1
|
Gao Y, Cao J, Han B, Sun D. Preliminary exploration of mRNA, lncRNA, and miRNA expressions in the bovine jejunum unveils novel aspects of Mycobacterium avium subspecies paratuberculosis infections. BMC Genomics 2025; 26:108. [PMID: 39905315 PMCID: PMC11796175 DOI: 10.1186/s12864-025-11299-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 01/28/2025] [Indexed: 02/06/2025] Open
Abstract
BACKGROUND Paratuberculosis (Johne's disease, JD) is a chronic and enteric disease in a range of ruminants, often caused by Mycobacterium avium subspecies paratuberculosis (MAP) infection, leading to substantial economic losses worldwide. Yet, the molecular underpinning of paratuberculosis remains elusive. Here we performed RNA sequencing (RNA-seq) and small RNA sequencing (sRNA-seq) of the jejunum tissues from the Holstein cows with three distinct statuses of paratuberculosis, i.e., healthy, subclinical, and clinical to screen potential genes, lncRNAs, and miRNAs associated with the resistance or susceptibility to MAP infection and build ceRNA regulatory networks via miRNAs. RESULTS We applied whole transcriptome sequencing analysis to examine the jejunum tissue in nine Holstein cows. Starting with 19,994 expressed genes, 13,529 lncRNAs, and 735 miRNAs, we screened out differentially expressed genes (DEGs), lncRNAs, and miRNAs of three comparison groups, i.e., clinical vs. healthy, subclinical vs. healthy, and clinical vs. subclinical, subsequently identifying ceRNA pairs. Ultimately, we detected 76, 74, and 24 DEGs, 19, 39, and 10 lncRNAs, as well as 28, 61, and 20 miRNAs across the three comparison groups, respectively. Through integrating these DEGs with functional annotation, previously reported QTLs, and GWAS results, we proposed eight genes (LYZ, LYZ1, BOLA-DQB, BOLA-DQA1, TAP, CATD, VNN1, and PPARG), six lncRNAs, 48 miRNAs, and 107 ceRNA pairs implying their potential associations with susceptibility to MAP infection. CONCLUSION The present study provided a global view of the dynamics in transcriptomes of the bovine jejunum tissues in terms of JD status. Our results demonstrated that not only mRNAs but also lncRNAs and miRNAs played important roles in regulating MAP infection in dairy cattle. This study provided a valuable resource for understanding the molecular basis of JD, potentially contributing to the genetic improvement of JD resistance in dairy cattle.
Collapse
Affiliation(s)
- Yahui Gao
- Key Laboratory of Animal Genetics and Breeding of Ministry of Agriculture, National Engineering Laboratory of Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
- State Key Laboratory of Livestock and Poultry Breeding, Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Jie Cao
- College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Bo Han
- Key Laboratory of Animal Genetics and Breeding of Ministry of Agriculture, National Engineering Laboratory of Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Dongxiao Sun
- Key Laboratory of Animal Genetics and Breeding of Ministry of Agriculture, National Engineering Laboratory of Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
2
|
Capewell P, Lowe A, Athanasiadou S, Wilson D, Hanks E, Coultous R, Hutchings M, Palarea‐Albaladejo J. Towards a microRNA-based Johne's disease diagnostic predictive system: Preliminary results. Vet Rec 2024; 195:e4798. [PMID: 39562518 PMCID: PMC11605997 DOI: 10.1002/vetr.4798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 08/30/2024] [Accepted: 09/25/2024] [Indexed: 11/21/2024]
Abstract
BACKGROUND Johne's disease, caused by Mycobacterium avium subspecies paratuberculosis (MAP), is a chronic enteritis that adversely affects welfare and productivity in cattle. Screening and subsequent removal of affected animals is a common approach for disease management, but efforts are hindered by low diagnostic sensitivity. Expression levels of small non-coding RNA molecules involved in gene regulation (microRNAs), which may be altered during mycobacterial infection, may present an alternative diagnostic method. METHODS The expression levels of 24 microRNAs affected by mycobacterial infection were measured in sera from MAP-positive (n = 66) and MAP-negative cattle (n = 65). They were then used within a machine learning approach to build an optimal classifier for MAP diagnosis. RESULTS The method provided 72% accuracy, 73% sensitivity and 71% specificity on average, with an area under the curve of 78%. LIMITATIONS Although control samples were collected from farms nominally MAP-free, the low sensitivity of current diagnostics means some animals may have been misclassified. CONCLUSION MicroRNA profiling combined with advanced predictive modelling enables rapid and accurate diagnosis of Johne's disease in cattle.
Collapse
Affiliation(s)
- Paul Capewell
- School of Molecular Biosciences, College of Medical, Veterinary & Life SciencesUniversity of GlasgowGlasgowUK
| | | | | | | | | | | | | | | |
Collapse
|
3
|
Badia-Bringué G, Lavín JL, Casais R, Alonso-Hearn M. Alternative splicing of pre-mRNA modulates the immune response in Holstein cattle naturally infected with Mycobacterium avium subsp. paratuberculosis. Front Immunol 2024; 15:1354500. [PMID: 38495873 PMCID: PMC10940349 DOI: 10.3389/fimmu.2024.1354500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 02/09/2024] [Indexed: 03/19/2024] Open
Abstract
Little is known about the role of alternative splicing (AS) in regulating gene expression in Mycobacteria-infected individuals in distinct stages of infection. Pre-mRNA AS consists of the removal of introns and the assembly of exons contained in eukaryotic genes. AS events can influence transcript stability or structure with important physiological consequences. Using RNA-Seq data from peripheral blood (PB) and ileocecal valve (ICV) samples collected from Holstein cattle with focal and diffuse paratuberculosis (PTB)-associated histopathological lesions in gut tissues and without lesions (controls), we detected differential AS profiles between the infected and control groups. Four of the identified AS events were experimentally validated by reverse transcription-digital droplet PCR (RT-ddPCR). AS events in several genes correlated with changes in gene expression. In the ICV of animals with diffuse lesions, for instance, alternatively spliced genes correlated with changes in the expression of genes involved in endocytosis, antigen processing and presentation, complement activation, and several inflammatory and autoimmune diseases in humans. Taken together, our results identified common mechanisms of AS involvement in the pathogenesis of PTB and human diseases and shed light on novel diagnostic and therapeutic interventions to control these diseases.
Collapse
Affiliation(s)
- Gerard Badia-Bringué
- Department of Animal Health, NEIKER-Basque Institute for Agricultural Research and Development, Basque Research and Technology Alliance (BRTA), Derio, Bizkaia, Spain
- Universidad del País Vasco/Euskal Herriko Unibertsitatea (UPV/EHU), Leioa, Bizkaia, Spain
| | - José Luis Lavín
- Department of Applied Mathematics, NEIKER- Basque Institute for Agricultural Research and Development, Basque Research and Technology Alliance (BRTA), Derio, Bizkaia, Spain
| | - Rosa Casais
- Center of Animal Biotechnology, Servicio Regional de Investigación y Desarrollo Agroalimentario (SERIDA), Deva, Spain
| | - Marta Alonso-Hearn
- Department of Animal Health, NEIKER-Basque Institute for Agricultural Research and Development, Basque Research and Technology Alliance (BRTA), Derio, Bizkaia, Spain
| |
Collapse
|
4
|
Badia-Bringué G, Canive M, Blanco-Vázquez C, Torremocha R, Ovalle S, Ramos-Ruiz R, Casais R, Alonso-Hearn M. MicroRNAs modulate immunological and inflammatory responses in Holstein cattle naturally infected with Mycobacterium avium subsp. paratuberculosis. Sci Rep 2024; 14:173. [PMID: 38167436 PMCID: PMC10762146 DOI: 10.1038/s41598-023-50251-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 12/17/2023] [Indexed: 01/05/2024] Open
Abstract
MicroRNAs (miRNAs) regulate the post-transcriptional expression of genes by binding to their target mRNAs. In this study, whole miRNA sequencing was used to compare the expression of miRNAs in ileocecal valve (ICV) and peripheral blood (PB) samples of cows with focal or diffuse paratuberculosis (PTB)-associated lesions in gut tissues versus (vs) control cows without lesions. Among the eight miRNAs differentially expressed in the PB samples from cows with diffuse lesions vs controls, three (miR-19a, miR-144, miR32) were also down-regulated in cows with diffuse vs focal lesions. In the ICV samples, we identified a total of 4, 5, and 18 miRNAs differentially expressed in cows with focal lesions vs controls, diffuse lesions vs controls, and diffuse vs focal lesions, respectively. The differential expression of five microRNAs (miR-19a, miR-144, miR-2425-3p, miR-139, miR-101) was confirmed by RT-qPCR. Next, mRNA target prediction was performed for each differentially expressed miRNA. A functional analysis using the predicted gene targets revealed a significant enrichment of the RNA polymerase and MAPK signaling pathways in the comparison of cows with focal vs no lesions and with diffuse vs focal lesions, respectively. The identified miRNAs could be used for the development of novel diagnostic and therapeutical tools for PTB control.
Collapse
Affiliation(s)
- Gerard Badia-Bringué
- Department of Animal Health, NEIKER-Basque Research and Technology Alliance (BRTA), Derio, Spain
- Doctoral Program in Molecular Biology and Biomedicine, Universidad del País Vasco/Euskal Herriko Unibertsitatea (UPV/EHU), Leioa, Bizkaia, Spain
| | - María Canive
- Department of Animal Health, NEIKER-Basque Research and Technology Alliance (BRTA), Derio, Spain
| | - Cristina Blanco-Vázquez
- Center of Animal Biotechnology, SERIDA-Regional Service of Agri-Food Research and Development, Deva, Spain
| | - Rosana Torremocha
- Genomic Unit, Scientific Park of Madrid, Campus de Cantoblanco, Madrid, Spain
| | - Susana Ovalle
- Genomic Unit, Scientific Park of Madrid, Campus de Cantoblanco, Madrid, Spain
| | - Ricardo Ramos-Ruiz
- Genomic Unit, Scientific Park of Madrid, Campus de Cantoblanco, Madrid, Spain
| | - Rosa Casais
- Center of Animal Biotechnology, SERIDA-Regional Service of Agri-Food Research and Development, Deva, Spain
| | - Marta Alonso-Hearn
- Department of Animal Health, NEIKER-Basque Research and Technology Alliance (BRTA), Derio, Spain.
| |
Collapse
|
5
|
Li H, Huang S, Geng C, Wu Y, Shi M, Wang M. Comprehensive analysis reveals hub genes associated with immune cell infiltration in allergic rhinitis. World J Otorhinolaryngol Head Neck Surg 2023; 9:340-351. [PMID: 38059138 PMCID: PMC10696276 DOI: 10.1002/wjo2.92] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 12/09/2022] [Accepted: 12/29/2022] [Indexed: 02/25/2023] Open
Abstract
Objectives Allergic rhinitis (AR) refers to a form of respiratory inflammation that mainly affects the sinonasal mucosa. The purpose of this study was to explore the level of immune cell infiltration and the pathogenesis of AR. Methods We performed a comprehensive analysis of two gene expression profiles (GSE50223 and GSE50101, a total of 30 patients with AR and 31 healthy controls). CIBERSORT was used to evaluate the immune cell infiltration levels. Weighted gene coexpression network analysis was applied to explore potential genes or gene modules related to immune status, and enrichment analyses including gene ontology, Kyoto Encyclopedia of Genes and Genomes, gene set enrichment analysis, and gene set variation analysis, were performed to analyze the potential mechanisms in AR. A protein-protein interaction network was constructed to investigate the hub genes, and consensus clustering was conducted to identify the molecular subtypes of AR. Results Compared to the healthy controls, patients with AR had high abundance levels and proportions of CD4+ memory-activated T cells. One hundred and eight immune-related differentially expressed genes were identified. Enrichment analysis suggested that AR was mainly related to leukocyte cell-cell adhesion, cytokine-cytokine receptor interaction, T-cell activation, and T-cell receptor signaling pathway. Ten hub genes, including TYROBP, CSF1R, TLR8, FCER1G, SPI1, ITGAM, CYBB, FCGR2A, CCR1, and HCK, which were related to immune response, might be crucial to the pathogenesis of AR. Three molecular subtypes with significantly different immune statuses were identified. Conclusion This study improves our understanding of the molecular mechanisms in AR via comprehensive strategies and provides potential diagnostic biomarkers and therapeutic targets of AR.
Collapse
Affiliation(s)
- Hui Li
- Department of OtorhinolaryngologyPeking University People's HospitalBeijingChina
- Department of RhinologyThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Shi‐En Huang
- Department of OtorhinolaryngologyPeking University People's HospitalBeijingChina
| | - Cong‐Li Geng
- Department of OtorhinolaryngologyPeking University People's HospitalBeijingChina
| | - Yu‐Xiao Wu
- Department of OtorhinolaryngologyPeking University People's HospitalBeijingChina
| | - Mu‐Han Shi
- Department of OtorhinolaryngologyPeking University People's HospitalBeijingChina
| | - Min Wang
- Department of OtorhinolaryngologyPeking University People's HospitalBeijingChina
| |
Collapse
|
6
|
Badia-Bringué G, Canive M, Fernandez-Jimenez N, Lavín JL, Casais R, Blanco-Vázquez C, Vázquez P, Fernández A, Bilbao JR, Garrido JM, Juste RA, González-Recio O, Alonso-Hearn M. Summary-data based Mendelian randomization identifies gene expression regulatory polymorphisms associated with bovine paratuberculosis by modulation of the nuclear factor Kappa β (NF-κß)-mediated inflammatory response. BMC Genomics 2023; 24:605. [PMID: 37821814 PMCID: PMC10568764 DOI: 10.1186/s12864-023-09710-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 10/02/2023] [Indexed: 10/13/2023] Open
Abstract
Genome-wide association studies (GWAS) have identified host genetic variants associated with paratuberculosis (PTB) susceptibility. Most of the GWAS-identified SNPs are in non-coding regions. Connecting these non-coding variants and downstream affected genes is a challenge and, up to date, only a few functional mutations or expression quantitative loci (cis-eQTLs) associated with PTB susceptibility have been identified. In the current study, the associations between imputed whole-genome sequence genotypes and whole RNA-Sequencing data from peripheral blood (PB) and ileocecal valve (ICV) samples of Spanish Holstein cows (N = 16) were analyzed with TensorQTL. This approach allowed the identification of 88 and 37 cis-eQTLs regulating the expression levels of 90 and 37 genes in PB and ICV samples, respectively (False discorey rate, FDR ≤ 0.05). Next, we applied summary-based data Mendelian randomization (SMR) to integrate the cis-eQTL dataset with GWAS data obtained from a cohort of 813 culled cattle that were classified according to the presence or absence of PTB-associated histopathological lesions in gut tissues. After multiple testing corrections (FDR ≤ 0.05), we identified two novel cis-eQTLs affecting the expression of the early growth response factor 4 (EGR4) and the bovine neuroblastoma breakpoint family member 6-like protein isoform 2 (MGC134040) that showed pleiotropic associations with the presence of multifocal and diffuse lesions in gut tissues; P = 0.002 and P = 0.017, respectively. While EGR4 acts as a brake on T-cell proliferation and cytokine production through interaction with the nuclear factor Kappa β (NF-κß), MGC134040 is a target gene of NF-κß. Our findings provide a better understanding of the genetic factors influencing PTB outcomes, confirm that the multifocal lesions are localized/confined lesions that have different underlying host genetics than the diffuse lesions, and highlight regulatory SNPs and regulated-gene targets to design future functional studies.
Collapse
Affiliation(s)
- Gerard Badia-Bringué
- Department of Animal Health, NEIKER- Basque Institute for Agricultural Research and Development, Basque Research and Technology Alliance (BRTA), Derio, Bizkaia, Spain
- Doctoral Program in Molecular Biology and Biomedicine, Universidad del País Vasco/Euskal Herriko Unibertsitatea (UPV/EHU), Leioa, Bizkaia, Spain
| | - Maria Canive
- Department of Animal Health, NEIKER- Basque Institute for Agricultural Research and Development, Basque Research and Technology Alliance (BRTA), Derio, Bizkaia, Spain
| | - Nora Fernandez-Jimenez
- Department of Genetics, Physical Anthropology and Animal Physiology, University of the Basque Country (UPV/EHU), Biocruces-Bizkaia HRI, Leioa, Bizkaia, Spain
| | - José Luis Lavín
- Department of Applied Mathematics, NEIKER- Basque Institute for Agricultural Research and Development, Basque Research and Technology Alliance (BRTA), Derio, Bizkaia, Spain
| | - Rosa Casais
- Center of Animal Biotechnology, SERIDA, Servicio Regional de Investigación y Desarrollo Agroalimentario, Deva, Asturias, Spain
| | - Cristina Blanco-Vázquez
- Center of Animal Biotechnology, SERIDA, Servicio Regional de Investigación y Desarrollo Agroalimentario, Deva, Asturias, Spain
| | - Patricia Vázquez
- Department of Animal Health, NEIKER- Basque Institute for Agricultural Research and Development, Basque Research and Technology Alliance (BRTA), Derio, Bizkaia, Spain
| | - Almudena Fernández
- Departamento de Mejora Genética Animal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, CSIC, Madrid, Spain
| | - Jose Ramón Bilbao
- Department of Genetics, Physical Anthropology and Animal Physiology, University of the Basque Country (UPV/EHU), Biocruces-Bizkaia HRI, Leioa, Bizkaia, Spain
| | - Joseba M Garrido
- Department of Animal Health, NEIKER- Basque Institute for Agricultural Research and Development, Basque Research and Technology Alliance (BRTA), Derio, Bizkaia, Spain
| | - Ramón A Juste
- Department of Animal Health, NEIKER- Basque Institute for Agricultural Research and Development, Basque Research and Technology Alliance (BRTA), Derio, Bizkaia, Spain
| | - Oscar González-Recio
- Departamento de Mejora Genética Animal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, CSIC, Madrid, Spain
| | - Marta Alonso-Hearn
- Department of Animal Health, NEIKER- Basque Institute for Agricultural Research and Development, Basque Research and Technology Alliance (BRTA), Derio, Bizkaia, Spain.
| |
Collapse
|
7
|
Shandilya UK, Wu X, McAllister C, Mutharia L, Karrow NA. Impact of Mycobacterium avium subsp. paratuberculosis infection on bovine IL10RA knockout mammary epithelial (MAC-T) cells. In Vitro Cell Dev Biol Anim 2023; 59:214-223. [PMID: 37071310 DOI: 10.1007/s11626-023-00758-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 03/15/2023] [Indexed: 04/19/2023]
Abstract
Mycobacterium avium subsp. Paratuberculosis (MAP) is an intracellular pathogen that causes Johne's disease (JD) in cattle and other ruminants. IL10RA encodes the alpha chain of the IL-10 receptor that binds the cytokine IL-10, and is one of the candidate genes that have been found to be associated with JD infection status. In this study, a previously developed IL10RA knockout (IL10RAKO) bovine mammary epithelial (MAC-T) cell line and wild-type (WT) MAC-T cells were infected with live MAP for 72 h to identify potential immunoregulatory miRNAs, inflammatory genes, and cytokines/chemokines impacted by MAP infection in the presence/absence of IL10RA. Cytokine and chemokine concentrations in culture supernatants were measured by multiplexing immunoassay. Total RNA was extracted from the MAC-T cells, and qPCR was performed to determine the expression of inflammatory genes and selected bovine miRNAs. Results showed that the levels of TNF-α, IL-6, CXCL8, CXCL10, CCL2, and CCL3 were significantly induced in WT MAC-T cells and IL-10 was significantly inhibited post-MAP infection. However, IL10RAKO MAC-T cells had greater secretion of TNF-α, IL-6, IFN-γ, CCL3, CCL4, CXCL8, and CXCL10, and lower secretion of VEGF-α. Moreover, the expression of inflammatory genes (TNF-α, IL-1α, IL-6) was also more significantly induced in IL10RAKO cells than in WT MAC-T cells post-MAP-infection, and unlike the WT cells, anti-inflammatory cytokines IL-10 and SOCS3 and chemokines CCL2 were not significantly induced. In addition, the expression of miRNAs (miR133b, miR-92a, and miR-184) was increased in WT MAC-T cells post-MAP-infection; however, there was no significant induction of these miRNAs in the IL10RAKO cells, which suggests IL10 receptor is somehow involved in regulating the miRNA response to MAP infection. Target gene function analysis further suggests that miR-92a may be involved in interleukin signaling, and miR-133b and miR-184 may be involved in other signaling pathways. These findings support the involvement of IL10RA in the regulation of innate immune response to MAP.
Collapse
Affiliation(s)
- Umesh K Shandilya
- Department of Animal Biosciences, University of Guelph, 50 Stone Rd. E, Guelph, ON, N1G2W1, Canada
| | - Xiang Wu
- Department of Animal Biosciences, University of Guelph, 50 Stone Rd. E, Guelph, ON, N1G2W1, Canada
| | - Caitlin McAllister
- Department of Animal Biosciences, University of Guelph, 50 Stone Rd. E, Guelph, ON, N1G2W1, Canada
| | - Lucy Mutharia
- Department of Molecular and Cellular Biology, University of Guelph, 50 Stone Rd. E, Guelph, ON, Canada
| | - Niel A Karrow
- Department of Animal Biosciences, University of Guelph, 50 Stone Rd. E, Guelph, ON, N1G2W1, Canada.
| |
Collapse
|
8
|
Bharath MN, Gupta S, Vashistha G, Ahmad S, Singh SV. Bioprospective Role of Ocimum sanctum and Solanum xanthocarpum against Emerging Pathogen: Mycobacterium avium Subspecies paratuberculosis: A Review. Molecules 2023; 28:molecules28083490. [PMID: 37110723 PMCID: PMC10145132 DOI: 10.3390/molecules28083490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 04/07/2023] [Accepted: 04/13/2023] [Indexed: 04/29/2023] Open
Abstract
Mycobacterium avium subspecies paratuberculosis (MAP) is a chronic, contagious, and typically life-threatening enteric disease of ruminants caused by a bacterium of the genus Mycobacterium, but it can also affect non-ruminant animals. MAP transmission occurs through the fecal-oral pathway in neonates and young animals. After infection, animals generate IL-4, IL-5, and IL-10, resulting in a Th2 response. Early detection of the disease is necessary to avoid its spread. Many detection methods, viz., staining, culture, and molecular methods, are available, and numerous vaccines and anti-tuberculosis drugs are used to control the disease. However, the prolonged use of anti-tuberculosis drugs leads to the development of resistance. Whereas vaccines hamper the differentiation between infected and vaccinated animals in an endemic herd. This leads to the identification of plant-based bioactive compounds to treat the disease. Bioactive compounds of Ocimum sanctum and Solanum xanthocarpum have been evaluated for their anti-MAP activity. Based on the MIC50 values, Ursolic acid (12 µg/mL) and Solasodine (60 µg/mL) were found to be suitable for anti-MAP activity.
Collapse
Affiliation(s)
- Manthena Nava Bharath
- Department of Biotechnology, Institute of Applied Science & Humanities, GLA University, Mathura 281406, India
| | - Saurabh Gupta
- Department of Biotechnology, Institute of Applied Science & Humanities, GLA University, Mathura 281406, India
| | - Garima Vashistha
- Department of Biotechnology, Institute of Applied Science & Humanities, GLA University, Mathura 281406, India
| | - Sayeed Ahmad
- Bioactive Natural Product Laboratory, Centre of Excellence in Unani Medicine (Pharmacognosy and Pharma Cology), School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Shoor Vir Singh
- Department of Biotechnology, Institute of Applied Science & Humanities, GLA University, Mathura 281406, India
| |
Collapse
|
9
|
Role of Toll-Like Receptor 4 in Mycobacterium avium subsp. paratuberculosis Infection of Bovine Mammary Epithelial (MAC-T) Cells In Vitro. Microbiol Spectr 2023:e0439322. [PMID: 36912627 PMCID: PMC10100370 DOI: 10.1128/spectrum.04393-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2023] Open
Abstract
Toll-like receptor 4 (TLR4) encodes an innate immune cell pattern-recognition receptor implicated in the recognition of Mycobacterium avium subsp. paratuberculosis (MAP), the causative agent of Johne's disease in ruminants. Polymorphisms in TLR4 have been associated with susceptibility to MAP infection. In this study, a previously developed TLR4 knockout (TLR4KO) bovine mammary epithelial (MAC-T) cell line and wild-type MAC-T cells (WT) were infected with live MAP for 72 h to identify potential immunoregulatory miRNAs, inflammatory genes, and cytokines/chemokines impacted by MAP infection in the presence/absence of TLR4. Cytokines/chemokines production in culture supernatants was measured by multiplexing immunoassay. Total RNA was extracted from the remaining MAC-T cells, and quantitative PCR was performed to determine the expression of inflammatory genes and selected bovine miRNAs. Results showed that the levels of tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), CXCL8, CXCL10, CCL4, and CCL3 were significantly induced in WT MAC-T cells during MAP infection. However, TLR4KO MAC-T cells had greater secretion of CCL3, IL-6, vascular endothelial growth factor (VEGF-α), and TNF-α and decreased secretion of CXCL10 and CCL2. Moreover, the expression of inflammatory genes was induced in TLR4KO cells. The expression of miRNAs (miR133b, miR-92a, and miR-184) was increased in WT MAC-T cells post-MAP infection; however, there was no significant induction of these miRNAs in TLR4KO cells, which suggests they are involved in regulating the innate immune response to MAP infection. Target gene function analysis further suggests that miR-92a may be involved in TLR and interleukin signaling and miR-133b and miR-184 may be involved in other signaling pathways. These findings support the involvement of TLR4 in the regulation of innate immune response to MAP. IMPORTANCE Mycobacterium avium subsp. paratuberculosis (MAP) is the causative agent for paratuberculosis or Johne's disease (JD) in ruminants, a disease clinically very similar to Crohn's disease in humans. Polymorphisms in the bovine Toll-like receptor genes (TLR1, TLR2, and TLR4) have been shown to affect MAP recognition and host innate immune response and have been associated with increased susceptibility of cattle to paratuberculosis. Our results demonstrated that knocking out the TLR4 gene in bovine MAC-T cells enhanced inflammation in response to MAP. These findings show divergent roles for TLR4 in Escherichia coli lipopolysaccharide and mycobacterial infections, and this may have important consequences for the treatment of these inflammatory diseases and for genetic selection to improve disease resistance. It advances our understanding of the role of TLR4 in the context of MAP infection.
Collapse
|
10
|
Pooley HB, Panag G, Plain KM, de Silva K, Begg DJ, Whittington RJ, Purdie AC. IP10 is a predictor of successful vaccine protection against paratuberculosis infection in sheep. Vaccine 2023; 41:274-283. [PMID: 36456390 DOI: 10.1016/j.vaccine.2022.11.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 11/10/2022] [Accepted: 11/13/2022] [Indexed: 11/29/2022]
Abstract
The cell mediated immune response and ability of immune cells to migrate to the site of infection are both key aspects of protection against many pathogens. Mycobacterium avium subsp. paratuberculosis (MAP) is an intracellular pathogen and the causative agent of paratuberculosis, a chronic wasting disease of ruminants. Current commercial vaccines for paratuberculosis reduce the occurrence of clinical disease but not all animals are protected from infection. Therefore, there is a need to understand the immune responses triggered by these vaccines at the site of infection, in circulating immune cells and their relationships to vaccine-mediated protection. The magnitude and location of gene expression related to the cell mediated immune response and cellular migration were studied in the ileum of sheep. In addition, longitudinal IP10 (also known as IP10) secretion by circulating immune cells was examined in the same sheep. Animals were grouped based on vaccination status (vaccinated vs non-vaccinated) and MAP exposure (experimentally exposed vs unexposed). Vaccination of unexposed sheep increased the expression of IP10, CCL5 and COR1c. Sheep that were successfully protected by vaccination (uninfected following experimental exposure) had significantly reduced expression of IP10 in the ileum at 12 months post exposure compared to vaccine non-responders (those that became infected) and non-vaccinated infected sheep. Successfully protected sheep also had significantly increased secretion of IP10 in in vitro stimulated immune cells from whole blood compared to vaccine non responders at 4 months post exposure. Therefore, the IP10 recall response has the potential to be used as marker for infection status in vaccinated sheep and could be a biomarker for a DIVA test in sheep.
Collapse
Affiliation(s)
- Hannah B Pooley
- Sydney School of Veterinary Science, Faculty of Science, The University of Sydney, Camden, NSW, Australia.
| | - Guneet Panag
- Sydney School of Veterinary Science, Faculty of Science, The University of Sydney, Camden, NSW, Australia
| | - Karren M Plain
- Sydney School of Veterinary Science, Faculty of Science, The University of Sydney, Camden, NSW, Australia
| | - Kumudika de Silva
- Sydney School of Veterinary Science, Faculty of Science, The University of Sydney, Camden, NSW, Australia
| | - Douglas J Begg
- Sydney School of Veterinary Science, Faculty of Science, The University of Sydney, Camden, NSW, Australia
| | - Richard J Whittington
- Sydney School of Veterinary Science, Faculty of Science, The University of Sydney, Camden, NSW, Australia
| | - Auriol C Purdie
- Sydney School of Veterinary Science, Faculty of Science, The University of Sydney, Camden, NSW, Australia
| |
Collapse
|
11
|
Heidari M, Pakdel A, Bakhtiarizadeh MR, Dehghanian F. A framework for non-preserved consensus gene module detection in Johne's disease. Front Vet Sci 2022; 9:974444. [PMID: 35968017 PMCID: PMC9363878 DOI: 10.3389/fvets.2022.974444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 07/08/2022] [Indexed: 11/29/2022] Open
Abstract
Johne's disease caused by Mycobacterium avium subsp. paratuberculosis (MAP) is a major concern in dairy industry. Since, the pathogenesis of the disease is not clearly known, it is necessary to develop an approach to discover molecular mechanisms behind this disease with high confidence. Biological studies often suffer from issues with reproducibility. Lack of a method to find stable modules in co-expression networks from different datasets related to Johne's disease motivated us to present a computational pipeline to identify non-preserved consensus modules. Two RNA-Seq datasets related to MAP infection were analyzed, and consensus modules were detected and were subjected to the preservation analysis. The non-preserved consensus modules in both datasets were determined as they are modules whose connectivity and density are affected by the disease. Long non-coding RNAs (lncRNAs) and TF genes in the non-preserved consensus modules were identified to construct integrated networks of lncRNA-mRNA-TF. These networks were confirmed by protein-protein interactions (PPIs) networks. Also, the overlapped hub genes between two datasets were considered hub genes of the consensus modules. Out of 66 consensus modules, 21 modules were non-preserved consensus modules, which were common in both datasets and 619 hub genes were members of these modules. Moreover, 34 lncRNA and 152 TF genes were identified in 12 and 19 non-preserved consensus modules, respectively. The predicted PPIs in 17 non-preserved consensus modules were significant, and 283 hub genes were commonly identified in both co-expression and PPIs networks. Functional enrichment analysis revealed that eight out of 21 modules were significantly enriched for biological processes associated with Johne's disease including “inflammatory response,” “interleukin-1-mediated signaling pathway”, “type I interferon signaling pathway,” “cytokine-mediated signaling pathway,” “regulation of interferon-beta production,” and “response to interferon-gamma.” Moreover, some genes (hub mRNA, TF, and lncRNA) were introduced as potential candidates for Johne's disease pathogenesis such as TLR2, NFKB1, IRF1, ATF3, TREM1, CDH26, HMGB1, STAT1, ISG15, CASP3. This study expanded our knowledge of molecular mechanisms involved in Johne's disease, and the presented pipeline enabled us to achieve more valid results.
Collapse
Affiliation(s)
- Maryam Heidari
- Department of Animal Science, College of Agriculture, Isfahan University of Technology, Isfahan, Iran
| | - Abbas Pakdel
- Department of Animal Science, College of Agriculture, Isfahan University of Technology, Isfahan, Iran
- *Correspondence: Abbas Pakdel
| | - Mohammad Reza Bakhtiarizadeh
- Department of Animal and Poultry Science, College of Aburaihan, University of Tehran, Tehran, Iran
- Mohammad Reza Bakhtiarizadeh
| | | |
Collapse
|
12
|
Ibeagha-Awemu EM, Bissonnette N, Bhattarai S, Wang M, Dudemaine PL, McKay S, Zhao X. Whole Genome Methylation Analysis Reveals Role of DNA Methylation in Cow's Ileal and Ileal Lymph Node Responses to Mycobacterium avium subsp. paratuberculosis Infection. Front Genet 2021; 12:797490. [PMID: 34992636 PMCID: PMC8724574 DOI: 10.3389/fgene.2021.797490] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 11/22/2021] [Indexed: 12/27/2022] Open
Abstract
Johne's Disease (JD), caused by Mycobacterium avium subsp paratuberculosis (MAP), is an incurable disease of ruminants and other animal species and is characterized by an imbalance of gut immunity. The role of MAP infection on the epigenetic modeling of gut immunity during the progression of JD is still unknown. This study investigated the DNA methylation patterns in ileal (IL) and ileal lymph node (ILLN) tissues from cows diagnosed with persistent subclinical MAP infection over a one to 4 years period. DNA samples from IL and ILLN tissues from cows negative (MAPneg) (n = 3) or positive for MAP infection (MAPinf) (n = 4) were subjected to whole genome bisulfite sequencing. A total of 11,263 and 62,459 differentially methylated cytosines (DMCs), and 1259 and 8086 differentially methylated regions (DMRs) (FDR<0.1) were found between MAPinf and MAPneg IL and ILLN tissues, respectively. The DMRs were found on 394 genes (denoted DMR genes) in the IL and on 1305 genes in the ILLN. DMR genes with hypermethylated promoters/5'UTR [3 (IL) and 88 (ILLN)] or hypomethylated promoters/5'UTR [10 (IL) and 25 (ILLN)] and having multiple functions including response to stimulus/immune response (BLK, BTC, CCL21, AVPR1A, CHRNG, GABRA4, TDGF1), cellular processes (H2AC20, TEX101, GLA, NCKAP5L, RBM27, SLC18A1, H2AC20BARHL2, NLGN3, SUV39H1, GABRA4, PPA1, UBE2D2) and metabolic processes (GSTO2, H2AC20, SUV39H1, PPA1, UBE2D2) are potential DNA methylation candidate genes of MAP infection. The ILLN DMR genes were enriched for more biological process (BP) gene ontology (GO) terms (n = 374), most of which were related to cellular processes (27.6%), biological regulation (16.6%), metabolic processes (15.4%) and response to stimulus/immune response (8.2%) compared to 75 BP GO terms (related to cellular processes, metabolic processes and transport, and system development) enriched for IL DMR genes. ILLN DMR genes were enriched for more pathways (n = 47) including 13 disease pathways compared with 36 enriched pathways, including 7 disease/immune pathways for IL DMR genes. In conclusion, the results show tissue specific responses to MAP infection with more epigenetic changes (DMCs and DMRs) in the ILLN than in the IL tissue, suggesting that the ILLN and immune processes were more responsive to regulation by methylation of DNA relative to IL tissue. Our data is the first to demonstrate a potential role for DNA methylation in the pathogenesis of MAP infection in dairy cattle.
Collapse
Affiliation(s)
- Eveline M. Ibeagha-Awemu
- Sherbrooke Research and Development Centre, Agriculture and Agri-Food Canada, Sherbrooke, QC, Canada
| | - Nathalie Bissonnette
- Sherbrooke Research and Development Centre, Agriculture and Agri-Food Canada, Sherbrooke, QC, Canada
| | - Suraj Bhattarai
- Department of Animal and Veterinary Sciences, University of Vermont, Burlington, VT, United States
| | - Mengqi Wang
- Sherbrooke Research and Development Centre, Agriculture and Agri-Food Canada, Sherbrooke, QC, Canada
| | - Pier-Luc Dudemaine
- Sherbrooke Research and Development Centre, Agriculture and Agri-Food Canada, Sherbrooke, QC, Canada
| | - Stephanie McKay
- Department of Animal and Veterinary Sciences, University of Vermont, Burlington, VT, United States
| | - Xin Zhao
- Department of Animal Science, McGill University, Ste-Anne-Be-Bellevue, QC, Canada
| |
Collapse
|
13
|
Marete A, Ariel O, Ibeagha-Awemu E, Bissonnette N. Identification of Long Non-coding RNA Isolated From Naturally Infected Macrophages and Associated With Bovine Johne's Disease in Canadian Holstein Using a Combination of Neural Networks and Logistic Regression. Front Vet Sci 2021; 8:639053. [PMID: 33969037 PMCID: PMC8100051 DOI: 10.3389/fvets.2021.639053] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 02/15/2021] [Indexed: 01/15/2023] Open
Abstract
Mycobacterium avium ssp. paratuberculosis (MAP) causes chronic enteritis in most ruminants. The pathogen MAP causes Johne's disease (JD), a chronic, incurable, wasting disease. Weight loss, diarrhea, and a gradual drop in milk production characterize the disease's clinical phase, culminating in death. Several studies have characterized long non-coding RNA (lncRNA) in bovine tissues, and a previous study characterizes (lncRNA) in macrophages infected with MAP in vitro. In this study, we aim to characterize the lncRNA in macrophages from cows naturally infected with MAP. From 15 herds, feces and blood samples were collected for each cow older than 24 months, twice yearly over 3–5 years. Paired samples were analyzed by fecal PCR and blood ELISA. We used RNA-seq data to study lncRNA in macrophages from 33 JD(+) and 33 JD(–) dairy cows. We performed RNA-seq analysis using the “new Tuxedo” suite. We characterized lncRNA using logistic regression and multilayered neural networks and used DESeq2 for differential expression analysis and Panther and Reactome classification systems for gene ontology (GO) analysis. The study identified 13,301 lncRNA, 605 of which were novel lncRNA. We found seven genes close to differentially expressed lncRNA, including CCDC174, ERI1, FZD1, TWSG1, ZBTB38, ZNF814, and ZSCAN4. None of the genes associated with susceptibility to JD have been cited in the literature. LncRNA target genes were significantly enriched for biological process GO terms involved in immunity and nucleic acid regulation. These include the MyD88 pathway (TLR5), GO:0043312 (neutrophil degranulation), GO:0002446 (neutrophil-mediated immunity), and GO:0042119 (neutrophil activation). These results identified lncRNA with potential roles in host immunity and potential candidate genes and pathways through which lncRNA might function in response to MAP infection.
Collapse
Affiliation(s)
- Andrew Marete
- Agriculture and Agri-Food Canada, Sherbrooke Research and Development Centre, Sherbrooke, QC, Canada
| | - Olivier Ariel
- Agriculture and Agri-Food Canada, Sherbrooke Research and Development Centre, Sherbrooke, QC, Canada.,Faculty of Science, Sherbrooke University, Sherbrooke, QC, Canada
| | - Eveline Ibeagha-Awemu
- Agriculture and Agri-Food Canada, Sherbrooke Research and Development Centre, Sherbrooke, QC, Canada
| | - Nathalie Bissonnette
- Agriculture and Agri-Food Canada, Sherbrooke Research and Development Centre, Sherbrooke, QC, Canada
| |
Collapse
|
14
|
Lyons T, Jahns H, Brady J, O'Hara E, Waters SM, Kenny D, Doyle E, Meade KG. Integrated analyses of the microbiological, immunological and ontological transitions in the calf ileum during early life. Sci Rep 2020; 10:21264. [PMID: 33277514 PMCID: PMC7718239 DOI: 10.1038/s41598-020-77907-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 11/09/2020] [Indexed: 02/08/2023] Open
Abstract
Aberdeen Angus calves were sacrificed from immediately post-birth up to 96 days of age (DOA) and ileal samples were collected for microbial, histological and immunological analyses. Firmicutes bacteria were established immediately in the ileum of calves after birth and remained the dominant phyla at all time points from birth until 96 DOA. Temporal shifts in phyla reflected significantly increased Bacteroidetes at birth followed by temporal increases in Actinobacteria abundance over time. At a cellular level, a significant increase in cell density was detected in the ileal villi over time. The innate cell compartment at birth was composed primarily of eosinophils and macrophages with a low proportion of adaptive T lymphocytes; whereas an increase in the relative abundance of T cells (including those in the intra-epithelial layer) was observed over time. The ileal intestinal cells were immunologically competent as assessed by expression levels of genes encoding the inflammasome sensor NLRP3, and inflammatory cytokines IL1A, IL1B and IL33-all of which significantly increased from birth. In contrast, a temporal reduction in genes encoding anti-inflammatory cytokine IL10 was detected from birth. This study provides an integrated baseline of microbiological, histological and immunological data on the immune adaptation of the neonatal ileum to microbial colonisation in calves.
Collapse
Affiliation(s)
- Tamsin Lyons
- Environmental Microbiology Group, School of Biology and Environmental Science and Earth Institute, University College Dublin, Belfield, Ireland
| | - Hanne Jahns
- Pathobiology Section, School of Veterinary Medicine, University College Dublin, Dublin, Ireland
| | - Joseph Brady
- Pathobiology Section, School of Veterinary Medicine, University College Dublin, Dublin, Ireland
| | - Eóin O'Hara
- Animal & Bioscience Research Department, Animal and Grassland Research and Innovation Centre, Teagasc, Grange, County Meath, Ireland.,Department of Agriculture, Food, and Nutritional Sciences, University of Alberta, Edmonton, AB, Canada
| | - Sinéad M Waters
- Animal & Bioscience Research Department, Animal and Grassland Research and Innovation Centre, Teagasc, Grange, County Meath, Ireland
| | - David Kenny
- Animal & Bioscience Research Department, Animal and Grassland Research and Innovation Centre, Teagasc, Grange, County Meath, Ireland
| | - Evelyn Doyle
- Environmental Microbiology Group, School of Biology and Environmental Science and Earth Institute, University College Dublin, Belfield, Ireland
| | - Kieran G Meade
- Animal & Bioscience Research Department, Animal and Grassland Research and Innovation Centre, Teagasc, Grange, County Meath, Ireland. .,School of Agriculture and Food Science, University College Dublin, Dublin 4, Ireland.
| |
Collapse
|
15
|
Facciuolo A, Lee AH, Trimble MJ, Rawlyk N, Townsend HGG, Bains M, Arsic N, Mutharia LM, Potter A, Gerdts V, Napper S, Hancock REW, Griebel PJ. A Bovine Enteric Mycobacterium Infection Model to Analyze Parenteral Vaccine-Induced Mucosal Immunity and Accelerate Vaccine Discovery. Front Immunol 2020; 11:586659. [PMID: 33329565 PMCID: PMC7719698 DOI: 10.3389/fimmu.2020.586659] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 10/26/2020] [Indexed: 11/30/2022] Open
Abstract
Mycobacterial diseases of cattle are responsible for considerable production losses worldwide. In addition to their importance in animals, these infections offer a nuanced approach to understanding persistent mycobacterial infection in native host species. Mycobacteriumavium ssp. paratuberculosis (MAP) is an enteric pathogen that establishes a persistent, asymptomatic infection in the small intestine. Difficulty in reproducing infection in surrogate animal models and limited understanding of mucosal immune responses that control enteric infection in the natural host have been major barriers to MAP vaccine development. We previously developed a reproducible challenge model to establish a consistent MAP infection using surgically isolated intestinal segments prepared in neonatal calves. In the current study, we evaluated whether intestinal segments could be used to screen parenteral vaccines that alter mucosal immune responses to MAP infection. Using Silirum® – a commercial MAP bacterin – we demonstrate that intestinal segments provide a platform for assessing vaccine efficacy within a relatively rapid period of 28 days post-infection. Significant differences between vaccinates and non-vaccinates could be detected using quantitative metrics including bacterial burden in intestinal tissue, MAP shedding into the intestinal lumen, and vaccine-induced mucosal immune responses. Comparing vaccine-induced responses in mucosal leukocytes isolated from the site of enteric infection versus blood leukocytes revealed substantial inconsistences between these immune compartments. Moreover, parenteral vaccination with Silirum did not induce equal levels of protection throughout the small intestine. Significant control of MAP infection was observed in the continuous but not the discrete Peyer’s patches. Analysis of these regional mucosal immune responses revealed novel correlates of immune protection associated with reduced infection that included an increased frequency of CD335+ innate lymphoid cells, and increased expression of IL21 and IL27. Thus, intestinal segments provide a novel model to accelerate vaccine screening and discovery by testing vaccines directly in the natural host and provides a unique opportunity to interrogate mucosal immune responses to mycobacterial infections.
Collapse
Affiliation(s)
- Antonio Facciuolo
- Vaccine and Infectious Disease Organization-International Vaccine Centre (VIDO-InterVac), University of Saskatchewan, Saskatoon, SK, Canada
| | - Amy H Lee
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC, Canada.,Centre for Microbial Diseases and Immunity Research, Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada
| | - Michael J Trimble
- Centre for Microbial Diseases and Immunity Research, Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada
| | - Neil Rawlyk
- Vaccine and Infectious Disease Organization-International Vaccine Centre (VIDO-InterVac), University of Saskatchewan, Saskatoon, SK, Canada
| | - Hugh G G Townsend
- Vaccine and Infectious Disease Organization-International Vaccine Centre (VIDO-InterVac), University of Saskatchewan, Saskatoon, SK, Canada
| | - Manjeet Bains
- Centre for Microbial Diseases and Immunity Research, Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada
| | - Natasa Arsic
- Vaccine and Infectious Disease Organization-International Vaccine Centre (VIDO-InterVac), University of Saskatchewan, Saskatoon, SK, Canada
| | - Lucy M Mutharia
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, Canada
| | - Andrew Potter
- Vaccine and Infectious Disease Organization-International Vaccine Centre (VIDO-InterVac), University of Saskatchewan, Saskatoon, SK, Canada
| | - Volker Gerdts
- Vaccine and Infectious Disease Organization-International Vaccine Centre (VIDO-InterVac), University of Saskatchewan, Saskatoon, SK, Canada
| | - Scott Napper
- Vaccine and Infectious Disease Organization-International Vaccine Centre (VIDO-InterVac), University of Saskatchewan, Saskatoon, SK, Canada.,Department of Biochemistry, Microbiology, and Immunology, University of Saskatchewan, Saskatoon, SK, Canada
| | - Robert E W Hancock
- Centre for Microbial Diseases and Immunity Research, Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada
| | - Philip J Griebel
- Vaccine and Infectious Disease Organization-International Vaccine Centre (VIDO-InterVac), University of Saskatchewan, Saskatoon, SK, Canada.,School of Public Health, University of Saskatchewan, Saskatoon, SK, Canada
| |
Collapse
|
16
|
Pena JL, Gonçalves Schwarz DG, Willian de Lima Brasil A, Licursi de Oliveira L, Albuquerque Caldeira JL, Scatamburlo Moreira MA. Differences in the coinfective process of Staphylococcus aureus and Streptococcus agalactiae in bovine mammary epithelial cells infected by Mycobacterium avium subsp. paratuberculosis. Microb Pathog 2020; 149:104476. [PMID: 32941969 DOI: 10.1016/j.micpath.2020.104476] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 08/19/2020] [Accepted: 09/02/2020] [Indexed: 11/16/2022]
Abstract
The interactions between Mycobacterium avium subsp. paratuberculosis (MAP) and the causative agents of bovine mastitis are still relatively unknown. Still, it is suspected that they may contribute to the worsening and persistence of mastitis within the mammary epithelial cells. Considering the growing economic implications of paratuberculosis and subclinical mastitis in dairy herds, this study aimed to determine the coinfection interaction between MAP and S. aureus or S. agalactiae in bovine mammary epithelial cells (MAC-T) in an ex-vivo model. For this purpose, internalisation tests of MAP + S. aureus or MAP + S. agalactiae were performed in MAC-T cells for 10, 30 and 120 min. The qPCR was performed to quantify internalised MAP at the time of exposure. Colony-forming units were counted on BHI agar medium for internalised subclinical mastitis bacteria at each time of infection. Viability tests of MAC-T cells, using the lactate dehydrogenase assay, were performed. The results showed that in the MAC-T cells previously infected by MAP and subsequently by S. aureus, there was a rapid internalisation in the first 10 min, maintaining a higher number of internalised bacteria during all exposure times. Regarding MAP + S. agalactiae, there were no changes in the internalisation patterns. The amount of MAP remained constant at all times evaluated, and there was no compromise in the viability of MAC-T cells during the tests. Thus, the results demonstrate the existence of an interaction between MAP + S. aureus, favouring internalisation and being able to contribute to the persistence of subclinical mastitis in dairy herds.
Collapse
Affiliation(s)
- Junnia Luísa Pena
- Department of Veterinary, Universidade Federal de Viçosa, Viçosa, MG, Brazil.
| | | | - Arthur Willian de Lima Brasil
- Department of Morphology, Universidade Federal da Paraíba, Campus I Centro de Ciências da Saúde, João Pessoa, PA, Brazil.
| | | | | | | |
Collapse
|
17
|
DeKuiper JL, Coussens PM. Inflammatory Th17 responses to infection with Mycobacterium avium subspecies paratuberculosis (MAP) in cattle and their potential role in development of Johne's disease. Vet Immunol Immunopathol 2019; 218:109954. [PMID: 31733610 DOI: 10.1016/j.vetimm.2019.109954] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 09/24/2019] [Accepted: 09/30/2019] [Indexed: 12/18/2022]
Abstract
Chronic intestinal inflammation typically associated with late stage Johne's disease (JD) in cattle occurs despite a lack of significant expression of the typical proinflammatory cytokines IFNγ and TNFα derived from Th1- like T cells. In contrast, these cytokines appear to be relatively abundant during early infections with Mycobacterium avium subspecies paratuberculosis (MAP), the causative agent of JD in cattle. The roles of non-classical immune responses, such as those associated with Th17 cells, in response to MAP infection and development of clinical JD are less clear. In this review, we examine literature suggesting that Mycobacterial infections, including Mycobacterium tuberculosis, Mycobacterium bovis, and MAP, are all associated with expression of Th17 promoting cytokines (IL-23, IL-22, IL-17a). We discuss the possibility that Th17 associated cytokines, particularly IL-23, may act as contributing factors in development and maintenance of inflammation characteristic of clinical JD. An as yet relatively unexplored source of chronic inflammation due to over expression of IL-1α and IL-1β is also presented. We further discuss the fact that, as with the typical Th1-like cytokines IFNγ and TNFα , IL-17a is not significantly expressed in CD4+ T cells from cows with clinical JD, possibly due to T cell exhaustion. Finally, we present the notion that the Th17 driving cytokine IL-23 expressed by infected macrophages and associated epithelial cells may contribute to chronic inflammation during later stages of JD.
Collapse
Affiliation(s)
- Justin L DeKuiper
- Michigan State University, 3385A Anthony Hall, 474 S. Shaw Lane, 48824, East Lansing, MI, United States
| | - Paul M Coussens
- Michigan State University, 3385A Anthony Hall, 474 S. Shaw Lane, 48824, East Lansing, MI, United States.
| |
Collapse
|
18
|
Effects of Acute and Chronic Exposure to Residual Level Erythromycin on Human Intestinal Epithelium Cell Permeability and Cytotoxicity. Microorganisms 2019; 7:microorganisms7090325. [PMID: 31489925 PMCID: PMC6780317 DOI: 10.3390/microorganisms7090325] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Revised: 08/11/2019] [Accepted: 08/31/2019] [Indexed: 12/16/2022] Open
Abstract
Residual concentrations of erythromycin in food could result in gastrointestinal tract exposure that potentially poses a health-hazard to the consumer, affecting intestinal epithelial permeability, barrier function, microbiota composition, and antimicrobial resistance. We investigated the effects of erythromycin after acute (48 h single treatment with 0.03 μg/mL to 300 μg/mL) or chronic (repeated treatment with 0.3 µg/mL and 300 µg/mL erythromycin for five days) exposures on the permeability of human colonic epithelial cells, a model that mimics a susceptible intestinal surface devoid of commensal microbiota. Transepithelial electrical resistance (TER) measurements indicated that erythromycin above 0.3 µg/mL may compromise the epithelial barrier. Acute exposure increased cytotoxicity, while chronic exposure decreased the cytotoxicity. Quantitative PCR analysis revealed that only ICAM1 (intercellular adhesion molecule 1) was up-regulated during 0.3 μg/mL acute-exposure, while ICAM1, JAM3 (junctional adhesion molecule 3), and ITGA8 (integrin alpha 8), were over-expressed in the 300 μg/mL acute treatment group. However, during chronic exposure, no change in the mRNA expression was observed at 0.3 μg/mL, and only ICAM2 was significantly up-regulated after 300 μg/mL. ICAM1 and ICAM2 are known to be involved in the formation of extracellular matrices. These gene expression changes may be related to the immunoregulatory activity of erythromycin, or a compensatory mechanism of the epithelial cells to overcome the distress caused by erythromycin due to increased permeability.
Collapse
|
19
|
Gokulan K, Kolluru P, Cerniglia CE, Khare S. Dose-Dependent Effects of Aloin on the Intestinal Bacterial Community Structure, Short Chain Fatty Acids Metabolism and Intestinal Epithelial Cell Permeability. Front Microbiol 2019; 10:474. [PMID: 30972034 PMCID: PMC6443721 DOI: 10.3389/fmicb.2019.00474] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 02/25/2019] [Indexed: 12/31/2022] Open
Abstract
Aloe leaf or purified aloin products possess numerous therapeutic and pharmaceutical properties. It is widely used as ingredients in a variety of food, cosmetic and pharmaceutical products. Animal studies have shown that consumption of aloe or purified aloin cause intestinal goblet cell hyperplasia, and malignancy. Here, we tested antibacterial effects of aloin, against intestinal commensal microbiota. Minimum inhibitory concentration of aloin for several human commensal bacterial species (Gram-positive and Gram-negative) ranged from 1 to 4 mg/ml. Metabolism studies indicated that Enterococcus faecium was capable of degrading aloin into aloe-emodin at a slower-rate compared to Eubacterium spp. As a proof of concept, we incubated 3% rat fecal-slurry (an in vitro model to simulate human colon content) with 0.5, 1, and 2 mg/ml of aloin to test antimicrobial properties. Low aloin concentrations showed minor perturbations to intestinal bacteria, whereas high concentration increased Lactobacillus sp. counts. Aloin also decreased butyrate-production in fecal microbiota in a dose-dependent manner after 24 h exposure. The 16S rRNA sequence-data revealed that aloin decreases the abundance of butyrate-producing bacterial species. Transepithelial resistant result revealed that aloin alters the intestinal barrier-function at higher concentrations (500 μM). In conclusion, aloin exhibits antibacterial property for certain commensal bacteria and decreases butyrate-production in a dose -dependent manner. HIGHLIGHTS –Aloin exhibits antibacterial properties for certain intestinal commensal bacteria. –In rat fecal slurry (an in vitro model to simulate human colon content), longer aloin exposure (24 h) decreases the butyrate production in dose dependent manner. –The 16s rRNA sequencing data show that aloin decreased the abundance of butyrate producing bacterial species. –Rat intestinal commensal bacteria metabolized aloin into aloe-emodin. –Aloin altered the intestinal epithelial cells barrier integrity, however, the metabolic product of aloin - Aloe-emodin did not alter epithelial cells permeability.
Collapse
Affiliation(s)
- Kuppan Gokulan
- Division of Microbiology, National Center for Toxicological Research, United States Food and Drug Administration, Jefferson, AR, United States
| | - Pranav Kolluru
- Division of Microbiology, National Center for Toxicological Research, United States Food and Drug Administration, Jefferson, AR, United States
| | - Carl E Cerniglia
- Division of Microbiology, National Center for Toxicological Research, United States Food and Drug Administration, Jefferson, AR, United States
| | - Sangeeta Khare
- Division of Microbiology, National Center for Toxicological Research, United States Food and Drug Administration, Jefferson, AR, United States
| |
Collapse
|
20
|
Rathnaiah G, Zinniel DK, Bannantine JP, Stabel JR, Gröhn YT, Collins MT, Barletta RG. Pathogenesis, Molecular Genetics, and Genomics of Mycobacterium avium subsp. paratuberculosis, the Etiologic Agent of Johne's Disease. Front Vet Sci 2017; 4:187. [PMID: 29164142 PMCID: PMC5681481 DOI: 10.3389/fvets.2017.00187] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Accepted: 10/20/2017] [Indexed: 12/12/2022] Open
Abstract
Mycobacterium avium subsp. paratuberculosis (MAP) is the etiologic agent of Johne's disease in ruminants causing chronic diarrhea, malnutrition, and muscular wasting. Neonates and young animals are infected primarily by the fecal-oral route. MAP attaches to, translocates via the intestinal mucosa, and is phagocytosed by macrophages. The ensuing host cellular immune response leads to granulomatous enteritis characterized by a thick and corrugated intestinal wall. We review various tissue culture systems, ileal loops, and mice, goats, and cattle used to study MAP pathogenesis. MAP can be detected in clinical samples by microscopy, culturing, PCR, and an enzyme-linked immunosorbent assay. There are commercial vaccines that reduce clinical disease and shedding, unfortunately, their efficacies are limited and may not engender long-term protective immunity. Moreover, the potential linkage with Crohn's disease and other human diseases makes MAP a concern as a zoonotic pathogen. Potential therapies with anti-mycobacterial agents are also discussed. The completion of the MAP K-10 genome sequence has greatly improved our understanding of MAP pathogenesis. The analysis of this sequence has identified a wide range of gene functions involved in virulence, lipid metabolism, transcriptional regulation, and main metabolic pathways. We also review the transposons utilized to generate random transposon mutant libraries and the recent advances in the post-genomic era. This includes the generation and characterization of allelic exchange mutants, transcriptomic analysis, transposon mutant banks analysis, new efforts to generate comprehensive mutant libraries, and the application of transposon site hybridization mutagenesis and transposon sequencing for global analysis of the MAP genome. Further analysis of candidate vaccine strains development is also provided with critical discussions on their benefits and shortcomings, and strategies to develop a highly efficacious live-attenuated vaccine capable of differentiating infected from vaccinated animals.
Collapse
Affiliation(s)
- Govardhan Rathnaiah
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska, Lincoln, NE, United States
| | - Denise K. Zinniel
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska, Lincoln, NE, United States
| | - John P. Bannantine
- Infectious Bacterial Diseases, National Animal Disease Center, USDA-ARS, Ames, IA, United States
| | - Judith R. Stabel
- Infectious Bacterial Diseases, National Animal Disease Center, USDA-ARS, Ames, IA, United States
| | - Yrjö T. Gröhn
- Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, United States
| | - Michael T. Collins
- Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, United States
| | - Raúl G. Barletta
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska, Lincoln, NE, United States
| |
Collapse
|
21
|
Gokulan K, Cerniglia CE, Thomas C, Pineiro SA, Khare S. Effects of residual levels of tetracycline on the barrier functions of human intestinal epithelial cells. Food Chem Toxicol 2017; 109:253-263. [DOI: 10.1016/j.fct.2017.09.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Revised: 08/30/2017] [Accepted: 09/02/2017] [Indexed: 12/12/2022]
|
22
|
Marino R, Capoferri R, Panelli S, Minozzi G, Strozzi F, Trevisi E, Snel GGM, Ajmone-Marsan P, Williams JL. Johne's disease in cattle: an in vitro model to study early response to infection of Mycobacterium avium subsp. paratuberculosis using RNA-seq. Mol Immunol 2017; 91:259-271. [PMID: 28988040 DOI: 10.1016/j.molimm.2017.08.017] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Revised: 07/07/2017] [Accepted: 08/21/2017] [Indexed: 02/07/2023]
Abstract
Johne's disease is a chronic granulomatous enteritis caused by Mycobacterium avium subsp. paratubercolosis (MAP) which affects ruminants worldwide and has a significant economic impact. MAP has also been associated with human Crohn's disease, although this connection is not well established. MAP is highly adapted for survival within host macrophages and prevents macrophage activation, blocks phagosome acidification and maturation, and attenuates presentation of antigens to the immune system. The consequence is a very long silent infection before clinical signs are observed. The present work examined the transcriptome of bovine monocyte-derived macrophages (MDM) infected with the L1 strain of MAP at 2h, 6h and 24h post infection using RNA-seq. Pathway over-representation analysis of genes differentially expressed between infected vs. control MDM identified that immune related pathways were affected. Genes belonging to the cytokine-cytokine receptor interaction pathway and members of the JAK-STAT pathway, which is involved in the regulation of immune response, were up-regulated. However, in parallel inhibitors of immune functions were activated, including suppressor of cytokine signaling (SOCS) and cytokine-inducible SH2-containing protein (CISH), which most likely suppresses IFNγ and the JAK/STAT signaling cascade in infected MDM, which may favour MAP survival. After exposure, macrophages phagocytise pathogens, activate the complement cascade and the adaptive immune system through the antigen presentation process. However, data presented here suggest that genes related to phagocytosis and lysosome function are down regulated in MAP infected MDM. Genes of MHC class II and complement pathway were also down-regulated. This study therefore shows that MAP infection is associated with changes in expression of genes related to the host immune response that may affect its ability to survive and multiply inside the host cell.
Collapse
Affiliation(s)
- Rosanna Marino
- CREA Research Centre for Animal Production and Aquaculture, Via Antonio Lombardo 11, 26900 Lodi, Italy; Istituto Sperimentale Italiano "Lazzaro Spallanzani", 26027, Rivolta d'Adda, Cremona, Italy; Institute of Zootechnics, Università Cattolica del S. Cuore, Via Emilia Parmense 84, 29122 Piacenza, Italy.
| | - Rossana Capoferri
- Istituto Sperimentale Italiano "Lazzaro Spallanzani", 26027, Rivolta d'Adda, Cremona, Italy.
| | - Simona Panelli
- Parco Tecnologico Padano, via Einstein, 26900 Lodi, Italy.
| | | | | | - Erminio Trevisi
- Institute of Zootechnics, Università Cattolica del S. Cuore, Via Emilia Parmense 84, 29122 Piacenza, Italy; Nutrigenomics and Proteomic Research Center - PRONUTRIGEN, Università Cattolica del S. Cuore, via Emilia Parmense 84, 29122 Piacenza, Italy.
| | | | - Paolo Ajmone-Marsan
- Institute of Zootechnics, Università Cattolica del S. Cuore, Via Emilia Parmense 84, 29122 Piacenza, Italy; Nutrigenomics and Proteomic Research Center - PRONUTRIGEN, Università Cattolica del S. Cuore, via Emilia Parmense 84, 29122 Piacenza, Italy.
| | - John L Williams
- Davies Research Centre, School of Animal and Veterinary Sciences, University of Adelaide, Roseworthy, SA 5371, Australia.
| |
Collapse
|
23
|
Rossetti CA, Drake KL, Lawhon SD, Nunes JS, Gull T, Khare S, Adams LG. Systems Biology Analysis of Temporal In vivo Brucella melitensis and Bovine Transcriptomes Predicts host:Pathogen Protein-Protein Interactions. Front Microbiol 2017; 8:1275. [PMID: 28798726 PMCID: PMC5529337 DOI: 10.3389/fmicb.2017.01275] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Accepted: 06/26/2017] [Indexed: 01/13/2023] Open
Abstract
To date, fewer than 200 gene-products have been identified as Brucella virulence factors, and most were characterized individually without considering how they are temporally and coordinately expressed or secreted during the infection process. Here, we describe and analyze the in vivo temporal transcriptional profile of Brucella melitensis during the initial 4 h interaction with cattle. Pathway analysis revealed an activation of the "Two component system" providing evidence that the in vivo Brucella sense and actively regulate their metabolism through the transition to an intracellular lifestyle. Contrarily, other Brucella pathways involved in virulence such as "ABC transporters" and "T4SS system" were repressed suggesting a silencing strategy to avoid stimulation of the host innate immune response very early in the infection process. Also, three flagellum-encoded loci (BMEII0150-0168, BMEII1080-1089, and BMEII1105-1114), the "flagellar assembly" pathway and the cell components "bacterial-type flagellum hook" and "bacterial-type flagellum" were repressed in the tissue-associated B. melitensis, while RopE1 sigma factor, a flagellar repressor, was activated throughout the experiment. These results support the idea that Brucella employ a stealthy strategy at the onset of the infection of susceptible hosts. Further, through systems-level in silico host:pathogen protein-protein interactions simulation and correlation of pathogen gene expression with the host gene perturbations, we identified unanticipated interactions such as VirB11::MAPK8IP1; BtaE::NFKBIA, and 22 kDa OMP precursor::BAD and MAP2K3. These findings are suggestive of new virulence factors and mechanisms responsible for Brucella evasion of the host's protective immune response and the capability to maintain a dormant state. The predicted protein-protein interactions and the points of disruption provide novel insights that will stimulate advanced hypothesis-driven approaches toward revealing a clearer understanding of new virulence factors and mechanisms influencing the pathogenesis of brucellosis.
Collapse
Affiliation(s)
- Carlos A Rossetti
- Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Science, Texas A&M UniversityCollege Station, TX, United States
| | | | - Sara D Lawhon
- Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Science, Texas A&M UniversityCollege Station, TX, United States
| | - Jairo S Nunes
- Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Science, Texas A&M UniversityCollege Station, TX, United States
| | - Tamara Gull
- Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Science, Texas A&M UniversityCollege Station, TX, United States
| | - Sangeeta Khare
- Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Science, Texas A&M UniversityCollege Station, TX, United States
| | - Leslie G Adams
- Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Science, Texas A&M UniversityCollege Station, TX, United States
| |
Collapse
|
24
|
Integrating genome and transcriptome profiling for elucidating the mechanism of muscle growth and lipid deposition in Pekin ducks. Sci Rep 2017. [PMID: 28630415 PMCID: PMC5476626 DOI: 10.1038/s41598-017-04178-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Muscle growth and lipid deposition are co-ordinately regulated processes. Cherry Valley Pekin duck is a lean-type duck breed with high growth rate, whereas the native Pekin duck of China has high lipid deposition. Phenotypic analysis showed that native Pekin ducks have smaller fibre diameter and larger density in the breast muscle at 3 weeks of age and higher intramuscular fat content at 6 weeks of age than those in Cherry Valley Pekin ducks. We detected 17 positively selected genes (PSGs) by comparing genes mainly involved with muscle organ development, muscle contraction, peroxisome proliferator activated receptor signalling pathway, and fatty acid metabolism. In all, 52 and 206 differentially expressed genes (DEGs) were identified in transcriptomic comparisons between the two breeds at 3 and 6 weeks of age, respectively, which could potentially affect muscle growth and lipid deposition. Based on the integration of PSGs and DEGs and their functional annotations, we found that 11 and 10 genes were correlated with muscle growth and lipid deposition, respectively. Identification of candidate genes controlling quantitative traits of duck muscle might aid in elucidating the mechanisms of muscle growth and lipid deposition and could help in improving duck breeding.
Collapse
|
25
|
Khare S, Drake KL, Lawhon SD, Nunes JES, Figueiredo JF, Rossetti CA, Gull T, Everts RE, Lewin HA, Adams LG. Systems Analysis of Early Host Gene Expression Provides Clues for Transient Mycobacterium avium ssp avium vs. Persistent Mycobacterium avium ssp paratuberculosis Intestinal Infections. PLoS One 2016; 11:e0161946. [PMID: 27653506 PMCID: PMC5031438 DOI: 10.1371/journal.pone.0161946] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Accepted: 08/15/2016] [Indexed: 02/06/2023] Open
Abstract
It has long been a quest in ruminants to understand how two very similar mycobacterial species, Mycobacterium avium ssp. paratuberculosis (MAP) and Mycobacterium avium ssp. avium (MAA) lead to either a chronic persistent infection or a rapid-transient infection, respectively. Here, we hypothesized that when the host immune response is activated by MAP or MAA, the outcome of the infection depends on the early activation of signaling molecules and host temporal gene expression. To test our hypothesis, ligated jejuno-ileal loops including Peyer’s patches in neonatal calves were inoculated with PBS, MAP, or MAA. A temporal analysis of the host transcriptome profile was conducted at several times post-infection (0.5, 1, 2, 4, 8 and 12 hours). When comparing the transcriptional responses of calves infected with the MAA versus MAP, discordant patterns of mucosal expression were clearly evident, and the numbers of unique transcripts altered were moderately less for MAA-infected tissue than were mucosal tissues infected with the MAP. To interpret these complex data, changes in the gene expression were further analyzed by dynamic Bayesian analysis. Bayesian network modeling identified mechanistic genes, gene-to-gene relationships, pathways and Gene Ontologies (GO) biological processes that are involved in specific cell activation during infection. MAP and MAA had significant different pathway perturbation at 0.5 and 12 hours post inoculation. Inverse processes were observed between MAP and MAA response for epithelial cell proliferation, negative regulation of chemotaxis, cell-cell adhesion mediated by integrin and regulation of cytokine-mediated signaling. MAP inoculated tissue had significantly lower expression of phagocytosis receptors such as mannose receptor and complement receptors. This study reveals that perturbation of genes and cellular pathways during MAP infection resulted in host evasion by mucosal membrane barrier weakening to access entry in the ileum, inhibition of Ca signaling associated with decreased phagosome-lysosome fusion as well as phagocytosis inhibition, bias toward Th2 cell immune response accompanied by cell recruitment, cell proliferation and cell differentiation; leading to persistent infection. Contrarily, MAA infection was related to cellular responses associated with activation of molecular pathways that release chemicals and cytokines involved with containment of infection and a strong bias toward Th1 immune response, resulting in a transient infection.
Collapse
Affiliation(s)
- Sangeeta Khare
- Department of Veterinary Pathobiology, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, Texas, 77843, United States of America
- Division of Microbiology, National Center for Toxicological Research, US Food and Drug Administration, Jefferson, Arkansas, 72079, United States of America
- * E-mail: (SK); (LGA)
| | | | - Sara D. Lawhon
- Department of Veterinary Pathobiology, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, Texas, 77843, United States of America
| | - Jairo E. S. Nunes
- Department of Veterinary Pathobiology, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, Texas, 77843, United States of America
| | - Josely F. Figueiredo
- Department of Veterinary Pathobiology, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, Texas, 77843, United States of America
| | - Carlos A. Rossetti
- Department of Veterinary Pathobiology, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, Texas, 77843, United States of America
| | - Tamara Gull
- Department of Veterinary Pathobiology, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, Texas, 77843, United States of America
| | - Robin E. Everts
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois, 61801, United States of America
| | - Harris. A. Lewin
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois, 61801, United States of America
| | - Leslie Garry Adams
- Department of Veterinary Pathobiology, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, Texas, 77843, United States of America
- * E-mail: (SK); (LGA)
| |
Collapse
|
26
|
Williams KM, Gokulan K, Cerniglia CE, Khare S. Size and dose dependent effects of silver nanoparticle exposure on intestinal permeability in an in vitro model of the human gut epithelium. J Nanobiotechnology 2016; 14:62. [PMID: 27465730 PMCID: PMC4963959 DOI: 10.1186/s12951-016-0214-9] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Accepted: 07/11/2016] [Indexed: 12/12/2022] Open
Abstract
Background The antimicrobial activity of silver nanoparticles (AgNP) has led to interest in their use in consumer products such as food contact materials, utensils, and storage containers. Incorporation of these materials into items intended for food processing and storage suggests that consumer use of these products could result in gastrointestinal exposure to AgNP, should the nanoparticles migrate from the product. The health impact of AgNP exposure is unknown, especially effects related to intestinal epithelial permeability and barrier function. This study examined the effects of AgNP exposure of different sizes (10, 20, 75 and 110 nm) and doses (20 and 100 µg/mL) on the permeability of T84 human colonic epithelial cells, which serve as an in vitro model of the human gut epithelium. Results Results showed that effects of AgNP on the T84 epithelial cells were size- and dose-dependent, with the 10 nm AgNP causing the most significant changes. Changes in permeability of the epithelial cell monolayer, as measured by transepithelial electrical resistance, after exposure to 10 nm AgNP were most dramatic at the highest dose (100 µg/mL), but also observed at the lower dose (20 µg/mL). AgNP could be visualized inside cells using transmission electron microscopy and silver was detected in basal wells using inductively coupled plasma-mass spectrometry. Exposure to AgNP significantly affected the expression of genes involved in anchoring tight junctions, cellular proliferation and signaling, endocytosis, and cell–cell adhesion, with the 10 nm AgNP having the greatest effect. Conclusions The results of this study show that small-size AgNP have significant effects on intestinal permeability in an in vitro model of the human gastrointestinal epithelium. Such effects have the potential to compromise the integrity of the intestinal epithelium and this disruption of barrier function could have health consequences for the gastrointestinal tract. Electronic supplementary material The online version of this article (doi:10.1186/s12951-016-0214-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Katherine M Williams
- Division of Microbiology, National Center for Toxicological Research, US Food and Drug Administration, 3900 NCTR Rd, Jefferson, AR, 72079, USA
| | - Kuppan Gokulan
- Division of Microbiology, National Center for Toxicological Research, US Food and Drug Administration, 3900 NCTR Rd, Jefferson, AR, 72079, USA
| | - Carl E Cerniglia
- Division of Microbiology, National Center for Toxicological Research, US Food and Drug Administration, 3900 NCTR Rd, Jefferson, AR, 72079, USA
| | - Sangeeta Khare
- Division of Microbiology, National Center for Toxicological Research, US Food and Drug Administration, 3900 NCTR Rd, Jefferson, AR, 72079, USA.
| |
Collapse
|
27
|
Altered microRNA expression and pre-mRNA splicing events reveal new mechanisms associated with early stage Mycobacterium avium subspecies paratuberculosis infection. Sci Rep 2016; 6:24964. [PMID: 27102525 PMCID: PMC4840452 DOI: 10.1038/srep24964] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Accepted: 04/08/2016] [Indexed: 12/19/2022] Open
Abstract
The molecular regulatory mechanisms of host responses to Mycobacterium avium subsp. paratuberculosis (MAP) infection during the early subclinical stage are still not clear. In this study, surgically isolated ileal segments in newborn calves (n = 5) were used to establish in vivo MAP infection adjacent to an uninfected control intestinal compartment. RNA-Seq was used to profile the whole transcriptome (mRNAs) and the microRNAome (miRNAs) of ileal tissues collected at one-month post-infection. The most related function of the differentially expressed mRNAs between infected and uninfected tissues was “proliferation of endothelial cells”, indicating that MAP infection may lead to the over-proliferation of endothelial cells. In addition, 46.2% of detected mRNAs displayed alternative splicing events. The pre-mRNA of two genes related to macrophage maturation (monocyte to macrophage differentiation-associated) and lysosome function (adenosine deaminase) showed differential alternative splicing events, suggesting that specific changes in the pre-mRNA splicing sites may be a mechanism by which MAP escapes host immune responses. Moreover, 9 miRNAs were differentially expressed after MAP infection. The integrated analysis of microRNAome and transcriptome revealed that these miRNAs might regulate host responses to MAP infection, such as “proliferation of endothelial cells” (bta-miR-196 b), “bacteria recognition” (bta-miR-146 b), and “regulation of the inflammatory response” (bta-miR-146 b).
Collapse
|
28
|
Hempel RJ, Bannantine JP, Stabel JR. Transcriptional Profiling of Ileocecal Valve of Holstein Dairy Cows Infected with Mycobacterium avium subsp. Paratuberculosis. PLoS One 2016; 11:e0153932. [PMID: 27093613 PMCID: PMC4836751 DOI: 10.1371/journal.pone.0153932] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Accepted: 04/06/2016] [Indexed: 12/22/2022] Open
Abstract
Johne’s disease is a chronic infection of the small intestine caused by Mycobacterium avium subspecies paratuberculosis (MAP), an intracellular bacterium. The events of pathogen survival within the host cell(s), chronic inflammation and the progression from asymptomatic subclinical stage to an advanced clinical stage of infection, are poorly understood. This study examines gene expression in the ileocecal valve (ICV) of Holstein dairy cows at different stages of MAP infection. The ICV is known to be a primary site of MAP colonization and provides an ideal location to identify genes that are relevant to the progression of this disease. RNA was prepared from ICV tissues and RNA-Seq was used to compare gene transcription between clinical, subclinical, and uninfected control animals. Interpretation of the gene expression data was performed using pathway analysis and gene ontology categories containing multiple differentially expressed genes. Results demonstrated that many of the pathways that had strong differential gene expression between uninfected control and clinical cows were related to the immune system, such as the T- and B-cell receptor signaling, apoptosis, NOD-like receptor signaling, and leukocyte transendothelial migration pathways. In contrast, the comparison of gene transcription between control and subclinical cows identified pathways that were primarily involved in metabolism. The results from the comparison between clinical and subclinical animals indicate recruitment of neutrophils, up regulation of lysosomal peptidases, increase in immune cell transendothelial migration, and modifications of the extracelluar matrix. This study provides important insight into how cattle respond to a natural MAP infection at the gene transcription level within a key target tissue for infection.
Collapse
Affiliation(s)
- Randy J. Hempel
- USDA-Agricultural Research Service (ARS), National Animal Disease Center, Ames, Iowa, United States of America
| | - John P. Bannantine
- USDA-Agricultural Research Service (ARS), National Animal Disease Center, Ames, Iowa, United States of America
| | - Judith R. Stabel
- USDA-Agricultural Research Service (ARS), National Animal Disease Center, Ames, Iowa, United States of America
- * E-mail:
| |
Collapse
|
29
|
Gokulan K, Khare S, Williams K, Foley SL. Transmissible Plasmid Containing Salmonella enterica Heidelberg Isolates Modulate Cytokine Production During Early Stage of Interaction with Intestinal Epithelial Cells. DNA Cell Biol 2016; 35:443-53. [PMID: 27082282 DOI: 10.1089/dna.2015.3142] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The variation in cytokine production during bacterial invasion of human intestinal epithelial cells (IECs) is a contributing factor for progression of the infection. A few Salmonella enterica Heidelberg strains isolated from poultry products harbor transmissible plasmids (TPs), including those that encode a type-IV secretion system. Earlier, we showed that these TPs are responsible for increased virulence during infection. This study examines the potential role of these TPs in cytokine production in IECs. This study showed that S. Heidelberg strains containing TPs (we refer as virulent strains) caused decreased interleukin (IL)-10 production in IECs after 1 h infection. The virulent strains induced a high level of tumor necrosis factor-α production under identical conditions. The virulent strains of S. Heidelberg also altered the production of IL-2, IL-17, and granulocyte macrophage colony-stimulating factor compared to an avirulent strain. As a part of infection, bacteria cross the epithelial barrier and encounter intestinal macrophages. Hence, we examined the cytotoxic mechanism of strains of S. Heidelberg in macrophages. Scanning electron microscopy showed cell necrosis occurs during the early stage of infection. In conclusion, virulent S. Heidelberg strains were able to modify the host cytokine profile during the early stages of infection and also caused necrosis in macrophages.
Collapse
Affiliation(s)
- Kuppan Gokulan
- Division of Microbiology, National Center for Toxicological Research , U.S. Food and Drug Administration, Jefferson, Arkansas
| | - Sangeeta Khare
- Division of Microbiology, National Center for Toxicological Research , U.S. Food and Drug Administration, Jefferson, Arkansas
| | - Katherine Williams
- Division of Microbiology, National Center for Toxicological Research , U.S. Food and Drug Administration, Jefferson, Arkansas
| | - Steven L Foley
- Division of Microbiology, National Center for Toxicological Research , U.S. Food and Drug Administration, Jefferson, Arkansas
| |
Collapse
|
30
|
Laughlin RC, Drake KL, Morrill JC, Adams LG. Correlative Gene Expression to Protective Seroconversion in Rift Valley Fever Vaccinates. PLoS One 2016; 11:e0147027. [PMID: 26783758 PMCID: PMC4718665 DOI: 10.1371/journal.pone.0147027] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Accepted: 12/28/2015] [Indexed: 12/17/2022] Open
Abstract
Rift Valley fever Virus (RVFV), a negative-stranded RNA virus, is the etiological agent of the vector-borne zoonotic disease, Rift Valley fever (RVF). In both humans and livestock, protective immunity can be achieved through vaccination. Earlier and more recent vaccine trials in cattle and sheep demonstrated a strong neutralizing antibody and total IgG response induced by the RVF vaccine, authentic recombinant MP-12 (arMP-12). From previous work, protective immunity in sheep and cattle vaccinates normally occurs from 7 to 21 days after inoculation with arMP-12. While the serology and protective response induced by arMP-12 has been studied, little attention has been paid to the underlying molecular and genetic events occurring prior to the serologic immune response. To address this, we isolated RNA from whole blood of vaccinated calves over a time course of 21 days before and after vaccination with arMP-12. The time course RNAs were sequenced by RNASeq and bioinformatically analyzed. Our results revealed time-dependent activation or repression of numerous gene ontologies and pathways related to the vaccine induced immune response and its regulation. Additional bioinformatic analyses identified a correlative relationship between specific host immune response genes and protective immunity prior to the detection of protective serum neutralizing antibody responses. These results contribute an important proof of concept for identifying molecular and genetic components underlying the immune response to RVF vaccination and protection prior to serologic detection.
Collapse
Affiliation(s)
- Richard C. Laughlin
- Department of Veterinary Pathobiology, Texas A&M University, College Station, TX 77843, United States of America
| | - Kenneth L. Drake
- Seralogix LLC, 335 Bee Cave Rd, Suite 607, Austin, TX 78746, United States of America
| | - John C. Morrill
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, United States of America
| | - L. Garry Adams
- Department of Veterinary Pathobiology, Texas A&M University, College Station, TX 77843, United States of America
- * E-mail:
| |
Collapse
|
31
|
The within host dynamics of Mycobacterium avium ssp. paratuberculosis infection in cattle: where time and place matter. Vet Res 2015; 46:61. [PMID: 26092382 PMCID: PMC4473847 DOI: 10.1186/s13567-015-0185-0] [Citation(s) in RCA: 91] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Accepted: 01/07/2015] [Indexed: 01/17/2023] Open
Abstract
Johne’s disease or paratuberculosis, caused by Mycobacterium avium subsp. paratuberculosis (MAP), occurs in domestic and wild animals worldwide, causing a significant economic loss to livestock industries. After a prolonged incubation time, infected cattle shed MAP bacilli into feces and spread the disease to an uninfected animal population. It is largely unknown how (or whether) the interplay between the pathogen and the host immunity determines timing of shedding after the long incubation time. Such information would provide an understanding of pathogenesis in individual animals and the epidemiology of MAP infection in animal populations. In this review, we summarize current knowledge of bovine Johne’s disease pathology, pathogenesis, immunology and genetics. We discuss knowledge gaps that direly need to be addressed to provide a science-based approach to diagnostics and (immuno)prophylaxis. These knowledge gaps are related to anatomical/clinical manifestation of MAP invasion, interaction of bacteria with phagocytes, granuloma formation, shedding, establishment and kinetics of adaptive immune responses in the pathogenesis of the disease. These topics are discussed at the molecular, cellular and tissue levels with special attention to the within host dynamics including the temporal and the spatial context relevant for the various host-pathogen interactions.
Collapse
|
32
|
Everman JL, Eckstein TM, Roussey J, Coussens P, Bannantine JP, Bermudez LE. Characterization of the inflammatory phenotype of Mycobacterium avium subspecies paratuberculosis using a novel cell culture passage model. MICROBIOLOGY-SGM 2015; 161:1420-1434. [PMID: 25957310 DOI: 10.1099/mic.0.000106] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Understanding the pathogenic mechanisms of Mycobacterium avium subspecies paratuberculosis (MAP) and the host responses to Johne's disease is complicated by the multi-faceted disease progression, late-onset host reaction and the lack of available ex vivo infection models. We describe a novel cell culture passage model that mimics the course of infection in vivo. The developed model simulates the interaction of MAP with the intestinal epithelial cells, followed by infection of macrophages and return to the intestinal epithelium. MAP internalization triggers a minimal inflammatory response. After passage through a macrophage phase, bacterial reinfection of MDBK epithelial cells, representing the late phase of intestinal mucosal infection, is associated with increased synthesis of the pro-inflammatory transcripts of IL-6, CCL5, IL-8 and IL-18, paired with decreased levels of TGFβ. Transcriptome analysis of MAP from each stage of epithelial cell infection identified increased expression of lipid biosynthesis and lipopeptide modification genes in the inflammatory phenotype of MAP. Total lipid analysis by HPLC-ES/MS indicates different lipidomic profiles between the two phenotypes and a unique set of lipids composing the inflammatory MAP phenotype. The presence of selected upregulated lipid-modification gene transcripts in samples of ileal tissue from cows diagnosed with Johne's disease supports and validates the model. By using the relatively simple cell culture passage model, we show that MAP alters its lipid composition during intracellular infection and acquires a pro-inflammatory phenotype, which likely is associated with the inflammatory phase of Johne's disease.
Collapse
Affiliation(s)
- Jamie L Everman
- 1 Department of Microbiology, College of Science, Oregon State University, Corvallis, OR, USA.,2 Department of Biomedical Sciences, College of Veterinary Medicine, Oregon State University, Corvallis, OR, USA
| | - Torsten M Eckstein
- 3 Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| | - Jonathan Roussey
- 4 Comparative Medicine and Integrative Biology Program, Michigan State University, East Lansing, MI, USA
| | - Paul Coussens
- 4 Comparative Medicine and Integrative Biology Program, Michigan State University, East Lansing, MI, USA.,5 Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, USA
| | - John P Bannantine
- 6 National Animal Disease Center, USDA Agricultural Research Service, Ames, IA, USA
| | - Luiz E Bermudez
- 2 Department of Biomedical Sciences, College of Veterinary Medicine, Oregon State University, Corvallis, OR, USA.,1 Department of Microbiology, College of Science, Oregon State University, Corvallis, OR, USA
| |
Collapse
|
33
|
Williams K, Gokulan K, Shelman D, Akiyama T, Khan A, Khare S. Cytotoxic Mechanism ofCytolethal Distending Toxinin NontyphoidalSalmonellaSerovar (SalmonellaJaviana) During Macrophage Infection. DNA Cell Biol 2015; 34:113-24. [DOI: 10.1089/dna.2014.2602] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Affiliation(s)
- Katherine Williams
- Division of Microbiology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, Arkansas
| | - Kuppan Gokulan
- Division of Microbiology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, Arkansas
| | - Diamond Shelman
- Division of Microbiology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, Arkansas
| | - Tatsuya Akiyama
- Division of Microbiology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, Arkansas
| | - Ashraf Khan
- Division of Microbiology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, Arkansas
| | - Sangeeta Khare
- Division of Microbiology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, Arkansas
| |
Collapse
|
34
|
McNees AL, Markesich D, Zayyani NR, Graham DY. Mycobacterium paratuberculosis as a cause of Crohn's disease. Expert Rev Gastroenterol Hepatol 2015; 9:1523-34. [PMID: 26474349 PMCID: PMC4894645 DOI: 10.1586/17474124.2015.1093931] [Citation(s) in RCA: 91] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Crohn's disease is a chronic inflammatory bowel disease of unknown cause, affecting approximately 1.4 million North American people. Due to the similarities between Crohn's disease and Johne's disease, a chronic enteritis in ruminant animals caused by Mycobacterium avium paratuberculosis (MAP) infection, MAP has long been considered to be a potential cause of Crohn's disease. MAP is an obligate intracellular pathogen that cannot replicate outside of animal hosts. MAP is widespread in dairy cattle and because of environmental contamination and resistance to pasteurization and chlorination, humans are frequently exposed through contamination of food and water. MAP can be cultured from the peripheral mononuclear cells from 50-100% of patients with Crohn's disease, and less frequently from healthy individuals. Association does not prove causation. We discuss the current data regarding MAP as a potential cause of Crohn's disease and outline what data will be required to firmly prove or disprove the hypothesis.
Collapse
Affiliation(s)
- Adrienne L. McNees
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
| | | | - Najah R. Zayyani
- Bahrain Gastroenterology and Hepatology Center at Bahrain Specialist Hospital, Manama, Kingdom of Bahrain
| | - David Y. Graham
- Department of Medicine, Michael E. DeBakey VA Medical Center, and Baylor College of Medicine, Houston, Texas USA
| |
Collapse
|
35
|
Bull TJ, Vrettou C, Linedale R, McGuinnes C, Strain S, McNair J, Gilbert SC, Hope JC. Immunity, safety and protection of an Adenovirus 5 prime--Modified Vaccinia virus Ankara boost subunit vaccine against Mycobacterium avium subspecies paratuberculosis infection in calves. Vet Res 2014; 45:112. [PMID: 25480162 PMCID: PMC4258034 DOI: 10.1186/s13567-014-0112-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Accepted: 10/10/2014] [Indexed: 01/24/2023] Open
Abstract
Vaccination is the most cost effective control measure for Johne’s disease caused by Mycobacterium avium subspecies paratuberculosis (MAP) but currently available whole cell killed formulations have limited efficacy and are incompatible with the diagnosis of bovine tuberculosis by tuberculin skin test. We have evaluated the utility of a viral delivery regimen of non-replicative human Adenovirus 5 and Modified Vaccinia virus Ankara recombinant for early entry MAP specific antigens (HAV) to show protection against challenge in a calf model and extensively screened for differential immunological markers associated with protection. We have shown that HAV vaccination was well tolerated, could be detected using a differentiation of infected and vaccinated animals (DIVA) test, showed no cross-reactivity with tuberculin and provided a degree of protection against challenge evidenced by a lack of faecal shedding in vaccinated animals that persisted throughout the 7 month infection period. Calves given HAV vaccination had significant priming and boosting of MAP derived antigen (PPD-J) specific CD4+, CD8+ IFN-γ producing T-cell populations and, upon challenge, developed early specific Th17 related immune responses, enhanced IFN-γ responses and retained a high MAP killing capacity in blood. During later phases post MAP challenge, PPD-J antigen specific IFN-γ and Th17 responses in HAV vaccinated animals corresponded with improvements in peripheral bacteraemia. By contrast a lack of IFN-γ, induction of FoxP3+ T cells and increased IL-1β and IL-10 secretion were indicative of progressive infection in Sham vaccinated animals. We conclude that HAV vaccination shows excellent promise as a new tool for improving control of MAP infection in cattle.
Collapse
Affiliation(s)
- Tim J Bull
- Institute of Infection and Immunity, St, George's University of London, Cranmer Terrace, London SW17 0RE, UK.
| | | | | | | | | | | | | | | |
Collapse
|
36
|
David J, Barkema HW, Mortier R, Ghosh S, Guan LL, De Buck J. Gene expression profiling and putative biomarkers of calves 3 months after infection with Mycobacterium avium subspecies paratuberculosis. Vet Immunol Immunopathol 2014; 160:107-17. [PMID: 24841487 DOI: 10.1016/j.vetimm.2014.04.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2013] [Revised: 03/31/2014] [Accepted: 04/22/2014] [Indexed: 01/09/2023]
Abstract
Mycobacterium avium subsp. paratuberculosis (MAP) causes Johne's disease (JD), a chronic granulomatous intestinal inflammation of ruminants. Current diagnostic tools lack sensitivity to detect JD early in infection; therefore, alternatives are desired. The objective was to identify potential biomarkers in whole blood of high- and low-dose (LD) MAP-challenged Holstein-Friesian calves 3 months after inoculation. Infected calves were designated MAP-positive using the IFN-γ release assay. Differential expression of transcripts in whole blood was compared between non-infected controls and HD, as well as LD calves, using the Affymetrix(®) GeneChip(®) Bovine Genome Array. Microarray data were analyzed using RMA and PLIER algorithms; 296 transcripts were differentially expressed (17 had ≥ 1.5 fold change). The HD and LD calves had differential gene expression profiles for up to 80% of differentially expressed genes. Pathway analyses using Ingenuity Pathway Analysis (IPA(®)) indicated inhibition of several defence mechanisms, including apoptosis, leukocyte and lymphocyte trafficking, overall repression of gene expression and potentially hydrogen peroxide production in macrophages. Further validation using qPCR verified increased expression of CD46, ICOS, and CEP350, but decreased expression of CTLA4, YARS, and PARVB in infected calves. Additionally, a comparison of seropositive and seronegative infected calves identified transcripts predictive of seroconversion. We concluded that IL6ST/gp130 and CD22 may have important roles in the induction of antibodies against MAP. Putative biomarkers of early MAP infection with roles in immune responses were identified; in addition, the importance of infective dose on biomarkers was determined.
Collapse
Affiliation(s)
- Joel David
- Department of Production Animal Health, University of Calgary, 3330 Hospital Drive, Calgary, Alberta, Canada T2N 4N1.
| | - Herman W Barkema
- Department of Production Animal Health, University of Calgary, 3330 Hospital Drive, Calgary, Alberta, Canada T2N 4N1; Department of Medicine, University of Calgary, Calgary, Alberta, Canada.
| | - Rienske Mortier
- Department of Production Animal Health, University of Calgary, 3330 Hospital Drive, Calgary, Alberta, Canada T2N 4N1.
| | - Subrata Ghosh
- Department of Production Animal Health, University of Calgary, 3330 Hospital Drive, Calgary, Alberta, Canada T2N 4N1; Department of Medicine, University of Calgary, Calgary, Alberta, Canada.
| | - Le Luo Guan
- Department of Agricultural, Food & Nutritional Science, University of Alberta, Edmonton, Alberta, Canada T6G 2P5.
| | - Jeroen De Buck
- Department of Production Animal Health, University of Calgary, 3330 Hospital Drive, Calgary, Alberta, Canada T2N 4N1.
| |
Collapse
|
37
|
Rossetti CA, Drake KL, Siddavatam P, Lawhon SD, Nunes JES, Gull T, Khare S, Everts RE, Lewin HA, Adams LG. Systems biology analysis of Brucella infected Peyer's patch reveals rapid invasion with modest transient perturbations of the host transcriptome. PLoS One 2013; 8:e81719. [PMID: 24349118 PMCID: PMC3857238 DOI: 10.1371/journal.pone.0081719] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2013] [Accepted: 10/21/2013] [Indexed: 01/12/2023] Open
Abstract
Brucella melitensis causes the most severe and acute symptoms of all Brucella species in human beings and infects hosts primarily through the oral route. The epithelium covering domed villi of jejunal-ileal Peyer's patches is an important site of entry for several pathogens, including Brucella. Here, we use the calf ligated ileal loop model to study temporal in vivo Brucella-infected host molecular and morphological responses. Our results document Brucella bacteremia occurring within 30 min after intraluminal inoculation of the ileum without histopathologic traces of lesions. Based on a system biology Dynamic Bayesian Network modeling approach (DBN) of microarray data, a very early transient perturbation of the host enteric transcriptome was associated with the initial host response to Brucella contact that is rapidly averted allowing invasion and dissemination. A detailed analysis revealed active expression of Syndecan 2, Integrin alpha L and Integrin beta 2 genes, which may favor initial Brucella adhesion. Also, two intestinal barrier-related pathways (Tight Junction and Trefoil Factors Initiated Mucosal Healing) were significantly repressed in the early stage of infection, suggesting subversion of mucosal epithelial barrier function to facilitate Brucella transepithelial migration. Simultaneously, the strong activation of the innate immune response pathways would suggest that the host mounts an appropriate protective immune response; however, the expression of the two key genes that encode innate immunity anti-Brucella cytokines such as TNF-α and IL12p40 were not significantly changed throughout the study. Furthermore, the defective expression of Toll-Like Receptor Signaling pathways may partially explain the lack of proinflammatory cytokine production and consequently the absence of morphologically detectable inflammation at the site of infection. Cumulatively, our results indicate that the in vivo pathogenesis of the early infectious process of Brucella is primarily accomplished by compromising the mucosal immune barrier and subverting critical immune response mechanisms.
Collapse
Affiliation(s)
- Carlos A. Rossetti
- Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, United States of America
| | - Kenneth L. Drake
- Seralogix, Limited Liability Corporation, Austin, Texas, United States of America
| | - Prasad Siddavatam
- Seralogix, Limited Liability Corporation, Austin, Texas, United States of America
| | - Sara D. Lawhon
- Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, United States of America
| | - Jairo E. S. Nunes
- Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, United States of America
| | - Tamara Gull
- Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, United States of America
| | - Sangeeta Khare
- Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, United States of America
| | - Robin E. Everts
- Department of Animal Sciences, University of Illinois, Urbana, Illinois, United States of America
| | - Harris A. Lewin
- Department of Animal Sciences, University of Illinois, Urbana, Illinois, United States of America
| | - Leslie Garry Adams
- Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, United States of America
- * E-mail:
| |
Collapse
|
38
|
Gokulan K, Khare S, Rooney AW, Han J, Lynne AM, Foley SL. Impact of plasmids, including those encodingVirB4/D4 type IV secretion systems, on Salmonella enterica serovar Heidelberg virulence in macrophages and epithelial cells. PLoS One 2013; 8:e77866. [PMID: 24098597 PMCID: PMC3789690 DOI: 10.1371/journal.pone.0077866] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2013] [Accepted: 09/11/2013] [Indexed: 12/11/2022] Open
Abstract
Salmonella enterica serovar Heidelberg (S. Heidelberg) can cause foodborne illness in humans following the consumption of contaminated meat and poultry products. Recent studies from our laboratory have demonstrated that certain S. Heidelberg isolated from food-animal sources harbor multiple transmissible plasmids with genes that encode antimicrobial resistance, virulence and a VirB4/D4 type-IV secretion system. This study examines the potential role of these transmissible plasmids in bacterial uptake and survival in intestinal epithelial cells and macrophages, and the molecular basis of host immune system modulation that may be associated with disease progression. A series of transconjugant and transformant strains were developed with different combinations of the plasmids to determine the roles of the individual and combinations of plasmids on virulence. Overall the Salmonella strains containing the VirB/D4 T4SS plasmids entered and survived in epithelial cells and macrophages to a greater degree than those without the plasmid, even though they carried other plasmid types. During entry in macrophages, the VirB/D4 T4SS encoding genes are up-regulated in a time-dependent fashion. When the potential mechanisms for increased virulence were examined using an antibacterial Response PCR Array, the strain containing the T4SS down regulated several host innate immune response genes which likely contributed to the increased uptake and survival within macrophages and epithelial cells.
Collapse
Affiliation(s)
- Kuppan Gokulan
- Division of Microbiology, FDA National Center for Toxicological Research, Jefferson, Arkansas, United States of America
| | - Sangeeta Khare
- Division of Microbiology, FDA National Center for Toxicological Research, Jefferson, Arkansas, United States of America
| | - Anthony W. Rooney
- Division of Microbiology, FDA National Center for Toxicological Research, Jefferson, Arkansas, United States of America
- Department of Chemistry, University of Minnesota-Morris, Morris, Minnesota, United States of America
| | - Jing Han
- Division of Microbiology, FDA National Center for Toxicological Research, Jefferson, Arkansas, United States of America
| | - Aaron M. Lynne
- Department of Biological Sciences, Sam Houston State University, Huntsville, Texas, United States of America
| | - Steven L. Foley
- Division of Microbiology, FDA National Center for Toxicological Research, Jefferson, Arkansas, United States of America
- * E-mail:
| |
Collapse
|
39
|
No holes barred: invasion of the intestinal mucosa by Mycobacterium avium subsp. paratuberculosis. Infect Immun 2013; 81:3960-5. [PMID: 23940208 DOI: 10.1128/iai.00575-13] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The infection biology of Mycobacterium avium subsp. paratuberculosis has recently crystallized, with added details surrounding intestinal invasion. The involvement of pathogen-derived effector proteins such as the major membrane protein, oxidoreductase, and fibronectin attachment proteins have been uncovered. Mutations constructed in this pathogen have also shed light on genes needed for invasion. The host cell types that are susceptible to invasion have been defined, along with their transcriptional response. Recent details have given a new appreciation for the dynamic interplay between the host and bacterium that occurs at the outset of infection. An initial look at the global expression pathways of the host has shown a circumvention of the cell communication pathway by M. avium subsp. paratuberculosis, which loosens the integrity of the tight junctions. We now know that M. avium subsp. paratuberculosis activates the epithelial layer and also actively recruits macrophages to the site of infection. These notable findings are summarized along with added mechanistic details of the early infection model. We conclude by proposing critical next steps to further elucidate the process of M. avium subsp. paratuberculosis invasion.
Collapse
|
40
|
Abstract
Multiple sclerosis (MS) is a complex autoimmune disease of the CNS. At present, MS etiology remains unknown, but it is believed to be caused by environmental factors acting on a genetic predisposition. Several studies suggest that different microorganisms could play a role in triggering autoimmunity, through immunological cross-reactivity or molecular mimicry. An overview of the knowledge regarding the bacteria involved in MS is given, placing emphasis on the newest candidate proposed: Mycobacterium avium subsp. paratuberculosis. This review will focus on discussing several arguments that might support a causal role for Mycobacterium avium subsp. paratuberculosis as an etiologic agent in MS. Additionally, a possible mechanism is postulated attempting to explain how the bacteria could initiate autoimmunity.
Collapse
Affiliation(s)
- Davide Cossu
- Department of Biomedical Sciences, Division of Experimental & Clinical Microbiology, University of Sassari, Sassari, Italy
| | | | | |
Collapse
|
41
|
Global Rsh-dependent transcription profile of Brucella suis during stringent response unravels adaptation to nutrient starvation and cross-talk with other stress responses. BMC Genomics 2013; 14:459. [PMID: 23834488 PMCID: PMC3710219 DOI: 10.1186/1471-2164-14-459] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2013] [Accepted: 06/18/2013] [Indexed: 01/08/2023] Open
Abstract
Background In the intracellular pathogen Brucella spp., the activation of the stringent response, a global regulatory network providing rapid adaptation to growth-affecting stress conditions such as nutrient deficiency, is essential for replication in the host. A single, bi-functional enzyme Rsh catalyzes synthesis and hydrolysis of the alarmone (p)ppGpp, responsible for differential gene expression under stringent conditions. Results cDNA microarray analysis allowed characterization of the transcriptional profiles of the B. suis 1330 wild-type and Δrsh mutant in a minimal medium, partially mimicking the nutrient-poor intramacrophagic environment. A total of 379 genes (11.6% of the genome) were differentially expressed in a rsh-dependent manner, of which 198 were up-, and 181 were down-regulated. The pleiotropic character of the response was confirmed, as the genes encoded an important number of transcriptional regulators, cell envelope proteins, stress factors, transport systems, and energy metabolism proteins. Virulence genes such as narG and sodC, respectively encoding respiratory nitrate reductase and superoxide dismutase, were under the positive control of (p)ppGpp, as well as expression of the cbb3-type cytochrome c oxidase, essential for chronic murine infection. Methionine was the only amino acid whose biosynthesis was absolutely dependent on stringent response in B. suis. Conclusions The study illustrated the complexity of the processes involved in adaptation to nutrient starvation, and contributed to a better understanding of the correlation between stringent response and Brucella virulence. Most interestingly, it clearly indicated (p)ppGpp-dependent cross-talk between at least three stress responses playing a central role in Brucella adaptation to the host: nutrient, oxidative, and low-oxygen stress.
Collapse
|
42
|
Divergent immune responses to Mycobacterium avium subsp. paratuberculosis infection correlate with kinome responses at the site of intestinal infection. Infect Immun 2013; 81:2861-72. [PMID: 23716614 DOI: 10.1128/iai.00339-13] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Mycobacterium avium subsp. paratuberculosis is the causative agent of Johne's disease (JD) in cattle. M. avium subsp. paratuberculosis infects the gastrointestinal tract of calves, localizing and persisting primarily in the distal ileum. A high percentage of cattle exposed to M. avium subsp. paratuberculosis do not develop JD, but the mechanisms by which they resist infection are not understood. Here, we merge an established in vivo bovine intestinal segment model for M. avium subsp. paratuberculosis infection with bovine-specific peptide kinome arrays as a first step to understanding how infection influences host kinomic responses at the site of infection. Application of peptide arrays to in vivo tissue samples represents a critical and ambitious step in using this technology to understand host-pathogen interactions. Kinome analysis was performed on intestinal samples from 4 ileal segments subdivided into 10 separate compartments (6 M. avium subsp. paratuberculosis-infected compartments and 4 intra-animal controls) using bovine-specific peptide arrays. Kinome data sets clustered into two groups, suggesting unique binary responses to M. avium subsp. paratuberculosis. Similarly, two M. avium subsp. paratuberculosis-specific immune responses, characterized by different antibody, T cell proliferation, and gamma interferon (IFN-γ) responses, were also observed. Interestingly, the kinomic groupings segregated with the immune response groupings. Pathway and gene ontology analyses revealed that differences in innate immune and interleukin signaling and particular differences in the Wnt/β-catenin pathway distinguished the kinomic groupings. Collectively, kinome analysis of tissue samples offers insight into the complex cellular responses induced by M. avium subsp. paratuberculosis in the ileum and provides a novel method to understand mechanisms that alter the balance between cell-mediated and antibody responses to M. avium subsp. paratuberculosis infection.
Collapse
|
43
|
Gomez G, Pei J, Mwangi W, Adams LG, Rice-Ficht A, Ficht TA. Immunogenic and invasive properties of Brucella melitensis 16M outer membrane protein vaccine candidates identified via a reverse vaccinology approach. PLoS One 2013; 8:e59751. [PMID: 23533646 PMCID: PMC3606113 DOI: 10.1371/journal.pone.0059751] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2012] [Accepted: 02/18/2013] [Indexed: 01/18/2023] Open
Abstract
Brucella is the etiologic agent of brucellosis, one of the most common and widely distributed zoonotic diseases. Its highly infectious nature, the insidious, systemic, chronic, debilitating aspects of the disease and the lack of an approved vaccine for human use in the United States are features that make Brucella a viable threat to public health. One of the main impediments to vaccine development is identification of suitable antigens. In order to identify antigens that could potentially be used in a vaccine formulation, we describe a multi-step antigen selection approach. We initially used an algorithm (Vaxign) to predict ORF encoding outer membrane proteins with antigenic determinants. Differential gene expression during acute infection and published evidence for a role in virulence were used as criteria for down-selection of the candidate antigens that resulted from in silico prediction. This approach resulted in the identification of nine Brucella melitensis outer membrane proteins, 5 of which were recombinantly expressed and used for validation. Omp22 and Hia had the highest in silico scores for adhesin probability and also conferred invasive capacity to E. coli overexpressing recombinant proteins. With the exception of FlgK in the goat, all proteins reacted to pooled sera from exposed goats, mice, and humans. BtuB, Hia and FlgK stimulated a mixed Th1-Th2 response in splenocytes from immunized mice while BtuB and Hia elicited NO release from splenocytes of S19 immunized mice. The results support the applicability of the current approach to the identification of antigens with immunogenic and invasive properties. Studies to assess immunogenicity and protective efficacy of individual proteins in the mouse are currently underway.
Collapse
Affiliation(s)
- Gabriel Gomez
- Department of Veterinary Pathobiology, Texas A&M University, College Station, Texas, United States of America.
| | | | | | | | | | | |
Collapse
|