1
|
Rangaraj S, Agarwal A, Banerjee S. Bird's Eye View on Mycobacterium tuberculosis-HIV Coinfection: Understanding the Molecular Synergism, Challenges, and New Approaches to Therapeutics. ACS Infect Dis 2025; 11:1042-1063. [PMID: 40229972 DOI: 10.1021/acsinfecdis.4c00870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/16/2025]
Abstract
Tuberculosis (TB), caused by Mycobacterium tuberculosis (M.tb), is the most common secondary infection in the Human Immunodeficiency Virus (HIV) infected population, accounting for more than one-fourth of deaths in people living with HIV (PLWH). Reciprocally, HIV infection increases the susceptibility to primary TB or reactivation of latent TB by several folds. The synergistic interactions between M.tb and HIV not only potentiate their deleterious impact but also complicate the clinical management of both the diseases. M.tb-HIV coinfected patients have a high risk of failure of accurate diagnosis, treatment inefficiency for both TB and HIV, concurrent nontuberculous mycobacterial infections, other comorbidities such as diabetes mellitus, severe cytotoxicity due to drug overburden, and immune reconstitution inflammatory syndrome (IRIS). The need of the hour is to understand M.tb-HIV coinfection biology and their collective impact on the host immunocompetence and to think of out-of-the-box treatment perspectives, including host-directed therapy under the rising view of homeostatic medicines. This review aims to highlight the molecular players, both from the pathogens and host, that facilitate the synergistic interactions and host-associated proteins/enzymes regulating immunometabolism, underlining potential targets for designing and screening chemical inhibitors to reduce the burden of both pathogens concomitantly during M.tb-HIV coinfection. To appreciate the necessity of revisiting therapeutic approaches and research priorities, we provide a glimpse of anti-TB and antiretroviral drug-drug interactions, project the gaps in our understanding of coinfection biology, and also enlist some key research initiatives that will help us deal with the synergistic epidemic of M.tb-HIV coinfection.
Collapse
Affiliation(s)
- Siranjeevi Rangaraj
- Laboratory of Molecular Pathogenesis, Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana 500046, India
| | - Anushka Agarwal
- Laboratory of Molecular Pathogenesis, Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana 500046, India
| | - Sharmistha Banerjee
- Laboratory of Molecular Pathogenesis, Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana 500046, India
| |
Collapse
|
2
|
Bohórquez JA, Jagannath C, Xu H, Wang X, Yi G. T Cell Responses during Human Immunodeficiency Virus/ Mycobacterium tuberculosis Coinfection. Vaccines (Basel) 2024; 12:901. [PMID: 39204027 PMCID: PMC11358969 DOI: 10.3390/vaccines12080901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 08/05/2024] [Accepted: 08/07/2024] [Indexed: 09/03/2024] Open
Abstract
Coinfection with Mycobacterium tuberculosis (Mtb) and the human immunodeficiency virus (HIV) is a significant public health concern. Individuals infected with Mtb who acquire HIV are approximately 16 times more likely to develop active tuberculosis. T cells play an important role as both targets for HIV infection and mediators of the immune response against both pathogens. This review aims to synthesize the current literature and provide insights into the effects of HIV/Mtb coinfection on T cell populations and their contributions to immunity. Evidence from multiple in vitro and in vivo studies demonstrates that T helper responses are severely compromised during coinfection, leading to impaired cytotoxic responses. Moreover, HIV's targeting of Mtb-specific cells, including those within granulomas, offers an explanation for the severe progression of the disease. Herein, we discuss the patterns of differentiation, exhaustion, and transcriptomic changes in T cells during coinfection, as well as the metabolic adaptations that are necessary for T cell maintenance and functionality. This review highlights the interconnectedness of the immune response and the pathogenesis of HIV/Mtb coinfection.
Collapse
Affiliation(s)
- José Alejandro Bohórquez
- Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler, Tyler, TX 75708, USA;
- Center for Biomedical Research, The University of Texas Health Science Center at Tyler, Tyler, TX 75708, USA
- Department of Medicine, The University of Texas at Tyler School of Medicine, Tyler, TX 75708, USA
| | - Chinnaswamy Jagannath
- Department of Pathology and Genomic Medicine, Center for Infectious Diseases and Translational Medicine, Houston Methodist Research Institute, Houston, TX 77030, USA;
| | - Huanbin Xu
- Tulane National Primate Research Center, Tulane University School of Medicine, Tulane University, Covington, LA 70112, USA; (H.X.); (X.W.)
| | - Xiaolei Wang
- Tulane National Primate Research Center, Tulane University School of Medicine, Tulane University, Covington, LA 70112, USA; (H.X.); (X.W.)
| | - Guohua Yi
- Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler, Tyler, TX 75708, USA;
- Center for Biomedical Research, The University of Texas Health Science Center at Tyler, Tyler, TX 75708, USA
- Department of Medicine, The University of Texas at Tyler School of Medicine, Tyler, TX 75708, USA
| |
Collapse
|
3
|
Bender Ignacio RA, Long J, Saha A, Nguyen FK, Joudeh L, Valinetz E, Mendelsohn SC, Scriba TJ, Hatherill M, Janes H, Churchyard G, Buchbinder S, Duerr A, Shah JA, Hawn TR. Mycobacterium tuberculosis infection, immune activation, and risk of HIV acquisition. PLoS One 2022; 17:e0267729. [PMID: 35503767 PMCID: PMC9064099 DOI: 10.1371/journal.pone.0267729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 04/12/2022] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Although immune activation is associated with HIV acquisition, the nature of inflammatory profiles that increase HIV risk, which may include responses to M. tuberculosis (Mtb) infection, are not well characterized. METHODS We conducted a nested case-control study using cryopreserved samples from persons who did and did not acquire HIV during the multinational Step clinical trial of the MRKAd5 HIV-1 vaccine. PBMCs from the last HIV-negative sample from incident HIV cases and controls were stimulated with Mtb-specific antigens (ESAT-6/CFP-10) and analyzed by flow cytometry with intracellular cytokine staining and scored with COMPASS. We measured inflammatory profiles with five Correlates of TB Risk (CoR) transcriptomic signatures. Our primary analysis examined the association of latent Mtb infection (LTBI; IFNγ+CD4+ T cell frequency) or RISK6 CoR signature with HIV acquisition. Conditional logistic regression analyses, adjusted for known predictors of HIV acquisition, were employed to assess whether TB-associated immune markers were associated with HIV acquisition. RESULTS Among 465 participants, LTBI prevalence (21.5% controls vs 19.1% cases, p = 0.51) and the RISK6 signature were not higher in those who acquired HIV. In exploratory analyses, Mtb antigen-specific polyfunctional CD4+ T cell COMPASS scores (aOR 0.96, 95% CI 0.77, 1.20) were not higher in those who acquired HIV. Two CoR signatures, Sweeney3 (aOR 1.38 (1.07, 1.78) per SD change) and RESPONSE5 (0.78 (0.61, 0.98)), were associated with HIV acquisition. The transcriptomic pattern used to differentiate active vs latent TB (Sweeney3) was most strongly associated with acquiring HIV. CONCLUSIONS LTBI, Mtb polyfunctional antigen-specific CD4+ T cell activation, and RISK6 were not identified as risks for HIV acquisition. In exploratory transcriptomic analyses, two CoR signatures were associated with HIV risk after adjustment for known behavioral and clinical risk factors. We identified host gene expression signatures associated with HIV acquisition, but the observed effects are likely not mediated through Mtb infection.
Collapse
Affiliation(s)
- Rachel A. Bender Ignacio
- Department of Medicine, University of Washington, Seattle, WA, United States of America
- Vaccine and Infectious Diseases Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States of America
- * E-mail:
| | - Jessica Long
- Department of Medicine, University of Washington, Seattle, WA, United States of America
| | - Aparajita Saha
- Department of Medicine, University of Washington, Seattle, WA, United States of America
| | - Felicia K. Nguyen
- Department of Medicine, University of Washington, Seattle, WA, United States of America
| | - Lara Joudeh
- Department of Medicine, University of Washington, Seattle, WA, United States of America
| | - Ethan Valinetz
- Department of Medicine, University of Washington, Seattle, WA, United States of America
| | - Simon C. Mendelsohn
- South African Tuberculosis Vaccine Initiative, Institute of Infectious Disease and Molecular Medicine, and Division of Immunology, Department of Pathology, University of Cape Town, Cape Town, South Africa
| | - Thomas J. Scriba
- South African Tuberculosis Vaccine Initiative, Institute of Infectious Disease and Molecular Medicine, and Division of Immunology, Department of Pathology, University of Cape Town, Cape Town, South Africa
| | - Mark Hatherill
- South African Tuberculosis Vaccine Initiative, Institute of Infectious Disease and Molecular Medicine, and Division of Immunology, Department of Pathology, University of Cape Town, Cape Town, South Africa
| | - Holly Janes
- Vaccine and Infectious Diseases Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States of America
| | - Gavin Churchyard
- Aurum Institute, Parktown, South Africa
- School of Public Health, University of Witwatersrand, Johannesburg, South Africa
- Department of Medicine, Vanderbilt University, Nashville, TN, United States of America
| | - Susan Buchbinder
- San Francisco Department of Public Health and Departments of Medicine and Epidemiology, University of California San Francisco, San Francisco, CA, United States of America
| | - Ann Duerr
- Vaccine and Infectious Diseases Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States of America
| | - Javeed A. Shah
- Department of Medicine, University of Washington, Seattle, WA, United States of America
- Veteran Affairs Puget Sound Healthcare System, Seattle, WA, United States of America
| | - Thomas R. Hawn
- Department of Medicine, University of Washington, Seattle, WA, United States of America
| |
Collapse
|
4
|
He X, Eddy JJ, Jacobson KR, Henderson AJ, Agosto LM. Enhanced Human Immunodeficiency Virus-1 Replication in CD4+ T Cells Derived From Individuals With Latent Mycobacterium tuberculosis Infection. J Infect Dis 2021; 222:1550-1560. [PMID: 32417884 DOI: 10.1093/infdis/jiaa257] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 05/09/2020] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Mycobacterium tuberculosis (Mtb) and human immunodeficiency virus (HIV) coinfection increases mortality, accelerates progression to acquired immune deficiency syndrome, and exacerbates tuberculosis disease. However, the impact of pre-existing Mtb infection on subsequent HIV infection has not been fully explored. We hypothesized that Mtb infection creates an immunological environment that influences the course of HIV infection, and we investigated whether pre-existing Mtb infection impacts the susceptibility of CD4+ T cells to HIV-1 infection. METHODS Plasma and blood CD4+ T cells isolated from HIV-negative individuals across the Mtb infection spectrum and non-Mtb-infected control individuals were analyzed for inflammation markers and T-cell phenotypes. CD4+ T cells were infected with HIV-1 in vitro and were monitored for viral replication. RESULTS We observed differences in proinflammatory cytokines and the relative proportion of memory T-cell subsets depending on Mtb infection status. CD4+ T cells derived from individuals with latent Mtb infection supported more efficient HIV-1 transcription, release, and replication. Enhanced HIV-1 replication correlated with higher percentages of CD4+ TEM and TTD cells. CONCLUSIONS Pre-existing Mtb infection creates an immunological environment that reflects Mtb infection status and influences the susceptibility of CD4+ T cells to HIV-1 replication. These findings provide cellular and molecular insights into how pre-existing Mtb infection influences HIV-1 pathogenesis.
Collapse
Affiliation(s)
- Xianbao He
- Department of Medicine, Section of Infectious Diseases, Boston University School of Medicine and Boston Medical Center, Boston, Massachusetts, USA
| | - Jared J Eddy
- Department of Medicine, Section of Infectious Diseases, Boston University School of Medicine and Boston Medical Center, Boston, Massachusetts, USA
| | - Karen R Jacobson
- Department of Medicine, Section of Infectious Diseases, Boston University School of Medicine and Boston Medical Center, Boston, Massachusetts, USA
| | - Andrew J Henderson
- Department of Medicine, Section of Infectious Diseases, Boston University School of Medicine and Boston Medical Center, Boston, Massachusetts, USA.,Department of Microbiology, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Luis M Agosto
- Department of Medicine, Section of Infectious Diseases, Boston University School of Medicine and Boston Medical Center, Boston, Massachusetts, USA
| |
Collapse
|
5
|
Adesanya OA, Uche-Orji CI, Adedeji YA, Joshua JI, Adesola AA, Chukwudike CJ. Expanded Scope of Bacillus Calmette-Guerin (BCG) Vaccine Applicability in Disease Prophylaxis, Diagnostics, and Immunotherapeutics. INFECTIOUS MICROBES & DISEASES 2020; 2:144-150. [PMID: 38630099 PMCID: PMC7769055 DOI: 10.1097/im9.0000000000000040] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 10/02/2020] [Accepted: 10/06/2020] [Indexed: 11/29/2022]
Abstract
Following the discovery of the Bacillus Calmette-Guerin (BCG) vaccine, its efficacy against Mycobacterium tuberculosis was soon established, with several countries adopting universal BCG vaccination schemes for their populations. Soon, however, studies aimed to further establish the efficacy of the vaccine in different populations discovered that the vaccine has a larger effect in reducing mortality rate than could be explained by its effect on tuberculosis alone, which sparked suggestions that the BCG vaccine could have effects on other unrelated or non-mycobacterial pathogens causing diseases in humans. These effects were termed heterologous, non-specific or off-target effects and have been shown to be due to both innate and adaptive immune system responses. Experiments carried out in a bid to further understand these effects led to many more discoveries about the applicability of the BCG vaccine for the prevention, diagnosis, and treatment of certain disease conditions. As we approach the second century since the discovery of the vaccine, we believe it is timely to review these interesting applications of the BCG vaccine, such as in the prevention of diabetes, atherosclerosis, and leukemia; the diagnosis of Kawasaki disease; and the treatment of multiple sclerosis, non-muscle invading bladder cancer, and stage III melanoma. Furthermore, complications associated with the administration of the BCG vaccine to certain groups of patients, including those with severe combined immunodeficiency and HIV, have been well described in literature, and we conclude by describing the mechanisms behind these complications and discuss their implications on vaccination strategies, especially in low-resource settings.
Collapse
Affiliation(s)
- Oluwafolajimi A. Adesanya
- Institute for Advanced Medical Research and Training (IAMRAT), College of Medicine, University of Ibadan, Ibadan, Nigeria
| | | | - Yeshua A. Adedeji
- Department of Medicine, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - John I. Joshua
- Department of Medicine, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Adeniyi A. Adesola
- Department of Medicine, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | | |
Collapse
|
6
|
Waters R, Ndengane M, Abrahams MR, Diedrich CR, Wilkinson RJ, Coussens AK. The Mtb-HIV syndemic interaction: why treating M. tuberculosis infection may be crucial for HIV-1 eradication. Future Virol 2020; 15:101-125. [PMID: 32273900 PMCID: PMC7132588 DOI: 10.2217/fvl-2019-0069] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Accelerated tuberculosis and AIDS progression seen in HIV-1 and Mycobacterium tuberculosis (Mtb)-coinfected individuals indicates the important interaction between these syndemic pathogens. The immunological interaction between HIV-1 and Mtb has been largely defined by how the virus exacerbates tuberculosis disease pathogenesis. Understanding of the mechanisms by which pre-existing or subsequent Mtb infection may favor the replication, persistence and progression of HIV, is less characterized. We present a rationale for the critical consideration of ‘latent’ Mtb infection in HIV-1 prevention and cure strategies. In support of this position, we review evidence of the effect of Mtb infection on HIV-1 acquisition, replication and persistence. We propose that ‘latent’ Mtb infection may have considerable impact on HIV-1 pathogenesis and the continuing HIV-1 epidemic in sub-Saharan Africa.
Collapse
Affiliation(s)
- Robyn Waters
- Wellcome Centre for Infectious Diseases Research in Africa, Institute of Infectious Disease & Molecular Medicine, University of Cape Town, Observatory 7925, WC, South Africa.,Department of Medicine, University of Cape Town, Observatory 7925, WC, South Africa
| | - Mthawelanga Ndengane
- Wellcome Centre for Infectious Diseases Research in Africa, Institute of Infectious Disease & Molecular Medicine, University of Cape Town, Observatory 7925, WC, South Africa.,Department of Pathology, University of Cape Town, Observatory 7925, WC, South Africa
| | - Melissa-Rose Abrahams
- Wellcome Centre for Infectious Diseases Research in Africa, Institute of Infectious Disease & Molecular Medicine, University of Cape Town, Observatory 7925, WC, South Africa.,Department of Pathology, University of Cape Town, Observatory 7925, WC, South Africa
| | - Collin R Diedrich
- Department of Pediatrics, Children's Hospital of Pittsburgh of the University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Robert J Wilkinson
- Wellcome Centre for Infectious Diseases Research in Africa, Institute of Infectious Disease & Molecular Medicine, University of Cape Town, Observatory 7925, WC, South Africa.,Department of Medicine, University of Cape Town, Observatory 7925, WC, South Africa.,Department of Infectious Diseases, Imperial College London, London W2 1PG, United Kingdom.,The Francis Crick Institute, London NW1 1AT, United Kingdom
| | - Anna K Coussens
- Wellcome Centre for Infectious Diseases Research in Africa, Institute of Infectious Disease & Molecular Medicine, University of Cape Town, Observatory 7925, WC, South Africa.,Department of Pathology, University of Cape Town, Observatory 7925, WC, South Africa.,Infectious Diseases and Immune Defence Division, The Walter & Eliza Hall Institute of Medical Research, Parkville 3279, VIC, Australia.,Division of Medical Biology, Faculty of Medicine, Dentistry & Health Sciences, University of Melbourne, Parkville 3279, VIC, Australia
| |
Collapse
|
7
|
Yamazaki-Nakashimada MA, Unzueta A, Berenise Gámez-González L, González-Saldaña N, Sorensen RU. BCG: a vaccine with multiple faces. Hum Vaccin Immunother 2020; 16:1841-1850. [PMID: 31995448 DOI: 10.1080/21645515.2019.1706930] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
BCG has been recommended because of its efficacy against disseminated and meningeal tuberculosis. The BCG vaccine has other mechanisms of action besides tuberculosis protection, with immunomodulatory properties that are now being discovered. Reports have shown a significant protective effect against leprosy. Randomized controlled trials suggest that BCG vaccine has beneficial heterologous (nonspecific) effects on mortality in some developing countries. BCG immunotherapy is considered the gold standard adjuvant treatment for non-muscle-invasive bladder cancer. BCG vaccine has also been tested as treatment for diabetes and multiple sclerosis. Erythema of the BCG site is recognized as a clinical clue in Kawasaki disease. BCG administration in the immunodeficient patient is associated with local BCG disease (BCGitis) or disseminated BCG disease (BCGosis) with fatal consequences. BCG administration has been associated with the development of autoimmunity. We present a brief review of the diverse facets of the vaccine, with the discovery of its new modes of action providing new perspectives on this old, multifaceted and controversial vaccine.
Collapse
Affiliation(s)
| | - Alberto Unzueta
- Gastroenterology and Transplant Hepatology, Geisinger Medical Center , Danville, PA, USA
| | | | | | - Ricardo U Sorensen
- Department of Pediatrics, Louisiana State University Health Sciences Center, Louisiana Primary Immunodeficiency Network , New Orleans, LA, USA.,Faculty of Medicine, University of La Frontera , Temuco, Chile
| |
Collapse
|
8
|
Kilpeläinen A, Maya-Hoyos M, Saubí N, Soto CY, Joseph Munne J. Advances and challenges in recombinant Mycobacterium bovis BCG-based HIV vaccine development: lessons learned. Expert Rev Vaccines 2018; 17:1005-1020. [PMID: 30300040 DOI: 10.1080/14760584.2018.1534588] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
INTRODUCTION Human Immunodeficiency Virus/Acquired Immune Deficiency Syndrome, tuberculosis, and malaria are responsible for most human deaths produced by infectious diseases worldwide. Vaccination against HIV requires generation of memory T cells and neutralizing antibodies, mucosal immunity, and stimulation of an innate immune responses. In this context, the use of Mycobacterium bovis bacillus Calmette-Guérin (BCG) as a live vaccine vehicle is a promising approach for T-cell induction. AREAS COVERED In this review, we provide a comprehensive summary of the literature regarding immunogenicity studies in animal models performed since 2005. Furthermore, we provide expert commentary and 5-year view on how the development of potential recombinant BCG-based HIV vaccines involves careful selection of the HIV antigen, expression vectors, promoters, BCG strain, preclinical animal models, influence of preexisting immunity, and safety issues, for the rational design of recombinant BCG:HIV vaccines to prevent HIV transmission in the general population. EXPERT COMMENTARY The three critical issues to be considered when developing a rBCG:HIV vaccine are codon optimization, antigen localization, and plasmid stability in vivo. The use of integrative expression vectors are likely to improve the mycobacterial vaccine stability and immunogenicity to develop not only recombinant BCG-based vaccines expressing second generation of HIV-1 immunogens but also other major pediatric pathogens to prime protective responses shortly following birth.
Collapse
Affiliation(s)
- Athina Kilpeläinen
- a Catalan Center for HIV Vaccine Research and Development, AIDS Research Unit, Infectious Diseases Department, Hospital Clínic/IDIBAPS, School of Medicine , University of Barcelona , Barcelona , Spain
| | - Milena Maya-Hoyos
- b Chemistry Department, Faculty of Sciences , Universidad Nacional de Colombia, Ciudad Universitaria , Bogotá , Colombia
| | - Narcís Saubí
- a Catalan Center for HIV Vaccine Research and Development, AIDS Research Unit, Infectious Diseases Department, Hospital Clínic/IDIBAPS, School of Medicine , University of Barcelona , Barcelona , Spain
| | - Carlos Y Soto
- b Chemistry Department, Faculty of Sciences , Universidad Nacional de Colombia, Ciudad Universitaria , Bogotá , Colombia
| | - Joan Joseph Munne
- a Catalan Center for HIV Vaccine Research and Development, AIDS Research Unit, Infectious Diseases Department, Hospital Clínic/IDIBAPS, School of Medicine , University of Barcelona , Barcelona , Spain
| |
Collapse
|
9
|
Sun J, Schaaf K, Duverger A, Wolschendorf F, Speer A, Wagner F, Niederweis M, Kutsch O. Protein phosphatase, Mg2+/Mn2+-dependent 1A controls the innate antiviral and antibacterial response of macrophages during HIV-1 and Mycobacterium tuberculosis infection. Oncotarget 2017; 7:15394-409. [PMID: 27004401 PMCID: PMC4941249 DOI: 10.18632/oncotarget.8190] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Accepted: 03/04/2016] [Indexed: 12/13/2022] Open
Abstract
Co-infection with HIV-1 and Mycobacterium tuberculosis (Mtb) is a major public health issue. While some research has described how each pathogen accelerates the course of infection of the other pathogen by compromising the immune system, very little is known about the molecular biology of HIV-1/Mtb co-infection at the host cell level. This is somewhat surprising, as both pathogens are known to replicate and persist in macrophages. We here identify Protein Phosphatase, Mg2+/Mn2+-dependent 1A (PPM1A) as a molecular link between Mtb infection and increased HIV-1 susceptibility of macrophages. We demonstrate that both Mtb and HIV-1 infection induce the expression of PPM1A in primary human monocyte/macrophages and THP-1 cells. Genetic manipulation studies revealed that increased PPMA1 expression rendered THP-1 cells highly susceptible to HIV-1 infection, while depletion of PPM1A rendered them relatively resistant to HIV-1 infection. At the same time, increased PPM1A expression abrogated the ability of THP-1 cells to respond to relevant bacterial stimuli with a proper cytokine/chemokine secretion response, blocked their chemotactic response and impaired their ability to phagocytose bacteria. These data suggest that PPM1A, which had previously been shown to play a role in the antiviral response to Herpes Simplex virus infection, also governs the antibacterial response of macrophages to bacteria, or at least to Mtb infection. PPM1A thus seems to play a central role in the innate immune response of macrophages, implying that host directed therapies targeting PPM1A could be highly beneficial, in particular for HIV/Mtb co-infected patients.
Collapse
Affiliation(s)
- Jim Sun
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Kaitlyn Schaaf
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Alexandra Duverger
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Frank Wolschendorf
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Alexander Speer
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama, USA.,Department of Medical Microbiology and Infection Control, VU University Medical Center, Amsterdam, Netherlands
| | - Frederic Wagner
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Michael Niederweis
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Olaf Kutsch
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| |
Collapse
|
10
|
Larson EC, Novis CL, Martins LJ, Macedo AB, Kimball KE, Bosque A, Planelles V, Barrows LR. Mycobacterium tuberculosis reactivates latent HIV-1 in T cells in vitro. PLoS One 2017; 12:e0185162. [PMID: 28949981 PMCID: PMC5614573 DOI: 10.1371/journal.pone.0185162] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Accepted: 09/07/2017] [Indexed: 11/18/2022] Open
Abstract
Following proviral integration into the host cell genome and establishment of a latent state, the human immunodeficiency virus type 1 (HIV-1) can reenter a productive life cycle in response to various stimuli. HIV-1 reactivation occurs when transcription factors, such as nuclear factor-κB (NF-κB), nuclear factor of activated T cells (NFAT), and activator protein -1 (AP-1), bind cognate sites within the long terminal repeat (LTR) region of the HIV-1 provirus to promote transcription. Interestingly, pattern recognition receptors (PRRs) that recognize pathogen-associated molecular patterns (PAMPs) can reactivate latent HIV-1 through activation of the transcription factor NF-κB. Some PRRs are expressed on central memory CD4+ T cells (TCM), which in HIV-1 patients constitute the main reservoir of latent HIV-1. Mycobacterium tuberculosis (Mtb), the causative agent of tuberculosis (TB), interacts with PRRs through membrane components. However, the ability of Mtb to reactivate latent HIV-1 has not been extensively studied. Here we show that phosphatidylinositol mannoside 6 (PIM6), a component of the Mtb membrane, in addition to whole bacteria in co-culture, can reactivate HIV-1 in a primary TCM cell model of latency. Using a JLAT model of HIV-1 latency, we found this interaction to be mediated through Toll-like receptor-2 (TLR-2). Thus, we describe a mechanism by which Mtb can exacerbate HIV-1 infection. We hypothesize that chronic Mtb infection can drive HIV-1 reactivation. The phenomenon described here could explain, in part, the poor prognosis that characterizes HIV-1/Mtb co-infection.
Collapse
Affiliation(s)
- Erica C. Larson
- Department of Pharmacology and Toxicology, University of Utah, Salt Lake City, Utah, United States of America
| | - Camille L. Novis
- Department of Pathology, University of Utah, Salt Lake City, Utah, United States of America
| | - Laura J. Martins
- Department of Pathology, University of Utah, Salt Lake City, Utah, United States of America
| | - Amanda B. Macedo
- Department of Pathology, University of Utah, Salt Lake City, Utah, United States of America
| | - Kadyn E. Kimball
- Department of Pathology, University of Utah, Salt Lake City, Utah, United States of America
| | - Alberto Bosque
- Department of Pathology, University of Utah, Salt Lake City, Utah, United States of America
| | - Vicente Planelles
- Department of Pathology, University of Utah, Salt Lake City, Utah, United States of America
| | - Louis R. Barrows
- Department of Pharmacology and Toxicology, University of Utah, Salt Lake City, Utah, United States of America
- * E-mail:
| |
Collapse
|
11
|
Toll-Like Receptor 2 Ligation Enhances HIV-1 Replication in Activated CCR6+ CD4+ T Cells by Increasing Virus Entry and Establishing a More Permissive Environment to Infection. J Virol 2017; 91:JVI.01402-16. [PMID: 27928019 DOI: 10.1128/jvi.01402-16] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Accepted: 12/01/2016] [Indexed: 12/14/2022] Open
Abstract
In this study, we investigated the effect of Toll-like receptor 2 (TLR2) ligation on the permissiveness of activated CD4+ T cells to HIV-1 infection by focusing our experiments on the relative susceptibility of cell subsets based on their expression of CCR6. Purified primary human CD4+ T cells were first subjected to a CD3/CD28 costimulation before treatment with the TLR2 agonist Pam3CSK4. Finally, cells were inoculated with R5-tropic HIV-1 particles that permit us to study the effect of TLR2 triggering on virus production at both population and single-cell levels. We report here that HIV-1 replication is augmented in CD3/CD28-costimulated CCR6+ CD4+ T cells upon engagement of the cell surface TLR2. Additional studies indicate that a higher virus entry and polymerization of the cortical actin are seen in this cell subset following TLR2 stimulation. A TLR2-mediated increase in the level of phosphorylated NF-κB p65 subunit was also detected in CD3/CD28-costimulated CCR6+ CD4+ T cells. We propose that, upon antigenic presentation, an engagement of TLR2 acts specifically on CCR6+ CD4+ T cells by promoting virus entry in an intracellular milieu more favorable for productive HIV-1 infection. IMPORTANCE Following primary infection, HIV-1 induces an immunological and structural disruption of the gut mucosa, leading to bacterial translocation and release of microbial components in the bloodstream. These pathogen-derived constituents include several agonists of Toll-like receptors that may affect gut-homing CD4+ T cells, such as those expressing the chemokine receptor CCR6, which are highly permissive to HIV-1 infection. We demonstrate that TLR2 ligation in CD3/CD28-costimulated CCR6+ CD4+ T cells leads to enhanced virus production. Our results highlight the potential impact of bacterial translocation on the overall permissiveness of CCR6+ CD4+ T cells to productive HIV-1 infection.
Collapse
|
12
|
Trained Immunity and Susceptibility to HIV. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2017; 24:CVI.00509-16. [PMID: 27847369 DOI: 10.1128/cvi.00509-16] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In this issue of Clinical and Vaccine Immunology, K. Jensen et al. (Clin Vaccine Immunol 24:e00360-16, 2017, https://doi.org/10.1128/CVI.00360-16) describe a dual-purpose attenuated Mycobacterium tuberculosis-simian immunodeficiency virus vaccine (AMTB-SIV). Interestingly, immunized infant macaques required fewer oral exposures to SIV to become infected relative to nonimmunized animals. The authors hypothesized that augmented susceptibility to SIV was due to activation of CD4+ T cells through trained immunity. This commentary explores the possible relationship between trained immunity, enhanced CD4 T cell responses, and increased susceptibility to human immunodeficiency virus (HIV).
Collapse
|
13
|
Jensen K, Dela Pena-Ponce MG, Piatak M, Shoemaker R, Oswald K, Jacobs WR, Fennelly G, Lucero C, Mollan KR, Hudgens MG, Amedee A, Kozlowski PA, Estes JD, Lifson JD, Van Rompay KKA, Larsen M, De Paris K. Balancing Trained Immunity with Persistent Immune Activation and the Risk of Simian Immunodeficiency Virus Infection in Infant Macaques Vaccinated with Attenuated Mycobacterium tuberculosis or Mycobacterium bovis BCG Vaccine. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2017; 24:e00360-16. [PMID: 27655885 PMCID: PMC5216431 DOI: 10.1128/cvi.00360-16] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Accepted: 09/12/2016] [Indexed: 12/14/2022]
Abstract
Our goal is to develop a pediatric combination vaccine to protect the vulnerable infant population against human immunodeficiency virus type 1 (HIV-1) and tuberculosis (TB) infections. The vaccine consists of an auxotroph Mycobacterium tuberculosis strain that coexpresses HIV antigens. Utilizing an infant rhesus macaque model, we have previously shown that this attenuated M. tuberculosis (AMtb)-simian immunodeficiency virus (SIV) vaccine is immunogenic, and although the vaccine did not prevent oral SIV infection, a subset of vaccinated animals was able to partially control virus replication. However, unexpectedly, vaccinated infants required fewer SIV exposures to become infected compared to naive controls. Considering that the current TB vaccine, Mycobacterium bovis bacillus Calmette-Guérin (BCG), can induce potent innate immune responses and confer pathogen-unspecific trained immunity, we hypothesized that an imbalance between enhanced myeloid cell function and immune activation might have influenced the outcome of oral SIV challenge in AMtb-SIV-vaccinated infants. To address this question, we used archived samples from unchallenged animals from our previous AMtb-SIV vaccine studies and vaccinated additional infant macaques with BCG or AMtb only. Our results show that vaccinated infants, regardless of vaccine strain or regimen, had enhanced myeloid cell responses. However, CD4+ T cells were concurrently activated, and the persistence of these activated target cells in oral and/or gastrointestinal tissues may have facilitated oral SIV infection. Immune activation was more pronounced in BCG-vaccinated infant macaques than in AMtb-vaccinated infant macaques, indicating a role for vaccine attenuation. These findings underline the importance of understanding the interplay of vaccine-induced immunity and immune activation and its effect on HIV acquisition risk and outcome in infants.
Collapse
Affiliation(s)
- Kara Jensen
- Department of Microbiology and Immunology and Center for AIDS Research, School of Medicine, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Myra Grace Dela Pena-Ponce
- Department of Microbiology and Immunology and Center for AIDS Research, School of Medicine, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Michael Piatak
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Rebecca Shoemaker
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Kelli Oswald
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | | | - Glenn Fennelly
- Rutgers New Jersey Medical School, Newark, New Jersey, USA
| | - Carissa Lucero
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Katie R Mollan
- Lineberger Cancer Center and Center for AIDS Research, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Michael G Hudgens
- Gillings School of Global Public Health and Center for AIDS Research, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Angela Amedee
- Department of Microbiology, Immunology, and Parasitology, Louisiana State University Health Sciences Center, New Orleans, Louisiana, USA
| | - Pamela A Kozlowski
- Department of Microbiology, Immunology, and Parasitology, Louisiana State University Health Sciences Center, New Orleans, Louisiana, USA
| | - Jacob D Estes
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Jeffrey D Lifson
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Koen K A Van Rompay
- California National Primate Research Center, University of California, Davis, Davis, California, USA
| | - Michelle Larsen
- Albert Einstein College of Medicine, New York, New York, USA
| | - Kristina De Paris
- Department of Microbiology and Immunology and Center for AIDS Research, School of Medicine, University of North Carolina, Chapel Hill, North Carolina, USA
| |
Collapse
|
14
|
Tiantian M, Xin L. [Promotion of Porphyromonas gingivalis to viral disease]. HUA XI KOU QIANG YI XUE ZA ZHI = HUAXI KOUQIANG YIXUE ZAZHI = WEST CHINA JOURNAL OF STOMATOLOGY 2016; 34:425-428. [PMID: 28317365 PMCID: PMC7030026 DOI: 10.7518/hxkq.2016.04.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Revised: 05/10/2016] [Indexed: 06/06/2023]
Abstract
Chronic periodontitis is one of the most common oral diseases in humans, the main recognized pathogenic bac-terium of which is the Porphyromonas gingivalis. Various types of viruses have been detected in periodontal disease in situ, and the joint action of viral and bacterial pathogens infection mechanism are complicated. Porphyromonas gingivalis has the characteristics resulting from the interaction with a variety of bacterium viruses, which may be the reason for chronic perio-dontitis being a protracted disease associated with a variety of systemic diseases. In this paper, we reviewed the relationship between Porphyromonas gingivalis and viral diseases to provide a new idea for the treatment of patients with periodontal disease and viral infections.
Collapse
Affiliation(s)
- Meng Tiantian
- Dept. of Prosthodontics, School of Sto-matology, Liaoning Medical University, Jinzhou 121000, China
| | - Li Xin
- Dept. of Prosthodontics, School of Sto-matology, Liaoning Medical University, Jinzhou 121000, China
| |
Collapse
|
15
|
Pandiyan P, Younes SA, Ribeiro SP, Talla A, McDonald D, Bhaskaran N, Levine AD, Weinberg A, Sekaly RP. Mucosal Regulatory T Cells and T Helper 17 Cells in HIV-Associated Immune Activation. Front Immunol 2016; 7:228. [PMID: 27379092 PMCID: PMC4913236 DOI: 10.3389/fimmu.2016.00228] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Accepted: 05/26/2016] [Indexed: 12/12/2022] Open
Abstract
Residual mucosal inflammation along with chronic systemic immune activation is an important feature in individuals infected with human immunodeficiency virus (HIV), and has been linked to a wide range of co-morbidities, including malignancy, opportunistic infections, immunopathology, and cardiovascular complications. Although combined antiretroviral therapy (cART) can reduce plasma viral loads to undetectable levels, reservoirs of virus persist, and increased mortality is associated with immune dysbiosis in mucosal lymphoid tissues. Immune-based therapies are pursued with the goal of improving CD4(+) T-cell restoration, as well as reducing chronic immune activation in cART-treated patients. However, the majority of research on immune activation has been derived from analysis of circulating T cells. How immune cell alterations in mucosal tissues contribute to HIV immune dysregulation and the associated risk of non-infectious chronic complications is less studied. Given the significant differences between mucosal T cells and circulating T cells, and the immediate interactions of mucosal T cells with the microbiome, more attention should be devoted to mucosal immune cells and their contribution to systemic immune activation in HIV-infected individuals. Here, we will focus on mucosal immune cells with a specific emphasis on CD4(+) T lymphocytes, such as T helper 17 cells and CD4(+)Foxp3(+) regulatory T cells (Tregs), which play crucial roles in maintaining mucosal barrier integrity and preventing inflammation, respectively. We hypothesize that pro-inflammatory milieu in cART-treated patients with immune activation significantly contributes to enhanced loss of Th17 cells and increased frequency of dysregulated Tregs in the mucosa, which in turn may exacerbate immune dysfunction in HIV-infected patients. We also present initial evidence to support this hypothesis. A better comprehension of how pro-inflammatory milieu impacts these two types of cells in the mucosa will shed light on mucosal immune dysfunction and HIV reservoirs, and lead to novel ways to restore immune functions in HIV(+) patients.
Collapse
Affiliation(s)
- Pushpa Pandiyan
- Department of Biological Sciences, School of Dental Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Souheil-Antoine Younes
- Department of Medicine, Division of Infectious Diseases, University Hospitals, Case Western Reserve University, Cleveland, OH, USA
| | | | - Aarthi Talla
- Department of Pathology, Case Western Reserve University, Cleveland, OH, USA
| | - David McDonald
- Department of Microbiology and Molecular Biology, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Natarajan Bhaskaran
- Department of Biological Sciences, School of Dental Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Alan D. Levine
- Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Aaron Weinberg
- Department of Biological Sciences, School of Dental Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Rafick P. Sekaly
- Department of Pathology, Case Western Reserve University, Cleveland, OH, USA
| |
Collapse
|
16
|
Skerry C, Klinkenberg LG, Page KR, Karakousis PC. TLR2-Modulating Lipoproteins of the Mycobacterium tuberculosis Complex Enhance the HIV Infectivity of CD4+ T Cells. PLoS One 2016; 11:e0147192. [PMID: 26807859 PMCID: PMC4725761 DOI: 10.1371/journal.pone.0147192] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Accepted: 12/30/2015] [Indexed: 12/14/2022] Open
Abstract
Co-infection with Mycobacterium tuberculosis accelerates progression from HIV to AIDS. Our previous studies showed that M. tuberculosis complex, unlike M. smegmatis, enhances TLR2-dependent susceptibility of CD4+ T cells to HIV. The M. tuberculosis complex produces multiple TLR2-stimulating lipoproteins, which are absent in M. smegmatis. M. tuberculosis production of mature lipoproteins and TLR2 stimulation is dependent on cleavage by lipoprotein signal peptidase A (LspA). In order to determine the role of potential TLR2-stimulating lipoproteins on mycobacterial-mediated HIV infectivity of CD4+ T cells, we generated M. smegmatis recombinant strains overexpressing genes encoding various M. bovis BCG lipoproteins, as well as a Mycobacterium bovis BCG strain deficient in LspA (ΔlspA). Exposure of human peripheral blood mononuclear cells (PBMC) to M. smegmatis strains overexpressing the BCG lipoproteins, LprF (p<0.01), LprH (p<0.05), LprI (p<0.05), LprP (p<0.001), LprQ (p<0.005), MPT83 (p<0.005), or PhoS1 (p<0.05), resulted in increased HIV infectivity of CD4+ T cells isolated from these PBMC. Conversely, infection of PBMC with ΔlspA reduced HIV infectivity of CD4+ T cells by 40% relative to BCG-infected cells (p<0.05). These results may have important implications for TB vaccination programs in areas with high mother-to-child HIV transmission.
Collapse
Affiliation(s)
- Ciaran Skerry
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Lee G. Klinkenberg
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Kathleen R. Page
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Petros C. Karakousis
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America
- * E-mail:
| |
Collapse
|
17
|
Chen J, Cao W, Chen R, Ren Y, Li T. Prevalence and determinants of HIV in tuberculosis patients in Wuxi City, Jiangsu province, China: a cross-sectional study. Int J STD AIDS 2015; 27:1204-1212. [PMID: 26482328 DOI: 10.1177/0956462415612618] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Accepted: 09/21/2015] [Indexed: 10/22/2022]
Abstract
At least one-third of the 34 million people living with human immunodeficiency virus (HIV) worldwide are infected with latent tuberculosis (TB). The aim of this study was to determine the rate of HIV infection in TB patients and its determinants in Wuxi City, China. TB patients attending health institutions (12 selected sites) for TB diagnosis and treatment were enrolled in this study. TB diagnosis, treatment and HIV testing were done according to the national guidelines. Blood samples were collected for anonymous HIV testing. Among the TB patients, the HIV prevalence was 13.66% (1493/10,926). Multivariate analysis showed that gender, age, education, marital status, per capita monthly income, patient residence, family size, distance from a health institution, knowledge of HIV-TB co-infection, and knowledge of HIV may be risk factors for HIV-TB co-infection (all: odds ratio > 1, p < 0.05). The prevalence of TB in those with HIV was higher among the study participants. Improving public awareness of HIV-TB co-infection, regularly screening and improving follow-up can reduce the occurrence of HIV-TB co-infection.
Collapse
Affiliation(s)
- Judi Chen
- Department of Nursing, Wuxi No.5 People's Hospital, Wuxi, Jiangsu, P.R. China
| | - Weining Cao
- Department of Tuberculosis, Wuxi No.5 People's Hospital, Wuxi, Jiangsu, P.R. China
| | - Renfang Chen
- Department of Infectious Diseases, Wuxi No.5 People's Hospital, Wuxi, Jiangsu, P.R. China
| | - Yong Ren
- Department of Red ribbon Care Center, Wuxi No.5 People's Hospital, Wuxi, Jiangsu, P.R. China
| | - Tao Li
- Department of Medical affairs, the Lixin People's Hospital, Bozhou, Anhui, P.R. China
| |
Collapse
|
18
|
Swaminathan G, Pascual D, Rival G, Perales-Linares R, Martin-Garcia J, Navas-Martin S. Hepatitis C virus core protein enhances HIV-1 replication in human macrophages through TLR2, JNK, and MEK1/2-dependent upregulation of TNF-α and IL-6. FEBS Lett 2014; 588:3501-10. [PMID: 25131930 DOI: 10.1016/j.febslet.2014.08.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2014] [Revised: 07/30/2014] [Accepted: 08/08/2014] [Indexed: 12/24/2022]
Abstract
Despite their differential cell tropisms, HIV-1 and HCV dramatically influence disease progression in coinfected patients. Macrophages are important target cells of HIV-1. We hypothesized that secreted HCV core protein might modulate HIV-1 replication. We demonstrate that HCV core significantly enhances HIV-1 replication in human macrophages by upregulating TNF-α and IL-6 via TLR2-, JNK-, and MEK1/2-dependent pathways. Furthermore, we show that TNF-α and IL-6 secreted from HCV core-treated macrophages reactivates monocytic U1 cells latently infected with HIV-1. Our studies reveal a previously unrecognized role of HCV core by enhancing HIV-1 infection in macrophages.
Collapse
Affiliation(s)
- Gokul Swaminathan
- Microbiology and Immunology Graduate Program, Drexel University College of Medicine, Philadelphia, PA 19102, USA; Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA 19102, USA
| | - Daniel Pascual
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA 19102, USA; Master of Science in Forensic Science Program, Professional Studies in the Health Sciences, Drexel University College of Medicine, Philadelphia, PA 19102, USA
| | - Germaine Rival
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA 19102, USA; Master of Interdisciplinary Health Sciences Program, Professional Studies in the Health Sciences, Drexel University College of Medicine, Philadelphia, PA 19102, USA
| | - Renzo Perales-Linares
- Microbiology and Immunology Graduate Program, Drexel University College of Medicine, Philadelphia, PA 19102, USA; Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA 19102, USA
| | - Julio Martin-Garcia
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA 19102, USA; Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA 19102, USA
| | - Sonia Navas-Martin
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA 19102, USA; Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA 19102, USA.
| |
Collapse
|
19
|
Navigating through the maze of TLR2 mediated signaling network for better mycobacterium infection control. Biochimie 2014; 102:1-8. [PMID: 24594065 DOI: 10.1016/j.biochi.2014.02.012] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2013] [Accepted: 02/21/2014] [Indexed: 12/12/2022]
Abstract
Toll-like receptor 2 (TLR2), a member of pattern recognition receptors (PRRs) abundant on macrophages, dendritic cells (DCs) and respiratory epithelial cells lining the lung, plays critical role in host immune response against Mycobacterium tuberculosis (MTB) infection. TLR2-mediated elimination of MTB involves multiple pathways such as promoting DCs maturation, generating biased Th1, Th2, Th17 type response, regulating the macrophage activation and cytokine secretion. MTB can also hijack the TLR2 signaling to subvert the host immunity by dampening the macrophages response to IFN-γ, suppressing the processing and presentation of antigens. This review summarizes the intricate network of TLR2-mediated signaling and Mycobacteria effectors involved in MTB-host interaction with an aim to find better target for improved tuberculosis control, especially the host-derived therapy targets. TLR2 agonists with potential to be included in novel tuberculosis vaccines are also discussed.
Collapse
|
20
|
Rodriguez ME, Loyd CM, Ding X, Karim AF, McDonald DJ, Canaday DH, Rojas RE. Mycobacterial phosphatidylinositol mannoside 6 (PIM6) up-regulates TCR-triggered HIV-1 replication in CD4+ T cells. PLoS One 2013; 8:e80938. [PMID: 24282561 PMCID: PMC3839890 DOI: 10.1371/journal.pone.0080938] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2013] [Accepted: 10/17/2013] [Indexed: 11/19/2022] Open
Abstract
Tuberculosis (TB) is the leading cause of mortality among those infected with human immunodeficiency virus (HIV-1) worldwide. HIV-1 load and heterogeneity are increased both locally and systemically in active TB. Mycobacterium tuberculosis (MTB) infection supports HIV-1 replication through dysregulation of host cytokines, chemokines, and their receptors. However the possibility that mycobacterial molecules released from MTB infected macrophages directly interact with CD4(+) T cells triggering HIV-1 replication has not been fully explored. We studied the direct effect of different MTB molecules on HIV-1 replication (R5-tropic strain Bal) in anti-CD3- stimulated CD4(+) T cells from healthy donors in an antigen presenting cell (APC)-free system. PIM6, a major glycolipid of the mycobacterial cell wall, induced significant increases in the percent of HIV-1 infected T cells and the viral production in culture supernatants. In spite of structural relatedness, none of the other three major MTB cell wall glycolipids had significant impact on HIV-1 replication in T cells. Increased levels of IFN-γ in culture supernatants from cells treated with PIM6 indicate that HIV-1 replication is likely dependent on enhanced T cell activation. In HEK293 cells transfected with TLR2, PIM6 was the strongest TLR2 agonist among the cell wall associated glycolipids tested. PIM6 increased the percentage of HIV infected cells and viral particles in the supernatant in a T-cell-based reporter cell line (JLTRg-R5) transfected with TLR1 and TLR2 but not in the cells transfected with the empty vector (which lack TLR2 expression) confirming that PIM6-induced HIV-1 replication depends at least partially on TLR2 signaling.
Collapse
Affiliation(s)
- Myriam E. Rodriguez
- Division of Infectious Diseases, Department of Medicine, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Candace M. Loyd
- Division of Infectious Diseases, Department of Medicine, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Xuedong Ding
- Division of Infectious Diseases, Department of Medicine, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Ahmad F. Karim
- Division of Infectious Diseases, Department of Medicine, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - David J. McDonald
- Department of Molecular Biology and Microbiology, Case Western Reserve University and University Hospitals Case Medical Center, Cleveland, Ohio, United States of America
| | - David H. Canaday
- Division of Infectious Diseases, Department of Medicine, Case Western Reserve University, Cleveland, Ohio, United States of America
- Cleveland VA Medical Center, Cleveland, Ohio, United States of America
| | - Roxana E. Rojas
- Division of Infectious Diseases, Department of Medicine, Case Western Reserve University, Cleveland, Ohio, United States of America
- Department of Molecular Biology and Microbiology, Case Western Reserve University and University Hospitals Case Medical Center, Cleveland, Ohio, United States of America
- * E-mail:
| |
Collapse
|
21
|
The crystal structure of HIV CRF07 B'/C gp41 reveals a hyper-mutant site in the middle of HR2 heptad repeat. Virology 2013; 446:86-94. [PMID: 24074570 DOI: 10.1016/j.virol.2013.07.024] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2013] [Revised: 07/02/2013] [Accepted: 07/22/2013] [Indexed: 10/26/2022]
Abstract
HIV CRF07 B'/C is a strain circulating mainly in northwest region of China. The gp41 region of CRF07 is derived from a clade C virus. In order to compare the difference of CRF07 gp41 with that of typical clade B virus, we solved the crystal structure of the core region of CRF07 gp41. Compared with clade B gp41, CRF07 gp41 evolved more basic and hydrophilic residues on its helix bundle surface. Based on sequence alignment, a hyper-mutant cluster located in the middle of HR2 heptads repeat was identified. The mutational study of these residues revealed that this site is important in HIV mediated cell-cell fusion and plays critical roles in conformational changes during viral invasion.
Collapse
|
22
|
Victoria S, Temerozo JR, Gobbo L, Pimenta-Inada HK, Bou-Habib DC. Activation of Toll-like receptor 2 increases macrophage resistance to HIV-1 infection. Immunobiology 2013; 218:1529-36. [PMID: 23891328 DOI: 10.1016/j.imbio.2013.06.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2013] [Revised: 05/20/2013] [Accepted: 06/05/2013] [Indexed: 10/26/2022]
Abstract
Patients infected with HIV-1, the etiological agent of AIDS, have increased intestinal permeability, which allows for the passage of microbial products, including Toll-like receptor (TLR) ligands, into circulation. The exposure of HIV-1-infected cells to certain TLR agonists affects viral replication, but studies associating viral production with the activation of TLR2 in HIV-1-infected cells are rare and controversial. Here, we report that the TLR2 ligands Zymosan and Pam3CSK4 potently inhibit HIV-1 replication in acutely infected monocyte-derived macrophages and the exposure to TLR2 ligands prior to infection renders macrophages refractory to HIV-1 production. Macrophage treatment with Pam3CSK4 did not change the cellular expression of the HIV-1 entry receptors CD4 and CCR5. Both TLR2 ligands increased the macrophage production of β-chemokines and IL-10, and the blockage of these soluble factors prevented the inhibitory effect of TLR2 activation on HIV-1 replication. Our findings show that the direct engagement of TLR2 in HIV-1-infected macrophages increase cellular resistance to HIV-1 infection, and that controlling HIV-1 replication with agonists for TLR2 might have implications for the development of antiretroviral therapies.
Collapse
Affiliation(s)
- Sabina Victoria
- Laboratory on Thymus Research, Oswaldo Cruz Institute/Fiocruz, Av. Brasil 4365, Manguinhos - 21040-360, Rio de Janeiro, RJ, Brazil
| | | | | | | | | |
Collapse
|
23
|
Abstract
TB causes 1.4 million deaths annually. HIV-1 infection is the strongest risk factor for TB. The characteristic immunological effect of HIV is on CD4 cell count. However, the risk of TB is elevated in HIV-1 infected individuals even in the first few years after HIV acquisition and also after CD4 cell counts are restored with antiretroviral therapy. In this review, we examine features of the immune response to TB and how this is affected by HIV-1 infection and vice versa. We discuss how the immunology of HIV-TB coinfection impacts on the clinical presentation and diagnosis of TB, and how antiretroviral therapy affects the immune response to TB, including the development of TB immune reconstitution inflammatory syndrome. We highlight important areas of uncertainty and future research needs.
Collapse
Affiliation(s)
- Naomi F Walker
- Infectious Diseases & Immunity, Imperial College London, W12 0NN, UK
- Clinical Infectious Diseases Research Initiative, Institute of Infectious Diseases & Molecular Medicine, University of Cape Town, Observatory 7925, South Africa
| | - Graeme Meintjes
- Clinical Infectious Diseases Research Initiative, Institute of Infectious Diseases & Molecular Medicine, University of Cape Town, Observatory 7925, South Africa
- Department of Medicine, Norfolk Place, Imperial College London, W2 1PG, UK
| | - Robert J Wilkinson
- Clinical Infectious Diseases Research Initiative, Institute of Infectious Diseases & Molecular Medicine, University of Cape Town, Observatory 7925, South Africa
- Department of Medicine, Norfolk Place, Imperial College London, W2 1PG, UK
- MRC National Institute for Medical Research, London, NW7 1AA, UK
| |
Collapse
|