1
|
Lee MC, Lee JS, Kim S, Jamaiyar A, Wu W, Gonzalez ML, Acevedo Durán TC, Madrigal-Salazar AD, Bassous N, Carvalho V, Choi C, Kim DS, Seo JW, Rodrigues N, Teixeira SF, Alkhateeb AF, Lozano Soto JA, Hussain MA, Leijten J, Feinberg MW, Shin SR. Synergistic effect of Hypoxic Conditioning and Cell-Tethering Colloidal Gels enhanced Productivity of MSC Paracrine Factors and Accelerated Vessel Regeneration. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2408488. [PMID: 39380372 PMCID: PMC11757084 DOI: 10.1002/adma.202408488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 09/26/2024] [Indexed: 10/10/2024]
Abstract
Microporous hydrogels have been widely used for delivering therapeutic cells. However, several critical issues, such as the lack of control over the harsh environment they are subjected to under pathological conditions and rapid egression of cells from the hydrogels, have produced limited therapeutic outcomes. To address these critical challenges, cell-tethering and hypoxic conditioning colloidal hydrogels containing mesenchymal stem cells (MSCs) are introduced to increase the productivity of paracrine factors locally and in a long-term manner. Cell-tethering colloidal hydrogels that are composed of tyramine-conjugated gelatin prevent cells from egressing through on-cell oxidative phenolic crosslinks while providing mechanical stimulation and interconnected microporous networks to allow for host-implant interactions. Oxygenating microparticles encapsulated in tyramine-conjugated colloidal microgels continuously generated oxygen for 2 weeks with rapid diffusion, resulting in maintaining a mild hypoxic condition while MSCs consumed oxygen under severe hypoxia. Synergistically, local retention of MSCs within the mild hypoxic-conditioned and mechanically robust colloidal hydrogels significantly increased the secretion of various angiogenic cytokines and chemokines. The oxygenating colloidal hydrogels induced anti-inflammatory responses, reduced cellular apoptosis, and promoted numerous large blood vessels in vivo. Finally, mice injected with the MSC-tethered oxygenating colloidal hydrogels significantly improved blood flow restoration and muscle regeneration in a hindlimb ischemia (HLI) model.
Collapse
Affiliation(s)
- Myung Chul Lee
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, MA, 02139, USA
- Medicinal Materials Research Center, Biomedical Research Division, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
| | - Jae Seo Lee
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, MA, 02139, USA
- Harvard Medical School and Wellman Center for Photomedicine, Massachusetts General Hospital, Cambridge, MA, 02139, USA
| | - Seongsoo Kim
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, MA, 02139, USA
- Center for Biomaterials, Korea Institute of Science & Technology (KIST), Seoul 02792, Korea
| | - Anurag Jamaiyar
- Department of Medicine, Cardiovascular Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Winona Wu
- Department of Medicine, Cardiovascular Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Montserrat Legorreta Gonzalez
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, MA, 02139, USA
| | - Tania Carolina Acevedo Durán
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, MA, 02139, USA
| | - Andrea Donaxi Madrigal-Salazar
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, MA, 02139, USA
| | - Nicole Bassous
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, MA, 02139, USA
| | - Violeta Carvalho
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, MA, 02139, USA
- MEtRICs, Mechanical Engineering Department, University of Minho, Campus de Azurém, 4800-058 Guimarães, Portugal
- ALGORITMI/LASI Center, University of Minho, Campus de Azurém, 4800‐058 Guimarães, Portugal
- Center for MicroElectromechanical Systems (CMEMS-UMinho), University of Minho, Campus de Azurém, 4800-058 Guimarães, Portugal
- LABBELS - Associate Laboratory, Braga/Guimarães, Portugal
| | - Cholong Choi
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, MA, 02139, USA
| | - Da-Seul Kim
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, MA, 02139, USA
| | - Jeong Wook Seo
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, MA, 02139, USA
| | - Nelson Rodrigues
- ALGORITMI/LASI Center, University of Minho, Campus de Azurém, 4800‐058 Guimarães, Portugal
- COMEGI - Center for Research in Organizations, Markets and Industrial Management, Lusíada Norte University, Portugal
| | | | - Abdulhameed F. Alkhateeb
- Department of Electrical and Computer Engineering, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Javier Alejandro Lozano Soto
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, MA, 02139, USA
| | - Mohammad Asif Hussain
- Department of Electrical and Computer Engineering, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Jeroen Leijten
- Leijten Lab, Department of BioEngineering Technologies, Faculty of Science and Technology, Technical Medical Centre, University of Twente, Drienerlolaan 5, Enschede 7522 NB, The Netherlands
| | - Mark W. Feinberg
- Department of Medicine, Cardiovascular Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Su Ryon Shin
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, MA, 02139, USA
- Center for MicroElectromechanical Systems (CMEMS-UMinho), University of Minho, Campus de Azurém, 4800-058 Guimarães, Portugal
- LABBELS - Associate Laboratory, Braga/Guimarães, Portugal
| |
Collapse
|
2
|
Suliman M, Al-Hawary SIS, Al-Dolaimy F, Hjazi A, Almalki SG, Alkhafaji AT, Alawadi AH, Alsaalamy A, Bijlwan S, Mustafa YF. Inflammatory diseases: Function of LncRNAs in their emergence and the role of mesenchymal stem cell secretome in their treatment. Pathol Res Pract 2023; 249:154758. [PMID: 37660657 DOI: 10.1016/j.prp.2023.154758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 08/03/2023] [Accepted: 08/08/2023] [Indexed: 09/05/2023]
Abstract
One of the best treatments for inflammatory diseases such as COVID-19, respiratory diseases and brain diseases is treatment with stem cells. Here we investigate the effect of stem cell therapy in the treatment of brain diseases.Preclinical studies have shown promising results, including improved functional recovery and tissue repair in animal models of neurodegenerative diseases, strokes,and traumatic brain injuries. However,ethical implications, safety concerns, and regulatory frameworks necessitate thorough evaluation before transitioning to clinical applications. Additionally, the complex nature of the brain and its intricate cellular environment present unique obstacles that must be overcome to ensure the successful integration and functionality of genetically engineered MSCs. The careful navigation of this path will determine whether the application of genetically engineered MSCs in brain tissue regeneration ultimately lives up to the hype surrounding it.
Collapse
Affiliation(s)
- Muath Suliman
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | | | | | - Ahmed Hjazi
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al-Kharj, Saudi Arabia.
| | - Sami G Almalki
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Majmaah, Saudi Arabia
| | | | - Ahmed Hussien Alawadi
- College of technical engineering, the Islamic University, Najaf, Iraq; College of technical engineering, the Islamic University of Al Diwaniyah, Iraq; College of technical engineering, the Islamic University of Babylon, Iraq
| | - Ali Alsaalamy
- College of technical engineering, Imam Ja'afar Al-Sadiq University, Al-Muthanna, Iraq
| | - Sheela Bijlwan
- Uttaranchal School of Computing Sciences, Uttaranchal University, Dehradun, India
| | - Yasser Fakri Mustafa
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Mosul, Mosul, Iraq
| |
Collapse
|
3
|
Extended Ischemic Recovery After Implantation of Human Mesenchymal Stem Cell Aggregates Indicated by Sodium MRI at 21.1 T. Transl Stroke Res 2022; 13:543-555. [DOI: 10.1007/s12975-021-00976-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 11/17/2021] [Accepted: 12/12/2021] [Indexed: 12/19/2022]
|
4
|
Bagdasarian FA, Yuan X, Athey J, Bunnell BA, Grant SC. NODDI highlights recovery mechanisms in white and gray matter in ischemic stroke following human stem cell treatment. Magn Reson Med 2021; 86:3211-3223. [PMID: 34355818 DOI: 10.1002/mrm.28929] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 06/22/2021] [Accepted: 06/28/2021] [Indexed: 12/20/2022]
Abstract
PURPOSE Diffusion MRI offers insight into ischemic stroke progression in both human and rodent models. However, diffusion MRI to evaluate therapeutic application of mesenchymal stem cells is limited. Robust analytical techniques are required to identify potential physiological changes as a function of cell therapy in stroke. Here, we seek to establish Neurite Orientation Dispersion and Density Imaging (NODDI) as a feasible method in evaluating stroke evolution in response to cell-based therapeutics. METHODS Diffusion MRI data at 21.1T were acquired from 16 male rats. Rats were grouped randomly: naïve (baseline, N = 5), stroke with injections of phosphate buffered saline (N = 6), stroke with injection of 2D human mesenchymal stem cells (hMSC, N = 5). Data were acquired on days 1, 3, 7, and 21 post-surgery. DTI and NODDI maps were generated, with regions of interest placed in the ischemic hemisphere external capsule and striatum. Diffusion parameters were compared between groups each day, and within groups across hemispheres and longitudinally. Behavioral characterizations were on days 0 (pre-surgery), 3, 7, 14, and 21. RESULTS The 2D hMSC preserved diffusional restriction in the external capsule compared to saline (day 1: MD, P = .4060; AD, P = .0220). NODDI indicates that hMSC may have preserved intracellular volume fractions (ICVF: day 1, P = .0086; day 3, P = .0021; day 21, P = .0383). Diffusion metrics of hMSC treated animals were comparable to naïve for the external capsule. CONCLUSIONS NODDI compliments DTI metrics, enhances interpretation of tissue outcome in ischemic stroke following hMSC application, and may be useful in evaluating or predicting therapeutic response.
Collapse
Affiliation(s)
- F Andrew Bagdasarian
- National High Magnetic Field Laboratory, Florida State University, Tallahassee, Florida, USA.,Chemical & Biomedical Engineering, FAMU-FSU College of Engineering, Florida State University, Tallahassee, Florida, USA
| | - Xuegang Yuan
- National High Magnetic Field Laboratory, Florida State University, Tallahassee, Florida, USA.,Chemical & Biomedical Engineering, FAMU-FSU College of Engineering, Florida State University, Tallahassee, Florida, USA
| | - Jacob Athey
- National High Magnetic Field Laboratory, Florida State University, Tallahassee, Florida, USA.,Chemical & Biomedical Engineering, FAMU-FSU College of Engineering, Florida State University, Tallahassee, Florida, USA
| | - Bruce A Bunnell
- Department of Microbiology, Immunology, and Genetics, University of North Texas Health Science Center, Fort Worth, Texas, USA
| | - Samuel C Grant
- National High Magnetic Field Laboratory, Florida State University, Tallahassee, Florida, USA.,Chemical & Biomedical Engineering, FAMU-FSU College of Engineering, Florida State University, Tallahassee, Florida, USA
| |
Collapse
|
5
|
Ejma M, Madetko N, Brzecka A, Alster P, Budrewicz S, Koszewicz M, Misiuk-Hojło M, Tomilova IK, Somasundaram SG, Kirkland CE, Aliev G. The Role of Stem Cells in the Therapy of Stroke. Curr Neuropharmacol 2021; 20:630-647. [PMID: 34365923 PMCID: PMC9608230 DOI: 10.2174/1570159x19666210806163352] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 04/19/2021] [Accepted: 06/03/2021] [Indexed: 11/22/2022] Open
Abstract
Background: Stroke is a major challenge in neurology due to its multifactorial genesis and irreversible consequences. Processes of endogenous post-stroke neurogenesis, although insufficient, may indicate possible direction of future therapy. Multiple research considers stem-cell-based approaches in order to maximize neuroregeneration and minimize post-stroke deficits. Objective: Aim of this study is to review current literature considering post-stroke stem-cell-based therapy and possibilities of inducing neuroregeneration after brain vascular damage. Methods: Papers included in this article were obtained from PubMed and MEDLINE databases. The following medical subject headings (MeSH) were used: “stem cell therapy”, “post-stroke neurogenesis”, “stem-cells stroke”, “stroke neurogenesis”, “stroke stem cells”, “stroke”, “cell therapy”, “neuroregeneration”, “neurogenesis”, “stem-cell human”, “cell therapy in human”. Ultimate inclusion was made after manual review of the obtained reference list. Results: Attempts of stimulating neuroregeneration after stroke found in current literature include supporting endogenous neurogenesis, different routes of exogenous stem cells supplying and extracellular vesicles used as a method of particle transport. Conclusion: Although further research in this field is required, post stroke brain recovery supported by exogenous stem cells seems to be promising future therapy revolutionizing modern neurology.
Collapse
Affiliation(s)
- Maria Ejma
- Department of Neurology, Wroclaw Medical University, 50-556 Wrocław, Borowska 213. Poland
| | - Natalia Madetko
- Department of Neurology, Medical University of Warsaw, Kondratowicza 8, 03-242 Warszawa. Poland
| | - Anna Brzecka
- Department of Pulmonology and Lung Oncology, Wroclaw Medical University, Grabiszynska 105, 53-439 Wroclaw. Poland
| | - Piotr Alster
- Department of Neurology, Medical University of Warsaw, Kondratowicza 8, 03-242 Warszawa. Poland
| | - Sławomir Budrewicz
- Department of Neurology, Wroclaw Medical University, 50-556 Wrocław, Borowska 213. Poland
| | - Magdalena Koszewicz
- Department of Neurology, Wroclaw Medical University, 50-556 Wrocław, Borowska 213. Poland
| | - Marta Misiuk-Hojło
- Department of Ophthalmology, Wroclaw Medical University, 50-556 Wroclaw, Borowska 213. Poland
| | - Irina K Tomilova
- Department of Biochemistry, Ivanovo State Medical Academy, Avenue Sheremetyevsky 8, Ivanovo, 153012. Russian Federation
| | - Siva G Somasundaram
- Department of Biological Sciences, Salem University, Salem, WV, 26426. United States
| | - Cecil E Kirkland
- Department of Biological Sciences, Salem University, Salem, WV, 26426. United States
| | - Gjumrakch Aliev
- Wroclaw Medical University, Department of Pulmonology and Lung Oncology, Wroclaw. Poland
| |
Collapse
|
6
|
Zhang XL, Zhang XG, Huang YR, Zheng YY, Ying PJ, Zhang XJ, Lu X, Wang YJ, Zheng GQ. Stem Cell-Based Therapy for Experimental Ischemic Stroke: A Preclinical Systematic Review. Front Cell Neurosci 2021; 15:628908. [PMID: 33935650 PMCID: PMC8079818 DOI: 10.3389/fncel.2021.628908] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 02/24/2021] [Indexed: 12/21/2022] Open
Abstract
Stem cell transplantation offers promise in the treatment of ischemic stroke. Here we utilized systematic review, meta-analysis, and meta-regression to study the biological effect of stem cell treatments in animal models of ischemic stroke. A total of 98 eligible publications were included by searching PubMed, EMBASE, and Web of Science from inception to August 1, 2020. There are about 141 comparisons, involving 5,200 animals, that examined the effect of stem cell transplantation on neurological function and infarct volume as primary outcome measures in animal models for stroke. Stem cell-based therapy can improve both neurological function (effect size, −3.37; 95% confidence interval, −3.83 to −2.90) and infarct volume (effect size, −11.37; 95% confidence interval, −12.89 to −9.85) compared with controls. These results suggest that stem cell therapy could improve neurological function deficits and infarct volume, exerting potential neuroprotective effect for experimental ischemic stroke, but further clinical studies are still needed.
Collapse
Affiliation(s)
- Xi-Le Zhang
- Department of Neurology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xiao-Guang Zhang
- Department of Neurology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yan-Ran Huang
- Department of Neurology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yan-Yan Zheng
- Department of Neurology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Peng-Jie Ying
- Department of Neurology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xiao-Jie Zhang
- Department of Neurology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xiao Lu
- Department of Neurology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yi-Jing Wang
- Department of Neurology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Guo-Qing Zheng
- Department of Neurology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
7
|
Mangin G, Kubis N. Cell Therapy for Ischemic Stroke: How to Turn a Promising Preclinical Research into a Successful Clinical Story. Stem Cell Rev Rep 2020; 15:176-193. [PMID: 30443706 DOI: 10.1007/s12015-018-9864-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Stroke is a major public health issue with limited treatment. The pharmacologically or mechanically removing of the clot is accessible to less than 10% of the patients. Stem cell therapy is a promising alternative strategy since it increases the therapeutic time window but many issues remain unsolved. To avoid a new dramatic failure when translating experimental data on the bedside, this review aims to highlight the indispensable checkpoints to make a successful clinical trial based on the current preclinical literature. The large panel of progenitors/ stem cells at the researcher's disposal is to be used wisely, regarding the type of cells, the source of cells, the route of delivery, the time window, since it will directly affect the outcome. Mechanisms are still incompletely understood, although recent studies have focused on the inflammation modulation of most cells types.
Collapse
Affiliation(s)
| | - Nathalie Kubis
- INSERM U965, F-75475, Paris, France. .,Sorbonne Paris Cité, Université Paris Diderot, F-75475, Paris, France. .,Service de Physiologie Clinique-Explorations Fonctionnelles, AP-HP, Hôpital Lariboisière, 2 rue Ambroise Paré, F-75475, Paris, France.
| |
Collapse
|
8
|
The Effect of Chyle Fat Injection on Human Hypertrophic Scars in an Animal Model: A New Strategy for the Treatment of Hypertrophic Scars. Ann Plast Surg 2020; 82:622-627. [PMID: 30633019 DOI: 10.1097/sap.0000000000001784] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
BACKGROUND Chyle fat transplantation has shown positive effects on preexisting human hypertrophic scars (HSs) in a nude mouse HS graft model. METHODS Hypertrophic scar fragments were obtained from 5 surgically treated burn patients and implanted into the backs of nude mice in 3 groups: group A, control; group B, triamcinolone; and group C, chyle fat. The specimens were implanted after the corresponding intralesional injection in each group, and the mice were observed for 4 weeks. In total, 18 mice and 72 scar specimens were studied. After 4 weeks, the HSs were removed from the mice. Then, the scar weights, histology, and decorin staining were assessed to evaluate the therapeutic efficacy. RESULTS An obviously significant difference was observed in the HS weight reduction between groups A and C (P < 0.01), and a significant difference in the HS weight reduction was observed between groups A and B (P < 0.05). However, there was no significant difference between groups B and C. The treatment groups (groups B and C) showed strong decorin staining. Furthermore, the decorin staining was much stronger in group C than in group B (P < 0.05). Significant differences in extracellular matrix deposition were observed among the 3 groups, as determined by Masson trichrome staining. Both groups B and C showed significant therapeutic efficacy compared with group A, and group C exhibited a significant therapeutic effect compared with group B (P < 0.05). CONCLUSIONS This study indicates that chyle fat grafting is beneficial for treating HSs.
Collapse
|
9
|
Martín-Martín Y, Fernández-García L, Sanchez-Rebato MH, Marí-Buyé N, Rojo FJ, Pérez-Rigueiro J, Ramos M, Guinea GV, Panetsos F, González-Nieto D. Evaluation of Neurosecretome from Mesenchymal Stem Cells Encapsulated in Silk Fibroin Hydrogels. Sci Rep 2019; 9:8801. [PMID: 31217546 PMCID: PMC6584675 DOI: 10.1038/s41598-019-45238-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Accepted: 05/31/2019] [Indexed: 12/13/2022] Open
Abstract
Physical and cognitive disabilities are hallmarks of a variety of neurological diseases. Stem cell-based therapies are promising solutions to neuroprotect and repair the injured brain and overcome the limited capacity of the central nervous system to recover from damage. It is widely accepted that most benefits of different exogenously transplanted stem cells rely on the secretion of different factors and biomolecules that modulate inflammation, cell death and repair processes in the damaged host tissue. However, few cells survive in cerebral tissue after transplantation, diminishing the therapeutic efficacy. As general rule, cell encapsulation in natural and artificial polymers increases the in vivo engraftment of the transplanted cells. However, we have ignored the consequences of such encapsulation on the secretory activity of these cells. In this study, we investigated the biological compatibility between silk fibroin hydrogels and stem cells of mesenchymal origin, a cell population that has gained increasing attention and popularity in regenerative medicine. Although the survival of mesenchymal stem cells was not affected inside hydrogels, this biomaterial format caused adhesion and proliferation deficits and impaired secretion of several angiogenic, chemoattractant and neurogenic factors while concurrently potentiating the anti-inflammatory capacity of this cell population through a massive release of TGF-Beta-1. Our results set a milestone for the exploration of engineering polymers to modulate the secretory activity of stem cell-based therapies for neurological disorders.
Collapse
Affiliation(s)
| | | | - Miguel H Sanchez-Rebato
- Center for Biomedical Technology, Universidad Politécnica de Madrid, Madrid, Spain
- Neurocomputing and Neurorobotics Research Group: Faculty of Biology and Faculty of Optics, Universidad Complutense de Madrid., Madrid, Spain
- Brain Plasticity Group. Health Research Institute of the Hospital Clínico San Carlos (IdISSC), Madrid, Spain
- GReD, UMR CNRS 6293 - INSERM U1103 - Université Clermont Auvergne, Faculté de Medicine, Clermont-Ferrand, France
| | - Núria Marí-Buyé
- Center for Biomedical Technology, Universidad Politécnica de Madrid, Madrid, Spain
- Departamento de Ciencia de Materiales. ETSI Caminos, Canales y Puertos, Universidad Politécnica de Madrid, Madrid, Spain
- Biomedical Research Networking Center in Bioengineering Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain
| | - Francisco J Rojo
- Center for Biomedical Technology, Universidad Politécnica de Madrid, Madrid, Spain
- Departamento de Ciencia de Materiales. ETSI Caminos, Canales y Puertos, Universidad Politécnica de Madrid, Madrid, Spain
- Biomedical Research Networking Center in Bioengineering Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain
| | - José Pérez-Rigueiro
- Center for Biomedical Technology, Universidad Politécnica de Madrid, Madrid, Spain
- Departamento de Ciencia de Materiales. ETSI Caminos, Canales y Puertos, Universidad Politécnica de Madrid, Madrid, Spain
- Biomedical Research Networking Center in Bioengineering Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain
| | - Milagros Ramos
- Center for Biomedical Technology, Universidad Politécnica de Madrid, Madrid, Spain
- Departamento de Tecnología Fotónica y Bioingeniería. ETSI Telecomunicaciones, Universidad Politécnica de Madrid, Madrid, Spain
- Biomedical Research Networking Center in Bioengineering Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain
| | - Gustavo V Guinea
- Center for Biomedical Technology, Universidad Politécnica de Madrid, Madrid, Spain
- Departamento de Ciencia de Materiales. ETSI Caminos, Canales y Puertos, Universidad Politécnica de Madrid, Madrid, Spain
- Biomedical Research Networking Center in Bioengineering Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain
| | - Fivos Panetsos
- Neurocomputing and Neurorobotics Research Group: Faculty of Biology and Faculty of Optics, Universidad Complutense de Madrid., Madrid, Spain
- Brain Plasticity Group. Health Research Institute of the Hospital Clínico San Carlos (IdISSC), Madrid, Spain
| | - Daniel González-Nieto
- Center for Biomedical Technology, Universidad Politécnica de Madrid, Madrid, Spain.
- Departamento de Tecnología Fotónica y Bioingeniería. ETSI Telecomunicaciones, Universidad Politécnica de Madrid, Madrid, Spain.
- Biomedical Research Networking Center in Bioengineering Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain.
| |
Collapse
|
10
|
Endothelial progenitor cells: Potential novel therapeutics for ischaemic stroke. Pharmacol Res 2019; 144:181-191. [DOI: 10.1016/j.phrs.2019.04.017] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 04/08/2019] [Accepted: 04/16/2019] [Indexed: 01/15/2023]
|
11
|
Zhang Q, Zhou M, Wu X, Li Z, Liu B, Gao W, Yue J, Liu T. Promoting therapeutic angiogenesis of focal cerebral ischemia using thrombospondin-4 (TSP4) gene-modified bone marrow stromal cells (BMSCs) in a rat model. J Transl Med 2019; 17:111. [PMID: 30947736 PMCID: PMC6449913 DOI: 10.1186/s12967-019-1845-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Accepted: 03/11/2019] [Indexed: 01/01/2023] Open
Abstract
Background A stroke caused by angiostenosis always has a poor prognosis. Bone marrow stromal cells (BMSC) are widely applied in vascular regeneration. Recently, thrombospondin-4 (TSP4) was reported to promote the regeneration of blood vessels and enhance the function of endothelial cells in angiogenesis. In this work, we observed the therapeutic effect of TSP4-overexpressing BMSCs on angiogenesis post-stroke. Methods We subcloned the tsp4 gene into a lentivirus expression vector system and harvested the tsp4 lentivirus using 293FT cells. Primary BMSCs were then successfully infected by the tsp4 virus, and overexpression of GFP-fused TSP4 was confirmed by both western blot and immunofluorescence. In vitro, TSP4-overexpressing BMSCs and wild-type BMSCs were co-cultured with human umbilical vein endothelial cells (HUVECs). The expression level of TSP4, vascular endothelial growth factor (VEGF) and transforming growth factor-β (TGF-β) in the supernatant were detected by enzyme-linked immunosorbent assay (ELISA). Wound healing, tube formation and an arterial ring test were performed to estimate the ability of TSP4-overexpressing BMSCs to promote the angiogenesis of endothelial cells. Using a rat permanent middle cerebral artery occlusion (MCAO) model, the effect of TSP4-overexpressing BMSCs on the regeneration of blood vessels was systematically tested by the neurological function score, immunohistochemistry and immunofluorescence staining assays. Results Our results demonstrated that TSP4-overexpressing BMSCs largely increased the expression of VEGF, angiopoietin-1 (Ang-1), matrix metalloprotein 9 (MMP9), matrix metalloprotein 2 (MMP2) and p-Cdc42/Rac1 in endothelial cells. TSP4-BMSC treatment notably up-regulated the TGF-β/Smad2/3 signalling pathway in HUVECs. In vivo, the TSP4-BMSC infusion improved the neurological function score of MCAO rats and expanded the expression of the von Willebrand factor (vWF), Ang-1, MMP2 and MMP9 proteins in cerebral ischemic penumbra. Conclusions Our data illustrate that TSP4-BMSCs can promote the proliferation and migration of endothelial cells and tube formation. We found that TSP4-BMSC infusion can promote the recovery of neural function post-stroke. The tsp4 gene-modified BMSCs provides a better therapeutic effect than that of wild-type BMSCs. Electronic supplementary material The online version of this article (10.1186/s12967-019-1845-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Qian Zhang
- Department of Biotherapy and Oncology, Shenzhen Luohu People's Hospital, Shenzhen, 518001, Guangdong, People's Republic of China.,Public Service Platform for Cell Quality Testing and Evaluation of Shenzhen, Shenzhen, 518001, Guangdong, People's Republic of China
| | - Meiling Zhou
- Department of Biotherapy and Oncology, Shenzhen Luohu People's Hospital, Shenzhen, 518001, Guangdong, People's Republic of China.,Public Service Platform for Cell Quality Testing and Evaluation of Shenzhen, Shenzhen, 518001, Guangdong, People's Republic of China
| | - Xiangfeng Wu
- Department of Biotherapy and Oncology, Shenzhen Luohu People's Hospital, Shenzhen, 518001, Guangdong, People's Republic of China.,Mudanjiang Medical University, Mudanjiang, 157011, Heilongjiang, People's Republic of China
| | - Zhu Li
- Department of Biotherapy and Oncology, Shenzhen Luohu People's Hospital, Shenzhen, 518001, Guangdong, People's Republic of China.,Public Service Platform for Cell Quality Testing and Evaluation of Shenzhen, Shenzhen, 518001, Guangdong, People's Republic of China
| | - Bing Liu
- Department of Biotherapy and Oncology, Shenzhen Luohu People's Hospital, Shenzhen, 518001, Guangdong, People's Republic of China.,Public Service Platform for Cell Quality Testing and Evaluation of Shenzhen, Shenzhen, 518001, Guangdong, People's Republic of China
| | - Wenbin Gao
- Department of Biotherapy and Oncology, Shenzhen Luohu People's Hospital, Shenzhen, 518001, Guangdong, People's Republic of China
| | - Jin Yue
- The 230th Hospital of the Chinese PLA, Dandong, Liaoning, People's Republic of China.
| | - Tao Liu
- Department of Biotherapy and Oncology, Shenzhen Luohu People's Hospital, Shenzhen, 518001, Guangdong, People's Republic of China. .,Public Service Platform for Cell Quality Testing and Evaluation of Shenzhen, Shenzhen, 518001, Guangdong, People's Republic of China.
| |
Collapse
|
12
|
Wang Z, He D, Zeng YY, Zhu L, Yang C, Lu YJ, Huang JQ, Cheng XY, Huang XH, Tan XJ. The spleen may be an important target of stem cell therapy for stroke. J Neuroinflammation 2019; 16:20. [PMID: 30700305 PMCID: PMC6352449 DOI: 10.1186/s12974-019-1400-0] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Accepted: 01/07/2019] [Indexed: 12/21/2022] Open
Abstract
Stroke is the most common cerebrovascular disease, the second leading cause of death behind heart disease and is a major cause of long-term disability worldwide. Currently, systemic immunomodulatory therapy based on intravenous cells is attracting attention. The immune response to acute stroke is a major factor in cerebral ischaemia (CI) pathobiology and outcomes. Over the past decade, the significant contribution of the spleen to ischaemic stroke has gained considerable attention in stroke research. The changes in the spleen after stroke are mainly reflected in morphology, immune cells and cytokines, and these changes are closely related to the stroke outcomes. Autonomic nervous system (ANS) activation, release of central nervous system (CNS) antigens and chemokine/chemokine receptor interactions have been documented to be essential for efficient brain-spleen cross-talk after stroke. In various experimental models, human umbilical cord blood cells (hUCBs), haematopoietic stem cells (HSCs), bone marrow stem cells (BMSCs), human amnion epithelial cells (hAECs), neural stem cells (NSCs) and multipotent adult progenitor cells (MAPCs) have been shown to reduce the neurological damage caused by stroke. The different effects of these cell types on the interleukin (IL)-10, interferon (IFN), and cholinergic anti-inflammatory pathways in the spleen after stroke may promote the development of new cell therapy targets and strategies. The spleen will become a potential target of various stem cell therapies for stroke represented by MAPC treatment.
Collapse
Affiliation(s)
- Zhe Wang
- Xiangtan Central Hospital, Clinical Practice Base of Central South University, Xiangtan, 411100, China.,Institute of Reproductive and Stem Cell Research, School of Basic Medical Science, Central South University, Changsha, 410000, China
| | - Da He
- Xiangtan Central Hospital, Clinical Practice Base of Central South University, Xiangtan, 411100, China
| | - Ya-Yue Zeng
- Xiangtan Central Hospital, Clinical Practice Base of Central South University, Xiangtan, 411100, China
| | - Li Zhu
- Xiangtan Central Hospital, Clinical Practice Base of Central South University, Xiangtan, 411100, China
| | - Chao Yang
- Xiangtan Central Hospital, Clinical Practice Base of Central South University, Xiangtan, 411100, China
| | - Yong-Juan Lu
- Xiangtan Central Hospital, Clinical Practice Base of Central South University, Xiangtan, 411100, China
| | - Jie-Qiong Huang
- Xiangtan Central Hospital, Clinical Practice Base of Central South University, Xiangtan, 411100, China
| | - Xiao-Yan Cheng
- Xiangtan Central Hospital, Clinical Practice Base of Central South University, Xiangtan, 411100, China
| | - Xiang-Hong Huang
- Xiangtan Central Hospital, Clinical Practice Base of Central South University, Xiangtan, 411100, China
| | - Xiao-Jun Tan
- Xiangtan Central Hospital, Clinical Practice Base of Central South University, Xiangtan, 411100, China.
| |
Collapse
|
13
|
Sanchez-Rojas L, Gómez-Pinedo U, Benito-Martin MS, León-Espinosa G, Rascón-Ramirez F, Lendinez C, Martínez-Ramos C, Matías-Guiu J, Pradas MM, Barcia JA. Biohybrids of scaffolding hyaluronic acid biomaterials plus adipose stem cells home local neural stem and endothelial cells: Implications for reconstruction of brain lesions after stroke. J Biomed Mater Res B Appl Biomater 2018; 107:1598-1606. [PMID: 30307108 DOI: 10.1002/jbm.b.34252] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 08/23/2018] [Accepted: 09/08/2018] [Indexed: 12/25/2022]
Abstract
Endogenous neurogenesis in stroke is insufficient to replace the lost brain tissue, largely due to the lack of a proper biological structure to let new cells dwell in the damaged area. We hypothesized that scaffolds made of hyaluronic acid (HA) biomaterials (BM) could provide a suitable environment to home not only new neurons, but also vessels, glia and neurofilaments. Further, the addition of exogenous cells, such as adipose stem cells (ASC) could increase this effect. Athymic mice were randomly assigned to a one of four group: stroke alone, stroke and implantation of BM, stroke and implantation of BM with ASC, and sham operated animals. Stroke model consisted of middle cerebral artery thrombosis with FeCl3 . After 30 days, animals underwent magnetic resonance imaging (MRI) and were sacrificed. Proliferation and neurogenesis increased at the subventricular zone ipsilateral to the ventricle and neuroblasts, glial, and endothelial cells forming capillaries were seen inside the BM. Those effects increased when ASC were added, while there was less inflammatory reaction. Three-dimensional scaffolds made of HA are able to home newly formed neurons, glia, and endothelial cells permitting the growth neurofilaments inside them. The addition of ASC increase these effects and decrease the inflammatory reaction to the implant. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater 107B: 1598-1606, 2019.
Collapse
Affiliation(s)
- Leyre Sanchez-Rojas
- Laboratorio de Medicina Regenerativa, Instituto de Neurociencias, Instituto de Investigación Sanitaria San Carlos (IdISSC), Hospital Clínico San Carlos, Madrid, Spain
| | - Ulises Gómez-Pinedo
- Laboratorio de Medicina Regenerativa, Instituto de Neurociencias, Instituto de Investigación Sanitaria San Carlos (IdISSC), Hospital Clínico San Carlos, Madrid, Spain
| | - María Soledad Benito-Martin
- Laboratorio de Medicina Regenerativa, Instituto de Neurociencias, Instituto de Investigación Sanitaria San Carlos (IdISSC), Hospital Clínico San Carlos, Madrid, Spain
| | - Gonzalo León-Espinosa
- Laboratorio de Medicina Regenerativa, Instituto de Neurociencias, Instituto de Investigación Sanitaria San Carlos (IdISSC), Hospital Clínico San Carlos, Madrid, Spain.,Instituto Cajal, CSIC; Laboratorio Cajal de Circuitos Corticales (CTB), Universidad Politécnica de Madrid; Facultad de Farmacia, Universidad San Pablo CEU, Madrid, Spain
| | - Fernando Rascón-Ramirez
- Servicio de Neurocirugía, Instituto de Investigación Sanitaria San Carlos (IdISSC), Hospital Clínico San Carlos, Universidad Complutense de Madrid, Madrid, Spain
| | - Cristina Lendinez
- Laboratorio de Medicina Regenerativa, Instituto de Neurociencias, Instituto de Investigación Sanitaria San Carlos (IdISSC), Hospital Clínico San Carlos, Madrid, Spain
| | - Cristina Martínez-Ramos
- Center for Biomaterials and Tissue Engineering, Universitat Politécnica de Valencia, C. de Vera s/n, Valencia, Spain
| | - Jorge Matías-Guiu
- Servicio de Neurología. Instituto de Investigación Sanitaria San Carlos (IdISSC), Hospital Clínico San Carlos, Universidad Complutense de Madrid, Madrid, Spain
| | - Manuel Monleón Pradas
- Center for Biomaterials and Tissue Engineering, Universitat Politécnica de Valencia, C. de Vera s/n, Valencia, Spain.,Networking Research Center on Bioengineering, Biomaterials and Nanomedicine, Valencia, Spain
| | - Juan A Barcia
- Servicio de Neurocirugía, Instituto de Investigación Sanitaria San Carlos (IdISSC), Hospital Clínico San Carlos, Universidad Complutense de Madrid, Madrid, Spain
| |
Collapse
|
14
|
Abstract
PURPOSE OF REVIEW The purpose of this article is to provide a review of state-of-the-art cellular therapy in cerebrovascular diseases by discussing published and ongoing clinical trials. RECENT FINDINGS In spite of the challenge in translating the success of cellular therapy in acute strokes from preclinical models to clinical trials, early phase clinical trial have recently shown promise in overcoming these challenges. Various stem cell types and doses are being studied, different routes of administration are under investigation, as well as defining the optimal time window to intervene. In addition, experimental methods to enhance cellular therapy, such as ischemic preconditioning, are evolving. After the failure of neuroprotectants in cerebrovascular diseases, researchers have been keen to provide a way of replacement of damaged brain tissue and to promote recovery in order to achieve better outcomes. The field has progressed from intravenous delivery in the 24- to 36-h time window to later intracerebral administration in chronic stroke in clinical trials. New optimism in acute stroke care fostered by the success of mechanical thrombectomy will hopefully extend into cell therapy to promote recovery.
Collapse
Affiliation(s)
- Michael I Nahhas
- Department of Neurology, Medical College of Georgia at Augusta University, Augusta, GA, USA
| | - David C Hess
- Department of Neurology, Medical College of Georgia at Augusta University, Augusta, GA, USA.
| |
Collapse
|
15
|
Fernández-García L, Pérez-Rigueiro J, Martinez-Murillo R, Panetsos F, Ramos M, Guinea GV, González-Nieto D. Cortical Reshaping and Functional Recovery Induced by Silk Fibroin Hydrogels-Encapsulated Stem Cells Implanted in Stroke Animals. Front Cell Neurosci 2018; 12:296. [PMID: 30237762 PMCID: PMC6135908 DOI: 10.3389/fncel.2018.00296] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2018] [Accepted: 08/16/2018] [Indexed: 01/07/2023] Open
Abstract
The restitution of damaged circuitry and functional remodeling of peri-injured areas constitute two main mechanisms for sustaining recovery of the brain after stroke. In this study, a silk fibroin-based biomaterial efficiently supports the survival of intracerebrally implanted mesenchymal stem cells (mSCs) and increases functional outcomes over time in a model of cortical stroke that affects the forepaw sensory and motor representations. We show that the functional mechanisms underlying recovery are related to a substantial preservation of cortical tissue in the first days after mSCs-polymer implantation, followed by delayed cortical plasticity that involved a progressive functional disconnection between the forepaw sensory (FLs1) and caudal motor (cFLm1) representations and an emergent sensory activity in peri-lesional areas belonging to cFLm1. Our results provide evidence that mSCs integrated into silk fibroin hydrogels attenuate the cerebral damage after brain infarction inducing a delayed cortical plasticity in the peri-lesional tissue, this later a functional change described during spontaneous or training rehabilitation-induced recovery. This study shows that brain remapping and sustained recovery were experimentally favored using a stem cell-biomaterial-based approach.
Collapse
Affiliation(s)
| | - José Pérez-Rigueiro
- Center for Biomedical Technology, Universidad Politécnica de Madrid, Madrid, Spain,Departamento de Ciencia de Materiales, Escuela Técnica Superior de Ingenieros de Caminos, Canales y Puertos, Universidad Politécnica de Madrid, Madrid, Spain,Biomedical Research Networking Center in Bioengineering Biomaterials and Nanomedicine, Madrid, Spain
| | - Ricardo Martinez-Murillo
- Department of Translational Neuroscience, Instituto Cajal – Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Fivos Panetsos
- Neurocomputing and Neurorobotics Research Group, Faculty of Biology and Faculty of Optics, Universidad Complutense de Madrid, Madrid, Spain,Neural Plasticity Research Group, Health Research Institute of the Hospital Clínico San Carlos, Madrid, Spain
| | - Milagros Ramos
- Center for Biomedical Technology, Universidad Politécnica de Madrid, Madrid, Spain,Biomedical Research Networking Center in Bioengineering Biomaterials and Nanomedicine, Madrid, Spain,Departamento de Tecnología Fotónica y Bioingeniería, Escuela Técnica Superior de Ingenieros de Telecomunicación, Universidad Politécnica de Madrid, Madrid, Spain
| | - Gustavo V. Guinea
- Center for Biomedical Technology, Universidad Politécnica de Madrid, Madrid, Spain,Departamento de Ciencia de Materiales, Escuela Técnica Superior de Ingenieros de Caminos, Canales y Puertos, Universidad Politécnica de Madrid, Madrid, Spain,Biomedical Research Networking Center in Bioengineering Biomaterials and Nanomedicine, Madrid, Spain
| | - Daniel González-Nieto
- Center for Biomedical Technology, Universidad Politécnica de Madrid, Madrid, Spain,Biomedical Research Networking Center in Bioengineering Biomaterials and Nanomedicine, Madrid, Spain,Departamento de Tecnología Fotónica y Bioingeniería, Escuela Técnica Superior de Ingenieros de Telecomunicación, Universidad Politécnica de Madrid, Madrid, Spain,*Correspondence: Daniel González-Nieto,
| |
Collapse
|
16
|
Fu Y, Karbaat L, Wu L, Leijten J, Both SK, Karperien M. Trophic Effects of Mesenchymal Stem Cells in Tissue Regeneration. TISSUE ENGINEERING PART B-REVIEWS 2018; 23:515-528. [PMID: 28490258 DOI: 10.1089/ten.teb.2016.0365] [Citation(s) in RCA: 191] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Mesenchymal stem cells (MSCs) are considered to hold great therapeutic value for cell-based therapy and for tissue regeneration in particular. Recent evidence indicates that the main underlying mechanism for MSCs' beneficial effects in tissue regeneration is based on their capability to produce a large variety of bioactive trophic factors that stimulate neighboring parenchymal cells to start repairing damaged tissues. These new findings could potentially replace the classical paradigm of MSC differentiation and cell replacement. These bioactive factors have diverse actions like modulating the local immune system, enhancing angiogenesis, preventing cell apoptosis, and stimulating survival, proliferation, and differentiation of resident tissue specific cells. Therefore, MSCs are referred to as conductors of tissue repair and regeneration by secreting trophic mediators. In this review article, we have summarized the studies that focused on the trophic effects of MSC within the context of tissue regeneration. We will also highlight the various underlying mechanisms used by MSCs to act as trophic mediators. Besides the secretion of growth factors, we discuss two additional mechanisms that are likely to mediate MSC's beneficial effects in tissue regeneration, namely the production of extracellular vesicles and the formation of membrane nanotubes, which can both connect different cells and transfer a variety of trophic factors varying from proteins to mRNAs and miRNAs. Furthermore, we postulate that apoptosis of the MSCs is an integral part of the trophic effect during tissue repair.
Collapse
Affiliation(s)
- Yao Fu
- 1 Developmental BioEngineering, MIRA Institute for Biomedical Technology & Technical Medicine, University of Twente , Enschede, Netherlands
| | - Lisanne Karbaat
- 1 Developmental BioEngineering, MIRA Institute for Biomedical Technology & Technical Medicine, University of Twente , Enschede, Netherlands
| | - Ling Wu
- 2 Center for Craniofacial Molecular Biology, University of Southern California , Los Angeles, Los Angeles, California
| | - Jeroen Leijten
- 1 Developmental BioEngineering, MIRA Institute for Biomedical Technology & Technical Medicine, University of Twente , Enschede, Netherlands
| | - Sanne K Both
- 1 Developmental BioEngineering, MIRA Institute for Biomedical Technology & Technical Medicine, University of Twente , Enschede, Netherlands
| | - Marcel Karperien
- 1 Developmental BioEngineering, MIRA Institute for Biomedical Technology & Technical Medicine, University of Twente , Enschede, Netherlands
| |
Collapse
|
17
|
Evaluation of the Safety and Efficacy of the Therapeutic Potential of Adipose-Derived Stem Cells Injected in the Cerebral Ischemic Penumbra. J Stroke Cerebrovasc Dis 2018; 27:2453-2465. [PMID: 30029838 DOI: 10.1016/j.jstrokecerebrovasdis.2018.05.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Revised: 04/24/2018] [Accepted: 05/01/2018] [Indexed: 01/01/2023] Open
Abstract
INTRODUCTION Stroke represents an attractive target for cell therapy. Although different types of cells have been employed in animal models with variable results, the human adipose-derived stem cells (hASCs) have demonstrated favorable characteristics in the treatment of diseases with inflammatory substrate, but experience in their intracerebral administration is lacking. The purpose of this study is to evaluate the effect and safety of the intracerebral application of hASCs in a stroke model. METHODS A first group of Athymic Nude mice after stroke received a stereotactic injection of hASCs at a concentration of 4 × 104/µL at the penumbra area, a second group without stroke received the same cell concentration, and a third group had only stroke and no cells. After 7, 15, and 30 days, the animals underwent fluorodeoxyglucose-positron emission tomography and magnetic resonance imaging; subsequently, they were sacrificed for histological evaluation (HuNu, GFAP, IBA-1, Ki67, DCX) of the penumbra area and ipsilateral subventricular zone (iSVZ). RESULTS The in vitro studies found no alterations in the molecular karyotype, clonogenic capacity, and expression of 62 kDa transcription factor and telomerase. Animals implanted with cells showed no adverse events. The implanted cells showed no evidence of proliferation or differentiation. However, there was an increase of capillaries, less astrocytes and microglia, and increased bromodeoxyuridine and doublecortin-positive cells in the iSVZ and in the vicinity of ischemic injury. CONCLUSIONS These results suggest that hASCs in the implanted dose modulate inflammation, promote endogenous neurogenesis, and do not proliferate or migrate in the brain. These data confirm the safety of cell therapy with hASCs.
Collapse
|
18
|
George PM, Oh B, Dewi R, Hua T, Cai L, Levinson A, Liang X, Krajina BA, Bliss TM, Heilshorn SC, Steinberg GK. Engineered stem cell mimics to enhance stroke recovery. Biomaterials 2018; 178:63-72. [PMID: 29909038 DOI: 10.1016/j.biomaterials.2018.06.010] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 05/31/2018] [Accepted: 06/07/2018] [Indexed: 12/16/2022]
Abstract
Currently, no medical therapies exist to augment stroke recovery. Stem cells are an intriguing treatment option being evaluated, but cell-based therapies have several challenges including developing a stable cell product with long term reproducibility. Since much of the improvement observed from cellular therapeutics is believed to result from trophic factors the stem cells release over time, biomaterials are well-positioned to deliver these important molecules in a similar fashion. Here we show that essential trophic factors secreted from stem cells can be effectively released from a multi-component hydrogel system into the post-stroke environment. Using our polymeric system to deliver VEGF-A and MMP-9, we improved recovery after stroke to an equivalent degree as observed with traditional stem cell treatment in a rodent model. While VEGF-A and MMP-9 have many unique mechanisms of action, connective tissue growth factor (CTGF) interacts with both VEGF-A and MMP-9. With our hydrogel system as well as with stem cell delivery, the CTGF pathway is shown to be downregulated with improved stroke recovery.
Collapse
Affiliation(s)
- Paul M George
- Department of Neurology and the Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA; Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA, USA; Stanford Stroke Center and Stanford University School of Medicine, Stanford, CA, USA.
| | - Byeongtaek Oh
- Department of Neurology and the Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Ruby Dewi
- Department of Material Science, Stanford University School of Medicine, Stanford, CA, USA
| | - Thuy Hua
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Lei Cai
- Department of Material Science, Stanford University School of Medicine, Stanford, CA, USA
| | - Alexa Levinson
- Department of Neurology and the Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Xibin Liang
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Brad A Krajina
- Department of Material Science, Stanford University School of Medicine, Stanford, CA, USA
| | - Tonya M Bliss
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Sarah C Heilshorn
- Department of Material Science, Stanford University School of Medicine, Stanford, CA, USA
| | - Gary K Steinberg
- Department of Neurology and the Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA; Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA, USA; Stanford Stroke Center and Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
19
|
Sambathkumar R, Akkerman R, Dastidar S, Roelandt P, Kumar M, Bajaj M, Mestre Rosa AR, Helsen N, Vanslembrouck V, Kalo E, Khurana S, Laureys J, Gysemans C, Faas MM, de Vos P, Verfaillie CM. Generation of hepatocyte- and endocrine pancreatic-like cells from human induced endodermal progenitor cells. PLoS One 2018; 13:e0197046. [PMID: 29750821 PMCID: PMC5947914 DOI: 10.1371/journal.pone.0197046] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2017] [Accepted: 04/25/2018] [Indexed: 01/27/2023] Open
Abstract
Multipotent Adult Progenitor Cells (MAPCs) are one potential stem cell source to generate functional hepatocytes or β-cells. However, human MAPCs have less plasticity than pluripotent stem cells (PSCs), as their ability to generate endodermal cells is not robust. Here we studied the role of 14 transcription factors (TFs) in reprogramming MAPCs to induced endodermal progenitor cells (iENDO cells), defined as cells that can be long-term expanded and differentiated to both hepatocyte- and endocrine pancreatic-like cells. We demonstrated that 14 TF-iENDO cells can be expanded for at least 20 passages, differentiate spontaneously to hepatocyte-, endocrine pancreatic-, gut tube-like cells as well as endodermal tumor formation when grafted in immunodeficient mice. Furthermore, iENDO cells can be differentiated in vitro into hepatocyte- and endocrine pancreatic-like cells. However, the pluripotency TF OCT4, which is not silenced in iENDO cells, may contribute to the incomplete differentiation to mature cells in vitro and to endodermal tumor formation in vivo. Nevertheless, the studies presented here provide evidence that reprogramming of adult stem cells to an endodermal intermediate progenitor, which can be expanded and differentiate to multiple endodermal cell types, might be a valid alternative for the use of PSCs for creation of endodermal cell types.
Collapse
Affiliation(s)
- Rangarajan Sambathkumar
- KU Leuven, Interdepartmental Stem Cell Institute, Department of Development and Regeneration, Stem Cell Biology and Embryology, Leuven, Belgium
- * E-mail: (CMV); (RS)
| | - Renate Akkerman
- KU Leuven, Interdepartmental Stem Cell Institute, Department of Development and Regeneration, Stem Cell Biology and Embryology, Leuven, Belgium
- University of Groningen, University Medical Center Groningen (UMCG), Pathology and Medical Biology, Division of Medical Biology, Section Immunoendocrinology, Groningen, The Netherlands
| | - Sumitava Dastidar
- KU Leuven, Interdepartmental Stem Cell Institute, Department of Development and Regeneration, Stem Cell Biology and Embryology, Leuven, Belgium
| | - Philip Roelandt
- KU Leuven, Interdepartmental Stem Cell Institute, Department of Development and Regeneration, Stem Cell Biology and Embryology, Leuven, Belgium
| | - Manoj Kumar
- KU Leuven, Interdepartmental Stem Cell Institute, Department of Development and Regeneration, Stem Cell Biology and Embryology, Leuven, Belgium
| | - Manmohan Bajaj
- KU Leuven, Interdepartmental Stem Cell Institute, Department of Development and Regeneration, Stem Cell Biology and Embryology, Leuven, Belgium
| | - Ana Rita Mestre Rosa
- KU Leuven, Interdepartmental Stem Cell Institute, Department of Development and Regeneration, Stem Cell Biology and Embryology, Leuven, Belgium
| | - Nicky Helsen
- KU Leuven, Interdepartmental Stem Cell Institute, Department of Development and Regeneration, Stem Cell Biology and Embryology, Leuven, Belgium
| | - Veerle Vanslembrouck
- KU Leuven, Interdepartmental Stem Cell Institute, Department of Development and Regeneration, Stem Cell Biology and Embryology, Leuven, Belgium
| | - Eric Kalo
- KU Leuven, Interdepartmental Stem Cell Institute, Department of Development and Regeneration, Stem Cell Biology and Embryology, Leuven, Belgium
| | - Satish Khurana
- School of Biology, Indian Institute of Science Education and Research, Thiruvananthapuram, Kerala, India
| | - Jos Laureys
- KU Leuven, Department of Clinical and Experimental Medicine, Clinical and Experimental Endocrinology unit, Leuven, Belgium
| | - Conny Gysemans
- KU Leuven, Department of Clinical and Experimental Medicine, Clinical and Experimental Endocrinology unit, Leuven, Belgium
| | - Marijke M. Faas
- University of Groningen, University Medical Center Groningen (UMCG), Pathology and Medical Biology, Division of Medical Biology, Section Immunoendocrinology, Groningen, The Netherlands
- University of Groningen, University Medical Center Groningen (UMCG), Department of Obstetrics and Gynecology, Groningen, The Netherlands
| | - Paul de Vos
- University of Groningen, University Medical Center Groningen (UMCG), Pathology and Medical Biology, Division of Medical Biology, Section Immunoendocrinology, Groningen, The Netherlands
| | - Catherine M. Verfaillie
- KU Leuven, Interdepartmental Stem Cell Institute, Department of Development and Regeneration, Stem Cell Biology and Embryology, Leuven, Belgium
- * E-mail: (CMV); (RS)
| |
Collapse
|
20
|
Mays RW, Savitz SI. Intravenous Cellular Therapies for Acute Ischemic Stroke. Stroke 2018; 49:1058-1065. [DOI: 10.1161/strokeaha.118.018287] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Revised: 03/01/2018] [Accepted: 03/08/2018] [Indexed: 02/07/2023]
Affiliation(s)
- Robert W. Mays
- From the Department of Neurosciences, Athersys, Inc, (R.W.M.)
| | - Sean I. Savitz
- Institute for Stroke and Cerebrovascular Disease, UTHealth, Houston, TX (S.I.S.)
| |
Collapse
|
21
|
Wechsler LR, Bates D, Stroemer P, Andrews-Zwilling YS, Aizman I. Cell Therapy for Chronic Stroke. Stroke 2018; 49:1066-1074. [DOI: 10.1161/strokeaha.117.018290] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 10/26/2017] [Accepted: 11/01/2017] [Indexed: 01/01/2023]
Affiliation(s)
- Lawrence R. Wechsler
- From the Department of Neurology, University of Pittsburgh School of Medicine and UPMC, PA (L.R.W.)
| | - Damien Bates
- SanBio, Inc, Mountain View, CA (D.B., Y.S.A.-Z., I.A.)
| | - Paul Stroemer
- Advanced Therapies Consultancy, Cardiff, Wales, UK (P.S.)
| | | | - Irina Aizman
- SanBio, Inc, Mountain View, CA (D.B., Y.S.A.-Z., I.A.)
| |
Collapse
|
22
|
Tang M, Zhang K, Li Y, He QH, Li GQ, Zheng QY, Zhang KQ. Mesenchymal stem cells alleviate acute kidney injury by down-regulating C5a/C5aR pathway activation. Int Urol Nephrol 2018; 50:1545-1553. [PMID: 29594894 DOI: 10.1007/s11255-018-1844-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Accepted: 03/12/2018] [Indexed: 12/20/2022]
Abstract
BACKGROUND Acute kidney injury (AKI) leads to serious renal damage, and early inhibition of inflammation is necessary for its treatment. C5a/C5aR signaling activation promotes inflammatory response in tissue injury. Anti-inflammatory activity of mesenchymal stem cells (MSCs) makes it possible to alleviate AKI by controlling the C5a/C5aR signaling activation. METHODS Ischemia reperfusion (I/R)-induced AKI models in wild-type and C5aR KO mice were used. In addition, human bone marrow MSCs (hBM-MSCs) or C5aR antagonist were injected in this model. All animals were killed at 72 h after reperfusion. In vitro, the LPS-activated macrophage line RAW264.7 cells were co-cultured with or without hBM-MSCs in the presence of recombinant C5a or not for indicated time points. After that, C5aR expression, the inflammatory factor production, and NF-κB translocation in RAW264.7 cells were measured. RESULTS hBM-MSC treatment and C5a/C5aR signaling blockade or C5aR-deficiency exhibited similar attenuated effects on I/R-induced AKI, macrophages infiltration, and the pro-inflammatory cytokines TNF-α and IL-1β expression in renal tissues in mice. Moreover, hBM-MSC administration led to a significant reduction in C5a levels in serum and C5aR expression in the kidney tissues in mice after I/R. In vitro, upon co-culture with hBM-MSCs, both C5aR expression and the secretion of pro-inflammatory factors TNF-α, IL-6, and nitric oxide in LPS-activated macrophages were markedly reduced. Accordingly, recombinant complement C5a accelerated LPS-induced NF-κB translocation and pro-inflammatory factors expression in macrophages, but the addition of hBM-MSCs reversed these C5a-induced effects. CONCLUSIONS The present study indicates that hBM-MSCs alleviate AKI via suppressing C5a/C5aR-NF-κB pathway activation.
Collapse
Affiliation(s)
- Ming Tang
- Department of Nephrology, Southwest Hospital, Third Military Medical University, Chongqing, 400038, China
| | - Kun Zhang
- Department of Nephrology, Southwest Hospital, Third Military Medical University, Chongqing, 400038, China
| | - You Li
- Department of Nephrology, Southwest Hospital, Third Military Medical University, Chongqing, 400038, China
| | - Qian-Hui He
- Department of Nephrology, Southwest Hospital, Third Military Medical University, Chongqing, 400038, China
| | - Gui-Qing Li
- Department of Immunology, Third Military Medical University, Chongqing, 400038, China
| | - Quan-You Zheng
- Department of Nephrology, Southwest Hospital, Third Military Medical University, Chongqing, 400038, China
| | - Ke-Qin Zhang
- Department of Nephrology, Southwest Hospital, Third Military Medical University, Chongqing, 400038, China.
| |
Collapse
|
23
|
González-Nieto D, Fernández-García L, Pérez-Rigueiro J, Guinea GV, Panetsos F. Hydrogels-Assisted Cell Engraftment for Repairing the Stroke-Damaged Brain: Chimera or Reality. Polymers (Basel) 2018; 10:polym10020184. [PMID: 30966220 PMCID: PMC6415003 DOI: 10.3390/polym10020184] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 02/06/2018] [Accepted: 02/11/2018] [Indexed: 01/07/2023] Open
Abstract
The use of advanced biomaterials as a structural and functional support for stem cells-based therapeutic implants has boosted the development of tissue engineering applications in multiple clinical fields. In relation to neurological disorders, we are still far from the clinical reality of restoring normal brain function in neurodegenerative diseases and cerebrovascular disorders. Hydrogel polymers show unique mechanical stiffness properties in the range of living soft tissues such as nervous tissue. Furthermore, the use of these polymers drastically enhances the engraftment of stem cells as well as their capacity to produce and deliver neuroprotective and neuroregenerative factors in the host tissue. Along this article, we review past and current trends in experimental and translational research to understand the opportunities, benefits, and types of tentative hydrogel-based applications for the treatment of cerebral disorders. Although the use of hydrogels for brain disorders has been restricted to the experimental area, the current level of knowledge anticipates an intense development of this field to reach clinics in forthcoming years.
Collapse
Affiliation(s)
- Daniel González-Nieto
- Center for Biomedical Technology, Universidad Politécnica de Madrid, 28040 Madrid, Spain.
- Departamento de Tecnología Fotónica y Bioingeniería, ETSI Telecomunicaciones, Universidad Politécnica de Madrid, 28040 Madrid, Spain.
- Biomedical Research Networking Center in Bioengineering Biomaterials and Nanomedicine (CIBER-BBN), 28040 Madrid, Spain.
| | - Laura Fernández-García
- Center for Biomedical Technology, Universidad Politécnica de Madrid, 28040 Madrid, Spain.
| | - José Pérez-Rigueiro
- Center for Biomedical Technology, Universidad Politécnica de Madrid, 28040 Madrid, Spain.
- Biomedical Research Networking Center in Bioengineering Biomaterials and Nanomedicine (CIBER-BBN), 28040 Madrid, Spain.
- Departamento de Ciencia de Materiales, ETSI Caminos, Canales y Puertos, Universidad Politécnica de Madrid 28040 Madrid, Spain.
| | - Gustavo V Guinea
- Center for Biomedical Technology, Universidad Politécnica de Madrid, 28040 Madrid, Spain.
- Biomedical Research Networking Center in Bioengineering Biomaterials and Nanomedicine (CIBER-BBN), 28040 Madrid, Spain.
- Departamento de Ciencia de Materiales, ETSI Caminos, Canales y Puertos, Universidad Politécnica de Madrid 28040 Madrid, Spain.
| | - Fivos Panetsos
- Neurocomputing and Neurorobotics Research Group: Faculty of Biology and Faculty of Optics, Universidad Complutense de Madrid, 28040 Madrid, Spain.
- Instituto de Investigación Sanitaria, Hospital Clínico San Carlos Madrid, IdISSC, 28040 Madrid, Spain.
| |
Collapse
|
24
|
Gnecchi M, Danieli P, Malpasso G, Ciuffreda MC. Paracrine Mechanisms of Mesenchymal Stem Cells in Tissue Repair. Methods Mol Biol 2017; 1416:123-46. [PMID: 27236669 DOI: 10.1007/978-1-4939-3584-0_7] [Citation(s) in RCA: 299] [Impact Index Per Article: 37.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Tissue regeneration from transplanted mesenchymal stromal cells (MSC) either through transdifferentiation or cell fusion was originally proposed as the principal mechanism underlying their therapeutic action. However, several studies have now shown that both these mechanisms are very inefficient. The low MSC engraftment rate documented in injured areas also refutes the hypothesis that MSC repair tissue damage by replacing cell loss with newly differentiated cells. Indeed, despite evidence of preferential homing of MSC to the site of myocardial ischemia, exogenously administered MSC show poor survival and do not persist in the infarcted area. Therefore, it has been proposed that the functional benefits observed after MSC transplantation in experimental models of tissue injury might be related to the secretion of soluble factors acting in a paracrine fashion. This hypothesis is supported by pre-clinical studies demonstrating equal or even improved organ function upon infusion of MSC-derived conditioned medium (MSC-CM) compared with MSC transplantation. Identifying key MSC-secreted factors and their functional role seems a reasonable approach for a rational design of nextgeneration MSC-based therapeutics. Here, we summarize the major findings regarding both different MSC-mediated paracrine actions and the identification of paracrine mediators.
Collapse
Affiliation(s)
- Massimiliano Gnecchi
- Department of Molecular Medicine, Unit of Cardiology, University of Pavia, Pavia, Italy. .,Department of Cardiothoracic and Vascular Sciences - Coronary Care Unit and Laboratory of Clinical and Experimental Cardiology, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy. .,Laboratory of Experimental Cardiology for Cell and Molecular Therapy, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy. .,Department of Medicine, University of Cape Town, Cape Town, South Africa.
| | - Patrizia Danieli
- Department of Molecular Medicine, Unit of Cardiology, University of Pavia, Pavia, Italy.,Department of Cardiothoracic and Vascular Sciences - Coronary Care Unit and Laboratory of Clinical and Experimental Cardiology, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy.,Laboratory of Experimental Cardiology for Cell and Molecular Therapy, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Giuseppe Malpasso
- Department of Molecular Medicine, Unit of Cardiology, University of Pavia, Pavia, Italy.,Department of Cardiothoracic and Vascular Sciences - Coronary Care Unit and Laboratory of Clinical and Experimental Cardiology, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy.,Laboratory of Experimental Cardiology for Cell and Molecular Therapy, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Maria Chiara Ciuffreda
- Department of Molecular Medicine, Unit of Cardiology, University of Pavia, Pavia, Italy.,Department of Cardiothoracic and Vascular Sciences - Coronary Care Unit and Laboratory of Clinical and Experimental Cardiology, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy.,Laboratory of Experimental Cardiology for Cell and Molecular Therapy, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| |
Collapse
|
25
|
Ramanathan R, Rupert S, Selvaraj S, Satyanesan J, Vennila R, Rajagopal S. Role of Human Wharton's Jelly Derived Mesenchymal Stem Cells (WJ-MSCs) for Rescue of d-Galactosamine Induced Acute Liver Injury in Mice. J Clin Exp Hepatol 2017; 7:205-214. [PMID: 28970707 PMCID: PMC5620364 DOI: 10.1016/j.jceh.2017.03.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Accepted: 03/14/2017] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND/AIM Mesenchymal stem cells (MSCs) are multipotent precursor cells having self-renewal ability making them a candidate for use in regenerative medicine. Acute liver injury results in sudden loss of hepatic function leading to organ failure. Liver transplantation is often required to salvage patients with acute liver failure. Due to shortage of organs, identification of alternate method is the need of the hour. In view of this, an attempt has been made to check the regenerative ability of WJ-MSCs (wharton's jelly derived MSC) in mice models for acute liver injury. METHODS Swiss albino mice weighing 25 ± 5 g were used in this study. The control mice (Group I), was given saline. Group II mice received d-Galactosamine (d-GalN-800 mg/kg; i.p). Group III mice similar with Group II, received WJ-MSCs (5 × 105 cells/0.5 ml DMEM) through tail vein, 24 h after d-GalN administration and Group IV mice received MSC alone. RESULTS Parameters, indicative of hepatotoxicity and oxidative stress were analyzed. A two-fold elevation in the marker enzymes of liver toxicity such as aspartate aminotransferase (AST), alanine aminotransferase (ALT), alkaline phosphatase (SAP), and total serum bilirubin (TBIL) confirms hepatocellular injury, while a greater than four-fold increase in malondialdehyde (MDA) formation, along with around 40% fall in superoxide-dis-mutase (SOD) activity was indicative of oxidative stress and loss of hepatocellular membrane integrity induced by d-GalN. The above biochemical and pathological changes were significantly restored in mice that received WJ-MSCs indicating hepatoprotective and probable regenerative property. CONCLUSION The present study showed that WJ-MSC treatment is able to rescue/ameliorate the hepatotoxicity induced by d-GalN in mice.
Collapse
Affiliation(s)
- Raghu Ramanathan
- Centre for Advanced Research, Stem Cell Research Centre, Govt. Stanley Medical College and Hospital, Chennai, Tamilnadu, India
| | - Secunda Rupert
- Centre for Advanced Research, Stem Cell Research Centre, Govt. Stanley Medical College and Hospital, Chennai, Tamilnadu, India
| | - Sakthivel Selvaraj
- Centre for Advanced Research, Stem Cell Research Centre, Govt. Stanley Medical College and Hospital, Chennai, Tamilnadu, India
| | - Jeswanth Satyanesan
- Centre for Advanced Research, Stem Cell Research Centre, Govt. Stanley Medical College and Hospital, Chennai, Tamilnadu, India
| | - Rosy Vennila
- Centre for Advanced Research, Stem Cell Research Centre, Govt. Stanley Medical College and Hospital, Chennai, Tamilnadu, India
| | - Surendran Rajagopal
- Director, Hepato-Pancreato-Biliary Centre for Surgery & Transplantation, MIOT International, Chennai, Tamilnadu, India
| |
Collapse
|
26
|
Crosstalk with Inflammatory Macrophages Shapes the Regulatory Properties of Multipotent Adult Progenitor Cells. Stem Cells Int 2017; 2017:2353240. [PMID: 28785285 PMCID: PMC5529661 DOI: 10.1155/2017/2353240] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Revised: 05/27/2017] [Accepted: 06/12/2017] [Indexed: 01/25/2023] Open
Abstract
Macrophages and microglia are key effector cells in immune-mediated neuroinflammatory disorders. Driving myeloid cells towards an anti-inflammatory, tissue repair-promoting phenotype is considered a promising strategy to halt neuroinflammation and promote central nervous system (CNS) repair. In this study, we defined the impact of multipotent adult progenitor cells (MAPC), a stem cell population sharing common mesodermal origin with mesenchymal stem cells (MSCs), on the phenotype of macrophages and the reciprocal interactions between these two cell types. We show that MAPC suppress the secretion of tumor necrosis factor alpha (TNF-α) by inflammatory macrophages partially through a cyclooxygenase 2- (COX-2-) dependent mechanism. In turn, we demonstrate that inflammatory macrophages trigger the immunomodulatory properties of MAPC, including an increased expression of immunomodulatory mediators (e.g., inducible nitric oxide synthase (iNOS) and COX-2), chemokines, and chemokine receptors. Macrophage-primed MAPC secrete soluble factors that suppress TNF-α release by macrophages. Moreover, the MAPC secretome suppresses the antigen-specific proliferation of autoreactive T cells and the T cell stimulatory capacity of macrophages. Finally, MAPC increase their motility towards secreted factors of activated macrophages. Collectively, these in vitro findings reveal intimate reciprocal interactions between MAPC and inflammatory macrophages, which are of importance in the design of MAPC-based therapeutic strategies for neuroinflammatory disorders in which myeloid cells play a crucial role.
Collapse
|
27
|
Sokolova IB, Sergeev IV, Skorobogataya EV, Ufimtseva AN, Polyntsev DG, Dvoretskii DP. Effect of Transplantation of Mesenchymal Stem Cells on the Density of Pial Microvascular Network in Spontaneously Hypertensive Rats of Different Age. Bull Exp Biol Med 2017; 163:129-132. [PMID: 28580491 DOI: 10.1007/s10517-017-3752-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Indexed: 11/30/2022]
Abstract
Using a TV device for studying microcirculation (×40), we analyzed the density of the whole microvascular network and the density of arterioles in the pia mater of the sensorimotor cortex in SHR rats of different ages (3-4 and 12 months) after intracerebral transplantation of human mesenchymal stem cells. We found that the density of pial microvascular network in SHR rats receiving transplantation of human mesenchymal stem cells increased to a level observed in young Wistar-Kyoto rats.
Collapse
Affiliation(s)
- I B Sokolova
- Laboratory of Physiology of Cardiovascular and Lymphatic Systems, I. P. Pavlov Institute of Physiology, Russian Academy of Sciences, St. Petersburg, Russia.
| | - I V Sergeev
- Laboratory of Physiology of Cardiovascular and Lymphatic Systems, I. P. Pavlov Institute of Physiology, Russian Academy of Sciences, St. Petersburg, Russia
| | | | | | | | - D P Dvoretskii
- Laboratory of Physiology of Cardiovascular and Lymphatic Systems, I. P. Pavlov Institute of Physiology, Russian Academy of Sciences, St. Petersburg, Russia
| |
Collapse
|
28
|
Safety and tolerability of silk fibroin hydrogels implanted into the mouse brain. Acta Biomater 2016; 45:262-275. [PMID: 27592819 DOI: 10.1016/j.actbio.2016.09.003] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Revised: 07/24/2016] [Accepted: 09/01/2016] [Indexed: 12/24/2022]
Abstract
At present, effective therapies to repair the central nervous system do not exist. Biomaterials might represent a new frontier for the development of neurorestorative therapies after brain injury and degeneration. In this study, an in situ gelling silk fibroin hydrogel was developed via the sonication-induced gelation of regenerated silk fibroin solutions. An adequate timeframe for the integration of the biomaterial into the brain tissue was obtained by controlling the intensity and time of sonication. After the intrastriatal injection of silk fibroin the inflammation and cell death in the implantation area were transient. We did not detect considerable cognitive or sensorimotor deficits, either as examined by different behavioral tests or an electrophysiological analysis. The sleep and wakefulness states studied by chronic electroencephalogram recordings and the fitness of thalamocortical projections and the somatosensory cortex explored by evoked potentials were in the range of normality. The methodology used in this study might serve to assess the biological safety of other biomaterials implanted into the rodent brain. Our study highlights the biocompatibility of native silk with brain tissue and extends the current dogma of the innocuousness of this biomaterial for therapeutic applications, which has repercussion in regenerative neuroscience. STATEMENT OF SIGNIFICANCE The increasingly use of sophisticated biomaterials to encapsulate stem cells has changed the comprehensive overview of potential strategies for repairing the nervous system. Silk fibroin (SF) meets with most of the standards of a biomaterial suitable to enhance stem cell survival and function. However, a proof-of-principle of the in vivo safety and tolerability of SF implanted into the brain tissue is needed. In this study we have examined the tissue bioresponse and brain function after implantation of SF hydrogels. We have demonstrated the benign coexistence of silk with the complex neuronal circuitry that governs sensorimotor coordination and mechanisms such as learning and memory. Our results have repercussion in the development of advances strategies using this biomaterial in regenerative neuroscience.
Collapse
|
29
|
Satani N, Savitz SI. Is Immunomodulation a Principal Mechanism Underlying How Cell-Based Therapies Enhance Stroke Recovery? Neurotherapeutics 2016; 13:775-782. [PMID: 27485235 PMCID: PMC5081125 DOI: 10.1007/s13311-016-0468-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Inflammation within the brain and in peripheral tissues contributes to brain injury following ischemic stroke. Therapeutic modulation of the inflammatory response has been actively pursued as a novel stroke treatment approach for decades, without success. In recent years, extensive studies support the high potential for cell-based therapies to become a new treatment modality for stroke and other neurological disorders. In this review, we explore different types of cellular therapies and discuss how they modulate central and peripheral inflammatory processes after stroke. Apart from identifying potential targets for cell therapy, we also discuss paracrine and immunomodulatory mechanisms of cell therapy.
Collapse
Affiliation(s)
- Nikunj Satani
- Stroke Program, McGovern Medical School, UTHealth, Houston, TX, USA.
| | - Sean I Savitz
- Stroke Program, McGovern Medical School, UTHealth, Houston, TX, USA
| |
Collapse
|
30
|
Li G, Yu F, Lei T, Gao H, Li P, Sun Y, Huang H, Mu Q. Bone marrow mesenchymal stem cell therapy in ischemic stroke: mechanisms of action and treatment optimization strategies. Neural Regen Res 2016; 11:1015-24. [PMID: 27482235 PMCID: PMC4962565 DOI: 10.4103/1673-5374.184506] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Animal and clinical studies have confirmed the therapeutic effect of bone marrow mesenchymal stem cells on cerebral ischemia, but their mechanisms of action remain poorly understood. Here, we summarize the transplantation approaches, directional migration, differentiation, replacement, neural circuit reconstruction, angiogenesis, neurotrophic factor secretion, apoptosis, immunomodulation, multiple mechanisms of action, and optimization strategies for bone marrow mesenchymal stem cells in the treatment of ischemic stroke. We also explore the safety of bone marrow mesenchymal stem cell transplantation and conclude that bone marrow mesenchymal stem cell transplantation is an important direction for future treatment of cerebral ischemia. Determining the optimal timing and dose for the transplantation are important directions for future research.
Collapse
Affiliation(s)
- Guihong Li
- Department of Neurosurgery, the First Hospital of Jilin University, Changchun, Jilin Province, China; Department of Neurosurgery, Hongqi Hospital of Mudanjiang Medical University, Mudanjiang, Heilongjiang Province, China
| | - Fengbo Yu
- School of Pharmacy, Mudanjiang Medical University, Mudanjiang, Heilongjiang Province, China
| | - Ting Lei
- Department of Neurosurgery, the First Hospital of Jilin University, Changchun, Jilin Province, China
| | - Haijun Gao
- Department of Neurosurgery, the First Hospital of Jilin University, Changchun, Jilin Province, China
| | - Peiwen Li
- Department of Neurosurgery, the First Hospital of Jilin University, Changchun, Jilin Province, China
| | - Yuxue Sun
- Department of Neurosurgery, the First Hospital of Jilin University, Changchun, Jilin Province, China
| | - Haiyan Huang
- Department of Neurosurgery, the First Hospital of Jilin University, Changchun, Jilin Province, China
| | - Qingchun Mu
- Department of Neurosurgery, Hongqi Hospital of Mudanjiang Medical University, Mudanjiang, Heilongjiang Province, China
| |
Collapse
|
31
|
Zhang Q, Zhao Y, Xu Y, Chen Z, Liu N, Ke C, Liu B, Wu W. Sodium ferulate and n-butylidenephthalate combined with bone marrow stromal cells (BMSCs) improve the therapeutic effects of angiogenesis and neurogenesis after rat focal cerebral ischemia. J Transl Med 2016; 14:223. [PMID: 27465579 PMCID: PMC4963939 DOI: 10.1186/s12967-016-0979-5] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2016] [Accepted: 07/13/2016] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Studies have indicated that bone marrow stromal cell (BMSC) administration is a promising approach for stroke treatment. For our study, we chose sodium ferulate (SF) and n-butylidenephthalide (BP) combined with BMSC, and observed if the combination treatment possessed more significant effects on angiogenesis and neurogenesis post-stroke. METHODS We established rat permanent middle cerebral artery occlusion (MCAo) model and evaluated ischemic volumes of MCAo, BMSC, SF + BP, Simvastatin + BMSC and SF + BP + BMSC groups with TTC staining on the 7th day after ischemia. Immunofluorescence staining of vascular endothelial growth factor (VEGF) and brain derived neurotrophic factor (BDNF), as well as immunohistochemistry staining of von Willebrand factor (vWF) and neuronal class III β-tubulin (Tuj1) were performed in ischemic boundary zone (IBZ), furthermore, to understand the mechanism, western blot was used to investigate AKT/mammalian target of rapamycin (mTOR) signal pathway in ischemic cortex. We also tested BMSC derived-VEGF and BDNF expressions by western blot assay in vitro. RESULTS SF + BP + BMSC group obviously decreased infarction zone, and elevated the expression of VEGF and the density and perimeter of vWF-vessels as same as Simvastatin + BMSC administration; moreover, its effects on BDNF and Tuj1 expressions were superior to Simvastatin + BMSC treatment in IBZ. Meanwhile, it showed that SF and BP combined with BMSC treatment notably up-regulated AKT/mTOR signal pathway compared with SF + BP group and BMSC alone post-stroke. Western blot results showed that SF and BP treatment could promote BMSCs to synthesize VEGF and BDNF in vitro. CONCLUSIONS We firstly demonstrate that SF and BP combined with BMSC can significantly improve angiogenesis and neurogenesis in IBZ following stroke. The therapeutic effects are associated with the enhancement of VEGF and BDNF expressions via activation of AKT/mTOR signal pathway. Furthermore, triggering BMSC paracrine function of SF and BP might contribute to amplifying the synergic effects of the combination treatment.
Collapse
Affiliation(s)
- Qian Zhang
- State Key Laboratory of Quality Research in Chinese Medicine, Faculty of Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macao, People's Republic of China
| | - Yonghua Zhao
- State Key Laboratory of Quality Research in Chinese Medicine, Faculty of Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macao, People's Republic of China.
| | - Youhua Xu
- State Key Laboratory of Quality Research in Chinese Medicine, Faculty of Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macao, People's Republic of China
| | - Zhenwei Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Faculty of Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macao, People's Republic of China
| | - Naiwei Liu
- State Key Laboratory of Quality Research in Chinese Medicine, Faculty of Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macao, People's Republic of China
| | - Chienchih Ke
- Biomedical Imaging Research Center, National Yang Ming University, Taipei, Taiwan
| | - Bowen Liu
- State Key Laboratory of Quality Research in Chinese Medicine, Faculty of Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macao, People's Republic of China
| | - Weikang Wu
- Department of pathophysiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, People's Republic of China
| |
Collapse
|
32
|
Crabbé MAE, Gijbels K, Visser A, Craeye D, Walbers S, Pinxteren J, Deans RJ, Annaert W, Vaes BLT. Using miRNA-mRNA Interaction Analysis to Link Biologically Relevant miRNAs to Stem Cell Identity Testing for Next-Generation Culturing Development. Stem Cells Transl Med 2016; 5:709-22. [PMID: 27075768 DOI: 10.5966/sctm.2015-0154] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Accepted: 01/18/2016] [Indexed: 12/12/2022] Open
Abstract
UNLABELLED Therapeutic benefit of stem cells has been demonstrated in multiple disease models and clinical trials. Robust quality assurance is imperative to make advancements in culturing procedures to enable large-scale cell manufacturing without hampering therapeutic potency. MicroRNAs (miRNAs or miRs) are shown to be master regulators of biological processes and are potentially ideal quality markers. We determined miRNA markers differentially expressed under nonclinical multipotent adult progenitor cell (MAPC) and mesenchymal stem cell (MSC) culturing conditions that regulate important stem cell features, such as proliferation and differentiation. These bone marrow-derived stem cell types were selected because they both exert therapeutic functions, but have different proliferative and regenerative capacities. To determine cell-specific marker miRNAs and assess their effects on stem cell qualities, a miRNA and mRNA profiling was performed on MAPCs and MSCs isolated from three shared donors. We applied an Ingenuity Pathway Analysis-based strategy that combined an integrated RNA profile analysis and a biological function analysis to determine the effects of miRNA-mRNA interactions on phenotype. This resulted in the identification of important miRNA markers linked to cell-cycle regulation and development, the most distinctive being MAPC marker miR-204-5p and MSC marker miR-335-5p, for which we provide in vitro validation of its function in differentiation and cell cycle regulation, respectively. Importantly, marker expression is maintained under xeno-free conditions and during bioreactor isolation and expansion of MAPC cultures. In conclusion, the identified biologically relevant miRNA markers can be used to monitor stem cell stability when implementing variations in culturing procedures. SIGNIFICANCE Human adult marrow stromal stem cells have shown great potential in addressing unmet health care needs. Quality assurance is imperative to make advancements in large-scale manufacturing procedures. MicroRNAs are master regulators of biological processes and potentially ideal quality markers. MicroRNA and mRNA profiling data of two human adult stem cell types were correlated to biological functions in silico. Doing this provided evidence that differentially expressed microRNAs are involved in regulating specific stem cell features. Furthermore, expression of a selected microRNA panel was maintained in next-generation culturing platforms, demonstrating the robustness of microRNA profiling in stem cell comparability testing.
Collapse
Affiliation(s)
- Marian A E Crabbé
- ReGenesys BVBA, Heverlee, Belgium Center for Human Genetics, KU Leuven, Leuven, Belgium VIB Center for the Biology of Disease, KU Leuven, Leuven, Belgium
| | | | | | | | | | | | - Robert J Deans
- Regenerative Medicine, Athersys Inc., Cleveland, Ohio, USA Rubius Therapeutics, Cambridge, Massachusetts, USA
| | - Wim Annaert
- Center for Human Genetics, KU Leuven, Leuven, Belgium VIB Center for the Biology of Disease, KU Leuven, Leuven, Belgium
| | | |
Collapse
|
33
|
Moisan A, Favre I, Rome C, De Fraipont F, Grillon E, Coquery N, Mathieu H, Mayan V, Naegele B, Hommel M, Richard MJ, Barbier EL, Remy C, Detante O. Intravenous Injection of Clinical Grade Human MSCs After Experimental Stroke: Functional Benefit and Microvascular Effect. Cell Transplant 2016; 25:2157-2171. [PMID: 26924704 DOI: 10.3727/096368916x691132] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Stroke is the leading cause of disability in adults. Many current clinical trials use intravenous (IV) administration of human bone marrow-derived mesenchymal stem cells (BM-MSCs). This autologous graft requires a delay for ex vivo expansion of cells. We followed microvascular effects and mechanisms of action involved after an IV injection of human BM-MSCs (hBM-MSCs) at a subacute phase of stroke. Rats underwent a transient middle cerebral artery occlusion (MCAo) or a surgery without occlusion (sham) at day 0 (D0). At D8, rats received an IV injection of 3 million hBM-MSCs or PBS-glutamine. In a longitudinal behavioral follow-up, we showed delayed somatosensory and cognitive benefits 4 to 7 weeks after hBM-MSC injection. In a separate longitudinal in vivo magnetic resonance imaging (MRI) study, we observed an enhanced vascular density in the ischemic area 2 and 3 weeks after hBM-MSC injection. Histology and quantitative polymerase chain reaction (qPCR) revealed an overexpression of angiogenic factors such as Ang1 and transforming growth factor-1 (TGF-1) at D16 in hBM-MSC-treated MCAo rats compared to PBS-treated MCAo rats. Altogether, delayed IV injection of hBM-MSCs provides functional benefits and increases cerebral angiogenesis in the stroke lesion via a release of endogenous angiogenic factors enhancing the stabilization of newborn vessels. Enhanced angiogenesis could therefore be a means of improving functional recovery after stroke.
Collapse
|
34
|
DePaul MA, Palmer M, Lang BT, Cutrone R, Tran AP, Madalena KM, Bogaerts A, Hamilton JA, Deans RJ, Mays RW, Busch SA, Silver J. Intravenous multipotent adult progenitor cell treatment decreases inflammation leading to functional recovery following spinal cord injury. Sci Rep 2015; 5:16795. [PMID: 26582249 PMCID: PMC4652166 DOI: 10.1038/srep16795] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Accepted: 10/19/2015] [Indexed: 12/19/2022] Open
Abstract
Following spinal cord injury (SCI), immune-mediated secondary processes exacerbate the extent of permanent neurological deficits. We investigated the capacity of adult bone marrow-derived stem cells, which exhibit immunomodulatory properties, to alter inflammation and promote recovery following SCI. In vitro, we show that human multipotent adult progenitor cells (MAPCs) have the ability to modulate macrophage activation, and prior exposure to MAPC secreted factors can reduce macrophage-mediated axonal dieback of dystrophic axons. Using a contusion model of SCI, we found that intravenous delivery of MAPCs one day, but not immediately, after SCI significantly improves urinary and locomotor recovery, which was associated with marked spinal cord tissue sparing. Intravenous MAPCs altered the immune response in the spinal cord and periphery, however biodistribution studies revealed that no MAPCs were found in the cord and instead preferentially homed to the spleen. Our results demonstrate that MAPCs exert their primary effects in the periphery and provide strong support for the use of these cells in acute human contusive SCI.
Collapse
Affiliation(s)
- Marc A DePaul
- Case Western Reserve Univ., Dept. of Neurosciences, 10900 Euclid Ave., SOM E654, Cleveland, OH, 44106, USA
| | - Marc Palmer
- Athersys, Inc. Regenerative Medicine, Cleveland, OH, 44115, USA
| | - Bradley T Lang
- Case Western Reserve Univ., Dept. of Neurosciences, 10900 Euclid Ave., SOM E654, Cleveland, OH, 44106, USA.,Athersys, Inc. Regenerative Medicine, Cleveland, OH, 44115, USA
| | | | - Amanda P Tran
- Case Western Reserve Univ., Dept. of Neurosciences, 10900 Euclid Ave., SOM E654, Cleveland, OH, 44106, USA
| | - Kathryn M Madalena
- Case Western Reserve Univ., Dept. of Neurosciences, 10900 Euclid Ave., SOM E654, Cleveland, OH, 44106, USA
| | | | | | - Robert J Deans
- Athersys, Inc. Regenerative Medicine, Cleveland, OH, 44115, USA
| | - Robert W Mays
- Athersys, Inc. Regenerative Medicine, Cleveland, OH, 44115, USA
| | - Sarah A Busch
- Athersys, Inc. Regenerative Medicine, Cleveland, OH, 44115, USA
| | - Jerry Silver
- Case Western Reserve Univ., Dept. of Neurosciences, 10900 Euclid Ave., SOM E654, Cleveland, OH, 44106, USA
| |
Collapse
|
35
|
Alfonso-Loeches S, Ureña-Peralta J, Morillo-Bargues MJ, Gómez-Pinedo U, Guerri C. Ethanol-Induced TLR4/NLRP3 Neuroinflammatory Response in Microglial Cells Promotes Leukocyte Infiltration Across the BBB. Neurochem Res 2015; 41:193-209. [PMID: 26555554 DOI: 10.1007/s11064-015-1760-5] [Citation(s) in RCA: 96] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Revised: 10/31/2015] [Accepted: 11/04/2015] [Indexed: 12/21/2022]
Abstract
We reported that the ethanol-induced innate immune response by activating TLR4 signaling triggers gliosis and neuroinflammation. Ethanol also activates other immune receptors, such as NOD-like-receptors, and specifically NLRP3-inflammasome in astroglial cells, to stimulate caspase-1 cleavage and IL-1β and IL-18 cytokines production. Yet, whether microglia NLRs are also sensitive to the ethanol effects that contribute to neuroinflammation is uncertain. Using cerebral cortexes of the chronic alcohol-fed WT and TLR4(-/-) mice, we demonstrated that chronic ethanol treatment enhanced TLR4 mediated-NLRP3/Caspase-1 complex activation, and up-regulated pro-inflammatory cytokines and chemokines levels. Ethanol-induced NLRP3-inflammasome activation and mitochondria-ROS generation were also observed in cultured microglial cells. The up-regulation of CD45(high)/CD11b(+) cell populations and matrix metalloproteinase-9 levels was also noted in the cortexes of the ethanol-treated WT mice. Notably, elimination of the TLR4 function abolished most ethanol-induced neuroinflammatory effects. Thus, our results demonstrate that ethanol triggers TLR4-mediated NLRP3-inflammasome activation in glial cells, and suggest that microglia stimulation may compromise the permeability of blood-brain barrier events to contribute to ethanol-induced neuroinflammation and brain damage.
Collapse
Affiliation(s)
- Silvia Alfonso-Loeches
- Molecular and Cellular Pathology of Alcohol, Prince Felipe Research Center, Eduardo Primo Yúfera 3, 46012, Valencia, Spain
| | - Juan Ureña-Peralta
- Molecular and Cellular Pathology of Alcohol, Prince Felipe Research Center, Eduardo Primo Yúfera 3, 46012, Valencia, Spain
| | - M José Morillo-Bargues
- Molecular and Cellular Pathology of Alcohol, Prince Felipe Research Center, Eduardo Primo Yúfera 3, 46012, Valencia, Spain
| | - Ulises Gómez-Pinedo
- Department of Regenerative Medicine/Neurology and Neurosurgery, Neuroscience Institute, Clinic San Carlos Hospital, IdISSC, Profesor Martín Lagos, S/N, 28040, Madrid, Spain
| | - Consuelo Guerri
- Molecular and Cellular Pathology of Alcohol, Prince Felipe Research Center, Eduardo Primo Yúfera 3, 46012, Valencia, Spain.
| |
Collapse
|
36
|
Boltze J, Arnold A, Walczak P, Jolkkonen J, Cui L, Wagner DC. The Dark Side of the Force - Constraints and Complications of Cell Therapies for Stroke. Front Neurol 2015; 6:155. [PMID: 26257702 PMCID: PMC4507146 DOI: 10.3389/fneur.2015.00155] [Citation(s) in RCA: 118] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Accepted: 06/23/2015] [Indexed: 12/16/2022] Open
Abstract
Cell therapies are increasingly recognized as a promising option to augment the limited therapeutic arsenal available to fight ischemic stroke. During the last two decades, cumulating preclinical evidence has indicated a substantial efficacy for most cell treatment paradigms and first clinical trials are currently underway to assess safety and feasibility in patients. However, the strong and still unmet demand for novel stroke treatment options and exciting findings reported from experimental studies may have drawn our attention away from potential side effects related to cell therapies and the ways by which they are commonly applied. This review summarizes common and less frequent adverse events that have been discovered in preclinical and clinical investigations assessing cell therapies for stroke. Such adverse events range from immunological and neoplastic complications over seizures to cell clotting and cell-induced embolism. It also describes potential complications of clinically applicable administration procedures, detrimental interactions between therapeutic cells, and the pathophysiological environment that they are placed into, as well as problems related to cell manufacturing. Virtually each therapeutic intervention comes at a certain risk for complications. Side effects do therefore not generally compromise the value of cell treatments for stroke, but underestimating such complications might severely limit therapeutic safety and efficacy of cell treatment protocols currently under development. On the other hand, a better understanding will provide opportunities to further improve existing therapeutic strategies and might help to define those circumstances, under which an optimal effect can be realized. Hence, the review eventually discusses strategies and recommendations allowing us to prevent or at least balance potential complications in order to ensure the maximum therapeutic benefit at minimum risk for stroke patients.
Collapse
Affiliation(s)
- Johannes Boltze
- Department of Cell Therapy, Fraunhofer-Institute for Cell Therapy and Immunology , Leipzig , Germany ; Translational Center for Regenerative Medicine, University of Leipzig , Leipzig , Germany
| | - Antje Arnold
- Division of MR Research, Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine , Baltimore, MD , USA ; Institute for Cell Engineering, Johns Hopkins University , Baltimore, MD , USA
| | - Piotr Walczak
- Division of MR Research, Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine , Baltimore, MD , USA ; Institute for Cell Engineering, Johns Hopkins University , Baltimore, MD , USA
| | - Jukka Jolkkonen
- Department of Neurology, Institute of Clinical Medicine, University of Eastern Finland , Kuopio , Finland
| | - Lili Cui
- Department of Neurology, Institute of Clinical Medicine, University of Eastern Finland , Kuopio , Finland
| | - Daniel-Christoph Wagner
- Department of Cell Therapy, Fraunhofer-Institute for Cell Therapy and Immunology , Leipzig , Germany
| |
Collapse
|
37
|
Xie ZH, Liu Z, Zhang XR, Yang H, Wei LF, Wang Y, Xu SL, Sun L, Lai C, Bi JZ, Wang XY. Wharton's Jelly-derived mesenchymal stem cells alleviate memory deficits and reduce amyloid-β deposition in an APP/PS1 transgenic mouse model. Clin Exp Med 2015; 16:89-98. [PMID: 26188488 DOI: 10.1007/s10238-015-0375-0] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2015] [Accepted: 07/06/2015] [Indexed: 12/15/2022]
Abstract
Alzheimer's disease (AD) is the leading cause of dementia in the elderly and is characterized by amyloid plaques, neurofibrillary tangles, and neuronal loss. Cumulative evidence supports that neuroinflammation is an important factor for the pathogenesis of AD and contributes to amyloid beta (Aβ) generation. However, there has been no effective treatment for AD. Wharton's Jelly-derived mesenchymal stem cells (WJ-MSCs) have a potential therapeutic effect in the treatment for neurological diseases. In the present study, we evaluated the therapeutic effect of WJ-MSC transplantation on the neuropathology and memory deficits in amyloid precursor protein (APP) and presenilin-1 (PS1) double-transgenic mice and discussed the mechanism. WJ-MSCs were intravenously transplanted into the APP/PS1 mice. Four weeks after treatment, WJ-MSCs significantly improved the spatial learning and alleviated the memory decline in the APP/PS1 mice. Aβ deposition and soluble Aβ levels were significantly reduced after WJ-MSC treatment. Furthermore, WJ-MSCs significantly increased the expression of the anti-inflammatory cytokine, IL-10. Meanwhile, pro-inflammatory microglial activation and the expressions of pro-inflammatory cytokines, IL-1β and TNFα, were significantly down-regulated by WJ-MSC treatment. Thus, our findings suggest that WJ-MSCs might produce beneficial effects on the prevention and treatment for AD through modulation of neuroinflammation.
Collapse
Affiliation(s)
- Zhao-Hong Xie
- Department of Neurology, The Second Hospital of Shandong University, 247#, Beiyuan Dajie, Jinan, 250033, China
| | - Zhen Liu
- Department of Neurology, The Second Hospital of Shandong University, 247#, Beiyuan Dajie, Jinan, 250033, China
| | - Xiao-Ran Zhang
- Department of Pharmacy, Jinan Central Hospital, 105#, Jiefang Road, Jinan, 250013, China
| | - Hui Yang
- Department of Neurology, The Second Hospital of Shandong University, 247#, Beiyuan Dajie, Jinan, 250033, China
| | - Li-Fei Wei
- Department of Neurology, The Second Hospital of Shandong University, 247#, Beiyuan Dajie, Jinan, 250033, China
| | - Yun Wang
- Department of Neurology, The Second Hospital of Shandong University, 247#, Beiyuan Dajie, Jinan, 250033, China
| | - Shun-Liang Xu
- Department of Neurology, The Second Hospital of Shandong University, 247#, Beiyuan Dajie, Jinan, 250033, China
| | - Lin Sun
- Department of Neurology, The Second Hospital of Shandong University, 247#, Beiyuan Dajie, Jinan, 250033, China
| | - Chao Lai
- Department of Neurology, The Second Hospital of Shandong University, 247#, Beiyuan Dajie, Jinan, 250033, China
| | - Jian-Zhong Bi
- Department of Neurology, The Second Hospital of Shandong University, 247#, Beiyuan Dajie, Jinan, 250033, China
| | - Xiao-Yun Wang
- Department of Neurology, The Second Hospital of Shandong University, 247#, Beiyuan Dajie, Jinan, 250033, China.
| |
Collapse
|
38
|
Gavins FNE, Smith HK. Cell tracking technologies for acute ischemic brain injury. J Cereb Blood Flow Metab 2015; 35:1090-9. [PMID: 25966948 PMCID: PMC4640284 DOI: 10.1038/jcbfm.2015.93] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2014] [Revised: 04/07/2015] [Accepted: 04/09/2015] [Indexed: 02/06/2023]
Abstract
Stem cell therapy has showed considerable potential in the treatment of stroke over the last decade. In order that these therapies may be optimized, the relative benefits of growth factor release, immunomodulation, and direct tissue replacement by therapeutic stem cells are widely under investigation. Fundamental to the progress of this research are effective imaging techniques that enable cell tracking in vivo. Direct analysis of the benefit of cell therapy includes the study of cell migration, localization, division and/or differentiation, and survival. This review explores the various imaging tools currently used in clinics and laboratories, addressing image resolution, long-term cell monitoring, imaging agents/isotopes, as well as safety and costs associated with each technique. Finally, burgeoning tracking techniques are discussed, with emphasis on multimodal imaging.
Collapse
Affiliation(s)
- Felicity NE Gavins
- Molecular and Cellular Physiology Department, Louisiana State University Health Sciences Center, Shreveport, Louisiana, USA
| | - Helen K Smith
- Molecular and Cellular Physiology Department, Louisiana State University Health Sciences Center, Shreveport, Louisiana, USA
| |
Collapse
|
39
|
Li T, Xia M, Gao Y, Chen Y, Xu Y. Human umbilical cord mesenchymal stem cells: an overview of their potential in cell-based therapy. Expert Opin Biol Ther 2015; 15:1293-306. [PMID: 26067213 DOI: 10.1517/14712598.2015.1051528] [Citation(s) in RCA: 179] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
INTRODUCTION Human umbilical cord mesenchymal stem cells (HUC-MSCs) are one of the typical adult stem cells; they have superiorities including low immunogenicity, non-invasive harvest procedure, easy expansion in vitro, and ethical access compared with stem cells from other sources. Therefore, HUC-MSCs are a promising candidate for cell-based therapy. AREAS COVERED Here we reviewed the development of stem cell-based therapy, the manufacturing and banking process of HUC-MSCs, the emerging clinical studies in the field of cancer, central nervous system diseases, liver diseases and graft-versus-host disease, the potential therapeutic mechanisms, as well as challenges of HUC-MSCs in clinical translation. EXPERT OPINION HUC-MSCs seem to be an optimal choice for stem cell-based therapy. However, before the cells translate from basic to clinical research, some problems still remain to be solved: i) building regulatory guidelines as well as an efficient and safe manufacturing procedure; ii) establishing donor's genetic testing and long-term closely monitoring system; iii) conducting further clinical trials to determine the optimum and standard dosage, time, route, frequency and many other technical issues of HUC-MSCs transplantation.
Collapse
Affiliation(s)
- Tan Li
- Drum Tower Hospital, Medical School of Nanjing University, Department of Neurology , 321 Zhongshan Road, Nanjing City, Jiangsu Province 210008 , China +86 25 6818 2212 ; +86 25 8310 5208 ; ;
| | | | | | | | | |
Collapse
|
40
|
Jha AK, Tharp KM, Ye J, Santiago-Ortiz JL, Jackson WM, Stahl A, Schaffer DV, Yeghiazarians Y, Healy KE. Enhanced survival and engraftment of transplanted stem cells using growth factor sequestering hydrogels. Biomaterials 2015; 47:1-12. [PMID: 25682155 DOI: 10.1016/j.biomaterials.2014.12.043] [Citation(s) in RCA: 92] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Revised: 12/03/2014] [Accepted: 12/20/2014] [Indexed: 01/24/2023]
Abstract
We have generated a bioinspired tunable system of hyaluronic acid (HyA)-based hydrogels for Matrix-Assisted Cell Transplantation (MACT). With this material, we have independently evaluated matrix parameters such as adhesion peptide density, mechanical properties, and growth factor sequestering capacity, to engineer an environment that imbues donor cells with a milieu that promotes survival and engraftment with host tissues after transplantation. Using a versatile population of Sca-1(+)/CD45(-) cardiac progenitor cells (CPCs), we demonstrated that the addition of heparin in the HyA hydrogels was necessary to coordinate the presentation of TGFβ1 and to support the trophic functions of the CPCs via endothelial cell differentiation and vascular like tubular network formation. Presentation of exogenous TGFβ1 by binding with heparin improved differentiated CPC function by sequestering additional endogenously-produced angiogenic factors. Finally, we demonstrated that TGFβ1 and heparin-containing HyA hydrogels can promote CPC survival when implanted subcutaneously into murine hind-limbs and encouraged their participation in the ensuing neovascular response, which included blood vessels that had anastomosed with the host's blood vessels.
Collapse
Affiliation(s)
- Amit K Jha
- Department of Bioengineering, University of California, Berkeley, CA 94720, USA; Department of Material Science and Engineering, University of California, Berkeley, CA 94720, USA
| | - Kevin M Tharp
- Department of Nutritional Science and Toxicology, University of California, Berkeley, CA 94720, USA
| | - Jianqin Ye
- Department of Medicine, University of California, San Francisco, CA 94143, USA
| | - Jorge L Santiago-Ortiz
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, CA 94720, USA
| | - Wesley M Jackson
- Department of Bioengineering, University of California, Berkeley, CA 94720, USA
| | - Andreas Stahl
- Department of Nutritional Science and Toxicology, University of California, Berkeley, CA 94720, USA
| | - David V Schaffer
- Department of Bioengineering, University of California, Berkeley, CA 94720, USA; Department of Chemical and Biomolecular Engineering, University of California, Berkeley, CA 94720, USA
| | - Yerem Yeghiazarians
- Department of Medicine, University of California, San Francisco, CA 94143, USA; Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, CA 94143, USA; Cardiovascular Research Institute, University of California, San Francisco, CA 94143, USA
| | - Kevin E Healy
- Department of Bioengineering, University of California, Berkeley, CA 94720, USA; Department of Material Science and Engineering, University of California, Berkeley, CA 94720, USA.
| |
Collapse
|
41
|
Jeong H, Yim HW, Cho YS, Kim YI, Jeong SN, Kim HB, Oh IH. Efficacy and safety of stem cell therapies for patients with stroke: a systematic review and single arm meta-analysis. Int J Stem Cells 2014; 7:63-9. [PMID: 25473443 PMCID: PMC4249905 DOI: 10.15283/ijsc.2014.7.2.63] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/06/2014] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND AND OBJECTIVES Stem cell-based therapy is a potential new approach in the treatment of stroke. However, the efficacy and safety of these treatments are not yet fully understood. Therefore, we performed a meta-analysis of available single-arm studies using stem cell-based therapy in patients with stroke. METHODS We searched MEDLINE, EMBASE, and the Cochrane database for studies of stem cell therapy in patients with stroke from its inception through July 2014. The articles included in the search were restricted to the English language, studies with at least 5 patients, and those using cell-based therapies for treating stroke. RESULTS Fourteen studies included in the meta-analysis. The pooled mean difference in National Institutes of Health Stroke Scale (NIHSS) scores from baseline to follow-up points was 5.7 points (95%CI: -8.2 to -3.2, I(2) =91.5%) decreased. Also the pooled mean difference in modified Bathel index (BI) score was increased by 31.5 points (95%CI: 35.6∼14.9, I(2) =52.7%) and the pooled incidence rate to achieve on modified Rankin score (mRS)≤2 was 40% (95% CI: 30%∼51%, I(2) =35.4%) at follow-up points. The pooled incidence rates of death, seizure, and infection were 13% (95%CI, 8∼23%), 15% (95%CI, 8∼25%), and 15% (95%CI, 8∼23%), respectively. CONCLUSIONS The published data suggest that stem cell-based therapy for patients with stroke can be judged as effective based on single arm clinical studies. However, clinical benefits of stem cell therapy for patients with stroke need further investigation and reevaluation to test the clinical efficacy.
Collapse
Affiliation(s)
- Hyunsuk Jeong
- Department of Preventive Medicine, College of Medicine, The Catholic University of Korea, Seoul
| | - Hyeon Woo Yim
- Department of Preventive Medicine, College of Medicine, The Catholic University of Korea, Seoul ; Clinical Research Coordinating Center, Catholic Medical Center, Seoul
| | - Young-Seung Cho
- Seo-myeon Branch Office of the Community Health Center, Uljin
| | - Yeong-In Kim
- Department of Neurology, International St. Mary's Hospital, Incheon
| | - So-Na Jeong
- Medical Library, Seoul St. Mary's Hospital, Seoul
| | - Hyun-Bin Kim
- Clinical Research Coordinating Center, Catholic Medical Center, Seoul
| | - Il-Hoan Oh
- Catholic High-Performance Cell Therapy Center & Department of Medical Lifescience, College of Medicine, The Catholic University of Korea, Seoul, Korea
| |
Collapse
|
42
|
Paradells S, Zipancic I, Martínez-Losa MM, García Esparza MÁ, Bosch-Morell F, Alvarez-Dolado M, Soria JM. Lipoic acid and bone marrow derived cells therapy induce angiogenesis and cell proliferation after focal brain injury. Brain Inj 2014; 29:380-95. [PMID: 25384090 DOI: 10.3109/02699052.2014.973448] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
UNLABELLED Abstract Introduction: Traumatic brain injury is a main cause of disability and death in developed countries, above all among children and adolescents. The intrinsic inability of the central nervous system to efficiently repair traumatic injuries renders transplantation of bone marrow-derived cells (BMDC) a promising approach towards repair of brain lesions. On the other hand, many studies have reported the beneficial effect of Lipoic acid (LA), a potent antioxidant promoting cell survival, angiogenesis and neuroregeneration. METHODS In this study, the cortex of adult mice was cryo-injured in order to mimic local traumatic brain injury. Vehicle or freshly prepared BMDC were grafted in the cerebral penumbra area 24 hours after unilateral local injury alone or combined with intra-peritoneal LA administration as a new regenerative strategy. RESULTS Differences were found in the process of cell proliferation, angiogenesis and glial scar formation after local injury depending of the applied treatment, either LA or BMDC alone or in combination. CONCLUSION The data presented here suggest that transplantation of BMDC is a good alternative and valid strategy to treat a focal brain injury when LA could not be prescribed due to its non-desired secondary effects.
Collapse
Affiliation(s)
- Sara Paradells
- Departamento de Ciencias Biomédicas, Universidad CEU Cardenal Herrera , Moncada , Spain
| | | | | | | | | | | | | |
Collapse
|
43
|
Doeppner TR, Hermann DM. Stem cell-based treatments against stroke: observations from human proof-of-concept studies and considerations regarding clinical applicability. Front Cell Neurosci 2014; 8:357. [PMID: 25400548 PMCID: PMC4212679 DOI: 10.3389/fncel.2014.00357] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Accepted: 10/12/2014] [Indexed: 12/14/2022] Open
Abstract
Ischemic stroke remains a heavy burden for industrialized countries. The only causal therapy is the recanalization of occluded vessels via thrombolysis, which due to a narrow time window still can be offered only to a minority of patients. Since the majority of patients continues to exhibit neurological deficits even following successful thrombolysis, restorative therapies are urgently needed that promote brain remodeling and repair once stroke injury has occurred. Due to their unique properties of action, stem cell-based strategies gained increasing interest during recent years. Using various stroke models in both rodents and primates, the transplantation of stem cells, namely of bone marrow derived mesenchymal stem cells (MSCs) or neural progenitor cells (NPCs), has been shown to promote neurological recovery most likely via indirect bystander actions. In view of promising observations, clinical proof-of-concept studies are currently under way, in which effects of stem and precursor cells are evaluated in human stroke patients. In this review we summarize already published studies, which due to the broad experience in other medical contexts mostly employed bone marrow-derived MSCs by means of intravenous transplantation. With the overall number of clinical trials limited in number, only a fraction of these studies used non-treated control groups, and only single studies were adequately blinded. Despite these limitations, first promising results justify the need for more elaborate clinical trials in order to make stem cell transplantation a success for stroke treatment in the future.
Collapse
Affiliation(s)
- Thorsten R Doeppner
- Department of Neurology, University of Duisburg-Essen Medical School Essen, Germany
| | - Dirk M Hermann
- Department of Neurology, University of Duisburg-Essen Medical School Essen, Germany
| |
Collapse
|
44
|
Stem cell therapy for acute cerebral injury: what do we know and what will the future bring? Curr Opin Neurol 2014; 26:617-25. [PMID: 24136128 DOI: 10.1097/wco.0000000000000023] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
PURPOSE OF REVIEW The central nervous system has limited capacity for regeneration after acute and chronic injury. An attractive approach to stimulate neural plasticity in the brain is to transplant stem cells in order to restore function. Here, we discuss potential mechanisms of action, current knowledge and future perspectives of clinical stem cell research for stroke and traumatic brain injury. RECENT FINDINGS Preclinical data using various models suggest stem cell therapy to be a promising therapeutic avenue. Progress has been made in elucidating the mechanism of action of various cell types used, shifting the hypothesis from neural replacement to enhancing endogenous repair processes. Translation of these findings in clinical trials is currently being pursued with emphasis on both safety as well as efficacy. SUMMARY Clinical trials are currently recruiting patients in phase I and II trials to gain more insight in the therapeutic potential of stem cells in acute cerebral injury. A close interplay between results of these clinical trials and more extensive basic research is essential for future trial design, choosing the optimal transplantation strategy and selecting the right patients.
Collapse
|
45
|
Appaix F, Nissou MF, Sanden BVD, Dreyfus M, Berger F, Issartel JP, Wion D. Brain mesenchymal stem cells: The other stem cells of the brain? World J Stem Cells 2014; 6:134-143. [PMID: 24772240 PMCID: PMC3999771 DOI: 10.4252/wjsc.v6.i2.134] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2013] [Accepted: 02/20/2014] [Indexed: 02/06/2023] Open
Abstract
Multipotent mesenchymal stromal cells (MSC), have the potential to differentiate into cells of the mesenchymal lineage and have non-progenitor functions including immunomodulation. The demonstration that MSCs are perivascular cells found in almost all adult tissues raises fascinating perspectives on their role in tissue maintenance and repair. However, some controversies about the physiological role of the perivascular MSCs residing outside the bone marrow and on their therapeutic potential in regenerative medicine exist. In brain, perivascular MSCs like pericytes and adventitial cells, could constitute another stem cell population distinct to the neural stem cell pool. The demonstration of the neuronal potential of MSCs requires stringent criteria including morphological changes, the demonstration of neural biomarkers expression, electrophysiological recordings, and the absence of cell fusion. The recent finding that brain cancer stem cells can transdifferentiate into pericytes is another facet of the plasticity of these cells. It suggests that the perversion of the stem cell potential of pericytes might play an even unsuspected role in cancer formation and tumor progression.
Collapse
|
46
|
Mesenchymal stem cells prevent hypertrophic scar formation via inflammatory regulation when undergoing apoptosis. J Invest Dermatol 2014; 134:2648-2657. [PMID: 24714203 DOI: 10.1038/jid.2014.169] [Citation(s) in RCA: 132] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2013] [Revised: 03/03/2014] [Accepted: 03/30/2014] [Indexed: 12/29/2022]
Abstract
The cutaneous wound-healing process can lead to hypertrophic scar formation, during which exaggerated inflammation has been demonstrated to have an important role. Therefore, an exploration of strategies designed to regulate this inflammatory process is warranted. Mesenchymal stem cells (MSCs) have recently been demonstrated to regulate inflammation in various diseases. In this regard, using a rabbit model, we locally injected human mesenchymal stem cells (hMSCs) derived from bone marrow to treat hypertrophic scar formation, and explored their underlying mechanisms. We found that hMSC therapy efficiently regulated inflammation and prevented scar formation. We attributed the therapeutic effects of hMSCs to their secretion of an anti-inflammatory protein, TNF-alpha-stimulated gene/protein 6 (TSG-6). Unexpectedly, after injection, the number of surviving hMSCs decreased markedly and the hMSCs underwent extensive apoptosis, which was demonstrated to promote their secretion of TSG-6, partially through the activation of caspase-3. Moreover, H2O2-induced apoptotic hMSCs showed higher inflammatory regulatory abilities. The inhibition of caspase-3 decreased the inflammatory regulatory abilities of hMSCs and attenuated their therapeutic effects. Our results demonstrate that hMSCs can efficiently prevent hypertrophic scar formation via inflammatory regulation. In addition, we found that apoptosis has an important role in the activation of the inflammatory regulatory abilities of hMSCs.
Collapse
|
47
|
Kalladka D, Muir KW. Brain repair: cell therapy in stroke. STEM CELLS AND CLONING-ADVANCES AND APPLICATIONS 2014; 7:31-44. [PMID: 24627643 PMCID: PMC3937183 DOI: 10.2147/sccaa.s38003] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Stroke affects one in every six people worldwide, and is the leading cause of adult disability. Some spontaneous recovery is usual but of limited extent, and the mechanisms of late recovery are not completely understood. Endogenous neurogenesis in humans is thought to contribute to repair, but its extent is unknown. Exogenous cell therapy is promising as a means of augmenting brain repair, with evidence in animal stroke models of cell migration, survival, and differentiation, enhanced endogenous angiogenesis and neurogenesis, immunomodulation, and the secretion of trophic factors by stem cells from a variety of sources, but the potential mechanisms of action are incompletely understood. In the animal models of stroke, both mesenchymal stem cells (MSCs) and neural stem cells (NSCs) improve functional recovery, and MSCs reduce the infarct volume when administered acutely, but the heterogeneity in the choice of assessment scales, publication bias, and the possible confounding effects of immunosuppressants make the comparison of effects across cell types difficult. The use of adult-derived cells avoids the ethical issues around embryonic cells but may have more restricted differentiation potential. The use of autologous cells avoids rejection risk, but the sources are restricted, and culture expansion may be necessary, delaying treatment. Allogeneic cells offer controlled cell numbers and immediate availability, which may have advantages for acute treatment. Early clinical trials of both NSCs and MSCs are ongoing, and clinical safety data are emerging from limited numbers of selected patients. Ongoing research to identify prognostic imaging markers may help to improve patient selection, and the novel imaging techniques may identify biomarkers of recovery and the mechanism of action for cell therapies.
Collapse
Affiliation(s)
- Dheeraj Kalladka
- Institute of Neuroscience and Psychology, University of Glasgow, Southern General Hospital, Glasgow, United Kingdom
| | - Keith W Muir
- Institute of Neuroscience and Psychology, University of Glasgow, Southern General Hospital, Glasgow, United Kingdom
| |
Collapse
|
48
|
Zhang Q, Zhao YH. Therapeutic Angiogenesis after Ischemic Stroke: Chinese Medicines, Bone Marrow Stromal Cells (BMSCs) and their Combinational Treatment. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2014; 42:61-77. [DOI: 10.1142/s0192415x14500049] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Ischemic stroke is a clinical acute disease which causes neurological dysfunction and threatens a patient's life. Because the mechanism of pathology is complicated and most patients miss the best therapeutic window time, the effect of the treatment is not satisfied at present. Numerous studies indicated new vessels not only recuperated blood flow in the ischemic boundary zone, but also facilitated endogenous neurogenesis and improved neurological function after ischemic stroke. Therefore, angiogenesis has been an important research field in neurovascular regeneration. Recently, some Chinese medicines, bone marrow stromal cells (BMSCs) and their combination treatment were demonstrated to have beneficial effects in promoting angiogenesis both in vitro and in vivo. In this review, we summarized the effective mechanisms of Chinese medicines and BMSCs, as well as BMSCs in combination with Chinese medicines on angiogenesis post-stroke.
Collapse
Affiliation(s)
- Qian Zhang
- State Key Laboratory of Quality Research in Chinese Medicine, Faculty of Chinese Medicine, Macau University of Science and Technology, Macao 999078, Macao SAR of P. R. China
| | - Yong-Hua Zhao
- State Key Laboratory of Quality Research in Chinese Medicine, Faculty of Chinese Medicine, Macau University of Science and Technology, Macao 999078, Macao SAR of P. R. China
| |
Collapse
|
49
|
Ketkar-Atre A, Struys T, Soenen SJ, Lambrichts I, Verfaillie CM, De Cuyper M, Himmelreich U. Variability in contrast agent uptake by different but similar stem cell types. Int J Nanomedicine 2013; 8:4577-91. [PMID: 24399873 PMCID: PMC3876490 DOI: 10.2147/ijn.s51588] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The need to track and evaluate the fate of transplanted cells is an important issue in regenerative medicine. In order to accomplish this, pre-labelling cells with magnetic resonance imaging (MRI) contrast agents is a well-established method. Uptake of MRI contrast agents by non-phagocytic stem cells, and factors such as cell homeostasis or the adverse effects of contrast agents on cell biology have been extensively studied, but in the context of nanoparticle (NP)-specific parameters. Here, we have studied three different types of NPs (Endorem®, magnetoliposomes [MLs], and citrate coated C-200) to label relatively larger, mesenchymal stem cells (MSCs) and, much smaller yet faster proliferating, multipotent adult progenitor cells (MAPCs). Both cell types are similar, as they are isolated from bone marrow and have substantial regenerative potential, which make them interesting candidates for comparative experiments. Using NPs with different surface coatings and sizes, we found that differences in the proliferative and morphological characteristics of the cells used in the study are mainly responsible for the fate of endocytosed iron, intracellular iron concentration, and cytotoxic responses. The quantitative analysis, using high-resolution electron microscopy images, demonstrated a strong relationship between cell volume/surface, uptake, and cytotoxicity. Interestingly, uptake and toxicity trends are reversed if intracellular concentrations, and not amounts, are considered. This indicates that more attention should be paid to cellular parameters such as cell size and proliferation rate in comparative cell-labeling studies.
Collapse
Affiliation(s)
- Ashwini Ketkar-Atre
- Biomedical MRI/MoSAIC, Department of Imaging and Pathology, Biomedical Sciences Group, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Tom Struys
- Biomedical MRI/MoSAIC, Department of Imaging and Pathology, Biomedical Sciences Group, Katholieke Universiteit Leuven, Leuven, Belgium ; Lab of Histology, Biomedical Research Institute, Hasselt University, Campus Diepenbeek, Agoralaan, Diepenbeek, Belgium
| | - Stefaan J Soenen
- Lab for General Biochemistry and Physical Pharmacy, Faculty of Pharmacy, Ghent University, Ghent, Belgium
| | - Ivo Lambrichts
- Lab of Histology, Biomedical Research Institute, Hasselt University, Campus Diepenbeek, Agoralaan, Diepenbeek, Belgium
| | - Catherine M Verfaillie
- Interdepartmental Stem Cell Institute, O&N IV, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Marcel De Cuyper
- Laboratory of BioNanoColloids, Interdisciplinary Research Centre, Katholieke Universiteit Leuven, Kortrijk, Belgium
| | - Uwe Himmelreich
- Biomedical MRI/MoSAIC, Department of Imaging and Pathology, Biomedical Sciences Group, Katholieke Universiteit Leuven, Leuven, Belgium
| |
Collapse
|
50
|
Eckert MA, Vu Q, Xie K, Yu J, Liao W, Cramer SC, Zhao W. Evidence for high translational potential of mesenchymal stromal cell therapy to improve recovery from ischemic stroke. J Cereb Blood Flow Metab 2013; 33:1322-34. [PMID: 23756689 PMCID: PMC3764389 DOI: 10.1038/jcbfm.2013.91] [Citation(s) in RCA: 103] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2013] [Revised: 05/06/2013] [Accepted: 05/08/2013] [Indexed: 12/27/2022]
Abstract
Although ischemic stroke is a major cause of morbidity and mortality, current therapies benefit only a small proportion of patients. Transplantation of mesenchymal stromal cells (MSC, also known as mesenchymal stem cells or multipotent stromal cells) has attracted attention as a regenerative therapy for numerous diseases, including stroke. Mesenchymal stromal cells may aid in reducing the long-term impact of stroke via multiple mechanisms that include induction of angiogenesis, promotion of neurogenesis, prevention of apoptosis, and immunomodulation. In this review, we discuss the clinical rationale of MSC for stroke therapy in the context of their emerging utility in other diseases, and their recent clinical approval for treatment of graft-versus-host disease. An analysis of preclinical studies examining the effects of MSC therapy after ischemic stroke indicates near-universal agreement that MSC have significant favorable effect on stroke recovery, across a range of doses and treatment time windows. These results are interpreted in the context of completed and ongoing human clinical trials, which provide support for MSC as a safe and potentially efficacious therapy for stroke recovery in humans. Finally, we consider principles of brain repair and manufacturing considerations that will be useful for effective translation of MSC from the bench to the bedside for stroke recovery.
Collapse
Affiliation(s)
- Mark A Eckert
- Departments of Pharmaceutical Sciences and Biomedical Engineering, Sue and Bill Gross Stem Cell Research Center, Chao Family Comprehensive Cancer Center, University of California, Irvine, California, USA
| | - Quynh Vu
- Department of Neurology, Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, California, USA
| | - Kate Xie
- Department of Neurology, Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, California, USA
| | - Jingxia Yu
- Departments of Pharmaceutical Sciences and Biomedical Engineering, Sue and Bill Gross Stem Cell Research Center, Chao Family Comprehensive Cancer Center, University of California, Irvine, California, USA
| | - Wenbin Liao
- Department of Pathology, State University of New York at Stony Brook, Stony Brook, New York, USA
| | - Steven C Cramer
- Departments of Neurology and Anatomy and Neurobiology, Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, California, USA
| | - Weian Zhao
- Departments of Pharmaceutical Sciences and Biomedical Engineering, Sue and Bill Gross Stem Cell Research Center, Chao Family Comprehensive Cancer Center, University of California, Irvine, California, USA
| |
Collapse
|