1
|
Xiao K, Jia X, Qiang W, Chang L, Liu W, Zhang D. Tryptophan supplements in high-carbohydrate diets by improving insulin response and glucose transport through PI3K-AKT-GLUT2 pathways in blunt snout bream (Megalobrama amblycephala). J Nutr Biochem 2024; 134:109715. [PMID: 39127308 DOI: 10.1016/j.jnutbio.2024.109715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 07/20/2024] [Accepted: 07/29/2024] [Indexed: 08/12/2024]
Abstract
The aim of this experiment was to elucidate the metabolic ramifications of tryptophan supplementation in the context of high-carbohydrate diet-feeding, which is important for improving feeding strategies in aquaculture in order to improve fish carbohydrate metabolism. Juvenile blunt snout bream with an initial mean body mass of 55.0±0.5 g were allocated to consume one of three experimental diets: CN, a normal diet with carbohydrate content of 30% (w/w); HC, a diet with high carbohydrate content of 43% (w/w); and HL, a high-carbohydrate diet to which 0.8% L-tryptophan (L-trp) had been added. These diets were fed for 8 weeks, and the effects of the carbohydrate and tryptophan contents of the diets were assessed. Histological analysis using Hematoxylin and Eosin (H&E) and Oil Red O staining revealed that high-carbohydrate intake was associated with abnormal hepatocyte morphology and excessive liver lipid accumulation, which were notably ameliorated by tryptophan supplementation. A significant increase in plasma glucose, glucagon, AGEs (advanced glycation end products), triglycerides, total cholesterol, and a significant decrease in insulin and hepatic glycogen after a high-carbohydrate diet in terms of plasma indices, compared to the control group. Almost all of them were restored to the normal level in the HL group. The present study might preliminarily suggest that tryptophan supplementation ameliorates the imbalance in glucose metabolism of this species induced by a high-carbohydrate diet. Transcriptomics showed that glucose metabolism under high carbohydrate was mainly regulated by the PI3K-AKT signaling pathway. The mRNA expression and protein levels of GLUT2 also varied with this pathway, which would suggest that sustained activation of this pathway with the addition of tryptophan accelerates glucose transport and insulin secretion under high-carbohydrate diet. Subsequent GTT and ITT experiments have also demonstrated that tryptophan improves glucose tolerance and insulin tolerance in blunt snout bream on a high-carbohydrate diet. In conclusion, these findings elucidate the positive regulatory effect of tryptophan on the PI3K-AKT-GLUT2 pathway under a high carbohydrate diet and provide a theoretical basis for the subsequent rational application of high carbohydrate diets in the future.
Collapse
Affiliation(s)
- Kang Xiao
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiaoyan Jia
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Wei Qiang
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Le Chang
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Wenbin Liu
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China.
| | - Dingdong Zhang
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
2
|
Zhang C, Jiang D, Shi H, Zhang C, Yang F, Qi Q, Xu R. Protective effect of fructooligosaccharide against oxidative stress and apoptosis induced by Aeromonas hydrophila in Megalobrama amblycephala. BMC Genomics 2024; 25:975. [PMID: 39415104 PMCID: PMC11484227 DOI: 10.1186/s12864-024-10881-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 10/08/2024] [Indexed: 10/18/2024] Open
Abstract
This research aimed to investigate the effects of dietary fructooligosaccharides (FOS) on attenuating the Aeromonas hydrophila (A. hydrophila)-induced oxidative stress and apoptosis in blunt snout bream Megalobrama amblycephala. Fish were divided into three groups as follows: C1 (Control), T1 (A. hydrophila), and T2 (A. hydrophila + 4 g/kg FOS). The results showed that the activities of antioxidant enzymes increased, the liver morphology had disorderly arrangement, and extensive cell necrosis occurred because of A. hydrophila-infection. While the dietary FOS improved the above-mentioned liver damage. Additionaly, FOS elevated mRNA levels of pro-apoptotic molecules, including caspase-8 and 9, and down-regulated mRNA levels of the anti-apoptotic molecule Bcl-2, which is triggered by A. hydrophila-infection. The transcriptome analysis showed that the oxidative stress-related DEGs pathways were activated in intestine of blunt snout bream by A. hydrophila-infection. The FOS-added group led to the enrichment of more pathways to health. Further WGCNA co-expression network analysis showed that the screened single genes were clustered into 49 modules. The two modules with the highest association to the five traits (10 hub genes) were chosen to build the network by combining the physiological and biochemical characteristic. In summary, this research offers a foundation for the exploring of A. hydrophila-restoration genes in dietary FOS, and also lays a theoretical foundation for aquaculture in the future.
Collapse
Affiliation(s)
- Chunnuan Zhang
- College of Animal Science and Technology, Henan University of Scientific and Technology, Luoyang, 471003, People's Republic of China.
| | - Dongxue Jiang
- College of Animal Science and Technology, Henan University of Scientific and Technology, Luoyang, 471003, People's Republic of China
| | - Huajuan Shi
- College of Animal Science and Technology, Henan University of Scientific and Technology, Luoyang, 471003, People's Republic of China
| | - Cheng Zhang
- College of Animal Science and Technology, Henan University of Scientific and Technology, Luoyang, 471003, People's Republic of China
| | - Feng Yang
- College of Animal Science and Technology, Henan University of Scientific and Technology, Luoyang, 471003, People's Republic of China
| | - Qian Qi
- College of Animal Science and Technology, Henan University of Scientific and Technology, Luoyang, 471003, People's Republic of China
| | - Ruiyi Xu
- College of Animal Science and Technology, Henan University of Scientific and Technology, Luoyang, 471003, People's Republic of China
| |
Collapse
|
3
|
Fu Y, Luo L, Wang S, Yu Y, Wang Y, Gao Z. Identification of sex-specific markers using genome re-sequencing in the blunt snout bream (Megalobrama amblycephala). BMC Genomics 2024; 25:963. [PMID: 39407110 PMCID: PMC11481317 DOI: 10.1186/s12864-024-10884-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Accepted: 10/09/2024] [Indexed: 10/19/2024] Open
Abstract
BACKGROUND The blunt snout bream (Megalobrama amblycephala) is an important economic freshwater fish in China with tender flesh and high nutritional value. With the cultivation of superior new varieties and the expansion of breeding scale, it becomes imperative to employ sex-control technology to cultivate monosexual populations of M. amblycephala, thereby preventing the deterioration of desirable traits. The development of specific markers capable of accurately identifying the sex of M. amblycephala would facilitate the determination of the genetic sex of the breeding population before gonad maturation, thereby expediting the processes of sex-controlled breeding of M. amblycephala. RESULTS A whole-genome re-sequencing was performed for 116 females and 141 males M. amblycephala collected from nine populations. Seven candidate male-specific sequences were identified through comparative analysis of male and female genomes, which were further compared with the sequencing data of 257 individuals, and finally three male-specific sequences were generated. These three sequences were further validated by PCR amplification in 32 males and 32 females to confirm their potential as male-specific molecular markers for M. amblycephala. One of these markers showed potential applicability in M. pellegrini as well, enabling males to be identified using this specific molecular marker. CONCLUSIONS The study provides a high-efficiency and cost-effective approach for the genetic sex identification in two species of Megalobrama. The developed markers in this study have great potential in facilitating sex-controlled breeding of M. amblycephala and M. pellegrini, while also contributing valuable insights into the underlying mechanisms of fish sex determination.
Collapse
Affiliation(s)
- Yuye Fu
- College of Fisheries, Hubei Hongshan Laboratory / Key Lab of Freshwater Animal Breeding, Ministry of Agriculture and Rural Affairs / Engineering Research Center of Green development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China
| | - Lifei Luo
- College of Fisheries, Hubei Hongshan Laboratory / Key Lab of Freshwater Animal Breeding, Ministry of Agriculture and Rural Affairs / Engineering Research Center of Green development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Shilong Wang
- College of Fisheries, Hubei Hongshan Laboratory / Key Lab of Freshwater Animal Breeding, Ministry of Agriculture and Rural Affairs / Engineering Research Center of Green development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yue Yu
- College of Fisheries, Hubei Hongshan Laboratory / Key Lab of Freshwater Animal Breeding, Ministry of Agriculture and Rural Affairs / Engineering Research Center of Green development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yao Wang
- College of Fisheries, Hubei Hongshan Laboratory / Key Lab of Freshwater Animal Breeding, Ministry of Agriculture and Rural Affairs / Engineering Research Center of Green development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China
| | - Zexia Gao
- College of Fisheries, Hubei Hongshan Laboratory / Key Lab of Freshwater Animal Breeding, Ministry of Agriculture and Rural Affairs / Engineering Research Center of Green development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China.
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, 266237, China.
- Engineering Technology Research Center for Fish Breeding and Culture in Hubei Province, Wuhan, 430070, China.
| |
Collapse
|
4
|
Xia H, Liu L, Zhou W, Ding C, Liu H, Lei T, Chen F, Liu S, Yu J, Yang P, Yu Y. Immune response to Aeromonas hydrophila and molecular characterization of polymeric immunoglobulin receptor in juvenile Megalobrama amblycephala. FISH & SHELLFISH IMMUNOLOGY 2024; 153:109821. [PMID: 39117129 DOI: 10.1016/j.fsi.2024.109821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 08/04/2024] [Accepted: 08/06/2024] [Indexed: 08/10/2024]
Abstract
Polymeric immunoglobulin receptor (pIgR) is an important immune factor in the mucosal immune system of fish, which plays a key role in mediating the secretion and transport of immunoglobulin into mucus. In this study, the full-length cDNA sequence of Megalobrama amblycephala pIgR gene was firstly cloned and the immune response to Aeromonas hydrophila was detected. After being challenged by Aeromonas hydrophila at 3 d, significantly pathological features were observed in intestine, head kidney, spleen, liver and gill of Megalobrama amblycephala. The content of lysozyme (Lys) and the activities of acid phosphatase (ACP) and alkaline phosphatase (AKP) increased significantly at 1 d and reached the peak at 3 d, and the activities of total superoxide dismutase (T-SOD), glutathione peroxidase (GSH-PX) and catalase (CAT) in serum reached the peak at 5 d and 7 d after infection, respectively. The expression level of IL-1β gene reached the peak at 3 d in intestine, 5 d in gill and spleen, 7 d in head kidney and liver of Megalobrama amblycephala after infected by Aeromonas hydrophila, respectively. The TNF-α gene expression reached the peak at 3 d in intestine and gill, 5 d in head kidney and spleen, 7 d in liver after infection, respectively. The experimental results showed that the infection of Aeromonas hydrophila caused the pathological changes of immune-related tissues and triggered the inflammation responses. The full-length cDNA sequence of Megalobrama amblycephala pIgR was 1828 bp, and its open reading frame (ORF) was 1023 bp, encoding 340 amino acids. The pIgR of Megalobrama amblycephala has a signal peptide sequence, followed by extracellular region, transmembrane region and intracellular region. The extracellular region includes two Ig-like domains (ILDs), and its tertiary structure is twisted "L". The phylogenetic tree was constructed using the adjacency method, and the pIgR genes of Megalobrama amblycephala and cyprinidae fish were clustered into a single branch. Quantitative real-time PCR (qRT-PCR) was used to detect the expression of pIgR gene in different tissues of Megalobrama amblycephala. The expression level of pIgR gene was the highest in liver, followed by intestine, head kidney, skin, middle kidney and spleen, lower in heart, gill and brain, and the lowest in muscle. After being infected by Aeromonas hydrophila, the expression level of Megalobrama amblycephala pIgR gene in intestine, head kidney, spleen, liver and gill showed a trend of increasing first and then decreasing within 28 d. The pIgR gene expression reached the peak in mucosal immune-related tissues (gill and intestine) was earlier than that in systemic immune-related tissues (head kidney and spleen), and the relative expression level of pIgR gene at peak in intestine (12.3 fold) was higher than that in head kidney (3.73 fold) and spleen (7.84 fold). These results suggested that Megalobrama amblycephala pIgR might play an important role in the mucosal immune system to against Aeromonas hydrophila infection.
Collapse
Affiliation(s)
- Hu Xia
- Innovation Team of Microbial Technology, State Key Laboratory of Development Biology of Freshwater Fish Sub-Center for Health Aquaculture, College of Life and Environmental Sciences, Hunan University of Arts and Science, Changde, Hunan, 415000, China
| | - Liangguo Liu
- Innovation Team of Microbial Technology, State Key Laboratory of Development Biology of Freshwater Fish Sub-Center for Health Aquaculture, College of Life and Environmental Sciences, Hunan University of Arts and Science, Changde, Hunan, 415000, China.
| | - Wei Zhou
- Innovation Team of Microbial Technology, State Key Laboratory of Development Biology of Freshwater Fish Sub-Center for Health Aquaculture, College of Life and Environmental Sciences, Hunan University of Arts and Science, Changde, Hunan, 415000, China
| | - Cheng Ding
- Innovation Team of Microbial Technology, State Key Laboratory of Development Biology of Freshwater Fish Sub-Center for Health Aquaculture, College of Life and Environmental Sciences, Hunan University of Arts and Science, Changde, Hunan, 415000, China; Hunan University of Science and Technology, Xiangtan, Hunan, 411201, China
| | - Huimin Liu
- Innovation Team of Microbial Technology, State Key Laboratory of Development Biology of Freshwater Fish Sub-Center for Health Aquaculture, College of Life and Environmental Sciences, Hunan University of Arts and Science, Changde, Hunan, 415000, China
| | - Ting Lei
- Innovation Team of Microbial Technology, State Key Laboratory of Development Biology of Freshwater Fish Sub-Center for Health Aquaculture, College of Life and Environmental Sciences, Hunan University of Arts and Science, Changde, Hunan, 415000, China
| | - Fuyan Chen
- Key Laboratory of Aquaculture Genetic and Breeding and Healthy Aquaculture of Guangxi, Guangxi Academy of Fishery Sciences, Nanning, Hunan, 530021, China
| | - Shanhong Liu
- Innovation Team of Microbial Technology, State Key Laboratory of Development Biology of Freshwater Fish Sub-Center for Health Aquaculture, College of Life and Environmental Sciences, Hunan University of Arts and Science, Changde, Hunan, 415000, China
| | - Jia Yu
- Innovation Team of Microbial Technology, State Key Laboratory of Development Biology of Freshwater Fish Sub-Center for Health Aquaculture, College of Life and Environmental Sciences, Hunan University of Arts and Science, Changde, Hunan, 415000, China
| | - Pinhong Yang
- Innovation Team of Microbial Technology, State Key Laboratory of Development Biology of Freshwater Fish Sub-Center for Health Aquaculture, College of Life and Environmental Sciences, Hunan University of Arts and Science, Changde, Hunan, 415000, China
| | - Yongyao Yu
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, Hubei, 430070, China.
| |
Collapse
|
5
|
Abasubong KP, Jiang GZ, Guo HX, Wang X, Huang YY, Li XF, Yan-Zou D, Liu WB, Desouky HE. Effects of a high-fat and high-carbohydrate diet on appetite regulation and central AMPK in the hypothalamus of blunt snout bream (Megalobrama amblycephala). J Anim Physiol Anim Nutr (Berl) 2024; 108:480-492. [PMID: 38014877 DOI: 10.1111/jpn.13908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 11/06/2023] [Accepted: 11/10/2023] [Indexed: 11/29/2023]
Abstract
Adenosine monophosphate-activated protein kinase (AMPK) is a sensor of cellular energy changes and controls food intake. This study investigates the effect of a high-calorie diet (high fat diet [HFD], high carbohydrate diet [HCD] and high energy diet [HED]) on appetite and central AMPK in blunt snout bream. In the present study, fish (average initial weight 45.84 ± 0.07 g) were fed the control, HFD, HCD and HED in four replicates for 12 weeks. At the end of the feeding trial, the result showed that body mass index, specific growth rate, feed efficiency ratio and feed intake were not affected (p > 0.05) by dietary treatment. However, fish fed the HFD obtained a significantly higher (p < 0.05) lipid productive value, lipid gain and lipid intake than those fed the control diet, but no significant difference was attributed to others. Also, a significantly higher (p < 0.05) energy intake content was found in fish-fed HFD, HCD and HED than those given the control diet. Long-term HFD and HCD feeding significantly increased (p < 0.05) plasma glucose, glycated serum protein, advanced glycation end product, insulin and leptin content levels than the control group. Moreover, a significantly lower (p < 0.05) complex 1, 2 and 3 content was found in fish-fed HFD and HCD than in the control, but no differences (p > 0.05) were attributed to those in HED. Fish-fed HED significantly upregulated (p < 0.05) hypothalamic ampα 1 and ampα 2 expression, whereas the opposite trend was observed in the hypothalamic mammalian target of rapamycin than those in HFD and HCD compared to the control. However, hypothalamic neuropeptide y, peroxisome proliferator-activated receptor α (pparα), acetyl-coa oxidase and carnitine palmitoyltransferase 1 were significantly upregulated (p < 0.05) in the HCD group, while the opposite was seen in cholecystokinin expression compared to those in the control group. Our findings indicated that the central AMPK signal pathway and appetite were modulated according to the diet's energy level to regulate nutritional status and maintain energy homoeostasis in fish.
Collapse
Affiliation(s)
- Kenneth Prudence Abasubong
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, People's Republic of China
- National Laboratory of Animal Science, Nanjing Agricultural University, Nanjing, People's Republic of China
| | - Guang-Zhen Jiang
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, People's Republic of China
- National Laboratory of Animal Science, Nanjing Agricultural University, Nanjing, People's Republic of China
| | - Hui-Xing Guo
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, People's Republic of China
- National Laboratory of Animal Science, Nanjing Agricultural University, Nanjing, People's Republic of China
| | - Xi Wang
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, People's Republic of China
- National Laboratory of Animal Science, Nanjing Agricultural University, Nanjing, People's Republic of China
| | - Yang-Yang Huang
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, People's Republic of China
- National Laboratory of Animal Science, Nanjing Agricultural University, Nanjing, People's Republic of China
| | - Xiang-Fei Li
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, People's Republic of China
- National Laboratory of Animal Science, Nanjing Agricultural University, Nanjing, People's Republic of China
| | - Dong Yan-Zou
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, People's Republic of China
- National Laboratory of Animal Science, Nanjing Agricultural University, Nanjing, People's Republic of China
| | - Wen-Bin Liu
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, People's Republic of China
- National Laboratory of Animal Science, Nanjing Agricultural University, Nanjing, People's Republic of China
| | - Hesham Eed Desouky
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, People's Republic of China
- National Laboratory of Animal Science, Nanjing Agricultural University, Nanjing, People's Republic of China
- Department of Animal and Poultry Production, Faculty of Agriculture, Damanhour University, Damanhour, Egypt
| |
Collapse
|
6
|
Huang W, Hua Y, Wang F, Xu J, Yuan L, Jing Z, Wang W, Zhao Y. Dietary betaine and/or TMAO affect hepatic lipid accumulation and glycometabolism of Megalobrama amblycephala exposed to a high-carbohydrate diet. FISH PHYSIOLOGY AND BIOCHEMISTRY 2024; 50:59-75. [PMID: 36580207 DOI: 10.1007/s10695-022-01160-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 12/01/2022] [Indexed: 06/17/2023]
Abstract
A 12-week experiment was conducted to explore the effects of betaine and/or TMAO on growth, hepatic health, gut microbiota, and serum metabolites in Megalobrama amblycephala fed with high-carbohydrate diets. The diets were as follows: CD group (control diet, 28.5% carbohydrate), HCD group (high-carbohydrate diet, 38.2% carbohydrate), HBD group (betaine-added diet, 38.3% carbohydrate + 1.2% betaine), HTD group (TMAO-added diet, 38.2% carbohydrate + 0.2% TMAO), and HBT group (diet added with both betaine and TMAO, 38.2% carbohydrate + 1.2% betaine + 0.2% TMAO). The results showed that the hepatosomatic index (HSI); whole-body crude fat; hepatic lipid accumulation; messenger RNA expression levels of gk, fpbase, g6pase, ahas, and bcat; serum branched-chain amino acids (BCAAs); ratio of Firmicutes-to-Bacteroidetes; and abundance of the genus Aeromonas were all significantly increased, while the abundance levels of the genus Lactobacillus and phyla Tenericutes and Bacteroidetes were drastically decreased in the HCD group. Compared with the HCD group, the HSI; whole-body crude fat; hepatic lipid accumulation; expression levels of fbpase, g6pase, pepck, ahas, and bcat; circulating BCAA; ratio of Firmicutes-to-Bacteroidetes; and abundance levels of the genus Aeromonas and phyla Tenericutes and Bacteroidetes were significantly downregulated in the HBD, HTD, and HBT groups. Meanwhile, the expression levels of pk were drastically upregulated in the HBD, HTD, and HBT groups as well as the abundance of Lactobacillus in the HBT group. These results indicated that the supplementation of betaine and/or TMAO in high-carbohydrate diets could affect the hepatic lipid accumulation and glycometabolism of M. amblycephala by promoting glycolysis, inhibiting gluconeogenesis and biosynthesis of BCAA, and mitigating the negative alteration of gut microbiota. Among them, the combination of betaine and TMAO had the best effect.
Collapse
Affiliation(s)
- Wangwang Huang
- College of Fisheries Huazhong Agricultural University, Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Wuhan, 430070, People's Republic of China
| | - Yizhuo Hua
- College of Fisheries Huazhong Agricultural University, Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Wuhan, 430070, People's Republic of China
| | - Fan Wang
- Fisheries College, Guangdong Ocean University, Zhanjiang, 524088, People's Republic of China
| | - Jia Xu
- Fisheries College, Guangdong Ocean University, Zhanjiang, 524088, People's Republic of China
| | - Lv Yuan
- College of Fisheries Huazhong Agricultural University, Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Wuhan, 430070, People's Republic of China
| | - Zhao Jing
- College of Fisheries Huazhong Agricultural University, Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Wuhan, 430070, People's Republic of China
| | - Weimin Wang
- College of Fisheries Huazhong Agricultural University, Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Wuhan, 430070, People's Republic of China
| | - Yuhua Zhao
- College of Fisheries Huazhong Agricultural University, Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Wuhan, 430070, People's Republic of China.
| |
Collapse
|
7
|
Wang MM, Huang YY, Liu WB, Xiao K, Wang X, Guo HX, Zhang YL, Fan JW, Li XF, Jiang GZ. Interactive effects of dietary leucine and isoleucine affect amino acid profile and metabolism through AKT/TOR signaling pathways in blunt snout bream (Megalobrama amblycephala). FISH PHYSIOLOGY AND BIOCHEMISTRY 2024; 50:385-401. [PMID: 36525145 DOI: 10.1007/s10695-022-01161-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 12/03/2022] [Indexed: 06/17/2023]
Abstract
The purpose of this research is to explore the interaction between dietary leucine and isoleucine levels on whole-body composition, plasma and liver biochemical indexes, amino acids deposition in the liver, and amino acid metabolism of blunt snout bream (Megalobrama amblycephala). The test fish (average weight: 56.00 ± 0.55 g) were fed one of six diets at random containing two leucine levels (1.70% and 2.50%) and three isoleucine levels (1.00%, 1.20%, and 1.40%) for 8 weeks. The results showed that the final weight and weight gain rate were the highest in the fish fed low-level leucine and high-level isoleucine diets (P > 0.05). Furthermore, the crude lipid content was significantly adjusted by diets with diverse levels of leucine and isoleucine (P < 0.05). In addition, interactive effects of these two branched-chain amino acids (BCAAs) were found on plasma total protein, blood ammonia, and blood urea nitrogen of test fish (P < 0.05). Additionally, the liver amino acid profiles were significantly influenced by the interactive effects of the two BCAAs (P < 0.05). Moreover, interactive effects of dietary leucine and isoleucine were significantly observed in the expressions of amino acid metabolism-related genes (P < 0.05). These findings suggested that dietary leucine and isoleucine had interaction. Meanwhile, the interaction between them was more conducive to the growth and quality improvement of blunt snout bream when the dietary leucine level was 1.70% and isoleucine level was 1.40%.
Collapse
Affiliation(s)
- Mang-Mang Wang
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, College of Animal Science and Technology, Nanjing Agricultural University, No.1 Weigang Road, Nanjing, 210095, People's Republic of China
| | - Yang-Yang Huang
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, College of Animal Science and Technology, Nanjing Agricultural University, No.1 Weigang Road, Nanjing, 210095, People's Republic of China
| | - Wen-Bin Liu
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, College of Animal Science and Technology, Nanjing Agricultural University, No.1 Weigang Road, Nanjing, 210095, People's Republic of China
| | - Kang Xiao
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, College of Animal Science and Technology, Nanjing Agricultural University, No.1 Weigang Road, Nanjing, 210095, People's Republic of China
| | - Xi Wang
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, College of Animal Science and Technology, Nanjing Agricultural University, No.1 Weigang Road, Nanjing, 210095, People's Republic of China
| | - Hui-Xing Guo
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, College of Animal Science and Technology, Nanjing Agricultural University, No.1 Weigang Road, Nanjing, 210095, People's Republic of China
| | - Yi-Lin Zhang
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, College of Animal Science and Technology, Nanjing Agricultural University, No.1 Weigang Road, Nanjing, 210095, People's Republic of China
| | - Jing-Wei Fan
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, College of Animal Science and Technology, Nanjing Agricultural University, No.1 Weigang Road, Nanjing, 210095, People's Republic of China
| | - Xiang-Fei Li
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, College of Animal Science and Technology, Nanjing Agricultural University, No.1 Weigang Road, Nanjing, 210095, People's Republic of China
| | - Guang-Zhen Jiang
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, College of Animal Science and Technology, Nanjing Agricultural University, No.1 Weigang Road, Nanjing, 210095, People's Republic of China.
| |
Collapse
|
8
|
Yang N, Li W, Feng W, Wang M, Liu A, Tang Y, Su S. Genomics and transcriptomics of the Chinese mitten crabs (Eriocheir sinensis). Sci Data 2023; 10:843. [PMID: 38036563 PMCID: PMC10689444 DOI: 10.1038/s41597-023-02761-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 11/16/2023] [Indexed: 12/02/2023] Open
Abstract
To gain a deeper understanding of the genetic factors influencing the growth and development of Eriocheir sinensis, a well-known species of hairy crab found in Yangcheng Lake, this study focused on the de novo genome and full-length transcriptome information of the selected subjects. Specifically, Yangcheng Lake hairy crabs were chosen as the experimental samples. Initially, a genome analysis was performed, resulting in the identification of gene fragments with a combined length of 1266,092,319 bp. Subsequently, a transcriptome analysis was conducted on a mixture of tissues from four different sites, namely muscle, brain, eye, and heart, to further investigate the genetic characteristics at the transcriptome level. The Pacific Biosciences (Pacio) single-molecule real-time sequencing system generated a total of 36.93 G sub-fragments and 175,90041 effective inserts. This research contributes to the indirect comprehension of genetic variations underlying individual traits. Furthermore, a comparison of the obtained data with relevant literature emphasizes the advantages of this study and establishes a basis for further investigations on the Chinese mitten crab.
Collapse
Affiliation(s)
- Nan Yang
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, 214081, PR China
| | - Wenjing Li
- Jiangsu Haorun Biological Industry Group Co., Ltd, Taizhou, 225309, China
| | - Wenrong Feng
- Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, China
| | - Meiyao Wang
- Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, China
| | - Aimin Liu
- Jiangsu Haorun Biological Industry Group Co., Ltd, Taizhou, 225309, China
| | - Yongkai Tang
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, 214081, PR China.
- Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, China.
| | - Shengyan Su
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, 214081, PR China.
- Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, China.
| |
Collapse
|
9
|
Zhang L, Liu Z, Deng Y, He C, Liu W, Li X. The Benefits of Nanosized Magnesium Oxide in Fish Megalobrama amblycephala: Evidence in Growth Performance, Redox Defense, Glucose Metabolism, and Magnesium Homeostasis. Antioxidants (Basel) 2023; 12:1350. [PMID: 37507890 PMCID: PMC10376070 DOI: 10.3390/antiox12071350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 06/20/2023] [Accepted: 06/25/2023] [Indexed: 07/30/2023] Open
Abstract
This study evaluated the effects of dietary magnesium oxide nanoparticles (MgO NPs) on the growth, redox defense, glucose metabolism, and magnesium homeostasis in blunt snout bream. Fish (12.42 ± 0.33 g) were fed seven diets containing graded levels of MgO NPs (0, 60, 120, 240, 480, 960, and 1920 mg/kg) for 12 weeks. Whole-body Mg retention decreased significantly as the dietary Mg increased. As dietary MgO NPs levels reached 120 mg/kg, the growth performance and feed utilization remarkably improved. When added at 240 mg/kg, oxidative stress was significantly reduced evidenced by the increased Mn-sod transcription and the decreased CAT and GSH-Px activities and the MDA content. Meanwhile, it enhanced glucose transport, glycolysis, and glycogen synthesis, while inhibiting gluconeogenesis, as was characterized by the increased transcriptions of glut2, gk, and pk, and the decreased transcriptions of fbpase and g6pase. In addition, the supplementation of 120 mg/kg MgO NPs promoted Mg transport marked by a significant increase in the protein expressions of TRMP7, S41A3, and CNNM1. In conclusion, the moderate supplementation of MgO NPs improved the growth performance, reduced hepatic oxidative stress, and promoted glucose transport, glycolysis, glycogen synthesis, and magnesium homeostasis in fish while inhibiting glu.
Collapse
Affiliation(s)
- Ling Zhang
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, College of Animal Science and Technology, Nanjing Agricultural University, No. 1 Weigang Road, Nanjing 210095, China
| | - Zishang Liu
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, College of Animal Science and Technology, Nanjing Agricultural University, No. 1 Weigang Road, Nanjing 210095, China
| | - Ying Deng
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, College of Animal Science and Technology, Nanjing Agricultural University, No. 1 Weigang Road, Nanjing 210095, China
| | - Chaofan He
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, College of Animal Science and Technology, Nanjing Agricultural University, No. 1 Weigang Road, Nanjing 210095, China
| | - Wenbin Liu
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, College of Animal Science and Technology, Nanjing Agricultural University, No. 1 Weigang Road, Nanjing 210095, China
| | - Xiangfei Li
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, College of Animal Science and Technology, Nanjing Agricultural University, No. 1 Weigang Road, Nanjing 210095, China
| |
Collapse
|
10
|
Wenne R. Single Nucleotide Polymorphism Markers with Applications in Conservation and Exploitation of Aquatic Natural Populations. Animals (Basel) 2023; 13:1089. [PMID: 36978629 PMCID: PMC10044284 DOI: 10.3390/ani13061089] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/11/2023] [Accepted: 03/14/2023] [Indexed: 03/29/2023] Open
Abstract
An increasing number of aquatic species have been studied for genetic polymorphism, which extends the knowledge on their natural populations. One type of high-resolution molecular marker suitable for studying the genetic diversity of large numbers of individuals is single nucleotide polymorphism (SNP). This review is an attempt to show the range of applications of SNPs in studies of natural populations of aquatic animals. In recent years, SNPs have been used in the genetic analysis of wild and enhanced fish and invertebrate populations in natural habitats, exploited migratory species in the oceans, migratory anadromous and freshwater fish and demersal species. SNPs have been used for the identification of species and their hybrids in natural environments, to study the genetic consequences of restocking for conservation purposes and the negative effects on natural populations of fish accidentally escaping from culture. SNPs are very useful for identifying genomic regions correlated with phenotypic variants relevant for wildlife protection, management and aquaculture. Experimental size-selective catches of populations created in tanks have caused evolutionary changes in life cycles of fishes. The research results have been discussed to clarify whether the fish populations in natural conditions can undergo changes due to selective harvesting targeting the fastest-growing fishes.
Collapse
Affiliation(s)
- Roman Wenne
- Institute of Oceanology, Polish Academy of Sciences, Powstańców Warszawy 55, 81-712 Sopot, Poland
| |
Collapse
|
11
|
Gong D, Wang X, Yang J, Liang J, Tao M, Hu F, Wang S, Liu Z, Tang C, Luo K, Zhang C, Ma M, Wang Y, Liu S. Protection and utilization status of Parabramis and Megalobrama germplasm resources. REPRODUCTION AND BREEDING 2023. [DOI: 10.1016/j.repbre.2023.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
|
12
|
Wang MM, Guo HX, Huang YY, Liu WB, Wang X, Xiao K, Xiong W, Hua HK, Li XF, Jiang GZ. Dietary Leucine Supplementation Improves Muscle Fiber Growth and Development by Activating AMPK/Sirt1 Pathway in Blunt Snout Bream ( Megalobrama amblycephala). AQUACULTURE NUTRITION 2022; 2022:7285851. [PMID: 36860449 PMCID: PMC9973133 DOI: 10.1155/2022/7285851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 11/29/2022] [Accepted: 12/09/2022] [Indexed: 06/18/2023]
Abstract
This research is aimed at evaluating the effects of leucine supplementation on muscle fibers growth and development of blunt snout bream through a feeding trial and a primary muscle cells treatment. An 8-week trial with diets containing 1.61% leucine (LL) or 2.15% leucine (HL) was conducted in blunt snout bream (mean initial weight = 56.56 ± 0.83 g). Results demonstrated that the specific gain rate and the condition factor of fish in the HL group were the highest. The essential amino acids content of fish fed HL diets was significantly higher than that fed LL diets. The texture (hardness, springiness, resilience, and chewiness), the small-sized fiber ratio, fibers density, and sarcomere lengths in fish all obtained the highest in the HL group. Additionally, the proteins expression related with the activation of the AMPK pathway (p-Ampk, Ampk, p-Ampk/Ampk, and Sirt1) and the expression of genes (myogenin (myog), myogenic regulatory factor 4 (mrf4) and myoblast determination protein (myod), and protein (Pax7) related to muscle fiber formation were significantly upregulated with increasing level of dietary leucine. In vitro, the muscle cells were treated with 0, 40 and 160 mg/L leucine for 24 h. The results showed that treated with 40 mg/L leucine significantly raised the protein expressions of BCKDHA, Ampk, p-Ampk, p-Ampk/Ampk, Sirt1, and Pax7 and the gene expressions of myog, mrf4, and myogenic factor 5 (myf5) in muscle cells. In summary, leucine supplementation promoted muscle fibers growth and development, which may be related to the activation of BCKDH and AMPK.
Collapse
Affiliation(s)
- Mang-mang Wang
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, College of Animal Science and Technology, Nanjing Agricultural University, No. 1 Weigang Road, Nanjing 210095, China
| | - Hui-xing Guo
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, College of Animal Science and Technology, Nanjing Agricultural University, No. 1 Weigang Road, Nanjing 210095, China
| | - Yang-yang Huang
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, College of Animal Science and Technology, Nanjing Agricultural University, No. 1 Weigang Road, Nanjing 210095, China
| | - Wen-bin Liu
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, College of Animal Science and Technology, Nanjing Agricultural University, No. 1 Weigang Road, Nanjing 210095, China
| | - Xi Wang
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, College of Animal Science and Technology, Nanjing Agricultural University, No. 1 Weigang Road, Nanjing 210095, China
| | - Kang Xiao
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, College of Animal Science and Technology, Nanjing Agricultural University, No. 1 Weigang Road, Nanjing 210095, China
| | - Wei Xiong
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, College of Animal Science and Technology, Nanjing Agricultural University, No. 1 Weigang Road, Nanjing 210095, China
| | - Hao-kun Hua
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, College of Animal Science and Technology, Nanjing Agricultural University, No. 1 Weigang Road, Nanjing 210095, China
| | - Xiang-fei Li
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, College of Animal Science and Technology, Nanjing Agricultural University, No. 1 Weigang Road, Nanjing 210095, China
| | - Guang-zhen Jiang
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, College of Animal Science and Technology, Nanjing Agricultural University, No. 1 Weigang Road, Nanjing 210095, China
| |
Collapse
|
13
|
Zhang Z, Lin Z, Wei M, Chen Z, Shen M, Cao G, Wang Y, Zhang Z, Zhang D. Development of Single Nucleotide Polymorphism and Association Analysis with Growth Traits for Black Porgy ( Acanthopagrus schlegelii). Genes (Basel) 2022; 13:1992. [PMID: 36360229 PMCID: PMC9690740 DOI: 10.3390/genes13111992] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 10/25/2022] [Accepted: 10/27/2022] [Indexed: 08/01/2023] Open
Abstract
Black porgy is an important marine aquaculture fish species whose production is at the fifth position in all kinds of marine-cultured fishes in China. In this study, Illumina high-throughput sequencing technology was used to sequence the total RNA of black porgy. Sixty-one candidate SNPs (Single Nucleotide Polymorphism) were screened out and genotyped through GATK4 (Genome Analysis ToolKit) software and MALDI-TOF MS (Matrix-Assisted Laser Desorption/ Ionization Time of Flight Mass Spectrometry). The experimental results showed that a total of sixty SNPs were successfully genotyped, with a success rate of 98.36%. The results of principal component analysis and correlation analysis of growth traits showed that body weight was the first principal component, with a cumulative contribution rate of 74%. There were significant correlations (p < 0.05) or extremely significant correlations (p < 0.01) between different growth traits. The results of genetic parameter analysis and association analysis showed that scaffold12-12716321, scaffold13-4787950, scaffold2-13687576 and scaffold290-11890 were four SNPs that met the requirement of polymorphic information content and conformed to the Hardy-Weinberg equilibrium. There were significant differences between their genotype and the phenotype of growth traits. The four SNP molecular markers developed in this research will lay a foundation for further exploration of molecular markers related to the growth traits of black porgy and will provide a scientific reference for the further study of its growth mechanisms. At the same time, these molecular markers can be applied to the production practices of black porgy, so as to realize selective breeding at the molecular level and speed up the breeding process.
Collapse
Affiliation(s)
- Zhiwei Zhang
- Jiangsu Marine Fishery Research Institute, Nantong 226007, China
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China
| | - Zhijie Lin
- Jiangsu Marine Fishery Research Institute, Nantong 226007, China
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China
| | - Mingliang Wei
- Jiangsu Marine Fishery Research Institute, Nantong 226007, China
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China
| | - Ziqiang Chen
- Jiangsu Marine Fishery Research Institute, Nantong 226007, China
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China
| | - Mingjun Shen
- Jiangsu Marine Fishery Research Institute, Nantong 226007, China
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China
| | - Guangyong Cao
- Jiangsu Marine Fishery Research Institute, Nantong 226007, China
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China
| | - Yue Wang
- Jiangsu Marine Fishery Research Institute, Nantong 226007, China
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China
| | - Zhiyong Zhang
- Jiangsu Marine Fishery Research Institute, Nantong 226007, China
| | - Dianchang Zhang
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China
- South China Sea Fishery Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China
| |
Collapse
|
14
|
Wang X, Xie Y, Hu W, Wei Z, Wei X, Yuan H, Yao H, Dunxue C. Transcriptome characterization and SSR discovery in the giant spiny frog Quasipaa spinosa. Gene 2022; 842:146793. [PMID: 35952842 DOI: 10.1016/j.gene.2022.146793] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 07/31/2022] [Accepted: 08/05/2022] [Indexed: 11/04/2022]
Abstract
The giant spiny frog Quasipaa spinosa (Amphibia: Ranidae) is a large unique frog species found mainly in southern China with a low amount of fat and high protein, and it has become one of the most important aquaculture animal species in China. To better understand its genetic background and screen potential molecular markers for artificial breeding and species conservation, we constructed an expression profile of Q. spinosa with high-throughput RNA sequencing and acquired potential SSR markers. Approximately 81.7 Gb of data and 93,887 unigenes were generated. The transcriptome contains 2085 (80.7 %) complete BUSCOs, suggesting that our assembly methods were effective and accurate.These unigenes were functionally classified using 7 functional databases, yielding 17,482 Pfam-, 12,752 Sting-, 17,526 KEGG-, 24,341 Swiss-Prot-, 28,604 Nr-, 16,287 GO- and 12,752 COG-annotated unigenes. Among several amphibian species, Q. spinosa unigenes had the highest number of hits to Xenopus tropicalis (35.25 %), followed by Xenopus laevis (12.68 %). 1417 unigenes were assigned to the immune system. In addition, a total of 33,019 candidate SSR markers were identified from the constructed library. Further tests with 20 loci and 118 large-scale breeding specimens gathered from four culture farms in China showed that 15 (75 %) loci were polymorphic, with the number of alleles per locus varying from 3 to 9 (mean of 4.3). The PIC values for the SSR markers ranged from 0.19 to 0.82, with an average value of 0.43, indicating moderate polymorphism in Q. spinosa. The transcriptomic profile and SSR repertoire obtained in the present study will facilitate population genetic studies and the selective breeding of amphibian species.
Collapse
Affiliation(s)
- Xiaodong Wang
- College of Animal Science/Key Laboratory of Animal Genetics and Breeding and Reproduction of Plateau and Mountain Animals of Guizhou University, Guiyang, China; Hunan Engineering Technology Research Center of Featured Aquatic Resources Utilization, Hunan Agricultural University, Changsha 410128, China
| | - Yongguang Xie
- College of Animal Science/Key Laboratory of Animal Genetics and Breeding and Reproduction of Plateau and Mountain Animals of Guizhou University, Guiyang, China
| | - Wei Hu
- School of Animal Science, Yangtze University, Jingzhou 434020, China
| | - Zhaoyu Wei
- College of Animal Science/Key Laboratory of Animal Genetics and Breeding and Reproduction of Plateau and Mountain Animals of Guizhou University, Guiyang, China
| | - Xiuying Wei
- College of Animal Science/Key Laboratory of Animal Genetics and Breeding and Reproduction of Plateau and Mountain Animals of Guizhou University, Guiyang, China
| | - Hong Yuan
- College of Animal Science/Key Laboratory of Animal Genetics and Breeding and Reproduction of Plateau and Mountain Animals of Guizhou University, Guiyang, China
| | - Hongyan Yao
- College of Animal Science/Key Laboratory of Animal Genetics and Breeding and Reproduction of Plateau and Mountain Animals of Guizhou University, Guiyang, China
| | - Chen Dunxue
- College of Animal Science/Key Laboratory of Animal Genetics and Breeding and Reproduction of Plateau and Mountain Animals of Guizhou University, Guiyang, China.
| |
Collapse
|
15
|
In Silico Screening and Development of Microsatellite Markers for Genetic Analysis in Perca fluviatilis. Animals (Basel) 2022; 12:ani12141809. [PMID: 35883356 PMCID: PMC9312242 DOI: 10.3390/ani12141809] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 07/08/2022] [Accepted: 07/11/2022] [Indexed: 11/17/2022] Open
Abstract
Perca fluviatilis is an economically important species of freshwater fish. To understand the genetic structure of P. fluviatilis in China, 268 samples were collected from Wulungu Lake (WL), Jili Lake (JL), the Wulungu River (WR), and the Kalaeerqisi River (KR). These samples were then analyzed using microsatellite markers. A total of 98,425 microsatellite markers were developed based on the genomic data, and 29 polymorphic microsatellite markers were selected to analyze genetic diversity in this study. The number of alleles (Na) and observed heterozygosity (Ho) per population ranged from 4.621 (KR) to 11.172 (WL) and from 0.510 (KR) to 0.716 (JL), respectively. The results of the polymorphic information content (PIC) showed that the WL, JL, and WR populations were highly polymorphic (PIC≥ 0.5) and that the KR population was moderately polymorphic (0.25 ≤ PIC < 0.5). The genetic differentiation coefficient (Fst) among the four P. fluviatilis populations was 0.074, indicating moderate genetic differentiation among the populations in Xinjiang. The reason for the significant difference between the rivers and lakes could be the presence of a dam blocking the flow of P. fluviatilis. The development of microsatellite markers provides support for population genetics in the future. The evaluation of the genetic structure of P. fluviatilis in Xinjiang provides a reference for the reproduction and conservation of P. fluviatilis.
Collapse
|
16
|
Ge YP, Chen WL, Sun M, Zhang L, Liu WB, Li XF. Molecular characterization of farnesoid X receptor alpha in Megalobrama amblycephala and its potential roles in high-carbohydrate diet-induced alterations of bile acid metabolism. J Steroid Biochem Mol Biol 2022; 219:106065. [PMID: 35091085 DOI: 10.1016/j.jsbmb.2022.106065] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 12/24/2021] [Accepted: 01/23/2022] [Indexed: 11/22/2022]
Abstract
Farnesoid X receptorα (FXRα) plays a central role in maintaining the bile acid homeostasis in mammals, while relevant processes are still poorly interpreted in aquatic species. This study was conducted to characterize the fxrα gene in a cyprinidae species: blunt snout bream (Megalobrama amblycephala), and investigate its potential roles in bile acid metabolism. The Fxrα protein contains one DNA binding domain, one ligand binding domain, one His-Try "switch" and two modifies residues. A high degree of conservation (53.18-100.00 %) was observed in the Fxrα protein among most aquatic species and higher vertebrates. The transcription of fxrα was mainly observed in intestine, liver and kidney. Then fish (35.0 ± 0.15 g) were fed two diets containing 33 % and 45 % carbohydrate levels for 12weeks. High-carbohydrate diet significantly elevated the total cholesterol concentrations in plasma, liver and hindgut as well as the triglyceride concentrations in both liver and hindgut, but decreased the total bile acid concentrations in plasma, liver and hindgut. High dietary carbohydrate levels also significantly enhanced hepatic transcriptions of 3-hydroxy-3-methylglutaryl-CoA reductase (the rate-limiting enzyme in cholesterol synthesis), and those of fxrα (a bile acid receptor) and multidrug resistance associated protein 2 (a bile acid transporter) in hindgut. Furthermore, high dietary carbohydrate levels significantly decreased the transcriptions of cholesterol 7α-hydroxylase (the rate-limiting enzyme in bile acid synthesis) and organic anion-transporting polypeptides (a bile acid transporter) in liver as well as that of takeda G-protein-coupled bile acid receptor in hindgut. The results demonstrated that the fxrα gene of blunt snout bream is highly conserved compared with other vertebrates. Besides, high dietary carbohydrate levels increased total cholesterol concentrations, and up-regulated the transcription of fxrα, thus decreasing the biosynthesis and reabsorption of bile acids by mediating various target genes.
Collapse
Affiliation(s)
- Ya-Ping Ge
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, College of Animal Science and Technology, Nanjing Agricultural University, No. 1 Weigang Road, Nanjing, 210095, People's Republic of China
| | - Wei-Liang Chen
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, College of Animal Science and Technology, Nanjing Agricultural University, No. 1 Weigang Road, Nanjing, 210095, People's Republic of China
| | - Miao Sun
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, College of Animal Science and Technology, Nanjing Agricultural University, No. 1 Weigang Road, Nanjing, 210095, People's Republic of China
| | - Ling Zhang
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, College of Animal Science and Technology, Nanjing Agricultural University, No. 1 Weigang Road, Nanjing, 210095, People's Republic of China
| | - Wen-Bin Liu
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, College of Animal Science and Technology, Nanjing Agricultural University, No. 1 Weigang Road, Nanjing, 210095, People's Republic of China
| | - Xiang-Fei Li
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, College of Animal Science and Technology, Nanjing Agricultural University, No. 1 Weigang Road, Nanjing, 210095, People's Republic of China.
| |
Collapse
|
17
|
Hydroxytyrosol Attenuates High-Fat-Diet-Induced Oxidative Stress, Apoptosis and Inflammation of Blunt Snout Bream (Megalobrama amblycephala) through Its Regulation of Mitochondrial Homeostasis. FISHES 2022. [DOI: 10.3390/fishes7020078] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The present study was conducted to investigate the effects of dietary hydroxytyrosol (HT) on oxidative stress, inflammation and mitochondrial homeostasis in blunt snout bream (Megalobrama amblycephala). Fish were fed a low-fat diet (LFD, 5% lipid), a high-fat diet (HFD, 15% lipid), an LFD supplementing 200 mg/kg HT, or an HFD supplementing 200 mg/kg HT. After 10-week feeding, significant reduction of growth was observed in fish fed HFD, compared with other groups. HFD caused oxidative stress and more apoptosis of hepatocytes, while HT addition resulted in significant decrease of ROS and MDA contents, and the apoptotic hepatocytes. Moreover, the expression of genes involving inflammation of HFD group were elevated. Supplementing HT to HFD can attenuate this. All the activities of complexes of mitochondria in the HFD group were decreased compared with those in the LFD group, while supplementing HT to HFD significantly increased complex I-III activities. Furthermore, HFD downregulated the expressions of Atg5 and NRF-1 which induced the failure of mitophagy and biogenesis, while, supplementing HT to HFD reversed these expressions involving mitochondrial autophagy and biogenesis. In summary, adding HT to HFD relieved oxidative stress, apoptosis and inflammation, likely due to its regulation of mitochondrial homeostasis.
Collapse
|
18
|
Population Genomics of Megalobrama Provides Insights into Evolutionary History and Dietary Adaptation. BIOLOGY 2022; 11:biology11020186. [PMID: 35205053 PMCID: PMC8869164 DOI: 10.3390/biology11020186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 01/17/2022] [Accepted: 01/20/2022] [Indexed: 11/21/2022]
Abstract
Simple Summary Megalobrama is the economically most important freshwater fish genus in China. In recent years, germplasm resources of Megalobrama have been depleting as a result of environmental degradation and artificial factors. In this study, we established the whole genome database of Megalobrama populations using the whole genome re-sequencing technology, explored population genetic structure, and inferred comprehensive evolutionary relationships using principal component analysis and population structure analysis. Furthermore, employing selective sweep analysis, we identified candidate genes related to variations in feeding habits, revealing the molecular mechanisms of environmental adaptability in Megalobrama populations. Taken together, this study describes the population history and genetic diversity of Megalobrama populations and also the molecular mechanisms likely involved their environmental adaptability. These findings will make a substantial contribution to conservation and utilization of Megalobrama germplasm resources. Abstract Megalobrama, a genus of cyprinid fish, is an economically important freshwater fish widely distributed in major waters of China. Here, we report the genome resequencing of 180 Megalobrama fish including M. amblycephala, M. skolkovii, M. hoffmanni, and M. pellegrini. Population structure indicated that geographically divergent Megalobrama populations were separated into six subgroups. A phylogenetic tree showed that M. skolkovii was more closely related to M. pellegrini than other species and M. hoffmanni was clustered apart from other Megalobrama species, showing a high nucleotide diversity in geographic groups. Treemix validated gene flow from M. amblycephala to M. skolkovii, suggesting that introgression may provide an important source of genetic variation in the M. skolkovii populations. According to the demographic history analysis, it is speculated that Megalobrama might have been originally distributed in the Pearl River with some spread to Hainan Island and northern China due to lower sea levels during the glacial period. Whole-genome selective sweeps analysis demonstrated that M. amblycephala likely developed an enhanced energy metabolism mostly through fatty acid degradation pathways whereas M. hoffmanni possibly regulate lipid absorption via the cholesterol metabolism pathway. Taken together, this study provides a valuable genomic resource for future genetic investigations aiming to improve genome-assisted breeding of Megalobrama species.
Collapse
|
19
|
Ji K, Liang H, Ren M, Ge X, Pan L, Yu H. Nutrient metabolism in the liver and muscle of juvenile blunt snout bream (Megalobrama amblycephala) in response to dietary methionine levels. Sci Rep 2021; 11:23843. [PMID: 34903775 PMCID: PMC8668952 DOI: 10.1038/s41598-021-03084-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 11/03/2021] [Indexed: 11/20/2022] Open
Abstract
A 75-day rearing trial was designed to study the response of juvenile Megalobrama amblycephala to dietary methionine (Met) levels. Three practical diets with graded Met levels (0.40%, 0.84% and 1.28% dry matter) were prepared to feed the juvenile fish. The results showed that the 0.84% Met diet significantly improved the growth compared with 0.40% diets. Compared with 0.84% and 1.28% Met, 0.40% Met significantly increased the hepatic lipid content, while decreasing the muscular lipid and glycogen contents. 0.40% Met decreased the protein levels of phospho-Eukaryotic initiation factor 4E binding protein-1 (p-4e-bp1), 4e-bp1 and Ribosomal protein S6 kinase 1 in the liver, compared with 0.84% diet, while an increasing trend was observed in the muscle. Met supplementation tended to decrease and increase lipid synthesis in the liver and muscle, respectively, via changing mRNA levels of sterol regulatory element-binding protein 1, fatty acid synthetase and acetyl-CoA carboxylase. 1.28% dietary Met promoted fatty acid β-oxidation and lipolysis in both the liver and muscle by increasing carnitine palmitoyl transferase 1, peroxisome proliferator activated receptor alpha, lipoprotein lipase and lipase mRNA levels. Compared with 0.40% and 0.84% dietary Met, 1.28% Met enhanced the mRNA levels of hepatic gluconeogenesis related genes phosphoenolpyruvate carboxykinase (pepck), and glucose-6-phosphatase, and muscular glycolysis related genes phosphofructokinase (pfk), and pyruvate kinase (pk). The mRNA levels of hepatic pfk, pk and glucokinase were markedly downregulated by 1.28% Met compared with 0.84% level. Muscular pepck, glycogen synthase, and hepatic glucose transporters 2 mRNA levels were induced by 1.28% Met. Generally, deficient Met level decreased the growth of juvenile Megalobrama amblycephala, and the different nutrient metabolism responses to dietary Met were revealed in the liver and muscle.
Collapse
Affiliation(s)
- Ke Ji
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, 214081, China
| | - Hualiang Liang
- Key Laboratory for Genetic Breeding of Aquatic Animals and Aquaculture Biology, Freshwater Fisheries Research Center (FFRC), Chinese Academy of Fishery Sciences (CAFS), Wuxi, 214081, China
| | - Mingchun Ren
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, 214081, China.
- Key Laboratory for Genetic Breeding of Aquatic Animals and Aquaculture Biology, Freshwater Fisheries Research Center (FFRC), Chinese Academy of Fishery Sciences (CAFS), Wuxi, 214081, China.
| | - Xianping Ge
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, 214081, China.
- Key Laboratory for Genetic Breeding of Aquatic Animals and Aquaculture Biology, Freshwater Fisheries Research Center (FFRC), Chinese Academy of Fishery Sciences (CAFS), Wuxi, 214081, China.
| | - Liangkun Pan
- Key Laboratory for Genetic Breeding of Aquatic Animals and Aquaculture Biology, Freshwater Fisheries Research Center (FFRC), Chinese Academy of Fishery Sciences (CAFS), Wuxi, 214081, China
| | - Heng Yu
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, 214081, China
| |
Collapse
|
20
|
Discovery of alternatively spliced isoforms and long non-coding RNA in full length brain transcriptomes of anadromous Hilsa shad, Tenualosa ilisha (Hamilton, 1822). Mol Biol Rep 2021; 48:7333-7342. [PMID: 34643921 DOI: 10.1007/s11033-021-06735-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Accepted: 09/30/2021] [Indexed: 12/07/2022]
Abstract
BACKGROUND Full length transcriptomes, achieved through long-read sequencing, along with the isoform analysis can reveal complexities in the gene expression profiles, as well as annotate the transcriptomes of non-model organisms. METHODS AND RESULT Full length transcripts of brain transcriptome of Tenualosa ilisha, Hilsa shad, were generated through PacBio single molecule real-time sequencing and were characterized. A total of 8.30 Gb clean reads were generated, with PacBio RSII, which resulted in 57,651 high quality consensus transcripts. After removing redundant reads, a total of 19,220 high-quality non-redundant transcripts and 17,341 full length ORF transcripts were classified to 7522 putative ortholog groups. Genes involved in various neural pathways were identified. In addition, isoform clusters and lncRNAs were discovered, along with Hilsa specific transcripts with coding frames and 29,147 SSRs in 944 transcripts (1141 annotated). CONCLUSION The present study provided, for the first time, a comprehensive view of the alternative isoforms of genes and transcriptome complexity in Hilsa shad brain and forms a rich resource for functional studies in brain of this anadromous fish.
Collapse
|
21
|
Liu L, Chen Y, Diao J, Luo L, Gao Z. Identification and Characterization of Novel circRNAs Involved in Muscle Growth of Blunt Snout Bream ( Megalobrama amblycephala). Int J Mol Sci 2021; 22:ijms221810056. [PMID: 34576220 PMCID: PMC8467684 DOI: 10.3390/ijms221810056] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 09/10/2021] [Accepted: 09/14/2021] [Indexed: 02/08/2023] Open
Abstract
Circular RNAs (circRNAs), a novel class of endogenous RNAs, have been recognized to play important roles in the growth of animals. However, the regulatory mechanism of circRNAs on fish muscle growth is still unclear. In this study, we performed whole transcriptome analysis of skeletal muscles from two populations with different growth rates (fast-growing and slow-growing) of blunt snout bream (Megalobrama amblycephala), an important fish species for aquaculture. The selected circRNAs were validated by qPCR and Sanger sequencing. Pairs of circRNA–miRNA–mRNA networks were constructed with the predicted differentially expressed (DE) pairs, which revealed regulatory roles in muscle myogenesis and hypertrophy. As a result, a total of 445 circRNAs were identified, including 42 DE circRNAs between fast-growing (FG) and slow-growing (SG) groups. Many of these DE circRNAs were related with aminoglycan biosynthetic and metabolic processes, cytokinetic processes, and the adherens junction pathway. The functional prediction results showed that novel_circ_0001608 and novel_circ_0002886, competing to bind with dre-miR-153b-5p and dre-miR-124-6-5p, might act as competing endogenous RNAs (ceRNAs) to control MamblycephalaGene14755 (pik3r1) and MamblycephalaGene10444 (apip) level, respectively, thus playing an important regulatory role in muscle growth. Overall, these results will not only help us to further understand the novel RNA transcripts in M. amblycephala, but also provide new clues to investigate the potential mechanism of circRNAs regulating fish growth and muscle development.
Collapse
Affiliation(s)
- Lifang Liu
- Key Lab of Freshwater Animal Breeding, Ministry of Agriculture and Rural Affairs/Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education/Engineering Technology Research Center for Fish Breeding and Culture in Hubei Province, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China; (L.L.); (Y.C.); (J.D.)
- Hubei Hongshan Laboratory, Wuhan 430070, China
- Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan 430070, China
| | - Yulong Chen
- Key Lab of Freshwater Animal Breeding, Ministry of Agriculture and Rural Affairs/Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education/Engineering Technology Research Center for Fish Breeding and Culture in Hubei Province, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China; (L.L.); (Y.C.); (J.D.)
- Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Jinghan Diao
- Key Lab of Freshwater Animal Breeding, Ministry of Agriculture and Rural Affairs/Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education/Engineering Technology Research Center for Fish Breeding and Culture in Hubei Province, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China; (L.L.); (Y.C.); (J.D.)
- Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Lifei Luo
- Key Lab of Freshwater Animal Breeding, Ministry of Agriculture and Rural Affairs/Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education/Engineering Technology Research Center for Fish Breeding and Culture in Hubei Province, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China; (L.L.); (Y.C.); (J.D.)
- Hubei Hongshan Laboratory, Wuhan 430070, China
- Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan 430070, China
- Correspondence: (L.L.); or (Z.G.); Tel.: +86-2787282113 (Z.G.); Fax: +86-2787282114 (Z.G.)
| | - Zexia Gao
- Key Lab of Freshwater Animal Breeding, Ministry of Agriculture and Rural Affairs/Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education/Engineering Technology Research Center for Fish Breeding and Culture in Hubei Province, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China; (L.L.); (Y.C.); (J.D.)
- Hubei Hongshan Laboratory, Wuhan 430070, China
- Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan 430070, China
- Correspondence: (L.L.); or (Z.G.); Tel.: +86-2787282113 (Z.G.); Fax: +86-2787282114 (Z.G.)
| |
Collapse
|
22
|
Chen F, Zhao CY, Guan JF, Liu XC, Li XF, Xie DZ, Xu C. High-Carbohydrate Diet Alleviates the Oxidative Stress, Inflammation and Apoptosis of Megalobrama amblycephala Following Dietary Exposure to Silver Nanoparticles. Antioxidants (Basel) 2021; 10:antiox10091343. [PMID: 34572975 PMCID: PMC8471270 DOI: 10.3390/antiox10091343] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 08/02/2021] [Accepted: 08/23/2021] [Indexed: 01/04/2023] Open
Abstract
A 12-week feeding trial was performed to evaluate the effects of high-carbohydrate diet on oxidative stress, inflammation and apoptosis induced by silver nanoparticles (Ag-NPs) in M. amblycephala. Fish (20.12 ± 0.85 g) were randomly fed four diets (one control diet (C, 30% carbohydrate), one control diet supplemented with 100 mg kg−1 Ag-NPs (CS), one high-carbohydrate diet (HC, 45% carbohydrate) and one HC diet supplemented with 100 mg kg−1 Ag-NPs (HCS)). The results indicated that weight gain rate (WGR), specific growth rate (SGR), antioxidant enzyme (SOD and CAT) activities and expression of Trx, Cu/Zn-SOD, Mn-SOD, CAT and GPx1 of fish fed CS diet were all remarkably lower than those of other groups, whereas the opposite was true for plasma IL 1β and IL 6 levels, liver ROS contents, hepatocytes apoptotic rate, AMP/ATP ratio, AMPKα, P 53 and caspase 3 protein contents and mRNA levels of AMPKα 1, AMPKα 2, TXNIP, NF-κB, TNFα, IL 1β, IL 6, P 53, Bax and caspase 3. However, high-carbohydrate diet remarkably increased WGR, SGR, liver SOD and CAT activities, AMPKα protein content and mRNA levels of antioxidant genes (Cu/Zn-SOD, Mn-SOD, CAT and GPx1), anti-inflammatory cytokines (IL 10) and anti-apoptotic genes (Bcl 2) of fish facing Ag-NPs compared with the CS group, while the opposite was true for liver ROS contents, hepatocytes apoptotic rate, P 53 and caspase 3 protein contents, as well as mRNA levels of TXNIP, NF-κB, TNFα, IL 1β, IL 6, P 53, Bax and caspase 3. Overall, high-carbohydrate diet could attenuate Ag-NPs-induced hepatic oxidative stress, inflammation and apoptosis of M. amblycephala through AMPK activation.
Collapse
Affiliation(s)
- Fang Chen
- College of Marine Sciences, South China Agricultural University, No.483 Wushan Road, Guangzhou 510642, China; (F.C.); (J.-F.G.); (X.-C.L.); (D.-Z.X.)
| | - Cai-Yuan Zhao
- State Key Laboratory of Biocontrol, Southern Marine Sciences and Engineering Guangdong Laboratory (Zhuhai), School of Marine Sciences, Sun Yat-Sen University, Guangzhou 510275, China;
| | - Jun-Feng Guan
- College of Marine Sciences, South China Agricultural University, No.483 Wushan Road, Guangzhou 510642, China; (F.C.); (J.-F.G.); (X.-C.L.); (D.-Z.X.)
| | - Xiao-Cheng Liu
- College of Marine Sciences, South China Agricultural University, No.483 Wushan Road, Guangzhou 510642, China; (F.C.); (J.-F.G.); (X.-C.L.); (D.-Z.X.)
| | - Xiang-Fei Li
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, College of Animal Science and Technology, Nanjing Agricultural University, No.1 Weigang Road, Nanjing 210095, China;
| | - Di-Zhi Xie
- College of Marine Sciences, South China Agricultural University, No.483 Wushan Road, Guangzhou 510642, China; (F.C.); (J.-F.G.); (X.-C.L.); (D.-Z.X.)
| | - Chao Xu
- College of Marine Sciences, South China Agricultural University, No.483 Wushan Road, Guangzhou 510642, China; (F.C.); (J.-F.G.); (X.-C.L.); (D.-Z.X.)
- Correspondence:
| |
Collapse
|
23
|
Characterization of novel genotyping-by-sequencing (GBS)-based simple sequence repeats (SSRs) and their application for population genomics of Capoeta aculeata (Valenciennes, 1844). Mol Biol Rep 2021; 48:6471-6480. [PMID: 34420147 DOI: 10.1007/s11033-021-06653-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 08/16/2021] [Indexed: 10/20/2022]
Abstract
BACKGROUND The species Capoeta aculeata (Valenciennes, 1844) is one of the most important freshwater species endemic to Iran. However, the investigation of the population genetic structure of this species is limited by the low number of molecular markers currently described. METHODS AND RESULTS In this study, we implemented next generation sequencing technology to identify polymorphic microsatellite markers and investigate the population genetic structure of C. aculeata sampled from three geographical sites in Iran. We characterized and developed 36 novel polymorphic microsatellite markers and these loci were examined in 120 individuals from three populations occurring in the Zagros basin. The average number of alleles per locus varied from 1.7 to 16 (average = 7.89). The results showed that, the polymorphism information content (PIC) of these simple sequence repeat (SSR) loci varied from 0.254 to 0.888. The observed heterozygosity (HO) per locus ranged from 0.170 to 0.881, while the expected heterozygosity (HE) per locus was from 0.170 to 0.881. Among these SSR loci, 20 loci deviated significantly from the Hardy-Weinberg equilibrium after Bonferroni correction (p < 0.05). CONCLUSIONS These microsatellite markers could provide a valuable tool for future population and conservation genetics studies of C. aculeate and other closely related species.
Collapse
|
24
|
De Novo Transcriptomic Characterization Enables Novel Microsatellite Identification and Marker Development in Betta splendens. Life (Basel) 2021; 11:life11080803. [PMID: 34440547 PMCID: PMC8400612 DOI: 10.3390/life11080803] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 08/05/2021] [Accepted: 08/07/2021] [Indexed: 01/10/2023] Open
Abstract
The wild populations of the commercially valuable ornamental fish species, Betta splendens, and its germplasm resources have long been threatened by habitat degradation and contamination with artificially bred fish. Because of the lack of effective marker resources, population genetics research projects are severely hampered. To generate genetic data for developing polymorphic simple sequence repeat (SSR) markers and identifying functional genes, transcriptomic analysis was performed. Illumina paired-end sequencing yielded 105,505,486 clean reads, which were then de novo assembled into 69,836 unigenes. Of these, 35,751 were annotated in the non-redundant, EuKaryotic Orthologous Group, Swiss-Prot, Kyoto Encyclopedia of Genes and Genomes and Gene Ontology databases. A total of 12,751 SSR loci were identified from the transcripts and 7970 primer pairs were designed. One hundred primer pairs were randomly selected for PCR validation and 53 successfully generated target amplification products. Further validation demonstrated that 36% (n = 19) of the 53 amplified loci were polymorphic. These data could not only enrich the genetic information for the identification of functional genes but also effectively facilitate the development of SSR markers. Such knowledge would accelerate further studies on the genetic variation and evolution, comparative genomics, linkage mapping and molecular breeding in B. splendens.
Collapse
|
25
|
Guo H, Lin W, Yang L, Qiu Y, Kuang Y, Yang H, Zhang C, Li L, Li D, Tang R, Zhang X. Sub-chronic exposure to ammonia inhibits the growth of juvenile Wuchang bream (Megalobrama amblycephala) mainly by downregulation of growth hormone/insulin-like growth factor axis. ENVIRONMENTAL TOXICOLOGY 2021; 36:1195-1205. [PMID: 33720504 DOI: 10.1002/tox.23118] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 02/08/2021] [Accepted: 02/18/2021] [Indexed: 06/12/2023]
Abstract
In this study, healthy Wuchang bream (Megalobrama amblycephala) juveniles were exposed to 0, 5, 10, 20 and 30 mg/L total ammonia nitrogen for 30 days to elucidate toxic effects and mechanisms of ammonia on growth performance involved with the regulation of growth hormone/insulin-like growth factor (GH/IGF) and hypothalamic-pituitary-thyroid (HPT) axes. Our results showed that the increasing total ammonia nitrogen concentrations caused dose-depend decreases in the weight gain and specific growth rate but increases in the food conversion ratio and mortality in juvenile bream, indicating growth inhibitory effects induced by ammonia. Concurrently, GH, IGF-1 at protein and mRNA levels were significantly decreased in ammonia exposure groups (p < .05), while serum thyroid stimulating hormone, free thyroxine, free triiodothyronine levels were significantly reduced only in fish exposed to higher concentrations of 20 and 30 mg/L ammonia (p < .05), suggesting that ammonia exposure could perturb both GH/IGF-axis and HPT-axis functions. Furthermore, transcriptional levels of extracellular regulated protein kinases 2 (erk2), phosphatidylinositol 3-kinase (pi3k), protein kinase B (akt), target of rapamycin (tom) and ribosomal protein S6 kinase-polypeptide 1(s6k1) in the dorsal muscle were significantly down-regulated in the fish exposed to ammonia (p < .05). This fact indicated that MAPK/ERK pathway and PI3K/AKT pathway should be responsible for the growth inhibition. Combining the results of spearman correlation coefficient, it should be noted that the GH/IGF axis played a more important role in regulating the growth than the HPT axis in Wuchang bream under persistent ammonia stress.
Collapse
Affiliation(s)
- Honghui Guo
- College of Fisheries, Huazhong Agricultural University, Wuhan, China
| | - Wang Lin
- College of Fisheries, Huazhong Agricultural University, Wuhan, China
| | - Liping Yang
- College of Fisheries, Huazhong Agricultural University, Wuhan, China
| | - Yuming Qiu
- College of Fisheries, Huazhong Agricultural University, Wuhan, China
| | - Yu Kuang
- College of Fisheries, Huazhong Agricultural University, Wuhan, China
| | - Hui Yang
- College of Fisheries, Huazhong Agricultural University, Wuhan, China
| | - Ce Zhang
- College of Fisheries, Huazhong Agricultural University, Wuhan, China
| | - Li Li
- College of Fisheries, Huazhong Agricultural University, Wuhan, China
- Hubei Provincial Engineering Laboratory for Pond Aquaculture, Wuhan, China
- National Demonstration Center for Experimental Aquaculture Education (Huazhong Agricultural University), Wuhan, China
| | - Dapeng Li
- College of Fisheries, Huazhong Agricultural University, Wuhan, China
- Hubei Provincial Engineering Laboratory for Pond Aquaculture, Wuhan, China
- National Demonstration Center for Experimental Aquaculture Education (Huazhong Agricultural University), Wuhan, China
| | - Rong Tang
- College of Fisheries, Huazhong Agricultural University, Wuhan, China
- Hubei Provincial Engineering Laboratory for Pond Aquaculture, Wuhan, China
- National Demonstration Center for Experimental Aquaculture Education (Huazhong Agricultural University), Wuhan, China
| | - Xi Zhang
- College of Fisheries, Huazhong Agricultural University, Wuhan, China
- Hubei Provincial Engineering Laboratory for Pond Aquaculture, Wuhan, China
- National Demonstration Center for Experimental Aquaculture Education (Huazhong Agricultural University), Wuhan, China
| |
Collapse
|
26
|
Geng R, Liu H, Tan K, Wang Z, Wang W. RNase1 can modulate gut microbiota and metabolome after Aeromonas hydrophila infection in blunt snout bream. Environ Microbiol 2021; 23:5258-5272. [PMID: 33973327 DOI: 10.1111/1462-2920.15564] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 04/18/2021] [Accepted: 05/05/2021] [Indexed: 12/13/2022]
Abstract
Pancreatic ribonuclease (RNase1) of Megalobrama amblycephala exhibits both antimicrobial and digestive activity. The gut microbiome improve the digestion and metabolic capacity and enhance the functioning of the immune system of the host against pathogenic bacteria. In this study, we aimed to assess the protective effect of RNase1 on Aeromonas hydrophila-induced inflammation and intestinal microbial metabolism. Megalobrama amblycephala were randomly divided into three groups: control (injected PBS), infection (A. hydrophila-injected), and treatment group (RNase1 pretreatment 24 h before the A. hydrophila injection). The morphological symptoms were significantly alleviated by RNase1. RNase1 reshaped the perturbed gut microbiota by upregulating Proteobacteria and Vibrio richness and downregulating Firmicutes, Chlamydiae, Bacillus, and Gemmobacter richness. The lysophosphatidylcholine, (±) 17 HETE, D- (+) -cellobiose, and PC (20:5) in the treatment group were restored by RNase 1 protein treatment to the level of the control group. In the treatment group, phospholipid metabolism, fatty acid metabolism, glucose metabolism and lipid metabolism were different from the control and infection groups. The proinflammatory factors concentration in intestinal samples significantly increased after A. hydrophila infection. Our results revealed that RNase1 plays an important role in resistance to pathogen invasion, reducing inflammation, and improving intestinal function, thus inhibiting the occurrence of disease.
Collapse
Affiliation(s)
- Ruijing Geng
- College of Fisheries, Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education/Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, 430070, China
| | - Han Liu
- College of Fisheries, Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education/Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, 430070, China.,Engineering Research Center of Green development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education/Engineering Technology Research Center for Fish Breeding and Culture in Hubei Province, Wuhan, 430070, China
| | - Kianann Tan
- College of Fisheries, Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education/Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, 430070, China
| | - Zhiqiang Wang
- College of Fisheries, Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education/Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, 430070, China
| | - Weimin Wang
- College of Fisheries, Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education/Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, 430070, China
| |
Collapse
|
27
|
Yang Q, Liang H, Maulu S, Ge X, Ren M, Xie J, Xi B. Dietary phosphorus affects growth, glucolipid metabolism, antioxidant activity and immune status of juvenile blunt snout bream (Megalobrama amblycephala). Anim Feed Sci Technol 2021. [DOI: 10.1016/j.anifeedsci.2021.114896] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
28
|
Interactions between dietary carbohydrate and thiamine: implications on the growth performance and intestinal mitochondrial biogenesis and function of Megalobrama amblycephala. Br J Nutr 2021; 127:321-334. [PMID: 33749571 DOI: 10.1017/s000711452100101x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
A12-week experiment was conducted to evaluate the influences of thiamine ongrowth performance, and intestinal mitochondrial biogenesis and function of Megalobramaamblycephala fed a high-carbohydrate (HC) diet. Fish (24·73 (sem 0·45) g) were randomly assigned to one of four diets: two carbohydrate (CHO) levels (30 and 45 %) and two thiamine levels (0 and 1·5 mg/kg). HC diets significantly decreased DGC, GRMBW, FIMBW, intestinal activities of amylase, lipase, Na+, K+-ATPase, CK, complexes I, III and IV, intestinal ML, number of mitochondrial per field, ΔΨm, the P-AMPK: T-AMPK ratio, PGC-1β protein expression as well as the transcriptions of AMPKα1, AMPKα2, PGC-1β, mitochondrial transcription factor A, Opa-1, ND-1 and COX-1 and 2, while the opposite was true for ATP, AMP and reactive oxygen species, and the transcriptions of dynamin-related protein-1, fission-1 and mitochondrial fission factor. Dietarythiamine concentrations significantly increased DGC, GRMBW, intestinal activities of amylase, Na+, K+-ATPase, CK, complexes I and IV, intestinal ML, number of mitochondrial per field, ΔΨm, the P-AMPK:T-AMPK ratio, PGC-1β protein expression as well as the transcriptions of AMPKα1, AMPKα2, PGC-1β, Opa-1, ND-1, COX-1 and 2, SGLT-1 and GLUT-2. Furthermore, a significant interaction between dietary CHO and thiamine was observed in DGC, GRMBW, intestinal activities of amylase, CK, complexes I and IV, ΔΨm, the AMP:ATP ratio, the P-AMPK:T-AMPK ratio, PGC-1β protein expression as well as the transcriptions of AMPKα1, AMPKα2, PGC-1β, Opa-1, COX-1 and 2, SGLT-1 and GLUT-2. Overall, thiamine supplementation improved growth performance, and intestinal mitochondrial biogenesis and function of M. amblycephala fed HC diets.
Collapse
|
29
|
Chen J, Huang X, Geng R, Zhu D, Wang W, Liu H. Ribonuclease1 contributes to the antibacterial response and immune defense in blunt snout bream (Megalobrama amblycephala). Int J Biol Macromol 2021; 172:309-320. [PMID: 33454323 DOI: 10.1016/j.ijbiomac.2021.01.066] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 10/15/2020] [Accepted: 01/12/2021] [Indexed: 12/14/2022]
Abstract
Ribonuclease 1 (RNase1) is a vertebrate-specific enzyme that mainly performs digestive activity in herbivorous mammals. Here we used bacterial viability assays to explore its antimicrobial activity in blunt snout bream (Megalobrama amblycephala). The results showed that Ma-RNase1 rapidly killed Gram-negative and Gram-positive bacteria at micromolar concentrations. Ma-RNase1 increased the permeability of bacterial outer and inner membranes, thus reducing the integrity of bacterial cell wall and membrane. Moreover, Ma-RNase1 effectively counteracted the tissue damage and apoptosis caused by Aeromonas hydrophila infection. Quantitative real-time PCR and immunoblot analysis indicated that RNase1 mRNA and protein were up-regulated in the kidney and gut during infection. Furthermore, A. hydrophila infection significantly induced Tnf-α and Il-1β mRNA expression in liver, but not in the RNase1 pre-treatment group. In addition, a significant increase in the expression of immune-related genes (Nf-κb and Tlr4) was found in liver, kidney and gut of A. hydrophila-infected fish, while a decrease in Myd88 and Tlr4 levels was found in liver, spleen, kidney and gut in the group pre-treated with RNase1. Collectively, these data suggest that Ma-RNase1 has antimicrobial function both in vitro and in vivo, and contributes to the protective effect and immune defense of blunt snout bream.
Collapse
Affiliation(s)
- Jing Chen
- College of Fisheries, Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education/Key laboratory of Freshwater Animal Breeding, Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan 430070, China
| | - Xin Huang
- College of Fisheries, Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education/Key laboratory of Freshwater Animal Breeding, Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan 430070, China
| | - Ruijing Geng
- College of Fisheries, Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education/Key laboratory of Freshwater Animal Breeding, Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan 430070, China
| | - Dongmei Zhu
- College of Fisheries, Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education/Key laboratory of Freshwater Animal Breeding, Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan 430070, China
| | - Weimin Wang
- College of Fisheries, Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education/Key laboratory of Freshwater Animal Breeding, Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan 430070, China.
| | - Han Liu
- College of Fisheries, Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education/Key laboratory of Freshwater Animal Breeding, Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
30
|
Xu C, Zhong XQ, Li XF, Shi HJ, Liu WB. Regulation of growth, intestinal microflora composition and expression of immune-related genes by dietary supplementation of Streptococcus faecalis in blunt snout bream (Megalobrama amblycephala). FISH & SHELLFISH IMMUNOLOGY 2020; 105:195-202. [PMID: 32652298 DOI: 10.1016/j.fsi.2020.07.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 07/05/2020] [Accepted: 07/06/2020] [Indexed: 06/11/2023]
Abstract
A 10-week feeding trial was performed to investigate the effects of Streptococcus faecalis on the growth, intestinal microflora composition and expression of immune-related genes of blunt snout bream (Megalobrama amblycephala). Fish (46.32 ± 0.09 g) were fed four experimental diets containing 0 cfu/g (SF0, control), 1 × 105 cfu/g (SF1), 1 × 106 cfu/g (SF2) and 1 × 107 cfu/g (SF3) of S. faecalis, respectively. Results showed that daily growth index (DGI), feed efficiency ratio (FER), plasma glucose level, plasma contents of total protein and albumin as well as intestinal serous layer (SL), muscular layer (ML), submucous layer (SML), villi thickness (VT) and lamina propria (LP) were all no significant difference among all the treatments, whereas their (except plasma albumin content and intestinal ML) relatively high values were found in the SF2 group. Meanwhile, the intake of the SF2 diets significantly increased plasma globulin content and intestinal digestive enzymes activities, the opposite was true for the activities of plasma aspartate aminotransferase (AST) and alanine transaminase (ALT). In addition, the analysis of the intestinal microbiota showed that fish fed the SF2 diet have the highest values of intestinal alpha diversity and intestinal abundances of Actinobacteria, Chlamydiae, Firmicutes, Planctomycetes, Verrucomicrobia, Clostridium and Synechococcus, while the opposite was true for intestinal abundances of Acinetobacter, Anoxybacillus, Flavobacterium, Planctomyces, Plesiomonas, Pseudomonas, Staphylococcus and Clostridium perfringens. At the molecular level, the expression levels of tumour necrosis factor α (TNF α), interleukin 1β (IL 1β) and heat shock proteins 7 (HSP 70) in head kidney and spleen were all decreased significantly with the increasing S. faecalis levels up to 1 × 106 cfu/g, and then they were increased with further increasing S. faecalis levels. Overall, dietary supplementation of S. faecalis at 1 × 106 cfu/g could improve the intestinal health and innate immunity of blunt snout bream.
Collapse
Affiliation(s)
- Chao Xu
- College of Marine Sciences of South China Agricultural University, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China; Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, College of Animal Science and Technology, Nanjing Agricultural University, No. 1 Weigang Road, Nanjing, 210095, People's Republic of China
| | - Xiao-Qun Zhong
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, College of Animal Science and Technology, Nanjing Agricultural University, No. 1 Weigang Road, Nanjing, 210095, People's Republic of China
| | - Xiang-Fei Li
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, College of Animal Science and Technology, Nanjing Agricultural University, No. 1 Weigang Road, Nanjing, 210095, People's Republic of China.
| | - Hua-Juan Shi
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, College of Animal Science and Technology, Nanjing Agricultural University, No. 1 Weigang Road, Nanjing, 210095, People's Republic of China
| | - Wen-Bin Liu
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, College of Animal Science and Technology, Nanjing Agricultural University, No. 1 Weigang Road, Nanjing, 210095, People's Republic of China
| |
Collapse
|
31
|
Hrbáčková M, Dvořák P, Takáč T, Tichá M, Luptovčiak I, Šamajová O, Ovečka M, Šamaj J. Biotechnological Perspectives of Omics and Genetic Engineering Methods in Alfalfa. FRONTIERS IN PLANT SCIENCE 2020; 11:592. [PMID: 32508859 PMCID: PMC7253590 DOI: 10.3389/fpls.2020.00592] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 04/20/2020] [Indexed: 05/07/2023]
Abstract
For several decades, researchers are working to develop improved major crops with better adaptability and tolerance to environmental stresses. Forage legumes have been widely spread in the world due to their great ecological and economic values. Abiotic and biotic stresses are main factors limiting legume production, however, alfalfa (Medicago sativa L.) shows relatively high level of tolerance to drought and salt stress. Efforts focused on alfalfa improvements have led to the release of cultivars with new traits of agronomic importance such as high yield, better stress tolerance or forage quality. Alfalfa has very high nutritional value due to its efficient symbiotic association with nitrogen-fixing bacteria, while deep root system can help to prevent soil water loss in dry lands. The use of modern biotechnology tools is challenging in alfalfa since full genome, unlike to its close relative barrel medic (Medicago truncatula Gaertn.), was not released yet. Identification, isolation, and improvement of genes involved in abiotic or biotic stress response significantly contributed to the progress of our understanding how crop plants cope with these environmental challenges. In this review, we provide an overview of the progress that has been made in high-throughput sequencing, characterization of genes for abiotic or biotic stress tolerance, gene editing, as well as proteomic and metabolomics techniques bearing biotechnological potential for alfalfa improvement.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Jozef Šamaj
- Department of Cell Biology, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University Olomouc, Olomouc, Czechia
| |
Collapse
|
32
|
Yi S, Liu LF, Zhou LF, Zhao BW, Wang WM, Gao ZX. Screening of Biomarkers Related to Ovarian Maturation and Spawning in Blunt Snout Bream (Megalobrama amblycephala) Based on Metabolomics and Transcriptomics. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2020; 22:180-193. [PMID: 32006128 DOI: 10.1007/s10126-019-09943-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 12/29/2019] [Indexed: 06/10/2023]
Abstract
In fish breeding practices, gamete maturity of females is vital to reproductive success. For some species, it is possible to estimate the female maturation status based on abdomen observation, but quite difficult for some species which mature at big size. To screen out the potential biomarker in fish blood relating to female maturation, we employed the approach integrating the UPLC-MS/MS and RNA-seq techniques to investigate the metabolites and genes reflecting the sexual maturation and spawning of female blunt snout bream Megalobrama amblycephala. The study included four groups, 1-year-old immature female individuals, 2-year-old immature female individuals, 2-year-old sexually mature female individuals, and 2-year-old sexually mature female individuals after 24 h of successful spawning. The upregulated metabolites in mature females were involved in "steroid hormone biosynthesis," "metabolic pathways," "glycerophospholipid metabolism," etc. compared with those of immature individuals. As the key intermediate of steroid hormone biosynthesis, 17α-hydroxypregnenolone exhibited the highest level in 2-year-old mature females than in the immature females. Meanwhile, the metabolites (i.e., dodecanoic acid and myristic acid) participating in fatty acid synthesis exhibited much lower levels in the females after spawning than those before spawning. In addition to the metabolites, the genes involved in ovarian steroidogenesis were significantly upregulated in the 2-year-old immature females compared to the 1-year-old immature females, indicating that the ovarian steroidogenesis plays important roles in ovarian development of M. amblycephala at the early stages. The significant upregulation of genes (i.e., itpr1, camk2, and mekk2) involved in the "GnRH signaling pathway" was observed in the mature females compared with the immature females, which indicated that the estrogen levels increased after female maturation in M. amblycephala. Moreover, many genes (e.g., gck, creb1, tf2-9, ryr2, asgr1, and creb1) regulating insulin secretion and thyroid hormone synthesis were significantly downregulated after female spawning. The dynamics of gene expression and metabolites observed in this study provide novel cues for guiding fish practical artificial reproduction.
Collapse
Affiliation(s)
- Shaokui Yi
- College of Fisheries, Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education/Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, No. 1 Shizishan Street, Hongshan District, Wuhan, 430070, Hubei, China
- Engineering Research Center of Green development for conventional aquatic biological industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan, 430070, China
| | - Li-Fang Liu
- College of Fisheries, Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education/Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, No. 1 Shizishan Street, Hongshan District, Wuhan, 430070, Hubei, China
- Engineering Research Center of Green development for conventional aquatic biological industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan, 430070, China
| | - Lai-Fang Zhou
- College of Fisheries, Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education/Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, No. 1 Shizishan Street, Hongshan District, Wuhan, 430070, Hubei, China
- Engineering Research Center of Green development for conventional aquatic biological industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan, 430070, China
| | - Bo-Wen Zhao
- College of Fisheries, Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education/Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, No. 1 Shizishan Street, Hongshan District, Wuhan, 430070, Hubei, China
- Engineering Research Center of Green development for conventional aquatic biological industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan, 430070, China
| | - Wei-Min Wang
- College of Fisheries, Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education/Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, No. 1 Shizishan Street, Hongshan District, Wuhan, 430070, Hubei, China
- Engineering Research Center of Green development for conventional aquatic biological industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan, 430070, China
| | - Ze-Xia Gao
- College of Fisheries, Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education/Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, No. 1 Shizishan Street, Hongshan District, Wuhan, 430070, Hubei, China.
- Engineering Research Center of Green development for conventional aquatic biological industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan, 430070, China.
- Engineering Technology Research Center for Fish Breeding and Culture in Hubei Province, Wuhan, 430070, China.
| |
Collapse
|
33
|
Zhu C, Zhang L, Ding H, Pan Z. Transcriptome-wide identification and characterization of the Sox gene family and microsatellites for Corbicula fluminea. PeerJ 2019; 7:e7770. [PMID: 31660260 PMCID: PMC6814067 DOI: 10.7717/peerj.7770] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 08/27/2019] [Indexed: 11/30/2022] Open
Abstract
The Asian clam, Corbicula fluminea, is a commonly consumed small freshwater bivalve in East Asia. However, available genetic information of this clam is still limited. In this study, the transcriptome of female C. fluminea was sequenced using the Illumina HiSeq 2500 platform. A total of 89,563 unigenes were assembled with an average length of 859 bp, and 36.7% of them were successfully annotated. Six members of Sox gene family namely SoxB1, SoxB2, SoxC, SoxD, SoxE and SoxF were identified. Based on these genes, the divergence time of C. fluminea was estimated to be around 476 million years ago. Furthermore, a total of 3,117 microsatellites were detected with a distribution density of 1:12,960 bp. Fifty of these microsatellites were randomly selected for validation, and 45 of them were successfully amplified with 31 polymorphic ones. The data obtained in this study will provide useful information for future genetic and genomic studies in C. fluminea.
Collapse
Affiliation(s)
- Chuankun Zhu
- Jiangsu Engineering Laboratory for Breeding of Special Aquatic Organisms, Huaiyin Normal University, Huai'an, Jiangsu, China.,Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection, Huaiyin Normal University, Huai'an, China
| | - Lei Zhang
- Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection, Huaiyin Normal University, Huai'an, China.,Key Laboratory of Fishery Sustainable Development and Water Environment Protection of Huai'an City, Huai'an Sub Center of the Institute of Hydrobiology, Chinese Academy of Sciences, Huai'an, China
| | - Huaiyu Ding
- Jiangsu Engineering Laboratory for Breeding of Special Aquatic Organisms, Huaiyin Normal University, Huai'an, Jiangsu, China.,Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection, Huaiyin Normal University, Huai'an, China
| | - Zhengjun Pan
- Jiangsu Engineering Laboratory for Breeding of Special Aquatic Organisms, Huaiyin Normal University, Huai'an, Jiangsu, China.,Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection, Huaiyin Normal University, Huai'an, China
| |
Collapse
|
34
|
Yang Z, Xu G, Ge X, Liu B, Xu P, Song C, Zhou Q, Zhang H, Zhang W, Shan F, Sun C. The effects of crowding stress on the growth, physiological response, and gene expression of the Nrf2-Keap1 signaling pathway in blunt snout bream (Megalobrama amblycephala) reared under in-pond raceway conditions. Comp Biochem Physiol A Mol Integr Physiol 2019; 231:19-29. [DOI: 10.1016/j.cbpa.2019.01.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 11/23/2018] [Accepted: 01/06/2019] [Indexed: 12/12/2022]
|
35
|
Gonadal, Not Maternal, Acquisition of Duplicated pax6 Orthologs in Megalobrama Amblycephala. Int J Mol Sci 2019; 20:ijms20071710. [PMID: 30959850 PMCID: PMC6480603 DOI: 10.3390/ijms20071710] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 04/03/2019] [Accepted: 04/03/2019] [Indexed: 01/12/2023] Open
Abstract
: The highly conserved transcription factor Pax6 is involved in the development of the eyes, brain, and pancreas in vertebrates and invertebrates, whereas the additional expression pattern in other organs is still elusive. In this study, we cloned and characterized two pax6 homologs in blunt snout bream (Megalobrama amblycephala), named Mapax6a and Mapax6b. The protein alignment and phylogenetic tree showed that Mapax6a and Mapax6b were highly conserved compared with their counterparts in other species. Genomic information analysis revealed that the synteny conservation of Wilms tumor, Aniridia, genitourinary abnormalities, and mental retardation loci was also maintained in this species. By reverse transcription polymerase chain reaction, the expression of Mapax6a was later than that of Mapax6b which was found in the blastula stage, while the expression of Mapax6a started from the somite stage, and both of them persisted in a subsequent stage during the embryonic development. By RNA and protein detection, Mapax6a and Mapax6b were detected in the eye and brain as canonic patterns, and most importantly, they were also enriched in germ cells of the testis and ovary. Therefore, our findings validate the duplication of pax6 in fish, confirm the classical expression patterns in the brain and eye, and, for the first time, present a new acquisition of Mapax6a and Mapax6b in gonadal germ cells in particular. Therefore, our results enrich the expression pattern and evolutionary relationship of pax6 by suggesting that duplicated Mapax6 is involved in gametogenesis in Megalobrama amblycephala.
Collapse
|
36
|
Zhong XQ, Liu MY, Xu C, Liu WB, Abasubong KP, Li XF. Dietary supplementation of Streptococcus faecalis benefits the feed utilization, antioxidant capability, innate immunity, and disease resistance of blunt snout bream (Megalobrama amblycephala). FISH PHYSIOLOGY AND BIOCHEMISTRY 2019; 45:643-656. [PMID: 30539413 DOI: 10.1007/s10695-018-0595-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Accepted: 11/26/2018] [Indexed: 06/09/2023]
Abstract
This study aimed to investigate the effects of Streptococcus faecalis on the growth performance, intestinal histology, antioxidant capability, innate immunity, and disease resistance of blunt snout bream Megalobrama amblycephala. Fish were fed five experimental diets containing 0 (SF0, control), 1 × 105 (SF1), 1 × 106 (SF2), 1 × 107 (SF3), and 1 × 108 cfu/g (SF4) of Streptococcus faecalis, respectively, for 10 weeks. After the feeding trial, fish were challenged by Aeromonas hydrophila with the cumulative mortality recorded during a period of 96 h. The results showed that WG and FI of fish both showed no significant difference (P > 0.05) among all the treatments. However, the FCR was significantly (P < 0.05) affected by Streptococcus faecalis levels with the lowest value observed in the SF2 group, whereas the opposite was true for intestinal microvillus length (P < 0.05). Dietary supplementation of 1 × 106 cfu/g Streptococcus faecalis significantly (P < 0.05) increased the hepatic activities of SOD, CAT, and GPx; plasma activities of LZM, MPO, ACP, and AKP; and the levels of C3, C4, and IgM of fish, compared with the control group. Similar results were also observed in the tissue expressions of Leap-I, Leap-II, muc2, and muc5b (P < 0.05), whereas the opposite was true for liver MDA contents and plasma NO levels (P < 0.05). At 96 h after challenge, the cumulative mortality of the control was significantly (P < 0.05) higher than that of the SF2 group, but it showed no statistical difference (P > 0.05) with that of the other treatments. These results indicated that dietary supplementation of 1 × 106 cfu/g Streptococcus faecalis could not only improve the feed utilization of blunt snout bream but also enhance its antioxidant capability, innate immunity, and disease resistance.
Collapse
Affiliation(s)
- Xiao-Qun Zhong
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Ming-Yang Liu
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, China
| | - Chao Xu
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Wen-Bin Liu
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Kenneth-Prudence Abasubong
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xiang-Fei Li
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
37
|
Liang H, Mokrani A, Chisomo-Kasiya H, Ji K, Ge X, Ren M, Liu B, Xi B, Sun A. Dietary leucine affects glucose metabolism and lipogenesis involved in TOR/PI3K/Akt signaling pathway for juvenile blunt snout bream Megalobrama amblycephala. FISH PHYSIOLOGY AND BIOCHEMISTRY 2019; 45:719-732. [PMID: 30632024 DOI: 10.1007/s10695-018-0594-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 11/26/2018] [Indexed: 05/12/2023]
Abstract
The present study evaluated the mechanisms governing insulin signaling, glucose metabolism, and lipogenesis in juvenile fish fed with different dietary leucine levels. Fish were fed six practical diets with graded leucine levels ranging from 0.90 to 2.94% of dry basis for 8 weeks. The trial results showed that, compared to the control group (0.90%), optimal dietary leucine level (1.72%) resulted in the up-regulation of mRNA expression related to insulin signaling pathway, including target of rapamycin (TOR), insulin receptor substrate 1 (IRS-1), phosphoinositide 3-kinase (PI3K), and protein kinase B (Akt). However, an excessive leucine level (2.94%) led to protein S6 kinase 1 (S6K1) overexpression and inhibited TOR, IRS-1, PI3K, and Akt mRNA expressions. The protein level of TOR, S6K1, IRS-1, PI3K, and Akt showed a similar result with mRNA level of these genes. Optimal dietary leucine level (1.72%) significantly improved plasma insulin content, while high level of leucine showed an inhibiting phenomenon. Optimal dietary leucine level (1.72%) could reduce plasma glucose by enhancing the ability of glycometabolism including improving glucose transporter 2 (GLUT2), glucokinase (GK) expressions and down-regulating phosphoenolpyruvate carboxykinase (PEPCK) expression. While an excessive leucine level (2.94%) resulted in high plasma glucose by inhibiting the ability of glycometabolism including lowering GLUT2 and GK expressions, and improving glucose-6-phosphatase (G6Pase) and PEPCK expressions. The relative expressions of pyruvate kinase (PK) and glycogen synthase (GS) were not significantly affected by dietary leucine levels. Dietary leucine level of 1.33% could improve plasma triglyceride content (TG) by enhancing lipogenesis including improving sterol-response element-binding protein 1 (SREBP1), fatty acid synthase (FAS), acetyl CoA carboxylase (ACC), and glucose-6-phosphate dehydrogenase (G6PDH) expressions compared to the control group (0.90%). Total cholesterol (TC) was not significantly affected by dietary leucine levels. The present results indicate that optimal leucine level could improve glycolysis and fatty acid synthesis through improving insulin sensitivity in juvenile blunt snout bream. However, excessive dietary leucine level resulted in high plasma glucose, which led to insulin resistance by inhibiting the gene expressions of insulin signaling pathway and activating gluconeogenesis-related gene expression.
Collapse
Affiliation(s)
- Hualiang Liang
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, 214081, China
| | - Ahmed Mokrani
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, 214081, China
| | | | - Ke Ji
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, 214081, China
| | - Xianping Ge
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, 214081, China.
- Key Laboratory for Genetic Breeding of Aquatic Animals and Aquaculture Biology, Freshwater Fisheries Research Center (FFRC), Chinese Academy of Fishery Sciences (CAFS), Wuxi, 214081, China.
| | - Mingchun Ren
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, 214081, China.
- Key Laboratory for Genetic Breeding of Aquatic Animals and Aquaculture Biology, Freshwater Fisheries Research Center (FFRC), Chinese Academy of Fishery Sciences (CAFS), Wuxi, 214081, China.
| | - Bo Liu
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, 214081, China
- Key Laboratory for Genetic Breeding of Aquatic Animals and Aquaculture Biology, Freshwater Fisheries Research Center (FFRC), Chinese Academy of Fishery Sciences (CAFS), Wuxi, 214081, China
| | - Bingwen Xi
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, 214081, China
- Key Laboratory for Genetic Breeding of Aquatic Animals and Aquaculture Biology, Freshwater Fisheries Research Center (FFRC), Chinese Academy of Fishery Sciences (CAFS), Wuxi, 214081, China
| | - Ajun Sun
- Key Laboratory for Genetic Breeding of Aquatic Animals and Aquaculture Biology, Freshwater Fisheries Research Center (FFRC), Chinese Academy of Fishery Sciences (CAFS), Wuxi, 214081, China
| |
Collapse
|
38
|
Xu C, Li XF, Tian HY, Shi HJ, Zhang DD, Abasubong KP, Liu WB. Metformin improves the glucose homeostasis of Wuchang bream fed high-carbohydrate diets: a dynamic study. Endocr Connect 2019; 8:182-194. [PMID: 30703066 PMCID: PMC6391905 DOI: 10.1530/ec-18-0517] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Accepted: 01/30/2019] [Indexed: 01/03/2023]
Abstract
After a 12-week feeding trial, the glucose tolerance test was performed in Megalobrama amblycephala to evaluate the effects of metformin on the metabolic responses of glycolipids. Plasma insulin peaked at 2 h, then decreased to the basal value at 8-12 h post-injection. Plasma triglyceride levels and liver glycogen contents of the control group was decreased significantly during the first 2 and 1 h, respectively. Then, they returned to basal values at 12 h. During the whole sampling period, the high-carbohydrate groups had significantly higher levels of plasma metabolites and liver glycogen than those of the control group, and metformin supplementation enhanced these changes (except insulin levels). Glucose administration lowered the transcriptions of ampk α1, ampk α2, pepck, g6pase, fbpase, cpt IA and aco, the phosphorylation of Ampk α and the activities of the gluconeogenic enzymes during the first 2-4 h, while the opposite was true of glut 2, gs, gk, pk, accα and fas. High-carbohydrate diets significantly increased the transcriptions of ampk α1, ampk α2, glut 2, gs, gk, pk, accα and fas, the phosphorylation of Ampk α and the activities of the glycolytic enzymes during the whole sampling period, while the opposite was true for the remaining indicators. Furthermore, metformin significantly upregulated the aforementioned indicators (except accα and fas) and the transcriptions of cpt IA and aco. Overall, metformin benefits the glucose homeostasis of Megalobrama amblycephala fed high-carbohydrate diets through the activation of Ampk and the stimulation of glycolysis, glycogenesis and fatty acid oxidation, while depressing gluconeogenesis and lipogenesis.
Collapse
Affiliation(s)
- Chao Xu
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Xiang-Fei Li
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Hong-Yan Tian
- Department of Ocean Technology, College of Marine and Biology Engineering, Yancheng Institute of Technology, Yancheng, Province Jiangsu, China
| | - Hua-Juan Shi
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Ding-Dong Zhang
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Kenneth Prudence Abasubong
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Wen-Bin Liu
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
- Correspondence should be addressed to W-B Liu:
| |
Collapse
|
39
|
Geng R, Jia Y, Chi M, Wang Z, Liu H, Wang W. RNase1 alleviates the Aeromonas hydrophila-induced oxidative stress in blunt snout bream. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2019; 91:8-16. [PMID: 30267738 DOI: 10.1016/j.dci.2018.09.018] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2018] [Revised: 09/23/2018] [Accepted: 09/23/2018] [Indexed: 06/08/2023]
Abstract
RNase1 is an enzyme important in host defense in vertebrates where it degrades the RNA of bacteria and viruses. We evaluated the effect of RNase1 on the resistance to Aeromonas hydrophila infection in Megalobrama amblycephala. The fish were randomly divided into four groups: a blank group (none-treated M. amblycephala), a control group (injected PBS), a challenge group (A. hydrophila-injected) and a treatment group (pre-treated with RNase1 24 h before the A. hydrophila injection), and we collected five tissues of each group. Then we recorded changes in the levels of glutathione (GSH), oxidized glutathione (GSSG), hepatic catalase (CAT), superoxide dismutase (SOD), malondialdehyde (MDA) and lysozyme; and the relative mRNA expression of catalase (CAT), selenium-dependent glutathione peroxidase (GPx), Cu/Superoxide dismutase (Cu/Zn-SOD), glutamate-cysteine ligase (GCLC), glutathione reductase (GR) and nuclear factor erythroid 2-related factor 2 (Nrf2) for four groups. The expression of six genes was highest in liver and blood of the blank group. It was significantly higher in the gut of the treatment group (compared to control and challenge groups) 12 h after the infection. The treatment group exhibited a significant increase in GSH, SOD and CAT activity, and a decrease in GSSG, MDA and lysozyme content (compared to the control and challenge groups) 6 and 12 h after infection. These results suggest that supplementation with RNase1 protein can enhance resistance against A. hydrophila infections in M. amblycephala.
Collapse
Affiliation(s)
- Ruijing Geng
- College of Fisheries, Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education/Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Yongyi Jia
- Agriculture Ministry Key Laboratory of Healthy Freshwater Aquaculture, Key Laboratory of Freshwater Aquaculture Genetic and Breeding of Zhejiang Province, Zhejiang Institute of Freshwater Fisheries, Huzhou, 313001, China.
| | - Meili Chi
- Agriculture Ministry Key Laboratory of Healthy Freshwater Aquaculture, Key Laboratory of Freshwater Aquaculture Genetic and Breeding of Zhejiang Province, Zhejiang Institute of Freshwater Fisheries, Huzhou, 313001, China.
| | - Zhiqiang Wang
- College of Fisheries, Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education/Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Han Liu
- College of Fisheries, Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education/Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, 430070, China; Agriculture Ministry Key Laboratory of Healthy Freshwater Aquaculture, Key Laboratory of Freshwater Aquaculture Genetic and Breeding of Zhejiang Province, Zhejiang Institute of Freshwater Fisheries, Huzhou, 313001, China.
| | - Weimin Wang
- College of Fisheries, Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education/Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
40
|
Development and characterization of 26 SNP markers in Ochetobius elongatus based on restriction site-associated DNA sequencing (RAD-seq). CONSERV GENET RESOUR 2018. [DOI: 10.1007/s12686-018-1075-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
41
|
Watanabe L, Gomes F, Vianez J, Nunes M, Cardoso J, Lima C, Schneider H, Sampaio I. De novo transcriptome based on next-generation sequencing reveals candidate genes with sex-specific expression in Arapaima gigas (Schinz, 1822), an ancient Amazonian freshwater fish. PLoS One 2018; 13:e0206379. [PMID: 30372461 PMCID: PMC6205615 DOI: 10.1371/journal.pone.0206379] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 10/11/2018] [Indexed: 12/24/2022] Open
Abstract
Background The Arapaima (Arapaima gigas) is one of the world's largest freshwater bony fish, and is found in the rivers of the Amazon basin. This species is a potential aquaculture resource, although reproductive management in captivity is limited in particular due to the lack of external sexual dimorphism. In this study, using the 454 Roche platform (pyrosequencing) techniques, we evaluated a major portion of the transcriptome of this important Amazonian species. Results Four libraries obtained from the liver and skin tissue of juvenile specimens (representing males and females separately) were sequenced, yielding 5,453,919 high-quality reads. The de novo transcriptome assembly resulted in 175,792 contigs, with 51,057 significant blast hits. A total of 38,586 transcripts were mapped by Gene Ontology using Blast2GO. We identified 20,219 genes in the total transcriptome (9,551 in the liver and 16,818 in the skin). The gene expression analyses indicated 105 genes in the liver and 204 in the skin with differentiated expression profiles, with 95 being over-expressed in the females and 214 in the males. The log2 Fold Change and heatmap based on Reads Per Kilobase per Million mapped reads (RPKM) revealed that the gene expression in the skin is highly differentiated between male and female arapaima, while the levels of expression in the liver are similar between the sexes. Conclusion Transcriptome analysis based on pyrosequencing proved to be a reliable tool for the identification of genes with differentiated expression profiles between male and female arapaima. These results provide useful insights into the molecular pathways of sexual dimorphism in this important Amazonian species, and for comparative analyses with other teleosts.
Collapse
Affiliation(s)
- Luciana Watanabe
- Laboratório de Genética e Biologia Molecular, Instituto de Estudos Costeiros (IECOS), Universidade Federal do Pará, Campus de Bragança, Pará, Brazil
- * E-mail:
| | - Fátima Gomes
- Laboratório de Genética e Biologia Molecular, Instituto de Estudos Costeiros (IECOS), Universidade Federal do Pará, Campus de Bragança, Pará, Brazil
| | - João Vianez
- Centro de Inovações Tecnológicas (CIT), Instituto Evandro Chagas (IEC), Ananindeua, Pará, Brazil
| | - Márcio Nunes
- Centro de Inovações Tecnológicas (CIT), Instituto Evandro Chagas (IEC), Ananindeua, Pará, Brazil
| | - Jedson Cardoso
- Centro de Inovações Tecnológicas (CIT), Instituto Evandro Chagas (IEC), Ananindeua, Pará, Brazil
| | - Clayton Lima
- Centro de Inovações Tecnológicas (CIT), Instituto Evandro Chagas (IEC), Ananindeua, Pará, Brazil
| | - Horacio Schneider
- Laboratório de Genética e Biologia Molecular, Instituto de Estudos Costeiros (IECOS), Universidade Federal do Pará, Campus de Bragança, Pará, Brazil
| | - Iracilda Sampaio
- Laboratório de Genética e Biologia Molecular, Instituto de Estudos Costeiros (IECOS), Universidade Federal do Pará, Campus de Bragança, Pará, Brazil
| |
Collapse
|
42
|
Shi HJ, Xu C, Liu MY, Wang BK, Liu WB, Chen DH, Zhang L, Xu CY, Li XF. Resveratrol Improves the Energy Sensing and Glycolipid Metabolism of Blunt Snout Bream Megalobrama amblycephala Fed High-Carbohydrate Diets by Activating the AMPK-SIRT1-PGC-1α Network. Front Physiol 2018; 9:1258. [PMID: 30254587 PMCID: PMC6141669 DOI: 10.3389/fphys.2018.01258] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Accepted: 08/20/2018] [Indexed: 01/06/2023] Open
Abstract
This study investigated the effects of resveratrol on the growth performance, energy sensing, glycolipid metabolism and glucose and insulin load of blunt snout bream Megalobrama amblycephala fed high-carbohydrate diets. Fish (39.44 ± 0.06 g) were randomly fed three diets: a control diet (30% carbohydrate), a high-carbohydrate diet (HC, 41% carbohydrate), and the HC diet supplemented with 0.04% resveratrol (HCR) for 12 weeks. Fish fed the HC diet had significantly high values of nitrogen and energy retention efficiency, hepatosomatic index, intraperitoneal fat ratio, whole-body lipid content and intraperitoneal fat glycogen and lipid contents compared to the control group, but showed little difference with the HCR treatment. Liver and muscle lipid contents and plasma levels of glucose, glycated serum protein, advanced glycation end products and total cholesterol of fish fed the HC diet were significantly higher than those of the control group, whereas the opposite was found with resveratrol supplementation. Fish fed the HC diet obtained significantly low values of plasma insulin levels and hepatic adenosine monophosphate (AMP) contents and NAD+/NADH ratio compared to HCR treatment, but showed little difference with the control group. The opposite was found for hepatic adenosine triphosphate (ATP) contents and the ATP/AMP ratio. In addition, fish fed the HC diet showed significantly high transcriptions of glucose transporter 2 (GLUT2), glucose-6-phosphate dehydrogenase, glycogen synthase, fatty acid synthetase (FAS), acetyl-CoA carboxylase α (ACCα), peroxisome proliferator-activated receptor γ and PPARα compared to the control group, whereas the opposite was found for protein levels of AMP-activated protein kinase α (t-AMPKα), phosphorylated AMP-activated protein kinase α (p-AMPKα), sirtuin-1 (SIRT1), and p-AMPKα/t-AMPKα ratio as well as the transcriptions of AMPKα1, AMPKα2, SIRT1, PPARγ coactivator-1α (PGC-1α), phosphoenolpyruvate carboxykinase, fructose-1,6-bisphosphatase (FBPase), glucose-6-phosphatase, carnitine palmitoyl transferase I (CPT I) and acyl-CoA oxidase. Resveratrol supplementation significantly up-regulated the protein levels of t-AMPK, p-AMPK, and SIRT1, p-AMPK/t-AMPK ratio as well as the transcriptions of AMPKα1, AMPKα2, SIRT1, PGC-1α, GLUT2, FBPase, and CPT I compared to HC group, while the opposite was found for sterol regulatory element-binding protein-1, FAS and ACCα. Furthermore, resveratrol improved glucose and insulin tolerance of fish fed the HC diet after glucose and insulin load.
Collapse
Affiliation(s)
- Hua-Juan Shi
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Chao Xu
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Ming-Yang Liu
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, China
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, China
| | - Bing-Ke Wang
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Wen-Bin Liu
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Dan-Hong Chen
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Li Zhang
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Chen-Yuan Xu
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Xiang-Fei Li
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
43
|
Xu C, Liu WB, Zhang DD, Shi HJ, Zhang L, Li XF. Benfotiamine, a Lipid-Soluble Analog of Vitamin B 1, Improves the Mitochondrial Biogenesis and Function in Blunt Snout Bream ( Megalobrama amblycephala) Fed High-Carbohydrate Diets by Promoting the AMPK/PGC-1β/NRF-1 Axis. Front Physiol 2018; 9:1079. [PMID: 30233383 PMCID: PMC6129842 DOI: 10.3389/fphys.2018.01079] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Accepted: 07/19/2018] [Indexed: 01/03/2023] Open
Abstract
This study evaluated the effects of benfotiamine on the growth performance and mitochondrial biogenesis and function in Megalobrama amblycephala fed high-carbohydrate (HC) diets. The fish (45.25 ± 0.34 g) were randomly fed six diets: the control diet (30% carbohydrate, C), the HC diet (43% carbohydrate), and the HC diet supplemented with different benfotiamine levels (0.7125 (HCB1), 1.425 (HCB2), 2.85 (HCB3), and 5.7 (HCB4) mg/kg) for 12 weeks. High-carbohydrate levels remarkably decreased the weight gain rate (WGR), specific growth rate (SGR), relative feed intake (RFI), feed conversion ratio (FCR), p-adenosine monophosphate (AMP)-activated protein kinase (AMPK)α/t-AMPKα ratio, peroxisome proliferator-activated receptor-γ coactivator-1β (PGC-1β) and nuclear respiratory factor-1 (NRF-1) protein expression, complexes I, III, and IV activities, and hepatic transcriptions of cytochrome b (CYT-b) and cytochrome c oxidase-2 (COX-2), whereas the opposite was true for plasma glucose, glycated serum protein, advanced glycation end product and insulin levels, tissue glycogen and lipid contents, hepatic adenosine triphosphate (ATP) and AMP contents and ATP/AMP ratio, complexes V activities, and the expressions of AMPKα-2, PGC-1β, NRF-1, mitochondrial transcription factor A (TFAM), mitofusin-1 (Mfn-1), optic atrophy-1 (Opa-1), dynamin-related protein-1 (Drp-1), fission-1 (Fis-1), mitochondrial fission factor (Mff), and ATP synthase-6 (ATP-6). As with benfotiamine supplementation, the HCB2 diet remarkably increased WGR, SGR, tissue glycogen and lipid contents, AMP content, p-AMPKα/t-AMPKα ratio, PGC-1β and NRF-1 levels, complexes I, III, IV, and V activities, and hepatic transcriptions of AMPKα-2, PGC-1β, NRF-1, TFAM, Mfn-1, Opa-1, CYT-b, COX-2, and ATP-6, while the opposite was true for the remaining indicators. Overall, 1.425 mg/kg benfotiamine improved the growth performance and mitochondrial biogenesis and function in fish fed HC diets by the activation of the AMPK/PGC-1β/NRF-1 axis and the upregulation of the activities and transcriptions of mitochondrial complexes as well as the enhancement of mitochondrial fusion coupled with the depression of mitochondrial fission.
Collapse
Affiliation(s)
| | | | | | | | | | - Xiang-Fei Li
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
44
|
Wei J, Guo X, Liu H, Chen Y, Wang W. The variation profile of intestinal microbiota in blunt snout bream (Megalobrama amblycephala) during feeding habit transition. BMC Microbiol 2018; 18:99. [PMID: 30176798 PMCID: PMC6122550 DOI: 10.1186/s12866-018-1246-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2018] [Accepted: 08/23/2018] [Indexed: 11/16/2022] Open
Abstract
Background The blunt snout bream (Megalobrama amblycephala) is one of the most important commercial herbivorous fish in China, and dietary transition is an important event in blunt snout bream development. Gut microbiota has a vital role to host animal. However, little was known about the relationship among feeding habits transition, gut microbiota and digestive enzymes of gut content. Results In this study, 186,328 high-quality reads from nine 16S rRNA libraries were obtained using the Illumina MiSeq PE300 platform. The valid sequences were classified into 388 Operational Taxonomic Units, and a total of 223 genera, belonging to 20 phyla, were identified. The clustering result of gut bacterial communities is consistently related to the clustering result of intestinal content compositions. Proteobacteria and Firmicutes constitute the ‘core’ gut microbiota of blunt snout bream. Cetobacterium and Rhizobium were identified as microbiological markers of gut microbiota at zooplankton-based diet stages and diet transition stages, respectively. Moreover, thirteen potential cellulose-degrading bacteria were detected in our study. The canonical redundancy analysis (RDA) revealed that the feeding habits strongly influenced the gut microbiota and the digestive enzyme activities of gut content, while the result of PICRUSt test suggests that the metabolic capacity of gut microbiota was affected by feeding habit. Conclusions This study provided a comprehensive survey of the gut microbiota in blunt snout bream during its dietary transition period for the first time and clearly showed that the gut microbiota was strongly affected by feeding habit. This work allows us to better understand the relationship among gut microbiota, nutrition metabolism and feeding habits in vertebrate. Further, our study provides a reference for future studies investigating the metabolic adaption of herbivorous fish to shift to a vegetarian diet during their life history. Electronic supplementary material The online version of this article (10.1186/s12866-018-1246-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jin Wei
- College of Fisheries, Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education/Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Xianwu Guo
- Lab of Biotecnología Genómica, Centro de Biotecnología Genómica, Instituto de Politécnico Nacional, Boulevard del Maestro S/N esq. Elías Piña, Col. Narciso Mendoza, C.P. 88710, Cd, Reynosa, Tamaulipas, Mexico
| | - Han Liu
- College of Fisheries, Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education/Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Yuanyuan Chen
- College of Fisheries, Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education/Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Weimin Wang
- College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China.
| |
Collapse
|
45
|
Ren M, Mokrani A, Liang H, Ji K, Xie J, Ge X, Liu B. Dietary Chromium Picolinate Supplementation Affects Growth, Whole-Body Composition, and Gene Expression Related to Glucose Metabolism and Lipogenesis in Juvenile Blunt Snout Bream, Megalobrama amblycephala. Biol Trace Elem Res 2018; 185:205-215. [PMID: 29344818 DOI: 10.1007/s12011-018-1242-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2017] [Accepted: 01/08/2018] [Indexed: 12/11/2022]
Abstract
An 11-week feeding trial was carried out to investigate the effects of supplemented chromium picolinate (Cr-Pic) on the growth, whole-body composition, and relative mRNA expression related to lipogenesis and glucose metabolism in juvenile blunt snout bream. Seven isonitrogenous and isoenergetic diets with graded Cr supplementation levels were fed to triplicate groups. The final weight (FW), feed conversion ratio (FCR), and specific growth rate (SGR) were improved with increasing dietary Cr supplementation levels up to 0.4 mg/kg, and thereafter showed relatively constant. However, 12.0 mg/kg dietary Cr supplementation decreased growth and feed utilization. Based on SGR and FCR, the optimal dietary Cr supplementation level for the juvenile was estimated to be 0.28 mg/kg. Significantly higher plasma insulin levels were found in juvenile fed diets with 0.4 and 0.8 mg/kg Cr supplementation compared to those fed diet sans supplemented Cr. Plasma glucose levels decreased with increasing dietary Cr supplementation, and the lowest value was remarked in the group added 3.2 mg/kg of Cr. Adding 0.4-0.8 mg/kg Cr enhanced insulin receptor substrate 1 (IRS-1), phosphoinositide-3-kinase (PI3K), and pyruvate kinase (PK) and inhibited expression of phosphoenolpyruvate carboxykinase (PEPCK), glucose-6-phosphatase (G6Pase), and glycogen synthase (GS) mRNA levels. High dietary Cr (12.0 mg/kg) supplementation resulted in high G6Pase and PEPCK expression. The highest content of whole-body lipid was remarked in fish fed with 0.4 mg/kg dietary Cr, which related to the enhanced gene expression related to lipogenesis; thereafter, mRNA levels showed a diminishing trend. These findings indicate that optimum dietary Cr-Pic supplementation has a positive effect on growth and blood glucose homeostasis by modifying the mRNA levels related to glucose metabolism and lipogenesis in juvenile blunt snout bream.
Collapse
Affiliation(s)
- Mingchun Ren
- Key Laboratory for Genetic Breeding of Aquatic Animals and Aquaculture Biology, Freshwater Fisheries Research Center (FFRC), Chinese Academy of Fishery Sciences (CAFS), Wuxi, 214081, People's Republic of China.
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, 214081, People's Republic of China.
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, China.
| | - Ahmed Mokrani
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, 214081, People's Republic of China
| | - Hualiang Liang
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, 214081, People's Republic of China
| | - Ke Ji
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, 214081, People's Republic of China
| | - Jun Xie
- Key Laboratory for Genetic Breeding of Aquatic Animals and Aquaculture Biology, Freshwater Fisheries Research Center (FFRC), Chinese Academy of Fishery Sciences (CAFS), Wuxi, 214081, People's Republic of China
| | - Xianping Ge
- Key Laboratory for Genetic Breeding of Aquatic Animals and Aquaculture Biology, Freshwater Fisheries Research Center (FFRC), Chinese Academy of Fishery Sciences (CAFS), Wuxi, 214081, People's Republic of China.
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, 214081, People's Republic of China.
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, China.
| | - Bo Liu
- Key Laboratory for Genetic Breeding of Aquatic Animals and Aquaculture Biology, Freshwater Fisheries Research Center (FFRC), Chinese Academy of Fishery Sciences (CAFS), Wuxi, 214081, People's Republic of China
| |
Collapse
|
46
|
Pai TW, Li KH, Yang CH, Hu CH, Lin HJ, Wang WD, Chen YR. Multiple model species selection for transcriptomics analysis of non-model organisms. BMC Bioinformatics 2018; 19:284. [PMID: 30367568 PMCID: PMC6101069 DOI: 10.1186/s12859-018-2278-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Background Transcriptomic sequencing (RNA-seq) related applications allow for rapid explorations due to their high-throughput and relatively fast experimental capabilities, providing unprecedented progress in gene functional annotation, gene regulation analysis, and environmental factor verification. However, with increasing amounts of sequenced reads and reference model species, the selection of appropriate reference species for gene annotation has become a new challenge. Methods We proposed a novel approach for finding the most effective reference model species through taxonomic associations and ultra-conserved orthologous (UCO) gene comparisons among species. An online system for multiple species selection (MSS) for RNA-seq differential expression analysis was developed, and comprehensive genomic annotations from 291 reference model eukaryotic species were retrieved from the RefSeq, KEGG, and UniProt databases. Results Using the proposed MSS pipeline, gene ontology and biological pathway enrichment analysis can be efficiently achieved, especially in the case of transcriptomic analysis of non-model organisms. The results showed that the proposed method solved problems related to limitations in annotation information and provided a roughly twenty-fold reduction in computational time, resulting in more accurate results than those of traditional approaches of using a single model reference species or the large non-redundant reference database. Conclusions Selection of appropriate reference model species helps to reduce missing annotation information, allowing for more comprehensive results than those obtained with a single model reference species. In addition, adequate model species selection reduces the computational time significantly while retaining the same order of accuracy. The proposed system indeed provides superior performance by selecting appropriate multiple species for transcriptomic analysis compared to traditional approaches. Electronic supplementary material The online version of this article (10.1186/s12859-018-2278-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Tun-Wen Pai
- Department of Computer Science and Engineering, National Taiwan Ocean University, Keelung, Taiwan. .,Department of Computer Science and Information Engineering, National Taipei University of Technology, Taipei, Taiwan.
| | - Kuan-Hung Li
- Department of Computer Science and Engineering, National Taiwan Ocean University, Keelung, Taiwan
| | - Cing-Han Yang
- Department of Computer Science and Engineering, National Taiwan Ocean University, Keelung, Taiwan
| | - Chin-Hwa Hu
- Department of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung, Taiwan
| | - Han-Jia Lin
- Department of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung, Taiwan
| | - Wen-Der Wang
- Department of Bioagricultural Science, National Chiayi University, Chiayi, Taiwan
| | - Yet-Ran Chen
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan
| |
Collapse
|
47
|
Full-length transcriptome of Misgurnus anguillicaudatus provides insights into evolution of genus Misgurnus. Sci Rep 2018; 8:11699. [PMID: 30076392 PMCID: PMC6076316 DOI: 10.1038/s41598-018-29991-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Accepted: 07/23/2018] [Indexed: 12/16/2022] Open
Abstract
Reconstruction and annotation of transcripts, particularly for a species without reference genome, plays a critical role in gene discovery, investigation of genomic signatures, and genome annotation in the pre-genomic era. This study generated 33,330 full-length transcripts of diploid M. anguillicaudatus using PacBio SMRT Sequencing. A total of 6,918 gene families were identified with two or more isoforms, and 26,683 complete ORFs with an average length of 1,497 bp were detected. Totally, 1,208 high-confidence lncRNAs were identified, and most of these appeared to be precursor transcripts of miRNAs or snoRNAs. Phylogenetic tree of the Misgurnus species was inferred based on the 1,905 single copy orthologous genes. The tetraploid and diploid M. anguillicaudatus grouped into a clade, and M. bipartitus showed a closer relationship with the M. anguillicaudatus. The overall evolutionary rates of tetraploid M. anguillicaudatus were significantly higher than those of other Misgurnus species. Meanwhile, 28 positively selected genes were identified in M. anguillicaudatus clade. These positively selected genes may play critical roles in the adaptation to various habitat environments for M. anguillicaudatus. This study could facilitate further exploration of the genomic signatures of M. anguillicaudatus and provide potential insights into unveiling the evolutionary history of tetraploid loach.
Collapse
|
48
|
Cai WC, Liu WB, Jiang GZ, Wang KZ, Sun CX, Li XF. Lysine supplement benefits the growth performance, protein synthesis, and muscle development of Megalobrama amblycephala fed diets with fish meal replaced by rice protein concentrate. FISH PHYSIOLOGY AND BIOCHEMISTRY 2018; 44:1159-1174. [PMID: 29730709 DOI: 10.1007/s10695-018-0503-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Accepted: 04/17/2018] [Indexed: 06/08/2023]
Abstract
This study aimed to investigate the effects of lysine supplement on the growth performance of blunt snout bream Megalobrama amblycephala fed diets with fish meal (FM) replaced by rice protein concentrate (RPC) with the potential mechanisms characterized. Fish were fed three diets, including the FM diet (containing FM), the RPC diet (FM replaced by RPC), and the MRPC diet (the RPC diet supplemented with lysine) for 8 weeks. Weight gain, protein efficiency ratio, and nitrogen and energy utilization of fish fed the FM diet were all significantly higher than those of the RPC treatment, but they showed no statistical difference with those of the MRPC group. Fish fed the RPC diet showed shorter villi length of the distal intestine than that of the other treatments. No significance was found in whole-body composition and intestinal and hepatic cell proliferation among all the treatments. However, fish fed the RPC diet obtained relatively low transcriptions of growth hormone (GH), GH receptor, insulin-like growth factor-I (IGF-I), target of rapamycin (TOR), ribosomal protein S6 kinase 1, myoblast determination protein, myogenic factor 5, and myostatin a (MSTNa) but high levels of eukaryotic translation initiation factor 4E-binding protein 2 (4E-BP2) than those of the other groups. Furthermore, little difference was found in the transcriptions of 4E-BP2, myogenin, muscle-specific regulatory 4, and MSTNb in muscle. Overall, these results showed that dietary supplement of lysine benefits the growth performance of blunt snout bream fed FM-free diets through the mediation of the GH-IGF-I axis, TOR signaling pathway, myogenic regulatory factors, and MSTN.
Collapse
Affiliation(s)
- Wan-Cun Cai
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, College of Animal Science and Technology, Nanjing Agricultural University, No.1 Weigang Road, Nanjing, 210095, People's Republic of China
| | - Wen-Bin Liu
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, College of Animal Science and Technology, Nanjing Agricultural University, No.1 Weigang Road, Nanjing, 210095, People's Republic of China
| | - Guang-Zhen Jiang
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, College of Animal Science and Technology, Nanjing Agricultural University, No.1 Weigang Road, Nanjing, 210095, People's Republic of China
| | - Kai-Zhou Wang
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, College of Animal Science and Technology, Nanjing Agricultural University, No.1 Weigang Road, Nanjing, 210095, People's Republic of China
| | - Cun-Xin Sun
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, College of Animal Science and Technology, Nanjing Agricultural University, No.1 Weigang Road, Nanjing, 210095, People's Republic of China
| | - Xiang-Fei Li
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, College of Animal Science and Technology, Nanjing Agricultural University, No.1 Weigang Road, Nanjing, 210095, People's Republic of China.
| |
Collapse
|
49
|
Liang H, Mokrani A, Chisomo-Kasiya H, Wilson-Arop OM, Mi H, Ji K, Ge X, Ren M. Molecular characterization and identification of facilitative glucose transporter 2 (GLUT2) and its expression and of the related glycometabolism enzymes in response to different starch levels in blunt snout bream (Megalobrama amblycephala). FISH PHYSIOLOGY AND BIOCHEMISTRY 2018; 44:869-883. [PMID: 29560575 DOI: 10.1007/s10695-018-0477-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Accepted: 01/25/2018] [Indexed: 06/08/2023]
Abstract
Facilitative glucose transporters (GLUT) are transmembrane transporters involved in glucose transport across the plasma membrane. In this study, blunt snout bream GLUT2 gene was cloned, and its expression in various tissues and in liver in response to diets with different carbohydrate levels (17.1; 21.8; 26.4; 32.0; 36.3; and 41.9% of dry matter). Blunt snout bream GLUT2 was also characterized. A full-length cDNA fragment of 2577 bp was cloned, which contains a 5'-untranslated region (UTR) of 73 bp, a 3'-UTR of 992 bp, and an open reading frame of 1512 bp that encodes a polypeptide of 503 amino acids with predicted molecular mass of 55.046 kDa and theoretical isoelectric point was 7.52. The predicted GLUT2 protein has 12 transmembrane domains between amino acid residues at 7-29; 71-93; 106-123; 133-155; 168-190; 195-217; 282-301; 316-338; 345-367; 377-399; 412-434; and 438-460. Besides, the conservative structure domains located at 12-477 amino acids belong to the sugar porter family which is the major facilitator superfamily (MFS) of transporters. Blunt snout bream GLUT2 had the high degree of sequence identity to four GLUT2s from zebrafish, chicken, human, and mouse, with 91, 63, 57, and 54% identity, respectively. Quantitative real-time (qRT) PCR assays revealed that GLUT2 expression was high in the liver, intestine, and kidney; highest in the liver and was regulated by carbohydrate intake. Compared with the control group (17.1%), fed by 3 h with higher starch levels (32.0; 36.3; and 41.9%), increased plasma glucose levels and glycemic level went back to basal by 24 h after treatment. Furthermore, higher dietary starch levels significantly increase GLUT2, glucokinase (GK), and pyruvate kinase (PK) expression and concurrently decrease phosphoenolpyruvate carboxykinase (PEPCK) and glucose-6-phosphatase (G6P) mRNA levels (P < 0.05), and these changes were also back to basal levels after 24 h of any dietary treatment. These results indicate that the blunt snout bream is able to regulate their ability to metabolize glucose by improving GLUT2, GK, and PK expression levels and decreasing PEPCK and G6P expression levels.
Collapse
Affiliation(s)
- Hualiang Liang
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, 214081, China
| | - Ahmed Mokrani
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, 214081, China
| | | | | | - Haifeng Mi
- Key Laboratory for Genetic Breeding of Aquatic Animals and Aquaculture Biology, Freshwater Fisheries Research Center (FFRC), Chinese Academy of Fishery Sciences (CAFS), Wuxi, 214081, China
| | - Ke Ji
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, 214081, China
| | - Xianping Ge
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, 214081, China.
- Key Laboratory for Genetic Breeding of Aquatic Animals and Aquaculture Biology, Freshwater Fisheries Research Center (FFRC), Chinese Academy of Fishery Sciences (CAFS), Wuxi, 214081, China.
| | - Mingchun Ren
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, 214081, China.
- Key Laboratory for Genetic Breeding of Aquatic Animals and Aquaculture Biology, Freshwater Fisheries Research Center (FFRC), Chinese Academy of Fishery Sciences (CAFS), Wuxi, 214081, China.
| |
Collapse
|
50
|
Liu H, Chen C, Gao Z, Min J, Gu Y, Jian J, Jiang X, Cai H, Ebersberger I, Xu M, Zhang X, Chen J, Luo W, Chen B, Chen J, Liu H, Li J, Lai R, Bai M, Wei J, Yi S, Wang H, Cao X, Zhou X, Zhao Y, Wei K, Yang R, Liu B, Zhao S, Fang X, Schartl M, Qian X, Wang W. The draft genome of blunt snout bream (Megalobrama amblycephala) reveals the development of intermuscular bone and adaptation to herbivorous diet. Gigascience 2018; 6:1-13. [PMID: 28535200 PMCID: PMC5570040 DOI: 10.1093/gigascience/gix039] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Accepted: 05/20/2017] [Indexed: 01/24/2023] Open
Abstract
The blunt snout bream Megalobrama amblycephala is the economically most important cyprinid fish species. As an herbivore, it can be grown by eco-friendly and resource-conserving aquaculture. However, the large number of intermuscular bones in the trunk musculature is adverse to fish meat processing and consumption. As a first towards optimizing this aquatic livestock, we present a 1.116-Gb draft genome of M. amblycephala, with 779.54 Mb anchored on 24 linkage groups. Integrating spatiotemporal transcriptome analyses, we show that intermuscular bone is formed in the more basal teleosts by intramembranous ossification and may be involved in muscle contractibility and coordinating cellular events. Comparative analysis revealed that olfactory receptor genes, especially of the beta type, underwent an extensive expansion in herbivorous cyprinids, whereas the gene for the umami receptor T1R1 was specifically lost in M. amblycephala. The composition of gut microflora, which contributes to the herbivorous adaptation of M. amblycephala, was found to be similar to that of other herbivores. As a valuable resource for the improvement of M. amblycephala livestock, the draft genome sequence offers new insights into the development of intermuscular bone and herbivorous adaptation.
Collapse
Affiliation(s)
- Han Liu
- College of Fisheries, Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
| | - Chunhai Chen
- Beijing Genomics Institute (BGI)-Shenzhen, Shenzhen 518083, China
| | - Zexia Gao
- College of Fisheries, Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
| | - Jiumeng Min
- Beijing Genomics Institute (BGI)-Shenzhen, Shenzhen 518083, China
| | - Yongming Gu
- Guangdong Haid Group Co., Ltd., Guangzhou 511400, China
| | - Jianbo Jian
- Beijing Genomics Institute (BGI)-Shenzhen, Shenzhen 518083, China
| | - Xiewu Jiang
- Guangdong Haid Group Co., Ltd., Guangzhou 511400, China
| | - Huimin Cai
- Beijing Genomics Institute (BGI)-Shenzhen, Shenzhen 518083, China
| | - Ingo Ebersberger
- Department for Applied Bioinformatics, Institute for Cell Biology and Neuroscience, Goethe University, Frankfurt D-60438, Germany
| | - Meng Xu
- Beijing Genomics Institute (BGI)-Shenzhen, Shenzhen 518083, China
| | - Xinhui Zhang
- College of Fisheries, Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
| | - Jianwei Chen
- Beijing Genomics Institute (BGI)-Shenzhen, Shenzhen 518083, China
| | - Wei Luo
- College of Fisheries, Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
| | - Boxiang Chen
- College of Fisheries, Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China.,Guangdong Haid Group Co., Ltd., Guangzhou 511400, China
| | - Junhui Chen
- Beijing Genomics Institute (BGI)-Shenzhen, Shenzhen 518083, China
| | - Hong Liu
- College of Fisheries, Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
| | - Jiang Li
- Beijing Genomics Institute (BGI)-Shenzhen, Shenzhen 518083, China
| | - Ruifang Lai
- College of Fisheries, Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
| | - Mingzhou Bai
- Beijing Genomics Institute (BGI)-Shenzhen, Shenzhen 518083, China
| | - Jin Wei
- College of Fisheries, Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
| | - Shaokui Yi
- College of Fisheries, Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
| | - Huanling Wang
- College of Fisheries, Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
| | - Xiaojuan Cao
- College of Fisheries, Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
| | - Xiaoyun Zhou
- College of Fisheries, Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
| | - Yuhua Zhao
- College of Fisheries, Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
| | - Kaijian Wei
- College of Fisheries, Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
| | - Ruibin Yang
- College of Fisheries, Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
| | - Bingnan Liu
- Guangdong Haid Group Co., Ltd., Guangzhou 511400, China
| | - Shancen Zhao
- Beijing Genomics Institute (BGI)-Shenzhen, Shenzhen 518083, China
| | - Xiaodong Fang
- Beijing Genomics Institute (BGI)-Shenzhen, Shenzhen 518083, China
| | - Manfred Schartl
- Physiological Chemistry, University of Würzburg, Biozentrum, Am Hubland, and Comprehensive Cancer Center Mainfranken, University Clinic Würzburg, Würzburg 97070, Germany.,Texas A&M Institute for Advanced Study and Department of Biology, Texas A&M University, College Station, TX 77843, USA
| | - Xueqiao Qian
- Guangdong Haid Group Co., Ltd., Guangzhou 511400, China
| | - Weimin Wang
- College of Fisheries, Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|