1
|
So CY, Li Y, Chow KT. New insights on Galectin-9 expression in cancer prognosis: An updated systemic review and meta-analysis. PLoS One 2025; 20:e0320441. [PMID: 40138336 PMCID: PMC11940609 DOI: 10.1371/journal.pone.0320441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Accepted: 02/18/2025] [Indexed: 03/29/2025] Open
Abstract
Galectin-9 (Gal-9) has gained increasing attention in recent years in the field of cancer immunology. Its interactions with various immune cell types in the tumor microenvironment influence tumor progression, making it a novel target for immunotherapy. Despite its potential as a therapeutic target, the prognostic significance of Gal-9 in tumor cells remains unclear. Conflicting data exists on its expression levels and outcomes, prompting a comprehensive review and meta-analysis to elucidate its independent prognostic role across different cancer types. This study aims to examine the varying effects of Gal-9 expression across various cancer subtypes, providing insights into its potential as a prognostic marker and highlighting its significance in the realm of cancer treatment. To assess the prognostic significance of Gal-9 expression in cancer, we conducted a comprehensive database search across PubMed, Embase, and Web of Science, incorporating studies published until December 2024, regardless of language. Using pooled hazard ratios (HRs) with 95% confidence intervals (CIs), we evaluated the role of Gal-9 expression in predicting cancer outcomes across various cancer types. Our analysis encompassed 29 studies with a total of 4,720 patients to investigate the prognostic significance of Gal-9 expression across different cancer types. The results demonstrated that elevated Gal-9 expression was significantly associated with improved overall survival (OS) in solid tumors, with a pooled hazard ratio of 0.75 (95% CI: 0.63-0.90, p = 0.002). No statistically significant correlation was observed between Gal-9 expression and cancer recurrence (HR = 0.88, 95% CI: 0.65-1.19, p = 0.42). Conversely, in hematological cancers, high Gal-9 expression correlated with more rapid disease progression, as reflected by progression-free survival (PFS) or time to treatment (TTT) (HR = 2.29, 95% CI: 1.26-4.16, p = 0.007). The subgroup analyses further revealed that higher Gal-9 expression was associated with OS in gastrointestinal and urological cancers and was linked to disease-free survival (DFS) and recurrence-free survival (RFS) in hepatobiliary and urological cancers. Our research has uncovered that Gal-9 serves as a promising prognostic indicator for solid tumors, offering valuable insights into patient outcomes. High levels of Gal-9 expression within gastrointestinal, hepatobiliary, and urological cancers have been linked to better prognoses, while its presence in hematological cancers is associated with poorer outcomes. These contrasting findings emphasize the importance of interpreting biomarkers with careful consideration to the specific context. Moreover, our study sheds light on the diverse physiological roles of intracellular and secreted Gal-9, highlighting the intricate ways in which this protein influences cancer progression.
Collapse
Affiliation(s)
- Chun Yan So
- Department of Biomedical Sciences, City University of Hong Kong, Kowloon, Hong Kong SAR
| | - Yusong Li
- Department of Biomedical Sciences, City University of Hong Kong, Kowloon, Hong Kong SAR
| | - Kwan Ting Chow
- Department of Biomedical Sciences, City University of Hong Kong, Kowloon, Hong Kong SAR
| |
Collapse
|
2
|
Zhang N, Liu Q, Wang D, Wang X, Pan Z, Han B, He G. Multifaceted roles of Galectins: from carbohydrate binding to targeted cancer therapy. Biomark Res 2025; 13:49. [PMID: 40134029 PMCID: PMC11934519 DOI: 10.1186/s40364-025-00759-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Accepted: 03/05/2025] [Indexed: 03/27/2025] Open
Abstract
Galectins play pivotal roles in cellular recognition and signaling processes by interacting with glycoconjugates. Extensive research has highlighted the significance of Galectins in the context of cancer, aiding in the identification of biomarkers for early detection, personalized therapy, and predicting treatment responses. This review offers a comprehensive overview of the structural characteristics, ligand-binding properties, and interacting proteins of Galectins. We delve into their biological functions and examine their roles across various cancer types. Galectins, characterized by a conserved carbohydrate recognition domain (CRD), are divided into prototype, tandem-repeat, and chimera types based on their structural configurations. Prototype Galectins contain a single CRD, tandem-repeat Galectins contain two distinct CRDs linked by a peptide, and the chimera-type Galectin-3 features a unique structural arrangement. The capacity of Galectins to engage in multivalent interactions allows them to regulate a variety of signaling pathways, thereby affecting cell fate and function. In cancer, Galectins contribute to tumor cell transformation, angiogenesis, immune evasion, and metastasis, making them critical targets for therapeutic intervention. This review discusses the multifaceted roles of Galectins in cancer progression and explores current advancements in the development of Galectin-targeted therapies. We also address the challenges and future directions for integrating Galectin research into clinical practice to enhance cancer treatment outcomes. In brief, understanding the complex functions of Galectins in cancer biology opens new avenues for therapeutic strategies. Continued research on Galectin interactions and their pathological roles is essential for developing effective carbohydrate-based treatments and improving clinical interventions for cancer patients.
Collapse
Affiliation(s)
- Nan Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, College of Medical Technology and School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
- Institute of Precision Drug Innovation and Cancer Center, the Second Hospital of Dalian Medical University, Dalian, 116023, China
| | - Qiao Liu
- Institute of Precision Drug Innovation and Cancer Center, the Second Hospital of Dalian Medical University, Dalian, 116023, China
| | - Daihan Wang
- Institute of Precision Drug Innovation and Cancer Center, the Second Hospital of Dalian Medical University, Dalian, 116023, China
| | - Xiaoyun Wang
- Institute of Precision Drug Innovation and Cancer Center, the Second Hospital of Dalian Medical University, Dalian, 116023, China
| | - Zhaoping Pan
- Institute of Precision Drug Innovation and Cancer Center, the Second Hospital of Dalian Medical University, Dalian, 116023, China
| | - Bo Han
- State Key Laboratory of Southwestern Chinese Medicine Resources, College of Medical Technology and School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Gu He
- Institute of Precision Drug Innovation and Cancer Center, the Second Hospital of Dalian Medical University, Dalian, 116023, China.
| |
Collapse
|
3
|
Gossink EM, Coffer PJ, Cutilli A, Lindemans CA. Immunomodulation by galectin-9: Distinct role in T cell populations, current therapeutic avenues and future potential. Cell Immunol 2025; 407:104890. [PMID: 39571310 DOI: 10.1016/j.cellimm.2024.104890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 10/31/2024] [Accepted: 11/04/2024] [Indexed: 12/15/2024]
Abstract
Galectins, glycan-binding proteins, have been identified as critical regulators of the immune system. Recently, Galectin-9 (Gal-9) has emerged as biomarker that correlates with disease severity in a range of inflammatory conditions. However, Gal-9 has highly different roles in the context of immunoregulation, with the potential to either stimulate or suppress the immune response. Neutralizing antibodies targeting Gal-9 have been developed and are in early test phase investigating their therapeutic potential in cancer. Despite ongoing research, the mechanisms behind Gal-9 action remain not fully understood, and extrapolating the implications of targeting this molecule from previous studies is challenging. Here, we examine the pleiotropic function of Gal-9 focusing on conventional T lymphocytes, providing a current overview of its immunostimulatory and immunosuppressive roles. In particular, we highlight that Gal-9 differentially regulates immune responses depending on the context. Considering this complexity, further investigation of Gal-9's intricate biology is necessary to define therapeutic strategies in immune disorders and cancer treatment aimed at inducing or inhibiting Gal-9 signaling.
Collapse
Affiliation(s)
- Eva M Gossink
- Princess Máxima Center for Pediatric Oncology, 3584CS Utrecht, the Netherlands; Division of Pediatrics, University Medical Center Utrecht, 3584CX Utrecht, the Netherlands; Regenerative Medicine Center, University Medical Center Utrecht, 3584CT Utrecht, the Netherlands
| | - Paul J Coffer
- Division of Pediatrics, University Medical Center Utrecht, 3584CX Utrecht, the Netherlands; Regenerative Medicine Center, University Medical Center Utrecht, 3584CT Utrecht, the Netherlands; Center of Molecular Medicine, University Medical Center Utrecht, 3584CG Utrecht, the Netherlands
| | - Alessandro Cutilli
- Regenerative Medicine Center, University Medical Center Utrecht, 3584CT Utrecht, the Netherlands; Center of Molecular Medicine, University Medical Center Utrecht, 3584CG Utrecht, the Netherlands
| | - Caroline A Lindemans
- Princess Máxima Center for Pediatric Oncology, 3584CS Utrecht, the Netherlands; Division of Pediatrics, University Medical Center Utrecht, 3584CX Utrecht, the Netherlands; Regenerative Medicine Center, University Medical Center Utrecht, 3584CT Utrecht, the Netherlands.
| |
Collapse
|
4
|
Shil RK, Mohammed NBB, Dimitroff CJ. Galectin-9 - ligand axis: an emerging therapeutic target for multiple myeloma. Front Immunol 2024; 15:1469794. [PMID: 39386209 PMCID: PMC11461229 DOI: 10.3389/fimmu.2024.1469794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 09/09/2024] [Indexed: 10/12/2024] Open
Abstract
Galectin-9 (Gal-9) is a tandem-repeat galectin with diverse roles in immune homeostasis, inflammation, malignancy, and autoimmune diseases. In cancer, Gal-9 displays variable expression patterns across different tumor types. Its interactions with multiple binding partners, both intracellularly and extracellularly, influence key cellular processes, including immune cell modulation and tumor microenvironment dynamics. Notably, Gal-9 binding to cell-specific glycoconjugate ligands has been implicated in both promoting and suppressing tumor progression. Here, we provide insights into Gal-9 and its involvement in immune homeostasis and cancer biology with an emphasis on multiple myeloma (MM) pathophysiology, highlighting its complex and context-dependent dual functions as a pro- and anti-tumorigenic molecule and its potential implications for therapy in MM patients.
Collapse
Affiliation(s)
- Rajib K. Shil
- Department of Cellular and Molecular Medicine, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, United States
| | - Norhan B. B. Mohammed
- The Ronald O. Perelman Department of Dermatology, NYU Grossman School of Medicine, New York, NY, United States
- Department of Medical Biochemistry, Faculty of Medicine, South Valley University, Qena, Egypt
| | - Charles J. Dimitroff
- Department of Cellular and Molecular Medicine, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, United States
| |
Collapse
|
5
|
Moar P, Linn K, Premeaux TA, Bowler S, Sardarni UK, Gopalan BP, Shwe EE, San T, Han H, Clements D, Hlaing CS, Kyu EH, Thair C, Mar YY, Nway N, Mannarino J, Bolzenius J, Mar S, Aye AMM, Tandon R, Paul R, Ndhlovu LC. Plasma galectin-9 relates to cognitive performance and inflammation among adolescents with vertically acquired HIV. AIDS 2024; 38:1460-1467. [PMID: 38608008 PMCID: PMC11239096 DOI: 10.1097/qad.0000000000003907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 03/25/2024] [Accepted: 04/05/2024] [Indexed: 04/14/2024]
Abstract
OBJECTIVE Adolescents with perinatally acquired HIV (AWH) are at an increased risk of poor cognitive development yet the underlying mechanisms remain unclear. Circulating galectin-9 (Gal-9) has been associated with increased inflammation and multimorbidity in adults with HIV despite antiretroviral therapy (ART); however, the relationship between Gal-9 in AWH and cognition remain unexplored. DESIGN A cross-sectional study of two independent age-matched cohorts from India [AWH on ART ( n = 15), ART-naive ( n = 15), and adolescents without HIV (AWOH; n = 10)] and Myanmar [AWH on ART ( n = 54) and AWOH ( n = 22)] were studied. Adolescents from Myanmar underwent standardized cognitive tests. METHODS Plasma Gal-9 and soluble mediators were measured by immunoassays and cellular immune markers by flow cytometry. We used Mann-Whitney U tests to determine group-wise differences, Spearman's correlation for associations and machine learning to identify a classifier of cognitive status (impaired vs. unimpaired) built from clinical (age, sex, HIV status) and immunological markers. RESULTS Gal-9 levels were elevated in ART-treated AWH compared with AWOH in both cohorts (all P < 0.05). Higher Gal-9 in AWH correlated with increased levels of inflammatory mediators (sCD14, TNFα, MCP-1, IP-10, IL-10) and activated CD8 + T cells (all P < 0.05). Irrespective of HIV status, higher Gal-9 levels correlated with lower cognitive test scores in multiple domains [verbal learning, visuospatial learning, memory, motor skills (all P < 0.05)]. ML classification identified Gal-9, CTLA-4, HVEM, and TIM-3 as significant predictors of cognitive deficits in adolescents [mean area under the curve (AUC) = 0.837]. CONCLUSION Our results highlight a potential role of Gal-9 as a biomarker of inflammation and cognitive health among adolescents with perinatally acquired HIV.
Collapse
Affiliation(s)
- Preeti Moar
- Division of Infectious Diseases, Department of Medicine, Weill Cornell Medicine, New York, USA
| | - Kyaw Linn
- Department of Pediatrics, Yangon Children's Hospital, University of Medicine 1, Yangon, Myanmar
| | - Thomas A. Premeaux
- Division of Infectious Diseases, Department of Medicine, Weill Cornell Medicine, New York, USA
| | - Scott Bowler
- Division of Infectious Diseases, Department of Medicine, Weill Cornell Medicine, New York, USA
| | - Urvinder Kaur Sardarni
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, USA
| | - Bindu Parachalil Gopalan
- Division of infectious diseases, St. John's Research Institute, Bengaluru, India
- Sickle Thrombosis and Vascular Biology Lab, Sickle Cell Branch, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, USA
| | - Ei E. Shwe
- Department of Pathology, Yangon Children's Hospital, University of Medicine 1, Yangon, Myanmar
| | - Thidar San
- Department of Pathology, Yangon Children's Hospital, University of Medicine 1, Yangon, Myanmar
| | - Haymar Han
- Department of Pediatrics, Yangon Children's Hospital, University of Medicine 1, Yangon, Myanmar
| | - Danielle Clements
- Department of Tropical Medicine, Medical Microbiology & Pharmacology, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu
| | - Chaw S. Hlaing
- Department of Pediatrics, Yangon Children's Hospital, University of Medicine 1, Yangon, Myanmar
| | - Ei H. Kyu
- Department of Pediatrics, Yangon Children's Hospital, University of Medicine 1, Yangon, Myanmar
| | - Cho Thair
- Department of Pediatrics, Yangon Children's Hospital, University of Medicine 1, Yangon, Myanmar
| | - Yi Y. Mar
- Department of Pediatrics, Yangon Children's Hospital, University of Medicine 1, Yangon, Myanmar
| | - Nway Nway
- Department of Pediatrics, Yangon Children's Hospital, University of Medicine 1, Yangon, Myanmar
| | - Julie Mannarino
- Missouri Institute of Mental Health, University of Missouri-St. Louis, Missouri
| | - Jacob Bolzenius
- Missouri Institute of Mental Health, University of Missouri-St. Louis, Missouri
| | - Soe Mar
- Department of Neurology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Aye Mya M. Aye
- Department of Pediatrics, Yangon Children's Hospital, University of Medicine 1, Yangon, Myanmar
| | - Ravi Tandon
- Laboratory of AIDS Research and Immunology, School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| | - Robert Paul
- Missouri Institute of Mental Health, University of Missouri-St. Louis, Missouri
| | - Lishomwa C. Ndhlovu
- Division of Infectious Diseases, Department of Medicine, Weill Cornell Medicine, New York, USA
| |
Collapse
|
6
|
Vaitaitis G, Webb T, Webb C, Sharkey C, Sharkey S, Waid D, Wagner DH. Canine diabetes mellitus demonstrates multiple markers of chronic inflammation including Th40 cell increases and elevated systemic-immune inflammation index, consistent with autoimmune dysregulation. Front Immunol 2024; 14:1319947. [PMID: 38318506 PMCID: PMC10839093 DOI: 10.3389/fimmu.2023.1319947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 12/27/2023] [Indexed: 02/07/2024] Open
Abstract
Introduction Canine diabetes mellitus (CDM) is a relatively common endocrine disease in dogs. Many CDM clinical features resemble human type 1 diabetes mellitus (T1DM), but lack of autoimmune biomarkers makes calling the disease autoimmune controversial. Autoimmune biomarkers linking CDM and T1DM would create an alternative model for drug development impacting both human and canine disease. Methods We examined peripheral blood of diagnosed CDM dog patients comparing it to healthy control (HC) dogs. Dogs were recruited to a study at the Colorado State University Veterinary Teaching Hospital and blood samples collected for blood chemistry panels, complete blood counts (CBC), and immunologic analysis. Markers of disease progression such as glycated albumin (fructosamine, the canine equivalent of human HbA1c) and c-peptide were addressed. Results Significant differences in adaptive immune lymphocytes, innate immune macrophages/monocytes and neutrophils and differences in platelets were detected between CDM and HC based on CBC. Significant differences in serum glucose, cholesterol and the liver function enzyme alkaline phosphatase were also detected. A systemic immune inflammation index (SII) and chronic inflammation index (CII) as measures of dynamic changes in adaptive and innate cells between inflammatory and non-inflammatory conditions were created with highly significant differences between CDM and HC. Th40 cells (CD4+CD40+ T cells) that are demonstrably pathogenic in mouse T1DM and able to differentiate diabetic from non-diabetic subjects in human T1DM were significantly expanded in peripheral blood mononuclear cells. Conclusions Based on each clinical finding, CDM can be categorized as an autoimmune condition. The association of significantly elevated Th40 cells in CDM when compared to HC or to osteoarthritis, a chronic but non-autoimmune disease, suggests peripheral blood Th40 cell numbers as a biomarker that reflects CDM chronic inflammation. The differences in SII and CII further underscore those findings.
Collapse
Affiliation(s)
- Gisela Vaitaitis
- Department of Medicine, The University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Tracy Webb
- Department of Clinical Sciences, The Colorado State University Veterinary Teaching Hospital, Fort Collins, CO, United States
| | - Craig Webb
- Department of Clinical Sciences, The Colorado State University Veterinary Teaching Hospital, Fort Collins, CO, United States
| | - Christina Sharkey
- Department of Clinical Sciences, Montclaire Animal Clinic, Denver, CO, United States
| | - Steve Sharkey
- Department of Clinical Sciences, Montclaire Animal Clinic, Denver, CO, United States
| | - Dan Waid
- Op-T, LLC, Fitzsimmons Innovation Bioscience, Aurora, CO, United States
| | - David H. Wagner
- Department of Medicine, The University of Colorado Anschutz Medical Campus, Aurora, CO, United States
- Op-T, LLC, Fitzsimmons Innovation Bioscience, Aurora, CO, United States
| |
Collapse
|
7
|
Troncoso MF, Elola MT, Blidner AG, Sarrias L, Espelt MV, Rabinovich GA. The universe of galectin-binding partners and their functions in health and disease. J Biol Chem 2023; 299:105400. [PMID: 37898403 PMCID: PMC10696404 DOI: 10.1016/j.jbc.2023.105400] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 10/11/2023] [Accepted: 10/13/2023] [Indexed: 10/30/2023] Open
Abstract
Galectins, a family of evolutionarily conserved glycan-binding proteins, play key roles in diverse biological processes including tissue repair, adipogenesis, immune cell homeostasis, angiogenesis, and pathogen recognition. Dysregulation of galectins and their ligands has been observed in a wide range of pathologic conditions including cancer, autoimmune inflammation, infection, fibrosis, and metabolic disorders. Through protein-glycan or protein-protein interactions, these endogenous lectins can shape the initiation, perpetuation, and resolution of these processes, suggesting their potential roles in disease monitoring and treatment. However, despite considerable progress, a full understanding of the biology and therapeutic potential of galectins has not been reached due to their diversity, multiplicity of cell targets, and receptor promiscuity. In this article, we discuss the multiple galectin-binding partners present in different cell types, focusing on their contributions to selected physiologic and pathologic settings. Understanding the molecular bases of galectin-ligand interactions, particularly their glycan-dependency, the biochemical nature of selected receptors, and underlying signaling events, might contribute to designing rational therapeutic strategies to control a broad range of pathologic conditions.
Collapse
Affiliation(s)
- María F Troncoso
- Departamento de Química Biológica, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina; Instituto de Química y Fisicoquímica Biológicas (IQUIFIB) Prof Alejandro C. Paladini, CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina
| | - María T Elola
- Departamento de Química Biológica, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina; Instituto de Química y Fisicoquímica Biológicas (IQUIFIB) Prof Alejandro C. Paladini, CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Ada G Blidner
- Laboratorio de Glicomedicina, Instituto de Biología y Medicina Experimental (IBYME-CONICET), Buenos Aires, Argentina
| | - Luciana Sarrias
- Departamento de Química Biológica, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina; Instituto de Química y Fisicoquímica Biológicas (IQUIFIB) Prof Alejandro C. Paladini, CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina
| | - María V Espelt
- Departamento de Química Biológica, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina; Instituto de Química y Fisicoquímica Biológicas (IQUIFIB) Prof Alejandro C. Paladini, CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Gabriel A Rabinovich
- Laboratorio de Glicomedicina, Instituto de Biología y Medicina Experimental (IBYME-CONICET), Buenos Aires, Argentina; Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina.
| |
Collapse
|
8
|
Lv Y, Ma X, Ma Y, Du Y, Feng J. A new emerging target in cancer immunotherapy: Galectin-9 (LGALS9). Genes Dis 2023; 10:2366-2382. [PMID: 37554219 PMCID: PMC10404877 DOI: 10.1016/j.gendis.2022.05.020] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 05/09/2022] [Accepted: 05/14/2022] [Indexed: 11/20/2022] Open
Abstract
Over the past few decades, advances in immunological knowledge have led to the identification of novel immune checkpoints, reinvigorating cancer immunotherapy. Immunotherapy, represented by immune checkpoint inhibitors, has become the leader in the precision treatment of cancer, bringing a new dawn to the treatment of most cancer patients. Galectin-9 (LGALS9), a member of the galectin family, is a widely expressed protein involved in immune regulation and tumor pathogenesis, and affects the prognosis of various types of cancer. Galectin-9 regulates immune homeostasis and tumor cell survival through its interaction with its receptor Tim-3. In the review, based on a brief description of the signaling mechanisms and immunomodulatory activities of galectin-9 and Tim-3, we summarize the targeted expression patterns of galectin-9 in a variety of malignancies and the promising mechanisms of anti-galectin-9 therapy in stimulating anti-tumor immune responses.
Collapse
Affiliation(s)
- Yan Lv
- The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing, Jiangsu 210009, China
| | - Xiao Ma
- Department of General Surgery, The Affiliated Zhongda Hospital of Southeast University, Nanjing, Jiangsu 210009, China
| | - Yuxin Ma
- The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing, Jiangsu 210009, China
| | - Yuxin Du
- The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing, Jiangsu 210009, China
| | - Jifeng Feng
- The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing, Jiangsu 210009, China
| |
Collapse
|
9
|
Ko FCF, Yan S, Lee KW, Lam SK, Ho JCM. Chimera and Tandem-Repeat Type Galectins: The New Targets for Cancer Immunotherapy. Biomolecules 2023; 13:902. [PMID: 37371482 DOI: 10.3390/biom13060902] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 05/24/2023] [Accepted: 05/24/2023] [Indexed: 06/29/2023] Open
Abstract
In humans, a total of 12 galectins have been identified. Their intracellular and extracellular biological functions are explored and discussed in this review. These galectins play important roles in controlling immune responses within the tumour microenvironment (TME) and the infiltration of immune cells, including different subsets of T cells, macrophages, and neutrophils, to fight against cancer cells. However, these infiltrating cells also have repair roles and are hijacked by cancer cells for pro-tumorigenic activities. Upon a better understanding of the immunomodulating functions of galectin-3 and -9, their inhibitors, namely, GB1211 and LYT-200, have been selected as candidates for clinical trials. The use of these galectin inhibitors as combined treatments with current immune checkpoint inhibitors (ICIs) is also undergoing clinical trial investigations. Through their network of binding partners, inhibition of galectin have broad downstream effects acting on CD8+ cytotoxic T cells, regulatory T cells (Tregs), Natural Killer (NK) cells, and macrophages as well as playing pro-inflammatory roles, inhibiting T-cell exhaustion to support the fight against cancer cells. Other galectin members are also included in this review to provide insight into potential candidates for future treatment(s). The pitfalls and limitations of using galectins and their inhibitors are also discussed to cognise their clinical application.
Collapse
Affiliation(s)
- Frankie Chi Fat Ko
- Department of Medicine, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Queen Mary Hospital, 102 Pokfulam Road, Hong Kong, China
| | - Sheng Yan
- Department of Medicine, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Queen Mary Hospital, 102 Pokfulam Road, Hong Kong, China
| | - Ka Wai Lee
- Pathology Department, Baptist Hospital, Waterloo Road, Kowloon, Hong Kong, China
| | - Sze Kwan Lam
- Department of Medicine, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Queen Mary Hospital, 102 Pokfulam Road, Hong Kong, China
| | - James Chung Man Ho
- Department of Medicine, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Queen Mary Hospital, 102 Pokfulam Road, Hong Kong, China
| |
Collapse
|
10
|
Vaitaitis GM, Wagner DH. Modulating CD40 and integrin signaling in the proinflammatory nexus using a 15-amino-acid peptide, KGYY 15. J Biol Chem 2023; 299:104625. [PMID: 36944397 PMCID: PMC10141526 DOI: 10.1016/j.jbc.2023.104625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 03/14/2023] [Accepted: 03/15/2023] [Indexed: 03/22/2023] Open
Abstract
CD40 signaling has long been a target in autoimmunity. Attempts to block signaling between CD40 and CD154 during clinical trials using monoclonal antibodies suffered severe adverse events. Previously, we developed a peptide, KGYY15, that targets CD40 and, in preclinical trials, prevents type 1 diabetes in >90% of cases and reverses new-onset hyperglycemia in 56% of cases. It did so by establishing normal effector T-cell levels rather than ablating the cells and causing immunosuppression. However, the relationship between KGYY15 and other elements of the complex signaling network of CD40 is not clear. Studying interactions between proteins from autoimmune and nonautoimmune mice, we demonstrate interactions between CD40 and integrin CD11a/CD18, which complicates the understanding of the inflammatory nexus and how to prevent autoinflammation. In addition to interacting with CD40, KGYY15 interacts with the integrins CD11a/CD18 and CD11b/CD18. We argue that modulation of CD40-CD154 signaling may be more advantageous than complete inhibition because it may preserve normal immunity to pathogens.
Collapse
Affiliation(s)
- Gisela M Vaitaitis
- Webb-Waring Center, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - David H Wagner
- Webb-Waring Center, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA.
| |
Collapse
|
11
|
Liu Y, Rao P, Qian H, Shi Y, Chen S, Lan J, Mu D, Chen R, Zhang X, Deng C, Liu G, Shi G. Regulatory Fibroblast-Like Synoviocytes Cell Membrane Coated Nanoparticles: A Novel Targeted Therapy for Rheumatoid Arthritis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2204998. [PMID: 36509660 PMCID: PMC9896074 DOI: 10.1002/advs.202204998] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 11/21/2022] [Indexed: 06/17/2023]
Abstract
Fibroblast-like synoviocytes (FLS) are the main cell component in the inflamed joints of patients with rheumatoid arthritis (RA). FLS intimately interact with infiltrating T cells. Fibroblasts have potent inhibitory effects on T cells, leading to the resolution of inflammation and immune tolerance. However, this "regulatory" phenotype is defect in RA, and FLS in RA instead act as "proinflammatory" phenotype mediating inflammation perpetuation. Signals that orchestrate fibroblast heterogeneity remain unclear. Here, it is demonstrated that different cytokines can induce distinct phenotypes of FLS. Interferon-gamma (IFN-γ) is pivotal in inducing the regulatory phenotype of FLS (which is termed FLSreg ) characterized by high expressions of several inhibitory molecules. Rapamycin enhances the effect of IFN-γ on FLS. Based on the characteristics of FLSreg , a novel biomimetic therapeutic strategy for RA is designed by coating cell membrane derived from FLSreg induced by IFN-γ and rapamycin on nanoparticles, which is called FIRN. FIRN show good efficacy, stability, and inflammatory joint targeting ability in an RA mouse model. The findings clarify how fibroblast phenotypes are modulated in the inflammatory microenvironment and provide insights into novel therapeutic designs for autoimmune diseases based on regulatory fibroblasts.
Collapse
Affiliation(s)
- Yuan Liu
- Department of Rheumatology and Clinical ImmunologyThe First Affiliated Hospital of Xiamen UniversityXiamen361001China
- School of MedicineXiamen UniversityXiamen361103China
- Xiamen Municipal Clinical Research Center for Immune DiseaseXiamen361001China
| | - Peishi Rao
- Department of Rheumatology and Clinical ImmunologyThe First Affiliated Hospital of Xiamen UniversityXiamen361001China
- School of MedicineXiamen UniversityXiamen361103China
- Department of Rheumatology and ImmunologyPeking University People's HospitalBeijing100044China
| | - Hongyan Qian
- Department of Rheumatology and Clinical ImmunologyThe First Affiliated Hospital of Xiamen UniversityXiamen361001China
- School of MedicineXiamen UniversityXiamen361103China
- Xiamen Municipal Clinical Research Center for Immune DiseaseXiamen361001China
| | - Yesi Shi
- State Key Laboratory of Molecular Vaccinology and Molecular DiagnosticsCenter for Molecular Imaging and Translational MedicineSchool of Public HealthXiamen361001China
| | - Shiju Chen
- Department of Rheumatology and Clinical ImmunologyThe First Affiliated Hospital of Xiamen UniversityXiamen361001China
- School of MedicineXiamen UniversityXiamen361103China
- Xiamen Municipal Clinical Research Center for Immune DiseaseXiamen361001China
| | - Jingying Lan
- Department of Rheumatology and Clinical ImmunologyThe First Affiliated Hospital of Xiamen UniversityXiamen361001China
- School of MedicineXiamen UniversityXiamen361103China
| | - Dan Mu
- State Key Laboratory of Molecular Vaccinology and Molecular DiagnosticsCenter for Molecular Imaging and Translational MedicineSchool of Public HealthXiamen361001China
| | - Rongjuan Chen
- Department of Rheumatology and Clinical ImmunologyThe First Affiliated Hospital of Xiamen UniversityXiamen361001China
- School of MedicineXiamen UniversityXiamen361103China
| | - Xinwei Zhang
- Department of Rheumatology and Clinical ImmunologyThe First Affiliated Hospital of Xiamen UniversityXiamen361001China
- School of MedicineXiamen UniversityXiamen361103China
- Xiamen Municipal Clinical Research Center for Immune DiseaseXiamen361001China
| | - Chaoqiong Deng
- Department of Rheumatology and Clinical ImmunologyThe First Affiliated Hospital of Xiamen UniversityXiamen361001China
- School of MedicineXiamen UniversityXiamen361103China
| | - Gang Liu
- State Key Laboratory of Molecular Vaccinology and Molecular DiagnosticsCenter for Molecular Imaging and Translational MedicineSchool of Public HealthXiamen361001China
| | - Guixiu Shi
- Department of Rheumatology and Clinical ImmunologyThe First Affiliated Hospital of Xiamen UniversityXiamen361001China
- School of MedicineXiamen UniversityXiamen361103China
- Xiamen Municipal Clinical Research Center for Immune DiseaseXiamen361001China
| |
Collapse
|
12
|
Identification of Malignant Cell Populations Associated with Poor Prognosis in High-Grade Serous Ovarian Cancer Using Single-Cell RNA Sequencing. Cancers (Basel) 2022; 14:cancers14153580. [PMID: 35892844 PMCID: PMC9331511 DOI: 10.3390/cancers14153580] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/18/2022] [Accepted: 07/18/2022] [Indexed: 12/10/2022] Open
Abstract
Simple Summary Ovarian cancer has a high recurrence rate (~75%), and tumor heterogeneity is associated with such tumor recurrence. However, it is still poorly understood in ovarian cancer. To reveal tumor heterogeneity, we performed single-cell RNA sequencing (RNA-seq) of serous ovarian cancer cells from four different patients: two with primary carcinoma, one with recurrent carcinoma, and one with carcinoma treated with interval debulking surgery. As a result, we found two malignant tumor cell subtypes associated with poor prognosis. One malignant population included the earliest cancer cells and cancer stem-like cells. SLC3A1 and PEG10 were identified as the marker genes of cancer-initiating cells. The other malignant population expressing CA125 (MUC16), the most common biomarker for ovarian cancer, is associated with a decrease in the number of tumor-infiltrating cytotoxic T lymphocytes (CTLs). Our findings will offer new markers for diagnosis and choosing treatments targeting the malignant populations in ovarian cancer. Abstract To reveal tumor heterogeneity in ovarian cancer, we performed single-cell RNA sequencing (RNA-seq). We obtained The Cancer Genome Atlas (TCGA) survival data and TCGA gene expression data for a Kaplan–Meier plot showing the association of each tumor population with poor prognosis. As a result, we found two malignant tumor cell subtypes associated with poor prognosis. Next, we performed trajectory analysis using scVelo and Monocle3 and cell–cell interaction analysis using CellphoneDB. We found that one malignant population included the earliest cancer cells and cancer stem-like cells. Furthermore, we identified SLC3A1 and PEG10 as the marker genes of cancer-initiating cells. The other malignant population expressing CA125 (MUC16) is associated with a decrease in the number of tumor-infiltrating cytotoxic T lymphocytes (CTLs). Moreover, cell–cell interaction analysis implied that interactions mediated by LGALS9 and GAS6, expressed by this malignant population, caused the CTL suppression. The results of this study suggest that two tumor cell populations, including a cancer-initiating cell population and a population expressing CA125, survive the initial treatment and suppress antitumor immunity, respectively, and are associated with poor prognosis. Our findings offer a new understanding of ovarian cancer heterogeneity and will aid in the development of diagnostic tools and treatments.
Collapse
|
13
|
Lee M, Hamilton JAG, Talekar GR, Ross AJ, Michael L, Rupji M, Dwivedi B, Raikar SS, Boss J, Scharer CD, Graham DK, DeRyckere D, Porter CC, Henry CJ. Obesity-induced galectin-9 is a therapeutic target in B-cell acute lymphoblastic leukemia. Nat Commun 2022; 13:1157. [PMID: 35241678 PMCID: PMC8894417 DOI: 10.1038/s41467-022-28839-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Accepted: 02/11/2022] [Indexed: 12/25/2022] Open
Abstract
The incidence of obesity is rising with greater than 40% of the world’s population expected to be overweight or suffering from obesity by 2030. This is alarming because obesity increases mortality rates in patients with various cancer subtypes including leukemia. The survival differences between lean patients and patients with obesity are largely attributed to altered drug pharmacokinetics in patients receiving chemotherapy; whereas, the direct impact of an adipocyte-enriched microenvironment on cancer cells is rarely considered. Here we show that the adipocyte secretome upregulates the surface expression of Galectin-9 (GAL-9) on human B-acute lymphoblastic leukemia cells (B-ALL) which promotes chemoresistance. Antibody-mediated targeting of GAL-9 on B-ALL cells induces DNA damage, alters cell cycle progression, and promotes apoptosis in vitro and significantly extends the survival of obese but not lean mice with aggressive B-ALL. Our studies reveal that adipocyte-mediated upregulation of GAL-9 on B-ALL cells can be targeted with antibody-based therapies to overcome obesity-induced chemoresistance. Obesity has been reported to promote tumourigenesis and chemoresistance but the underlying mechanisms are not completely understood. Here, the authors show that adipocytes induce Galectin-9 (GAL-9) expression in B-acute lymphoblastic leukaemia (B-ALL) cells which leads to chemoresistance and antibody-mediated blockade of GAL-9 increases survival in preclinical B-ALL murine models.
Collapse
Affiliation(s)
- Miyoung Lee
- Department of Pediatrics, Emory University School of Medicine and Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Atlanta, GA, USA
| | - Jamie A G Hamilton
- Department of Pediatrics, Emory University School of Medicine and Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Atlanta, GA, USA
| | - Ganesh R Talekar
- Department of Pediatrics, Emory University School of Medicine and Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Atlanta, GA, USA
| | - Anthony J Ross
- Riley Pediatric Cancer and Blood Diseases, Riley Children's Health, Indiana University School of Medicine, Indianapolis, Indiana, IN, USA
| | | | - Manali Rupji
- Bioinformatics and Biostatistics Shared Resource, Winship Cancer Institute, Atlanta, GA, USA
| | - Bhakti Dwivedi
- Bioinformatics and Biostatistics Shared Resource, Winship Cancer Institute, Atlanta, GA, USA
| | - Sunil S Raikar
- Department of Pediatrics, Emory University School of Medicine and Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Atlanta, GA, USA
| | - Jeremy Boss
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA, USA
| | - Christopher D Scharer
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA, USA
| | - Douglas K Graham
- Department of Pediatrics, Emory University School of Medicine and Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Atlanta, GA, USA
| | - Deborah DeRyckere
- Department of Pediatrics, Emory University School of Medicine and Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Atlanta, GA, USA
| | - Christopher C Porter
- Department of Pediatrics, Emory University School of Medicine and Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Atlanta, GA, USA
| | - Curtis J Henry
- Department of Pediatrics, Emory University School of Medicine and Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Atlanta, GA, USA.
| |
Collapse
|
14
|
Unraveling How Tumor-Derived Galectins Contribute to Anti-Cancer Immunity Failure. Cancers (Basel) 2021; 13:cancers13184529. [PMID: 34572756 PMCID: PMC8469970 DOI: 10.3390/cancers13184529] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 08/16/2021] [Accepted: 08/24/2021] [Indexed: 12/15/2022] Open
Abstract
Simple Summary This review compiles our current knowledge of one of the main pathways activated by tumors to escape immune attack. Indeed, it integrates the current understanding of how tumor-derived circulating galectins affect the elicitation of effective anti-tumor immunity. It focuses on several relevant topics: which are the main galectins produced by tumors, how soluble galectins circulate throughout biological liquids (taking a body-settled gradient concentration into account), the conditions required for the galectins’ functions to be accomplished at the tumor and tumor-distant sites, and how the physicochemical properties of the microenvironment in each tissue determine their functions. These are no mere semantic definitions as they define which functions can be performed in said tissues instead. Finally, we discuss the promising future of galectins as targets in cancer immunotherapy and some outstanding questions in the field. Abstract Current data indicates that anti-tumor T cell-mediated immunity correlates with a better prognosis in cancer patients. However, it has widely been demonstrated that tumor cells negatively manage immune attack by activating several immune-suppressive mechanisms. It is, therefore, essential to fully understand how lymphocytes are activated in a tumor microenvironment and, above all, how to prevent these cells from becoming dysfunctional. Tumors produce galectins-1, -3, -7, -8, and -9 as one of the major molecular mechanisms to evade immune control of tumor development. These galectins impact different steps in the establishment of the anti-tumor immune responses. Here, we carry out a critical dissection on the mechanisms through which tumor-derived galectins can influence the production and the functionality of anti-tumor T lymphocytes. This knowledge may help us design more effective immunotherapies to treat human cancers.
Collapse
|
15
|
Exploring the Pathogenic Role and Therapeutic Implications of Interleukin 2 in Autoimmune Hepatitis. Dig Dis Sci 2021; 66:2493-2512. [PMID: 32833154 DOI: 10.1007/s10620-020-06562-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 08/12/2020] [Indexed: 12/11/2022]
Abstract
Interleukin 2 is essential for the expansion of regulatory T cells, and low-dose recombinant interleukin 2 has improved the clinical manifestations of diverse autoimmune diseases in preliminary studies. The goals of this review are to describe the actions of interleukin 2 and its receptor, present preliminary experiences with low-dose interleukin 2 in the treatment of diverse autoimmune diseases, and evaluate its potential as a therapeutic intervention in autoimmune hepatitis. English abstracts were identified in PubMed by multiple search terms. Full-length articles were selected for review, and secondary and tertiary bibliographies were developed. Interleukin 2 is critical for the thymic selection, peripheral expansion, induction, and survival of regulatory T cells, and it is also a growth factor for activated T cells and natural killer cells. Interleukin 2 activates the signal transducer and activator of transcription 5 after binding with its trimeric receptor on regulatory T cells. Immune suppressor activity is increased; anti-inflammatory interleukin 10 is released; pro-inflammatory interferon-gamma is inhibited; and activation-induced apoptosis of CD8+ T cells is upregulated. Preliminary experiences with cyclic injections of low-dose recombinant interleukin 2 in diverse autoimmune diseases have demonstrated increased numbers of circulating regulatory T cells, preserved regulatory function, improved clinical manifestations, and excellent tolerance. Similar improvements have been recognized in one of two patients with refractory autoimmune hepatitis. In conclusion, interferon 2 has biological actions that favor the immune suppressor functions of regulatory T cells, and low-dose regimens in preliminary studies encourage its rigorous investigation in autoimmune hepatitis.
Collapse
|
16
|
The TIM3/Gal9 signaling pathway: An emerging target for cancer immunotherapy. Cancer Lett 2021; 510:67-78. [PMID: 33895262 DOI: 10.1016/j.canlet.2021.04.011] [Citation(s) in RCA: 81] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 03/31/2021] [Accepted: 04/15/2021] [Indexed: 12/20/2022]
Abstract
Immune checkpoint blockade has shown unprecedented and durable clinical response in a wide range of cancers. T cell immunoglobulin and mucin domain 3 (TIM3) is an inhibitory checkpoint protein that is highly expressed in tumor-infiltrating lymphocytes. In various cancers, the interaction of TIM3 and Galectin 9 (Gal9) suppresses anti-tumor immunity mediated by innate as well as adaptive immune cells. Thus, the blockade of the TIM3/Gal9 interaction is a promising therapeutic approach for cancer therapy. In addition, co-blockade of the TIM3/Gal9 pathway along with the PD-1/PD-L1 pathway increases the therapeutic efficacy by overcoming non-redundant immune resistance induced by each checkpoint. Here, we summarize the physiological roles of the TIM3/Gal9 pathway in adaptive and innate immune systems. We highlight the recent clinical and preclinical studies showing the involvement of the TIM3/Gal9 pathway in various solid and blood cancers. In addition, we discuss the potential of using TIM3 and Gal9 as prognostic and predictive biomarkers in different cancers. An in-depth mechanistic understanding of the blockade of the TIM3/Gal9 signaling pathway in cancer could help in identifying patients who respond to this therapy as well as designing combination therapies.
Collapse
|
17
|
Kucka K, Wajant H. Receptor Oligomerization and Its Relevance for Signaling by Receptors of the Tumor Necrosis Factor Receptor Superfamily. Front Cell Dev Biol 2021; 8:615141. [PMID: 33644033 PMCID: PMC7905041 DOI: 10.3389/fcell.2020.615141] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 12/28/2020] [Indexed: 12/20/2022] Open
Abstract
With the exception of a few signaling incompetent decoy receptors, the receptors of the tumor necrosis factor receptor superfamily (TNFRSF) are signaling competent and engage in signaling pathways resulting in inflammation, proliferation, differentiation, and cell migration and also in cell death induction. TNFRSF receptors (TNFRs) become activated by ligands of the TNF superfamily (TNFSF). TNFSF ligands (TNFLs) occur as trimeric type II transmembrane proteins but often also as soluble ligand trimers released from the membrane-bound form by proteolysis. The signaling competent TNFRs are efficiently activated by the membrane-bound TNFLs. The latter recruit three TNFR molecules, but there is growing evidence that this is not sufficient to trigger all aspects of TNFR signaling; rather, the formed trimeric TNFL–TNFR complexes have to cluster secondarily in the cell-to-cell contact zone for full TNFR activation. With respect to their response to soluble ligand trimers, the signaling competent TNFRs can be subdivided into two groups. TNFRs of one group, designated as category I TNFRs, are robustly activated by soluble ligand trimers. The receptors of a second group (category II TNFRs), however, failed to become properly activated by soluble ligand trimers despite high affinity binding. The limited responsiveness of category II TNFRs to soluble TNFLs can be overcome by physical linkage of two or more soluble ligand trimers or, alternatively, by anchoring the soluble ligand molecules to the cell surface or extracellular matrix. This suggests that category II TNFRs have a limited ability to promote clustering of trimeric TNFL–TNFR complexes outside the context of cell–cell contacts. In this review, we will focus on three aspects on the relevance of receptor oligomerization for TNFR signaling: (i) the structural factors which promote clustering of free and liganded TNFRs, (ii) the signaling pathway specificity of the receptor oligomerization requirement, and (iii) the consequences for the design and development of TNFR agonists.
Collapse
Affiliation(s)
- Kirstin Kucka
- Division of Molecular Internal Medicine, Department of Internal Medicine II, University Hospital Würzburg, Würzburg, Germany
| | - Harald Wajant
- Division of Molecular Internal Medicine, Department of Internal Medicine II, University Hospital Würzburg, Würzburg, Germany
| |
Collapse
|
18
|
Moar P, Tandon R. Galectin-9 as a biomarker of disease severity. Cell Immunol 2021; 361:104287. [PMID: 33494007 DOI: 10.1016/j.cellimm.2021.104287] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 12/26/2020] [Accepted: 01/09/2021] [Indexed: 12/16/2022]
Abstract
Galectin-9 (Gal-9) is a β-galactoside binding lectin known for its immunomodulatory role in various microbial infections. Gal-9 is expressed in all organ systems and localized in the nucleus, cell surface, cytoplasm and the extracellular matrix. It mediates host-pathogen interactions and regulates cell signalling via binding to its receptors. Gal-9 is involved in many physiological functions such as cell growth, differentiation, adhesion, communication and death. However, recent studies have emphasized on the elevated levels of Gal-9 in autoimmune disorders, viral infections, parasitic invasion, cancer, acute liver failure, atopic dermatitis, chronic kidney disease, type-2 diabetes, coronary artery disease, atherosclerosis and benign infertility-related gynecological disorders. In this paper we have reviewed the potential of Gal-9 as a reliable, sensitive and non-invasive biomarker of disease severity. Tracking changes in Gal-9 levels and its implementation as a biomarker in clinical practice will be an important tool to monitor disease activity and facilitate personalized treatment decisions.
Collapse
Affiliation(s)
- Preeti Moar
- Laboratory of AIDS Research and Immunology, School of Biotechnology, Jawaharlal Nehru University, New Delhi, India.
| | - Ravi Tandon
- Laboratory of AIDS Research and Immunology, School of Biotechnology, Jawaharlal Nehru University, New Delhi, India.
| |
Collapse
|
19
|
Xie JH, Zhu RR, Zhao L, Zhong YC, Zeng QT. Down-regulation and Clinical Implication of Galectin-9 Levels in Patients with Acute Coronary Syndrome and Chronic Kidney Disease. Curr Med Sci 2020; 40:662-670. [PMID: 32862376 DOI: 10.1007/s11596-020-2238-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 06/15/2020] [Indexed: 10/23/2022]
Abstract
In various autoimmune diseases, Galecin-9 (Gal-9) has been shown to regulate the T-cell balance by decreasing Th1 and Th17, while increasing the number of regulatory T cells (Tregs). However, the role of Gal-9 in the patients with acute coronary syndrome (ACS) and chronic kidney disease (CKD) remains unclear. This study aims to measure the Gal-9 levels in serum and peripheral blood mononuclear cells (PBMCs) in patients with ACS plus CKD and examine their clinical implication. The serum levels of Gal-9 were determined by enzyme-linked immunosorbent assay (ELISA), the expression levels of Gal-9, Tim-3, and Foxp3 mRNA in PBMCs were detected by real-time reverse transcription-polymerase chain reaction (RT-PCR), and the expression of Gal-9 on the surface of PBMCs and in PBMCs was analyzed by flow cytometry. Furthermore, the correlation of serum Gal-9 levels with anthropometric and biochemical variables in patients with ACS plus CKD was analyzed. The lowest levels of Gal-9 in serum and PBMCs were found in the only ACS group, followed by the ACS+CKD group, and the normal coronary artery (NCA) group, respectively. Serum Gal-9 levels were increased along with the progression of glomerular filtration rate (GFR) categories of G1 to G4. Additionally, serum Gal-9 levels were negatively correlated with high-sensitivity C-reactive protein (hs-CRP), estimated GFR (eGFR), and lipoprotein(a), but positively with creatinine, age, osmotic pressure, and blood urea nitrogen (BUN). Notably, serum Gal-9 was independently associated with hs-CRP, osmotic pressure, and lipoprotein(a). Furthermore, serum Gal-9 levels were elevated in patients with type 2 diabetes (T2DM) and impaired glucose tolerance (IGT) in ACS group. It was suggested that the levels of Gal-9 in serum and PBMCs were decreased in patients with simple ACS and those with ACS plus CKD, and hs-CRP, eGFR, osmotic pressure and T2DM may have an influence on serum Gal-9 levels.
Collapse
Affiliation(s)
- Jian-Hua Xie
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Rui-Rui Zhu
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Li Zhao
- Department of Gastroenterology, Hubei Provincial Hospital of Integrated Traditional Chinese and Western Medicine, Wuhan, 430022, China
| | - Yu-Cheng Zhong
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| | - Qiu-Tang Zeng
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| |
Collapse
|
20
|
De Sousa Linhares A, Kellner F, Jutz S, Zlabinger GJ, Gabius H, Huppa JB, Leitner J, Steinberger P. TIM-3 and CEACAM1 do not interact in cis and in trans. Eur J Immunol 2020; 50:1126-1141. [PMID: 32222966 PMCID: PMC7496933 DOI: 10.1002/eji.201948400] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 01/29/2020] [Accepted: 03/24/2020] [Indexed: 01/13/2023]
Abstract
TIM-3 has been considered as a target in cancer immunotherapy. In T cells, inhibitory as well as activating functions have been ascribed to this molecule. Its role may therefore depend on the state of T cells and on the presence of interaction partners capable to perform functional pairing. Carcinoembryonic antigen-related cell adhesion molecule (CEACAM1) has been proposed to bind TIM-3 and to regulate its function. Using a T cell reporter platform we confirmed CEACAM1-mediated inhibition, but CEACAM1 did not functionally engage TIM-3. TIM-3 and CEACAM1 coexpression was limited to a small subset of activated T cells. Moreover, results obtained in extensive binding studies were not in support of an interaction between TIM-3 and CEACAM1. Cytoplasmic sequences derived from TIM-3 induced inhibitory signaling in our human T cell reporter system. Our results indicate that TIM-3 functions are independent of CEACAM1 and that this receptor has the capability to promote inhibitory signaling pathways in human T cells.
Collapse
Affiliation(s)
- Annika De Sousa Linhares
- Division of Immune Receptors and T Cell ActivationCenter for PathophysiologyInfectiology, and ImmunologyInstitute of ImmunologyMedical University of ViennaViennaAustria
| | - Florian Kellner
- Institute for Hygiene and Applied ImmunologyCenter for PathophysiologyInfectiology and ImmunologyMedical University of ViennaViennaAustria
| | - Sabrina Jutz
- Division of Immune Receptors and T Cell ActivationCenter for PathophysiologyInfectiology, and ImmunologyInstitute of ImmunologyMedical University of ViennaViennaAustria
| | - Gerhard J. Zlabinger
- Division of Clinical and Experimental ImmunologyCenter for Pathophysiology, Infectiology, and ImmunologyInstitute of ImmunologyMedical University of ViennaViennaAustria
| | - Hans‐Joachim Gabius
- Faculty of Veterinary MedicineInstitute for Physiological ChemistryLudwig‐Maximilians‐UniversityMunichGermany
| | - Johannes B. Huppa
- Institute for Hygiene and Applied ImmunologyCenter for PathophysiologyInfectiology and ImmunologyMedical University of ViennaViennaAustria
| | - Judith Leitner
- Division of Immune Receptors and T Cell ActivationCenter for PathophysiologyInfectiology, and ImmunologyInstitute of ImmunologyMedical University of ViennaViennaAustria
| | - Peter Steinberger
- Division of Immune Receptors and T Cell ActivationCenter for PathophysiologyInfectiology, and ImmunologyInstitute of ImmunologyMedical University of ViennaViennaAustria
| |
Collapse
|
21
|
Characterization of the First Genome of Porcine mastadenovirus B (HNU1 Strain) and Implications on Its Lymphoid and Special Origin. Virol Sin 2020; 35:528-537. [PMID: 32236817 DOI: 10.1007/s12250-020-00210-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 02/04/2020] [Indexed: 01/04/2023] Open
Abstract
Porcine adenoviruses (PAdVs) are classified into three species, PAdV-A, PAdV-B, and PAdV-C. The genomes of PAdV-A and PAdV-C have been well characterized. However, the genome of PAdV-B has never been completely sequenced, and the epidemiology of PAdV-B remains unclear. In our study, we have identified a novel strain of PAdV-B, named PAdV-B-HNU1, in porcine samples collected in China by viral metagenomic assay and general PCR. The genome of PAdV-B-HNU1 is 31,743 bp in length and highly similar to that of California sea lion adenovirus 1 (C. sea lion AdV-1), which contains typical mastadenoviral structures and some unique regions at the carboxy-terminal end. Especially, PAdV-B-HNU1 harbors a dUTPase coding region not clustering with other mastadenoviruses except for C. sea lion AdV-1 and a fiber coding region homologous with galectin 4 and 9 of animals. However, the variance of GC contents between PAdV-B-HNU1 (55%) and C. sea lion AdV-1 (36%) indicates their differential evolutionary paths. Further epidemiologic study revealed a high positive rate (51.7%) of PAdV-B-HNU1 in porcine lymph samples, but low positive rates of 10.2% and 16.1% in oral swabs and rectal swabs, respectively. In conclusion, this study characterized a novel representative genome of a lymphotropic PAdV-B with unique evolutionary origin, which contributes to the taxonomical and pathogenic studies of PAdVs.
Collapse
|
22
|
Maghsoudloo M, Azimzadeh Jamalkandi S, Najafi A, Masoudi-Nejad A. Identification of biomarkers in common chronic lung diseases by co-expression networks and drug-target interactions analysis. Mol Med 2020; 26:9. [PMID: 31952466 PMCID: PMC6969427 DOI: 10.1186/s10020-019-0135-9] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 12/30/2019] [Indexed: 02/07/2023] Open
Abstract
Background asthma, chronic obstructive pulmonary disease (COPD), and idiopathic pulmonary fibrosis (IPF) are three serious pulmonary diseases that contain common and unique characteristics. Therefore, the identification of biomarkers that differentiate these diseases is of importance for preventing misdiagnosis. In this regard, the present study aimed to identify the disorders at the early stages, based on lung transcriptomics data and drug-target interactions. Methods To this end, the differentially expressed genes were found in each disease. Then, WGCNA was utilized to find specific and consensus gene modules among the three diseases. Finally, the disease-disease similarity was analyzed, followed by determining candidate drug-target interactions. Results The results confirmed that the asthma lung transcriptome was more similar to COPD than IPF. In addition, the biomarkers were found in each disease and thus were proposed for further clinical validations. These genes included RBM42, STX5, and TRIM41 in asthma, CYP27A1, GM2A, LGALS9, SPI1, and NLRC4 in COPD, ATF3, PPP1R15A, ZFP36, SOCS3, NAMPT, and GADD45B in IPF, LRRC48 and CETN2 in asthma-COPD, COL15A1, GIMAP6, and JAM2 in asthma-IPF and LMO7, TSPAN13, LAMA3, and ANXA3 in COPD-IPF. Finally, analyzing drug-target networks suggested anti-inflammatory candidate drugs for treating the above mentioned diseases. Conclusion In general, the results revealed the unique and common biomarkers among three chronic lung diseases. Eventually, some drugs were suggested for treatment purposes.
Collapse
Affiliation(s)
- Mazaher Maghsoudloo
- Laboratory of Systems Biology and Bioinformatics (LBB), Department of Bioinformatics, Kish International Campus, University of Tehran, Kish Island, Iran.,Laboratory of Systems Biology and Bioinformatics (LBB), Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | | | - Ali Najafi
- Molecular Biology Research Center, Systems Biology and Poisonings Institute, Tehran, Iran
| | - Ali Masoudi-Nejad
- Laboratory of Systems Biology and Bioinformatics (LBB), Department of Bioinformatics, Kish International Campus, University of Tehran, Kish Island, Iran. .,Laboratory of Systems Biology and Bioinformatics (LBB), Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran.
| |
Collapse
|
23
|
Vaitaitis GM, Olmstead MH, Waid DM, Carter JR, Wagner DH. CD40-targeted peptide proposed for type 1 diabetes therapy lacks relevant binding affinity to its cognate receptor. Reply to Pagni PP, Wolf A, Lo Conte M et al [letter]. Diabetologia 2019; 62:1730-1731. [PMID: 31286154 PMCID: PMC6679809 DOI: 10.1007/s00125-019-4945-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 06/03/2019] [Indexed: 01/07/2023]
Affiliation(s)
- Gisela M Vaitaitis
- Webb-Waring Center, University of Colorado Anschutz Medical Campus, 12850 East Montview Boulevard, C322, Aurora, CO, USA
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | | | - Dan M Waid
- Webb-Waring Center, University of Colorado Anschutz Medical Campus, 12850 East Montview Boulevard, C322, Aurora, CO, USA
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Jessica R Carter
- Webb-Waring Center, University of Colorado Anschutz Medical Campus, 12850 East Montview Boulevard, C322, Aurora, CO, USA
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- , Salem, USA
| | - David H Wagner
- Webb-Waring Center, University of Colorado Anschutz Medical Campus, 12850 East Montview Boulevard, C322, Aurora, CO, USA.
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.
| |
Collapse
|
24
|
Vaitaitis GM, Yussman MG, Wagner DH. A CD40 targeting peptide prevents severe symptoms in experimental autoimmune encephalomyelitis. J Neuroimmunol 2019; 332:8-15. [PMID: 30925295 PMCID: PMC6535109 DOI: 10.1016/j.jneuroim.2019.03.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 03/15/2019] [Accepted: 03/20/2019] [Indexed: 01/07/2023]
Abstract
CD40/CD154-interaction is critical in the development of Experimental Autoimmune Encephalomyelitis (EAE; mouse model of Multiple Sclerosis). Culprit CD4+CD40+ T cells drive a more severe form of EAE than conventional CD4 T cells. Blocking CD40/CD154-interaction with CD154-antibody prevents or ameliorates disease but had thrombotic complications in clinical trials. We targeted CD40 using a CD154-sequence based peptide. Peptides in human therapeutics demonstrate good safety. A small peptide, KGYY6, ameliorates EAE when given as pretreatment or at first symptoms. KGYY6 binds Th40 and memory T cells, affecting expression of CD69 and IL-10 in the CD4 T cell compartment, ultimately hampering disease development.
Collapse
Affiliation(s)
- Gisela M Vaitaitis
- Webb-Waring Center, University of Colorado Anschutz Medical Campus, Aurora, CO, USA; Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.
| | - Martin G Yussman
- Webb-Waring Center, University of Colorado Anschutz Medical Campus, Aurora, CO, USA; Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.
| | - David H Wagner
- Webb-Waring Center, University of Colorado Anschutz Medical Campus, Aurora, CO, USA; Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.
| |
Collapse
|
25
|
|
26
|
De Sousa Linhares A, Leitner J, Grabmeier-Pfistershammer K, Steinberger P. Not All Immune Checkpoints Are Created Equal. Front Immunol 2018; 9:1909. [PMID: 30233564 PMCID: PMC6127213 DOI: 10.3389/fimmu.2018.01909] [Citation(s) in RCA: 105] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 08/02/2018] [Indexed: 12/20/2022] Open
Abstract
Antibodies that block T cell inhibition via the immune checkpoints CTLA-4 and PD-1 have revolutionized cancer therapy during the last 15 years. T cells express additional inhibitory surface receptors that are considered to have potential as targets in cancer immunotherapy. Antibodies against LAG-3 and TIM-3 are currently clinically tested to evaluate their effectiveness in patients suffering from advanced solid tumors or hematologic malignancies. In addition, blockade of the inhibitory BTLA receptors on human T cells may have potential to unleash T cells to effectively combat cancer cells. Much research on these immune checkpoints has focused on mouse models. The analysis of animals that lack individual inhibitory receptors has shed some light on the role of these molecules in regulating T cells, but also immune responses in general. There are current intensive efforts to gauge the efficacy of antibodies targeting these molecules called immune checkpoint inhibitors alone or in different combinations in preclinical models of cancer. Differences between mouse and human immunology warrant studies on human immune cells to appreciate the potential of individual pathways in enhancing T cell responses. Results from clinical studies are not only highlighting the great benefit of immune checkpoint inhibitors for treating cancer but also yield precious information on their role in regulating T cells and other cells of the immune system. However, despite the clinical relevance of CTLA-4 and PD-1 and the high potential of the emerging immune checkpoints, there are still substantial gaps in our understanding of the biology of these molecules, which might prevent the full realization of their therapeutic potential. This review addresses PD-1, CTLA-4, BTLA, LAG-3, and TIM-3, which are considered major inhibitory immune checkpoints expressed on T cells. It provides summaries of our current conception of the role of these molecules in regulating T cell responses, and discussions about major ambiguities and gaps in our knowledge. We emphasize that each of these molecules harbors unique properties that set it apart from the others. Their distinct functional profiles should be taken into account in therapeutic strategies that aim to exploit these pathways to enhance immune responses to combat cancer.
Collapse
Affiliation(s)
- Annika De Sousa Linhares
- Division of Immune Receptors and T Cell Activation, Medical University of Vienna, Vienna, Austria
| | - Judith Leitner
- Division of Immune Receptors and T Cell Activation, Medical University of Vienna, Vienna, Austria
| | - Katharina Grabmeier-Pfistershammer
- Division of Clinical and Experimental Immunology, Center for Pathophysiology, Infectiology, and Immunology, Institute of Immunology, Medical University of Vienna, Vienna, Austria
| | - Peter Steinberger
- Division of Immune Receptors and T Cell Activation, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
27
|
Czaja AJ. Under-Evaluated or Unassessed Pathogenic Pathways in Autoimmune Hepatitis and Implications for Future Management. Dig Dis Sci 2018; 63:1706-1725. [PMID: 29671161 DOI: 10.1007/s10620-018-5072-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Accepted: 04/12/2018] [Indexed: 12/11/2022]
Abstract
Autoimmune hepatitis is a consequence of perturbations in homeostatic mechanisms that maintain self-tolerance but are incompletely understood. The goals of this review are to describe key pathogenic pathways that have been under-evaluated or unassessed in autoimmune hepatitis, describe insights that may shape future therapies, and encourage investigational efforts. The T cell immunoglobulin mucin proteins constitute a family that modulates immune tolerance by limiting the survival of immune effector cells, clearing apoptotic bodies, and expanding the population of granulocytic myeloid-derived suppressor cells. Galectins influence immune cell migration, activation, proliferation, and survival, and T cell exhaustion can be induced and exploited as a possible management strategy. The programmed cell death-1 protein and its ligands comprise an antigen-independent inhibitory axis that can limit the performance of activated T cells by altering their metabolism, and epigenetic changes can silence pro-inflammatory genes or de-repress anti-inflammatory genes that affect disease severity. Changes in the intestinal microbiota and permeability of the intestinal mucosal barrier can be causative or consequential events that affect the occurrence and phenotype of immune-mediated disease, and they may help explain the female propensity for autoimmune hepatitis. Perturbations within these homeostatic mechanisms have been implicated in experimental models and limited clinical experiences, and they have been favorably manipulated by monoclonal antibodies, recombinant molecules, pharmacological agents or dietary supplements. In conclusion, pathogenic mechanisms that have been implicated in other systemic immune-mediated and liver diseases but under-evaluated or unassessed in autoimmune hepatitis warrant consideration and rigorous evaluation.
Collapse
Affiliation(s)
- Albert J Czaja
- Division of Gastroenterology and Hepatology, Mayo Clinic College of Medicine and Science, 200 First Street S.W., Rochester, MN, 55905, USA.
| |
Collapse
|
28
|
Czaja AJ. Emerging therapeutic biomarkers of autoimmune hepatitis and their impact on current and future management. Expert Rev Gastroenterol Hepatol 2018. [PMID: 29540068 DOI: 10.1080/17474124.2018.1453356] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Autoimmune hepatitis lacks a quantifiable biomarker that is close to its pathogenic mechanisms and that accurately reflects inflammatory activity, correlates with treatment response, and ensures inactive disease before treatment withdrawal. Areas covered: Micro-ribonucleic acids, programmed death-1 protein and its ligands, macrophage migration inhibitory factor, soluble CD163, B cell activating factor, and metabolite patterns in blood were considered the leading candidates as therapeutic biomarkers after search of PubMed from August 1981 to August 2017 using the search words 'biomarkers of autoimmune hepatitis'. Expert commentary: Each of the candidate biomarkers is close to the putative pathogenic mechanisms of autoimmune hepatitis, and each has attributes that support its potential role as a surrogate marker of inflammatory activity that can be monitored during treatment. Future studies must demonstrate the superiority of each biomarker to conventional indices of inflammatory activity and validate their correlation with treatment response and outcome. A reliable therapeutic biomarker would facilitate the individualization of current management algorithms, ensure that pathogenic mechanisms were disrupted or eliminated prior to treatment withdrawal, and reduce the frequency of relapse or unnecessary protracted therapy. The biomarker might also prove to be a target of next-generation therapies.
Collapse
Affiliation(s)
- Albert J Czaja
- a Division of Gastroenterology and Hepatology , Mayo Clinic College of Medicine and Science , Rochester , MN , USA
| |
Collapse
|
29
|
Gorman JV, Colgan JD. Acute stimulation generates Tim-3-expressing T helper type 1 CD4 T cells that persist in vivo and show enhanced effector function. Immunology 2018; 154:418-433. [PMID: 29315553 DOI: 10.1111/imm.12890] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Revised: 12/14/2017] [Accepted: 12/22/2017] [Indexed: 12/20/2022] Open
Abstract
T-cell immunoglobulin and mucin domain 3 (Tim-3) is a surface receptor expressed by T helper type 1 (Th1) effector CD4 T cells, which are critical for defence against intracellular pathogens and have been implicated in autoimmune disease. Previous studies showed that Tim-3 expression makes Th1 cells more susceptible to apoptosis and also marks functionally impaired T cells that arise due to chronic stimulation. However, other studies suggested that Tim-3-expressing Th1 cells do not always have these properties. To further define the relationship between Tim-3 and Th1 cell function, we analysed the characteristics of Th1 cells that expressed Tim-3 in response to brief stimulation in vitro or an acute viral infection in vivo. As expected, cultured CD4 T cells began expressing Tim-3 during Th1 differentiation and secondary stimulation generated Tim-3- and Tim-3+ fractions that were separated and further analysed. When injected into naive mice, Tim-3+ cells down-regulated Tim-3 and survived equally well compared with Tim-3- cells. Further, Tim-3- and Tim-3+ Th1 cells had similar functional responses when transferred into naive mice that were subsequently infected with lymphocytic choriomeningitis virus (LCMV). Cultured Th1 cells that expressed Tim-3 following T-cell receptor stimulation had a greater capacity to express signature Th1 cytokines than their Tim-3- counterparts and showed differential expression of genes that regulate CD4 T-cell function. Consistent with these findings, Tim-3+ Th1 cells generated in response to LCMV infection displayed augmented effector function relative to Tim-3- cells. These results suggest that Tim-3 expression by Th1 cells responding to acute stimulation can mark cells that are functionally competent and have an augmented ability to produce cytokines.
Collapse
Affiliation(s)
- Jacob V Gorman
- Interdisciplinary Graduate Program in Immunology, University of Iowa, Iowa City, IA, USA
| | - John D Colgan
- Interdisciplinary Graduate Program in Immunology, University of Iowa, Iowa City, IA, USA.,Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA, USA.,Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| |
Collapse
|
30
|
Role of Galectins in Tumors and in Clinical Immunotherapy. Int J Mol Sci 2018; 19:ijms19020430. [PMID: 29389859 PMCID: PMC5855652 DOI: 10.3390/ijms19020430] [Citation(s) in RCA: 163] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2017] [Revised: 01/25/2018] [Accepted: 01/30/2018] [Indexed: 02/07/2023] Open
Abstract
Galectins are glycan-binding proteins that contain one or two carbohydrate domains and mediate multiple biological functions. By analyzing clinical tumor samples, the abnormal expression of galectins is known to be linked to the development, progression and metastasis of cancers. Galectins also have diverse functions on different immune cells that either promote inflammation or dampen T cell-mediated immune responses, depending on cognate receptors on target cells. Thus, tumor-derived galectins can have bifunctional effects on tumor and immune cells. This review focuses on the biological effects of galectin-1, galectin-3 and galectin-9 in various cancers and discusses anticancer therapies that target these molecules.
Collapse
|
31
|
Vaitaitis GM, Waid DM, Yussman MG, Wagner DH. CD40-mediated signalling influences trafficking, T-cell receptor expression, and T-cell pathogenesis, in the NOD model of type 1 diabetes. Immunology 2017; 152:243-254. [PMID: 28542921 DOI: 10.1111/imm.12761] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Revised: 04/27/2017] [Accepted: 05/08/2017] [Indexed: 12/23/2022] Open
Abstract
CD40 plays a critical role in the pathogenesis of type 1 diabetes (T1D). The mechanism of action, however, is undetermined, probably because CD40 expression has been grossly underestimated. CD40 is expressed on numerous cell types that now include T cells and pancreatic β cells. CD40+ CD4+ cells [T helper type 40 (TH40)] prove highly pathogenic in NOD mice and in translational human T1D studies. We generated BDC2.5.CD40-/- and re-derived NOD.CD154-/- mice to better understand the CD40 mechanism of action. Fully functional CD40 expression is required not only for T1D development but also for insulitis. In NOD mice, TH40 cell expansion in pancreatic lymph nodes occurs before insulitis and demonstrates an activated phenotype compared with conventional CD4+ cells, apparently regardless of antigen specificity. TH40 T-cell receptor (TCR) usage demonstrates increases in several Vα and Vβ species, particularly Vα3.2+ that arise early and are sustained throughout disease development. TH40 cells isolated from diabetic pancreas demonstrate a relatively broad TCR repertoire rather than restricted clonal expansions. The expansion of the Vα/Vβ species associated with diabetes depends upon CD40 signalling; NOD.CD154-/- mice do not expand the same TCR species. Finally, CD40-mediated signals significantly increase pro-inflammatory Th1- and Th17-associated cytokines whereas CD28 co-stimulus alternatively promotes regulatory cytokines.
Collapse
Affiliation(s)
- Gisela M Vaitaitis
- The Webb-Waring Center, The University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Dan M Waid
- The Webb-Waring Center, The University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Martin G Yussman
- The Webb-Waring Center, The University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - David H Wagner
- The Webb-Waring Center, The University of Colorado Anschutz Medical Campus, Aurora, CO, USA.,Division of Pulmonary Sciences and Critical Care, Department of Medicine, The University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| |
Collapse
|
32
|
Translating the ‘Sugar Code’ into Immune and Vascular Signaling Programs. Trends Biochem Sci 2017; 42:255-273. [DOI: 10.1016/j.tibs.2016.11.003] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Revised: 11/07/2016] [Accepted: 11/10/2016] [Indexed: 12/21/2022]
|
33
|
Peña-Ortega F. Pharmacological Tools to Activate Microglia and their Possible use to Study Neural Network Patho-physiology. Curr Neuropharmacol 2017; 15:595-619. [PMID: 27697040 PMCID: PMC5543677 DOI: 10.2174/1570159x14666160928151546] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Revised: 08/05/2016] [Accepted: 09/26/2016] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Microglia are the resident immunocompetent cells of the CNS and also constitute a unique cell type that contributes to neural network homeostasis and function. Understanding microglia cell-signaling not only will reveal their diverse functions but also will help to identify pharmacological and non-pharmacological tools to modulate the activity of these cells. METHODS We undertook a search of bibliographic databases for peer-reviewed research literature to identify microglial activators and their cell-specificity. We also looked for their effects on neural network function and dysfunction. RESULTS We identified several pharmacological targets to modulate microglial function, which are more or less specific (with the proper control experiments). We also identified pharmacological targets that would require the development of new potent and specific modulators. We identified a wealth of evidence about the participation of microglia in neural network function and their alterations in pathological conditions. CONCLUSION The identification of specific microglia-activating signals provides experimental tools to modulate the activity of this heterogeneous cell type in order to evaluate its impact on other components of the nervous system, and it also helps to identify therapeutic approaches to ease some pathological conditions related to microglial dysfunction.
Collapse
Affiliation(s)
- Fernando Peña-Ortega
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, UNAM-Campus Juriquilla, México
| |
Collapse
|
34
|
Wagner DH. Overlooked Mechanisms in Type 1 Diabetes Etiology: How Unique Costimulatory Molecules Contribute to Diabetogenesis. Front Endocrinol (Lausanne) 2017; 8:208. [PMID: 28878738 PMCID: PMC5572340 DOI: 10.3389/fendo.2017.00208] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Accepted: 08/08/2017] [Indexed: 01/16/2023] Open
Abstract
Type 1 Diabetes (T1D) develops when immune cells invade the pancreatic islets resulting in loss of insulin production in beta cells. T cells have been proven to be central players in that process. What is surprising, however, is that classic mechanisms of tolerance cannot explain diabetogenesis; alternate mechanisms must now be considered. T cell receptor (TCR) revision is the process whereby T cells in the periphery alter TCR expression, outside the safety-net of thymic selection pressures. This process results in an expanded T cell repertoire, capable of responding to a universe of pathogens, but limitations are that increased risk for autoimmune disease development occurs. Classic T cell costimulators including the CD28 family have long been thought to be the major drivers for full T cell activation. In actuality, CD28 and its family member counterparts, ICOS and CTLA-4, all drive regulatory responses. Inflammation is driven by CD40, not CD28. CD40 as a costimulus has been largely overlooked. When naïve T cells interact with antigen presenting cell CD154, the major ligand for CD40, is induced. This creates a milieu for T cell (CD40)-T cell (CD154) interaction, leading to inflammation. Finally, defined pathogenic effector cells including TH40 (CD4+CD40+) cells can express FOXP3 but are not Tregs. The cells loose FOXP3 to become pathogenic effector cells. Each of these mechanisms creates novel options to better understand diabetogenesis and create new therapeutic targets for T1D.
Collapse
Affiliation(s)
- David H. Wagner
- The Program in Integrated Immunology, Department of Medicine, Webb-Waring Center, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
- *Correspondence: David H. Wagner Jr.,
| |
Collapse
|
35
|
Wagner DH. Of the multiple mechanisms leading to type 1 diabetes, T cell receptor revision may play a prominent role (is type 1 diabetes more than a single disease?). Clin Exp Immunol 2016; 185:271-80. [PMID: 27271348 DOI: 10.1111/cei.12819] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Revised: 05/20/2016] [Accepted: 05/31/2016] [Indexed: 12/30/2022] Open
Abstract
A single determinant factor for autoimmunity does not exist; disease development probably involves contributions from genetics, the environment and immune dysfunction. Type 1 diabetes is no exception. Genomewide-associated studies (GWAS) analysis in T1D has proved disappointing in revealing contributors to disease prediction; the only reliable marker has been human leucocyte antigen (HLA). Specific HLAs include DR3/DR4/DQ2/DQ8, for example. Because HLA molecules present antigen to T cells, it is reasonable that certain HLA molecules have a higher affinity to present self-antigen. Recent studies have shown that additional polymorphisms in HLA that are restricted to autoimmune conditions are further contributory. A caveat is that not all individuals with the appropriate 'pro-autoimmune' HLA develop an autoimmune disease. Another crucial component is autoaggressive T cells. Finding a biomarker to discriminate autoaggressive T cells has been elusive. However, a subset of CD4 helper cells that express the CD40 receptor have been described as becoming pathogenic. An interesting function of CD40 on T cells is to induce the recombination-activating gene (RAG)1/RAG2 T cell receptor recombination machinery. This observation is contrary to immunology paradigms that changes in TCR molecules cannot take place outside the thymic microenvironment. Alteration in TCR, called TCR revision, not only occurs, but may help to account for the development of autoaggressive T cells. Another interesting facet is that type 1 diabetes (T1D) may be more than a single disease; that is, multiple cellular components contribute uniquely, but result ultimately in the same clinical outcome, T1D. This review considers the process of T cell maturation and how that could favor auto-aggressive T cell development in T1D. The potential contribution of TCR revision to autoimmunity is also considered.
Collapse
Affiliation(s)
- D H Wagner
- Department of Medicine, Department of Neurology, Webb-Waring Center, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| |
Collapse
|
36
|
Serum Galectin-9 Levels Are Associated with Coronary Artery Disease in Chinese Individuals. Mediators Inflamm 2015; 2015:457167. [PMID: 26663989 PMCID: PMC4667018 DOI: 10.1155/2015/457167] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2015] [Revised: 09/10/2015] [Accepted: 09/13/2015] [Indexed: 01/12/2023] Open
Abstract
Background. Recently, several studies suggest that galectin-9 (Gal-9) might play a pivotal role in the pathogenesis of autoimmune diseases. However, the exact role of Gal-9 in atherosclerosis remains to be elucidated. Methods. Serum Gal-9, high-sensitivity C-reactive protein (hs-CRP), interferon- (IFN-) γ, interleukin- (IL-) 4, IL-17, and transforming growth factor- (TGF-) β1 were measured. The effect of Gal-9 on peripheral blood mononuclear cells (PBMC) was investigated in patients with normal coronary artery (NCA). Results. The lowest level of Gal-9 was found in the ST-segment elevation myocardial infarction (STEMI) group, followed by the non-ST-segment elevation ACS (NSTEACS), the NCA, and the stable angina pectoris (SAP) groups, respectively. Additionally, Gal-9 was found to be independently associated with hs-CRP, lipoprotein(a), and creatinine. Notably, Gal-9 was also noted to be an independent predictor of the Gensini score. Moreover, Gal-9 suppressed T-helper 17 (Th17) and expanded regulatory T cells (Tregs), resulting in decreased IL-17 production and increased secretion of TGF-β1. Conclusions. Serum Gal-9 is associated with not only coronary artery disease (CAD), but also the severity of coronary arteries stenosis. Gal-9 can expand Tregs and suppress Th17 development in activated PBMC, implying that Gal-9 has the potential to dampen the development of atherosclerosis and may be a new therapy for CAD.
Collapse
|
37
|
Sano M, Hashiba K, Nio-Kobayashi J, Okuda K. The luteotrophic function of galectin-1 by binding to the glycans on vascular endothelial growth factor receptor-2 in bovine luteal cells. J Reprod Dev 2015; 61:439-48. [PMID: 26155753 PMCID: PMC4623150 DOI: 10.1262/jrd.2015-056] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The corpus luteum (CL) is a temporary endocrine gland producing a large amount of progesterone, which is essential for the establishment and maintenance of pregnancy. Galectin-1 is a β-galactose-binding protein that can modify functions of membrane glycoproteins and is expressed in the CL of mice and women. However, the physiological role of galectin-1 in the CL is unclear. In the present study, we investigated the expression and localization of galectin-1 in the bovine CL and the effect of galectin-1 on cultured luteal steroidogenic cells (LSCs) with special reference to its binding to the glycans on vascular endothelial growth factor receptor-2 (VEGFR-2). Galectin-1 protein was highly expressed at the mid and late luteal stages in the membrane fraction of bovine CL tissue and was localized to the surface of LSCs in a carbohydrate-dependent manner. Galectin-1 increased the viability in cultured LSCs. However, the viability of LSCs was decreased by addition of β-lactose, a
competitive carbohydrate inhibitor of galectin-1 binding activity. VEGFR-2 protein, like galectin-1, is also highly expressed in the mid CL, and it was modified by multi-antennary glycans, which can be recognized by galectin-1. An overlay assay using biotinylated galectin-1 revealed that galectin-1 directly binds to asparagine-linked glycans (N-glycans) on VEGFR-2. Enhancement of LSC viability by galectin-1 was suppressed by a selective inhibitor of VEGFR-2. The overall findings suggest that galectin-1 plays a role as a survival factor in the bovine CL, possibly by binding to N-glycans on VEGFR-2.
Collapse
Affiliation(s)
- Masahiro Sano
- Laboratory of Reproductive Physiology, Graduate School of Environmental and Life Science, Okayama University, Okayama 700-8530, Japan
| | | | | | | |
Collapse
|
38
|
Song LJ, Wang X, Wang XP, Li D, Ding F, Liu HX, Yu X, Li XF, Shu Q. Increased Tim-3 expression on peripheral T lymphocyte subsets and association with higher disease activity in systemic lupus erythematosus. Diagn Pathol 2015; 10:71. [PMID: 26076826 PMCID: PMC4469310 DOI: 10.1186/s13000-015-0306-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Accepted: 05/29/2015] [Indexed: 12/21/2022] Open
Abstract
Background Both the T cell immunoglobulin domain- and mucin domain-containing molecule-3 (Tim-3) and the death receptor Fas contribute to the pathogenesis of various autoimmune diseases, including systemic lupus erythematosus (SLE). The aim of the present study was to determine whether Tim-3 and Fas are co-expressed on certain peripheral T lymphocyte subsets, and whether this expression is associated with greater disease activity in SLE. Methods Peripheral blood mononuclear cells were isolated from 46 patients newly diagnosed with SLE and 28 age- and sex-matched healthy controls (HCs). Expression of Tim-3 and Fas on T subsets was analyzed by flow cytometry, while mRNA levels of the Tim-3 ligand galectin-9 and Fas ligand FasL were assayed using real-time RT-PCR. Results The proportions of CD3+CD4+ and CD3+CD4- T cells expressing Tim-3+ and Tim+Fas+ were significantly higher in patients than in HCs (p < 0.05), while the proportions of these subtypes expressing Fas were similar for the two groups. Patients with active SLE, as defined by their score on the SLE Disease Activity Index, had lower proportions of CD3+CD4+ T cells and higher proportions of CD3+CD4+Tim-3+ and CD3+CD4+Tim-3+Fas+ T cells than did patients with stable SLE. Serum levels of complement C3 and C4 proteins, considered as a marker of SLE activity, correlated negatively with proportions of CD3+CD4+ and CD3+CD4- T cells expressing Tim-3. Conclusions Expression of Tim-3 and co-expression of Tim-3 and Fas on certain peripheral T subsets are associated with disease activity in SLE patients. Future research should examine whether the same is true of other T subsets implicated in SLE, and should explore the potential role(s) of Tim-3 in the disease pathway. Virtual slides http://www.diagnosticpathology.diagnomx.eu/vs/1855527845145188
Collapse
Affiliation(s)
- Li-jun Song
- Department of Rheumatology, Qilu Hospital of Shandong University, 107 Wenhua Xi Road, Ji'nan, 250012, China.
| | - Xiao Wang
- Department of Rheumatology, Qilu Hospital of Shandong University, 107 Wenhua Xi Road, Ji'nan, 250012, China.
| | - Xu-ping Wang
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, Qilu Hospital of Shandong University, Ji'nan, 250012, China.
| | - Dong Li
- Cryomedicine Laboratory, Qilu Hospital of Shandong University, Ji'nan, 250012, China.
| | - Feng Ding
- Department of Rheumatology, Qilu Hospital of Shandong University, 107 Wenhua Xi Road, Ji'nan, 250012, China.
| | - Hua-xiang Liu
- Department of Rheumatology, Qilu Hospital of Shandong University, 107 Wenhua Xi Road, Ji'nan, 250012, China.
| | - Xiao Yu
- Department of Rheumatology, Qilu Hospital of Shandong University, 107 Wenhua Xi Road, Ji'nan, 250012, China.
| | - Xing-fu Li
- Department of Rheumatology, Qilu Hospital of Shandong University, 107 Wenhua Xi Road, Ji'nan, 250012, China.
| | - Qiang Shu
- Department of Rheumatology, Qilu Hospital of Shandong University, 107 Wenhua Xi Road, Ji'nan, 250012, China.
| |
Collapse
|
39
|
Abstract
Galectins are an evolutionarily ancient family of glycan-binding proteins (GBPs) and are found in all animals. Although they were discovered over 30 years ago, ideas about their biological functions continue to evolve. Current evidence indicates that galectins, which are the only known GBPs that occur free in the cytoplasm and extracellularly, are involved in a variety of intracellular and extracellular pathways contributing to homeostasis, cellular turnover, cell adhesion, and immunity. Here we review evolving insights into galectin biology from a historical perspective and explore current evidence regarding biological roles of galectins.
Collapse
|
40
|
Vaitaitis GM, Olmstead MH, Waid DM, Carter JR, Wagner DH. A CD40-targeted peptide controls and reverses type 1 diabetes in NOD mice. Diabetologia 2014; 57:2366-73. [PMID: 25104468 PMCID: PMC4183717 DOI: 10.1007/s00125-014-3342-5] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Accepted: 07/04/2014] [Indexed: 01/11/2023]
Abstract
AIMS/HYPOTHESIS The CD40-CD154 interaction directs autoimmune inflammation. Therefore, a long-standing goal in the treatment of autoimmune disease has been to control the formation of that interaction and thereby prevent destructive inflammation. Antibodies blocking CD154 are successful in mouse models of autoimmune disease but, while promising when used in humans, unfortunate thrombotic events have occurred, forcing the termination of those studies. METHODS To address the clinical problem of thrombotic events caused by anti-CD154 antibody treatment, we created a series of small peptides based on the CD154 domain that interacts with CD40 and tested the ability of these peptides to target CD40 and prevent type 1 diabetes in NOD mice. RESULTS We identified a lead candidate, the 15-mer KGYY15 peptide, which specifically targets CD40-positive cells in a size- and sequence-dependent manner. It is highly efficient in preventing hyperglycaemia in NOD mice that spontaneously develop type 1 diabetes. Importantly, KGYY15 can also reverse new-onset hyperglycaemia. KGYY15 is well tolerated and functions to control the cytokine profile of culprit Th40 effector T cells. The KGYY15 peptide is 87% homologous to the human sequence, suggesting that it is an important candidate for translational studies. CONCLUSIONS/INTERPRETATION Peptide KGYY15 constitutes a viable therapeutic option to antibody therapy in targeting the CD40-CD154 interaction in type 1 diabetes. Given the involvement of CD40 in autoimmunity in general, it will also be important to evaluate KGYY15 in the treatment of other autoimmune diseases. This alternative therapeutic approach opens new avenues of exploration in targeting receptor-ligand interactions.
Collapse
Affiliation(s)
- Gisela M. Vaitaitis
- Webb-Waring Center, University of Colorado Denver, C322, 12850 East Montview Boulevard, Aurora, CO, USA
- Department of Medicine, University of Colorado Denver, Aurora, CO, USA
| | | | - Dan M. Waid
- Webb-Waring Center, University of Colorado Denver, C322, 12850 East Montview Boulevard, Aurora, CO, USA
- Department of Medicine, University of Colorado Denver, Aurora, CO, USA
| | - Jessica R. Carter
- Webb-Waring Center, University of Colorado Denver, C322, 12850 East Montview Boulevard, Aurora, CO, USA
- Department of Medicine, University of Colorado Denver, Aurora, CO, USA
| | - David H. Wagner
- Webb-Waring Center, University of Colorado Denver, C322, 12850 East Montview Boulevard, Aurora, CO, USA
- Department of Medicine, University of Colorado Denver, Aurora, CO, USA
| |
Collapse
|
41
|
Maurya N, Gujar R, Gupta M, Yadav V, Verma S, Sen P. Immunoregulation of dendritic cells by the receptor T cell Ig and mucin protein-3 via Bruton's tyrosine kinase and c-Src. THE JOURNAL OF IMMUNOLOGY 2014; 193:3417-25. [PMID: 25172495 DOI: 10.4049/jimmunol.1400395] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The receptor T cell Ig and mucin protein-3 (TIM-3) has emerged as an important regulator of innate immune responses. However, whether TIM-3-induced signaling promotes or inhibits the activation and maturation of dendritic cells (DCs) still remains uncertain. In addition, the TIM-3 signaling events involved in this immunoregulatory function are yet to be established. In this article, we report that TIM-3 crosslinking by anti-TIM-3 Ab inhibited DC activation and maturation by blocking the NF-κB pathway. After Ab-mediated crosslinking, TIM-3 became tyrosine phosphorylated, which then sequentially bound and activated the nonreceptor tyrosine kinases Bruton's tyrosine kinase (Btk) and c-Src. Activation of Btk-c-Src signaling in turn triggered the secretion of some inhibitory factor (or factors) from DCs that inhibited the NF-κB pathway and subsequent activation and maturation of DCs. Silencing of Btk or c-Src abrogated the inhibitory effects of TIM-3 on DCs. These results demonstrate an essential role for Btk-c-Src signaling in TIM-3-induced DC suppression. Thus, in addition to demonstrating an inhibitory role for TIM-3 signaling in DC activation, we define the molecular mechanism by which TIM-3 mediates this effect.
Collapse
Affiliation(s)
- Neeraj Maurya
- Division of Cell Biology and Immunology, Council of Scientific and Industrial Research-Institute of Microbial Technology, Chandigarh 160036, India
| | - Ravindra Gujar
- Division of Cell Biology and Immunology, Council of Scientific and Industrial Research-Institute of Microbial Technology, Chandigarh 160036, India
| | - Mamta Gupta
- Division of Cell Biology and Immunology, Council of Scientific and Industrial Research-Institute of Microbial Technology, Chandigarh 160036, India
| | - Vinod Yadav
- Division of Cell Biology and Immunology, Council of Scientific and Industrial Research-Institute of Microbial Technology, Chandigarh 160036, India
| | - Saurabh Verma
- Division of Cell Biology and Immunology, Council of Scientific and Industrial Research-Institute of Microbial Technology, Chandigarh 160036, India
| | - Pradip Sen
- Division of Cell Biology and Immunology, Council of Scientific and Industrial Research-Institute of Microbial Technology, Chandigarh 160036, India
| |
Collapse
|
42
|
Steelman AJ, Li J. Astrocyte galectin-9 potentiates microglial TNF secretion. J Neuroinflammation 2014; 11:144. [PMID: 25158758 PMCID: PMC4158089 DOI: 10.1186/s12974-014-0144-0] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2014] [Accepted: 07/31/2014] [Indexed: 12/31/2022] Open
Abstract
Background Aberrant neuroinflammation is suspected to contribute to the pathogenesis of myriad neurological diseases. As such, determining the pathways that promote or inhibit glial activation is of interest. Activation of the surface glycoprotein T-cell immunoglobulin and mucin-domain containing protein 3 (Tim-3) by the lectin galectin-9 has been implicated in promoting innate immune cell activation by potentiating or synergizing toll-like receptor (TLR) signaling. In the present study we examined the role of the Tim-3/galectin-9 pathway in glial activation in vitro. Method Primary monocultures of microglia or astrocytes, co-cultures containing microglia and astrocytes, and mixed glial cultures consisting of microglia, astrocytes and oligodendrocytes were stimulated with poly(I:C) or LPS, and galectin-9 up-regulation was determined. The effect of endogenous galectin-9 production on microglial activation was examined using cultures from wild-type and Lgals9 null mice. The ability for recombinant galectin-9 to promote microglia activation was also assessed. Tim-3 expression on microglia and BV2 cells was examined by qPCR and flow cytometry and its necessity in transducing the galectin-9 signal was determined using a Tim-3 specific neutralizing antibody or recombinant soluble Tim-3. Result Astrocytes potentiated TNF production from microglia following TLR stimulation. Poly(I:C) stimulation increased galectin-9 expression in microglia and microglial-derived factors promoted galectin-9 up-regulation in astrocytes. Astrocyte-derived galectin-9 in turn enhanced microglial TNF production. Similarly, recombinant galectin-9 enhanced poly(I:C)-induced microglial TNF and IL-6 production. Inhibition of Tim-3 did not alter TNF production in mixed glial cultures stimulated with poly(I:C). Conclusion Galectin-9 functions as an astrocyte-microglia communication signal and promotes cytokine production from microglia in a Tim-3 independent manner. Activation of CNS galectin-9 likely modulates neuroinflammatory processes in which TNF and IL-6 contribute to either pathology or reparation. Electronic supplementary material The online version of this article (doi:10.1186/s12974-014-0144-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | - Jianrong Li
- Department of Veterinary Integrative Biosciences and Institute for Neuroscience, Texas A&M University, Mail Stop 4458, College Station 77843, TX, USA.
| |
Collapse
|
43
|
Deng G, Carter J, Traystman RJ, Wagner DH, Herson PS. Pro-inflammatory T-lymphocytes rapidly infiltrate into the brain and contribute to neuronal injury following cardiac arrest and cardiopulmonary resuscitation. J Neuroimmunol 2014; 274:132-40. [PMID: 25084739 DOI: 10.1016/j.jneuroim.2014.07.009] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2014] [Revised: 07/03/2014] [Accepted: 07/15/2014] [Indexed: 01/11/2023]
Abstract
Although inflammatory mechanisms have been linked to neuronal injury following global cerebral ischemia, the presence of infiltrating peripheral immune cells remains understudied. We performed flow cytometry of single cell suspensions obtained from the brains of mice at varying time points after global cerebral ischemia induced by cardiac arrest and cardiopulmonary resuscitation (CA/CPR) to characterize the influx of lymphocytes into the injured brain. We observed that CA/CPR caused a large influx of lymphocytes within 3h of resuscitation that was maintained for the 3day duration of our experiments. Using cell staining flow cytometry we observed that the large majority of infiltrating lymphocytes were CD4(+) T cells. Intracellular stains revealed a large proportion of pro-inflammatory T cells expressing either TNFα or INFγ. Importantly, the lack of functional T cells in TCRα knockout mice reduced neuronal injury following CA/CPR, implicating pro-inflammatory T cells in the progression of ischemic neuronal injury. Finally, we made the remarkable observation that the novel CD4(+)CD40(+) (Th40) population of pro-inflammatory T cells that are strongly associated with autoimmunity are present in large numbers in the injured brain. These data indicate that studies investigating the neuro-immune response after global cerebral ischemia should consider the role of infiltrating T cells in orchestrating the acute and sustained immune response.
Collapse
Affiliation(s)
- Guiying Deng
- Department of Pharmacology, University of Colorado School of Medicine, 12800 E. 19th Ave., Aurora, CO 80045, USA
| | - Jessica Carter
- Webb Waring Center, University of Colorado School of Medicine, 12850 E. Montview Blvd., Aurora, CO 80045, USA
| | - Richard J Traystman
- Department of Pharmacology, University of Colorado School of Medicine, 12800 E. 19th Ave., Aurora, CO 80045, USA; Department of Anesthesiology, University of Colorado School of Medicine, 12800 E. 19th Ave., Aurora, CO 80045, USA
| | - David H Wagner
- Webb Waring Center, University of Colorado School of Medicine, 12850 E. Montview Blvd., Aurora, CO 80045, USA
| | - Paco S Herson
- Department of Pharmacology, University of Colorado School of Medicine, 12800 E. 19th Ave., Aurora, CO 80045, USA; Department of Anesthesiology, University of Colorado School of Medicine, 12800 E. 19th Ave., Aurora, CO 80045, USA.
| |
Collapse
|
44
|
Madireddi S, Eun SY, Lee SW, Nemčovičová I, Mehta AK, Zajonc DM, Nishi N, Niki T, Hirashima M, Croft M. Galectin-9 controls the therapeutic activity of 4-1BB-targeting antibodies. ACTA ACUST UNITED AC 2014; 211:1433-48. [PMID: 24958847 PMCID: PMC4076583 DOI: 10.1084/jem.20132687] [Citation(s) in RCA: 101] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Biologics to TNF family receptors are prime candidates for therapy of immune disease. Whereas recent studies have highlighted a requirement for Fcγ receptors in enabling the activity of CD40, TRAILR, and GITR when engaged by antibodies, other TNFR molecules may be controlled by additional mechanisms. Antibodies to 4-1BB (CD137) are currently in clinical trials and can both augment immunity in cancer and promote regulatory T cells that inhibit autoimmune disease. We found that the action of agonist anti-4-1BB in suppressing autoimmune and allergic inflammation was completely dependent on Galectin-9 (Gal-9). Gal-9 directly bound to 4-1BB, in a site distinct from the binding site of antibodies and the natural ligand of 4-1BB, and Gal-9 facilitated 4-1BB aggregation, signaling, and functional activity in T cells, dendritic cells, and natural killer cells. Conservation of the Gal-9 interaction in humans has important implications for effective clinical targeting of 4-1BB and possibly other TNFR superfamily molecules.
Collapse
Affiliation(s)
- Shravan Madireddi
- Division of Immune Regulation and Division of Cell Biology, La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037
| | - So-Young Eun
- Division of Immune Regulation and Division of Cell Biology, La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037
| | - Seung-Woo Lee
- Division of Immune Regulation and Division of Cell Biology, La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037
| | - Ivana Nemčovičová
- Division of Immune Regulation and Division of Cell Biology, La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037
| | - Amit Kumar Mehta
- Division of Immune Regulation and Division of Cell Biology, La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037
| | - Dirk M Zajonc
- Division of Immune Regulation and Division of Cell Biology, La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037
| | - Nozomu Nishi
- Life Science Research Center; and Department of Immunology and Immunopathology, Faculty of Medicine; Kagawa University, Kagawa 761-0793, Japan
| | - Toshiro Niki
- Life Science Research Center; and Department of Immunology and Immunopathology, Faculty of Medicine; Kagawa University, Kagawa 761-0793, Japan GalPharma Co., Ltd., Kagawa 760-0301, Japan
| | - Mitsuomi Hirashima
- Life Science Research Center; and Department of Immunology and Immunopathology, Faculty of Medicine; Kagawa University, Kagawa 761-0793, Japan GalPharma Co., Ltd., Kagawa 760-0301, Japan
| | - Michael Croft
- Division of Immune Regulation and Division of Cell Biology, La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037
| |
Collapse
|
45
|
Waid DM, Schreiner T, Vaitaitis G, Carter JR, Corboy JR, Wagner DH. Defining a new biomarker for the autoimmune component of Multiple Sclerosis: Th40 cells. J Neuroimmunol 2014; 270:75-85. [PMID: 24690203 DOI: 10.1016/j.jneuroim.2014.03.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2013] [Revised: 02/28/2014] [Accepted: 03/06/2014] [Indexed: 12/31/2022]
Abstract
Multiple Sclerosis (MS) is a chronic inflammatory, neurodegenerative disease. Diagnosis is very difficult requiring defined symptoms and multiple CNS imaging. A complicating issue is that almost all symptoms are not disease specific for MS. Autoimmunity is evident, yet the only immune-related diagnostic tool is cerebral-spinal fluid examination for oligoclonal bands. This study addresses the impact of Th40 cells, a pathogenic effector subset of helper T cells, in MS. MS patients including relapsing/remitting MS, secondary progressive MS and primary progressive MS were examined for Th40 cell levels in peripheral blood and, similar to our findings in autoimmune type 1 diabetes, the levels were significantly (p<0.0001) elevated compared to controls including healthy non-autoimmune subjects and another non-autoimmune chronic disease. Classically identified Tregs were at levels equivalent to non-autoimmune controls but the Th40/Treg ratio still predicted autoimmunity. The cohort displayed a wide range of HLA haplotypes including the GWAS identified predictive HLA-DRB1*1501 (DR2). However half the subjects did not carry DR2 and regardless of HLA haplotype, Th40 cells were expanded during disease. In RRMS Th40 cells demonstrated a limited TCR clonality. Mechanistically, Th40 cells demonstrated a wide array of response to CNS associated self-antigens that was dependent upon HLA haplotype. Th40 cells were predominantly memory phenotype producing IL-17 and IFNγ with a significant portion producing both inflammatory cytokines simultaneously suggesting an intermediary between Th1 and Th17 phenotypes.
Collapse
Affiliation(s)
- Dan M Waid
- Webb-Waring Center and Department of Medicine, University of Colorado Denver Anschutz Medical Campus, 12850 East Montview Blvd., Aurora, CO 80045, United States
| | - Teri Schreiner
- Department of Neurology, University of Colorado Denver Anschutz Medical Campus, 12850 East Montview Blvd., Aurora, CO 80045, United States
| | - Gisela Vaitaitis
- Webb-Waring Center and Department of Medicine, University of Colorado Denver Anschutz Medical Campus, 12850 East Montview Blvd., Aurora, CO 80045, United States
| | - Jessica R Carter
- Webb-Waring Center and Department of Medicine, University of Colorado Denver Anschutz Medical Campus, 12850 East Montview Blvd., Aurora, CO 80045, United States
| | - John R Corboy
- Department of Neurology, University of Colorado Denver Anschutz Medical Campus, 12850 East Montview Blvd., Aurora, CO 80045, United States
| | - David H Wagner
- Webb-Waring Center and Department of Medicine, University of Colorado Denver Anschutz Medical Campus, 12850 East Montview Blvd., Aurora, CO 80045, United States.
| |
Collapse
|
46
|
Jiang J, Jin MS, Kong F, Cao D, Ma HX, Jia Z, Wang YP, Suo J, Cao X. Decreased galectin-9 and increased Tim-3 expression are related to poor prognosis in gastric cancer. PLoS One 2013; 8:e81799. [PMID: 24339967 PMCID: PMC3858245 DOI: 10.1371/journal.pone.0081799] [Citation(s) in RCA: 135] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2013] [Accepted: 10/26/2013] [Indexed: 12/29/2022] Open
Abstract
INTRODUCTION Galectin-9 (Gal-9) induces adhesion and aggregation of certain cell types and inhibits the metastasis of tumor cells. T-cell immunoglobulin-and mucin domain-3-containing molecule 3 (TIM-3) plays a pivotal role in immune regulation. The aim of this study is to investigate Gal-9 and TIM-3 alterations in gastric cancer and their prognostic values. METHODS Gal-9 and Tim-3 expression was evaluated using a tissue microarray immunohistochemistry method in 305 gastric cancers, of which 84 had paired adjacent normal samples. Cell lines SGC-7901, BGC-823, MGC-803, MKN45 and GES-1 were also stained. Correlations were analyzed between expression levels of Gal-9 and Tim-3 protein and tumor parameters or clinical outcomes. RESULTS Gal-9 and Tim-3 stained positive on tumor cells in 86.2% (263/305), and 60.0% (183/305) patients with gastric cancer, respectively. Gal-9 expression was significantly higher in cancer than in normal mucosa (P<0.001). Reduced Gal-9 expression was associated with lymph-vascular invasion, lymph node metastasis, distant metastasis and worse TNM staging (P = 0.034, P = 0.009, P = 0.002 and P = 0.043, respectively). In contrast, Tim-3 expression was significantly lower in cancer than in control mucosa (P<0.001). Patients with lymph-vascular invasion had higher expression levels of Tim-3 (P<0.001). Moreover, multivariate analysis shows that both high Gal-9 expression and low Tim-3 expression were significantly associated with long overall survival (P = 0.002, P = 0.010, respectively); the combination of Gal-9 and Tim-3 expression was an independent prognostic predictor for patients with gastric cancer (RR: 0.43; 95%CI: 0.20-0.93). H.pylori infection status was not associated with Gal-9 and Tim-3 expression (P = 0.102, P = 0.565). CONCLUSION The results suggest that expression of Gal-9 and Tim-3 in tumor cells may be a potential, independent prognostic factor for patients with gastric cancer. Gal-9 and TIM-3 may play an important part in the gastric carcinogenesis.
Collapse
Affiliation(s)
- Jing Jiang
- Division of Clinical Epidemiology, First Hospital of Jilin University, Changchun, China
| | - Mei-Shan Jin
- Division of Pathology, First Hospital of Jilin University, Changchun, China
| | - Fei Kong
- Division of Clinical Epidemiology, First Hospital of Jilin University, Changchun, China
| | - Donghui Cao
- Division of Clinical Epidemiology, First Hospital of Jilin University, Changchun, China
| | - Hong-Xi Ma
- Division of Pathology, First Hospital of Jilin University, Changchun, China
| | - Zhifang Jia
- Division of Clinical Epidemiology, First Hospital of Jilin University, Changchun, China
| | - Yin-Ping Wang
- Division of Pathology, First Hospital of Jilin University, Changchun, China
| | - Jian Suo
- Department of Gastric and Colorectal Surgery, First Hospital of Jilin University, Changchun, China
| | - Xueyuan Cao
- Department of Gastric and Colorectal Surgery, First Hospital of Jilin University, Changchun, China
| |
Collapse
|
47
|
Abstract
Galectin-9 (Gal-9) is known for induction of apoptosis in IFN-γ and IL-17 producing T-cells and amelioration of autoimmunity in murine models. On the other hand, Gal-9 induced IFN-γ positive T-cells in a sarcoma mouse model and in food allergy, suggesting that Gal-9 can have diametric effects on T-cell immunity. Here, we aimed to delineate the immunomodulatory effect of Gal-9 on human resting and ex vivo activated peripheral blood lymphocytes. Treatment of resting lymphocytes with low concentrations of Gal-9 (5–30 nM) induced apoptosis in ∼60% of T-cells after 1 day, but activated the surviving T-cells. These viable T-cells started to expand after 4 days with up to 6 cell divisions by day 7 and an associated shift from naïve towards central memory and IFN-γ producing phenotype. In the presence of T-cell activation signals (anti-CD3/IL-2) Gal-9 did not induce T-cell expansion, but shifted the CD4/CD8 balance towards a CD4-dominated T-cell response. Thus, Gal-9 activates resting T-cells in the absence of typical T-cell activating signals and promotes their transition to a TH1/C1 phenotype. In the presence of T-cell activating signals T-cell immunity is directed towards a CD4-driven response by Gal-9. Thus, Gal-9 may specifically enhance reactive immunological memory.
Collapse
|
48
|
Galectin-9-mediated protection from allo-specific T cells as a mechanism of immune privilege of corneal allografts. PLoS One 2013; 8:e63620. [PMID: 23667648 PMCID: PMC3646846 DOI: 10.1371/journal.pone.0063620] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2013] [Accepted: 04/04/2013] [Indexed: 12/12/2022] Open
Abstract
The eye is an immune-privileged organ, and corneal transplantation is therefore one of the most successful organ transplantation. The immunosuppressive intraocular microenvironment is known as one of the mechanisms underlying immune privilege in the eye. T-cell immunoglobulin and mucin domain (Tim)-3 is a regulatory molecule for T-cell function, and galectin (Gal)-9 is a Tim-3 ligand. We investigated the role of this pathway in establishing the immune-privileged status of corneal allografts in mice. Gal-9 is constitutively expressed on the corneal epithelium, endothelium and iris-ciliary body in normal mouse eyes and eyes bearing surviving allografts, and Tim-3 was expressed on CD8 T cells infiltrating the allografts. Allograft survival in recipients treated with anti-Tim-3 monoclonal antibody (mAb) or anti-Gal-9 mAb was significantly shorter than that in control recipients. In vitro, destruction of corneal endothelial cells by allo-reactive T cells was enhanced when the cornea was pretreated with anti-Gal-9 mAb. Blockade of Tim-3 or Gal-9 did not abolish anterior chamber-associated immune deviation. We propose that constitutive expression of Gal-9 plays an immunosuppressive role in corneal allografts. Gal-9 expressed on corneal endothelial cells protects them from destruction by allo-reactive T cells within the cornea.
Collapse
|
49
|
Golden-Mason L, McMahan RH, Strong M, Reisdorph R, Mahaffey S, Palmer BE, Cheng L, Kulesza C, Hirashima M, Niki T, Rosen HR. Galectin-9 functionally impairs natural killer cells in humans and mice. J Virol 2013; 87:4835-45. [PMID: 23408620 PMCID: PMC3624298 DOI: 10.1128/jvi.01085-12] [Citation(s) in RCA: 101] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2012] [Accepted: 01/24/2013] [Indexed: 12/17/2022] Open
Abstract
Galectin-9 is a pleiotropic immune modulator affecting numerous cell types of innate and adaptive immunity. Patients with chronic infection with either hepatitis C virus (HCV) or HIV have elevated circulating levels. Limited data exist on the regulation of natural killer (NK) cell function through interaction with galectin-9. We found that galectin-9 ligation downregulates multiple immune-activating genes, including eight involved in the NK cell-mediated cytotoxicity pathway, impairs lymphokine-activated killing, and decreases the proportion of gamma interferon (IFN-γ)-producing NK cells that had been stimulated with interleukin-12 (IL-12)/IL-15. We demonstrate that the transcriptional and functional changes induced by galectin-9 are independent of Tim-3. Consistent with these results for humans, we find that the genetic absence of galectin-9 in mice is associated with greater IFN-γ production by NK cells and enhanced degranulation. We also show that in the setting of a short-term (4-day) murine cytomegalovirus infection, terminally differentiated NKs accumulate in the livers of galectin-9 knockout mice, and that hepatic NKs spontaneously produce significantly more IFN-γ in this setting. Taken together, our results indicate that galectin-9 engagement impairs the function of NK cells, including cytotoxicity and cytokine production.
Collapse
Affiliation(s)
- Lucy Golden-Mason
- Division of Gastroenterology & Hepatology, Hepatitis C Center, Department of Medicine, University of Colorado Denver (UCD), Aurora, Colorado, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Tang ZH, Liang S, Potter J, Jiang X, Mao HQ, Li Z. Tim-3/galectin-9 regulate the homeostasis of hepatic NKT cells in a murine model of nonalcoholic fatty liver disease. THE JOURNAL OF IMMUNOLOGY 2013; 190:1788-96. [PMID: 23296703 DOI: 10.4049/jimmunol.1202814] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
T cell Ig and mucin domain (Tim)-3 is well known to interact with its natural ligand, Galectin-9 (Gal-9), to regulate T cell function. However, little is known about the function of Tim-3/Gal-9 signaling in the pathogenesis of nonalcoholic fatty liver disease (NAFLD) mediated by hepatic NKT cells that also express Tim-3. In the current study, we define the role and the mechanism of Tim-3/Gal-9 signaling in hepatic NKT cell regulation in a mouse model of diet-induced NAFLD. Adult male wild-type or CD1d knockout C57BL/6 mice were fed a high-fat diet to induce steatosis. Some of the mice also received one or a combination of Gal-9, anti-IL-15R/IL-15 mAb, rIL-15, α-galactosylceramide, and multilamellar liposomes containing Cl(2)MDP. The expression of Tim-3 and various markers reflecting cell proliferation, activation, cytokine production, and apoptosis was analyzed. Liver histology, steatosis grade, and hepatic triglyceride content were also evaluated. In the liver, Tim-3(+) NKT cells are in an activated state, and Gal-9 directly induces Tim-3(+) NKT cell apoptosis and contributes to the depletion of NKT cells in diet-induced steatosis. However, Gal-9 also interacts with Tim-3-expressing Kupffer cells to induce secretion of IL-15, thus promoting NKT cell proliferation. Exogenous administration of Gal-9 significantly ameliorates diet-induced steatosis by modulating hepatic NKT cell function. In summary, the Tim-3/Gal-9-signaling pathway plays a critical role in the homeostasis of hepatic NKT cells through activation-induced apoptosis and secondary proliferation and, thus, contributes to the pathogenesis of NAFLD.
Collapse
Affiliation(s)
- Zhao-Hui Tang
- Department of Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | | | | | | | | | | |
Collapse
|