R. China
| | - Canhua Huang
- State Key Laboratory for Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center of Biotherapy, Chengdu, P. R. China
| | - Yunlong Lei
- Department of Biochemistry and Molecular Biology, and Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing, P. R. China
| |
Collapse
|