1
|
Benita BA, Koss KM. Peptide discovery across the spectrum of neuroinflammation; microglia and astrocyte phenotypical targeting, mediation, and mechanistic understanding. Front Mol Neurosci 2024; 17:1443985. [PMID: 39634607 PMCID: PMC11616451 DOI: 10.3389/fnmol.2024.1443985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 07/24/2024] [Indexed: 12/07/2024] Open
Abstract
Uncontrolled and chronic inflammatory states in the Central Nervous System (CNS) are the hallmark of neurodegenerative pathology and every injury or stroke-related insult. The key mediators of these neuroinflammatory states are glial cells known as microglia, the resident immune cell at the core of the inflammatory event, and astroglia, which encapsulate inflammatory insults in proteoglycan-rich scar tissue. Since the majority of neuroinflammation is exclusively based on the responses of said glia, their phenotypes have been identified to be on an inflammatory spectrum encompassing developmental, homeostatic, and reparative behaviors as opposed to their ability to affect devastating cell death cascades and scar tissue formation. Recently, research groups have focused on peptide discovery to identify these phenotypes, find novel mechanisms, and mediate or re-engineer their actions. Peptides retain the diverse function of proteins but significantly reduce the activity dependence on delicate 3D structures. Several peptides targeting unique phenotypes of microglia and astroglia have been identified, along with several capable of mediating deleterious behaviors or promoting beneficial outcomes in the context of neuroinflammation. A comprehensive review of the peptides unique to microglia and astroglia will be provided along with their primary discovery methodologies, including top-down approaches using known biomolecules and naïve strategies using peptide and phage libraries.
Collapse
Affiliation(s)
| | - Kyle M. Koss
- Department of Surgery, University of Arizona, Tucson, AZ, United States
- Department of Neurobiology, University of Texas Medical Branch (UTMB) at Galvestion, Galvestion, TX, United States
- Sealy Institute for Drug Discovery (SIDD), University of Texas Medical Branch (UTMB) at Galvestion, Galvestion, TX, United States
| |
Collapse
|
2
|
Upton C, Healey J, Rothnie AJ, Goddard AD. Insights into membrane interactions and their therapeutic potential. Arch Biochem Biophys 2024; 755:109939. [PMID: 38387829 DOI: 10.1016/j.abb.2024.109939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 01/31/2024] [Accepted: 02/19/2024] [Indexed: 02/24/2024]
Abstract
Recent research into membrane interactions has uncovered a diverse range of therapeutic opportunities through the bioengineering of human and non-human macromolecules. Although the majority of this research is focussed on fundamental developments, emerging studies are showcasing promising new technologies to combat conditions such as cancer, Alzheimer's and inflammatory and immune-based disease, utilising the alteration of bacteriophage, adenovirus, bacterial toxins, type 6 secretion systems, annexins, mitochondrial antiviral signalling proteins and bacterial nano-syringes. To advance the field further, each of these opportunities need to be better understood, and the therapeutic models need to be further optimised. Here, we summarise the knowledge and insights into several membrane interactions and detail their current and potential uses therapeutically.
Collapse
Affiliation(s)
- Calum Upton
- School of Biosciences, Health & Life Science, Aston University, Birmingham, B4 7ET, UK
| | - Joseph Healey
- Nanosyrinx, The Venture Centre, University of Warwick Science Park, Coventry, CV4 7EZ, UK
| | - Alice J Rothnie
- School of Biosciences, Health & Life Science, Aston University, Birmingham, B4 7ET, UK
| | - Alan D Goddard
- School of Biosciences, Health & Life Science, Aston University, Birmingham, B4 7ET, UK.
| |
Collapse
|
3
|
Xu R, Weber MC, Hu X, Neumann PA, Kamaly N. Annexin A1 based inflammation resolving mediators and nanomedicines for inflammatory bowel disease therapy. Semin Immunol 2022; 61-64:101664. [PMID: 36306664 DOI: 10.1016/j.smim.2022.101664] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Inflammatory bowel diseases (IBD) such as Crohn's Disease (CD) and Ulcerative Colitis (UC) are chronic, progressive, and relapsing disorders of the gastrointestinal tract (GIT), characterised by intestinal epithelial injury and inflammation. Current research shows that in addition to traditional anti-inflammatory therapy, resolution of inflammation and repair of the epithelial barrier are key biological requirements in combating IBD. Resolution mediators include endogenous lipids that are generated during inflammation, e.g., lipoxins, resolvins, protectins, maresins; and proteins such as Annexin A1 (ANXA1). Nanoparticles can specifically deliver these potent inflammation resolving mediators in a spatiotemporal manner to IBD lesions, effectively resolve inflammation, and promote a return to homoeostasis with minimal collateral damage. We discuss these exciting and timely concepts in this review.
Collapse
Affiliation(s)
- Runxin Xu
- Imperial College London, Department of Chemistry, Molecular Sciences Research Hub, United Kingdom
| | - Marie-Christin Weber
- Technical University of Munich, School of Medicine, Klinikum rechts der Isar, Department of Surgery, Germany
| | - Xinkai Hu
- Imperial College London, Department of Chemistry, Molecular Sciences Research Hub, United Kingdom
| | - Philipp-Alexander Neumann
- Technical University of Munich, School of Medicine, Klinikum rechts der Isar, Department of Surgery, Germany.
| | - Nazila Kamaly
- Imperial College London, Department of Chemistry, Molecular Sciences Research Hub, United Kingdom.
| |
Collapse
|
4
|
Mozaffari MS, Abdelsayed R. Expression Profiles of GILZ and Annexin A1 in Human Oral Candidiasis and Lichen Planus. Cells 2022; 11:cells11091470. [PMID: 35563776 PMCID: PMC9100531 DOI: 10.3390/cells11091470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 04/14/2022] [Accepted: 04/21/2022] [Indexed: 12/10/2022] Open
Abstract
Adrenal glands are the major source of glucocorticoids, but recent studies indicate tissue-specific production of cortisol, including that in the oral mucosa. Both endogenous and exogenous glucocorticoids regulate the production of several proteins, including the glucocorticoid-induced leucine zipper (GILZ) and Annexin A1, which play important roles in the regulation of immune and inflammatory responses. Common inflammation-associated oral conditions include lichen planus and candidiasis, but the status of GILZ and Annexin A1 in these human conditions remains to be established. Accordingly, archived paraffin-embedded biopsy samples were subjected to immunohistochemistry to establish tissue localization and profile of GILZ and Annexin A1 coupled with the use of hematoxylin–eosin stain for histopathological assessment; for comparison, fibroma specimens served as controls. Histopathological examination confirmed the presence of spores and pseudohyphae for oral candidiasis (OC) specimens and marked inflammatory cell infiltrates for both OC and oral lichen planus (OLP) specimens compared to control specimens. All specimens displayed consistent and prominent nuclear staining for GILZ throughout the full thickness of the epithelium and, to varying extent, for inflammatory infiltrates and stromal cells. On the other hand, a heterogeneous pattern of nuclear, cytoplasmic, and cell membrane staining was observed for Annexin A1 for all specimens in the suprabasal layers of epithelium and, to varying extent, for inflammatory and stromal cells. Semi-quantitative analyses indicated generally similar fractional areas of staining for both GILZ and Annexin A1 among the groups, but normalized staining for GILZ, but not Annexin A1, was reduced for OC and OLP compared to the control specimens. Thus, while the cellular expression pattern of GILZ and Annexin A1 does not differentiate among these conditions, differential cellular profiles for GILZ vs. Annexin A1 are suggestive of their distinct physiological functions in the oral mucosa.
Collapse
|
5
|
Reischl S, Lee JH, Miltschitzky JRE, Vieregge V, Walter RL, Twardy V, Kasajima A, Friess H, Kamaly N, Neumann PA. Ac2-26-Nanoparticles Induce Resolution of Intestinal Inflammation and Anastomotic Healing via Inhibition of NF-κB Signaling in a Model of Perioperative Colitis. Inflamm Bowel Dis 2021; 27:1379-1393. [PMID: 33512505 DOI: 10.1093/ibd/izab008] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Indexed: 12/12/2022]
Abstract
BACKGROUND Although in most patients with inflammatory bowel diseases, conservative therapy is successful, a significant proportion of patients still require surgery once in their lifetime. Development of a safe perioperative treatment to dampen colitis activity without disturbance of anastomotic healing is an urgent and unmet medical need. Annexin A1 (ANXA1) has been shown to be effective in reducing colitis activity. Herein, a nanoparticle-based perioperative treatment approach was used for analysis of the effects of ANXA1 on the resolution of inflammation after surgery for colitis. METHODS Anxa1-knockout mice were used to delineate the effects of ANXA1 on anastomotic healing. A murine model of preoperative dextran sodium sulfate colitis was performed. Collagen-IV-targeted polymeric nanoparticles, loaded with the ANXA1 biomimetic peptide Ac2-26 (Ac2-26-NPs), were synthesized and administered perioperatively during colitis induction. The effects of the Ac2-26-NPs on postoperative recovery and anastomotic healing were evaluated using the disease activity index, histological healing scores, and weight monitoring. Ultimately, whole-genome RNA sequencing of the anastomotic tissue was performed to unravel underlying molecular mechanisms. RESULTS Anxa1-knockout exacerbated the inflammatory response in the healing anastomosis. Treatment with Ac2-26-NPs improved preoperative colitis activity (P < 0.045), postoperative healing scores (P < 0.018), and weight recovery (P < 0.015). Whole-genome RNA sequencing revealed that the suppression of proinflammatory cytokine and nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) signaling was associated with the treatment effects and a phenotypic switch toward anti-inflammatory M2 macrophages. CONCLUSIONS Proresolving therapy with Ac2-26-NPs promises to be a potent perioperative therapy because it improves colitis activity and even intestinal anastomotic healing by the suppression of proinflammatory signaling.
Collapse
Affiliation(s)
- Stefan Reischl
- Technical University of Munich, School of Medicine, Department of Surgery, Munich, Germany
| | - Jong Hyun Lee
- Technical University of Denmark, Department of Health Technology, Copenhagen, Denmark
| | | | - Vincent Vieregge
- Technical University of Munich, School of Medicine, Department of Surgery, Munich, Germany
| | - Robert Leon Walter
- Technical University of Munich, School of Medicine, Department of Surgery, Munich, Germany
| | - Vanessa Twardy
- University of Muenster, School of Medicine, Department of Surgery, Muenster, Germany
| | - Atsuko Kasajima
- Technical Technical University of Munich, School of Medicine, Institute of Pathology, Munich, Germany
| | - Helmut Friess
- Technical University of Munich, School of Medicine, Department of Surgery, Munich, Germany
| | - Nazila Kamaly
- Technical University of Denmark, Department of Health Technology, Copenhagen, Denmark.,Imperial College London, Department of Chemistry, Molecular Sciences Research Hub, London, United Kingdom
| | | |
Collapse
|
6
|
Camba-Gómez M, Gualillo O, Conde-Aranda J. New Perspectives in the Study of Intestinal Inflammation: Focus on the Resolution of Inflammation. Int J Mol Sci 2021; 22:ijms22052605. [PMID: 33807591 PMCID: PMC7962019 DOI: 10.3390/ijms22052605] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 02/25/2021] [Accepted: 03/02/2021] [Indexed: 12/14/2022] Open
Abstract
Inflammation is an essential physiological process that is directed to the protection of the organism against invading pathogens or tissue trauma. Most of the existing knowledge related to inflammation is focused on the factors and mechanisms that drive the induction phase of this process. However, since the recognition that the resolution of the inflammation is an active and tightly regulated process, increasing evidence has shown the relevance of this process for the development of chronic inflammatory diseases, such as inflammatory bowel disease. For that reason, with this review, we aimed to summarize the most recent and interesting information related to the resolution process in the context of intestinal inflammation. We discussed the advances in the understanding of the pro-resolution at intestine level, as well as the new mediators with pro-resolutive actions that could be interesting from a therapeutic point of view.
Collapse
Affiliation(s)
- Miguel Camba-Gómez
- Molecular and Cellular Gastroenterology, Health Research Institute of Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain;
| | - Oreste Gualillo
- SERGAS (Servizo Galego de Saúde) and IDIS (Instituto de Investigación Sanitaria de Santiago), The NEIRID Lab (Neuroendocrine Interactions in Rheumatology and Inflammatory Diseases), Research Laboratory 9, Santiago University Clinical Hospital, 15706 Santiago de Compostela, Spain;
| | - Javier Conde-Aranda
- Molecular and Cellular Gastroenterology, Health Research Institute of Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain;
- Correspondence: ; Tel.: +34-981-955-091
| |
Collapse
|
7
|
da Rocha GHO, de Paula-Silva M, Broering MF, Scharf PRDS, Matsuyama LSAS, Maria-Engler SS, Farsky SHP. Pioglitazone-Mediated Attenuation of Experimental Colitis Relies on Cleaving of Annexin A1 Released by Macrophages. Front Pharmacol 2021; 11:591561. [PMID: 33519451 PMCID: PMC7845455 DOI: 10.3389/fphar.2020.591561] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 11/24/2020] [Indexed: 12/20/2022] Open
Abstract
Ulcerative colitis and Crohn's disease are chronic inflammatory bowel diseases (IBDs) which burden health systems worldwide; available pharmacological therapies are limited and cost-intensive. Use of peroxisome proliferator activated-receptor γ (PPARγ) ligands for IBD treatment, while promising, lacks solid evidences to ensure its efficacy. Annexin A1 (AnxA1), a glucocorticoid-modulated anti-inflammatory protein, plays a key role on IBD control and is a potential biomarker of IBD progression. We here investigated whether effects of pioglitazone, a PPARγ ligand, rely on AnxA1 actions to modulate IBD inflammation. Experimental colitis was evoked by 2% dextran sodium sulfate (DSS) in AnxA1 knockout (AnxA1-/-) or wild type (WT) C57BL/6 mice. Clinical and histological parameters were more severe for AnxA-/- than WT mice, and 10 mg/kg pioglitazone treatment attenuated disease parameters in WT mice only. AnxA1 expression was increased in tissue sections of diseased WT mice, correlating positively with presence of CD68+ macrophages. Metalloproteinase-9 (MMP-9) and inactive 33 kDa AnxA1 levels were increased in the colon of diseased WT mice, which were reduced by pioglitazone treatment. Cytokine secretion, reactive oxygen species generation and MMP-9 expression caused by lipopolysaccharide (LPS) treatment in AnxA1-expressing RAW 264.7 macrophages were reduced by pioglitazone treatment, effects not detected in AnxA1 knockdown macrophages. LPS-mediated increase of AnxA1 cleaving in RAW 264.7 macrophages was also attenuated by pioglitazone treatment. Finally, pioglitazone treatment increased extracellular signal-regulated kinase (ERK) phosphorylation in AnxA1-expressing RAW 264.7 macrophages, but not in AnxA1-knockdown macrophages. Thus, our data highlight AnxA1 as a crucial factor for the therapeutic actions of pioglitazone on IBDs.
Collapse
Affiliation(s)
| | - Marina de Paula-Silva
- Department of Clinical and Toxicological Analyses, Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Milena Fronza Broering
- Department of Clinical and Toxicological Analyses, Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Pablo Rhasan Dos Santos Scharf
- Department of Clinical and Toxicological Analyses, Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | | | - Silvya Stuchi Maria-Engler
- Department of Clinical and Toxicological Analyses, Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Sandra Helena Poliselli Farsky
- Department of Clinical and Toxicological Analyses, Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
8
|
Li N, Qiao Y, Xue L, Xu S, Zhang N. Targeted and MMP-2/9 responsive peptides for the treatment of rheumatoid arthritis. Int J Pharm 2019; 569:118625. [PMID: 31425817 DOI: 10.1016/j.ijpharm.2019.118625] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 07/24/2019] [Accepted: 08/13/2019] [Indexed: 12/29/2022]
Abstract
Bioactive peptides are attractive candidates for drug development. QAW is a tripeptide that is obtained from an anti-inflammatory protein-Annexin A1 (ANXA1). Previous studies showed that QAW alleviated inflammation in experimental colitis and inflammatory bowel disease via NF-κB inhibition. This study establishes adjuvant-induced arthritis (AIA) mouse models and explores the anti-inflammatory efficacy of QAW in AIA mice. To enhance the targeting, responsiveness, and efficacy of QAW to inflammation, QAW (Q) is modified with a cell penetrating peptide (T), a matrix metalloproteases-2/9 (MMP-2/9) digestive peptide (M), and an inflammation targeting peptide-RGD (R). The designed RMTQ demonstrates enhanced delivery to cytoplasm, higher reduction of pro-inflammatory factors, and better efficacy than QAW. The anti-inflammatory efficacy of RMTQ is similar to that of DEX in this study whereas RMTQ treatment shows a higher safety than that of DEX. In sum, this study demonstrates that RMTQ can be a potential therapeutic for inflammatory arthritis.
Collapse
Affiliation(s)
- Na Li
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, Henan, PR China
| | - Yonghui Qiao
- HeNan University of Chinese Medicine, Zhengzhou 450046, Henan, PR China
| | - Lingping Xue
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, Henan, PR China
| | - Shiqi Xu
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, Henan, PR China
| | - Nan Zhang
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, Henan, PR China; Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, HeNan Province, Zhengzhou 450001, Henan, PR China; Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, HeNan, Zhengzhou 450001, Henan, PR China.
| |
Collapse
|
9
|
Local delivery of macromolecules to treat diseases associated with the colon. Adv Drug Deliv Rev 2018; 136-137:2-27. [PMID: 30359631 DOI: 10.1016/j.addr.2018.10.009] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 10/10/2018] [Accepted: 10/17/2018] [Indexed: 12/15/2022]
Abstract
Current treatments for intestinal diseases including inflammatory bowel diseases, irritable bowel syndrome, and colonic bacterial infections are typically small molecule oral dosage forms designed for systemic delivery. The intestinal permeability hurdle to achieve systemic delivery from oral formulations of macromolecules is challenging, but this drawback can be advantageous if an intestinal region is associated with the disease. There are some promising formulation approaches to release peptides, proteins, antibodies, antisense oligonucleotides, RNA, and probiotics in the colon to enable local delivery and efficacy. We briefly review colonic physiology in relation to the main colon-associated diseases (inflammatory bowel disease, irritable bowel syndrome, infection, and colorectal cancer), along with the impact of colon physiology on dosage form design of macromolecules. We then assess formulation strategies designed to achieve colonic delivery of small molecules and concluded that they can also be applied some extent to macromolecules. We describe examples of formulation strategies in preclinical research aimed at colonic delivery of macromolecules to achieve high local concentration in the lumen, epithelial-, or sub-epithelial tissue, depending on the target, but with the benefit of reduced systemic exposure and toxicity. Finally, the industrial challenges in developing macromolecule formulations for colon-associated diseases are presented, along with a framework for selecting appropriate delivery technologies.
Collapse
|
10
|
Engineering of an Anti-Inflammatory Peptide Based on the Disulfide-Rich Linaclotide Scaffold. Biomedicines 2018; 6:biomedicines6040097. [PMID: 30301200 PMCID: PMC6316043 DOI: 10.3390/biomedicines6040097] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2018] [Revised: 09/11/2018] [Accepted: 09/21/2018] [Indexed: 12/19/2022] Open
Abstract
Inflammatory bowel diseases are a set of complex and debilitating diseases, for which there is no satisfactory treatment. Peptides as small as three amino acids have been shown to have anti-inflammatory activity in mouse models of colitis, but they are likely to be unstable, limiting their development as drug leads. Here, we have grafted a tripeptide from the annexin A1 protein into linaclotide, a 14-amino-acid peptide with three disulfide bonds, which is currently in clinical use for patients with chronic constipation or irritable bowel syndrome. This engineered disulfide-rich peptide maintained the overall fold of the original synthetic guanylate cyclase C agonist peptide, and reduced inflammation in a mouse model of acute colitis. This is the first study to show that this disulfide-rich peptide can be used as a scaffold to confer a new bioactivity.
Collapse
|
11
|
Peptides as Therapeutic Agents for Inflammatory-Related Diseases. Int J Mol Sci 2018; 19:ijms19092714. [PMID: 30208640 PMCID: PMC6163503 DOI: 10.3390/ijms19092714] [Citation(s) in RCA: 105] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2018] [Revised: 09/07/2018] [Accepted: 09/09/2018] [Indexed: 01/08/2023] Open
Abstract
Inflammation is a physiological mechanism used by organisms to defend themselves against infection, restoring homeostasis in damaged tissues. It represents the starting point of several chronic diseases such as asthma, skin disorders, cancer, cardiovascular syndrome, arthritis, and neurological diseases. An increasing number of studies highlight the over-expression of inflammatory molecules such as oxidants, cytokines, chemokines, matrix metalloproteinases, and transcription factors into damaged tissues. The treatment of inflammatory disorders is usually linked to the use of unspecific small molecule drugs that can cause undesired side effects. Recently, many efforts are directed to develop alternative and more selective anti-inflammatory therapies, several of them imply the use of peptides. Indeed, peptides demonstrated as elected lead compounds toward several targets for their high specificity as well as recent and innovative synthetic strategies. Several endogenous peptides identified during inflammatory responses showed anti-inflammatory activities by inhibiting, reducing, and/or modulating the expression and activity of mediators. This review aims to discuss the potentialities and therapeutic use of peptides as anti-inflammatory agents in the treatment of different inflammation-related diseases and to explore the importance of peptide-based therapies.
Collapse
|
12
|
Kasikara C, Doran AC, Cai B, Tabas I. The role of non-resolving inflammation in atherosclerosis. J Clin Invest 2018; 128:2713-2723. [PMID: 30108191 PMCID: PMC6025992 DOI: 10.1172/jci97950] [Citation(s) in RCA: 182] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Non-resolving inflammation drives the development of clinically dangerous atherosclerotic lesions by promoting sustained plaque inflammation, large necrotic cores, thin fibrous caps, and thrombosis. Resolution of inflammation is not merely a passive return to homeostasis, but rather an active process mediated by specific molecules, including fatty acid-derived specialized pro-resolving mediators (SPMs). In advanced atherosclerosis, there is an imbalance between levels of SPMs and proinflammatory lipid mediators, which results in sustained leukocyte influx into lesions, inflammatory macrophage polarization, and impaired efferocytosis. In animal models of advanced atherosclerosis, restoration of SPMs limits plaque progression by suppressing inflammation, enhancing efferocytosis, and promoting an increase in collagen cap thickness. This Review discusses the roles of non-resolving inflammation in atherosclerosis and highlights the unique therapeutic potential of SPMs in blocking the progression of clinically dangerous plaques.
Collapse
Affiliation(s)
| | | | | | - Ira Tabas
- Department of Medicine
- Department of Physiology, and
- Department of Pathology and Cell Biology, Columbia University, New York, New York, USA
| |
Collapse
|
13
|
Annexins in Translational Research: Hidden Treasures to Be Found. Int J Mol Sci 2018; 19:ijms19061781. [PMID: 29914106 PMCID: PMC6032224 DOI: 10.3390/ijms19061781] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 06/06/2018] [Accepted: 06/12/2018] [Indexed: 12/12/2022] Open
Abstract
The vertebrate annexin superfamily (AnxA) consists of 12 members of a calcium (Ca2+) and phospholipid binding protein family which share a high structural homology. In keeping with this hallmark feature, annexins have been implicated in the Ca2+-controlled regulation of a broad range of membrane events. In this review, we identify and discuss several themes of annexin actions that hold a potential therapeutic value, namely, the regulation of the immune response and the control of tissue homeostasis, and that repeatedly surface in the annexin activity profile. Our aim is to identify and discuss those annexin properties which might be exploited from a translational science and specifically, a clinical point of view.
Collapse
|
14
|
A murine colitis model developed using a combination of dextran sulfate sodium and Citrobacter rodentium. J Microbiol 2018; 56:272-279. [PMID: 29611140 PMCID: PMC7090851 DOI: 10.1007/s12275-018-7504-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Revised: 01/29/2018] [Accepted: 02/04/2018] [Indexed: 12/16/2022]
Abstract
Adult mice were treated with dextran sulfate sodium (DSS) and infected with Citrobacter rodentium for developing a novel murine colitis model. C57BL/6N mice (7-week-old) were divided into four groups. Each group composed of control, dextran sodium sulfate-treated (DSS), C. rodentium-infected (CT), and DSS-treated and C. rodentium-infected (DSS-CT) mice. The DSS group was administered 1% DSS in drinking water for 7 days. The CT group was supplied with normal drinking water for 7 days and subsequently infected with C. rodentium via oral gavage. The DSS-CT group was supplied with 1% DSS in drinking water for 7 days and subsequently infected with C. rodentium via oral gavage. The mice were sacrificed 10 days after the induction of C. rodentium infection. The DSS-CT group displayed significantly shorter colon length, higher spleen to body weight ratio, and higher histopathological score compared to the other three groups. The mRNA expression levels of tumor necrosis factor (TNF)-α and interferon (INF)-γ were significantly upregulated; however, those of interleukin (IL)-6 and IL-10 were significantly downregulated in the DSS-CT group than in the control group. These results demonstrated that a combination of low DSS concentration (1%) and C. rodentium infection could effectively induce inflammatory bowel disease (IBD) in mice. This may potentially be used as a novel IBD model, in which colitis is induced in mice by the combination of a chemical and a pathogen.
Collapse
|
15
|
Sheikh MH, Solito E. Annexin A1: Uncovering the Many Talents of an Old Protein. Int J Mol Sci 2018; 19:E1045. [PMID: 29614751 PMCID: PMC5979524 DOI: 10.3390/ijms19041045] [Citation(s) in RCA: 140] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Revised: 03/07/2018] [Accepted: 03/15/2018] [Indexed: 12/11/2022] Open
Abstract
Annexin A1 (ANXA1) has long been classed as an anti-inflammatory protein due to its control over leukocyte-mediated immune responses. However, it is now recognized that ANXA1 has widespread effects beyond the immune system with implications in maintaining the homeostatic environment within the entire body due to its ability to affect cellular signalling, hormonal secretion, foetal development, the aging process and development of disease. In this review, we aim to provide a global overview of the role of ANXA1 covering aspects of peripheral and central inflammation, immune repair and endocrine control with focus on the prognostic, diagnostic and therapeutic potential of the molecule in cancer, neurodegeneration and inflammatory-based disorders.
Collapse
Affiliation(s)
- Madeeha H Sheikh
- The William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, UK.
| | - Egle Solito
- The William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, UK.
| |
Collapse
|
16
|
Perucci LO, Sugimoto MA, Gomes KB, Dusse LM, Teixeira MM, Sousa LP. Annexin A1 and specialized proresolving lipid mediators: promoting resolution as a therapeutic strategy in human inflammatory diseases. Expert Opin Ther Targets 2017; 21:879-896. [PMID: 28786708 DOI: 10.1080/14728222.2017.1364363] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
INTRODUCTION The timely resolution of inflammation is essential to restore tissue homeostasis and to avoid chronic inflammatory diseases. Resolution of inflammation is an active process modulated by various proresolving mediators, including annexin A1 (AnxA1) and specialized proresolving lipid mediators (SPMs), which counteract excessive inflammatory responses and stimulate proresolving mechanisms. Areas covered: The protective effects of AnxA1 and SPMs have been extensively explored in pre-clinical animal models. However, studies investigating the function of these molecules in human diseases are just emerging. This review highlights recent advances on the role of proresolving mediators, and pharmacological opportunities of promoting resolution pathways in preclinical models and patients with various human diseases. Expert opinion: Dysregulation or 'failure' in proresolving mechanisms might be involved in the pathogenesis of chronic inflammatory diseases. Altered levels of proresolving mediators were found in a wide range of human diseases. In some cases, AnxA1 and SPMs are up-regulated in human blood and tissues but fail to engage in proresolving signaling and, hence, to regulate excessive inflammation. Thus, the new concept of 'resolution pharmacology' could be applied to compensate deficiency of endogenous proresolving mediators' generation and/or possible failures in the engagement of resolution pathways observed in many chronic inflammatory diseases.
Collapse
Affiliation(s)
- Luiza Oliveira Perucci
- a Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia , Universidade Federal de Minas Gerais , Belo Horizonte , Minas Gerais , Brazil.,b Programa de Pós-Graduação em Análises Clínicas e Toxicológicas , Universidade Federal de Minas Gerais , Belo Horizonte , Minas Gerais , Brazil
| | - Michelle Amantéa Sugimoto
- a Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia , Universidade Federal de Minas Gerais , Belo Horizonte , Minas Gerais , Brazil.,c Programa de Pós-Graduação em Ciências Farmacêuticas , Universidade Federal de Minas Gerais , Belo Horizonte , Minas Gerais , Brazil
| | - Karina Braga Gomes
- a Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia , Universidade Federal de Minas Gerais , Belo Horizonte , Minas Gerais , Brazil.,b Programa de Pós-Graduação em Análises Clínicas e Toxicológicas , Universidade Federal de Minas Gerais , Belo Horizonte , Minas Gerais , Brazil
| | - Luci Maria Dusse
- a Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia , Universidade Federal de Minas Gerais , Belo Horizonte , Minas Gerais , Brazil.,b Programa de Pós-Graduação em Análises Clínicas e Toxicológicas , Universidade Federal de Minas Gerais , Belo Horizonte , Minas Gerais , Brazil.,c Programa de Pós-Graduação em Ciências Farmacêuticas , Universidade Federal de Minas Gerais , Belo Horizonte , Minas Gerais , Brazil
| | - Mauro Martins Teixeira
- d Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas , Universidade Federal de Minas Gerais , Belo Horizonte , Minas Gerais , Brazil
| | - Lirlândia Pires Sousa
- a Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia , Universidade Federal de Minas Gerais , Belo Horizonte , Minas Gerais , Brazil.,b Programa de Pós-Graduação em Análises Clínicas e Toxicológicas , Universidade Federal de Minas Gerais , Belo Horizonte , Minas Gerais , Brazil.,c Programa de Pós-Graduação em Ciências Farmacêuticas , Universidade Federal de Minas Gerais , Belo Horizonte , Minas Gerais , Brazil
| |
Collapse
|
17
|
Cobos Caceres C, Bansal PS, Navarro S, Wilson D, Don L, Giacomin P, Loukas A, Daly NL. An engineered cyclic peptide alleviates symptoms of inflammation in a murine model of inflammatory bowel disease. J Biol Chem 2017; 292:10288-10294. [PMID: 28473469 PMCID: PMC5473231 DOI: 10.1074/jbc.m117.779215] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Revised: 04/20/2017] [Indexed: 12/11/2022] Open
Abstract
Inflammatory bowel diseases (IBDs) are a set of complex and debilitating diseases for which there is no satisfactory treatment. Recent studies have shown that small peptides show promise for reducing inflammation in models of IBD. However, these small peptides are likely to be unstable and rapidly cleared from the circulation, and therefore, if not modified for better stability, represent non-viable drug leads. We hypothesized that improving the stability of these peptides by grafting them into a stable cyclic peptide scaffold may enhance their therapeutic potential. Using this approach, we have designed a novel cyclic peptide that comprises a small bioactive peptide from the annexin A1 protein grafted into a sunflower trypsin inhibitor cyclic scaffold. We used native chemical ligation to synthesize the grafted cyclic peptide. This engineered cyclic peptide maintained the overall fold of the naturally occurring cyclic peptide, was more effective at reducing inflammation in a mouse model of acute colitis than the bioactive peptide alone, and showed enhanced stability in human serum. Our findings suggest that the use of cyclic peptides as structural backbones offers a promising approach for the treatment of IBD and potentially other chronic inflammatory conditions.
Collapse
MESH Headings
- Animals
- Anti-Inflammatory Agents, Non-Steroidal/chemistry
- Anti-Inflammatory Agents, Non-Steroidal/metabolism
- Anti-Inflammatory Agents, Non-Steroidal/therapeutic use
- Colitis, Ulcerative/drug therapy
- Colitis, Ulcerative/immunology
- Colitis, Ulcerative/pathology
- Colon/drug effects
- Colon/immunology
- Colon/pathology
- Disease Models, Animal
- Drug Design
- Drug Stability
- Gastrointestinal Agents/chemical synthesis
- Gastrointestinal Agents/chemistry
- Gastrointestinal Agents/therapeutic use
- Humans
- Male
- Mice, Inbred C57BL
- Models, Molecular
- Organ Size/drug effects
- Peptides, Cyclic/chemistry
- Peptides, Cyclic/metabolism
- Peptides, Cyclic/therapeutic use
- Protein Conformation
- Protein Engineering
- Protein Folding
- Protein Stability
- Proteolysis
- Random Allocation
- Serum/enzymology
- Specific Pathogen-Free Organisms
Collapse
Affiliation(s)
- Claudia Cobos Caceres
- From the Centre for Biodiscovery and Molecular Development of Therapeutics, AITHM, James Cook University, Cairns, Queensland 4870, Australia
| | - Paramjit S Bansal
- From the Centre for Biodiscovery and Molecular Development of Therapeutics, AITHM, James Cook University, Cairns, Queensland 4870, Australia
| | - Severine Navarro
- From the Centre for Biodiscovery and Molecular Development of Therapeutics, AITHM, James Cook University, Cairns, Queensland 4870, Australia
| | - David Wilson
- From the Centre for Biodiscovery and Molecular Development of Therapeutics, AITHM, James Cook University, Cairns, Queensland 4870, Australia
| | - Laurianne Don
- From the Centre for Biodiscovery and Molecular Development of Therapeutics, AITHM, James Cook University, Cairns, Queensland 4870, Australia
| | - Paul Giacomin
- From the Centre for Biodiscovery and Molecular Development of Therapeutics, AITHM, James Cook University, Cairns, Queensland 4870, Australia
| | - Alex Loukas
- From the Centre for Biodiscovery and Molecular Development of Therapeutics, AITHM, James Cook University, Cairns, Queensland 4870, Australia
| | - Norelle L Daly
- From the Centre for Biodiscovery and Molecular Development of Therapeutics, AITHM, James Cook University, Cairns, Queensland 4870, Australia
| |
Collapse
|
18
|
Leoni G, Nusrat A. Annexin A1: shifting the balance towards resolution and repair. Biol Chem 2017; 397:971-9. [PMID: 27232634 DOI: 10.1515/hsz-2016-0180] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Accepted: 05/21/2016] [Indexed: 12/11/2022]
Abstract
Epithelial barriers play an important role in regulating mucosal homeostasis. Upon injury, the epithelium and immune cells orchestrate repair mechanisms that re-establish homeostasis. This process is highly regulated by protein and lipid mediators such as Annexin A1 (ANXA1). In this review, we focus on the pro-repair properties of ANXA1.
Collapse
|
19
|
Patchouli alcohol ameliorates dextran sodium sulfate-induced experimental colitis and suppresses tryptophan catabolism. Pharmacol Res 2017; 121:70-82. [PMID: 28456683 DOI: 10.1016/j.phrs.2017.04.017] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Revised: 04/05/2017] [Accepted: 04/13/2017] [Indexed: 02/07/2023]
Abstract
Despite the increased morbidity of ulcerative colitis (UC) in recent years, available treatments remain unsatisfactory. Pogostemon cablin has been widely applied to treat a variety of gastrointestinal disorders in clinic for centuries, in which patchouli alcohol (PA, C15H26O) has been identified as the major active component. This study attempted to determine the bioactivity of PA on dextran sulfate sodium (DSS)-induced mice colitis and clarify the mechanism of action. Acute colitis was induced in mice by 3% DSS for 7 days. The mice were then given PA (10, 20 and 40mg/kg) or sulfasalazine (SASP, 200mg/kg) as positive control via oral administration for 7 days. At the end of study, animals were sacrificed and samples were collected for pathological and other analysis. In addition, a metabolite profiling and a targeted metabolite analysis, based on the Ultra-Performance Liquid Chromatography coupled with mass spectrometry (UPLC-MS) approach, were performed to characterize the metabolic changes in plasma. The results revealed that PA significantly reduced the disease activity index (DAI) and ameliorated the colonic injury of DSS mice. The levels of colonic MPO and cytokines involving TNF-α, IFN-γ, IL-1β, IL-6, IL-4 and IL-10 also declined. Furthermore, PA improved the intestinal epithelial barrier by enhancing the level of colonic expression of the tight junction (TJ) proteins, for instance ZO-1, ZO-2, claudin-1 and occludin, and by elevating the levels of mucin-1 and mucin-2 mRNA. The study also demonstrated that PA inhibited the DSS-induced cell death signaling by modulating the apoptosis related Bax and Bcl-2 proteins and down-regulating the necroptosis related RIP3 and MLKL proteins. By comparison, up-regulation of IDO-1 and TPH-1 protein expression in DSS group was suppressed by PA, which was in line with the declined levels of kynurenine (Kyn) and 5-hydroxytryptophan (5-HTP) in plasma. The therapeutic effect of PA was evidently reduced when Kyn was given to mice. In summary, the study successfully demonstrated that PA ameliorated DSS-induced mice acute colitis by suppressing inflammation, maintaining the integrity of intestinal epithelial barrier, inhibiting cell death signaling, and suppressing tryptophan catabolism. The results provided valuable information and guidance for using PA in treatment of UC.
Collapse
|
20
|
Hydrostatin-TL1, an Anti-Inflammatory Active Peptide from the Venom Gland of Hydrophis cyanocinctus in the South China Sea. Int J Mol Sci 2016; 17:ijms17111940. [PMID: 27879679 PMCID: PMC5133935 DOI: 10.3390/ijms17111940] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Revised: 10/31/2016] [Accepted: 11/14/2016] [Indexed: 12/12/2022] Open
Abstract
Tumor necrosis factor (TNF)-α is a pleiotropic cytokine with intense pro-inflammatory and immunomodulatory properties, and anti-TNF-α biologics are effective therapies for various inflammatory diseases such as inflammatory bowel disease (IBD) and sepsis. Snake venom, as a traditional Chinese medicine, has been used in the treatment of inflammatory diseases in China for centuries. In this research, we constructed a venom gland T7 phage display library of the sea snake Hydrophis cyanocinctus to screen bioactive compounds that antagonize TNF-α and identified a novel nine-amino-acid peptide, termed hydrostatin-TL1 (H-TL1). In enzyme-linked immunosorbent assay (ELISA) and surface plasmon resonance (SPR) analyses, H-TL1 inhibited the interaction between TNF-α and TNF receptor 1 (TNFR1). Further, H-TL1 attenuated the cytotoxicity of TNF-α in L929 cells as determined by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay. H-TL1 also decreased the mRNA expression of TNF-α/TNFR1 downstream targets and suppressed the phosphorylation of well-characterized proteins of downstream signal transduction pathways in HEK-293 cells. In vivo data demonstrated that H-TL1 protects animals against dextran sodium sulfate (DSS)-induced acute colitis and lipopolysaccharide (LPS)-induced acute shock. Given its significant anti-inflammatory activity in vitro and in vivo, H-TL1 is a potential peptide for the development of new agents to treat TNF-α-associated inflammatory diseases.
Collapse
|
21
|
de Paula-Silva M, Barrios BE, Macció-Maretto L, Sena AA, Farsky SHP, Correa SG, Oliani SM. Role of the protein annexin A1 on the efficacy of anti-TNF treatment in a murine model of acute colitis. Biochem Pharmacol 2016; 115:104-13. [PMID: 27343762 DOI: 10.1016/j.bcp.2016.06.012] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Accepted: 06/17/2016] [Indexed: 02/08/2023]
Abstract
TNF-α is involved in the mechanisms that initiate inflammatory bowel diseases (IBDs). Anti-TNF-α drugs, such as infliximab (IFX), cause non-responsiveness and side effects, indicating the need to investigate alternative therapies for these diseases. The anti-inflammatory protein, annexin A1 (AnxA1), has been associated with the protection of the gastrointestinal mucosa. To further address the role of endogenous AnxA1 on the TNF-α blockade efficacy in a murine model, we assessed colitis induced by Dextran Sulfate Sodium (DSS) in wild-type (WT) and AnxA1(-/-) Balb/c mice treated with IFX. We consistently observed endogenous AnxA1 prevented clinical and physiological manifestations of experimental colitis treated with IFX, additionally the manifestation of the disease was observed earlier in AnxA1(-)(/-) mice. Rectal bleeding, diarrhea, histological score, epithelial damages and collagen degradation caused by DSS were prevented following IFX treatment only in WT mice. IL-6 increased during colitis in WT and AnxA1(-)(/-) mice, decreasing under IFX treatment in WT. The influx of neutrophils and TNF-α secretion were largely elevated in AnxA1(-)(/-) mice when compared to WT mice. In the group WT/DSS+IFX, phagocytes were more susceptible to apoptosis following treatment with IFX. Endogenous expression of AnxA1 increased after DSS and decreased with IFX treatment, demonstrating an attenuated inflammatory response. The data indicate that AnxA1 contributes to the establishment of intestinal homeostasis after blocking of TNF-α was used as a treatment of IBD, constituting a key molecule in the mechanism of action and a potential biomarker of therapeutic efficacy.
Collapse
Affiliation(s)
- Marina de Paula-Silva
- Post-graduation in Structural and Functional Biology, São Paulo Federal University (UNIFESP), São Paulo, São Paulo, Brazil
| | - Bibiana Elisabeth Barrios
- Center of Investigation in Biochemistry and Clinical Immunology, Cordoba National University (UNC), Córdoba, Córdoba, Argentina
| | - Lisa Macció-Maretto
- Center of Investigation in Biochemistry and Clinical Immunology, Cordoba National University (UNC), Córdoba, Córdoba, Argentina
| | - Angela Aparecida Sena
- Department of Biology, Laboratory of Immunomorphology, São Paulo State University (UNESP), São José do Rio Preto, São Paulo, Brazil
| | | | - Silvia Graciela Correa
- Center of Investigation in Biochemistry and Clinical Immunology, Cordoba National University (UNC), Córdoba, Córdoba, Argentina
| | - Sonia Maria Oliani
- Post-graduation in Structural and Functional Biology, São Paulo Federal University (UNIFESP), São Paulo, São Paulo, Brazil; Department of Biology, Laboratory of Immunomorphology, São Paulo State University (UNESP), São José do Rio Preto, São Paulo, Brazil.
| |
Collapse
|
22
|
Screening of an anti-inflammatory peptide from Hydrophis cyanocinctus and analysis of its activities and mechanism in DSS-induced acute colitis. Sci Rep 2016; 6:25672. [PMID: 27158082 PMCID: PMC4860709 DOI: 10.1038/srep25672] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Accepted: 04/20/2016] [Indexed: 12/20/2022] Open
Abstract
Snake has been used for centuries as a traditional Chinese medicine, especially for therapeutic treatment for inflammatory diseases; however, its mechanisms of action and active constituents remain controversial. In our study, a tumor necrosis factor receptor 1 (TNFR1) selective binding peptide, Hydrostatin-SN1 (H-SN1), which was screened from a Hydrophis cyanocinctus venom gland T7 phage display library, was shown to exhibit significant anti-inflammatory activity in vitro and in vivo. As a TNFR1 antagonist, it reduced cytotoxicity mediated by TNF-α in L929 fibroblasts and effectively inhibited the combination between TNF-α with TNFR1 in surface plasmon resonance analysis. H-SN1 was also shown to suppress TNFR1–associated signaling pathways as it minimized TNF-α-induced NF-кB and MAPK activation in HEK293 embryonic kidney and HT29 adenocarcinoma cell lines. We next determined the effect of H-SN1 in vivo using a murine model of acute colitis induced by dextran sodium sulfate, demonstrating that H-SN1 lowered the clinical parameters of acute colitis including the disease activity index and histologic scores. H-SN1 also inhibited TNF/TNFR1 downstream targets at both mRNA and protein levels. These results indicate that H-SN1 might represent a suitable candidate for use in the treatment of TNF-α-associated inflammatory diseases such as inflammatory bowel diseases.
Collapse
|
23
|
Influenza A virus enhances its propagation through the modulation of Annexin-A1 dependent endosomal trafficking and apoptosis. Cell Death Differ 2016; 23:1243-56. [PMID: 26943321 PMCID: PMC4946891 DOI: 10.1038/cdd.2016.19] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Revised: 12/29/2015] [Accepted: 02/02/2016] [Indexed: 01/17/2023] Open
Abstract
The influenza virus infects millions of people each year and can result in severe complications. Understanding virus recognition and host responses to influenza infection will enable future development of more effective anti-viral therapies. Previous research has revealed diverse yet important roles for the annexin family of proteins in modulating the course of influenza A virus (IAV) infection. However, the role of Annexin-A1 (ANXA1) in IAV infection has not been addressed. Here, we show that ANXA1 deficient mice exhibit a survival advantage, and lower viral titers after infection. This was accompanied with enhanced inflammatory cell infiltration during IAV infection. ANXA1 expression is increased during influenza infection clinically, in vivo and in vitro. The presence of ANXA1 enhances viral replication, influences virus binding, and enhances endosomal trafficking of the virus to the nucleus. ANXA1 colocalizes with early and late endosomes near the nucleus, and enhances nuclear accumulation of viral nucleoprotein. In addition, ANXA1 enhances IAV-mediated apoptosis. Overall, our study demonstrates that ANXA1 plays an important role in influenza virus replication and propagation through various mechanisms and that we predict that the regulation of ANXA1 expression during IAV infection may be a viral strategy to enhance its infectivity.
Collapse
|
24
|
Sena AA, Pedrotti LP, Barrios BE, Cejas H, Balderramo D, Diller A, Correa SG. Lack of TNFRI signaling enhances annexin A1 biological activity in intestinal inflammation. Biochem Pharmacol 2015; 98:422-31. [PMID: 26386311 DOI: 10.1016/j.bcp.2015.09.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2015] [Accepted: 09/11/2015] [Indexed: 12/19/2022]
Abstract
We evaluated whether the lack of TNF-α signaling increases mucosal levels of annexin A1 (AnxA1); the hypothesis stems from previous findings showing that TNF-α neutralization in Crohn's disease patients up-regulates systemic AnxA1 expression. Biopsies from healthy volunteers and patients under anti-TNF-α therapy with remittent ulcerative colitis (UC) showed higher AnxA1 expression than those with active disease. We also evaluated dextran sulfate sodium (DSS)-acute colitis in TNF-α receptor 1 KO (TNFR1-/-) strain with impaired TNF-α signaling and C57BL/6 (WT) mice. Although both strains developed colitis, TNFR1-/- mice showed early clinical recovery, lower myeloperoxidase (MPO) activity and milder histopathological alterations. Colonic epithelium from control and DSS-treated TNFR1-/- mice showed intense AnxA1 expression and AnxA1+ CD4+ and CD8+ T cells were more frequent in TNFR1-/- animals, suggesting an extra supply of AnxA1. The pan antagonist of AnxA1 receptors exacerbated the colitis outcome in TNFR1-/- mice, supporting the pivotal role of AnxA1 in the early recovery. Our findings demonstrate that the TNF-α signaling reduction favors the expression and biological activity of AnxA1 in inflamed intestinal mucosa.
Collapse
Affiliation(s)
- Angela A Sena
- Immunology, Department of Clinical Biochemistry, CIBICI (CONICET), Faculty of Chemical Sciences, National University of Cordoba, Córdoba, Argentina
| | - Luciano P Pedrotti
- Immunology, Department of Clinical Biochemistry, CIBICI (CONICET), Faculty of Chemical Sciences, National University of Cordoba, Córdoba, Argentina
| | - Bibiana E Barrios
- Immunology, Department of Clinical Biochemistry, CIBICI (CONICET), Faculty of Chemical Sciences, National University of Cordoba, Córdoba, Argentina
| | - Hugo Cejas
- Immunology, Department of Clinical Biochemistry, CIBICI (CONICET), Faculty of Chemical Sciences, National University of Cordoba, Córdoba, Argentina
| | - Domingo Balderramo
- Gastroenterology Department, Hospital Privado, Centro Médico, Córdoba, Argentina
| | - Ana Diller
- Pathology Department, Hospital Privado, Centro Médico, Córdoba, Argentina
| | - Silvia G Correa
- Immunology, Department of Clinical Biochemistry, CIBICI (CONICET), Faculty of Chemical Sciences, National University of Cordoba, Córdoba, Argentina.
| |
Collapse
|
25
|
Son JS, Khair S, Pettet DW, Ouyang N, Tian X, Zhang Y, Zhu W, Mackenzie GG, Robertson CE, Ir D, Frank DN, Rigas B, Li E. Altered Interactions between the Gut Microbiome and Colonic Mucosa Precede Polyposis in APCMin/+ Mice. PLoS One 2015; 10:e0127985. [PMID: 26121046 PMCID: PMC4485894 DOI: 10.1371/journal.pone.0127985] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Accepted: 04/21/2015] [Indexed: 12/20/2022] Open
Abstract
Mutation of the adenomatous polyposis coli (APC gene), an early event in the adenoma-carcinoma sequence, is present in 70-80% of sporadic human colorectal adenomas and carcinomas. To test the hypothesis that mutation of the APC gene alters microbial interactions with host intestinal mucosa prior to the development of polyposis, culture-independent methods (targeted qPCR assays and Illumina sequencing of the 16S rRNA gene V1V2 hypervariable region) were used to compare the intestinal microbial composition of 30 six-week old C57BL/6 APCMin/+ and 30 congenic wild type (WT) mice. The results demonstrate that similar to 12-14 week old APCMin/+ mice with intestinal neoplasia, 6 week old APCMin/+ mice with no detectable neoplasia, exhibit an increased relative abundance of Bacteroidetes spp in the colon. Parallel mouse RNA sequence analysis, conducted on a subset of proximal colonic RNA samples (6 APCMin/+, 6 WT) revealed 130 differentially expressed genes (DEGs, fold change ≥ 2, FDR <0.05). Hierarchical clustering of the DEGs was carried out by using 1-r dissimilarity measurement, where r stands for the Pearson correlation, and Ward minimum variance linkage, in order to reduce the number of input variables. When the cluster centroids (medians) were included along with APC genotype as input variables in a negative binomial (NB) regression model, four of seven mouse gene clusters, in addition to APC genotype, were significantly associated with the increased relative abundance of Bacteroidetes spp. Three of the four clusters include several downregulated genes encoding immunoglobulin variable regions and non-protein coding RNAs. These results support the concept that mutation of the APC gene alters colonic-microbial interactions prior to polyposis. It remains to be determined whether interventions directed at ameliorating dysbiosis in APCMin/+mice, such as through probiotics, prebiotics or antibiotics, could reduce tumor formation.
Collapse
Affiliation(s)
- Joshua S. Son
- Department of Medicine, Stony Brook University, Stony Brook, NY, United States of America
| | - Shanawaj Khair
- Department of Medicine, Stony Brook University, Stony Brook, NY, United States of America
| | - Donald W. Pettet
- Department of Medicine, Stony Brook University, Stony Brook, NY, United States of America
| | - Nengtai Ouyang
- Department of Medicine, Stony Brook University, Stony Brook, NY, United States of America
| | - Xinyu Tian
- Department of Applied Mathematics and Statistics, Stony Brook University, Stony Brook, NY, United States of America
| | - Yuanhao Zhang
- Department of Applied Mathematics and Statistics, Stony Brook University, Stony Brook, NY, United States of America
| | - Wei Zhu
- Department of Applied Mathematics and Statistics, Stony Brook University, Stony Brook, NY, United States of America
| | - Gerardo G. Mackenzie
- Department of Preventive Medicine, Stony Brook University, Stony Brook, NY, United States of America
| | - Charles E. Robertson
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States of America
| | - Diana Ir
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States of America
| | - Daniel N. Frank
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States of America
| | - Basil Rigas
- Department of Medicine, Stony Brook University, Stony Brook, NY, United States of America
| | - Ellen Li
- Department of Medicine, Stony Brook University, Stony Brook, NY, United States of America
- * E-mail:
| |
Collapse
|
26
|
Sałaga M, Lewandowska U, Sosnowska D, Zakrzewski PK, Cygankiewicz AI, Piechota-Polańczyk A, Sobczak M, Mosinska P, Chen C, Krajewska WM, Fichna J. Polyphenol extract from evening primrose pomace alleviates experimental colitis after intracolonic and oral administration in mice. Naunyn Schmiedebergs Arch Pharmacol 2014; 387:1069-78. [PMID: 25079872 PMCID: PMC4203999 DOI: 10.1007/s00210-014-1025-x] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Accepted: 07/18/2014] [Indexed: 12/05/2022]
Abstract
Oenothera paradoxa (EP) preparations are commonly used in folk medicine to treat skin diseases, neuralgia, and gastrointestinal (GI) disorders. Several reports suggested that EP preparations exhibit potent anti-inflammatory and antioxidant activities both in vitro and in vivo. Here, we aimed to characterize the action of EP pomace polyphenol extract in mouse model of colitis. We analyzed the composition of EP pomace polyphenol extract using reversed phase HPLC system and ultra-performance liquid chromatography (UPLC) system coupled with a quadrupole-time of flight (Q-TOF) MS instrument. Then, we used a well-established animal model of 2,4,6-trinitrobenzenesulfonic acid (TNBS)-induced colitis to determine the anti-inflammatory action of EP pomace polyphenol extract. We also investigated the effect of the EP pomace polyphenol extract on pro-inflammatory (IL-1β and TNF-α) cytokine mRNA levels and hydrogen peroxide concentration in the inflamed colon. Administration of EP pomace polyphenol extract significantly improved macroscopic and microscopic damage scores, as well as myeloperoxidase (MPO) activity in TNBS-treated mice. The anti-inflammatory effect of the extract was observed after intracolonic and oral administration and was dose-dependent. Significant reduction of tissue hydrogen peroxide level after treatment with EP pomace polyphenol extract suggests that its therapeutic effect is a result of free radical scavenging. This novel finding indicates that the application of the EP pomace polyphenol extract in patients with inflammatory bowel diseases (IBDs) may become an attractive supplementary treatment for conventional anti-inflammatory therapy.
Collapse
Affiliation(s)
- M Sałaga
- Department of Biochemistry, Faculty of Medicine, Medical University of Lodz, Mazowiecka 6/8, 92-215, Lodz, Poland
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Wada S, Sato K, Ohta R, Wada E, Bou Y, Fujiwara M, Kiyono T, Park EY, Aoi W, Takagi T, Naito Y, Yoshikawa T. Ingestion of low dose pyroglutamyl leucine improves dextran sulfate sodium-induced colitis and intestinal microbiota in mice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2013; 61:8807-8813. [PMID: 23964746 DOI: 10.1021/jf402515a] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Inflammatory bowel diseases (IBD) are based on chronic inflammation in the gastrointestinal tract. We previously found anti-inflammatory peptide pyroGlu-Leu in the enzymatic hydrolysate of wheat gluten. The objective of present study is to elucidate improvement of colitis by oral administration of pyroGlu-Leu in an animal model. Acute colitis was induced by dextran sulfate sodium (DSS), and various concentrations of pyroGlu-Leu were administrated by oral gavage for 7 days. A dose of 0.1 mg/kg body weight/day showed the most significant improvement. The pyroGlu-Leu concentration was significantly increased 24 h after oral administration both in the small intestine and the colon compared with the baseline. It was 20-fold higher in the small intestine than the colon. Administration of pyroGlu-Leu normalized population of Bacteroidetes and Firmicutes in the colon. These results indicate that pyroGlu-Leu has a potential therapeutic effect against IBD at a practical dose.
Collapse
Affiliation(s)
- Sayori Wada
- Division of Applied Life Sciences, Graduate School of Life and Environmental Sciences, Kyoto Prefectural University , Shimogamo, Kyoto, 606 8522, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Hongsrichan N, Rucksaken R, Chamgramol Y, Pinlaor P, Techasen A, Yongvanit P, Khuntikeo N, Pairojkul C, Pinlaor S. Annexin A1: A new immunohistological marker of cholangiocarcinoma. World J Gastroenterol 2013; 19:2456-2465. [PMID: 23674846 PMCID: PMC3646135 DOI: 10.3748/wjg.v19.i16.2456] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2012] [Revised: 12/18/2012] [Accepted: 01/24/2013] [Indexed: 02/06/2023] Open
Abstract
AIM: To evaluate a new immunohistological marker, annexin A1 (ANXA1), in cholangiocarcinoma (CCA) and hepatocellular carcinoma (HCC).
METHODS: Expression of ANXA1 protein was investigated in liver tissues from patients with CCA and HCC by immunohistochemistry. Its expression on differences stages of tumor development was investigated in hamster CCA tissues induced by Opisthorchis viverrini and N-nitrosodimethylamine. Moreover, mRNA expression of ANXA1 was assessed in CCA cell lines by quantitative real-time polymerase chain reaction and silencing of ANXA1 gene expression using small interfering RNA.
RESULTS: In human CCA tissue arrays, immunohistochemical analysis revealed that the positive expression of ANXA1 was 94.1% (64/68 cases) consisting of a high expression (66.2%, 45/68 cases) and a low expression (33.8%, 23/68 cases). However, expression of ANXA1 protein was negative in all histologic patterns for HCC (46/46 cases) and healthy individuals (6/6 cases). In hamster with opisthorchiasis-associated CCA, the expression of ANXA1 was observed in the cytoplasm of inflammatory cells, bile duct epithelia and tumor cells. Grading scores of ANXA1 expression were significantly increased with tumor progression. In addition, mRNA expression of ANXA1 significantly increased in all of the various CCA cell lines tested compared to an immortalized human cholangiocyte cell line (MMNK1). Suppressing the ANXA1 gene significantly reduced the matrix metalloproteinase (MMP) 2 and MMP9, and transforming growth factor-β genes, but increased nuclear factor-κB gene expression.
CONCLUSION: ANXA1 is highly expressed in CCA, but low in HCC, suggesting it may serve as a new immunohistochemical marker of CCA. ANXA1 may play a role in opisthorchiasis-associated cholangiocarcinogenesis.
Collapse
MESH Headings
- Animals
- Annexin A1/genetics
- Annexin A1/metabolism
- Bile Duct Neoplasms/chemically induced
- Bile Duct Neoplasms/genetics
- Bile Duct Neoplasms/metabolism
- Bile Duct Neoplasms/parasitology
- Bile Duct Neoplasms/pathology
- Bile Ducts, Intrahepatic/metabolism
- Bile Ducts, Intrahepatic/parasitology
- Bile Ducts, Intrahepatic/pathology
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/metabolism
- Biopsy
- Carcinoma, Hepatocellular/metabolism
- Carcinoma, Hepatocellular/pathology
- Case-Control Studies
- Cell Line, Tumor
- Cholangiocarcinoma/chemically induced
- Cholangiocarcinoma/genetics
- Cholangiocarcinoma/metabolism
- Cholangiocarcinoma/parasitology
- Cholangiocarcinoma/pathology
- Cricetinae
- Dimethylnitrosamine
- Disease Models, Animal
- Female
- Gene Expression Regulation, Neoplastic
- Humans
- Immunohistochemistry
- Liver Neoplasms/metabolism
- Liver Neoplasms/pathology
- Male
- Mesocricetus
- Middle Aged
- Opisthorchis/pathogenicity
- RNA Interference
- RNA, Messenger/metabolism
- Tissue Array Analysis
- Transfection
Collapse
|
29
|
Vandevyver S, Dejager L, Tuckermann J, Libert C. New insights into the anti-inflammatory mechanisms of glucocorticoids: an emerging role for glucocorticoid-receptor-mediated transactivation. Endocrinology 2013; 154:993-1007. [PMID: 23384835 DOI: 10.1210/en.2012-2045] [Citation(s) in RCA: 218] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Glucocorticoids are anti-inflammatory drugs that are widely used for the treatment of numerous (autoimmune) inflammatory diseases. They exert their actions by binding to the glucocorticoid receptor (GR), a member of the nuclear receptor family of transcription factors. Upon ligand binding, the GR translocates to the nucleus, where it acts either as a homodimeric transcription factor that binds glucocorticoid response elements (GREs) in promoter regions of glucocorticoid (GC)-inducible genes, or as a monomeric protein that cooperates with other transcription factors to affect transcription. For decades, it has generally been believed that the undesirable side effects of GC therapy are induced by dimer-mediated transactivation, whereas its beneficial anti-inflammatory effects are mainly due to the monomer-mediated transrepressive actions of GR. Therefore, current research is focused on the development of dissociated compounds that exert only the GR monomer-dependent actions. However, many recent reports undermine this dogma by clearly showing that GR dimer-dependent transactivation is essential in the anti-inflammatory activities of GR. Many of these studies used GR(dim/dim) mutant mice, which show reduced GR dimerization and hence cannot control inflammation in several disease models. Here, we review the importance of GR dimers in the anti-inflammatory actions of GCs/GR, and hence we question the central dogma. We summarize the contribution of various GR dimer-inducible anti-inflammatory genes and question the use of selective GR agonists as therapeutic agents.
Collapse
Affiliation(s)
- Sofie Vandevyver
- VIB-Department for Molecular Biomedical Research /Ugent, Technologiepark 927, Zwijnaarde 9052, Belgium
| | | | | | | |
Collapse
|
30
|
Leoni G, Alam A, Neumann PA, Lambeth JD, Cheng G, McCoy J, Hilgarth RS, Kundu K, Murthy N, Kusters D, Reutelingsperger C, Perretti M, Parkos CA, Neish AS, Nusrat A. Annexin A1, formyl peptide receptor, and NOX1 orchestrate epithelial repair. J Clin Invest 2012; 123:443-54. [PMID: 23241962 DOI: 10.1172/jci65831] [Citation(s) in RCA: 238] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2012] [Accepted: 10/18/2012] [Indexed: 01/05/2023] Open
Abstract
N-formyl peptide receptors (FPRs) are critical regulators of host defense in phagocytes and are also expressed in epithelia. FPR signaling and function have been extensively studied in phagocytes, yet their functional biology in epithelia is poorly understood. We describe a novel intestinal epithelial FPR signaling pathway that is activated by an endogenous FPR ligand, annexin A1 (ANXA1), and its cleavage product Ac2-26, which mediate activation of ROS by an epithelial NADPH oxidase, NOX1. We show that epithelial cell migration was regulated by this signaling cascade through oxidative inactivation of the regulatory phosphatases PTEN and PTP-PEST, with consequent activation of focal adhesion kinase (FAK) and paxillin. In vivo studies using intestinal epithelial specific Nox1(-/-IEC) and AnxA1(-/-) mice demonstrated defects in intestinal mucosal wound repair, while systemic administration of ANXA1 promoted wound recovery in a NOX1-dependent fashion. Additionally, increased ANXA1 expression was observed in the intestinal epithelium and infiltrating leukocytes in the mucosa of ulcerative colitis patients compared with normal intestinal mucosa. Our findings delineate a novel epithelial FPR1/NOX1-dependent redox signaling pathway that promotes mucosal wound repair.
Collapse
Affiliation(s)
- Giovanna Leoni
- Epithelial Pathobiology and Mucosal Inflammation Research Unit, Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|