1
|
Ding C, Sun J. The potential contribution of microbial communities to carbon fixation and nitrogen cycle in the Eastern Indian Ocean. MARINE ENVIRONMENTAL RESEARCH 2025; 207:107056. [PMID: 40054424 DOI: 10.1016/j.marenvres.2025.107056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 02/26/2025] [Accepted: 03/02/2025] [Indexed: 04/01/2025]
Abstract
This study investigated the diversity and metabolic potential of microbial communities in the Eastern Indian Ocean (EIO) through 16S rDNA gene sequencing and metagenomics analyses. Water samples were collected from the surface waters (5 m depth) and 150 m depth layer in the EIO between March 20th and June 6th, 2019. This study reveals microbial-driven biogeochemical dynamics in the oligotrophic Eastern Indian Ocean, where vertically stratified communities (Cyanobacteria/Proteobacteria-dominated surface vs. diversified Proteobacteria at 150 m) and latitudinal diversity gradients reflect nutrient limitations. Metagenomics identified four carbon fixation strategies: the Calvin cycle dominated epipelagic CO2 assimilation, while the 3-hydroxypropionate bicycle showed elevated surface activity, alongside reductive citrate and Wood-Ljungdahl pathways involving novel Actinobacteria. Nitrogen cycling exhibited spatial heterogeneity: nifH-dominated nitrogen fixation in the surface waters, prevalent narGHI nitrate reduction, and divergent nirS/nirK/nosZ distributions tied to nutrient gradients. Proteobacteria and Actinobacteria were key nitrogen fixers, with novel Actinobacteriota diazotrophs expanding known diversity. Elevated nosZ abundance in the Bay of Bengal underscored regional nitrous oxide consumption hotspots. These findings underscore microbial mediation of carbon-nitrogen fluxes in oligotrophic systems, providing genomic insights into ecosystem responses to climate-driven ocean changes.
Collapse
Affiliation(s)
- Changling Ding
- College of Marine and Environmental Sciences, Tianjin University of Science and Technology, Tianjin, 300457, China; Research Centre for Indian Ocean Ecosystem, Tianjin University of Science and Technology, Tianjin, China; Tianjin Key Laboratory of Marine Resources and Chemistry (Tianjin University of Science & Technology), Tianjin, 300457, China
| | - Jun Sun
- College of Marine and Environmental Sciences, Tianjin University of Science and Technology, Tianjin, 300457, China; Research Centre for Indian Ocean Ecosystem, Tianjin University of Science and Technology, Tianjin, China; Tianjin Key Laboratory of Marine Resources and Chemistry (Tianjin University of Science & Technology), Tianjin, 300457, China; College of Marine Science and Technology, China University of Geosciences (Wuhan), Wuhan, Hubei, 430074, China.
| |
Collapse
|
2
|
Wu Y, Wu Z, Guo L, Shao J, Xiao H, Yang M, Deng C, Zhang Y, Zhang Z, Zhao Y. Diversity and distribution of a prevalent Microviridae group across the global oceans. Commun Biol 2024; 7:1377. [PMID: 39443614 PMCID: PMC11499846 DOI: 10.1038/s42003-024-07085-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 10/15/2024] [Indexed: 10/25/2024] Open
Abstract
Small single-stranded DNA phages of the Microviridae family are diverse and prevalent in oceans. Our understanding of Microviridae phages that infect the ecologically important marine Roseobacter is currently limited, comprising few isolates. Here, we report six roseophages that infect Roseobacter RCA strains. Genomic and phylogenetic analyses revealed that they were new members of the previously identified subfamily Occultatumvirinae. Additionally, 232 marine uncultivated virus genomes (UViGs) affiliated to Occultatumvirinae were obtained from environmental genome datasets. Phylogenomic analysis revealed that marine Occultatumvirinae phages could be further grouped into 11 subgroups. Moreover, meta-omics based read-mapping analysis showed that Occultatumvirinae phages were globally distributed, with two low G + C subgroups showing the most prevalent distribution. Furthermore, one phage in subgroup 2 was found to be extremely ubiquitous. Overall, this study expands our understanding of the diversity and ecology of the Occultatumvirinae microviruses in the ocean and highlights their ecological impacts.
Collapse
Affiliation(s)
- Ying Wu
- College of JunCao Science and Ecology (College of Carbon Neutrality), Fujian Agriculture and Forestry University, Fuzhou, China
| | - Zuqing Wu
- College of JunCao Science and Ecology (College of Carbon Neutrality), Fujian Agriculture and Forestry University, Fuzhou, China
| | - Luyuan Guo
- College of JunCao Science and Ecology (College of Carbon Neutrality), Fujian Agriculture and Forestry University, Fuzhou, China
| | - Jiabing Shao
- College of JunCao Science and Ecology (College of Carbon Neutrality), Fujian Agriculture and Forestry University, Fuzhou, China
| | - Hang Xiao
- College of JunCao Science and Ecology (College of Carbon Neutrality), Fujian Agriculture and Forestry University, Fuzhou, China
| | - Mingyu Yang
- College of JunCao Science and Ecology (College of Carbon Neutrality), Fujian Agriculture and Forestry University, Fuzhou, China
| | - Chunmei Deng
- College of JunCao Science and Ecology (College of Carbon Neutrality), Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yahui Zhang
- College of JunCao Science and Ecology (College of Carbon Neutrality), Fujian Agriculture and Forestry University, Fuzhou, China
| | - Zefeng Zhang
- College of JunCao Science and Ecology (College of Carbon Neutrality), Fujian Agriculture and Forestry University, Fuzhou, China.
| | - Yanlin Zhao
- College of JunCao Science and Ecology (College of Carbon Neutrality), Fujian Agriculture and Forestry University, Fuzhou, China.
- Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou, China.
| |
Collapse
|
3
|
Mazur-Marzec H, Andersson AF, Błaszczyk A, Dąbek P, Górecka E, Grabski M, Jankowska K, Jurczak-Kurek A, Kaczorowska AK, Kaczorowski T, Karlson B, Kataržytė M, Kobos J, Kotlarska E, Krawczyk B, Łuczkiewicz A, Piwosz K, Rybak B, Rychert K, Sjöqvist C, Surosz W, Szymczycha B, Toruńska-Sitarz A, Węgrzyn G, Witkowski A, Węgrzyn A. Biodiversity of microorganisms in the Baltic Sea: the power of novel methods in the identification of marine microbes. FEMS Microbiol Rev 2024; 48:fuae024. [PMID: 39366767 PMCID: PMC11500664 DOI: 10.1093/femsre/fuae024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 09/21/2024] [Accepted: 10/03/2024] [Indexed: 10/06/2024] Open
Abstract
Until recently, the data on the diversity of the entire microbial community from the Baltic Sea were relatively rare and very scarce. However, modern molecular methods have provided new insights into this field with interesting results. They can be summarized as follows. (i) Although low salinity causes a reduction in the biodiversity of multicellular species relative to the populations of the North-East Atlantic, no such reduction occurs in bacterial diversity. (ii) Among cyanobacteria, the picocyanobacterial group dominates when considering gene abundance, while filamentous cyanobacteria dominate in means of biomass. (iii) The diversity of diatoms and dinoflagellates is significantly larger than described a few decades ago; however, molecular studies on these groups are still scarce. (iv) Knowledge gaps in other protistan communities are evident. (v) Salinity is the main limiting parameter of pelagic fungal community composition, while the benthic fungal diversity is shaped by water depth, salinity, and sediment C and N availability. (vi) Bacteriophages are the predominant group of viruses, while among viruses infecting eukaryotic hosts, Phycodnaviridae are the most abundant; the Baltic Sea virome is contaminated with viruses originating from urban and/or industrial habitats. These features make the Baltic Sea microbiome specific and unique among other marine environments.
Collapse
Affiliation(s)
- Hanna Mazur-Marzec
- Department of Marine Biology and Biotechnology, University of Gdansk, Al. Piłsudskiego 46, PL-81-378 Gdynia, Poland
| | - Anders F Andersson
- Department of Gene Technology, KTH Royal Institute of Technology, Science for Life Laboratory, Tomtebodavägen 23A, SE-171 65 Solna, Stockholm, Sweden
| | - Agata Błaszczyk
- Department of Marine Biology and Biotechnology, University of Gdansk, Al. Piłsudskiego 46, PL-81-378 Gdynia, Poland
| | - Przemysław Dąbek
- Institute of Marine and Environmental Sciences, University of Szczecin, Mickiewicza 16a, PL-70-383 Szczecin, Poland
| | - Ewa Górecka
- Institute of Marine and Environmental Sciences, University of Szczecin, Mickiewicza 16a, PL-70-383 Szczecin, Poland
| | - Michał Grabski
- International Centre for Cancer Vaccine Science, University of Gdansk, Kładki 24, 80-822 Gdansk, Poland
| | - Katarzyna Jankowska
- Department of Environmental Engineering Technology, Gdansk University of Technology, Narutowicza 11/12, PL-80-233 Gdansk, Poland
| | - Agata Jurczak-Kurek
- Department of Evolutionary Genetics and Biosystematics, University of Gdansk, Wita Stwosza 59, PL-80-308 Gdansk, Poland
| | - Anna K Kaczorowska
- Collection of Plasmids and Microorganisms, University of Gdansk, Wita Stwosza 59, PL-80-308 Gdansk, Poland
| | - Tadeusz Kaczorowski
- Laboratory of Extremophiles Biology, Department of Microbiology, University of Gdansk, Wita Stwosza 59, PL-80-308 Gdansk, Poland
| | - Bengt Karlson
- Swedish Meteorological and Hydrological Institute
, Research and Development, Oceanography, Göteborgseskaderns plats 3, Västra Frölunda SE-426 71, Sweden
| | - Marija Kataržytė
- Marine Research Institute, Klaipėda University, Universiteto ave. 17, LT-92294 Klaipeda, Lithuania
| | - Justyna Kobos
- Department of Marine Biology and Biotechnology, University of Gdansk, Al. Piłsudskiego 46, PL-81-378 Gdynia, Poland
| | - Ewa Kotlarska
- Institute of Oceanology, Polish Academy of Sciences, Powstańców Warszawy 55, PL-81-712 Sopot, Poland
| | - Beata Krawczyk
- Department of Biotechnology and Microbiology, Gdansk University of Technology, Narutowicza 11/12, PL-80-233 Gdansk, Poland
| | - Aneta Łuczkiewicz
- Department of Environmental Engineering Technology, Gdansk University of Technology, Narutowicza 11/12, PL-80-233 Gdansk, Poland
| | - Kasia Piwosz
- National Marine Fisheries Research Institute, Kołłątaja 1, PL-81-332 Gdynia, Poland
| | - Bartosz Rybak
- Department of Environmental Toxicology, Faculty of Health Sciences with Institute of Maritime and Tropical Medicine, Medical University of Gdansk, Dębowa 23A, PL-80-204 Gdansk, Poland
| | - Krzysztof Rychert
- Pomeranian University in Słupsk, Arciszewskiego 22a, PL-76-200 Słupsk, Poland
| | - Conny Sjöqvist
- Environmental and Marine Biology, Åbo Akademi University, Henriksgatan 2, FI-20500 Åbo, Finland
| | - Waldemar Surosz
- Department of Marine Biology and Biotechnology, University of Gdansk, Al. Piłsudskiego 46, PL-81-378 Gdynia, Poland
| | - Beata Szymczycha
- Institute of Oceanology, Polish Academy of Sciences, Powstańców Warszawy 55, PL-81-712 Sopot, Poland
| | - Anna Toruńska-Sitarz
- Department of Marine Biology and Biotechnology, University of Gdansk, Al. Piłsudskiego 46, PL-81-378 Gdynia, Poland
| | - Grzegorz Węgrzyn
- Department of Molecular Biology, University of Gdansk, Wita Stwosza 59, PL-80-308 Gdansk, Poland
| | - Andrzej Witkowski
- Institute of Marine and Environmental Sciences, University of Szczecin, Mickiewicza 16a, PL-70-383 Szczecin, Poland
| | - Alicja Węgrzyn
- University Center for Applied and Interdisciplinary Research, University of Gdansk, Kładki 24, 80-822 Gdansk, Poland
| |
Collapse
|
4
|
Andrianjakarivony FH, Bettarel Y, Cecchi P, Bouchard S, Chase E, Desnues C. Decoding the DNA and RNA viromes of a tropical urban lagoon. Environ Microbiol 2023; 25:2368-2387. [PMID: 37431274 DOI: 10.1111/1462-2920.16463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 06/19/2023] [Indexed: 07/12/2023]
Abstract
Human and livestock sewage is one of the major causes of excess nutrients, leading to the eutrophication of aquatic ecosystems and potentially to the emergence or spread of pathogenic viruses. This study aimed to investigate the composition and diversity of aquatic viromes in a highly anthropized lagoon, to identify the presence of pathogenic taxa and to explore their use as possible viral indicators of faecal contamination. For this, water and sediment samples were collected in the Ebrié Lagoon (Ivory Coast) at seven stations with contrasting levels of eutrophication. The DNA viromes of the planktonic and the benthic compartments were highly divergent, but were not influenced by the level of eutrophication. Conversely, the RNA viromes in the water column were comparable to those found in sediment, but showed significant differences between the stations. We detected the presence of viral DNA and RNA sequences we had assigned as indicators of faecal contamination (smacovirus, pecovirus and pepper mild mottle virus) as well as human pathogens (human cyclovirus, coxsackie B virus and picobirnavirus), which were all enriched in the most eutrophicated sites. These findings suggest that the examination of viromes represents a promising tool for assessing the state of human-induced contamination of aquatic ecosystems.
Collapse
Affiliation(s)
- Felana Harilanto Andrianjakarivony
- Microbes, Evolution, Phylogeny, and Infection (MEФI), IHU - Méditerranée Infection, Marseille, France
- Microbiologie Environnementale Biotechnologie (MEB), Mediterranean Institute of Oceanography (MIO), Marseille, France
| | - Yvan Bettarel
- Marine Biodiversity, Exploitation & Conservation (MARBEC), University of Montpellier, CNRS, Ifremer, IRD, Montpellier, France
| | - Philippe Cecchi
- Marine Biodiversity, Exploitation & Conservation (MARBEC), University of Montpellier, CNRS, Ifremer, IRD, Montpellier, France
| | - Sonia Bouchard
- Microbes, Evolution, Phylogeny, and Infection (MEФI), IHU - Méditerranée Infection, Marseille, France
- Microbiologie Environnementale Biotechnologie (MEB), Mediterranean Institute of Oceanography (MIO), Marseille, France
| | - Emily Chase
- Microbiologie Environnementale Biotechnologie (MEB), Mediterranean Institute of Oceanography (MIO), Marseille, France
| | - Christelle Desnues
- Microbes, Evolution, Phylogeny, and Infection (MEФI), IHU - Méditerranée Infection, Marseille, France
- Microbiologie Environnementale Biotechnologie (MEB), Mediterranean Institute of Oceanography (MIO), Marseille, France
| |
Collapse
|
5
|
Lema NK, Gemeda MT, Woldesemayat AA. Recent Advances in Metagenomic Approaches, Applications, and Challenge. Curr Microbiol 2023; 80:347. [PMID: 37733134 DOI: 10.1007/s00284-023-03451-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Accepted: 08/20/2023] [Indexed: 09/22/2023]
Abstract
Advances in metagenomics analysis with the advent of next-generation sequencing have extended our knowledge of microbial communities as compared to conventional techniques providing advanced approach to identify novel and uncultivable microorganisms based on their genetic information derived from a particular environment. Shotgun metagenomics involves investigating the DNA of the entire community without the requirement of PCR amplification. It provides access to study all genes present in the sample. On the other hand, amplicon sequencing targets taxonomically important marker genes, the analysis of which is restricted to previously known DNA sequences. While sequence-based metagenomics is used to analyze DNA sequences directly from the environment without the requirement of library construction and with limited identification of novel genes and products that can be complemented by functional genomics, function-based metagenomics requires fragmentation and cloning of extracted metagenome DNA in a suitable host with subsequent functional screening and sequencing clone for detection of a novel gene. Although advances were made in metagenomics, different challenges arise. This review provides insight into advances in the metagenomic approaches combined with next-generation sequencing, their recent applications highlighting the emerging ones, such as in astrobiology, forensic sciences, and SARS-CoV-2 infection diagnosis, and the challenges associated. This review further discusses the different types of metagenomics and outlines advancements in bioinformatics tools and their significance in the analysis of metagenomic datasets.
Collapse
Affiliation(s)
- Niguse K Lema
- Department of Biotechnology, College of Biological and Chemical Engineering, Addis Ababa Science and Technology University, Addis Ababa, Ethiopia
- Biotechnology and Bioprocess Center of Excellence, Addis Ababa Science and Technology University, Addis Ababa, Ethiopia
- Department of Biotechnology, Arba Minch University, Arba Minch, Ethiopia
| | - Mesfin T Gemeda
- Department of Biotechnology, College of Biological and Chemical Engineering, Addis Ababa Science and Technology University, Addis Ababa, Ethiopia
- Biotechnology and Bioprocess Center of Excellence, Addis Ababa Science and Technology University, Addis Ababa, Ethiopia
| | - Adugna A Woldesemayat
- Department of Biotechnology, College of Biological and Chemical Engineering, Addis Ababa Science and Technology University, Addis Ababa, Ethiopia.
- Biotechnology and Bioprocess Center of Excellence, Addis Ababa Science and Technology University, Addis Ababa, Ethiopia.
| |
Collapse
|
6
|
Du X, Li X, Cheng K, Zhao W, Cai Z, Chen G, Zhou J. Virome reveals effect of Ulva prolifera green tide on the structural and functional profiles of virus communities in coastal environments. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 883:163609. [PMID: 37100126 DOI: 10.1016/j.scitotenv.2023.163609] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 04/15/2023] [Accepted: 04/16/2023] [Indexed: 06/03/2023]
Abstract
Viruses are widely distributed in marine environments, where they influence the transformation of matter and energy by modulating host metabolism. Driven by eutrophication, green tides are a rising concern in Chinese coastal areas, and are a serious ecological disaster that negatively affects coastal ecosystems and disrupts biogeochemical cycles. Although the composition of bacterial communities in green algae has been investigated, the diversity and roles of viruses in green algal blooms are largely unexplored. Therefore, the diversity, abundance, lifestyle, and metabolic potential of viruses in a natural bloom in Qingdao coastal area were investigated at three different stages (pre-bloom, during-bloom, and post-bloom) by metagenomics analysis. The dsDNA viruses, Siphoviridae, Myoviridae, Podoviridae, and Phycodnaviridae, were found to dominate the viral community. The viral dynamics exhibited distinct temporal patterns across different stages. The composition of the viral community varied during the bloom, especially in populations with low abundance. The lytic cycle was most predominant, and the abundance of lytic viruses increased slightly in the post-bloom stage. The diversity and richness of the viral communities varied distinctly during the green tide, and the post-bloom stage favored viral diversity and richness. The total organic carbon, dissolved oxygen, NO3-, NO2-, PO43-, chlorophyll-a contents, and temperature variably co-influenced the viral communities. The primary hosts included bacteria, algae, and other microplankton. Network analysis revealed the closer links between the viral communities as the bloom progressed. Functional prediction revealed that the viruses possibly influenced the biodegradation of microbial hydrocarbons and carbon by metabolic augmentation via auxiliary metabolic genes. The composition, structure, metabolic potential, and interaction taxonomy of the viromes differed significantly across the different stages of the green tide. The study demonstrated that the ecological event shaped the viral communities during algal bloom, and the viral communities played a significant role in phycospheric microecology.
Collapse
Affiliation(s)
- Xiaopeng Du
- Shenzhen Public Platform for Screening and Application of Marine Microbial Resources, Institute for Ocean Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, PR China; School of Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Xinyang Li
- Shenzhen Public Platform for Screening and Application of Marine Microbial Resources, Institute for Ocean Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, PR China
| | - Keke Cheng
- Shenzhen Public Platform for Screening and Application of Marine Microbial Resources, Institute for Ocean Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, PR China
| | - Wei Zhao
- Shenzhen Public Platform for Screening and Application of Marine Microbial Resources, Institute for Ocean Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, PR China
| | - Zhonghua Cai
- Shenzhen Public Platform for Screening and Application of Marine Microbial Resources, Institute for Ocean Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, PR China
| | - Guofu Chen
- School of Marine Science and Technology, Harbin Institute of Technology (Weihai), Weihai 264209, Shandong Province, PR China
| | - Jin Zhou
- Shenzhen Public Platform for Screening and Application of Marine Microbial Resources, Institute for Ocean Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, PR China.
| |
Collapse
|
7
|
Baláž A, Kajsik M, Budiš J, Szemes T, Turňa J. PHERI-Phage Host ExploRation Pipeline. Microorganisms 2023; 11:1398. [PMID: 37374901 DOI: 10.3390/microorganisms11061398] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 05/23/2023] [Accepted: 05/24/2023] [Indexed: 06/29/2023] Open
Abstract
Antibiotic resistance is becoming a common problem in medicine, food, and industry, with multidrug-resistant bacterial strains occurring in all regions. One of the possible future solutions is the use of bacteriophages. Phages are the most abundant form of life in the biosphere, so we can highly likely purify a specific phage against each target bacterium. The identification and consistent characterization of individual phages was a common form of phage work and included determining bacteriophages' host-specificity. With the advent of new modern sequencing methods, there was a problem with the detailed characterization of phages in the environment identified by metagenome analysis. The solution to this problem may be to use a bioinformatic approach in the form of prediction software capable of determining a bacterial host based on the phage whole-genome sequence. The result of our research is the machine learning algorithm-based tool called PHERI. PHERI predicts the suitable bacterial host genus for the purification of individual viruses from different samples. In addition, it can identify and highlight protein sequences that are important for host selection.
Collapse
Affiliation(s)
- Andrej Baláž
- Geneton Ltd., Ilkovicova 8, 841 04 Bratislava, Slovakia
- Department of Applied Informatics, Faculty of Mathematics, Physics and Informatics, Comenius University, Mlynska dolina F1, 842 48 Bratislava, Slovakia
| | - Michal Kajsik
- Science Park, Comenius University, Ilkovicova 8, 841 04 Bratislava, Slovakia
- Department of Molecular Biology, Faculty of Natural Sciences, Comenius University, Ilkovicova 6, 841 04 Bratislava, Slovakia
- Medirex Group Academy n.o., Novozamocka 1, 949 05 Nitra, Slovakia
| | - Jaroslav Budiš
- Geneton Ltd., Ilkovicova 8, 841 04 Bratislava, Slovakia
- Science Park, Comenius University, Ilkovicova 8, 841 04 Bratislava, Slovakia
- Slovak Centre of Scientific and Technical Information (SCSTI), Lamacska Cesta 8/A, 811 04 Bratislava, Slovakia
| | - Tomáš Szemes
- Geneton Ltd., Ilkovicova 8, 841 04 Bratislava, Slovakia
- Science Park, Comenius University, Ilkovicova 8, 841 04 Bratislava, Slovakia
- Department of Molecular Biology, Faculty of Natural Sciences, Comenius University, Ilkovicova 6, 841 04 Bratislava, Slovakia
| | - Ján Turňa
- Science Park, Comenius University, Ilkovicova 8, 841 04 Bratislava, Slovakia
- Department of Molecular Biology, Faculty of Natural Sciences, Comenius University, Ilkovicova 6, 841 04 Bratislava, Slovakia
| |
Collapse
|
8
|
Zhang Z, Wu Z, Liu H, Yang M, Wang R, Zhao Y, Chen F. Genomic analysis and characterization of phages infecting the marine Roseobacter CHAB-I-5 lineage reveal a globally distributed and abundant phage genus. Front Microbiol 2023; 14:1164101. [PMID: 37138617 PMCID: PMC10149686 DOI: 10.3389/fmicb.2023.1164101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Accepted: 03/27/2023] [Indexed: 05/05/2023] Open
Abstract
Marine phages play an important role in marine biogeochemical cycles by regulating the death, physiological metabolism, and evolutionary trajectory of bacteria. The Roseobacter group is an abundant and important heterotrophic bacterial group in the ocean, and plays an important role in carbon, nitrogen, sulfur and phosphorus cycling. The CHAB-I-5 lineage is one of the most dominant Roseobacter lineages, but remains largely uncultured. Phages infecting CHAB-I-5 bacteria have not yet been investigated due to the lack of culturable CHAB-I-5 strains. In this study, we isolated and sequenced two new phages (CRP-901 and CRP-902) infecting the CHAB-I-5 strain FZCC0083. We applied metagenomic data mining, comparative genomics, phylogenetic analysis, and metagenomic read-mapping to investigate the diversity, evolution, taxonomy, and biogeography of the phage group represented by the two phages. The two phages are highly similar, with an average nucleotide identity of 89.17%, and sharing 77% of their open reading frames. We identified several genes involved in DNA replication and metabolism, virion structure, DNA packing, and host lysis from their genomes. Metagenomic mining identified 24 metagenomic viral genomes closely related to CRP-901 and CRP-902. Genomic comparison and phylogenetic analysis demonstrated that these phages are distinct from other known viruses, representing a novel genus-level phage group (CRP-901-type). The CRP-901-type phages do not contain DNA primase and DNA polymerase genes, but possess a novel bifunctional DNA primase-polymerase gene with both primase and polymerase activities. Read-mapping analysis showed that the CRP-901-type phages are widespread across the world's oceans and are most abundant in estuarine and polar waters. Their abundance is generally higher than other known roseophages and even higher than most pelagiphages in the polar region. In summary, this study has greatly expanded our understanding of the genetic diversity, evolution, and distribution of roseophages. Our analysis suggests that the CRP-901-type phage is an important and novel marine phage group that plays important roles in the physiology and ecology of roseobacters.
Collapse
Affiliation(s)
- Zefeng Zhang
- Institute of Marine Science and Technology, Shandong University, Qingdao, China
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Zuqing Wu
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - He Liu
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Mingyu Yang
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Rui Wang
- Institute of Marine Science and Technology, Shandong University, Qingdao, China
| | - Yanlin Zhao
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
- *Correspondence: Yanlin Zhao,
| | - Feng Chen
- Institute of Marine and Environmental Technology, University of Maryland Center for Environmental Science, Baltimore, MD, United States
- Feng Chen,
| |
Collapse
|
9
|
Cheng R, Li X, Jiang L, Gong L, Geslin C, Shao Z. Virus diversity and interactions with hosts in deep-sea hydrothermal vents. MICROBIOME 2022; 10:235. [PMID: 36566239 PMCID: PMC9789665 DOI: 10.1186/s40168-022-01441-6] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 11/30/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND The deep sea harbors many viruses, yet their diversity and interactions with hosts in hydrothermal ecosystems are largely unknown. Here, we analyzed the viral composition, distribution, host preference, and metabolic potential in different habitats of global hydrothermal vents, including vent plumes, background seawater, diffuse fluids, and sediments. RESULTS From 34 samples collected at eight vent sites, a total of 4662 viral populations (vOTUs) were recovered from the metagenome assemblies, encompassing diverse phylogenetic groups and defining many novel lineages. Apart from the abundant unclassified viruses, tailed phages are most predominant across the global hydrothermal vents, while single-stranded DNA viruses, including Microviridae and small eukaryotic viruses, also constitute a significant part of the viromes. As revealed by protein-sharing network analysis, hydrothermal vent viruses formed many novel genus-level viral clusters and are highly endemic to specific vent sites and habitat types. Only 11% of the vOTUs can be linked to hosts, which are the key microbial taxa of hydrothermal habitats, such as Gammaproteobacteria and Campylobacterota. Intriguingly, vent viromes share some common metabolic features in that they encode auxiliary genes that are extensively involved in the metabolism of carbohydrates, amino acids, cofactors, and vitamins. Specifically, in plume viruses, various auxiliary genes related to methane, nitrogen, and sulfur metabolism were observed, indicating their contribution to host energy conservation. Moreover, the prevalence of sulfur-relay pathway genes indicated the significant role of vent viruses in stabilizing the tRNA structure, which promotes host adaptation to steep environmental gradients. CONCLUSIONS The deep-sea hydrothermal systems hold untapped viral diversity with novelty. They may affect both vent prokaryotic and eukaryotic communities and modulate host metabolism related to vent adaptability. More explorations are needed to depict global vent virus diversity and its roles in this unique ecosystem. Video Abstract.
Collapse
Affiliation(s)
- Ruolin Cheng
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, China
- State Key Laboratory Breeding Base of Marine Genetic Resource, Fujian Key Laboratory of Marine Genetic Resources, Xiamen, 361005, China
| | - Xiaofeng Li
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, China
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
| | - Lijing Jiang
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, China
| | - Linfeng Gong
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, China
| | - Claire Geslin
- Univ Brest, CNRS, IFREMER, IRP 1211 MicrobSea, Laboratoire de Microbiologie des Environnements Extrêmes LM2E, IUEM, Rue Dumont d'Urville, F-29280, Plouzané, France
- Sino-French Laboratory of Deep-Sea Microbiology (MICROBSEA-LIA), Plouzané, France
| | - Zongze Shao
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, China.
- Sino-French Laboratory of Deep-Sea Microbiology (MICROBSEA-LIA), Plouzané, France.
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519000, China.
| |
Collapse
|
10
|
Liao M, Xie Y, Shi M, Cui J. Over two decades of research on the marine RNA virosphere. IMETA 2022; 1:e59. [PMID: 38867898 PMCID: PMC10989941 DOI: 10.1002/imt2.59] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 08/30/2022] [Accepted: 09/14/2022] [Indexed: 06/14/2024]
Abstract
RNA viruses (realm: Riboviria), including RNA phages and eukaryote-infecting RNA viruses, are essential components of marine ecosystems. A large number of marine RNA viruses have been discovered in the last two decades because of the rapid development of next-generation sequencing (NGS) technology. Indeed, the combination of NGS and state-of-the-art meta-omics methods (viromics, the study of all viruses in a specific environment) has led to a fundamental understanding of the taxonomy and genetic diversity of RNA viruses in the sea, suggesting the complex ecological roles played by RNA viruses in this complex ecosystem. Furthermore, comparisons of viromes in the context of highly variable marine niches reveal the biogeographic patterns and ecological impact of marine RNA viruses, whose role in global ecology is becoming increasingly clearer. In this review, we summarize the characteristics of the global marine RNA virosphere and outline the taxonomic hierarchy of RNA viruses with a specific focus on their ancient evolutionary history. We also review the development of methodology and the major progress resulting from its applications in RNA viromics. The aim of this review is not only to provide an in-depth understanding of multifaceted aspects of marine RNA viruses, but to offer future perspectives on developing a better methodology for discovery, and exploring the evolutionary origin and major ecological significance of marine RNA virosphere.
Collapse
Affiliation(s)
- Meng‐en Liao
- CAS Key Laboratory of Molecular Virology & Immunology, Institut Pasteur of Shanghai, Center for Biosafety Mega‐ScienceChinese Academy of SciencesShanghaiChina
- University of Chinese Academy of SciencesBeijingChina
| | - Yunyi Xie
- CAS Key Laboratory of Molecular Virology & Immunology, Institut Pasteur of Shanghai, Center for Biosafety Mega‐ScienceChinese Academy of SciencesShanghaiChina
- University of Chinese Academy of SciencesBeijingChina
| | - Mang Shi
- School of MedicineSun Yat‐sen UniversityShenzhen Campus of Sun Yat‐sen UniversityShenzhenChina
| | - Jie Cui
- CAS Key Laboratory of Molecular Virology & Immunology, Institut Pasteur of Shanghai, Center for Biosafety Mega‐ScienceChinese Academy of SciencesShanghaiChina
- Laboatory for Marine Biology and BiotechnologyPilot National Laboratory for Marine Science and Technology (Qingdao)QingdaoChina
| |
Collapse
|
11
|
Giovannelli D, Barry PH, de Moor JM, Jessen GL, Schrenk MO, Lloyd KG. Sampling across large-scale geological gradients to study geosphere-biosphere interactions. Front Microbiol 2022; 13:998133. [PMID: 36386678 PMCID: PMC9659755 DOI: 10.3389/fmicb.2022.998133] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 10/05/2022] [Indexed: 12/02/2022] Open
Abstract
Despite being one of the largest microbial ecosystems on Earth, many basic open questions remain about how life exists and thrives in the deep subsurface biosphere. Much of this ambiguity is due to the fact that it is exceedingly difficult and often prohibitively expensive to directly sample the deep subsurface, requiring elaborate drilling programs or access to deep mines. We propose a sampling approach which involves collection of a large suite of geological, geochemical, and biological data from numerous deeply-sourced seeps-including lower temperature sites-over large spatial scales. This enables research into interactions between the geosphere and the biosphere, expanding the classical local approach to regional or even planetary scales. Understanding the interplay between geology, geochemistry and biology on such scales is essential for building subsurface ecosystem models and extrapolating the ecological and biogeochemical roles of subsurface microbes beyond single site interpretations. This approach has been used successfully across the Central and South American Convergent Margins, and can be applied more broadly to other types of geological regions (i.e., rifting, intraplate volcanic, and hydrothermal settings). Working across geological spatial scales inherently encompasses broad temporal scales (e.g., millions of years of volatile cycling across a convergent margin), providing access to a framework for interpreting evolution and ecosystem functions through deep time and space. We propose that tectonic interactions are fundamental to maintaining planetary habitability through feedbacks that stabilize the ecosphere, and deep biosphere studies are fundamental to understanding geo-bio feedbacks on these processes on a global scale.
Collapse
Affiliation(s)
- Donato Giovannelli
- Department of Biology, University of Naples “Federico II”, Naples, Italy
- Institute of Marine Biological Resources and Biotechnologies, National Research Council, CNR-IRBIM, Ancona, Italy
- Department of Marine and Coastal Science, Rutgers University, New Brunswick, NJ, United States
- Marine Chemistry and Geochemistry Department, Woods Hole Oceanographic Institution, MA, United States
- Earth-Life Science Institute, Tokyo Institute of Technology, Tokyo, Japan
| | - Peter H. Barry
- Marine Chemistry and Geochemistry Department, Woods Hole Oceanographic Institution, MA, United States
| | - J. Maarten de Moor
- Observatorio Volcanológico y Sismológico de Costa Rica (OVSICORI), Universidad Nacional, Heredia, Costa Rica
- Department of Earth and Planetary Sciences, University of New Mexico, Albuquerque, NM, United States
| | - Gerdhard L. Jessen
- Instituto de Ciencias Marinas y Limnológicas, Universidad Austral de Chile, Valdivia, Chile
- Center for Oceanographic Research COPAS COASTAL, Universidad de Concepción, Concepción, Chile
| | - Matthew O. Schrenk
- Department of Earth and Environmental Sciences, Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, United States
| | - Karen G. Lloyd
- Microbiology Department, University of Tennessee, Knoxville, TN, United States
| |
Collapse
|
12
|
Gao C, Liang Y, Jiang Y, Paez-Espino D, Han M, Gu C, Wang M, Yang Y, Liu F, Yang Q, Gong Z, Zhang X, Luo Z, He H, Guo C, Shao H, Zhou C, Shi Y, Xin Y, Xing J, Tang X, Qin Q, Zhang YZ, He J, Jiao N, McMinn A, Tian J, Suttle CA, Wang M. Virioplankton assemblages from challenger deep, the deepest place in the oceans. iScience 2022; 25:104680. [PMID: 35942087 PMCID: PMC9356048 DOI: 10.1016/j.isci.2022.104680] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 05/25/2022] [Accepted: 06/23/2022] [Indexed: 11/26/2022] Open
Abstract
Hadal ocean biosphere, that is, the deepest part of the world's oceans, harbors a unique microbial community, suggesting a potential uncovered co-occurring virioplankton assemblage. Herein, we reveal the unique virioplankton assemblages of the Challenger Deep, comprising 95,813 non-redundant viral contigs from the surface to the hadal zone. Almost all of the dominant viral contigs in the hadal zone were unclassified, potentially related to Alteromonadales and Oceanospirillales. 2,586 viral auxiliary metabolic genes from 132 different KEGG orthologous groups were mainly related to the carbon, nitrogen, sulfur, and arsenic metabolism. Lysogenic viral production and integrase genes were augmented in the hadal zone, suggesting the prevalence of viral lysogenic life strategy. Abundant rve genes in the hadal zone, which function as transposase in the caudoviruses, further suggest the prevalence of viral-mediated horizontal gene transfer. This study provides fundamental insights into the virioplankton assemblages of the hadal zone, reinforcing the necessity of incorporating virioplankton into the hadal biogeochemical cycles.
Collapse
Affiliation(s)
- Chen Gao
- College of Marine Life Sciences, Institute of Evolution and Marine Biodiversity, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Key Lab of Polar Oceanography and Global Ocean Change, Ocean University of China, Qingdao 266003, China
- UMT-OUC Joint Center for Marine Studies, Qingdao 266003, China
| | - Yantao Liang
- College of Marine Life Sciences, Institute of Evolution and Marine Biodiversity, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Key Lab of Polar Oceanography and Global Ocean Change, Ocean University of China, Qingdao 266003, China
- UMT-OUC Joint Center for Marine Studies, Qingdao 266003, China
| | - Yong Jiang
- College of Marine Life Sciences, Institute of Evolution and Marine Biodiversity, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Key Lab of Polar Oceanography and Global Ocean Change, Ocean University of China, Qingdao 266003, China
- UMT-OUC Joint Center for Marine Studies, Qingdao 266003, China
| | - David Paez-Espino
- DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- Mammoth Biosciences, Inc., South San Francisco, CA, USA
| | - Meiaoxue Han
- College of Marine Life Sciences, Institute of Evolution and Marine Biodiversity, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Key Lab of Polar Oceanography and Global Ocean Change, Ocean University of China, Qingdao 266003, China
- UMT-OUC Joint Center for Marine Studies, Qingdao 266003, China
| | - Chengxiang Gu
- College of Marine Life Sciences, Institute of Evolution and Marine Biodiversity, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Key Lab of Polar Oceanography and Global Ocean Change, Ocean University of China, Qingdao 266003, China
- UMT-OUC Joint Center for Marine Studies, Qingdao 266003, China
| | - Meiwen Wang
- College of Marine Life Sciences, Institute of Evolution and Marine Biodiversity, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Key Lab of Polar Oceanography and Global Ocean Change, Ocean University of China, Qingdao 266003, China
- UMT-OUC Joint Center for Marine Studies, Qingdao 266003, China
| | - Yumei Yang
- Inquire Life Diagnostics, Inc, Xi’an 710100, China
| | - Fengjiao Liu
- The Affiliated Hospital of Qingdao University, Qingdao 266000, China
| | - Qingwei Yang
- College of Marine Life Sciences, Institute of Evolution and Marine Biodiversity, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Key Lab of Polar Oceanography and Global Ocean Change, Ocean University of China, Qingdao 266003, China
- UMT-OUC Joint Center for Marine Studies, Qingdao 266003, China
| | - Zheng Gong
- College of Marine Life Sciences, Institute of Evolution and Marine Biodiversity, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Key Lab of Polar Oceanography and Global Ocean Change, Ocean University of China, Qingdao 266003, China
- UMT-OUC Joint Center for Marine Studies, Qingdao 266003, China
| | - Xinran Zhang
- College of Marine Life Sciences, Institute of Evolution and Marine Biodiversity, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Key Lab of Polar Oceanography and Global Ocean Change, Ocean University of China, Qingdao 266003, China
- UMT-OUC Joint Center for Marine Studies, Qingdao 266003, China
| | - Zhixiang Luo
- College of Marine Life Sciences, Institute of Evolution and Marine Biodiversity, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Key Lab of Polar Oceanography and Global Ocean Change, Ocean University of China, Qingdao 266003, China
- UMT-OUC Joint Center for Marine Studies, Qingdao 266003, China
| | - Hui He
- College of Marine Life Sciences, Institute of Evolution and Marine Biodiversity, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Key Lab of Polar Oceanography and Global Ocean Change, Ocean University of China, Qingdao 266003, China
- UMT-OUC Joint Center for Marine Studies, Qingdao 266003, China
| | - Cui Guo
- College of Marine Life Sciences, Institute of Evolution and Marine Biodiversity, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Key Lab of Polar Oceanography and Global Ocean Change, Ocean University of China, Qingdao 266003, China
- UMT-OUC Joint Center for Marine Studies, Qingdao 266003, China
| | - Hongbing Shao
- College of Marine Life Sciences, Institute of Evolution and Marine Biodiversity, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Key Lab of Polar Oceanography and Global Ocean Change, Ocean University of China, Qingdao 266003, China
- UMT-OUC Joint Center for Marine Studies, Qingdao 266003, China
| | - Chun Zhou
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, Key Laboratory of Physical Oceanography, Ministry of Education, Ocean University of China, Qingdao 266100, China
| | - Yang Shi
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, Key Laboratory of Physical Oceanography, Ministry of Education, Ocean University of China, Qingdao 266100, China
| | - Yu Xin
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Institute for Advanced Ocean Study, Ocean University of China, Qingdao 266100, China
| | - Jinyan Xing
- The Affiliated Hospital of Qingdao University, Qingdao 266000, China
| | - Xuexi Tang
- College of Marine Life Sciences, Institute of Evolution and Marine Biodiversity, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Key Lab of Polar Oceanography and Global Ocean Change, Ocean University of China, Qingdao 266003, China
| | - Qilong Qin
- College of Marine Life Sciences, Institute of Evolution and Marine Biodiversity, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Key Lab of Polar Oceanography and Global Ocean Change, Ocean University of China, Qingdao 266003, China
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Qingdao 266237, China
| | - Yu-Zhong Zhang
- College of Marine Life Sciences, Institute of Evolution and Marine Biodiversity, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Key Lab of Polar Oceanography and Global Ocean Change, Ocean University of China, Qingdao 266003, China
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Qingdao 266237, China
| | - Jianfeng He
- SOA Key Laboratory for Polar Science, Polar Research Institute of China, Shanghai 200136, China
| | - Nianzhi Jiao
- Institute of Marine Microbes and Ecospheres, State Key Laboratory of Marine Environmental Sciences, Xiamen University, Xiamen, Fujian 361005, China
| | - Andrew McMinn
- College of Marine Life Sciences, Institute of Evolution and Marine Biodiversity, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Key Lab of Polar Oceanography and Global Ocean Change, Ocean University of China, Qingdao 266003, China
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, TAS 7001, Australia
| | - Jiwei Tian
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, Key Laboratory of Physical Oceanography, Ministry of Education, Ocean University of China, Qingdao 266100, China
- Laboratory for Ocean and Climate Dynamics, Pilot National Laboratory for Marine Science and Technology, Qingdao, China
| | - Curtis A. Suttle
- Departments of Earth, Ocean and Atmospheric Sciences, Microbiology and Immunology and Botany and Institute for the Oceans and Fisheries, the University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Min Wang
- College of Marine Life Sciences, Institute of Evolution and Marine Biodiversity, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Key Lab of Polar Oceanography and Global Ocean Change, Ocean University of China, Qingdao 266003, China
- UMT-OUC Joint Center for Marine Studies, Qingdao 266003, China
- The Affiliated Hospital of Qingdao University, Qingdao 266000, China
| |
Collapse
|
13
|
Hegarty B, Dai Z, Raskin L, Pinto A, Wigginton K, Duhaime M. A snapshot of the global drinking water virome: Diversity and metabolic potential vary with residual disinfectant use. WATER RESEARCH 2022; 218:118484. [PMID: 35504157 DOI: 10.1016/j.watres.2022.118484] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 04/01/2022] [Accepted: 04/19/2022] [Indexed: 05/22/2023]
Abstract
Viruses are important drivers of microbial community ecology and evolution, influencing microbial mortality, metabolism, and horizontal gene transfer. However, the effects of viruses remain largely unknown in many environments, including in drinking water systems. Drinking water metagenomic studies have offered a whole community perspective of bacterial impacts on water quality, but have not yet considered the influences of viruses. In this study, we address this gap by mining viral DNA sequences from publicly available drinking water metagenomes from distribution systems in six countries around the world. These datasets provide a snapshot of the taxonomic diversity and metabolic potential of the global drinking water virome; and provide an opportunity to investigate the effects of geography, climate, and drinking water treatment practices on viral diversity. Both environmental conditions and differences in sample processing were found to influence the viral composition. Using free chlorine as the residual disinfectant was associated with clear differences in viral taxonomic diversity and metabolic potential, with significantly fewer viral populations and less even viral community structures than observed in distribution systems without residual disinfectant. Additionally, drinking water viruses carry antibiotic resistance genes (ARGs), as well as genes to survive oxidative stress and nitrogen limitation. Through this study, we have demonstrated that viral communities are diverse across drinking water systems and vary with the use of residual disinfectant. Our findings offer directions for future research to develop a more robust understanding of how virus-bacteria interactions in drinking water distribution systems affect water quality.
Collapse
Affiliation(s)
- Bridget Hegarty
- Department of Civil and Environmental Engineering, Environmental and Water Resources Engineering Building, University of Michigan, 1351 Beal Ave. 181, Ann Arbor, MI 48109-2125, USA
| | - Zihan Dai
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lutgarde Raskin
- Department of Civil and Environmental Engineering, Environmental and Water Resources Engineering Building, University of Michigan, 1351 Beal Ave. 181, Ann Arbor, MI 48109-2125, USA
| | - Ameet Pinto
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Georgia
| | - Krista Wigginton
- Department of Civil and Environmental Engineering, Environmental and Water Resources Engineering Building, University of Michigan, 1351 Beal Ave. 181, Ann Arbor, MI 48109-2125, USA.
| | - Melissa Duhaime
- Department of Ecology and Evolutionary Biology, University of Michigan, 1105N University Ave., 4068 Biological Sciences Building, Ann Arbor, MI 48109-1085, USA.
| |
Collapse
|
14
|
Microbial Diversity in the Indian Ocean Sediments: An Insight into the Distribution and Associated Factors. Curr Microbiol 2022; 79:115. [PMID: 35195780 DOI: 10.1007/s00284-022-02801-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 11/23/2021] [Indexed: 11/03/2022]
Abstract
Indian Ocean is the third largest oceanic division of the world and shelter to a huge microbial diversity. These microbes play an important role in the metabolism of carbon, sulfur, nitrogen, and phosphorus in the ocean water. They are also major contributors of carbon fixing and sequestration, as much as terrestrial plants to achieve CO2 emissions reduction. The prokaryotic community in the East Indian Ocean primarily comprises of heterotrophic bacteria like Alphaproteobacteria and Gammaproteobacteria, followed by Firmicutes and Actinobacteria. The Arabian Sea and the Bay of Bengal are typically characterized by presence of vast areas of oxygen minimum zones (OMZs) and have been witnessing a shift in the microbial diversity due to the changing conditions in the ocean water. Several canonical correspondence analyses reveal temperature, salinity, and phosphate levels as crucial environmental factors in propelling the distribution of diazotrophs. The viral consortia are dominated by the Caudovirales, an order of tailed bacteriophages. Due to the rapid change in the environmental factors such as topography, temperature, and sunlight contributing toward climate change, their role in sustaining the chemical composition of the ocean can be drastically affected especially with the evidence of several bacterial and fungal communities responding to latitudinal and temperature change. Therefore, we aim to critically review the status of microbial diversity in Indian Ocean to predict their response toward climate change as they are the sentinels of change in marine life and to understand the dynamics of microbial communities in the various locations of Indian Ocean.
Collapse
|
15
|
ter Horst AM, Santos-Medellín C, Sorensen JW, Zinke LA, Wilson RM, Johnston ER, Trubl G, Pett-Ridge J, Blazewicz SJ, Hanson PJ, Chanton JP, Schadt CW, Kostka JE, Emerson JB. Minnesota peat viromes reveal terrestrial and aquatic niche partitioning for local and global viral populations. MICROBIOME 2021; 9:233. [PMID: 34836550 PMCID: PMC8626947 DOI: 10.1186/s40168-021-01156-0] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 09/02/2021] [Indexed: 05/31/2023]
Abstract
BACKGROUND Peatlands are expected to experience sustained yet fluctuating higher temperatures due to climate change, leading to increased microbial activity and greenhouse gas emissions. Despite mounting evidence for viral contributions to these processes in peatlands underlain with permafrost, little is known about viruses in other peatlands. More generally, soil viral biogeography and its potential drivers are poorly understood at both local and global scales. Here, 87 metagenomes and five viral size-fraction metagenomes (viromes) from a boreal peatland in northern Minnesota (the SPRUCE whole-ecosystem warming experiment and surrounding bog) were analyzed for dsDNA viral community ecological patterns, and the recovered viral populations (vOTUs) were compared with our curated PIGEON database of 266,125 vOTUs from diverse ecosystems. RESULTS Within the SPRUCE experiment, viral community composition was significantly correlated with peat depth, water content, and carbon chemistry, including CH4 and CO2 concentrations, but not with temperature during the first 2 years of warming treatments. Peat vOTUs with aquatic-like signatures (shared predicted protein content with marine and/or freshwater vOTUs) were significantly enriched in more waterlogged surface peat depths. Predicted host ranges for SPRUCE vOTUs were relatively narrow, generally within a single bacterial genus. Of the 4326 SPRUCE vOTUs, 164 were previously detected in other soils, mostly peatlands. None of the previously identified 202,371 marine and freshwater vOTUs in our PIGEON database were detected in SPRUCE peat, but 0.4% of 80,714 viral clusters (VCs, grouped by predicted protein content) were shared between soil and aquatic environments. On a per-sample basis, vOTU recovery was 32 times higher from viromes compared with total metagenomes. CONCLUSIONS Results suggest strong viral "species" boundaries between terrestrial and aquatic ecosystems and to some extent between peat and other soils, with differences less pronounced at higher taxonomic levels. The significant enrichment of aquatic-like vOTUs in more waterlogged peat suggests that viruses may also exhibit niche partitioning on more local scales. These patterns are presumably driven in part by host ecology, consistent with the predicted narrow host ranges. Although more samples and increased sequencing depth improved vOTU recovery from total metagenomes, the substantially higher per-sample vOTU recovery after viral particle enrichment highlights the utility of soil viromics. Video abstract The importance of Minnesota peat viromes in revealing terrestrial and aquatic niche partitioning for viral populations.
Collapse
Affiliation(s)
| | | | - Jackson W. Sorensen
- Department of Plant Pathology, University of California, Davis, Davis, CA USA
| | - Laura A. Zinke
- Department of Plant Pathology, University of California, Davis, Davis, CA USA
| | - Rachel M. Wilson
- Department of Earth, Ocean, and Atmospheric Science, Florida State University, Tallahassee, FL USA
| | - Eric R. Johnston
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN USA
| | - Gareth Trubl
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA USA
| | - Jennifer Pett-Ridge
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA USA
| | - Steven J. Blazewicz
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA USA
| | - Paul J. Hanson
- Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN USA
| | - Jeffrey P. Chanton
- Department of Earth, Ocean, and Atmospheric Science, Florida State University, Tallahassee, FL USA
| | | | - Joel E. Kostka
- Schools of Biology and Earth & Atmospheric Sciences, Georgia Institute of Technology, Atlanta, GA USA
- Center for Microbial Dynamics and Infection, Georgia Institute of Technology, Atlanta, GA 30332 USA
| | - Joanne B. Emerson
- Department of Plant Pathology, University of California, Davis, Davis, CA USA
- Genome Center, University of California, Davis, Davis, CA USA
| |
Collapse
|
16
|
Viral Characteristics of the Warm Atlantic and Cold Arctic Water Masses in the Nordic Seas. Appl Environ Microbiol 2021; 87:e0116021. [PMID: 34469192 DOI: 10.1128/aem.01160-21] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Nordic Seas are the subarctic seas connecting the Arctic Ocean and North Atlantic Ocean with complex water masses, experiencing an abrupt climate change. Though knowledge of the marine virosphere has expanded rapidly, the diversity of viruses and their relationships with host cells and water masses in the Nordic Seas remain to be fully revealed. Here, we establish the Nordic Sea DNA virome (NSV) data set of 55,315 viral contigs including 1,478 unique viral populations from seven stations influenced by both the warm Atlantic and cold Arctic water masses. Caudovirales dominated in the seven NSVs, especially in the warm Atlantic waters. The major giant nucleocytoplasmic large DNA viruses (NCLDVs) contributed a significant proportion of the classified viral contigs in the NSVs (32.2%), especially in the cold Arctic waters (44.9%). The distribution patterns of Caudovirales and NCLDVs were a reflection of the community structure of their hosts in the corresponding water masses and currents. Latitude, pH, and flow speed were found to be key factors influencing the microbial communities and coinfluencing the variation of viral communities. Network analysis illustrated the tight coupling between the variation of viral communities and microbial communities in the Nordic Seas. This study suggests a probable linkage between viromes, host cells, and surface water masses from both the cool Arctic and warm Atlantic Oceans. IMPORTANCE This is a systematic study of Nordic Sea viromes using metagenomic analysis. The viral diversity, community structure, and their relationships with host cells and the complex water masses from both the cool Arctic and the warm Atlantic oceans were illustrated. The NCLDVs and Caudovirales are proposed as the viral characteristics of the cold Arctic and warm Atlantic waters, respectively. This study provides an important background for the viromes in the subarctic seas connecting the Arctic Ocean and North Atlantic Ocean and sheds light on their responses to abrupt climate change in the future.
Collapse
|
17
|
Soil Candidate Phyla Radiation Bacteria Encode Components of Aerobic Metabolism and Co-occur with Nanoarchaea in the Rare Biosphere of Rhizosphere Grassland Communities. mSystems 2021; 6:e0120520. [PMID: 34402646 PMCID: PMC8407418 DOI: 10.1128/msystems.01205-20] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Candidate Phyla Radiation (CPR) bacteria and nanoarchaea populate most ecosystems but are rarely detected in soil. We concentrated particles of less than 0.2 μm in size from grassland soil, enabling targeted metagenomic analysis of these organisms, which are almost totally unexplored in largely oxic environments such as soil. We recovered a diversity of CPR bacterial and some archaeal sequences but no sequences from other cellular organisms. The sampled sequences include Doudnabacteria (SM2F11) and Pacearchaeota, organisms rarely reported in soil, as well as Saccharibacteria, Parcubacteria, and Microgenomates. CPR and archaea of the phyla Diapherotrites, Parvarchaeota, Aenigmarchaeota, Nanoarchaeota, and Nanohaloarchaeota (DPANN) were enriched 100- to 1,000-fold compared to that in bulk soil, in which we estimate each of these organisms comprises approximately 1 to 100 cells per gram of soil. Like most CPR and DPANN sequenced to date, we predict these microorganisms live symbiotic anaerobic lifestyles. However, Saccharibacteria, Parcubacteria, and Doudnabacteria genomes sampled here also harbor ubiquinol oxidase operons that may have been acquired from other bacteria, likely during adaptation to aerobic soil environments. We conclude that CPR bacteria and DPANN archaea are part of the rare soil biosphere and harbor unique metabolic platforms that potentially evolved to live symbiotically under relatively oxic conditions. IMPORTANCE Here, we investigated overlooked microbes in soil, Candidate Phyla Radiation (CPR) bacteria and Diapherotrites, Parvarchaeota, Aenigmarchaeota, Nanoarchaeota, and Nanohaloarchaeota (DPANN) archaea, by size fractionating small particles from soil, an approach typically used for the recovery of viral metagenomes. Concentration of these small cells (<0.2 μm) allowed us to identify these organisms as part of the rare soil biosphere and to sample genomes that were absent from non-size-fractionated metagenomes. We found that some of these predicted symbionts, which have been largely studied in anaerobic systems, have acquired aerobic capacity via lateral transfer that may enable adaptation to oxic soil environments. We estimate that there are approximately 1 to 100 cells of each of these lineages per gram of soil, highlighting that the approach provides a window into the rare soil biosphere and its associated genetic potential.
Collapse
|
18
|
Wambua S, Gourlé H, de Villiers EP, Karlsson-Lindsjö O, Wambiji N, Macdonald A, Bongcam-Rudloff E, de Villiers S. Cross-Sectional Variations in Structure and Function of Coral Reef Microbiome With Local Anthropogenic Impacts on the Kenyan Coast of the Indian Ocean. Front Microbiol 2021; 12:673128. [PMID: 34248882 PMCID: PMC8260691 DOI: 10.3389/fmicb.2021.673128] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 05/31/2021] [Indexed: 11/13/2022] Open
Abstract
Coral reefs face an increased number of environmental threats from anthropomorphic climate change and pollution from agriculture, industries and sewage. Because environmental changes lead to their compositional and functional shifts, coral reef microbial communities can serve as indicators of ecosystem impacts through development of rapid and inexpensive molecular monitoring tools. Little is known about coral reef microbial communities of the Western Indian Ocean (WIO). We compared taxonomic and functional diversity of microbial communities inhabiting near-coral seawater and sediments from Kenyan reefs exposed to varying impacts of human activities. Over 19,000 species (bacterial, viral and archaeal combined) and 4,500 clusters of orthologous groups of proteins (COGs) were annotated. The coral reefs showed variations in the relative abundances of ecologically significant taxa, especially copiotrophic bacteria and coliphages, corresponding to the magnitude of the neighboring human impacts in the respective sites. Furthermore, the near-coral seawater and sediment metagenomes had an overrepresentation of COGs for functions related to adaptation to diverse environments. Malindi and Mombasa marine parks, the coral reef sites closest to densely populated settlements were significantly enriched with genes for functions suggestive of mitigation of environment perturbations including the capacity to reduce intracellular levels of environmental contaminants and repair of DNA damage. Our study is the first metagenomic assessment of WIO coral reef microbial diversity which provides a much-needed baseline for the region, and points to a potential area for future research toward establishing indicators of environmental perturbations.
Collapse
Affiliation(s)
- Sammy Wambua
- Pwani University Bioscience Research Centre (PUBReC), Pwani University, Kilifi, Kenya.,Department of Biological Sciences, Pwani University, Kilifi, Kenya
| | - Hadrien Gourlé
- Department of Animal Breeding and Genetics, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Etienne P de Villiers
- KEMRI-Wellcome Trust Research Programme, Kilifi, Kenya.,Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Oskar Karlsson-Lindsjö
- Department of Animal Breeding and Genetics, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Nina Wambiji
- Kenya Marine and Fisheries Research Institute, Mombasa, Kenya
| | - Angus Macdonald
- School of Life Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Erik Bongcam-Rudloff
- Department of Animal Breeding and Genetics, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Santie de Villiers
- Pwani University Bioscience Research Centre (PUBReC), Pwani University, Kilifi, Kenya.,Department of Biochemistry and Biotechnology, Pwani University, Kilifi, Kenya
| |
Collapse
|
19
|
Viral footprints across Gulfs of Kathiawar Peninsula and Arabian Sea: Unraveled from pelagic sediment metagenomic data. Virus Res 2021; 302:198485. [PMID: 34146609 DOI: 10.1016/j.virusres.2021.198485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 06/09/2021] [Accepted: 06/10/2021] [Indexed: 11/21/2022]
Abstract
Marine biosphere is one of the largest, diverse and dynamic system hosting numerous of microorganisms. Viruses being the most abundant under explored lifeforms in ocean, represent a reservoir of great genetic diversity. We report the metagenomic insights on the viral communities in the deep sediments of the two Gulfs of Gujarat i.e. Gulf of Khambhat and Gulf of Kutch, with one sample from Arabian Sea, treated as open sea control. The viral reads were filtered from the whole dataset, assembled and studied for viral diversity, which was visualized by Pavian. The sequences were checked for the viral abundance, diversity and functionality. The resulting viral taxonomic classification contained 6 orders, 8 families and 47 genera. The results revealed that the phages infecting Cyanobacterium, Bacillus and Vibrio dominated the sediments. Further, it was observed that majority of viral sequences belonged to double-stranded DNA phages. The present study attempts to provide a primary insight of the viral signals and potential genetic content in the Gulfs of Kathiawar.
Collapse
|
20
|
Kumar N, Gupta AK, Sudan SK, Pal D, Randhawa V, Sahni G, Mayilraj S, Kumar M. Abundance and Diversity of Phages, Microbial Taxa, and Antibiotic Resistance Genes in the Sediments of the River Ganges Through Metagenomic Approach. Microb Drug Resist 2021; 27:1336-1354. [PMID: 33913739 DOI: 10.1089/mdr.2020.0431] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
In this study, we have analyzed the metagenomic DNA from the pooled sediment sample of the river Ganges to explore the abundance and diversity of phages, microbial community, and antibiotic resistance genes (ARGs). Utilizing data from Illumina platform, 4,174 (∼0.0013%) reads were classified for the 285 different DNA viruses largely dominated by the group of 260 distinctive phages (3,602 reads, ∼86.3%). Among all, Microcystis (782 hits), Haemophilus (403), Synechococcus (386), Pseudomonas (279), Enterococcus (232), Bacillus (196), Rhodococcus (166), Caulobacter (163), Salmonella (146), Enterobacteria (143), Mycobacterium and (128) phages show the highest abundance and account for ∼90% of the total identified phages. In addition, we have also identified corresponding host pertaining to these phages. Mainly, Proteobacteria (∼69.3%) dominates the microbial population structure. Primarily, orders such as Caulobacterales (∼28%), Burkholderiales (∼13.9%), Actinomycetales (∼13.7%), and Pseudomonadales (∼7.5%) signify the core section. Furthermore, 21,869 (∼0.00695%) reads were classified in 20 ARG types (classes) and 240 ARGs (subtypes), among which 4 ARG types, namely multidrug resistance (12,041 reads, ∼55%), bacitracin (3,202 reads, ∼15%), macrolide-lincosamide-streptogramin (1,744 reads, ∼7.98%), and fosmidomycin (990 reads, ∼4.53%), have the highest abundance. Simultaneously, six resistance mechanisms were also recognized with the dominance of antibiotic efflux (72.8%, 15,919 reads). The results unveil the distribution of (pro)-phages; microbial community; and various ARGs in the Ganges river sediments.
Collapse
Affiliation(s)
- Narender Kumar
- Division of Protein Science and Engineering, Institute of Microbial Technology, Council of Scientific and Industrial Research (CSIR), Chandigarh, India
| | - Amit Kumar Gupta
- Virology Unit and Bioinformatics Centre, and Institute of Microbial Technology, Council of Scientific and Industrial Research (CSIR), Chandigarh, India
| | - Sarabjeet Kour Sudan
- Division of Protein Science and Engineering, Institute of Microbial Technology, Council of Scientific and Industrial Research (CSIR), Chandigarh, India
| | - Deepika Pal
- MTCC-Microbial Type Culture Collection and Gene Bank, Institute of Microbial Technology, Council of Scientific and Industrial Research (CSIR), Chandigarh, India
| | - Vinay Randhawa
- Virology Unit and Bioinformatics Centre, and Institute of Microbial Technology, Council of Scientific and Industrial Research (CSIR), Chandigarh, India
| | - Girish Sahni
- Division of Protein Science and Engineering, Institute of Microbial Technology, Council of Scientific and Industrial Research (CSIR), Chandigarh, India
| | - Shanmugam Mayilraj
- MTCC-Microbial Type Culture Collection and Gene Bank, Institute of Microbial Technology, Council of Scientific and Industrial Research (CSIR), Chandigarh, India
| | - Manoj Kumar
- Virology Unit and Bioinformatics Centre, and Institute of Microbial Technology, Council of Scientific and Industrial Research (CSIR), Chandigarh, India
| |
Collapse
|
21
|
Occurrence and diversity of viruses associated with cyanobacterial communities in a Brazilian freshwater reservoir. Braz J Microbiol 2021; 52:773-785. [PMID: 33791954 DOI: 10.1007/s42770-021-00473-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 03/25/2021] [Indexed: 02/06/2023] Open
Abstract
As part of the phytoplankton of marine and freshwater environments around the world, cyanobacteria interact with viruses (cyanophages) that affect their abundance and diversity. Investigations focusing on cyanophages co-occurring with freshwater cyanobacteria are scarce, particularly in Brazil. The aim of this study was to assess the diversity of cyanophages associated with a Microcystis-dominated cyanobacterial bloom in a tropical reservoir. Samples were processed as viral fractions of water and cellular fractions, and temporal fluctuations in the abundance of Ma-LMM01-type cyanophages and their Microcystis hosts were determined by qPCR. We applied shotgun metagenomics to obtain a wider characterization of the cyanophage community. During the study period, Microcystis gene copies were quantified in all cellular fractions, and the copy number of the Ma-LMM01 phage gene tended to increase with host abundance. Metagenomic analysis demonstrated that Caudovirales was the major viral order associated with the cyanophage families Myoviridae (34-88%), Podoviridae (3-42%), and Siphoviridae (6-23%). The metagenomic analysis results confirmed the presence of Microcystis cyanophages in both viral and cellular fractions and demonstrated a high relative abundance of picocyanobacteria-related viruses and Prochlorococcus (36-52%) and Synechococcus (37-50%) phages. For other main cyanobacterial genera, no related cyanophages were identified, which was probably due to the scarce representation of cyanophage sequences in databanks. Thus, the studied reservoir hosted a diverse cyanophage community with a remarkable contribution of phages related to picoplanktonic cyanobacteria. These results provide insights that motivate future sequencing efforts to assess cyanophage diversity and recover complete genomes.
Collapse
|
22
|
Wang Y, Liao S, Gai Y, Liu G, Jin T, Liu H, Gram L, Strube ML, Fan G, Sahu SK, Liu S, Gan S, Xie Z, Kong L, Zhang P, Liu X, Wang DZ. Metagenomic Analysis Reveals Microbial Community Structure and Metabolic Potential for Nitrogen Acquisition in the Oligotrophic Surface Water of the Indian Ocean. Front Microbiol 2021; 12:518865. [PMID: 33679623 PMCID: PMC7935530 DOI: 10.3389/fmicb.2021.518865] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 01/25/2021] [Indexed: 11/19/2022] Open
Abstract
Despite being the world’s third largest ocean, the Indian Ocean is one of the least studied and understood with respect to microbial diversity as well as biogeochemical and ecological functions. In this study, we investigated the microbial community and its metabolic potential for nitrogen (N) acquisition in the oligotrophic surface waters of the Indian Ocean using a metagenomic approach. Proteobacteria and Cyanobacteria dominated the microbial community with an average 37.85 and 23.56% of relative abundance, respectively, followed by Bacteroidetes (3.73%), Actinobacteria (1.69%), Firmicutes (0.76%), Verrucomicrobia (0.36%), and Planctomycetes (0.31%). Overall, only 24.3% of functional genes were common among all sampling stations indicating a high level of gene diversity. However, the presence of 82.6% common KEGG Orthology (KOs) in all samples showed high functional redundancy across the Indian Ocean. Temperature, phosphate, silicate and pH were important environmental factors regulating the microbial distribution in the Indian Ocean. The cyanobacterial genus Prochlorococcus was abundant with an average 17.4% of relative abundance in the surface waters, and while 54 Prochlorococcus genomes were detected, 53 were grouped mainly within HLII clade. In total, 179 of 234 Prochlorococcus sequences extracted from the global ocean dataset were clustered into HL clades and exhibited less divergence, but 55 sequences of LL clades presented more divergence exhibiting different branch length. The genes encoding enzymes related to ammonia metabolism, such as urease, glutamate dehydrogenase, ammonia transporter, and nitrilase presented higher abundances than the genes involved in inorganic N assimilation in both microbial community and metagenomic Prochlorococcus population. Furthermore, genes associated with dissimilatory nitrate reduction, denitrification, nitrogen fixation, nitrification and anammox were absent in metagenome Prochlorococcus population, i.e., nitrogenase and nitrate reductase. Notably, the de novo biosynthesis pathways of six different amino acids were incomplete in the metagenomic Prochlorococcus population and Prochlorococcus genomes, suggesting compensatory uptake of these amino acids from the environment. These results reveal the features of the taxonomic and functional structure of the Indian Ocean microbiome and their adaptive strategies to ambient N deficiency in the oligotrophic ocean.
Collapse
Affiliation(s)
- Yayu Wang
- BGI-Shenzhen, Shenzhen, China.,Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Shuilin Liao
- BGI-Shenzhen, Shenzhen, China.,BGI Education Center, University of Chinese Academy of Sciences, Beijing, China
| | - Yingbao Gai
- State Key Laboratory of Marine Environmental Science, College of the Environment and Ecology, Xiamen University, Xiamen, China.,Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, China
| | - Guilin Liu
- BGI-Qingdao, BGI-Shenzhen, Qingdao, China
| | - Tao Jin
- BGI-Qingdao, BGI-Shenzhen, Qingdao, China
| | - Huan Liu
- BGI-Shenzhen, Shenzhen, China.,State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen, China
| | - Lone Gram
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Mikael Lenz Strube
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| | | | - Sunil Kumar Sahu
- BGI-Shenzhen, Shenzhen, China.,State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen, China
| | | | | | - Zhangxian Xie
- State Key Laboratory of Marine Environmental Science, College of the Environment and Ecology, Xiamen University, Xiamen, China
| | - Lingfen Kong
- State Key Laboratory of Marine Environmental Science, College of the Environment and Ecology, Xiamen University, Xiamen, China
| | | | - Xin Liu
- BGI-Shenzhen, Shenzhen, China.,State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen, China
| | - Da-Zhi Wang
- State Key Laboratory of Marine Environmental Science, College of the Environment and Ecology, Xiamen University, Xiamen, China
| |
Collapse
|
23
|
Nguyen M, Wemheuer B, Laffy PW, Webster NS, Thomas T. Taxonomic, functional and expression analysis of viral communities associated with marine sponges. PeerJ 2021; 9:e10715. [PMID: 33604175 PMCID: PMC7863781 DOI: 10.7717/peerj.10715] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 12/15/2020] [Indexed: 12/19/2022] Open
Abstract
Viruses play an essential role in shaping the structure and function of ecological communities. Marine sponges have the capacity to filter large volumes of ‘virus-laden’ seawater through their bodies and host dense communities of microbial symbionts, which are likely accessible to viral infection. However, despite the potential of sponges and their symbionts to act as viral reservoirs, little is known about the sponge-associated virome. Here we address this knowledge gap by analysing metagenomic and (meta-) transcriptomic datasets from several sponge species to determine what viruses are present and elucidate their predicted and expressed functionality. Sponges were found to carry diverse, abundant and active bacteriophages as well as eukaryotic viruses belonging to the Megavirales and Phycodnaviridae. These viruses contain and express auxiliary metabolic genes (AMGs) for photosynthesis and vitamin synthesis as well as for the production of antimicrobials and the defence against toxins. These viral AMGs can therefore contribute to the metabolic capacities of their hosts and also potentially enhance the survival of infected cells. This suggest that viruses may play a key role in regulating the abundance and activities of members of the sponge holobiont.
Collapse
Affiliation(s)
- Mary Nguyen
- Centre for Marine Science and Innovation & School of Biological & Earth and Environmental Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Bernd Wemheuer
- Centre for Marine Science and Innovation & School of Biological & Earth and Environmental Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Patrick W Laffy
- Australian Institute of Marine Science, Townsville, QLD, Australia
| | - Nicole S Webster
- Australian Institute of Marine Science, Townsville, QLD, Australia.,Australian Centre for Ecogenomics, University of Queensland, Brisbane, QLD, Australia
| | - Torsten Thomas
- Centre for Marine Science and Innovation & School of Biological & Earth and Environmental Sciences, University of New South Wales, Sydney, NSW, Australia
| |
Collapse
|
24
|
Vannier T, Hingamp P, Turrel F, Tanet L, Lescot M, Timsit Y. Diversity and evolution of bacterial bioluminescence genes in the global ocean. NAR Genom Bioinform 2020; 2:lqaa018. [PMID: 33575578 PMCID: PMC7671414 DOI: 10.1093/nargab/lqaa018] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 02/14/2020] [Accepted: 03/06/2020] [Indexed: 12/19/2022] Open
Abstract
Although bioluminescent bacteria are the most abundant and widely distributed of all light-emitting organisms, the biological role and evolutionary history of bacterial luminescence are still shrouded in mystery. Bioluminescence has so far been observed in the genomes of three families of Gammaproteobacteria in the form of canonical lux operons that adopt the CDAB(F)E(G) gene order. LuxA and luxB encode the two subunits of bacterial luciferase responsible for light-emission. Our deep exploration of public marine environmental databases considerably expands this view by providing a catalog of new lux homolog sequences, including 401 previously unknown luciferase-related genes. It also reveals a broader diversity of the lux operon organization, which we observed in previously undescribed configurations such as CEDA, CAED and AxxCE. This expanded operon diversity provides clues for deciphering lux operon evolution and propagation within the bacterial domain. Leveraging quantitative tracking of marine bacterial genes afforded by planetary scale metagenomic sampling, our study also reveals that the novel lux genes and operons described herein are more abundant in the global ocean than the canonical CDAB(F)E(G) operon.
Collapse
Affiliation(s)
- Thomas Vannier
- Aix Marseille Univ, Université de Toulon, CNRS, IRD, MIO UM110, 13288 Marseille, France
- Research Federation for the study of Global Ocean Systems Ecology and Evolution, FR2022/Tara GOSEE, 3 rue Michel-Ange, 75016 Paris, France
| | - Pascal Hingamp
- Aix Marseille Univ, Université de Toulon, CNRS, IRD, MIO UM110, 13288 Marseille, France
- Research Federation for the study of Global Ocean Systems Ecology and Evolution, FR2022/Tara GOSEE, 3 rue Michel-Ange, 75016 Paris, France
| | - Floriane Turrel
- Aix Marseille Univ, Université de Toulon, CNRS, IRD, MIO UM110, 13288 Marseille, France
| | - Lisa Tanet
- Aix Marseille Univ, Université de Toulon, CNRS, IRD, MIO UM110, 13288 Marseille, France
| | - Magali Lescot
- Aix Marseille Univ, Université de Toulon, CNRS, IRD, MIO UM110, 13288 Marseille, France
- Research Federation for the study of Global Ocean Systems Ecology and Evolution, FR2022/Tara GOSEE, 3 rue Michel-Ange, 75016 Paris, France
| | - Youri Timsit
- Aix Marseille Univ, Université de Toulon, CNRS, IRD, MIO UM110, 13288 Marseille, France
- Research Federation for the study of Global Ocean Systems Ecology and Evolution, FR2022/Tara GOSEE, 3 rue Michel-Ange, 75016 Paris, France
| |
Collapse
|
25
|
Coutinho FH, Edwards RA, Rodríguez-Valera F. Charting the diversity of uncultured viruses of Archaea and Bacteria. BMC Biol 2019. [PMID: 31884971 DOI: 10.1101/480491v1.full] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2023] Open
Abstract
BACKGROUND Viruses of Archaea and Bacteria are among the most abundant and diverse biological entities on Earth. Unraveling their biodiversity has been challenging due to methodological limitations. Recent advances in culture-independent techniques, such as metagenomics, shed light on the unknown viral diversity, revealing thousands of new viral nucleotide sequences at an unprecedented scale. However, these novel sequences have not been properly classified and the evolutionary associations between them were not resolved. RESULTS Here, we performed phylogenomic analysis of nearly 200,000 viral nucleotide sequences to establish GL-UVAB: Genomic Lineages of Uncultured Viruses of Archaea and Bacteria. The pan-genome content of the identified lineages shed light on some of their infection strategies, potential to modulate host physiology, and mechanisms to escape host resistance systems. Furthermore, using GL-UVAB as a reference database for annotating metagenomes revealed elusive habitat distribution patterns of viral lineages and environmental drivers of community composition. CONCLUSIONS These findings provide insights about the genomic diversity and ecology of viruses of prokaryotes. The source code used in these analyses is freely available at https://sourceforge.net/projects/gluvab/.
Collapse
Affiliation(s)
- F H Coutinho
- Evolutionary Genomics Group, Departamento de Produccíon Vegetal y Microbiología, Universidad Miguel Hernández, Campus San Juan, San Juan, 03550, Alicante, Spain.
| | - R A Edwards
- Viral Information Institute, San Diego State University, 5500 Campanile Drive, San Diego, CA, 92128, USA
| | - F Rodríguez-Valera
- Evolutionary Genomics Group, Departamento de Produccíon Vegetal y Microbiología, Universidad Miguel Hernández, Campus San Juan, San Juan, 03550, Alicante, Spain
| |
Collapse
|
26
|
Coutinho FH, Edwards RA, Rodríguez-Valera F. Charting the diversity of uncultured viruses of Archaea and Bacteria. BMC Biol 2019; 17:109. [PMID: 31884971 PMCID: PMC6936153 DOI: 10.1186/s12915-019-0723-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 11/13/2019] [Indexed: 12/21/2022] Open
Abstract
Background Viruses of Archaea and Bacteria are among the most abundant and diverse biological entities on Earth. Unraveling their biodiversity has been challenging due to methodological limitations. Recent advances in culture-independent techniques, such as metagenomics, shed light on the unknown viral diversity, revealing thousands of new viral nucleotide sequences at an unprecedented scale. However, these novel sequences have not been properly classified and the evolutionary associations between them were not resolved. Results Here, we performed phylogenomic analysis of nearly 200,000 viral nucleotide sequences to establish GL-UVAB: Genomic Lineages of Uncultured Viruses of Archaea and Bacteria. The pan-genome content of the identified lineages shed light on some of their infection strategies, potential to modulate host physiology, and mechanisms to escape host resistance systems. Furthermore, using GL-UVAB as a reference database for annotating metagenomes revealed elusive habitat distribution patterns of viral lineages and environmental drivers of community composition. Conclusions These findings provide insights about the genomic diversity and ecology of viruses of prokaryotes. The source code used in these analyses is freely available at https://sourceforge.net/projects/gluvab/.
Collapse
Affiliation(s)
- F H Coutinho
- Evolutionary Genomics Group, Departamento de Produccíon Vegetal y Microbiología, Universidad Miguel Hernández, Campus San Juan, San Juan, 03550, Alicante, Spain.
| | - R A Edwards
- Viral Information Institute, San Diego State University, 5500 Campanile Drive, San Diego, CA, 92128, USA
| | - F Rodríguez-Valera
- Evolutionary Genomics Group, Departamento de Produccíon Vegetal y Microbiología, Universidad Miguel Hernández, Campus San Juan, San Juan, 03550, Alicante, Spain
| |
Collapse
|
27
|
Ruiz-Perez CA, Tsementzi D, Hatt JK, Sullivan MB, Konstantinidis KT. Prevalence of viral photosynthesis genes along a freshwater to saltwater transect in Southeast USA. ENVIRONMENTAL MICROBIOLOGY REPORTS 2019; 11:672-689. [PMID: 31265211 DOI: 10.1111/1758-2229.12780] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Accepted: 06/29/2019] [Indexed: 05/28/2023]
Abstract
Bacteriophages encode host-acquired functional genes known as auxiliary metabolic genes (AMGs). Photosynthesis AMGs are commonly found in marine cyanobacteria-infecting Myoviridae and Podoviridae cyanophages, but their ecology remains understudied in freshwater environments. To advance knowledge of this issue, we analysed viral metagenomes collected in the summertime for four years from five lakes and two estuarine locations interconnected by the Chattahoochee River, Southeast USA. Sequences representing ten different AMGs were recovered and found to be prevalent in all sites. Most freshwater AMGs were 10-fold less abundant than estuarine and marine AMGs and were encoded by novel Myoviridae and Podoviridae cyanophage genera. Notably, several of the corresponding viral genomes showed endemism to a specific province along the river. This translated into psbA gene phylogenetic clustering patterns that matched a marine vs. freshwater origin indicating that psbA may serve as a robust classification and source-tracking biomarker. Genomes classified in a novel viral lineage represented by isolate S-EIVl contained psbA, which is unprecedented for this lineage. Collectively, our findings indicated that the acquisition of photosynthesis AMGs is a widespread strategy used by cyanophages in aquatic ecosystems, and further indicated the existence of viral provinces in which certain viral species and/or genotypes are locally abundant.
Collapse
Affiliation(s)
- Carlos A Ruiz-Perez
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
| | - Despina Tsementzi
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Janet K Hatt
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Matthew B Sullivan
- Departments of Microbiology and Civil, Environmental and Geodetic Engineering, Ohio State University, Columbus, OH, USA
| | - Konstantinos T Konstantinidis
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA, USA
- Center for Bioinformatics and Computational Genomics, Georgia Institute of Technology, Atlanta, GA, USA
| |
Collapse
|
28
|
Liang Y, Wang L, Wang Z, Zhao J, Yang Q, Wang M, Yang K, Zhang L, Jiao N, Zhang Y. Metagenomic Analysis of the Diversity of DNA Viruses in the Surface and Deep Sea of the South China Sea. Front Microbiol 2019; 10:1951. [PMID: 31507563 PMCID: PMC6716333 DOI: 10.3389/fmicb.2019.01951] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Accepted: 08/08/2019] [Indexed: 11/13/2022] Open
Abstract
A metagenomic analysis of the viral community from five surface and five deep sea water (>2000 m below the surface, mbs) samples collected from the central basin of the South China Sea and adjacent Northwest Pacific Ocean during July-August 2017 was conducted herein. We builded up a South China Sea DNA virome (SCSV) dataset of 29,967 viral Operational Taxonomic Units (vOTUs), which is comparable to the viral populations from the original Tara Ocean and Malaspina expeditions. The most abundant and widespread viral populations were from the uncultivated viruses annotated from the viral metagenomics. Only 74 and 37 vOTUs have similarity with the reported genomes from the cultivated viruses and the single-virus genomics, respectively. The community structures of deep sea viromes in the SCSV were generally different from the surface viromes. The carbon flux and nutrients (PO4 and NOx) were related to the surface and deep sea viromes in the SCSV, respectively. In the SCSV, the annotated vOTUs could be affiliated to the cultivated viruses mainly including Pelagibacter (SAR11) phage HTVC010P, Prochlorococcus phages (P-GSP1, P-SSM4, and P-TIM68), Cyanophages (MED4-184 and MED4-117) and Mycobacterium phages (Sparky and Squirty). It indicated that phage infection to the SAR11 cluster may occur ubiquitously and has significant impacts on bathypelagic SAR11 communities in the deep sea. Meanwhile, as Prochlorococcus is prominently distributed in the euphotic ocean, the existence of their potential phages in the deep sea suggested the sedimentation mechanism might contribute to the formation of the deep sea viromes. Intriguingly, the presence of Mycobacterium phages only in the deep sea viromes, suggests inhabitance of endemic viral populations in the deep sea viromes in the SCSV. This study provided an insight of the viral community in the South China Sea and for the first time uncovered the deep sea viral diversity in the central basin of the South China Sea.
Collapse
Affiliation(s)
- Yantao Liang
- Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China.,College of Marine Life Sciences, Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, China.,State Key Laboratory of Marine Environmental Science, Institute of Marine Microbes and Ecospheres, Xiamen University, Xiamen, China
| | - Long Wang
- Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
| | - Zengmeng Wang
- Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
| | - Jiulong Zhao
- Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
| | - Qingwei Yang
- College of Marine Life Sciences, Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, China
| | - Min Wang
- College of Marine Life Sciences, Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, China
| | - Kaiguang Yang
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Lihua Zhang
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Nianzhi Jiao
- State Key Laboratory of Marine Environmental Science, Institute of Marine Microbes and Ecospheres, Xiamen University, Xiamen, China
| | - Yongyu Zhang
- Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
| |
Collapse
|
29
|
Dynamic marine viral infections and major contribution to photosynthetic processes shown by spatiotemporal picoplankton metatranscriptomes. Nat Commun 2019; 10:1169. [PMID: 30862830 PMCID: PMC6414667 DOI: 10.1038/s41467-019-09106-z] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 02/21/2019] [Indexed: 12/11/2022] Open
Abstract
Viruses provide top-down control on microbial communities, yet their direct study in natural environments was hindered by culture limitations. The advance of bioinformatics enables cultivation-independent study of viruses. Many studies assemble new viral genomes and study viral diversity using marker genes from free viruses. Here we use cellular metatranscriptomics to study active community-wide viral infections. Recruitment to viral contigs allows tracking infection dynamics over time and space. Our assemblies represent viral populations, but appear biased towards low diversity viral taxa. Tracking relatives of published T4-like cyanophages and pelagiphages reveals high genomic continuity. We determine potential hosts by matching dynamics of infection with abundance of particular microbial taxa. Finally, we quantify the relative contribution of cyanobacteria and viruses to photosystem-II psbA (reaction center) expression in our study sites. We show sometimes >50% of all cyanobacterial+viral psbA expression is of viral origin, highlighting the contribution of viruses to photosynthesis and oxygen production. Here, Sieradzki et al. use metatranscriptomics to study active community-wide viral infections at three coastal California sites throughout a year, identify potential viral hosts, and show that viruses can contribute a substantial amount to photosystem-II psbA expression.
Collapse
|
30
|
Calero-Cáceres W, Balcázar JL. Antibiotic resistance genes in bacteriophages from diverse marine habitats. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 654:452-455. [PMID: 30447583 DOI: 10.1016/j.scitotenv.2018.11.166] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Revised: 10/18/2018] [Accepted: 11/11/2018] [Indexed: 06/09/2023]
Abstract
Although antibiotic resistance represents a significant and growing threat to human and environmental health worldwide, the contribution of bacteriophages (phages) to the acquisition and spread of antibiotic resistance genes (ARGs) in the environment has not been extensively explored. In this study, a comprehensive analysis of several viromes from diverse marine habitats was performed to investigate whether or not phages carry ARGs. The analysis provides strong evidence that phages from marine habitats are potential reservoirs of ARGs. In fact, genes conferring resistance to aminocoumarin, bacitracin and multidrug resistance (particularly the mexB gene) were found in all analyzed marine viromes. Given this, the role of phages as reservoirs of ARGs should not be underestimated considering their global distribution.
Collapse
Affiliation(s)
- William Calero-Cáceres
- UTA-RAM-OneHealth Group, Centro de Investigaciones Agropecuarias, Facultad de Ciencias Agropecuarias, Universidad Técnica de Ambato, Tungurahua, Ecuador
| | - José Luis Balcázar
- Catalan Institute for Water Research (ICRA), University of Girona, Girona, Spain.
| |
Collapse
|
31
|
Yang Q, Gao C, Jiang Y, Wang M, Zhou X, Shao H, Gong Z, McMinn A. Metagenomic Characterization of the Viral Community of the South Scotia Ridge. Viruses 2019; 11:E95. [PMID: 30678352 PMCID: PMC6410227 DOI: 10.3390/v11020095] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 12/28/2018] [Accepted: 01/22/2019] [Indexed: 12/16/2022] Open
Abstract
Viruses are the most abundant biological entities in aquatic ecosystems and harbor an enormous amount of genetic diversity. Whereas their influence on marine ecosystems is widely acknowledged, current information about their diversity remains limited. We conducted a viral metagenomic analysis of water samples collected during the austral summer of 2016 from the South Scotia Ridge (SSR), near the Antarctic Peninsula. The taxonomic composition and diversity of the viral communities were investigated, and a functional assessment of the sequences was performed. Phylotypic analysis showed that most viruses belonged to the order Caudovirales, especially the family Podoviridae (41.92⁻48.7%), which is similar to the situation in the Pacific Ocean. Functional analysis revealed a relatively high frequency of phage-associated and metabolism genes. Phylogenetic analyses of phage TerL and Capsid_NCLDV (nucleocytoplasmic large DNA viruses) marker genes indicated that many sequences associated with Caudovirales and NCLDV were novel and distinct from known phage genomes. High Phaeocystis globosa virus virophage (Pgvv) signatures were found and complete and partial Pgvv-like were obtained, which influence host⁻virus interactions. Our study expands existing knowledge of viral communities and their diversities from the Antarctic region and provides basic data for further exploring polar microbiomes.
Collapse
Affiliation(s)
- Qingwei Yang
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China.
| | - Chen Gao
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China.
| | - Yong Jiang
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China.
- Key Lab of Polar Oceanography and Global Ocean Change, Ocean University of China, Qingdao 266003, China.
- Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao 266003, China.
| | - Min Wang
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China.
- Key Lab of Polar Oceanography and Global Ocean Change, Ocean University of China, Qingdao 266003, China.
- Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao 266003, China.
| | - Xinhao Zhou
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China.
| | - Hongbing Shao
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China.
| | - Zheng Gong
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China.
| | - Andrew McMinn
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China.
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, Tasmania 7001, Australia.
| |
Collapse
|
32
|
Gong Z, Liang Y, Wang M, Jiang Y, Yang Q, Xia J, Zhou X, You S, Gao C, Wang J, He J, Shao H, McMinn A. Viral Diversity and Its Relationship With Environmental Factors at the Surface and Deep Sea of Prydz Bay, Antarctica. Front Microbiol 2018; 9:2981. [PMID: 30559737 PMCID: PMC6287040 DOI: 10.3389/fmicb.2018.02981] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2018] [Accepted: 11/19/2018] [Indexed: 12/31/2022] Open
Abstract
A viral metagenomic analysis of five surface and two bottom water (878 meters below surface, mbs, and 3,357 mbs) samples from Prydz Bay, was conducted during February-March 2015. The results demonstrated that most of the DNA viruses were dsDNA viruses (79.73-94.06%, except at PBI1, 37.51%). Of these, Caudovirales (Siphoviridae, Myoviridae, and Podoviridae) phages were most abundant in surface seawater (67.67-71.99%), while nucleocytoplasmic large DNA viruses (NCLDVs) (Phycodnaviridae, Mimiviridae, and Pandoraviridae accounted for >30% of dsDNA viruses) were most abundant in the bottom water (3,357 mbs). Of the ssDNA viruses, Microviridae was the dominant family in PBI2, PBI3, PBOs, and PBI4b (57.09-87.55%), while Inoviridae (58.16%) was the dominant family in PBI1. Cellulophaga phages (phi38:1 and phi10:1) and Flavobacterium phage 11b, infecting the possible host strains affiliated with the family Flavobacteriaceae of the phylum Bacteroidetes, were abundant in surface water dsDNA viromes. The long contig (PBI2_1_C) from the viral metagenomes were most similar to the genome architectures of Cellulophaga phage phi10:1 and Flavobacterium phage 11b from the Arctic Ocean. Comparative analysis showed that the surface viral community of Prydz Bay could be clearly separated from other marine and freshwater environments. The deep sea viral community was similar to the deep sea viral metagenome at A Long-term Oligotrophic Habitat Assessment Station (ALOHA, at 22°45'N, 158°00'W). The multivariable analysis indicated that nutrients probably played an important role in shaping the local viral community structure. This study revealed the preliminary characteristics of the viral community in Prydz Bay, from both the surface and the deep sea. It provided evidence of the relationships between the virome and the environment in Prydz Bay and provided the first data from the deep sea viral community of the Southern Ocean.
Collapse
Affiliation(s)
- Zheng Gong
- College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Yantao Liang
- College of Marine Life Sciences, Ocean University of China, Qingdao, China
- Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
| | - Min Wang
- College of Marine Life Sciences, Ocean University of China, Qingdao, China
- Key Lab of Polar Oceanography and Global Ocean Change, Ocean University of China, Qingdao, China
- Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, China
| | - Yong Jiang
- College of Marine Life Sciences, Ocean University of China, Qingdao, China
- Key Lab of Polar Oceanography and Global Ocean Change, Ocean University of China, Qingdao, China
- Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, China
| | - Qingwei Yang
- College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Jun Xia
- College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Xinhao Zhou
- College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Siyuan You
- College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Chen Gao
- College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Jian Wang
- College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Jianfeng He
- SOA Key Laboratory for Polar Science, Polar Research Institute of China, Shanghai, China
| | - Hongbing Shao
- College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Andrew McMinn
- College of Marine Life Sciences, Ocean University of China, Qingdao, China
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, TAS, Australia
| |
Collapse
|
33
|
Genetic and functional diversity of double-stranded DNA viruses in a tropical monsoonal estuary, India. Sci Rep 2018; 8:16036. [PMID: 30375431 PMCID: PMC6207776 DOI: 10.1038/s41598-018-34332-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 10/04/2018] [Indexed: 11/08/2022] Open
Abstract
The present study illustrates the genetic diversity of four uncultured viral communities from the surface waters of Cochin Estuary (CE), India. Viral diversity inferred using Illumina HiSeq paired-end sequencing using a linker-amplified shotgun library (LASL) revealed different double-stranded DNA (dsDNA) viral communities. The water samples were collected from four stations PR1, PR2, PR3, and PR4, during the pre-monsoon (PRM) season. Analysis of virus families indicated that the Myoviridae was the most common viral community in the CE followed by Siphoviridae and Podoviridae. There were significant (p < 0.05) spatial variations in the relative abundance of dominant families in response to the salinity regimes. The relative abundance of Myoviridae and Podoviridae were high in the euryhaline region and Siphoviridae in the mesohaline region of the estuary. The predominant phage type in CE was phages that infected Synechococcus. The viral proteins were found to be involved in major functional activities such as ATP binding, DNA binding, and DNA replication. The study highlights the genetic diversity of dsDNA viral communities and their functional protein predictions from a highly productive estuarine system. Further, the metavirome data generated in this study will enhance the repertoire of publicly available dataset and advance our understanding of estuarine viral ecology.
Collapse
|
34
|
Flaviani F, Schroeder DC, Lebret K, Balestreri C, Highfield AC, Schroeder JL, Thorpe SE, Moore K, Pasckiewicz K, Pfaff MC, Rybicki EP. Distinct Oceanic Microbiomes From Viruses to Protists Located Near the Antarctic Circumpolar Current. Front Microbiol 2018; 9:1474. [PMID: 30065704 PMCID: PMC6056678 DOI: 10.3389/fmicb.2018.01474] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Accepted: 06/13/2018] [Indexed: 12/13/2022] Open
Abstract
Microbes occupy diverse ecological niches and only through recent advances in next generation sequencing technologies have the true microbial diversity been revealed. Furthermore, lack of perceivable marine barriers to genetic dispersal (i.e., mountains or islands) has allowed the speculation that organisms that can be easily transported by currents and therefore proliferate everywhere. That said, ocean currents are now commonly being recognized as barriers for microbial dispersal. Here we analyzed samples collected from a total of six stations, four located in the Indian Ocean, and two in the Southern Ocean. Amplicon sequencing was used to characterize both prokaryotic and eukaryotic plankton communities, while shotgun sequencing was used for the combined environmental DNA (eDNA), microbial eDNA (meDNA), and viral fractions. We found that Cyanobacteria dominated the prokaryotic component in the South-West Indian Ocean, while γ-Proteobacteria dominated the South-East Indian Ocean. A combination of γ- and α-Proteobacteria dominated the Southern Ocean. Alveolates dominated almost exclusively the eukaryotic component, with variation in the ratio of Protoalveolata and Dinoflagellata depending on station. However, an increase in haptophyte relative abundance was observed in the Southern Ocean. Similarly, the viral fraction was dominated by members of the order Caudovirales across all stations; however, a higher presence of nucleocytoplasmic large DNA viruses (mainly chloroviruses and mimiviruses) was observed in the Southern Ocean. To our knowledge, this is the first that a statistical difference in the microbiome (from viruses to protists) between the subtropical Indian and Southern Oceans. We also show that not all phylotypes can be found everywhere, and that meDNA is not a suitable resource for monitoring aquatic microbial diversity.
Collapse
Affiliation(s)
- Flavia Flaviani
- Biopharming Research Unit, Department of Molecular and Cell Biology, University of Cape Town, Cape Town, South Africa.,Marine Biological Association of the United Kingdom, Citadel Hill, Plymouth, United Kingdom
| | - Declan C Schroeder
- Marine Biological Association of the United Kingdom, Citadel Hill, Plymouth, United Kingdom.,School of Biological Sciences, University of Reading, Reading, United Kingdom.,College of Veterinary Medicine, University of Minnesota Twin Cities, Minneapolis, MN, United States
| | - Karen Lebret
- Marine Biological Association of the United Kingdom, Citadel Hill, Plymouth, United Kingdom.,Limnology, Department of Ecology and Genetics, Uppsala University, Uppsala, Sweden
| | - Cecilia Balestreri
- Marine Biological Association of the United Kingdom, Citadel Hill, Plymouth, United Kingdom
| | - Andrea C Highfield
- Marine Biological Association of the United Kingdom, Citadel Hill, Plymouth, United Kingdom
| | - Joanna L Schroeder
- Marine Biological Association of the United Kingdom, Citadel Hill, Plymouth, United Kingdom
| | - Sally E Thorpe
- British Antarctic Survey, Natural Environment Research Council, Cambridge, United Kingdom
| | - Karen Moore
- Exeter Sequencing Service, Biosciences, University of Exeter, Exeter, United Kingdom
| | - Konrad Pasckiewicz
- Exeter Sequencing Service, Biosciences, University of Exeter, Exeter, United Kingdom
| | - Maya C Pfaff
- Department of Environmental Affairs, Oceans and Coasts, Cape Town, South Africa
| | - Edward P Rybicki
- Biopharming Research Unit, Department of Molecular and Cell Biology, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
35
|
Montoya-Ruiz C, Rodas JD. Epidemiological Surveillance of Viral Hemorrhagic Fevers With Emphasis on Clinical Virology. Methods Mol Biol 2018; 1604:55-78. [PMID: 28986825 DOI: 10.1007/978-1-4939-6981-4_4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
Abstract
This article will outline surveillance approaches for viral hemorrhagic fevers. Specific methods for surveillance of clinical samples will be emphasized. Separate articles will describe methods for surveillance of rodent-borne viruses (roboviruses) and arthropod-borne viruses (arboviruses). Since the appearance of hantaviruses and arenaviruses in the Americas, more than 30 different species in each group have been established, and therefore they have become the most frequently emerging viruses. Flaviviruses such as yellow fever and dengue viruses, although easier to recognize, are also more widely spread and therefore considered a very important public health issue, particularly for under-developed countries. On the other hand, marburgviruses and ebolaviruses, previously thought to be restricted to the African continent, have recently been shown to be more global. For many of these agents virus isolation has been a challenging task: trapping the specific vectors (mosquitoes and ticks), and reservoirs (rodents and bats), or obtaining the samples from suspected clinical human cases demands special protective gear, uncommon devices (respirators), special facilities (BSL-3 and 4), and particular skills to recognize the slow and inapparent cytopathic effects in cell culture. Alternatively, serological and molecular approaches have been very helpful in discovering and describing newly emerging viruses in many areas where the previous resources are unavailable. Unfortunately, in many cases, detailed studies have been performed only after outbreaks occur, and then active surveillance is needed to prevent viral dissemination in human populations.
Collapse
Affiliation(s)
- Carolina Montoya-Ruiz
- Linea de Zoonosis Emergentes y Re-emergentes, Grupo Centauro, Facultad de Ciencias Agrarias, Universidad de Antioquia, Calle 70 No. 52-21, Medellín, Colombia
| | - Juan David Rodas
- Linea de Zoonosis Emergentes y Re-emergentes, Grupo Centauro, Facultad de Ciencias Agrarias, Universidad de Antioquia, Calle 70 No. 52-21, Medellín, Colombia.
| |
Collapse
|
36
|
The Geographic Structure of Viruses in the Cuatro Ciénegas Basin, a Unique Oasis in Northern Mexico, Reveals a Highly Diverse Population on a Small Geographic Scale. Appl Environ Microbiol 2018; 84:AEM.00465-18. [PMID: 29625974 DOI: 10.1128/aem.00465-18] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Accepted: 03/21/2018] [Indexed: 12/28/2022] Open
Abstract
The Cuatro Ciénegas Basin (CCB) is located in the Chihuahuan desert in the Mexican state of Coahuila; it has been characterized as a site with high biological diversity despite its extreme oligotrophic conditions. It has the greatest number of endemic species in North America, containing abundant living microbialites (including stromatolites and microbial mats) and diverse microbial communities. With the hypothesis that this high biodiversity and the geographic structure should be reflected in the virome, the viral communities in 11 different locations of three drainage systems, Churince, La Becerra, and Pozas Rojas, and in the intestinal contents of 3 different fish species, were analyzed for both eukaryotic and prokaryotic RNA and DNA viruses using next-generation sequencing methods. Double-stranded DNA (dsDNA) virus families were the most abundant (72.5% of reads), followed by single-stranded DNA (ssDNA) viruses (2.9%) and ssRNA and dsRNA virus families (0.5%). Thirteen families had dsDNA genomes, five had ssDNA, three had dsRNA, and 16 had ssRNA. A highly diverse viral community was found, with an ample range of hosts and a strong geographical structure, with very even distributions and signals of endemicity in the phylogenetic trees from several different virus families. The majority of viruses found were bacteriophages but eukaryotic viruses were also frequent, and the large diversity of viruses related to algae were a surprise, since algae are not evident in the previously analyzed aquatic systems of this ecosystem. Animal viruses were also frequently found, showing the large diversity of aquatic animals in this oasis, where plants, protozoa, and archaea are rare.IMPORTANCE In this study, we tested whether the high biodiversity and geographic structure of CCB is reflected in its virome. CCB is an extraordinarily biodiverse oasis in the Chihuahuan desert, where a previous virome study suggested that viruses had followed the marine ancestry of the marine bacteria and, as a result of their long isolation, became endemic to the site. In this study, which includes a larger sequencing coverage and water samples from other sites within the valley, we confirmed the high virus biodiversity and uniqueness as well as the strong biogeographical diversification of the CCB. In addition, we also analyzed fish intestinal contents, finding that each fish species eats different prey and, as a result, presents different viral compositions even if they coexist in the same pond. These facts highlight the high and novel virus diversity of CCB and its "lost world" status.
Collapse
|
37
|
Herath D, Jayasundara D, Ackland D, Saeed I, Tang SL, Halgamuge S. Assessing Species Diversity Using Metavirome Data: Methods and Challenges. Comput Struct Biotechnol J 2017; 15:447-455. [PMID: 29085573 PMCID: PMC5650650 DOI: 10.1016/j.csbj.2017.09.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Revised: 09/01/2017] [Accepted: 09/11/2017] [Indexed: 12/28/2022] Open
Abstract
Assessing biodiversity is an important step in the study of microbial ecology associated with a given environment. Multiple indices have been used to quantify species diversity, which is a key biodiversity measure. Measuring species diversity of viruses in different environments remains a challenge relative to measuring the diversity of other microbial communities. Metagenomics has played an important role in elucidating viral diversity by conducting metavirome studies; however, metavirome data are of high complexity requiring robust data preprocessing and analysis methods. In this review, existing bioinformatics methods for measuring species diversity using metavirome data are categorised broadly as either sequence similarity-dependent methods or sequence similarity-independent methods. The former includes a comparison of DNA fragments or assemblies generated in the experiment against reference databases for quantifying species diversity, whereas estimates from the latter are independent of the knowledge of existing sequence data. Current methods and tools are discussed in detail, including their applications and limitations. Drawbacks of the state-of-the-art method are demonstrated through results from a simulation. In addition, alternative approaches are proposed to overcome the challenges in estimating species diversity measures using metavirome data.
Collapse
Affiliation(s)
- Damayanthi Herath
- Department of Mechanical Engineering, University of Melbourne, Parkville, 3010 Melbourne, Australia
- Department of Computer Engineering, University of Peradeniya, Prof. E. O. E. Pereira Mawatha, Peradeniya, 20400, Sri Lanka
| | - Duleepa Jayasundara
- School of Public Health and Community Medicine, University of New South Wales, Randwick, NSW 2052, Australia
| | - David Ackland
- Department of Biomedical Engineering, University of Melbourne, Parkville, 3010 Melbourne, Australia
| | - Isaam Saeed
- Department of Mechanical Engineering, University of Melbourne, Parkville, 3010 Melbourne, Australia
| | - Sen-Lin Tang
- Biodiversity Research Center, Academia Sinica, Nan-Kang, Taipei 11529, Taiwan
| | - Saman Halgamuge
- Research School of Engineering, College of Engineering and Computer Science, The Australian National University, Canberra 2601, ACT, Australia
| |
Collapse
|
38
|
Xie ZX, Chen F, Zhang SF, Wang MH, Zhang H, Kong LF, Dai MH, Hong HS, Lin L, Wang DZ. Metaproteomics of marine viral concentrates reveals key viral populations and abundant periplasmic proteins in the oligotrophic deep chlorophyll maximum of the South China Sea. Environ Microbiol 2017; 20:477-491. [PMID: 28925544 DOI: 10.1111/1462-2920.13937] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Revised: 09/15/2017] [Accepted: 09/16/2017] [Indexed: 12/14/2022]
Abstract
Viral concentrates (VCs), containing bioinformative DNA and proteins, have been used to study viral diversity, viral metagenomics and virus-host interactions in natural ecosystems. Besides viruses, VCs also contain many noncellular biological components including diverse functional proteins. Here, we used a shotgun proteomic approach to characterize the proteins of VCs collected from the oligotrophic deep chlorophyll maximum (DCM) of the South China Sea. Proteins of viruses infecting picophytoplankton, that is, cyanobacteria and prasinophytes, and heterotrophic bacterioplankton, such as SAR11 and SAR116, dominated the viral proteome. Almost no proteins from RNA viruses or known gene transfer agents were detected, suggesting that they were not abundant at the sampling site. Remarkably, nonviral proteins made up about two thirds of VC proteins, including overwhelmingly abundant periplasmic transporters for nutrient acquisition and proteins for diverse cellular processes, that is, translation, energy metabolism and one carbon metabolism. Interestingly, three 56 kDa selenium-binding proteins putatively involved in peroxide reduction from gammaproteobacteria were abundant in the VCs, suggesting active removal of peroxide compounds at DCM. Our study demonstrated that metaproteomics provides a valuable avenue to explore the diversity and structure of the viral community and also the pivotal biological functions affiliated with microbes in the natural environment.
Collapse
Affiliation(s)
- Zhang-Xian Xie
- State Key Laboratory of Marine Environmental Science/College of the Environment and Ecology, Xiamen University, Xiamen, 361005, China
| | - Feng Chen
- Institute of Marine and Environmental Technology, University of Maryland Center for Environmental Science, Baltimore, MD, USA
| | - Shu-Feng Zhang
- State Key Laboratory of Marine Environmental Science/College of the Environment and Ecology, Xiamen University, Xiamen, 361005, China
| | - Ming-Hua Wang
- State Key Laboratory of Marine Environmental Science/College of the Environment and Ecology, Xiamen University, Xiamen, 361005, China
| | - Hao Zhang
- State Key Laboratory of Marine Environmental Science/College of the Environment and Ecology, Xiamen University, Xiamen, 361005, China
| | - Ling-Fen Kong
- State Key Laboratory of Marine Environmental Science/College of the Environment and Ecology, Xiamen University, Xiamen, 361005, China
| | - Min-Han Dai
- State Key Laboratory of Marine Environmental Science/College of the Environment and Ecology, Xiamen University, Xiamen, 361005, China
| | - Hua-Sheng Hong
- State Key Laboratory of Marine Environmental Science/College of the Environment and Ecology, Xiamen University, Xiamen, 361005, China
| | - Lin Lin
- State Key Laboratory of Marine Environmental Science/College of the Environment and Ecology, Xiamen University, Xiamen, 361005, China
| | - Da-Zhi Wang
- State Key Laboratory of Marine Environmental Science/College of the Environment and Ecology, Xiamen University, Xiamen, 361005, China
| |
Collapse
|
39
|
Bose H, Satyanarayana T. Microbial Carbonic Anhydrases in Biomimetic Carbon Sequestration for Mitigating Global Warming: Prospects and Perspectives. Front Microbiol 2017; 8:1615. [PMID: 28890712 PMCID: PMC5574912 DOI: 10.3389/fmicb.2017.01615] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Accepted: 08/08/2017] [Indexed: 11/13/2022] Open
Abstract
All the leading cities in the world are slowly becoming inhospitable for human life with global warming playing havoc with the living conditions. Biomineralization of carbon dioxide using carbonic anhydrase (CA) is one of the most economical methods for mitigating global warming. The burning of fossil fuels results in the emission of large quantities of flue gas. The temperature of flue gas is quite high. Alkaline conditions are necessary for CaCO3 precipitation in the mineralization process. In order to use CAs for biomimetic carbon sequestration, thermo-alkali-stable CAs are, therefore, essential. CAs must be stable in the presence of various flue gas contaminants too. The extreme environments on earth harbor a variety of polyextremophilic microbes that are rich sources of thermo-alkali-stable CAs. CAs are the fastest among the known enzymes, which are of six basic types with no apparent sequence homology, thus represent an elegant example of convergent evolution. The current review focuses on the utility of thermo-alkali-stable CAs in biomineralization based strategies. A variety of roles that CAs play in various living organisms, the use of CA inhibitors as drug targets and strategies for overproduction of CAs to meet the demand are also briefly discussed.
Collapse
|
40
|
Corinaldesi C, Tangherlini M, Dell'Anno A. From virus isolation to metagenome generation for investigating viral diversity in deep-sea sediments. Sci Rep 2017; 7:8355. [PMID: 28827715 PMCID: PMC5566222 DOI: 10.1038/s41598-017-08783-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Accepted: 07/13/2017] [Indexed: 11/09/2022] Open
Abstract
Viruses are the most abundant and, likely, one of the most diverse biological components in the oceans. By infecting their hosts, they play key roles in biogeochemical cycles and ecosystem functioning at a global scale. The ocean interior hosts most of the microbial life, and, despite deep-sea sediments represent the main repository of this component and the largest biome on Earth, viral diversity in these ecosystems remains almost completely unknown. We compared a physical-chemical procedure and a previously published sediment washing-based procedure for isolating viruses from benthic deep-sea ecosystems to generate viromes through high-throughput sequencing. The procedure based on a physical-chemical dislodgment of viral particles from the sediments, followed by vacuum filtration was much more efficient allowing us to recover >85% of the extractable viruses. By using this procedure, a high fraction of viral DNA was recovered and new viromes from different benthic deep-sea sites were generated. Such viromes were diversified in terms of both viral families and putative functions. Overall, the results presented here provide new insights for evaluating benthic deep-sea viral diversity through metagenomic analyses, and reveal that deep-sea sediments are a hot spot of novel viral genotypes and functions.
Collapse
Affiliation(s)
- Cinzia Corinaldesi
- Department of Sciences and Engineering of Materials, Environment and Urbanistics, Polytechnic University of Marche, Via Brecce Bianche, 60131, Ancona, Italy.
| | - Michael Tangherlini
- Department of Environmental and Life Sciences, Polytechnic University of Marche, Via Brecce Bianche, 60131, Ancona, Italy
| | - Antonio Dell'Anno
- Department of Environmental and Life Sciences, Polytechnic University of Marche, Via Brecce Bianche, 60131, Ancona, Italy
| |
Collapse
|
41
|
Kim Y, Van Bonn W, Aw TG, Rose JB. Aquarium Viromes: Viromes of Human-Managed Aquatic Systems. Front Microbiol 2017; 8:1231. [PMID: 28713358 PMCID: PMC5492393 DOI: 10.3389/fmicb.2017.01231] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Accepted: 06/19/2017] [Indexed: 11/13/2022] Open
Abstract
An aquarium ecosystem is home to many animal species providing conditions similar to native aquatic habitats but under highly controlled management. With a growing interest in understanding the interaction of microbiomes and resident animal health within aquarium environments, we undertook a metagenomic survey of viromes in seven aquarium systems with differing physicochemical and resident animal profiles. Our results show that a diverse array of viruses was represented in aquarium viromes, many of which were widespread in different aquarium systems (27 common viral families in all of the aquarium systems). Most viromes were dominated by DNA phages of the order Caudovirales as commonly found in other aquatic environments with average relative abundance greater than 64%. The composition and structure of aquarium viromes were associated with controlled system parameters, including nitrate, salinity, and temperature as well as resident animal profiles, indicating the close interaction of viromes with aquarium management practices. Furthermore, finding human associated viruses in a touch exhibit suggested that exposure of aquarium systems to human contact may lead to introduction of human cutaneous viruses into aquaria. This is consistent with the high abundance of skin microflora on the palms of healthy individuals and their detection in recreational waters, such as swimming pools. Lastly, assessment of antibiotic resistance genes (ARGs) in aquarium viromes revealed a unique signature of ARGs in different aquarium systems with trimethoprim being the most common. This is the first study to provide vital information on viromes and their unique relationships with management practices in a human-built and controlled aquarium environment.
Collapse
Affiliation(s)
- Yiseul Kim
- Department of Fisheries and Wildlife, Michigan State University, East LansingMI, United States.,National Institute of Agricultural Sciences, Rural Development AdministrationWanju, South Korea
| | - William Van Bonn
- Department of Fisheries and Wildlife, Michigan State University, East LansingMI, United States.,A. Watson Armour III Center for Animal Health and Welfare, John G. Shedd Aquarium, ChicagoIL, United States
| | - Tiong G Aw
- Department of Global Environmental Health Sciences, School of Public Health and Tropical Medicine, Tulane University, New OrleansLA, United States
| | - Joan B Rose
- Department of Fisheries and Wildlife, Michigan State University, East LansingMI, United States
| |
Collapse
|
42
|
Colombo S, Arioli S, Neri E, Della Scala G, Gargari G, Mora D. Viromes As Genetic Reservoir for the Microbial Communities in Aquatic Environments: A Focus on Antimicrobial-Resistance Genes. Front Microbiol 2017; 8:1095. [PMID: 28663745 PMCID: PMC5471338 DOI: 10.3389/fmicb.2017.01095] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Accepted: 05/30/2017] [Indexed: 11/16/2022] Open
Abstract
Despite studies of viromes isolated from aquatic environments are becoming increasingly frequent, most of them are limited to the characterization of viral taxonomy. Bacterial reads in viromes are abundant but the extent to which this genetic material is playing a role in the ecology of aquatic microbiology remains unclear. To this aim, we developed of a useful approach for the characterization of viral and microbial communities of aquatic environments with a particular focus on the identification of microbial genes harbored in the viromes. Virus-like particles were isolated from water samples collected across the Lambro River, from the spring to the high urbanized Milan area. The derived viromes were analyzed by shotgun metagenomic sequencing looking for the presence, relative abundance of bacterial genes with particular focus on those genes involved in antimicrobial resistance mechanisms. Antibiotic and heavy metal resistance genes have been identified in all virome samples together with a high abundance of reads assigned to cellular processes and signaling. Virome data compared to those identified in the microbiome isolated from the same sample revealed differences in terms of functional categories and their relative abundance. To verify the role of aquatic viral population in bacterial gene transfer, water-based mesocosms were perturbed or not perturbed with a low dose of tetracycline. The results obtained by qPCR assays revealed variation in abundance of tet genes in the virome and microbiome highlighting a relevant role of viral populations in microbial gene mobilization.
Collapse
Affiliation(s)
- Stefano Colombo
- Department of Food, Environmental and Nutritional Sciences, University of MilanMilan, Italy
| | - Stefania Arioli
- Department of Food, Environmental and Nutritional Sciences, University of MilanMilan, Italy
| | - Eros Neri
- Department of Food, Environmental and Nutritional Sciences, University of MilanMilan, Italy
| | - Giulia Della Scala
- Department of Food, Environmental and Nutritional Sciences, University of MilanMilan, Italy
| | - Giorgio Gargari
- Department of Food, Environmental and Nutritional Sciences, University of MilanMilan, Italy
| | - Diego Mora
- Department of Food, Environmental and Nutritional Sciences, University of MilanMilan, Italy
| |
Collapse
|
43
|
Wilhelm SW, Bird JT, Bonifer KS, Calfee BC, Chen T, Coy SR, Gainer PJ, Gann ER, Heatherly HT, Lee J, Liang X, Liu J, Armes AC, Moniruzzaman M, Rice JH, Stough JMA, Tams RN, Williams EP, LeCleir GR. A Student's Guide to Giant Viruses Infecting Small Eukaryotes: From Acanthamoeba to Zooxanthellae. Viruses 2017; 9:E46. [PMID: 28304329 PMCID: PMC5371801 DOI: 10.3390/v9030046] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2016] [Revised: 03/07/2017] [Accepted: 03/09/2017] [Indexed: 12/15/2022] Open
Abstract
The discovery of infectious particles that challenge conventional thoughts concerning "what is a virus" has led to the evolution a new field of study in the past decade. Here, we review knowledge and information concerning "giant viruses", with a focus not only on some of the best studied systems, but also provide an effort to illuminate systems yet to be better resolved. We conclude by demonstrating that there is an abundance of new host-virus systems that fall into this "giant" category, demonstrating that this field of inquiry presents great opportunities for future research.
Collapse
Affiliation(s)
- Steven W Wilhelm
- The Department of Microbiology, The University of Tennessee, Knoxville, TN 37996, USA.
| | - Jordan T Bird
- The Department of Microbiology, The University of Tennessee, Knoxville, TN 37996, USA.
| | - Kyle S Bonifer
- The Department of Microbiology, The University of Tennessee, Knoxville, TN 37996, USA.
| | - Benjamin C Calfee
- The Department of Microbiology, The University of Tennessee, Knoxville, TN 37996, USA.
| | - Tian Chen
- The Department of Microbiology, The University of Tennessee, Knoxville, TN 37996, USA.
| | - Samantha R Coy
- The Department of Microbiology, The University of Tennessee, Knoxville, TN 37996, USA.
| | - P Jackson Gainer
- The Department of Microbiology, The University of Tennessee, Knoxville, TN 37996, USA.
| | - Eric R Gann
- The Department of Microbiology, The University of Tennessee, Knoxville, TN 37996, USA.
| | - Huston T Heatherly
- The Department of Microbiology, The University of Tennessee, Knoxville, TN 37996, USA.
| | - Jasper Lee
- The Department of Microbiology, The University of Tennessee, Knoxville, TN 37996, USA.
| | - Xiaolong Liang
- The Department of Microbiology, The University of Tennessee, Knoxville, TN 37996, USA.
| | - Jiang Liu
- The Department of Microbiology, The University of Tennessee, Knoxville, TN 37996, USA.
| | - April C Armes
- The Department of Microbiology, The University of Tennessee, Knoxville, TN 37996, USA.
| | - Mohammad Moniruzzaman
- The Department of Microbiology, The University of Tennessee, Knoxville, TN 37996, USA.
| | - J Hunter Rice
- The Department of Microbiology, The University of Tennessee, Knoxville, TN 37996, USA.
| | - Joshua M A Stough
- The Department of Microbiology, The University of Tennessee, Knoxville, TN 37996, USA.
| | - Robert N Tams
- The Department of Microbiology, The University of Tennessee, Knoxville, TN 37996, USA.
| | - Evan P Williams
- The Department of Microbiology, The University of Tennessee, Knoxville, TN 37996, USA.
| | - Gary R LeCleir
- The Department of Microbiology, The University of Tennessee, Knoxville, TN 37996, USA.
| |
Collapse
|
44
|
Flaviani F, Schroeder DC, Balestreri C, Schroeder JL, Moore K, Paszkiewicz K, Pfaff MC, Rybicki EP. A Pelagic Microbiome (Viruses to Protists) from a Small Cup of Seawater. Viruses 2017; 9:v9030047. [PMID: 28304358 PMCID: PMC5371802 DOI: 10.3390/v9030047] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Revised: 03/13/2017] [Accepted: 03/13/2017] [Indexed: 11/16/2022] Open
Abstract
The aquatic microbiome is composed of a multi-phylotype community of microbes, ranging from the numerically dominant viruses to the phylogenetically diverse unicellular phytoplankton. They influence key biogeochemical processes and form the base of marine food webs, becoming food for secondary consumers. Due to recent advances in next-generation sequencing, this previously overlooked component of our hydrosphere is starting to reveal its true diversity and biological complexity. We report here that 250 mL of seawater is sufficient to provide a comprehensive description of the microbial diversity in an oceanic environment. We found that there was a dominance of the order Caudovirales (59%), with the family Myoviridae being the most prevalent. The families Phycodnaviridae and Mimiviridae made up the remainder of pelagic double-stranded DNA (dsDNA) virome. Consistent with this analysis, the Cyanobacteria dominate (52%) the prokaryotic diversity. While the dinoflagellates and their endosymbionts, the superphylum Alveolata dominates (92%) the microbial eukaryotic diversity. A total of 834 prokaryotic, 346 eukaryotic and 254 unique virus phylotypes were recorded in this relatively small sample of water. We also provide evidence, through a metagenomic-barcoding comparative analysis, that viruses are the likely source of microbial environmental DNA (meDNA). This study opens the door to a more integrated approach to oceanographic sampling and data analysis.
Collapse
Affiliation(s)
- Flavia Flaviani
- Department of Molecular and Cell Biology, University of Cape Town, Private Bag X3, Rondebosch 7701, South Africa.
- Marine Biological Association of the UK, Citadel Hill, Plymouth PL1 2PB, UK.
| | - Declan C Schroeder
- Marine Biological Association of the UK, Citadel Hill, Plymouth PL1 2PB, UK.
| | - Cecilia Balestreri
- Marine Biological Association of the UK, Citadel Hill, Plymouth PL1 2PB, UK.
| | - Joanna L Schroeder
- Marine Biological Association of the UK, Citadel Hill, Plymouth PL1 2PB, UK.
| | - Karen Moore
- University of Exeter Sequencing Service, Biosciences, Stocker Rd., University of Exeter, Exeter EX4 4QD, UK.
| | - Konrad Paszkiewicz
- University of Exeter Sequencing Service, Biosciences, Stocker Rd., University of Exeter, Exeter EX4 4QD, UK.
| | - Maya C Pfaff
- Department of Environmental Affairs, Oceans and Coasts, P.O. Box 52126, Victoria and Alfred Waterfront, Cape Town 8000, South Africa.
| | - Edward P Rybicki
- Department of Molecular and Cell Biology, University of Cape Town, Private Bag X3, Rondebosch 7701, South Africa.
| |
Collapse
|
45
|
Zhang M, Yang L, Ren J, Ahlgren NA, Fuhrman JA, Sun F. Prediction of virus-host infectious association by supervised learning methods. BMC Bioinformatics 2017; 18:60. [PMID: 28361670 PMCID: PMC5374558 DOI: 10.1186/s12859-017-1473-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Background The study of virus-host infectious association is important for understanding the functions and dynamics of microbial communities. Both cellular and fractionated viral metagenomic data generate a large number of viral contigs with missing host information. Although relative simple methods based on the similarity between the word frequency vectors of viruses and bacterial hosts have been developed to study virus-host associations, the problem is significantly understudied. We hypothesize that machine learning methods based on word frequencies can be efficiently used to study virus-host infectious associations. Methods We investigate four different representations of word frequencies of viral sequences including the relative word frequency and three normalized word frequencies by subtracting the number of expected from the observed word counts. We also study five machine learning methods including logistic regression, support vector machine, random forest, Gaussian naive Bayes and Bernoulli naive Bayes for separating infectious from non-infectious viruses for nine bacterial host genera with at least 45 infecting viruses. Area under the receiver operating characteristic curve (AUC) is used to compare the performance of different machine learning method and feature combinations. We then evaluate the performance of the best method for the identification of the hosts of contigs in metagenomic studies. We also develop a maximum likelihood method to estimate the fraction of true infectious viruses for a given host in viral tagging experiments. Results Based on nine bacterial host genera with at least 45 infectious viruses, we show that random forest together with the relative word frequency vector performs the best in identifying viruses infecting particular hosts. For all the nine host genera, the AUC is over 0.85 and for five of them, the AUC is higher than 0.98 when the word size is 6 indicating the high accuracy of using machine learning approaches for identifying viruses infecting particular hosts. We also show that our method can predict the hosts of viral contigs of length at least 1kbps in metagenomic studies with high accuracy. The random forest together with word frequency vector outperforms current available methods based on Manhattan and \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$d_{2}^{*}$\end{document}d2∗ dissimilarity measures. Based on word frequencies, we estimate that about 95% of the identified T4-like viruses in viral tagging experiment infect Synechococcus, while only about 29% of the identified non-T4-like viruses and 30% of the contigs in the study potentially infect Synechococcus. Conclusions The random forest machine learning method together with the relative word frequencies as features of viruses can be used to predict viruses and viral contigs for specific bacterial hosts. The maximum likelihood approach can be used to estimate the fraction of true infectious associated viruses in viral tagging experiments. Electronic supplementary material The online version of this article (doi:10.1186/s12859-017-1473-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Mengge Zhang
- Molecular and Computational Biology Program, University of Southern California, Los Angeles, California, USA
| | - Lianping Yang
- College of Sciences, Northeastern University, Shenyang, China
| | - Jie Ren
- Molecular and Computational Biology Program, University of Southern California, Los Angeles, California, USA
| | - Nathan A Ahlgren
- Department of Biological Sciences and Wrigley Institute for Environmental Studies, University of Southern California, Los Angeles, California, USA.,Biology Department, Clark University, Worcester, Massachusetts, USA
| | - Jed A Fuhrman
- Department of Biological Sciences and Wrigley Institute for Environmental Studies, University of Southern California, Los Angeles, California, USA
| | - Fengzhu Sun
- Molecular and Computational Biology Program, University of Southern California, Los Angeles, California, USA. .,Centre for Computational Systems Biology, School of Mathematical Sciences, Fudan University, Shanhai, China.
| |
Collapse
|
46
|
Abstract
Microbial life has been detected well into the igneous crust of the seafloor (i.e., the oceanic basement), but there have been no reports confirming the presence of viruses in this habitat. To detect and characterize an ocean basement virome, geothermally heated fluid samples (ca. 60 to 65°C) were collected from 117 to 292 m deep into the ocean basement using seafloor observatories installed in two boreholes (Integrated Ocean Drilling Program [IODP] U1362A and U1362B) drilled in the eastern sediment-covered flank of the Juan de Fuca Ridge. Concentrations of virus-like particles in the fluid samples were on the order of 0.2 × 105 to 2 × 105 ml−1 (n = 8), higher than prokaryote-like cells in the same samples by a factor of 9 on average (range, 1.5 to 27). Electron microscopy revealed diverse viral morphotypes similar to those of viruses known to infect bacteria and thermophilic archaea. An analysis of virus-like sequences in basement microbial metagenomes suggests that those from archaeon-infecting viruses were the most common (63 to 80%). Complete genomes of a putative archaeon-infecting virus and a prophage within an archaeal scaffold were identified among the assembled sequences, and sequence analysis suggests that they represent lineages divergent from known thermophilic viruses. Of the clustered regularly interspaced short palindromic repeat (CRISPR)-containing scaffolds in the metagenomes for which a taxonomy could be inferred (163 out of 737), 51 to 55% appeared to be archaeal and 45 to 49% appeared to be bacterial. These results imply that the warmed, highly altered fluids in deeply buried ocean basement harbor a distinct assemblage of novel viruses, including many that infect archaea, and that these viruses are active participants in the ecology of the basement microbiome. The hydrothermally active ocean basement is voluminous and likely provided conditions critical to the origins of life, but the microbiology of this vast habitat is not well understood. Viruses in particular, although integral to the origins, evolution, and ecology of all life on earth, have never been documented in basement fluids. This report provides the first estimate of free virus particles (virions) within fluids circulating through the extrusive basalt of the seafloor and describes the morphological and genetic signatures of basement viruses. These data push the known geographical limits of the virosphere deep into the ocean basement and point to a wealth of novel viral diversity, exploration of which could shed light on the early evolution of viruses.
Collapse
|
47
|
The Baltic Sea Virome: Diversity and Transcriptional Activity of DNA and RNA Viruses. mSystems 2017; 2:mSystems00125-16. [PMID: 28217745 PMCID: PMC5309335 DOI: 10.1128/msystems.00125-16] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Accepted: 12/27/2016] [Indexed: 11/20/2022] Open
Abstract
Inferred virus-host relationships, community structures of ubiquitous ecologically relevant groups, and identification of transcriptionally active populations have been achieved with our Baltic Sea study. Further, these data, highlighting the transcriptional activity of viruses, represent one of the more powerful uses of omics concerning ecosystem health. The use of omics-related data to assess ecosystem health holds great promise for rapid and relatively inexpensive determination of perturbations and risk, explicitly with regard to viral assemblages, as no single marker gene is suitable for widespread taxonomic coverage. Metagenomic and metatranscriptomic data were generated from size-fractionated samples from 11 sites within the Baltic Sea and adjacent marine waters of Kattegat and freshwater Lake Torneträsk in order to investigate the diversity, distribution, and transcriptional activity of virioplankton. Such a transect, spanning a salinity gradient from freshwater to the open sea, facilitated a broad genome-enabled investigation of natural as well as impacted aspects of Baltic Sea viral communities. Taxonomic signatures representative of phages within the widely distributed order Caudovirales were identified with enrichments in lesser-known families such as Podoviridae and Siphoviridae. The distribution of phage reported to infect diverse and ubiquitous heterotrophic bacteria (SAR11 clades) and cyanobacteria (Synechococcus sp.) displayed population-level shifts in diversity. Samples from higher-salinity conditions (>14 practical salinity units [PSU]) had increased abundances of viruses for picoeukaryotes, i.e., Ostreococcus. These data, combined with host diversity estimates, suggest viral modulation of diversity on the whole-community scale, as well as in specific prokaryotic and eukaryotic lineages. RNA libraries revealed single-stranded DNA (ssDNA) and RNA viral populations throughout the Baltic Sea, with ssDNA phage highly represented in Lake Torneträsk. Further, our data suggest relatively high transcriptional activity of fish viruses within diverse families known to have broad host ranges, such as Nodoviridae (RNA), Iridoviridae (DNA), and predicted zoonotic viruses that can cause ecological and economic damage as well as impact human health. IMPORTANCE Inferred virus-host relationships, community structures of ubiquitous ecologically relevant groups, and identification of transcriptionally active populations have been achieved with our Baltic Sea study. Further, these data, highlighting the transcriptional activity of viruses, represent one of the more powerful uses of omics concerning ecosystem health. The use of omics-related data to assess ecosystem health holds great promise for rapid and relatively inexpensive determination of perturbations and risk, explicitly with regard to viral assemblages, as no single marker gene is suitable for widespread taxonomic coverage.
Collapse
|
48
|
Spatial Molecular Architecture of the Microbial Community of a Peltigera Lichen. mSystems 2016; 1:mSystems00139-16. [PMID: 28028548 PMCID: PMC5183598 DOI: 10.1128/msystems.00139-16] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Accepted: 11/17/2016] [Indexed: 11/25/2022] Open
Abstract
Microbial communities have evolved over centuries to live symbiotically. The direct visualization of such communities at the chemical and functional level presents a challenge. Overcoming this challenge may allow one to visualize the spatial distributions of specific molecules involved in symbiosis and to define their functional roles in shaping the community structure. In this study, we examined the diversity of microbial genes and taxa and the presence of biosynthetic gene clusters by metagenomic sequencing and the compartmentalization of organic chemical components within a lichen using mass spectrometry. This approach allowed the identification of chemically distinct sections within this composite organism. Using our multipronged approach, various fungal natural products, not previously reported from lichens, were identified and two different fungal layers were visualized at the chemical level. Microbes are commonly studied as individual species, but they exist as mixed assemblages in nature. At present, we know very little about the spatial organization of the molecules, including natural products that are produced within these microbial networks. Lichens represent a particularly specialized type of symbiotic microbial assemblage in which the component microorganisms exist together. These composite microbial assemblages are typically comprised of several types of microorganisms representing phylogenetically diverse life forms, including fungi, photosymbionts, bacteria, and other microbes. Here, we employed matrix-assisted laser desorption ionization–time of flight (MALDI-TOF) imaging mass spectrometry to characterize the distributions of small molecules within a Peltigera lichen. In order to probe how small molecules are organized and localized within the microbial consortium, analytes were annotated and assigned to their respective producer microorganisms using mass spectrometry-based molecular networking and metagenome sequencing. The spatial analysis of the molecules not only reveals an ordered layering of molecules within the lichen but also supports the compartmentalization of unique functions attributed to various layers. These functions include chemical defense (e.g., antibiotics), light-harvesting functions associated with the cyanobacterial outer layer (e.g., chlorophyll), energy transfer (e.g., sugars) surrounding the sun-exposed cyanobacterial layer, and carbohydrates that may serve a structural or storage function and are observed with higher intensities in the non-sun-exposed areas (e.g., complex carbohydrates). IMPORTANCE Microbial communities have evolved over centuries to live symbiotically. The direct visualization of such communities at the chemical and functional level presents a challenge. Overcoming this challenge may allow one to visualize the spatial distributions of specific molecules involved in symbiosis and to define their functional roles in shaping the community structure. In this study, we examined the diversity of microbial genes and taxa and the presence of biosynthetic gene clusters by metagenomic sequencing and the compartmentalization of organic chemical components within a lichen using mass spectrometry. This approach allowed the identification of chemically distinct sections within this composite organism. Using our multipronged approach, various fungal natural products, not previously reported from lichens, were identified and two different fungal layers were visualized at the chemical level.
Collapse
|
49
|
Munang'andu HM. Environmental Viral Metagenomics Analyses in Aquaculture: Applications in Epidemiology and Disease Control. Front Microbiol 2016; 7:1986. [PMID: 28018317 PMCID: PMC5155513 DOI: 10.3389/fmicb.2016.01986] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Accepted: 11/28/2016] [Indexed: 11/17/2022] Open
Abstract
Studies on the epidemiology of viral diseases in aquaculture have for a long time depended on isolation of viruses from infected aquatic organisms. The role of aquatic environments in the epidemiology of viral diseases in aquaculture has not been extensively expounded mainly because of the lack of appropriate tools for environmental studies on aquatic viruses. However, the upcoming of metagenomics analyses opens great avenues in which environmental samples can be used to study the epidemiology of viral diseases outside their host species. Hence, in this review I have shown that epidemiological factors that influence the composition of viruses in different aquatic environments include ecological factors, anthropogenic activities and stocking densities of cultured organisms based on environmental metagenomics studies carried out this far. Ballast water transportation and global trade of aquatic organisms are the most common virus dispersal process identified this far. In terms of disease control for outdoor aquaculture systems, baseline data on viruses found in different environments intended for aquaculture use can be obtained to enable the design of effective disease control strategies. And as such, high-risk areas having a high specter of pathogenic viruses can be identified as an early warning system. As for the control of viral diseases for indoor recirculation aquaculture systems (RAS), the most effective disinfection methods able to eliminate pathogenic viruses from water used in RAS can be identified. Overall, the synopsis I have put forth in this review shows that environmental samples can be used to study the epidemiology of viral diseases in aquaculture using viral metagenomics analysis as an overture for the design of rational disease control strategies.
Collapse
Affiliation(s)
- Hetron M Munang'andu
- Section of Aquatic Medicine and Nutrition, Department of Basic Sciences and Aquatic Medicine, Faculty of Veterinary Medicine and Biosciences, Norwegian University of Life Sciences Oslo, Norway
| |
Collapse
|
50
|
Rastrojo A, Alcamí A. Aquatic viral metagenomics: Lights and shadows. Virus Res 2016; 239:87-96. [PMID: 27889617 DOI: 10.1016/j.virusres.2016.11.021] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Accepted: 11/18/2016] [Indexed: 01/02/2023]
Abstract
Viruses are the most abundant biological entities on Earth, exceeding bacteria in most of the ecosystems. Specially in oceans, viruses are thought to be the major planktonic predators shaping microorganism communities and controlling ocean biological capacity. Plankton lysis by viruses plays an important role in ocean nutrient and energy cycles. Viral metagenomics has emerged as a powerful tool to uncover viral diversity in aquatic ecosystems through the use of Next Generation Sequencing. However, many of the commonly used viral sample preparation steps have several important biases that must be considered to avoid a misinterpretation of the results. In addition to biases caused by the purification of virus particles, viral DNA/RNA amplification and the preparation of genomic libraries could also introduce biases, and a detailed knowledge about such protocols is required. In this review, the main steps in the viral metagenomic workflow are described paying special attention to the potential biases introduced by each one.
Collapse
Affiliation(s)
- Alberto Rastrojo
- Centro de Biología Molecular Severo Ochoa (Consejo Superior de Investigaciones Científicas y Universidad Autónoma de Madrid), Madrid, Spain
| | - Antonio Alcamí
- Centro de Biología Molecular Severo Ochoa (Consejo Superior de Investigaciones Científicas y Universidad Autónoma de Madrid), Madrid, Spain.
| |
Collapse
|