1
|
Movahed ZG, Mansouri K, Mohsen AH, Matin MM. Bone marrow mesenchymal stem cells enrich breast cancer stem cell population via targeting metabolic pathways. Med Oncol 2025; 42:90. [PMID: 40045066 DOI: 10.1007/s12032-025-02632-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Accepted: 02/13/2025] [Indexed: 03/29/2025]
Abstract
The role of cancer cell metabolic reprogramming in the formation and maintenance of cancer stem cells (CSCs) has been well established. This reprogramming involves alterations in the metabolic pathways of cancer cells, leading to the acquisition of stem cell-like properties such as self-renewal and differentiation. This study aimed to investigate the potential effects of bone marrow mesenchymal stem cells (BM-MSCs) on the enrichment of breast CSCs. Exosomes (Exo) and conditioned media (CM) were isolated from BM-MSCs for use in this experimental study. The impact of BM-MSCs-Exo and BM-MSCs-CM on the expression of stemness genes NANOG and OCT-4, as well as CD24 and CD44 markers, was assessed in MCF-7 and MDA-MB-231 cell cultures to identify CSCs. Furthermore, the effects of BM-MSCs-Exo and BM-MSCs-CM on cancer cell metabolism were evaluated by examining changes in glycolysis, the pentose phosphate pathway (PPP), and amino acid profiles. Additionally, the influence of BM-MSCs-Exo and BM-MSCs-CM on tumor growth in vivo was also investigated. The analysis of stemness marker expression in cells treated with BM-MSCs-Exo and BM-MSCs-CM revealed an increase in stemness characteristics compared to the control group. Furthermore, the examination of changes in cell metabolism following these treatments showed alterations in glycolysis, PPP, and amino acid metabolism pathways. Additionally, it was demonstrated that BM-MSCs-Exo and BM-MSCs-CM can promote tumor growth in mice following transplantation of 4T1 cells. These findings suggest that BM-MSCs-Exo and BM-MSCs-CM can enrich the population of CSCs in MCF-7 and MDA-MB-231 cells by targeting metabolic pathways, however, further studies are required to elicit the exact mechanisms of these phenomena.
Collapse
Affiliation(s)
- Zahra Ghanbari Movahed
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
- Medical Biology Research Center, Kermanshah University of Medical Sciences, Bākhtarān, Iran
| | - Kamran Mansouri
- Medical Biology Research Center, Health Technology Institute, School of Medicine, Kermanshah University of Medical Sciences, P.O. Box 67145-1673, Bākhtarān, Iran.
| | - Ali Hamrahi Mohsen
- Institute of Biochemistry and Biophysics, Faculty of Science, University of Tehran, Tehran, Iran
| | - Maryam M Matin
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran.
- Novel Diagnostics and Therapeutics Research Group, Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad, Iran.
| |
Collapse
|
2
|
McDonough E, Barroso M, Ginty F, Corr DT. Modeling intratumor heterogeneity in breast cancer. Biofabrication 2024; 17:10.1088/1758-5090/ad9b50. [PMID: 39642392 PMCID: PMC11740194 DOI: 10.1088/1758-5090/ad9b50] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 12/06/2024] [Indexed: 12/08/2024]
Abstract
Reduced therapy response in breast cancer has been correlated with heterogeneity in biomarker composition, expression level, and spatial distribution of cancer cells within a patient tumor. Thus, there is a need for models to replicate cell-cell, cell-stromal, and cell-microenvironment interactions during cancer progression. Traditional two-dimensional (2D) cell culture models are convenient but cannot adequately represent tumor microenvironment histological organization,in vivo3D spatial/cellular context, and physiological relevance. Recently, three-dimensional (3D)in vitrotumor models have been shown to provide an improved platform for incorporating compositional and spatial heterogeneity and to better mimic the biological characteristics of patient tumors to assess drug response. Advances in 3D bioprinting have allowed the creation of more complex models with improved physiologic representation while controlling for reproducibility and accuracy. This review aims to summarize the advantages and challenges of current 3Din vitromodels for evaluating therapy response in breast cancer, with a particular emphasis on 3D bioprinting, and addresses several key issues for future model development as well as their application to other cancers.
Collapse
Affiliation(s)
- Elizabeth McDonough
- Department of Biomedical Engineering, Rensselaer
Polytechnic Institute, 110 Eighth Street, Troy, New York 12180, United States
- GE HealthCare Technology & Innovation Center, 1
Research Circle, Niskayuna, New York 12309, United States
| | - Margarida Barroso
- Department of Molecular and Cellular Physiology, Albany
Medical College, Albany, NY 12208, United States
| | - Fiona Ginty
- GE HealthCare Technology & Innovation Center, 1
Research Circle, Niskayuna, New York 12309, United States
| | - David T. Corr
- Department of Biomedical Engineering, Rensselaer
Polytechnic Institute, 110 Eighth Street, Troy, New York 12180, United States
| |
Collapse
|
3
|
Patel T, Jain N. Multicellular tumor spheroids: A convenient in vitro model for translational cancer research. Life Sci 2024; 358:123184. [PMID: 39490437 DOI: 10.1016/j.lfs.2024.123184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 10/11/2024] [Accepted: 10/22/2024] [Indexed: 11/05/2024]
Abstract
In the attempts to mitigate uncertainties in the results of monolayer culture for the identification of cancer therapeutic targets and compounds, there has been a growing interest in using 3D cancer spheroid models, which include tumorospheres (TSs), tissue-derived tumor spheres (TDTSs), organotypic multicellular tumor spheroids (OMSs), and multicellular tumor spheroids (MCTSs). The MCTSs, either Mono-MCTSs or Hetero-MCTSs, with or without scaffold, in particular, offer numerous advantages over other spheroid models, including easy cultivation, high reproducibility, accessibility, high throughput, controllable size, well-rounded shape, simplicity of genetic manipulation, economical and availability of various biological methods for their development. In this review, we have attempted to discuss the role of MCTSs concerning various aspects of translational cancer research, such as drug response and penetration, cell-cell interaction, and invasion and metastasis. However, the Mono-MCTSs, either scaffold-free or scaffold-based, may not adequately represent the cellular heterogeneity and complexity of clinical tumors, limiting their utility in translational cancer research. Conversely, Hetero-MCTS models, both scaffold-free and scaffold-based, show better suitability due to the presence of a similar in vivo type tumor microenvironment. Nonetheless, scaffold-based Hetero-MCTS models show batch variability and challenges in performing quantitative assays due to difficulties extracting spheroids and cells from scaffolds. Further, incorporating stromal cells with cancer cells in a more precise ratio to develop Hetero-MCTSs can enhance the model's relevance, yielding more clinically reliable outcomes for drug candidates and improving insights into tumor biology.
Collapse
Affiliation(s)
- Tushar Patel
- P D Patel Institute of Applied Sciences, Charotar University of Science and Technology (CHARUSAT), Changa 388 421, India
| | - Neeraj Jain
- Dr. K C Patel Research and Development Centre, University Research Centre(s), Charotar University of Science and Technology (CHARUSAT), Changa 388 421, India.
| |
Collapse
|
4
|
Vaid P, Saini AK, Gupta RK, Sinha ES, Sharma D, Alsanie WF, Thakur VK, Saini RV. Sustainable Nanoparticles from Stephania glabra and Analysis of Their Anticancer Potential on 2D and 3D Models of Prostate Cancer. Appl Biochem Biotechnol 2024; 196:3511-3533. [PMID: 37682510 DOI: 10.1007/s12010-023-04700-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/16/2023] [Indexed: 09/09/2023]
Abstract
In pursuit of a novel effective treatment for prostate cancer, methanolic extract of Stephania glabra tubers (Sg-ME) was utilized to fabricate silver (Sg-AgNP), copper oxide (Sg-CuONP), and silver-copper bimetallic nanoparticles (Sg-BNP). The characterization of the nanoparticles confirmed spherical shape with average diameters of 30.72, 32.19, and 25.59 nm of Sg-AgNP, Sg-CuONP, and Sg-BNP, respectively. Interestingly, these nanoparticles exhibited significant cytotoxicity toward the prostate cancer (PC3) cell line while being non-toxic toward normal cells. The nanoparticles were capable of inducing apoptosis in PC3 cells by enhancing reactive oxygen species (ROS) generation and mitochondrial depolarization. Furthermore, the shrinkage of 3D prostate tumor spheroids was observed after 4 days of treatment with these green nanoparticles. The 3D model system was less susceptible to nanoparticles as compared to the 2D model system. Sg-BNP showed the highest anticancer potential on 2D and 3D prostate cancer models.
Collapse
Affiliation(s)
- Prachi Vaid
- School of Biotechnology, Faculty of Applied Sciences and Biotechnology, Shoolini University of Biotechnology and Management Sciences, 173229, H, Solan, .P, India
| | - Adesh K Saini
- Central Research Laboratory and Department of Bio-sciences and Technology, MMEC, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala, Haryana, 133207, India
| | - Raju Kumar Gupta
- Department of Chemical Engineering, Indian Institute of Technology Kanpur, U, Kanpur, .P, India
| | - Eshu Singhal Sinha
- Department of Biotechnology, Panjab University, Chandigarh, 160014, India
| | - Deepak Sharma
- CSIR-Institute of Microbial Technology, Chandigarh, 160036, India
| | - Walaa F Alsanie
- Department of Clinical Laboratories Sciences, The Faculty of Applied Medical Sciences, Taif University, P.O. Box 11099, Taif, 21944, Saudi Arabia
| | - Vijay Kumar Thakur
- Biorefining and Advanced Materials Research Centre, Scotland's Rural College (SRUC), Kings Buildings, Edinburgh, EH9 3JG, UK
| | - Reena V Saini
- Central Research Laboratory and Department of Bio-sciences and Technology, MMEC, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala, Haryana, 133207, India.
| |
Collapse
|
5
|
Batista JEDS, Rodrigues MB, Bristot IJ, Silva V, Bernardy S, Rodrigues OED, Dornelles L, Carvalho FB, de Sousa FJF, Fernandes MDC, Zanatta G, Soares FAA, Klamt F. Systematic screening of synthetic organochalcogen compounds with anticancer activity using human lung adenocarcinoma spheroids. Chem Biol Interact 2024; 396:111047. [PMID: 38735454 DOI: 10.1016/j.cbi.2024.111047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 05/06/2024] [Accepted: 05/10/2024] [Indexed: 05/14/2024]
Abstract
Lung adenocarcinoma stands as a leading global cause of cancer-related fatalities, with current therapeutic approaches remaining unsatisfactory. Given the association between elevated oxidative markers and the aggressive nature of cancer cells (including multidrug resistance and metastatic potential) that can predict poor outcome of lung adenocarcinoma patients, any compounds that interfere with their aberrant redox biology should be rationally explored as innovative intervention strategies. This study was designed to screen potential anticancer activities within nine newly synthesized organochalcogen - compounds characterized by the presence of oxygen, sulfur, or selenium elements in their structure and exhibiting antioxidant activity - and systematically evaluated their performance against cisplatin, the cornerstone therapeutic agent for lung adenocarcinoma. Our methodology involved the establishment of optimal conditions for generating single tumor spheroids using A549 human lung adenocarcinoma cell line. The initiation interval for spheroid formation was determined to be four days in vitro (DIV), and these single spheroids demonstrated sustained growth over a period of 20 DIV. Toxic dose-response curves were subsequently performed for each compound after 24 and 48 h of incubation at the 12th DIV. Our findings reveal that at least two of the synthetic organochalcogen compounds exhibited noteworthy anticancer activity, surpassing cisplatin in key parameters such as lower LD (Lethal Dose) 50, larger drug activity area, and maximum amplitude of effect, and are promising drugs for futures studies in the treatment of lung adenocarcinomas. Physicochemical descriptors and prediction ADME (absorption, distribution, metabolism, and excretion) parameters of selected compounds were obtained using SwissADME computational tool; Molinspiration server was used to calculate a biological activity score, and possible molecule targets were evaluated by prediction with the SwissTargetPrediction server. This research not only sheds light on novel avenues for therapeutic exploration but also underscores the potential of synthetic organochalcogen compounds as agents with superior efficacy compared to established treatments.
Collapse
Affiliation(s)
- Jéssica Eduarda Dos Santos Batista
- Department of Biochemistry and Molecular Biology, Federal University of Santa Maria (UFSM), Santa Maria, RS, 97105-900, Brazil; Laboratory of Cellular Biochemistry, Department of Biochemistry, Institute of Basic Health Sciences (ICBS), Federal University of Rio Grande Do Sul (UFRGS), Porto Alegre, RS, 90035-003, Brazil; National Institutes of Science and Technology-Translational Medicine (INCT-TM), Brazil
| | | | - Ivi Juliana Bristot
- Laboratory of Cellular Biochemistry, Department of Biochemistry, Institute of Basic Health Sciences (ICBS), Federal University of Rio Grande Do Sul (UFRGS), Porto Alegre, RS, 90035-003, Brazil; National Institutes of Science and Technology-Translational Medicine (INCT-TM), Brazil
| | - Valquíria Silva
- Laboratory of Cellular Biochemistry, Department of Biochemistry, Institute of Basic Health Sciences (ICBS), Federal University of Rio Grande Do Sul (UFRGS), Porto Alegre, RS, 90035-003, Brazil; National Institutes of Science and Technology-Translational Medicine (INCT-TM), Brazil
| | - Silvia Bernardy
- Department of Chemistry, Federal University of Santa Maria (UFSM), Santa Maria, RS, 97105-900, Brazil
| | | | - Luciano Dornelles
- Department of Chemistry, Federal University of Santa Maria (UFSM), Santa Maria, RS, 97105-900, Brazil
| | - Fabiano Barbosa Carvalho
- Pathology Laboratory, Federal University of Health Sciences of Porto Alegre (UFCSPA), Porto Alegre, RS, 90050-170, Brazil
| | | | - Marilda da Cruz Fernandes
- Pathology Laboratory, Federal University of Health Sciences of Porto Alegre (UFCSPA), Porto Alegre, RS, 90050-170, Brazil
| | - Geancarlo Zanatta
- Department of Biophysics, UFRGS, Porto Alegre, RS, 91501-970, Brazil
| | - Félix Alexandre Antunes Soares
- Department of Biochemistry and Molecular Biology, Federal University of Santa Maria (UFSM), Santa Maria, RS, 97105-900, Brazil
| | - Fábio Klamt
- Laboratory of Cellular Biochemistry, Department of Biochemistry, Institute of Basic Health Sciences (ICBS), Federal University of Rio Grande Do Sul (UFRGS), Porto Alegre, RS, 90035-003, Brazil; National Institutes of Science and Technology-Translational Medicine (INCT-TM), Brazil.
| |
Collapse
|
6
|
Shah D, Dave B, Chorawala MR, Prajapati BG, Singh S, M. Elossaily G, Ansari MN, Ali N. An Insight on Microfluidic Organ-on-a-Chip Models for PM 2.5-Induced Pulmonary Complications. ACS OMEGA 2024; 9:13534-13555. [PMID: 38559954 PMCID: PMC10976395 DOI: 10.1021/acsomega.3c10271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 02/21/2024] [Accepted: 02/26/2024] [Indexed: 04/04/2024]
Abstract
Pulmonary diseases like asthma, chronic obstructive pulmonary disorder, lung fibrosis, and lung cancer pose a significant burden to global human health. Many of these complications arise as a result of exposure to particulate matter (PM), which has been examined in several preclinical and clinical trials for its effect on several respiratory diseases. Particulate matter of size less than 2.5 μm (PM2.5) has been known to inflict unforeseen repercussions, although data from epidemiological studies to back this are pending. Conventionally utilized two-dimensional (2D) cell culture and preclinical animal models have provided insufficient benefits in emulating the in vivo physiological and pathological pulmonary conditions. Three-dimensional (3D) structural models, including organ-on-a-chip models, have experienced a developmental upsurge in recent times. Lung-on-a-chip models have the potential to simulate the specific features of the lungs. With the advancement of technology, an emerging and advanced technique termed microfluidic organ-on-a-chip has been developed with the aim of identifying the complexity of the respiratory cellular microenvironment of the body. In the present Review, the role of lung-on-a-chip modeling in reproducing pulmonary complications has been explored, with a specific emphasis on PM2.5-induced pulmonary complications.
Collapse
Affiliation(s)
- Disha Shah
- Department
of Pharmacology and Pharmacy Practice, L.
M. College of Pharmacy Navrangpura, Ahmedabad, Gujarat 380009, India
| | - Bhavarth Dave
- Department
of Pharmacology and Pharmacy Practice, L.
M. College of Pharmacy Navrangpura, Ahmedabad, Gujarat 380009, India
| | - Mehul R. Chorawala
- Department
of Pharmacology and Pharmacy Practice, L.
M. College of Pharmacy Navrangpura, Ahmedabad, Gujarat 380009, India
| | - Bhupendra G. Prajapati
- Department
of Pharmaceutics and Pharmaceutical Technology, Shree S. K. Patel College of Pharmaceutical Education and Research,
Ganpat University, Mehsana, Gujarat 384012, India
| | - Sudarshan Singh
- Office
of Research Administration, Chiang Mai University, Chiang Mai 50200, Thailand
- Department
of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang
Mai 50200, Thailand
| | - Gehan M. Elossaily
- Department
of Basic Medical Sciences, College of Medicine, AlMaarefa University, P.O. Box 71666, Riyadh 11597, Saudi Arabia
| | - Mohd Nazam Ansari
- Department
of Pharmacology and Toxicology, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Alkharj 11942, Saudi Arabia
| | - Nemat Ali
- Department
of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| |
Collapse
|
7
|
Franzén AS, Boulifa A, Radecke C, Stintzing S, Raftery MJ, Pecher G. Next-Generation CEA-CAR-NK-92 Cells against Solid Tumors: Overcoming Tumor Microenvironment Challenges in Colorectal Cancer. Cancers (Basel) 2024; 16:388. [PMID: 38254876 PMCID: PMC10814835 DOI: 10.3390/cancers16020388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/10/2024] [Accepted: 01/12/2024] [Indexed: 01/24/2024] Open
Abstract
Colorectal carcinoma (CRC) presents a formidable medical challenge, demanding innovative therapeutic strategies. Chimeric antigen receptor (CAR) natural killer (NK) cell therapy has emerged as a promising alternative to CAR T-cell therapy for cancer. A suitable tumor antigen target on CRC is carcinoembryonic antigen (CEA), given its widespread expression and role in tumorigenesis and metastasis. CEA is known to be prolifically shed from tumor cells in a soluble form, thus hindering CAR recognition of tumors and migration through the TME. We have developed a next-generation CAR construct exclusively targeting cell-associated CEA, incorporating a PD1-checkpoint inhibitor and a CCR4 chemokine receptor to enhance homing and infiltration of the CAR-NK-92 cell line through the TME, and which does not induce fratricidal killing of CAR-NK-92-cells. To evaluate this therapeutic approach, we harnessed intricate 3D multicellular tumor spheroid models (MCTS), which emulate key elements of the TME. Our results demonstrate the effective cytotoxicity of CEA-CAR-NK-92 cells against CRC in colorectal cell lines and MCTS models. Importantly, minimal off-target activity against non-cancerous cell lines underscores the precision of this therapy. Furthermore, the integration of the CCR4 migration receptor augments homing by recognizing target ligands, CCL17 and CCL22. Notably, our CAR design results in no significant trogocytosis-induced fratricide. In summary, the proposed CEA-targeting CAR-NK cell therapy could offer a promising solution for CRC treatment, combining precision and efficacy in a tailored approach.
Collapse
Affiliation(s)
- Alexander Sebastian Franzén
- Berlin Institute of Health at Charité, Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
- Competence Center of Immuno-Oncology and Translational Cell Therapy (KITZ), Department of Hematology, Oncology and Tumor Immunology, CCM, Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Abdelhadi Boulifa
- Berlin Institute of Health at Charité, Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
- Competence Center of Immuno-Oncology and Translational Cell Therapy (KITZ), Department of Hematology, Oncology and Tumor Immunology, CCM, Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Clarissa Radecke
- Competence Center of Immuno-Oncology and Translational Cell Therapy (KITZ), Department of Hematology, Oncology and Tumor Immunology, CCM, Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Sebastian Stintzing
- Competence Center of Immuno-Oncology and Translational Cell Therapy (KITZ), Department of Hematology, Oncology and Tumor Immunology, CCM, Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Martin J. Raftery
- Berlin Institute of Health at Charité, Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
- Competence Center of Immuno-Oncology and Translational Cell Therapy (KITZ), Department of Hematology, Oncology and Tumor Immunology, CCM, Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Gabriele Pecher
- Berlin Institute of Health at Charité, Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
- Competence Center of Immuno-Oncology and Translational Cell Therapy (KITZ), Department of Hematology, Oncology and Tumor Immunology, CCM, Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117 Berlin, Germany
| |
Collapse
|
8
|
Chen Z, Han S, Kim S, Lee C, Sanny A, Tan AHM, Park S. A 3D hanging spheroid-filter plate for high-throughput drug testing and CAR T cell cytotoxicity assay. Analyst 2024; 149:475-481. [PMID: 38050728 DOI: 10.1039/d3an01904g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/06/2023]
Abstract
Tumour spheroids are widely used in immune cell cytotoxicity assays and anticancer drug testing, providing a physiologically relevant model replicating the tumour microenvironment. However, co-culture of immune and tumour cells complicates quantification of immune cell killing efficiency. We present a novel 3D hanging spheroid-filter plate that efficiently facilitates spheroid formation and separates unbound/dead cells during cytotoxicity assays. Optical imaging directly measures the cytotoxic effects of anti-cancer drugs on tumour spheroids, eliminating the need for live/dead fluorescent staining. This approach enables cost-effective evaluation of T-cell cytotoxicity with specific chimeric antigen receptors (CARs), enhancing immune cell-based assays and drug testing in three-dimensional tumour models.
Collapse
Affiliation(s)
- Zhenzhong Chen
- School of Mechanical Engineering, Sungkyunkwan University (SKKU), Suwon, 16419, Korea
| | - Seokgyu Han
- School of Mechanical Engineering, Sungkyunkwan University (SKKU), Suwon, 16419, Korea
| | - Sein Kim
- Department of Biomedical Engineering, Sungkyunkwan University (SKKU), Suwon, 16419, Korea
| | - Chanyang Lee
- School of Mechanical Engineering, Sungkyunkwan University (SKKU), Suwon, 16419, Korea
| | - Arleen Sanny
- Bioprocessing Technology Institute (BTI), Agency for Science, Technology and Research (A*STAR), 20 Biopolis Way, Centros, Singapore 138668, Republic of Singapore
| | - Andy Hee-Meng Tan
- Bioprocessing Technology Institute (BTI), Agency for Science, Technology and Research (A*STAR), 20 Biopolis Way, Centros, Singapore 138668, Republic of Singapore
| | - Sungsu Park
- School of Mechanical Engineering, Sungkyunkwan University (SKKU), Suwon, 16419, Korea
- Department of Biomedical Engineering, Sungkyunkwan University (SKKU), Suwon, 16419, Korea
- Department of Biophysics, Institute of Quantum Biophysics (IQB), Sungkyunkwan University (SKKU), Suwon, 16419, Korea.
| |
Collapse
|
9
|
Gholizadeh Siahmazgi Z, Irani S, Ghiaseddin A, Fallah P, Haghpanah V. Xanthohumol hinders invasion and cell cycle progression in cancer cells through targeting MMP2, MMP9, FAK and P53 genes in three-dimensional breast and lung cancer cells culture. Cancer Cell Int 2023; 23:153. [PMID: 37533078 PMCID: PMC10394853 DOI: 10.1186/s12935-023-03009-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 07/28/2023] [Indexed: 08/04/2023] Open
Abstract
BACKGROUND Despite recent advances in the treatment of lung and breast cancer, the mortality with these two types of cancer is high. Xanthohumol (XN) is known as a bioactive compound that shows an anticancer effect on cancer cells. Here, we intended to investigate the anticancer effects of XN on the breast and lung cancer cell lines, using the three-dimensional (3D) cell culture. METHODS XN was isolated from Humulus lupulus using Preparative-Thin Layer Chromatography (P-TLC) method and its authenticity was documented through Fourier Transform Infrared spectroscopy (FT-IR) and Hydrogen Nuclear Magnetic Resonance (H-NMR) methods. The spheroids of the breast (MCF-7) and lung (A549) cancer cell lines were prepared by the Hanging Drop (HD) method. Subsequently, the IC50s of XN were determined using the MTT assay in 2D and 3D cultures. Apoptosis was evaluated by Annexin V/PI flow cytometry and NFκB1/2, BAX, BCL2, and SURVIVIN expressions. Cell cycle progression was determined by P21, and P53 expressions as well as PI flow cytometry assays. Multidrug resistance was investigated through examining the expression of MDR1 and ABCG2. The invasion was examined by MMP2, MMP9, and FAK expression and F-actin labeling with Phalloidin-iFluor. RESULTS While the IC50s for the XN treatment were 1.9 µM and 4.74 µM in 2D cultures, these values were 12.37 µM and 31.17 µM in 3D cultures of MCF-7 and A549 cells, respectively. XN induced apoptosis in MCF-7 and A549 cell lines. Furthermore, XN treatment reduced cell cycle progression, multidrug resistance, and invasion at the molecular and/or cellular levels. CONCLUSIONS According to our results of XN treatment in 3D conditions, this bioactive compound can be introduced as an adjuvant anti-cancer agent for breast and lung cancer.
Collapse
Affiliation(s)
| | - Shiva Irani
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Ali Ghiaseddin
- Department of Biomedical Engineering Division, Chemical Engineering Faculty, Tarbiat Modares University, Tehran, Iran
| | - Parviz Fallah
- Laboratory Science Department, Allied Medicine Faculty, Alborz University of Medical Sciences, Karaj, Iran
| | - Vahid Haghpanah
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran.
- Personalized Medicine Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran.
- Endocrinology and Metabolism Research Center (EMRC), Dr. Shariati Hospital, North Kargar Ave, 14114, Tehran, Iran.
| |
Collapse
|
10
|
Farahani MK, Gharibshahian M, Rezvani A, Vaez A. Breast cancer brain metastasis: from etiology to state-of-the-art modeling. J Biol Eng 2023; 17:41. [PMID: 37386445 DOI: 10.1186/s13036-023-00352-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Accepted: 05/02/2023] [Indexed: 07/01/2023] Open
Abstract
Currently, breast carcinoma is the most common form of malignancy and the main cause of cancer mortality in women worldwide. The metastasis of cancer cells from the primary tumor site to other organs in the body, notably the lungs, bones, brain, and liver, is what causes breast cancer to ultimately be fatal. Brain metastases occur in as many as 30% of patients with advanced breast cancer, and the 1-year survival rate of these patients is around 20%. Many researchers have focused on brain metastasis, but due to its complexities, many aspects of this process are still relatively unclear. To develop and test novel therapies for this fatal condition, pre-clinical models are required that can mimic the biological processes involved in breast cancer brain metastasis (BCBM). The application of many breakthroughs in the area of tissue engineering has resulted in the development of scaffold or matrix-based culture methods that more accurately imitate the original extracellular matrix (ECM) of metastatic tumors. Furthermore, specific cell lines are now being used to create three-dimensional (3D) cultures that can be used to model metastasis. These 3D cultures satisfy the requirement for in vitro methodologies that allow for a more accurate investigation of the molecular pathways as well as a more in-depth examination of the effects of the medication being tested. In this review, we talk about the latest advances in modeling BCBM using cell lines, animals, and tissue engineering methods.
Collapse
Affiliation(s)
| | - Maliheh Gharibshahian
- Student Research Committee, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Alireza Rezvani
- Hematology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Ahmad Vaez
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
11
|
Carvalho SM, Mansur AAP, da Silveira IB, Pires TFS, Victória HFV, Krambrock K, Leite MF, Mansur HS. Nanozymes with Peroxidase-like Activity for Ferroptosis-Driven Biocatalytic Nanotherapeutics of Glioblastoma Cancer: 2D and 3D Spheroids Models. Pharmaceutics 2023; 15:1702. [PMID: 37376150 DOI: 10.3390/pharmaceutics15061702] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 05/26/2023] [Accepted: 06/07/2023] [Indexed: 06/29/2023] Open
Abstract
Glioblastoma (GBM) is the most common primary brain cancer in adults. Despite the remarkable advancements in recent years in the realm of cancer diagnosis and therapy, regrettably, GBM remains the most lethal form of brain cancer. In this view, the fascinating area of nanotechnology has emerged as an innovative strategy for developing novel nanomaterials for cancer nanomedicine, such as artificial enzymes, termed nanozymes, with intrinsic enzyme-like activities. Therefore, this study reports for the first time the design, synthesis, and extensive characterization of innovative colloidal nanostructures made of cobalt-doped iron oxide nanoparticles chemically stabilized by a carboxymethylcellulose capping ligand (i.e., Co-MION), creating a peroxidase-like (POD) nanozyme for biocatalytically killing GBM cancer cells. These nanoconjugates were produced using a strictly green aqueous process under mild conditions to create non-toxic bioengineered nanotherapeutics against GBM cells. The nanozyme (Co-MION) showed a magnetite inorganic crystalline core with a uniform spherical morphology (diameter, 2R = 6-7 nm) stabilized by the CMC biopolymer, producing a hydrodynamic diameter (HD) of 41-52 nm and a negatively charged surface (ZP~-50 mV). Thus, we created supramolecular water-dispersible colloidal nanostructures composed of an inorganic core (Cox-MION) and a surrounding biopolymer shell (CMC). The nanozymes confirmed the cytotoxicity evaluated by an MTT bioassay using a 2D culture in vitro of U87 brain cancer cells, which was concentration-dependent and boosted by increasing the cobalt-doping content in the nanosystems. Additionally, the results confirmed that the lethality of U87 brain cancer cells was predominantly caused by the production of toxic cell-damaging reactive oxygen species (ROS) through the in situ generation of hydroxyl radicals (·OH) by the peroxidase-like activity displayed by nanozymes. Thus, the nanozymes induced apoptosis (i.e., programmed cell death) and ferroptosis (i.e., lipid peroxidation) pathways by intracellular biocatalytic enzyme-like activity. More importantly, based on the 3D spheroids model, these nanozymes inhibited tumor growth and remarkably reduced the malignant tumor volume after the nanotherapeutic treatment (ΔV~40%). The kinetics of the anticancer activity of these novel nanotherapeutic agents decreased with the time of incubation of the GBM 3D models, indicating a similar trend commonly observed in tumor microenvironments (TMEs). Furthermore, the results demonstrated that the 2D in vitro model overestimated the relative efficiency of the anticancer agents (i.e., nanozymes and the DOX drug) compared to the 3D spheroid models. These findings are notable as they evidenced that the 3D spheroid model resembles more precisely the TME of "real" brain cancer tumors in patients than 2D cell cultures. Thus, based on our groundwork, 3D tumor spheroid models might be able to offer transitional systems between conventional 2D cell cultures and complex biological in vivo models for evaluating anticancer agents more precisely. These nanotherapeutics offer a wide avenue of opportunities to develop innovative nanomedicines for fighting against cancerous tumors and reducing the frequency of severe side effects in conventionally applied chemotherapy-based treatments.
Collapse
Affiliation(s)
- Sandhra M Carvalho
- Center of Nanoscience, Nanotechnology, and Innovation-CeNano2I, Department of Metallurgical and Materials Engineering, Federal University of Minas Gerais, UFMG, Belo Horizonte 31270-901, Brazil
| | - Alexandra A P Mansur
- Center of Nanoscience, Nanotechnology, and Innovation-CeNano2I, Department of Metallurgical and Materials Engineering, Federal University of Minas Gerais, UFMG, Belo Horizonte 31270-901, Brazil
| | - Izabela B da Silveira
- Department of Physiology and Biophysics, Institute of Biological Sciences-ICB, Federal University of Minas Gerais, UFMG, Belo Horizonte 31270-901, Brazil
| | - Thaisa F S Pires
- Center of Nanoscience, Nanotechnology, and Innovation-CeNano2I, Department of Metallurgical and Materials Engineering, Federal University of Minas Gerais, UFMG, Belo Horizonte 31270-901, Brazil
| | - Henrique F V Victória
- Department of Physics, Federal University of Minas Gerais, UFMG, Belo Horizonte 31270-901, Brazil
| | - Klaus Krambrock
- Department of Physics, Federal University of Minas Gerais, UFMG, Belo Horizonte 31270-901, Brazil
| | - M Fátima Leite
- Department of Physiology and Biophysics, Institute of Biological Sciences-ICB, Federal University of Minas Gerais, UFMG, Belo Horizonte 31270-901, Brazil
| | - Herman S Mansur
- Center of Nanoscience, Nanotechnology, and Innovation-CeNano2I, Department of Metallurgical and Materials Engineering, Federal University of Minas Gerais, UFMG, Belo Horizonte 31270-901, Brazil
| |
Collapse
|
12
|
Ghanbari Movahed Z, Matin MM, Mansouri K, Sisakhtnezhad S. Amino acid profile changes during enrichment of spheroid cells with cancer stem cell properties in MCF-7 and MDA-MB-231 cell lines. Cancer Rep (Hoboken) 2023; 6:e1809. [PMID: 37092500 PMCID: PMC10172158 DOI: 10.1002/cnr2.1809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 03/09/2023] [Accepted: 03/13/2023] [Indexed: 04/25/2023] Open
Abstract
BACKGROUND Cancer stem cells (CSCs), subpopulations of cancer cells, are responsible for tumor progression, metastasis, and relapse. Changes in amino acid metabolism are linked to breast cancer recurrence and metastasis. AIMS This study aimed to evaluate the changes in the amino acid profile in MCF-7 and MDA-MB-231 cells during spheroid formation to discover the specific metabolic properties in CSCs. METHODS MCF-7 and MDA-MB-231 breast cancer cells were cultured as spheroids and evaluated to characterize their CSC properties. The characteristics of CSC were evaluated by examining the expression of CSC markers and conducting drug resistance assays. In addition, amino acid profile change during the enrichment of breast cancer stem cells in the spheroids was investigated by high-performance liquid chromatography (HPLC). RESULTS The results indicated that out of 20 different amino acids analyzed, 19 of them decreased during the spheroid formation process. Alanine, lysine, phenylalanine, threonine, and glycine showed significant reductions in the conditioned media of both cell lines in the spheroid form compared to the monolayer cells. Only one of the amino acids increased in MCF-7 and MDA-MB-231 spheroids (histidine and serine, respectively). CONCLUSION Our results suggest that certain amino acids identified in this study can be used for a better understanding of the molecular mechanisms associated with breast cancer stem cell formation.
Collapse
Affiliation(s)
| | - Maryam M. Matin
- Department of Biology, Faculty of ScienceFerdowsi University of MashhadMashhadIran
- Novel Diagnostics and Therapeutics Research Group, Institute of BiotechnologyFerdowsi University of MashhadMashhadIran
| | - Kamran Mansouri
- Medical Biology Research CenterKermanshah University of Medical SciencesKermanshahIran
| | | |
Collapse
|
13
|
Manduca N, Maccafeo E, De Maria R, Sistigu A, Musella M. 3D cancer models: One step closer to in vitro human studies. Front Immunol 2023; 14:1175503. [PMID: 37114038 PMCID: PMC10126361 DOI: 10.3389/fimmu.2023.1175503] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 03/23/2023] [Indexed: 04/29/2023] Open
Abstract
Cancer immunotherapy is the great breakthrough in cancer treatment as it displayed prolonged progression-free survival over conventional therapies, yet, to date, in only a minority of patients. In order to broad cancer immunotherapy clinical applicability some roadblocks need to be overcome, first among all the lack of preclinical models that faithfully depict the local tumor microenvironment (TME), which is known to dramatically affect disease onset, progression and response to therapy. In this review, we provide the reader with a detailed overview of current 3D models developed to mimick the complexity and the dynamics of the TME, with a focus on understanding why the TME is a major target in anticancer therapy. We highlight the advantages and translational potentials of tumor spheroids, organoids and immune Tumor-on-a-Chip models in disease modeling and therapeutic response, while outlining pending challenges and limitations. Thinking forward, we focus on the possibility to integrate the know-hows of micro-engineers, cancer immunologists, pharmaceutical researchers and bioinformaticians to meet the needs of cancer researchers and clinicians interested in using these platforms with high fidelity for patient-tailored disease modeling and drug discovery.
Collapse
Affiliation(s)
- Nicoletta Manduca
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Ester Maccafeo
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Ruggero De Maria
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Rome, Italy
- Fondazione Policlinico Universitario ‘A. Gemelli’ - Istituti di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| | - Antonella Sistigu
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Martina Musella
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Rome, Italy
| |
Collapse
|
14
|
Manasa VG, Thomas S, Kannan S. MiR-144/451a cluster synergistically modulates growth and metastasis of Oral Carcinoma. Oral Dis 2023; 29:584-594. [PMID: 34333815 DOI: 10.1111/odi.13984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 07/09/2021] [Accepted: 07/26/2021] [Indexed: 02/07/2023]
Abstract
OBJECTIVES MicroRNA (miRNA) clusters co-transcribe and function in a coordinated fashion mediating synergistic or antagonistic regulatory effects. MiR-144 and miR-451a are deregulated in various cancers but the combined regulatory role of miR-144/451a cluster in oral squamous cell carcinoma (OSCC) remains unexplored. In the present study, we studied the synergistic effect of miR-144/451a cluster on oral cancer progression. MATERIALS AND METHODS miR-144 and miR-451a expression was explored in OSCC cell lines by quantitative real-time PCR (qRT-PCR). Proliferation, wound healing, migration and invasion, spheroid formation, and colony formation assays were performed after transfection with miR-144-3p, miR-451a, miR-144-5p, and co-expressed miR-144/451a. Expression of putative target genes was analyzed using qRT-PCR and Western blotting. RESULTS miR-144 and miR-451a were downregulated in all cell lines. The cell viability and stemness of cancer cell lines were unaltered when treated with miRNA mimics. However, co-expressed miR-144/451a significantly reduced the migratory, invasive, and clonogenic potential of cells than individual miRNAs. CONCLUSION miR-144/451a cluster functions as a tumor suppressor in OSCC by inhibiting cancer cell invasion, migration, and clonogenic potential.
Collapse
Affiliation(s)
- Vidyadharan Geetha Manasa
- Division of Cancer Research, Regional Cancer Centre (Research Centre, University of Kerala), Thiruvananthapuram, India
| | - Shaji Thomas
- Head and Neck Clinic, Division of Surgical Oncology, Regional Cancer Centre, Thiruvananthapuram, India
| | - Sankarareddiar Kannan
- Division of Cancer Research, Regional Cancer Centre (Research Centre, University of Kerala), Thiruvananthapuram, India
| |
Collapse
|
15
|
Effects of the Ethanol and Ethyl Acetate Extracts of Terminalia chebula Retz. on Proliferation, Migration, and HIF-1α and CXCR-4 Expression in MCF-7 Cells: an In Vitro Study. Appl Biochem Biotechnol 2022; 195:3327-3344. [PMID: 36585552 DOI: 10.1007/s12010-022-04301-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/16/2022] [Indexed: 01/01/2023]
Abstract
Over recent years, much attention has been devoted to the field of screening natural products and/or their novel structures because of reversing cancer progression. The current research work was intended to explore the cytotoxic activity of ethanol and ethyl acetate extracts of dried fruit of Terminalia chebula Retz. (T. chebula) in MCF-7 cell line. High-performance thin-layer chromatographic (HPTLC) method and Folin-Ciocalteu colorimetric techniques were performed. Anti-proliferative activities of T. chebula fruit extracts on the MCF-7 cell line were evaluated using MTT assay. Effects of both extracts on the migration of MCF-7 cells and the size of MCF-7-derived spheroids were also evaluated. Moreover, antioxidant properties were measured by DPPH and FRAP methods. Western blotting was used to measure the HIF-1α and CXCR-4 protein levels. Chebulagic acid, gallic acid, chebulinic acid, and ellagic acid were found as major compounds in both extracts. The total phenolic contents based on gallic acid equivalent (GAE) in the ethanol and ethyl acetate extracts of T. chebula were found to be 453.68 ± 0.31 and 495.12 ± 0.43 mg GAE/g dry weight of the extract, respectively. Both extracts exerted a significant dose- and time-dependent cytotoxicity effect on MCF-7 cells. They also had a marked negative effect on the average size of MCF-7-derived spheroids and their migration rate. None of the extracts exhibited stronger antioxidant activities than vitamin C. Furthermore, both extracts at a concentration of 125 µg/ml could meaningfully decrease the expression levels of HIF-1α and CXCR-4 in MCF-7 cells. These data represent that T. chebula may be a valuable medicinal resource in the regulation of breast cancer proliferation, growth, and metastasis.
Collapse
|
16
|
Condello M, Vona R, Meschini S. Prunus spinosa Extract Sensitized HCT116 Spheroids to 5-Fluorouracil Toxicity, Inhibiting Autophagy. Int J Mol Sci 2022; 23:ijms232416098. [PMID: 36555736 PMCID: PMC9785163 DOI: 10.3390/ijms232416098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 12/15/2022] [Accepted: 12/15/2022] [Indexed: 12/23/2022] Open
Abstract
Autophagy is a lysosomal degradation and recycling process involved in tumor progression and drug resistance. The aim of this work was to inhibit autophagy and increase apoptosis in a 3D model of human colorectal cancer by combined treatment with our patented natural product Prunus spinosa + nutraceutical activator complex (PsT + NAC®) and 5-fluorouracil (5-FU). By means of cytotoxic evaluation (MTT assay), cytofluorimetric analysis, light and fluorescence microscopy investigation and Western blotting evaluation of the molecular pathway PI3/AKT/mTOR, Caspase-9, Caspase-3, Beclin1, p62 and LC3, we demonstrated that the combination PsT + NAC® and 5-FU significantly reduces autophagy by increasing the apoptotic phenomenon. These results demonstrate the importance of using non-toxic natural compounds to improve the therapeutic efficacy and reduce the side effects induced by conventional drugs in human colon cancer.
Collapse
Affiliation(s)
- Maria Condello
- National Center for Drug Research and Evaluation, National Institute of Health, 00161 Rome, Italy
- Correspondence: (M.C.); (S.M.)
| | - Rosa Vona
- Center for Gender-Specific Medicine, National Institute of Health, 00161 Rome, Italy
| | - Stefania Meschini
- National Center for Drug Research and Evaluation, National Institute of Health, 00161 Rome, Italy
- Correspondence: (M.C.); (S.M.)
| |
Collapse
|
17
|
Pereira IL, Lopes C, Rocha E, Madureira TV. Establishing brown trout primary hepatocyte spheroids as a new alternative experimental model-Testing the effects of 5α-dihydrotestosterone on lipid pathways. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2022; 253:106331. [PMID: 36327687 DOI: 10.1016/j.aquatox.2022.106331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 10/13/2022] [Accepted: 10/14/2022] [Indexed: 06/16/2023]
Abstract
Three-dimensional (3D) fish liver cultures mimic the in vivo cellular microenvironment, which is ideal for ecotoxicological research. Despite that, the application of these cultures to evaluate toxic effects in fish is scarce. A 3D model of brown trout (Salmo trutta f. fario) primary hepatocyte spheroids was optimized in this study by using DMEM/F-12 with 15 mM of HEPES, 10 mL/L of an antibiotic and antimycotic solution and FBS 10% (v/v), at 18 °C with ∼100 rpm. The selection of optimal conditions was based on a multiparametric characterization of the spheroids, including biometry, viability, microanatomy and immunohistochemistry. Biometric and morphologic stabilization of spheroids was reached within 12-16 days of culture. To our knowledge, this study is the first to culture and characterize viable spheroids from brown trout primary hepatocytes for over 30 days. Further, the 3D model was tested to explore the androgenic influences on lipidic target genes after 96 h exposures to control, solvent control, 10 and 100 µM of 5α-dihydrotestosterone (DHT), a non-aromatizable androgen. Spheroids exposed to 100 µM of DHT had decreased sphericity. DHT at 100 µM also significantly down-regulated Acox1-3I, PPARγ and fatty acid synthesis targets (i.e., ACC), and significantly up-regulated Fabp1. Acsl1 was significantly up-regulated after exposure to both 10 and 100 µM of DHT. The results support that DHT modulates distinct lipidic pathways in brown trout and show that this 3D model is a new valuable tool for physiological and toxicological mechanistic studies.
Collapse
Affiliation(s)
- Inês L Pereira
- Histomorphology, Physiopathology and Applied Toxicology Team, Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR), University of Porto (U.Porto), Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4450-208 Matosinhos, Portugal; Laboratory of Histology and Embryology, Department of Microscopy, School of Medicine and Biomedical Sciences (ICBAS), University of Porto (U.Porto), Rua Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - Célia Lopes
- Histomorphology, Physiopathology and Applied Toxicology Team, Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR), University of Porto (U.Porto), Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4450-208 Matosinhos, Portugal; Laboratory of Histology and Embryology, Department of Microscopy, School of Medicine and Biomedical Sciences (ICBAS), University of Porto (U.Porto), Rua Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - Eduardo Rocha
- Histomorphology, Physiopathology and Applied Toxicology Team, Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR), University of Porto (U.Porto), Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4450-208 Matosinhos, Portugal; Laboratory of Histology and Embryology, Department of Microscopy, School of Medicine and Biomedical Sciences (ICBAS), University of Porto (U.Porto), Rua Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - Tânia V Madureira
- Histomorphology, Physiopathology and Applied Toxicology Team, Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR), University of Porto (U.Porto), Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4450-208 Matosinhos, Portugal; Laboratory of Histology and Embryology, Department of Microscopy, School of Medicine and Biomedical Sciences (ICBAS), University of Porto (U.Porto), Rua Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal.
| |
Collapse
|
18
|
Johnson PA, Menegatti S, Chambers AC, Alibhai D, Collard TJ, Williams AC, Bayley H, Perriman AW. A rapid high throughput bioprinted colorectal cancer spheroid platform for in vitrodrug- and radiation-response. Biofabrication 2022; 15:014103. [PMID: 36321254 DOI: 10.1088/1758-5090/ac999f] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 10/12/2022] [Indexed: 11/07/2022]
Abstract
We describe the development of a high-throughput bioprinted colorectal cancer (CRC) spheroid platform with high levels of automation, information content, and low cell number requirement. This is achieved via the formulation of a hydrogel bioink with a compressive Young's modulus that is commensurate with that of colonic tissue (1-3 kPa), which supports exponential growth of spheroids from a wide range of CRC cell lines. The resulting spheroids display tight cell-cell junctions, bioink matrix-cell interactions and necrotic hypoxic cores. By combining high content light microscopy imaging and processing with rapid multiwell plate bioprinting, dose-response profiles are generated from CRC spheroids challenged with oxaliplatin (OX) and fluorouracil (5FU), as well as radiotherapy. Bioprinted CRC spheroids are shown to exhibit high levels of chemoresistance relative to cell monolayers, and OX was found to be significantly less effective against tumour spheroids than in monolayer culture, when compared to 5FU.
Collapse
Affiliation(s)
- Peter A Johnson
- Department of Chemistry, University of Oxford, Oxford OX1 3TA, United Kingdom
| | - Sara Menegatti
- School of Cellular and Molecular Medicine, University of Bristol, Bristol BS8 1TD, United Kingdom
| | - Adam C Chambers
- School of Cellular and Molecular Medicine, University of Bristol, Bristol BS8 1TD, United Kingdom
| | - Dominic Alibhai
- Wolfson Bioimaging Facility, University of Bristol, Bristol BS8 1TD, United Kingdom
| | - Tracey J Collard
- School of Cellular and Molecular Medicine, University of Bristol, Bristol BS8 1TD, United Kingdom
| | - Ann C Williams
- School of Cellular and Molecular Medicine, University of Bristol, Bristol BS8 1TD, United Kingdom
| | - Hagan Bayley
- Department of Chemistry, University of Oxford, Oxford OX1 3TA, United Kingdom
| | - Adam W Perriman
- School of Cellular and Molecular Medicine, University of Bristol, Bristol BS8 1TD, United Kingdom
| |
Collapse
|
19
|
Fabrication of Cell Spheroids for 3D Cell Culture and Biomedical Applications. BIOCHIP JOURNAL 2022. [DOI: 10.1007/s13206-022-00086-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
20
|
Morphometrical, Morphological, and Immunocytochemical Characterization of a Tool for Cytotoxicity Research: 3D Cultures of Breast Cell Lines Grown in Ultra-Low Attachment Plates. TOXICS 2022; 10:toxics10080415. [PMID: 35893848 PMCID: PMC9394479 DOI: 10.3390/toxics10080415] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 07/15/2022] [Accepted: 07/20/2022] [Indexed: 02/06/2023]
Abstract
Three-dimensional cell cultures may better mimic avascular tumors. Yet, they still lack characterization and standardization. Therefore, this study aimed to (a) generate multicellular aggregates (MCAs) of four breast cell lines: MCF7, MDA-MB-231, and SKBR3 (tumoral) and MCF12A (non-tumoral) using ultra-low attachment (ULA) plates, (b) detail the methodology used for their formation and analysis, providing technical tips, and (c) characterize the MCAs using morphometry, qualitative cytology (at light and electron microscopy), and quantitative immunocytochemistry (ICC) analysis. Each cell line generated uniform MCAs with structural differences among cell lines: MCF7 and MDA-MB-231 MCAs showed an ellipsoid/discoid shape and compact structure, while MCF12A and SKBR3 MCAs were loose, more flattened, and presented bigger areas. MCF7 MCAs revealed glandular breast differentiation features. ICC showed a random distribution of the proliferating and apoptotic cells throughout the MCAs, not fitting in the traditional spheroid model. ICC for cytokeratin, vimentin, and E-cadherin showed different results according to the cell lines. Estrogen (ER) and progesterone (PR) receptors were positive only in MCF7 and human epidermal growth factor receptor 2 (HER-2) in SKBR3. The presented characterization of the MCAs in non-exposed conditions provided a good baseline to evaluate the cytotoxic effects of potential anticancer compounds.
Collapse
|
21
|
Germain N, Dhayer M, Dekiouk S, Marchetti P. Current Advances in 3D Bioprinting for Cancer Modeling and Personalized Medicine. Int J Mol Sci 2022; 23:3432. [PMID: 35408789 PMCID: PMC8998835 DOI: 10.3390/ijms23073432] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 03/15/2022] [Accepted: 03/18/2022] [Indexed: 02/01/2023] Open
Abstract
Tumor cells evolve in a complex and heterogeneous environment composed of different cell types and an extracellular matrix. Current 2D culture methods are very limited in their ability to mimic the cancer cell environment. In recent years, various 3D models of cancer cells have been developed, notably in the form of spheroids/organoids, using scaffold or cancer-on-chip devices. However, these models have the disadvantage of not being able to precisely control the organization of multiple cell types in complex architecture and are sometimes not very reproducible in their production, and this is especially true for spheroids. Three-dimensional bioprinting can produce complex, multi-cellular, and reproducible constructs in which the matrix composition and rigidity can be adapted locally or globally to the tumor model studied. For these reasons, 3D bioprinting seems to be the technique of choice to mimic the tumor microenvironment in vivo as closely as possible. In this review, we discuss different 3D-bioprinting technologies, including bioinks and crosslinkers that can be used for in vitro cancer models and the techniques used to study cells grown in hydrogels; finally, we provide some applications of bioprinted cancer models.
Collapse
Affiliation(s)
- Nicolas Germain
- UMR 9020–UMR-S 1277–Canther–Cancer Heterogeneity, Plasticity and Resistance to Therapies, Institut de Recherche Contre le Cancer de Lille, University Lille, CNRS, Inserm, CHU Lille, F-59000 Lille, France; (M.D.); (S.D.)
- Banque de Tissus, Centre de Biologie-Pathologie, CHU Lille, F-59000 Lille, France
| | - Melanie Dhayer
- UMR 9020–UMR-S 1277–Canther–Cancer Heterogeneity, Plasticity and Resistance to Therapies, Institut de Recherche Contre le Cancer de Lille, University Lille, CNRS, Inserm, CHU Lille, F-59000 Lille, France; (M.D.); (S.D.)
| | - Salim Dekiouk
- UMR 9020–UMR-S 1277–Canther–Cancer Heterogeneity, Plasticity and Resistance to Therapies, Institut de Recherche Contre le Cancer de Lille, University Lille, CNRS, Inserm, CHU Lille, F-59000 Lille, France; (M.D.); (S.D.)
| | - Philippe Marchetti
- UMR 9020–UMR-S 1277–Canther–Cancer Heterogeneity, Plasticity and Resistance to Therapies, Institut de Recherche Contre le Cancer de Lille, University Lille, CNRS, Inserm, CHU Lille, F-59000 Lille, France; (M.D.); (S.D.)
- Banque de Tissus, Centre de Biologie-Pathologie, CHU Lille, F-59000 Lille, France
| |
Collapse
|
22
|
Barbosa MAG, Xavier CPR, Pereira RF, Petrikaitė V, Vasconcelos MH. 3D Cell Culture Models as Recapitulators of the Tumor Microenvironment for the Screening of Anti-Cancer Drugs. Cancers (Basel) 2021; 14:190. [PMID: 35008353 PMCID: PMC8749977 DOI: 10.3390/cancers14010190] [Citation(s) in RCA: 109] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 12/23/2021] [Accepted: 12/29/2021] [Indexed: 12/12/2022] Open
Abstract
Today, innovative three-dimensional (3D) cell culture models have been proposed as viable and biomimetic alternatives for initial drug screening, allowing the improvement of the efficiency of drug development. These models are gaining popularity, given their ability to reproduce key aspects of the tumor microenvironment, concerning the 3D tumor architecture as well as the interactions of tumor cells with the extracellular matrix and surrounding non-tumor cells. The development of accurate 3D models may become beneficial to decrease the use of laboratory animals in scientific research, in accordance with the European Union's regulation on the 3R rule (Replacement, Reduction, Refinement). This review focuses on the impact of 3D cell culture models on cancer research, discussing their advantages, limitations, and compatibility with high-throughput screenings and automated systems. An insight is also given on the adequacy of the available readouts for the interpretation of the data obtained from the 3D cell culture models. Importantly, we also emphasize the need for the incorporation of additional and complementary microenvironment elements on the design of 3D cell culture models, towards improved predictive value of drug efficacy.
Collapse
Affiliation(s)
- Mélanie A. G. Barbosa
- Cancer Drug Resistance Group, IPATIMUP—Institute of Molecular Pathology and Immunology, University of Porto, 4200-135 Porto, Portugal; (M.A.G.B.); (C.P.R.X.)
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal;
| | - Cristina P. R. Xavier
- Cancer Drug Resistance Group, IPATIMUP—Institute of Molecular Pathology and Immunology, University of Porto, 4200-135 Porto, Portugal; (M.A.G.B.); (C.P.R.X.)
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal;
| | - Rúben F. Pereira
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal;
- Biofabrication Group, INEB—Instituto de Engenharia Biomédica, Universidade do Porto, 4200-135 Porto, Portugal
- ICBAS—Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, 4050-313 Porto, Portugal
| | - Vilma Petrikaitė
- Laboratory of Drug Targets Histopathology, Institute of Cardiology, Lithuanian University of Health Sciences, A. Mickevičiaus g 9, LT-44307 Kaunas, Lithuania;
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Saulėtekio al. 7, LT-10257 Vilnius, Lithuania
| | - M. Helena Vasconcelos
- Cancer Drug Resistance Group, IPATIMUP—Institute of Molecular Pathology and Immunology, University of Porto, 4200-135 Porto, Portugal; (M.A.G.B.); (C.P.R.X.)
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal;
- Department of Biological Sciences, FFUP—Faculty of Pharmacy of the University of Porto, 4050-313 Porto, Portugal
| |
Collapse
|
23
|
de Souza IR, Canavez ADPM, Schuck DC, Gagosian VSC, de Souza IR, Vicari T, da Silva Trindade E, Cestari MM, Lorencini M, Leme DM. Development of 3D cultures of zebrafish liver and embryo cell lines: a comparison of different spheroid formation methods. ECOTOXICOLOGY (LONDON, ENGLAND) 2021; 30:1893-1909. [PMID: 34379241 DOI: 10.1007/s10646-021-02459-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 07/20/2021] [Indexed: 06/13/2023]
Abstract
Fish cell spheroids are promising 3D culture models for vertebrate replacement in ecotoxicology. However, new alternative ecotoxicological methods must be adapted for applications in industry and for regulatory purposes; such methods must be cost-effective, simple to manipulate and provide rapid results. Therefore, we compared the effectiveness of the traditional hanging drop (HD), orbital shaking (OS), and HD combined with OS (HD+OS) methods on the formation of zebrafish cell line spheroids (ZFL and ZEM2S). Time in HD (3-5 days) and different 96-well plates [flat-bottom or ultra-low attachment of round-bottom (ULA-plates)] in OS were evaluated. Easy handling, rapid spheroid formation, uniform-sized spheroids, and circularity were assessed to identify the best spheroid protocol. Traditional HD alone did not result in ZFL spheroid formation, whereas HD (5 days)+OS did. When using the OS, spheroids only formed on the ULA-plate. Both HD+OS and OS were reproducible in size (177.50 ± 2.81 µm and 225.62 ± 19.20 µm, respectively) and circularity (0.83 ± 0.02 and 0.80 ± 0.01, respectively) of ZFL spheroids. Nevertheless, HD+OS required a considerable time to completely form spheroids (10 days) and intensive handling, whereas the OS was fast (5 days of incubation) and simple. OS also yielded reproducible ZEM2S spheroids in 1 day (226.23 ± 0.57 µm diameter and 0.80 ± 0.01 circularity). In conclusion, OS in ULA-plate is an effective and simple spheroid protocol for high-throughput ecotoxicity testing. This study contributes to identify a fast, reproducible, and simple protocol of single piscine spheroid formation in 96-well plates and supports the application of fish 3D model in industry and academia.
Collapse
Affiliation(s)
| | | | | | | | | | - Taynah Vicari
- Graduate Program in Genetics, Department of Genetics, Federal University of Paraná (UFPR), Paraná, Brazil
| | | | | | - Marcio Lorencini
- Grupo Boticário, R&D Department, São José dos Pinhais, Paraná, Brazil
| | - Daniela Morais Leme
- Department of Genetics, Federal University of Paraná (UFPR), Paraná, Brazil.
| |
Collapse
|
24
|
Synergistic Cytotoxicity between Elephantopus scaber and Tamoxifen on MCF-7-Derived Multicellular Tumor Spheroid. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:6355236. [PMID: 34712346 PMCID: PMC8548115 DOI: 10.1155/2021/6355236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 08/25/2021] [Accepted: 10/04/2021] [Indexed: 11/18/2022]
Abstract
Elephantopus scaber Linn, a traditional herb, exhibited anticancer properties, and it was cytotoxic against the monolayer estrogen receptor-positive breast cancer cell line, MCF-7, in the previous study. In order to determine the potential of E. scaber as a complementary medicine for breast cancer, this study aimed to evaluate the synergism between E. scaber and tamoxifen in cytotoxicity using MCF-7 in the form of 3-dimensional multicellular tumor spheroid (MCTS) cultures. MCTS represents a more reliable model for studying drug penetration as compared to monolayer cells due to its greater resemblance to solid tumor. Combination of E. scaber ethanol extract and tamoxifen, which were used in concentrations lower than their respective IC50 values, had successfully induced apoptosis on MCTS in this study. The combinatorial treatment showed >58% increase of lactate dehydrogenase release in cell media, cell cycle arrest at the S phase, and 1.3 fold increase in depolarization of mitochondrial membrane potential. The treated MCTS also experienced DNA fragmentation; this had been quantified by TUNEL-positive assay, which showed >64% increase in DNA damaged cells. Higher externalization of phospatidylserine and distorted and disintegrated spheroids stained by acridine orange/propidium iodide showed that the cell death was mainly due to apoptosis. Further exploration showed that the combinatorial treatment elevated caspases-8 and 9 activities involving both extrinsic and intrinsic pathways of apoptosis. The treatment also upregulated the expression of proapoptotic gene HSP 105 and downregulated the expression of prosurvival genes such as c-Jun, ICAM1, and VEGF. In conclusion, these results suggested that the coupling of E. scaber to low concentration of tamoxifen showed synergism in cytotoxicity and reducing drug resistance in estrogen receptor-positive breast cancer.
Collapse
|
25
|
Amoedo ND, Sarlak S, Obre E, Esteves P, Bégueret H, Kieffer Y, Rousseau B, Dupis A, Izotte J, Bellance N, Dard L, Redonnet-Vernhet I, Punzi G, Rodrigues MF, Dumon E, Mafhouf W, Guyonnet-Dupérat V, Gales L, Palama T, Bellvert F, Dugot-Senan N, Claverol S, Baste JM, Lacombe D, Rezvani HR, Pierri CL, Mechta-Grigoriou F, Thumerel M, Rossignol R. Targeting the mitochondrial trifunctional protein restrains tumor growth in oxidative lung carcinomas. J Clin Invest 2021; 131:133081. [PMID: 33393495 DOI: 10.1172/jci133081] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 10/21/2020] [Indexed: 12/15/2022] Open
Abstract
Metabolic reprogramming is a common hallmark of cancer, but a large variability in tumor bioenergetics exists between patients. Using high-resolution respirometry on fresh biopsies of human lung adenocarcinoma, we identified 2 subgroups reflected in the histologically normal, paired, cancer-adjacent tissue: high (OX+) mitochondrial respiration and low (OX-) mitochondrial respiration. The OX+ tumors poorly incorporated [18F]fluorodeoxy-glucose and showed increased expression of the mitochondrial trifunctional fatty acid oxidation enzyme (MTP; HADHA) compared with the paired adjacent tissue. Genetic inhibition of MTP altered OX+ tumor growth in vivo. Trimetazidine, an approved drug inhibitor of MTP used in cardiology, also reduced tumor growth and induced disruption of the physical interaction between the MTP and respiratory chain complex I, leading to a cellular redox and energy crisis. MTP expression in tumors was assessed using histology scoring methods and varied in negative correlation with [18F]fluorodeoxy-glucose incorporation. These findings provide proof-of-concept data for preclinical, precision, bioenergetic medicine in oxidative lung carcinomas.
Collapse
Affiliation(s)
- Nivea Dias Amoedo
- CELLOMET, Bordeaux, France.,INSERM U1211, Bordeaux, France.,Bordeaux University, Bordeaux, France
| | - Saharnaz Sarlak
- INSERM U1211, Bordeaux, France.,Bordeaux University, Bordeaux, France
| | - Emilie Obre
- INSERM U1211, Bordeaux, France.,Bordeaux University, Bordeaux, France
| | - Pauline Esteves
- INSERM U1211, Bordeaux, France.,Bordeaux University, Bordeaux, France
| | - Hugues Bégueret
- Bordeaux University, Bordeaux, France.,Pathology Department, Haut-Lévèque Hospital, CHU Bordeaux, Bordeaux, France
| | - Yann Kieffer
- Stress and Cancer Laboratory, Curie Institute - INSERM U830, Paris, France
| | - Benoît Rousseau
- INSERM U1211, Bordeaux, France.,Transgenic Animal Facility A2, University of Bordeaux, Bordeaux, France
| | - Alexis Dupis
- INSERM U1211, Bordeaux, France.,Bordeaux University, Bordeaux, France
| | - Julien Izotte
- INSERM U1211, Bordeaux, France.,Transgenic Animal Facility A2, University of Bordeaux, Bordeaux, France
| | - Nadège Bellance
- INSERM U1211, Bordeaux, France.,Bordeaux University, Bordeaux, France
| | - Laetitia Dard
- CELLOMET, Bordeaux, France.,INSERM U1211, Bordeaux, France.,Bordeaux University, Bordeaux, France
| | - Isabelle Redonnet-Vernhet
- CELLOMET, Bordeaux, France.,INSERM U1211, Bordeaux, France.,Biochemistry Department, Pellegrin Hospital, CHU Bordeaux, Bordeaux, France
| | - Giuseppe Punzi
- Laboratory of Biochemistry and Molecular Biology, University of Bari,Bari, Italy
| | | | - Elodie Dumon
- INSERM U1211, Bordeaux, France.,Bordeaux University, Bordeaux, France
| | - Walid Mafhouf
- Bordeaux University, Bordeaux, France.,INSERM U1035, Bordeaux, France
| | | | - Lara Gales
- Laboratoire d'Ingénierie des Systèmes Biologiques et des Procédés (LISBP), Institut National des Sciences Appliquées (INSA)/CNRS 5504 - UMR INSA/Institut National de la Recherche Agronomique (INRA) 792, Toulouse, France
| | - Tony Palama
- Laboratoire d'Ingénierie des Systèmes Biologiques et des Procédés (LISBP), Institut National des Sciences Appliquées (INSA)/CNRS 5504 - UMR INSA/Institut National de la Recherche Agronomique (INRA) 792, Toulouse, France
| | - Floriant Bellvert
- Laboratoire d'Ingénierie des Systèmes Biologiques et des Procédés (LISBP), Institut National des Sciences Appliquées (INSA)/CNRS 5504 - UMR INSA/Institut National de la Recherche Agronomique (INRA) 792, Toulouse, France
| | | | - Stéphane Claverol
- Bordeaux University, Bordeaux, France.,Functional Genomics Center (CGFB), Proteomics Facility, Bordeaux, France
| | - Jean-Marc Baste
- Thoracic Surgery, Haut-Lévèque Hospital, CHU Bordeaux, Bordeaux, France
| | - Didier Lacombe
- INSERM U1211, Bordeaux, France.,Bordeaux University, Bordeaux, France
| | | | - Ciro Leonardo Pierri
- Laboratory of Biochemistry and Molecular Biology, University of Bari,Bari, Italy
| | | | - Matthieu Thumerel
- Thoracic Surgery, Haut-Lévèque Hospital, CHU Bordeaux, Bordeaux, France
| | - Rodrigue Rossignol
- CELLOMET, Bordeaux, France.,INSERM U1211, Bordeaux, France.,Bordeaux University, Bordeaux, France
| |
Collapse
|
26
|
Singh J, Hatcher S, Ku AA, Ding Z, Feng FY, Sharma RA, Pfister SX. Model Selection for the Preclinical Development of New Drug-Radiotherapy Combinations. Clin Oncol (R Coll Radiol) 2021; 33:694-704. [PMID: 34474951 DOI: 10.1016/j.clon.2021.08.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 07/13/2021] [Accepted: 08/11/2021] [Indexed: 12/12/2022]
Abstract
Radiotherapy plays an essential role in the treatment of more than half of all patients with cancer. In recent decades, advances in devices that deliver radiation and the development of treatment planning software have helped radiotherapy attain precise tumour targeting with minimal toxicity to surrounding tissues. Simultaneously, as more targeted drug therapies are being brought into the market, there has been significant interest in improving cure rates for cancer by adding drugs to radiotherapy to widen the therapeutic window, the difference between normal tissue toxicity and treatment efficacy. The development of new combination therapies will require judicious adaptation of preclinical models that are routinely used for traditional drug discovery. Here we highlight the strengths and weaknesses of each of these preclinical models and discuss how they can be used optimally to identify new and clinically beneficial drug-radiotherapy combinations.
Collapse
Affiliation(s)
- J Singh
- Global Translational Science, Varian, a Siemens Healthineers company, Palo Alto, California, USA
| | - S Hatcher
- Global Translational Science, Varian, a Siemens Healthineers company, Palo Alto, California, USA
| | - A A Ku
- Global Translational Science, Varian, a Siemens Healthineers company, Palo Alto, California, USA
| | - Z Ding
- Global Translational Science, Varian, a Siemens Healthineers company, Palo Alto, California, USA
| | - F Y Feng
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, California, USA; Division of Hematology and Oncology, Department of Medicine, University of California, San Francisco, California, USA; Department of Radiation Oncology, University of California, San Francisco, California, USA; Department of Urology, University of California, San Francisco, California, USA
| | - R A Sharma
- Global Translational Science, Varian, a Siemens Healthineers company, Palo Alto, California, USA; UCL Cancer Institute, University College London, London, UK
| | - S X Pfister
- Global Translational Science, Varian, a Siemens Healthineers company, Palo Alto, California, USA.
| |
Collapse
|
27
|
Ha J, Lee S, Park J, Seo J, Kang E, Yoon H, Kim BR, Lee HK, Ryu SE, Cho S. Identification of a novel inhibitor of liver cancer cell invasion and proliferation through regulation of Akt and Twist1. Sci Rep 2021; 11:16765. [PMID: 34408201 PMCID: PMC8373934 DOI: 10.1038/s41598-021-95933-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 08/02/2021] [Indexed: 12/24/2022] Open
Abstract
When primary cancer faces limited oxygen and nutrient supply, it undergoes an epithelial–mesenchymal transition, which increases cancer cell motility and invasiveness. The migratory and invasive cancer cells often exert aggressive cancer development or even cancer metastasis. In this study, we investigated a novel compound, 3-acetyl-5,8-dichloro-2-((2,4-dichlorophenyl)amino)quinolin-4(1H)-one (ADQ), that showed significant suppression of wound healing and cellular invasion. This compound also inhibited anchorage-independent cell growth, multicellular tumor spheroid survival/invasion, and metalloprotease activities. The anti-proliferative effects of ADQ were mediated by inhibition of the Akt pathway. In addition, ADQ reduced the expression of mesenchymal markers of cancer cells, which was associated with the suppressed expression of Twist1. In conclusion, ADQ successfully suppressed carcinogenic activity by inhibiting the Akt signaling pathway and Twist1, which suggests that ADQ may be an efficient candidate for cancer drug development.
Collapse
Affiliation(s)
- Jain Ha
- Laboratory of Molecular and Pharmacological Cell Biology, College of Pharmacy, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Sewoong Lee
- Laboratory of Molecular and Pharmacological Cell Biology, College of Pharmacy, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Jiyoung Park
- Laboratory of Molecular and Pharmacological Cell Biology, College of Pharmacy, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Jihye Seo
- Laboratory of Molecular and Pharmacological Cell Biology, College of Pharmacy, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Eunjeong Kang
- Laboratory of Molecular and Pharmacological Cell Biology, College of Pharmacy, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Haelim Yoon
- Laboratory of Molecular and Pharmacological Cell Biology, College of Pharmacy, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Ba Reum Kim
- Laboratory of Molecular and Pharmacological Cell Biology, College of Pharmacy, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Hyeon Kyu Lee
- Korea Chemical Bank, Korea Research Institute of Chemical Technology, Yuseong, P.O. Box 107, Daejeon, 34114, Republic of Korea
| | - Seong Eon Ryu
- Department of Bioengineering, College of Engineering, Hanyang University, Seoul, 04763, Republic of Korea.
| | - Sayeon Cho
- Laboratory of Molecular and Pharmacological Cell Biology, College of Pharmacy, Chung-Ang University, Seoul, 06974, Republic of Korea.
| |
Collapse
|
28
|
Truzzi F, Whittaker A, Roncuzzi C, Saltari A, Levesque MP, Dinelli G. Microgreens: Functional Food with Antiproliferative Cancer Properties Influenced by Light. Foods 2021; 10:foods10081690. [PMID: 34441474 PMCID: PMC8392261 DOI: 10.3390/foods10081690] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 07/16/2021] [Accepted: 07/19/2021] [Indexed: 01/21/2023] Open
Abstract
The anti-proliferative/pro-oxidant efficacy of green pea, soybean, radish, Red Rambo radish, and rocket microgreens, cultivated under either fluorescent lighting (predominant spectral peaks in green and orange) or combination light-emitting diode (LED, predominant spectral peak in blue) was investigated using Ewing sarcoma lines, RD-ES and A673, respectively. All aqueous microgreen extracts significantly reduced cell proliferation (cancer prevention effect) to varying extents in two-dimensional sarcoma cell cultures. The effect of the polyphenol fraction in the aqueous food matrix was unrelated to total polyphenol content, which differed between species and light treatment. Only Pisum sativum (LED-grown) extracts exercised anti-proliferative and pro-apoptotic effects in both three-dimensional RD-ES and A673 spheroids (early tumor progression prevention), without cytotoxic effects on healthy L929 fibroblasts. A similar anti-tumor effect of Red Rambo radish (LED and fluorescent-grown) was evident only in the RD-ES spheroids. Aside from the promising anti-tumor potential of the polyphenol fraction of green pea microgreens, the latter also displayed favorable growth quality parameters, along with radish, under both light treatments over the 10 day cultivation period.
Collapse
Affiliation(s)
- Francesca Truzzi
- Department of Agricultural and Food Sciences, University of Bologna, Viale Fanin, 44-40127 Bologna, Italy; (A.W.); (C.R.); (G.D.)
- Correspondence: ; Tel.: +39-05-1209-6673
| | - Anne Whittaker
- Department of Agricultural and Food Sciences, University of Bologna, Viale Fanin, 44-40127 Bologna, Italy; (A.W.); (C.R.); (G.D.)
| | - Chiara Roncuzzi
- Department of Agricultural and Food Sciences, University of Bologna, Viale Fanin, 44-40127 Bologna, Italy; (A.W.); (C.R.); (G.D.)
| | - Annalisa Saltari
- Department of Dermatology, University of Zurich Hospital, University of Zurich, Zurich, CH 8952 Schlieren, Switzerland; (A.S.); (M.P.L.)
| | - Mitchell P. Levesque
- Department of Dermatology, University of Zurich Hospital, University of Zurich, Zurich, CH 8952 Schlieren, Switzerland; (A.S.); (M.P.L.)
| | - Giovanni Dinelli
- Department of Agricultural and Food Sciences, University of Bologna, Viale Fanin, 44-40127 Bologna, Italy; (A.W.); (C.R.); (G.D.)
| |
Collapse
|
29
|
Song K, Zu X, Du Z, Hu Z, Wang J, Li J. Diversity Models and Applications of 3D Breast Tumor-on-a-Chip. MICROMACHINES 2021; 12:mi12070814. [PMID: 34357224 PMCID: PMC8306159 DOI: 10.3390/mi12070814] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 06/28/2021] [Accepted: 07/02/2021] [Indexed: 12/20/2022]
Abstract
Breast disease is one of the critical diseases that plague females, as is known, breast cancer has high mortality, despite significant pathophysiological progress during the past few years. Novel diagnostic and therapeutic approaches are needed to break the stalemate. An organ-on-chip approach is considered due to its ability to repeat the real conditions found in the body on microfluidic chips, offsetting the shortcomings of traditional 2D culture and animal tests. In recent years, the organ-on-chip approach has shown diversity, recreating the structure and functional units of the real organs/tissues. The applications were also developed rapidly from the laboratory to the industrialized market. This review focuses on breast tumor-on-a-chip approaches concerning the diversity models and applications. The models are summarized and categorized by typical biological reconstitution, considering the design and fabrication of the various breast models. The breast tumor-on-a-chip approach is a typical representative of organ chips, which are one of the precedents in the market. The applications are roughly divided into two categories: fundamental mechanism research and biological medicine. Finally, we discuss the prospect and deficiencies of the emerging technology. It has excellent prospects in all of the application fields, however there exist some deficiencies for promotion, such as the stability of the structure and function, and uniformity for quantity production.
Collapse
|
30
|
Klein S, Distel LVR, Neuhuber W, Kryschi C. Caffeic Acid, Quercetin and 5-Fluorocytidine-Functionalized Au-Fe 3O 4 Nanoheterodimers for X-ray-Triggered Drug Delivery in Breast Tumor Spheroids. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:1167. [PMID: 33947086 PMCID: PMC8146450 DOI: 10.3390/nano11051167] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 04/25/2021] [Accepted: 04/26/2021] [Indexed: 01/11/2023]
Abstract
Au-Fe3O4 nanoheterodimers (NHD) were functionalized with the natural and synthetic anticancer drugs caffeic acid (CA), quercetin (Q) and 5-fluorocytidine (5FC). Their X-radiation dose-enhancing potential and chemotherapeutic efficacy for bimodal cancer therapy were investigated by designing multicellular tumor spheroids (MCTS) to in vitro avascular tumor models. MCTS were grown from the breast cancer cell lines MCF-7, MDA-MB-231, and MCF-10A. The MCF-7, MDA-MB-231 and MCF-10A MCTS were incubated with NHD-CA, NHD-Q, or NHD-5FC and then exposed to fractionated X-radiation comprising either a single 10 Gy dose, 2 daily single 5 Gy doses or 5 daily single 2 Gy doses. The NHD-CA, NHD-Q, and NHD-5FC affected the growth of X-ray irradiated and non-irradiated MCTS in a different manner. The impact of the NHDs on the glycolytic metabolism due to oxygen deprivation inside MCTS was assessed by measuring lactate secretion and glucose uptake by the MCTS. The NHD-CA and NHD-Q were found to act as X-radiation dose agents in MCF-7 MCTS and MDA-MB-231 MCTS and served as radioprotector in MCF-10A MCTS. X-ray triggered release of CA and Q inhibited lactate secretion and thereupon disturbed glycolytic reprogramming, whereas 5FC exerted their cytotoxic effects on both, healthy and tumor cells, after their release into the cytosol.
Collapse
Affiliation(s)
- Stefanie Klein
- Department of Chemistry and Pharmacy, Physical Chemistry I and ICMM, Friedrich-Alexander University of Erlangen-Nuremberg, Egerlandstr. 3, D-91058 Erlangen, Germany;
| | - Luitpold V. R. Distel
- Department of Radiation Oncology, Friedrich-Alexander University of Erlangen-Nuremberg, Universitätsstr. 27, D-91054 Erlangen, Germany;
| | - Winfried Neuhuber
- Institute of Anatomy, Chair of Anatomy and Cell Biology, Friedrich Alexander University Erlangen-Nuremberg, Krankenhausstr. 9, D-91054 Erlangen, Germany;
| | - Carola Kryschi
- Department of Chemistry and Pharmacy, Physical Chemistry I and ICMM, Friedrich-Alexander University of Erlangen-Nuremberg, Egerlandstr. 3, D-91058 Erlangen, Germany;
| |
Collapse
|
31
|
Kazemi M, Jajarmi V, Nazarian H, Ghaffari Novin M, Salehpour S, Piryaei A, Heidari Khoei H, Choobineh H, Abdollahifar MA, Haji Molla Hoseini M, Heidari MH. Culture strategy as a modulator of target assessments: Functionality of suspension versus hanging drop-derived choriocarcinoma spheroids as in vitro model of embryo implantation. J Cell Biochem 2021; 122:1192-1206. [PMID: 33900644 DOI: 10.1002/jcb.29940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 01/11/2021] [Accepted: 04/05/2021] [Indexed: 11/06/2022]
Abstract
The choriocarcinoma spheroid model has been amply applied to study the underlying molecular mechanism of implantation. Reproducibility and functionality of spheroid tumor models were addressed precisely. To mimic embryo-endometrium crosstalk, no functional characteristics of spheroids have been provided based on culture strategies. In this study, choriocarcinoma spheroids were provided as suspension culture (SC) or hanging drop culture (HDC). Primary assessments were performed based on morphology, cellular density, and hormonal secretion. Spheroid-endometrial cross talk was assessed as coculture procedures. Further, alkaline phosphatase (ALP) activity and expression of genes involved in attachment, invasion, and inducing migration were quantified. We found HDC spheroids provided a homogenous-shaped aggregate with a high grade of viability, cellular integration, hormonal secretion, and the dominant role of WNTs expression in their microarchitecture. SC spheroids showed a higher level of ALP activity and the expression of integrated genes in modulating attachment, invasion, and migration abilities. Spheroid confrontation assays clearly clarified the superiority of SC spheroids to crosstalk with epithelial and stromal cells of endometrium in addition to motivating an ideal endometrial response. Conclusively, culture strategies by affecting various molecular signaling pathways should be chosen precisely according to specific target assessments. Specifically, SC assumed as an ideal model in spheroid-endometrial cross talk.
Collapse
Affiliation(s)
- Mahsa Kazemi
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Vahid Jajarmi
- Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hamid Nazarian
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Marefat Ghaffari Novin
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Saghar Salehpour
- Department of Obstetrics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Abbas Piryaei
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Urogenital Stem Cell Research Center, Shahid Beheshti University of Medical Sciences
| | - Heidar Heidari Khoei
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hamid Choobineh
- School of Allied Medical Sciences, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Amin Abdollahifar
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mostafa Haji Molla Hoseini
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Hasan Heidari
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
32
|
Han SJ, Kwon S, Kim KS. Challenges of applying multicellular tumor spheroids in preclinical phase. Cancer Cell Int 2021; 21:152. [PMID: 33663530 PMCID: PMC7934264 DOI: 10.1186/s12935-021-01853-8] [Citation(s) in RCA: 219] [Impact Index Per Article: 54.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 02/24/2021] [Indexed: 02/07/2023] Open
Abstract
The three-dimensional (3D) multicellular tumor spheroids (MCTs) model is becoming an essential tool in cancer research as it expresses an intermediate complexity between 2D monolayer models and in vivo solid tumors. MCTs closely resemble in vivo solid tumors in many aspects, such as the heterogeneous architecture, internal gradients of signaling factors, nutrients, and oxygenation. MCTs have growth kinetics similar to those of in vivo tumors, and the cells in spheroid mimic the physical interaction of the tumors, such as cell-to-cell and cell-to-extracellular matrix interactions. These similarities provide great potential for studying the biological properties of tumors and a promising platform for drug screening and therapeutic efficacy evaluation. However, MCTs are not well adopted as preclinical tools for studying tumor behavior and therapeutic efficacy up to now. In this review, we addressed the challenges with MCTs application and discussed various efforts to overcome the challenges.
Collapse
Affiliation(s)
- Se Jik Han
- Department of Biomedical Engineering, Graduate School, Kyung Hee University, Seoul, 02447, Korea
- Department of Biomedical Engineering, College of Medicine, Kyung Hee University, Seoul, 02447, Korea
| | - Sangwoo Kwon
- Department of Biomedical Engineering, College of Medicine, Kyung Hee University, Seoul, 02447, Korea
| | - Kyung Sook Kim
- Department of Biomedical Engineering, College of Medicine, Kyung Hee University, Seoul, 02447, Korea.
| |
Collapse
|
33
|
Decarli MC, do Amaral RLF, Dos Santos DP, Tofani LB, Katayama E, Rezende RA, Silva JVLD, Swiech K, Suazo CAT, Mota C, Moroni L, Moraes ÂM. Cell spheroids as a versatile research platform: formation mechanisms, high throughput production, characterization and applications. Biofabrication 2021; 13. [PMID: 33592595 DOI: 10.1088/1758-5090/abe6f2] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 02/16/2021] [Indexed: 11/12/2022]
Abstract
Three-dimensional cell culture has tremendous advantages to closely mimic the in vivo architecture and microenvironment of healthy tissue and organs, as well as of solid tumors. Spheroids are currently the most attractive 3D model to produce uniform reproducible cell structures as well as a potential basis for engineering large tissues and complex organs. In this review we discuss, from an engineering perspective, processes to obtain uniform 3D cell spheroids, comparing dynamic and static cultures and considering aspects such as mass transfer and shear stress. In addition, computational and mathematical modelling of complex cell spheroid systems are discussed. The non-cell-adhesive hydrogel-based method and dynamic cell culture in bioreactors are focused in detail and the myriad of developed spheroid characterization techniques is presented. The main bottlenecks and weaknesses are discussed, especially regarding the analysis of morphological parameters, cell quantification and viability, gene expression profiles, metabolic behavior and high-content analysis. Finally, a vast set of applications of spheroids as tools for in vitro study model systems is examined, including drug screening, tissue formation, pathologies development, tissue engineering and biofabrication, 3D bioprinting and microfluidics, together with their use in high-throughput platforms.
Collapse
Affiliation(s)
- Monize Caiado Decarli
- School of Chemical Engineering/Department of Engineering of Materials and of Bioprocesses, University of Campinas, Av. Albert Einstein, 500 - Bloco A - Cidade Universitária Zeferino Vaz, Cidade Universitária Zeferino Vaz, Campinas, SP, 13083-852, BRAZIL
| | - Robson Luis Ferraz do Amaral
- School of Pharmaceutical Sciences of Ribeirão Preto/Department of Pharmaceutical Sciences, University of São Paulo, Avenida do Café, no number, Ribeirão Preto, SP, 14040-903, BRAZIL
| | - Diogo Peres Dos Santos
- Departament of Chemical Engineering, Federal University of São Carlos, Rod. Washington Luiz (SP-310), km 235, São Carlos, SP, 13565-905, BRAZIL
| | - Larissa Bueno Tofani
- School of Pharmaceutical Sciences of Ribeirão Preto/Department of Pharmaceutical Sciences, University of São Paulo, Avenida do Café, no number, Ribeirão Preto, SP, 14040-903, BRAZIL
| | - Eric Katayama
- Departament of Chemical Engineering, Federal University of São Carlos, Rod. Washington Luiz (SP-310), km 235, São Carlos, SP, 13565-905, BRAZIL
| | - Rodrigo Alvarenga Rezende
- Centro de Tecnologia da Informacao Renato Archer, Rod. Dom Pedro I (SP-65), km 143,6 - Amarais, Campinas, SP, 13069-901, BRAZIL
| | - Jorge Vicente Lopes da Silva
- Centro de Tecnologia da Informacao Renato Archer, Rod. Dom Pedro I (SP-65), km 143,6 - Amarais, Campinas, SP, 13069-901, BRAZIL
| | - Kamilla Swiech
- University of Sao Paulo, School of Pharmaceutical Sciences of Ribeirão Preto/Department of Pharmaceutical Sciences, Ribeirao Preto, SP, 14040-903, BRAZIL
| | - Cláudio Alberto Torres Suazo
- Department of Chemical Engineering, Federal University of São Carlos, Rod. Washington Luiz (SP-310), km 235, São Carlos, SP, 13565-905, BRAZIL
| | - Carlos Mota
- Department of Complex Tissue Regeneration (CTR), University of Maastricht , Universiteitssingel, 40, office 3.541A, Maastricht, 6229 ER, NETHERLANDS
| | - Lorenzo Moroni
- Complex Tissue Regeneration, Maastricht University, Universiteitsingel, 40, Maastricht, 6229ER, NETHERLANDS
| | - Ângela Maria Moraes
- School of Chemical Engineering/Department of Engineering of Materials and of Bioprocesses, University of Campinas, Av. Albert Einstein, 500 - Bloco A - Cidade Universitária Zeferino Vaz, Campinas, SP, 13083-852, BRAZIL
| |
Collapse
|
34
|
Arora D, Bhunia BK, Janani G, Mandal BB. Bioactive three-dimensional silk composite in vitro tumoroid model for high throughput screening of anticancer drugs. J Colloid Interface Sci 2021; 589:438-452. [PMID: 33485251 DOI: 10.1016/j.jcis.2021.01.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 12/26/2020] [Accepted: 01/04/2021] [Indexed: 01/01/2023]
Abstract
HYPOTHESIS Modeling three-dimensional (3D) in vitro culture systems recapitulating spatiotemporal characteristics of native tumor-mass has shown tremendous potential as a pre-clinical tool for drug screening. However, their applications in clinical settings are still limited due to inappropriate recapitulation of tumor topography, culture instability, and poor durability of niche support. EXPERIMENTS Here, we have fabricated a bio-active silk composite scaffold assimilating tunable silk from Bombyx mori and - arginine-glycine-aspartate (RGD) rich silk from Antheraea assama to provide a better 3D-matrix for breast (MCF 7) and liver (HepG2) tumoroids. Cellular mechanisms underlying physiological adaptations in 3D constructs and subsequent drug responses were compared with conventional monolayer and multicellular spheroid culture. FINDINGS Silk composite matrix assists prolonged growth and high metabolic activity (Cytochrome P450 reductase) in breast and liver 3D-tumoroids. Enhanced stemness expression (Cell surface adhesion receptor; CD44, Aldehyde dehydrogenase 1) and epithelial-mesenchymal-transition markers (E-cadherin, Vimentin) at transcript and protein levels demonstrate that bio-active matrix-assisted 3D environment augmenting metastatic potential in tumoroids. Together, enhanced secretion of Transforming growth factor β (TGFβ), anchorage-independency, and colony-forming potential of cells in the 3D-tumoroids further corroborates the aggressive behavior of cells. Moreover, the multilayered 3D-tumoroids exhibit decreased sensitivity to some known anticancer drugs (Doxorubicin and Paclitaxel). In conclusion, the bio-active silk composite matrix offers an advantage in developing robust and sustainable 3D tumoroids for a high-throughput drug screening platform.
Collapse
Affiliation(s)
- Deepika Arora
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - Bibhas K Bhunia
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - G Janani
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - Biman B Mandal
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India; Centre for Nanotechnology, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India.
| |
Collapse
|
35
|
Three-Dimensional Spheroids as In Vitro Preclinical Models for Cancer Research. Pharmaceutics 2020; 12:pharmaceutics12121186. [PMID: 33291351 PMCID: PMC7762220 DOI: 10.3390/pharmaceutics12121186] [Citation(s) in RCA: 244] [Impact Index Per Article: 48.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 11/29/2020] [Accepted: 12/04/2020] [Indexed: 02/07/2023] Open
Abstract
Most cancer biologists still rely on conventional two-dimensional (2D) monolayer culture techniques to test in vitro anti-tumor drugs prior to in vivo testing. However, the vast majority of promising preclinical drugs have no or weak efficacy in real patients with tumors, thereby delaying the discovery of successful therapeutics. This is because 2D culture lacks cell–cell contacts and natural tumor microenvironment, important in tumor signaling and drug response, thereby resulting in a reduced malignant phenotype compared to the real tumor. In this sense, three-dimensional (3D) cultures of cancer cells that better recapitulate in vivo cell environments emerged as scientifically accurate and low cost cancer models for preclinical screening and testing of new drug candidates before moving to expensive and time-consuming animal models. Here, we provide a comprehensive overview of 3D tumor systems and highlight the strategies for spheroid construction and evaluation tools of targeted therapies, focusing on their applicability in cancer research. Examples of the applicability of 3D culture for the evaluation of the therapeutic efficacy of nanomedicines are discussed.
Collapse
|
36
|
Maravajjala KS, Swetha KL, Sharma S, Padhye T, Roy A. Development of a size-tunable paclitaxel micelle using a microfluidic-based system and evaluation of its in-vitro efficacy and intracellular delivery. J Drug Deliv Sci Technol 2020. [DOI: 10.1016/j.jddst.2020.102041] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
37
|
Smithen DA, Monro S, Pinto M, Roque J, Diaz-Rodriguez RM, Yin H, Cameron CG, Thompson A, McFarland SA. Bis[pyrrolyl Ru(ii)] triads: a new class of photosensitizers for metal-organic photodynamic therapy. Chem Sci 2020; 11:12047-12069. [PMID: 33738086 PMCID: PMC7953431 DOI: 10.1039/d0sc04500d] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Accepted: 10/06/2020] [Indexed: 12/22/2022] Open
Abstract
A new family of ten dinuclear Ru(ii) complexes based on the bis[pyrrolyl Ru(ii)] triad scaffold, where two Ru(bpy)2 centers are separated by a variety of organic linkers, was prepared to evaluate the influence of the organic chromophore on the spectroscopic and in vitro photodynamic therapy (PDT) properties of the compounds. The bis[pyrrolyl Ru(ii)] triads absorbed strongly throughout the visible region, with several members having molar extinction coefficients (ε) ≥ 104 at 600-620 nm and longer. Phosphorescence quantum yields (Φ p) were generally less than 0.1% and in some cases undetectable. The singlet oxygen quantum yields (Φ Δ) ranged from 5% to 77% and generally correlated with their photocytotoxicities toward human leukemia (HL-60) cells regardless of the wavelength of light used. Dark cytotoxicities varied ten-fold, with EC50 values in the range of 10-100 μM and phototherapeutic indices (PIs) as large as 5400 and 260 with broadband visible (28 J cm-2, 7.8 mW cm-2) and 625 nm red (100 J cm-2, 42 mW cm-2) light, respectively. The bis[pyrrolyl Ru(ii)] triad with a pyrenyl linker (5h) was especially potent, with an EC50 value of 1 nM and PI > 27 000 with visible light and subnanomolar activity with 625 nm light (100 J cm-2, 28 mW cm-2). The lead compound 5h was also tested in a tumor spheroid assay using the HL60 cell line and exhibited greater photocytotoxicity in this more resistant model (EC50 = 60 nM and PI > 1200 with 625 nm light) despite a lower dark cytotoxicity. The in vitro PDT effects of 5h extended to bacteria, where submicromolar EC50 values and PIs >300 against S. mutans and S. aureus were obtained with visible light. This activity was attenuated with 625 nm red light, but PIs were still near 50. The ligand-localized 3ππ* state contributed by the pyrenyl linker of 5h likely plays a key role in its phototoxic effects toward cancer cells and bacteria.
Collapse
Affiliation(s)
- Deborah A Smithen
- Department of Chemistry , Dalhousie University , P. O. Box 15000 , Halifax , NS B3H 4R2 , Canada .
| | - Susan Monro
- Department of Chemistry , Acadia University , Wolfville , NS B4P 2R6 , Canada
| | - Mitch Pinto
- Department of Chemistry , Acadia University , Wolfville , NS B4P 2R6 , Canada
| | - John Roque
- Department of Chemistry and Biochemistry , The University of North Carolina at Greensboro , PO Box 26170 , Greensboro , NC 27402-6170 , USA
- Department of Chemistry and Biochemistry , The University of Texas at Arlington , 700 Planetarium Pl , Arlington , TX 76019-0065 , USA .
| | - Roberto M Diaz-Rodriguez
- Department of Chemistry , Dalhousie University , P. O. Box 15000 , Halifax , NS B3H 4R2 , Canada .
| | - Huimin Yin
- Department of Chemistry , Acadia University , Wolfville , NS B4P 2R6 , Canada
| | - Colin G Cameron
- Department of Chemistry and Biochemistry , The University of Texas at Arlington , 700 Planetarium Pl , Arlington , TX 76019-0065 , USA .
| | - Alison Thompson
- Department of Chemistry , Dalhousie University , P. O. Box 15000 , Halifax , NS B3H 4R2 , Canada .
| | - Sherri A McFarland
- Department of Chemistry and Biochemistry , The University of Texas at Arlington , 700 Planetarium Pl , Arlington , TX 76019-0065 , USA .
| |
Collapse
|
38
|
Dias Amoedo N, Dard L, Sarlak S, Mahfouf W, Blanchard W, Rousseau B, Izotte J, Claverol S, Lacombe D, Rezvani HR, Pierri CL, Rossignol R. Targeting Human Lung Adenocarcinoma with a Suppressor of Mitochondrial Superoxide Production. Antioxid Redox Signal 2020; 33:883-902. [PMID: 32475148 DOI: 10.1089/ars.2019.7892] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Aims: REDOX signaling from reactive oxygen species (ROS) generated by the mitochondria (mitochondrial reactive oxygen species [mtROS]) has been implicated in cancer growth and survival. Here, we investigated the effect of 5-(4-methoxyphenyl)-3H-1,2-dithiole-3-thione (AOL), a recently characterized member of the new class of mtROS suppressors (S1QELs), on human lung adenocarcinoma proteome reprogramming, bioenergetics, and growth. Results: AOL reduced steady-state cellular ROS levels in human lung cancer cells without altering the catalytic activity of complex I. AOL treatment induced dose-dependent inhibition of lung cancer cell proliferation and triggered a reduction in tumor growth in vivo. Molecular investigations demonstrated that AOL reprogrammed the proteome of human lung cancer cells. In particular, AOL suppressed the determinants of the Warburg effect and increased the expression of the complex I subunit NDUFV1 which was also identified as AOL binding site using molecular modeling computer simulations. Comparison of the molecular changes induced by AOL and MitoTEMPO, an mtROS scavenger that is not an S1QEL, identified a core component of 217 proteins commonly altered by the two treatments, as well as drug-specific targets. Innovation: This study provides proof-of-concept data on the anticancer effect of AOL on mouse orthotopic human lung tumors. A unique dataset on proteomic reprogramming by AOL and MitoTEMPO is also provided. Lastly, our study revealed the repression of NDUFV1 by S1QEL AOL. Conclusion: Our findings demonstrate the preclinical anticancer properties of S1QEL AOL and delineate its mode of action on REDOX and cancer signaling.
Collapse
Affiliation(s)
- Nivea Dias Amoedo
- CELLOMET, Functional Genomics Center (CGFB), Bordeaux, France.,Bordeaux University, Bordeaux, France.,INSERM U1211, University of Bordeaux, Bordeaux, France
| | - Laetitia Dard
- CELLOMET, Functional Genomics Center (CGFB), Bordeaux, France.,Bordeaux University, Bordeaux, France.,INSERM U1211, University of Bordeaux, Bordeaux, France
| | - Saharnaz Sarlak
- Bordeaux University, Bordeaux, France.,INSERM U1211, University of Bordeaux, Bordeaux, France
| | - Walid Mahfouf
- Bordeaux University, Bordeaux, France.,Inserm, BMGIC, UMR 1035, University of Bordeaux, Bordeaux, France
| | - Wendy Blanchard
- CELLOMET, Functional Genomics Center (CGFB), Bordeaux, France.,Bordeaux University, Bordeaux, France.,INSERM U1211, University of Bordeaux, Bordeaux, France
| | - Benoît Rousseau
- Bordeaux University, Bordeaux, France.,Transgenic Animal Core Facility, University of Bordeaux, Bordeaux, France
| | - Julien Izotte
- Bordeaux University, Bordeaux, France.,Transgenic Animal Core Facility, University of Bordeaux, Bordeaux, France
| | - Stéphane Claverol
- Bordeaux University, Bordeaux, France.,Proteomics Core Facility, Functional Genomics Center (CGFB), Bordeaux, France
| | - Didier Lacombe
- Bordeaux University, Bordeaux, France.,INSERM U1211, University of Bordeaux, Bordeaux, France.,CHU Bordeaux, Haut-Lévèque Hospital, Thoracic Surgery, Bordeaux, France
| | - Hamid Reza Rezvani
- Bordeaux University, Bordeaux, France.,Inserm, BMGIC, UMR 1035, University of Bordeaux, Bordeaux, France
| | - Ciro Leonardo Pierri
- Laboratory of Biochemistry and Molecular Biology, University of Bari, Bari, Italy
| | - Rodrigue Rossignol
- CELLOMET, Functional Genomics Center (CGFB), Bordeaux, France.,Bordeaux University, Bordeaux, France.,INSERM U1211, University of Bordeaux, Bordeaux, France
| |
Collapse
|
39
|
Joseph MM, Ramya AN, Vijayan VM, Nair JB, Bastian BT, Pillai RK, Therakathinal ST, Maiti KK. Targeted Theranostic Nano Vehicle Endorsed with Self-Destruction and Immunostimulatory Features to Circumvent Drug Resistance and Wipe-Out Tumor Reinitiating Cancer Stem Cells. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e2003309. [PMID: 32797715 DOI: 10.1002/smll.202003309] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 07/01/2020] [Indexed: 06/11/2023]
Abstract
The downsides of conventional cancer monotherapies are profound and enormously consequential, as drug-resistant cancer cells and cancer stem cells (CSC) are typically not eliminated. Here, a targeted theranostic nano vehicle (TTNV) is designed using manganese-doped mesoporous silica nanoparticle with an ideal surface area and pore volume for co-loading an optimized ratio of antineoplastic doxorubicin and a drug efflux inhibitor tariquidar. This strategically framed TTNV is chemically conjugated with folic acid and hyaluronic acid as a dual-targeting entity to promote folate receptor (FR) mediated cancer cells and CD44 mediated CSC uptake, respectively. Interestingly, surface-enhanced Raman spectroscopy is exploited to evaluate the molecular changes associated with therapeutic progression. Tumor microenvironment selective biodegradation and immunostimulatory potential of the MSN-Mn core are safeguarded with a chitosan coating which modulates the premature cargo release and accords biocompatibility. The superior antitumor response in FR-positive syngeneic and CSC-rich human xenograft murine models is associated with a tumor-targeted biodistribution, favorable pharmacokinetics, and an appealing bioelimination pattern of the TTNV with no palpable signs of toxicity. This dual drug-loaded nano vehicle offers a feasible approach for efficient cancer therapy by on demand cargo release in order to execute complete wipe-out of tumor reinitiating cancer stem cells.
Collapse
Affiliation(s)
- Manu M Joseph
- Chemical Sciences and Technology Division (CSTD), CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Industrial Estate, Pappanamcode, Thiruvananthapuram, 695019, India
- Laboratory of Biopharmaceutics and Nanomedicine, Division of Cancer Research, Regional Cancer Centre (RCC), Thiruvananthapuram, 695011, India
| | - Adukkadan N Ramya
- Chemical Sciences and Technology Division (CSTD), CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Industrial Estate, Pappanamcode, Thiruvananthapuram, 695019, India
- Academy of Scientific and Innovative Research (AcSIR), New Delhi, 110020, India
| | - Vineeth M Vijayan
- Chemical Sciences and Technology Division (CSTD), CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Industrial Estate, Pappanamcode, Thiruvananthapuram, 695019, India
- Centre for Nanoscale Materials and Biointergration, University of Alabama at Birmingham, 1300 University Blvd. CH 386, Birmingham, AL, 35294, USA
| | - Jyothi B Nair
- Chemical Sciences and Technology Division (CSTD), CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Industrial Estate, Pappanamcode, Thiruvananthapuram, 695019, India
- Academy of Scientific and Innovative Research (AcSIR), New Delhi, 110020, India
| | - Blossom T Bastian
- Computer Vision Lab, Department of Electronics and Communication Engineering, College of Engineering, Thiruvananthapuram, 695016, India
| | - Raveendran K Pillai
- Clinical Laboratory Services, Regional Cancer Centre (RCC), Thiruvananthapuram, 695011, India
| | - Sreelekha T Therakathinal
- Laboratory of Biopharmaceutics and Nanomedicine, Division of Cancer Research, Regional Cancer Centre (RCC), Thiruvananthapuram, 695011, India
| | - Kaustabh K Maiti
- Chemical Sciences and Technology Division (CSTD), CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Industrial Estate, Pappanamcode, Thiruvananthapuram, 695019, India
- Academy of Scientific and Innovative Research (AcSIR), New Delhi, 110020, India
| |
Collapse
|
40
|
Muciño-Olmos EA, Vázquez-Jiménez A, Avila-Ponce de León U, Matadamas-Guzman M, Maldonado V, López-Santaella T, Hernández-Hernández A, Resendis-Antonio O. Unveiling functional heterogeneity in breast cancer multicellular tumor spheroids through single-cell RNA-seq. Sci Rep 2020; 10:12728. [PMID: 32728097 PMCID: PMC7391783 DOI: 10.1038/s41598-020-69026-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Accepted: 07/01/2020] [Indexed: 12/31/2022] Open
Abstract
Heterogeneity is an intrinsic characteristic of cancer. Even in isogenic tumors, cell populations exhibit differential cellular programs that overall supply malignancy and decrease treatment efficiency. In this study, we investigated the functional relationship among cell subtypes and how this interdependency can promote tumor development in a cancer cell line. To do so, we performed single-cell RNA-seq of MCF7 Multicellular Tumor Spheroids as a tumor model. Analysis of single-cell transcriptomes at two-time points of the spheroid growth, allowed us to dissect their functional relationship. As a result, three major robust cellular clusters, with a non-redundant complementary composition, were found. Meanwhile, one cluster promotes proliferation, others mainly activate mechanisms to invade other tissues and serve as a reservoir population conserved over time. Our results provide evidence to see cancer as a systemic unit that has cell populations with task stratification with the ultimate goal of preserving the hallmarks in tumors.
Collapse
Affiliation(s)
- Erick Andrés Muciño-Olmos
- PhD Program in Biomedical Sciences, UNAM, Mexico City, Mexico.,Human Systems Biology Laboratory, Instituto Nacional de Medicina Genómica, Periférico Sur 4809, Arenal Tepepan, 14610, Mexico City, Mexico
| | - Aarón Vázquez-Jiménez
- Human Systems Biology Laboratory, Instituto Nacional de Medicina Genómica, Periférico Sur 4809, Arenal Tepepan, 14610, Mexico City, Mexico
| | - Ugo Avila-Ponce de León
- Human Systems Biology Laboratory, Instituto Nacional de Medicina Genómica, Periférico Sur 4809, Arenal Tepepan, 14610, Mexico City, Mexico.,PhD Program in Biological Sciences, UNAM, Mexico City, Mexico
| | - Meztli Matadamas-Guzman
- PhD Program in Biomedical Sciences, UNAM, Mexico City, Mexico.,Human Systems Biology Laboratory, Instituto Nacional de Medicina Genómica, Periférico Sur 4809, Arenal Tepepan, 14610, Mexico City, Mexico
| | - Vilma Maldonado
- Epigenetic Laboratory, Instituto Nacional de Medicina, Genómica, Periférico Sur 4809, Arenal Tepepan, 14610, Mexico City, Mexico
| | - Tayde López-Santaella
- Biología de Células Individuales (BIOCELIN), Laboratorio de Investigación en Patología Experimental, Hospital Infantil de México Federico Gómez, Mexico City, Mexico
| | - Abrahan Hernández-Hernández
- Biología de Células Individuales (BIOCELIN), Laboratorio de Investigación en Patología Experimental, Hospital Infantil de México Federico Gómez, Mexico City, Mexico.
| | - Osbaldo Resendis-Antonio
- Human Systems Biology Laboratory, Instituto Nacional de Medicina Genómica, Periférico Sur 4809, Arenal Tepepan, 14610, Mexico City, Mexico. .,Coordinación de La Investigación Científica -Red de Apoyo a La Investigación, UNAM, Mexico City, Mexico.
| |
Collapse
|
41
|
Jiménez-López J, García-Hevia L, Melguizo C, Prados J, Bañobre-López M, Gallo J. Evaluation of Novel Doxorubicin-Loaded Magnetic Wax Nanocomposite Vehicles as Cancer Combinatorial Therapy Agents. Pharmaceutics 2020; 12:E637. [PMID: 32645938 PMCID: PMC7407097 DOI: 10.3390/pharmaceutics12070637] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 06/29/2020] [Accepted: 07/02/2020] [Indexed: 01/20/2023] Open
Abstract
The development of nanotechnology-based solutions for cancer at a preclinical level advances at an astounding pace. So far, clinical translation of these new developments has not been able to keep the pace due to a range of different reasons. One of them is the mismatch between in vitro and in vivo results coming from the expected difference in complexity. To overcome this problem, extensive characterisation using advanced in vitro models can lead to stronger preliminary data to face in vivo tests. Here, a comprehensive in vitro validation of a combinatorial therapy nanoformulation against solid tumours is presented. The information extracted from the different in vitro models highlights the importance of advanced 3D models to fully understand the potential of this type of complex drugs.
Collapse
Affiliation(s)
- Julia Jiménez-López
- Institute of Biopathology and Regenerative Medicine (IBIM9090325ER), Center of Biomedical Research (CIBM), University of Granada, 18014 Granada, Spain; (J.J.-L.); (C.M.); (J.P.)
- Department of Anatomy and Embryology, Faculty of Medicine, University of Granada, 18014 Granada, Spain
- Biosanitary Institute of Granada (ibs.GRANADA), University of Granada, 18014 Granada, Spain
| | - Lorena García-Hevia
- Advanced (Magnetic) Theranostic Nanostructures Lab, Health Cluster, International Iberian Nanotechnology Laboratory, Av. Mestre José Veiga s/n, 4715-330 Braga, Portugal;
- The Scuola Superiore Sant’Anna, the BioRobotics Institute, Viale Rinaldo Piaggio 34, Pontedera, 56025 Pisa, Italy
| | - Consolación Melguizo
- Institute of Biopathology and Regenerative Medicine (IBIM9090325ER), Center of Biomedical Research (CIBM), University of Granada, 18014 Granada, Spain; (J.J.-L.); (C.M.); (J.P.)
- Department of Anatomy and Embryology, Faculty of Medicine, University of Granada, 18014 Granada, Spain
- Biosanitary Institute of Granada (ibs.GRANADA), University of Granada, 18014 Granada, Spain
| | - Jose Prados
- Institute of Biopathology and Regenerative Medicine (IBIM9090325ER), Center of Biomedical Research (CIBM), University of Granada, 18014 Granada, Spain; (J.J.-L.); (C.M.); (J.P.)
- Department of Anatomy and Embryology, Faculty of Medicine, University of Granada, 18014 Granada, Spain
- Biosanitary Institute of Granada (ibs.GRANADA), University of Granada, 18014 Granada, Spain
| | - Manuel Bañobre-López
- Advanced (Magnetic) Theranostic Nanostructures Lab, Health Cluster, International Iberian Nanotechnology Laboratory, Av. Mestre José Veiga s/n, 4715-330 Braga, Portugal;
| | - Juan Gallo
- Advanced (Magnetic) Theranostic Nanostructures Lab, Health Cluster, International Iberian Nanotechnology Laboratory, Av. Mestre José Veiga s/n, 4715-330 Braga, Portugal;
| |
Collapse
|
42
|
Garanti T, Alhnan MA, Wan KW. RGD-decorated solid lipid nanoparticles enhance tumor targeting, penetration and anticancer effect of asiatic acid. Nanomedicine (Lond) 2020; 15:1567-1583. [DOI: 10.2217/nnm-2020-0035] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Aim: Asiatic acid (AA) is a promising anticancer agent, however, its delivery to glioblastoma is a major challenge. This work investigates the beneficial therapeutic efficacy of RGD-conjugated solid lipid nanoparticles (RGD-SLNs) for the selective targeting of AA to gliblastoma. Materials & methods: AA-containing RGD-SLNs were prepared using two different PEG-linker size. Targetability and efficacy were tested using monolayer cells and spheroid tumor models. Results: RGD-SLNs significantly improved cytotoxicity of AA against U87-MG monolayer cells and enhanced cellular uptake compared with non-RGD-containing SLNs. In spheroid models, AA-containing RGD-SLNs showed superior control in tumor growth, improved cytotoxicity and enhanced spheroid penetration when compared with AA alone or non-RGD-containing SLNs. Conclusion: This study illustrates the potential of AA-loaded RGD-SLNs as efficacious target-specific treatment for glioblastoma.
Collapse
Affiliation(s)
- Tanem Garanti
- Faculty of Pharmacy, Cyprus International University, Haspolat, Nicosia, 99258, Cyprus via Mersin 10, Turkey
| | - Mohamed A Alhnan
- Institute of Pharmaceutical Science, Faculty of Life Sciences & Medicine, King’s College London, London, UK
| | - Ka-Wai Wan
- School of Pharmacy & Biomedical Sciences, University of Central Lancashire, Preston, Lancashire, PR1 2HE, UK
| |
Collapse
|
43
|
Zhang C, Yang Z, Dong DL, Jang TS, Knowles JC, Kim HW, Jin GZ, Xuan Y. 3D culture technologies of cancer stem cells: promising ex vivo tumor models. J Tissue Eng 2020; 11:2041731420933407. [PMID: 32637062 PMCID: PMC7318804 DOI: 10.1177/2041731420933407] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 05/20/2020] [Indexed: 12/24/2022] Open
Abstract
Cancer stem cells have been shown to be important in tumorigenesis processes, such as tumor growth, metastasis, and recurrence. As such, many three-dimensional models have been developed to establish an ex vivo microenvironment that cancer stem cells experience under in vivo conditions. Cancer stem cells propagating in three-dimensional culture systems show physiologically related signaling pathway profiles, gene expression, cell-matrix and cell-cell interactions, and drug resistance that reflect at least some of the tumor properties seen in vivo. Herein, we discussed the presently available Cancer stem cell three-dimensional culture models that use biomaterials and engineering tools and the biological implications of these models compared to the conventional ones.
Collapse
Affiliation(s)
- Chengye Zhang
- Institute for Regenerative Medicine, Yanbian University College of Medicine, Yanji, China.,Air Force Medical Center of the Chinese PLA, Beijing, China
| | - Zhaoting Yang
- Institute for Regenerative Medicine, Yanbian University College of Medicine, Yanji, China
| | - Da-Long Dong
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, Republic of Korea.,Department of Nanobiomedical Science and BK21 PLUS Global Research Center for Regenerative Medicine, Dankook University, Cheonan, Republic of Korea
| | - Tae-Su Jang
- Department of Pre-Medical Course, College of Medicine, Dankook University, Cheonan, Republic of Korea
| | - Jonathan C Knowles
- Division of Biomaterials and Tissue Engineering, UCL Eastman Dental Institute, University College London, London, UK
| | - Hae-Won Kim
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, Republic of Korea.,Department of Nanobiomedical Science and BK21 PLUS Global Research Center for Regenerative Medicine, Dankook University, Cheonan, Republic of Korea.,Division of Biomaterials and Tissue Engineering, UCL Eastman Dental Institute, University College London, London, UK.,Department of Biomaterials Science, College of Dentistry, Dankook University, Cheonan, Republic of Korea
| | - Guang-Zhen Jin
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, Republic of Korea.,Department of Nanobiomedical Science and BK21 PLUS Global Research Center for Regenerative Medicine, Dankook University, Cheonan, Republic of Korea
| | - Yanhua Xuan
- Institute for Regenerative Medicine, Yanbian University College of Medicine, Yanji, China.,Department of Pathology, Yanbian University College of Medicine, Yanji, China
| |
Collapse
|
44
|
Srisongkram T, Weerapreeyakul N, Thumanu K. Evaluation of Melanoma (SK-MEL-2) Cell Growth between Three-Dimensional (3D) and Two-Dimensional (2D) Cell Cultures with Fourier Transform Infrared (FTIR) Microspectroscopy. Int J Mol Sci 2020; 21:ijms21114141. [PMID: 32531986 PMCID: PMC7312007 DOI: 10.3390/ijms21114141] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 05/23/2020] [Accepted: 06/08/2020] [Indexed: 12/12/2022] Open
Abstract
Fourier transform infrared (FTIR) microspectroscopy was used to evaluate the growth of human melanoma cells (SK-MEL-2) in two-dimensional (2D) versus three-dimensional (3D) spheroid culture systems. FTIR microspectroscopy, coupled with multivariate analysis, could be used to monitor the variability of spheroid morphologies prepared from different cell densities. The characteristic shift in absorbance bands of the 2D cells were different from the spectra of cells from 3D spheroids. FTIR microspectroscopy can also be used to monitor cell death similar to fluorescence cell staining in 3D spheroids. A change in the secondary structure of protein was observed in cells from the 3D spheroid versus the 2D culture system. FTIR microspectroscopy can detect specific alterations in the biological components inside the spheroid, which cannot be detected using fluorescence cell death staining. In the cells from 3D spheroids, the respective lipid, DNA, and RNA region content represent specific markers directly proportional to the spheroid size and central area of necrotic cell death, which can be confirmed using unsupervised PCA and hierarchical cluster analysis. FTIR microspectroscopy could be used as an alternative tool for spheroid cell culture discrimination, and validation of the usual biochemical technique.
Collapse
Affiliation(s)
- Tarapong Srisongkram
- Research and Development in Pharmaceuticals Program, Graduate School, Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand;
| | - Natthida Weerapreeyakul
- Division of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand
- Human High Performance and Health Promotion Research Institute, Khon Kaen University, Khon Kaen 40002, Thailand
- Correspondence: ; Tel.: +66-43-202-378
| | - Kanjana Thumanu
- Synchrotron Light Research Institute (Public Organization), Nakhon Ratchasima 30000, Thailand;
| |
Collapse
|
45
|
El-Benhawy SA, El-Sheredy HG, Ghanem HB, Abo El-Soud AA. Berberine can amplify cytotoxic effect of radiotherapy by targeting cancer stem cells. BREAST CANCER MANAGEMENT 2020. [DOI: 10.2217/bmt-2020-0007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Aim: Our objective was to investigate the effect of ionizing radiation (IR) and berberine on the expression of stem cell markers OCT4 and SOX2. Materials & methods: The study involved the following groups: Group I: MCF-7 spheroids as untreated control; Group II: MCF-7 spheroids treated with IR; Group III: MCF-7 spheroids treated with berberine; and Group IV: MCF-7 spheroids treated with berberine + IR. MCF-7 spheroids’ metabolic activity and viability was determined with 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide assay. OCT4 and SOX2 genes expression were assayed by real time-plymerase chain reaction (RT-PCR). Results: IR and berberine treatment decreased the viability of MCF-7 spheroids and reduced OCT4 and SOX2 genes expression. Combining berberine with IR leads to a significant reduction in cell viability and OCT4 and SOX2 genes expression when compared with radiation alone treated group. Conclusion: Berberine showed to be a good candidate for further studies as a new anticancer drug in the treatment of breast cancer. Berberine has a radiosensitizing effect through targeting cancer stem cells.
Collapse
Affiliation(s)
- Sanaa A El-Benhawy
- Radiation Sciences Department, Medical Research Institute, Alexandria University, Alexandria, Egypt
| | - Heba G El-Sheredy
- Cancer Management & Research Department, Medical Research Institute, Alexandria University, Alexandria, Egypt
| | - Heba B Ghanem
- Clinical laboratory sciences Department, College of Applied Medical Sciences, Jouf University, Sakaka, Saudi Arabia
- Medical Biochemistry Department, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Amira A Abo El-Soud
- Radiation Sciences Department, Medical Research Institute, Alexandria University, Alexandria, Egypt
| |
Collapse
|
46
|
Mara E, Clausen M, Khachonkham S, Deycmar S, Pessy C, Dörr W, Kuess P, Georg D, Gruber S. Investigating the impact of alpha/beta and LET d on relative biological effectiveness in scanned proton beams: An in vitro study based on human cell lines. Med Phys 2020; 47:3691-3702. [PMID: 32347564 PMCID: PMC7496287 DOI: 10.1002/mp.14212] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 04/03/2020] [Accepted: 04/13/2020] [Indexed: 12/15/2022] Open
Abstract
PURPOSE A relative biological effectiveness (RBE) of 1.1 is commonly used in clinical proton therapy, irrespective of tissue type and depth. This in vitro study was conducted to quantify the RBE of scanned protons as a function of the dose-averaged linear energy transfer (LETd ) and the sensitivity factor (α/ß)X . Additionally, three phenomenological models (McNamara, Rørvik, and Jones) and one mechanistic model (repair-misrepair-fixation, RMF) were applied to the experimentally derived data. METHODS Four human cell lines (FaDu, HaCat, Du145, SKMel) with differential (α/ß)X ratios were irradiated in a custom-designed irradiation setup with doses between 0 and 6 Gy at proximal, central, and distal positions of a 80 mm spread-out Bragg peak (SOBP) centered at 80 mm (setup A: proton energies 66.5-135.6 MeV) and 155 mm (setup B: proton energies 127.2-185.9 MeV) depth, respectively. LETd values at the respective cell positions were derived from Monte Carlo simulations performed with the treatment planning system (TPS, RayStation). Dosimetric measurements were conducted to verify dose homogeneity and dose delivery accuracy. RBE values were derived for doses that resulted in 90 % (RBE90 ) and 10 % (RBE10 ) of cell survival, and survival after a 0.5 Gy dose (RBE0.5Gy ), 2 Gy dose (RBE2Gy ), and 6 Gy dose (RBE6Gy ). RESULTS LETd values at sample positions were 1.9, 2.1, 2.5, 2.8, 4.1, and 4.5 keV/µm. For the cell lines with high (α/ß)X ratios (FaDu, HaCat), the LETd did not impact on the RBE. For low (α/ß)X cell lines (Du145, SKMel), LQ-derived survival curves indicated a clear correlation of LETd and RBE. RBE90 values up to 2.9 and RBE10 values between 1.4 and 1.8 were obtained. Model-derived RBE predictions slightly overestimated the RBE for the high (α/ß)X cell lines, although all models except the Jones model provided RBE values within the experimental uncertainty. For low (α/ß)X cell lines, no agreement was found between experiments and model predictions, that is, all models underestimated the measured RBE. CONCLUSIONS The sensitivity parameter (α/ß)X was observed to be a major influencing factor for the RBE of protons and its sensitivity toward LETd changes. RBE prediction models are applicable for high (α/ß)X cell lines but do not estimate RBE values with sufficient accuracy in low (α/ß)X cell lines.
Collapse
Affiliation(s)
- Elisabeth Mara
- Department of Radiation Oncology/Christian Doppler Laboratory for Medical Radiation Research for Radiation Oncology, Medical University of Vienna, Vienna, Austria.,University of Applied Science, Wiener Neustadt, Austria
| | - Monika Clausen
- Department of Radiation Oncology/Christian Doppler Laboratory for Medical Radiation Research for Radiation Oncology, Medical University of Vienna, Vienna, Austria
| | - Suphalak Khachonkham
- Department of Radiation Oncology/Christian Doppler Laboratory for Medical Radiation Research for Radiation Oncology, Medical University of Vienna, Vienna, Austria.,Division of Radiation Therapy, Department of Diagnostic and Therapeutic Radiology, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Simon Deycmar
- Laboratory of Applied Radiobiology, Department of Radiation Oncology, University Hospital Zürich, Zürich, Switzerland
| | - Clara Pessy
- Department of Radiation Oncology/Christian Doppler Laboratory for Medical Radiation Research for Radiation Oncology, Medical University of Vienna, Vienna, Austria
| | - Wolfgang Dörr
- Department of Radiation Oncology/Christian Doppler Laboratory for Medical Radiation Research for Radiation Oncology, Medical University of Vienna, Vienna, Austria
| | - Peter Kuess
- Department of Radiation Oncology/Christian Doppler Laboratory for Medical Radiation Research for Radiation Oncology, Medical University of Vienna, Vienna, Austria.,EBG MedAustron GmbH, Wiener Neustadt, Austria
| | - Dietmar Georg
- Department of Radiation Oncology/Christian Doppler Laboratory for Medical Radiation Research for Radiation Oncology, Medical University of Vienna, Vienna, Austria.,EBG MedAustron GmbH, Wiener Neustadt, Austria
| | - Sylvia Gruber
- Department of Radiation Oncology/Christian Doppler Laboratory for Medical Radiation Research for Radiation Oncology, Medical University of Vienna, Vienna, Austria.,EBG MedAustron GmbH, Wiener Neustadt, Austria
| |
Collapse
|
47
|
Chao JT, Hollman R, Meyers WM, Meili F, Matreyek KA, Dean P, Fowler DM, Haas K, Roskelley CD, Loewen CJR. A Premalignant Cell-Based Model for Functionalization and Classification of PTEN Variants. Cancer Res 2020; 80:2775-2789. [PMID: 32366478 DOI: 10.1158/0008-5472.can-19-3278] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 12/16/2019] [Accepted: 04/23/2020] [Indexed: 11/16/2022]
Abstract
As sequencing becomes more economical, we are identifying sequence variations in the population faster than ever. For disease-associated genes, it is imperative that we differentiate a sequence variant as either benign or pathogenic, such that the appropriate therapeutic interventions or surveillance can be implemented. PTEN is a frequently mutated tumor suppressor that has been linked to the PTEN hamartoma tumor syndrome. Although the domain structure of PTEN and the functional impact of a number of its most common tumor-linked mutations have been characterized, there is a lack of information about many recently identified clinical variants. To address this challenge, we developed a cell-based assay that utilizes a premalignant phenotype of normal mammary epithelial cells lacking PTEN. We measured the ability of PTEN variants to rescue the spheroid formation phenotype of PTEN-/- MCF10A cells maintained in suspension. As proof of concept, we functionalized 47 missense variants using this assay, only 19 of which have clear classifications in ClinVar. We utilized a machine learning model trained with annotated genotypic data to classify variants as benign or pathogenic based on our functional scores. Our model predicted with high accuracy that loss of PTEN function was indicative of pathogenicity. We also determined that the pathogenicity of certain variants may have arisen from reduced stability of the protein product. Overall, this assay outperformed computational predictions, was scalable, and had a short run time, serving as an ideal alternative for annotating the clinical significance of cancer-associated PTEN variants. SIGNIFICANCE: Combined three-dimensional tumor spheroid modeling and machine learning classifies PTEN missense variants, over 70% of which are currently listed as variants of uncertain significance. GRAPHICAL ABSTRACT: http://cancerres.aacrjournals.org/content/canres/80/13/2775/F1.large.jpg.
Collapse
Affiliation(s)
- Jesse T Chao
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, Canada
| | - Rocio Hollman
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, Canada
| | - Warren M Meyers
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, Canada
| | - Fabian Meili
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, Canada
| | - Kenneth A Matreyek
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, Ohio.,Department of Genome Sciences, University of Washington, Seattle, Washington
| | - Pamela Dean
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, Canada
| | - Douglas M Fowler
- Department of Genome Sciences, University of Washington, Seattle, Washington.,Department of Bioengineering, University of Washington, Seattle, Washington
| | - Kurt Haas
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, Canada
| | - Calvin D Roskelley
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, Canada
| | - Christopher J R Loewen
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, Canada.
| |
Collapse
|
48
|
Grau L, Romero M, Privat-Contreras C, Presa D, Viñas M, Morral J, Pors K, Rubio-Martinez J, Pujol MD. Multigram scale synthesis of polycyclic lactones and evaluation of antitumor and other biological properties. Eur J Med Chem 2020; 185:111807. [PMID: 31675512 DOI: 10.1016/j.ejmech.2019.111807] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 10/20/2019] [Accepted: 10/20/2019] [Indexed: 01/05/2023]
Abstract
An efficient four-step synthesis of tetracyclic lactones from 1,4-benzodioxine-2-carboxylic acid was developed. Ellipticine derivatives exhibit antitumor activity however only a few derivatives without carbazole subunit have been studied to date. Herein, several tetracyclic lactones were synthesized and biologically evaluated. Several compounds (2a, 3a, 4a and 5a) were found to be inhibitors of the Kras-Wnt pathway. The lactone 2a also exerted a potent inhibition of Tau protein translation and was shown to have capacity for CYP1A1-bioactivation. The results obtained are further evidence of the therapeutic potential of tetracyclic lactones related to ellipticine. Molecular modeling studies showed that compound 2a is inserted between helix α3 and α4 of the KRas protein making interactions with the hydrophobic residues Phe90, Glu91, Ile9364, Hie94, Leu133 and Tyr137and a hydrogen bond with residue Arg97.
Collapse
Affiliation(s)
- Laura Grau
- Laboratori de Química Farmacèutica (Unitat Associada al CSIC), Facultat de Farmàcia, Universitat de Barcelona, Av. Joan XXIII, 27-31, E-08028, Barcelona, Spain
| | - Manel Romero
- Laboratori de Química Farmacèutica (Unitat Associada al CSIC), Facultat de Farmàcia, Universitat de Barcelona, Av. Joan XXIII, 27-31, E-08028, Barcelona, Spain
| | - Cristian Privat-Contreras
- Department of Physical Chemistry, Faculty of Chemistry, University of Barcelona, Institute de Recerca en Quimica Teòrica i Computacional (IQTCUB), E-08028, Barcelona, Spain
| | - Daniela Presa
- Institute of Cancer Therapeutics, School of Pharmacy and Medical Sciences, Faculty of Life Sciences, University of Bradford, BD7 1DP, West Yorkshire, UK
| | - Miquel Viñas
- Laboratori de Química Farmacèutica (Unitat Associada al CSIC), Facultat de Farmàcia, Universitat de Barcelona, Av. Joan XXIII, 27-31, E-08028, Barcelona, Spain
| | - Jordi Morral
- Institute of Cancer Therapeutics, School of Pharmacy and Medical Sciences, Faculty of Life Sciences, University of Bradford, BD7 1DP, West Yorkshire, UK
| | - Klaus Pors
- Institute of Cancer Therapeutics, School of Pharmacy and Medical Sciences, Faculty of Life Sciences, University of Bradford, BD7 1DP, West Yorkshire, UK
| | - Jaime Rubio-Martinez
- Department of Physical Chemistry, Faculty of Chemistry, University of Barcelona, Institute de Recerca en Quimica Teòrica i Computacional (IQTCUB), E-08028, Barcelona, Spain
| | - Maria Dolors Pujol
- Laboratori de Química Farmacèutica (Unitat Associada al CSIC), Facultat de Farmàcia, Universitat de Barcelona, Av. Joan XXIII, 27-31, E-08028, Barcelona, Spain.
| |
Collapse
|
49
|
Boo L, Yeap SK, Ali NM, Ho WY, Ky H, Satharasinghe DA, Liew WC, Tan SW, Wang ML, Cheong SK, Ong HK. Phenotypic and microRNA characterization of the neglected CD24+ cell population in MCF-7 breast cancer 3-dimensional spheroid culture. J Chin Med Assoc 2020; 83:67-76. [PMID: 31904742 DOI: 10.1097/jcma.0000000000000226] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND In vitro 3-dimensional (3D) spheroid culture has been widely used as model to enrich CD44CD24 cancer stem cells (CSC) with high aldehyde dehydrogenase 1 (ALDH1) activity. Although CD24 subpopulation was known to be present in 3D spheroids and may influence cancer drug therapies, its characteristics and CSC properties were not well defined. METHODS In this study, CD24 population from the Michigan Cancer Foundation-7 (MCF-7) spheroid was sorted and subjected to spheroid formation test, stem cell markers immunofluorescence, invasion and migration test, as well as microRNA expression profiling. RESULTS Sorted MCF-7 CD24 cells from primary spheroids were able to reform its 3D spheroid shape after 7 days in nonadherent culture conditions. In contrast to the primary spheroids, the expression of SOX-2, CD44, CD49f, and Nanog was dim in MCF-7 CD24 cells. Remarkably, MCF-7 CD24 cells were found to show high expression of ALDH1 protein which may have resulted in these cells exhibiting higher resistance against doxorubicin and cisplatin when compared with that of the parental cells. Moreover, microRNA profiling has shown that the absence of CSC properties was consistent with the downregulation of major CSCs-related pathways including Hedgehog, wingless-related integration site (Wnt), and microtubule associated protein kinase (MAPK) signaling pathways. However, the upregulated pathways such as adherens junctions, focal adhesion, and tight junction suggest that CD24 cells were probably at an epithelial-like state of cell transition. CONCLUSION In conclusion, neglected CD24 cells in MCF-7 spheroid did not exhibit typical breast CSCs properties. The presence of miRNAs and their analyzed pathways suggested that these cells could be a distinct intermediate cell state in breast CSCs.
Collapse
Affiliation(s)
- Lily Boo
- Department of Preclinical Sciences, Faculty of Medicine and Health Sciences, Universiti Tunku Abdul Rahman, Cheras, Malaysia
| | - Swee Keong Yeap
- China-ASEAN College of Marine Sciences, Xiamen University Malaysia Campus, Jalan Sunsuria, Bandar Sunsuria, Sepang, Selangor, Malaysia
| | - Norlaily Mohd Ali
- Department of Preclinical Sciences, Faculty of Medicine and Health Sciences, Universiti Tunku Abdul Rahman, Cheras, Malaysia
| | - Wan Yong Ho
- Division of Biomedical Sciences, Faculty of Medicine and Health Sciences, University of Nottingham (Malaysia Campus), Semenyih, Malaysia
| | - Huynh Ky
- Department of Agriculture Genetics and Breeding, College of Agriculture and Applied Biology, Can Tho University, Vietnam
| | - Dilan Amila Satharasinghe
- Laboratory of Vaccine and Immunotherapeutics, Institute of Bioscience, Universiti Putra Malaysia, Serdang, Malaysia
- Department of Basic Veterinary Sciences, Faculty of Veterinary Medicine and Animal Science, University of Peradeniya, Sri Lanka
| | - Woan Charn Liew
- Laboratory of Vaccine and Immunotherapeutics, Institute of Bioscience, Universiti Putra Malaysia, Serdang, Malaysia
| | - Sheau Wei Tan
- Laboratory of Vaccine and Immunotherapeutics, Institute of Bioscience, Universiti Putra Malaysia, Serdang, Malaysia
| | - Mong-Lien Wang
- Division of Basic Research, Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
- Institute of Food Safety and Health Risk Assessment, National Yang-Ming University, Taipei, Taiwan, ROC
| | - Soon Keng Cheong
- Department of Preclinical Sciences, Faculty of Medicine and Health Sciences, Universiti Tunku Abdul Rahman, Cheras, Malaysia
| | - Han Kiat Ong
- Department of Preclinical Sciences, Faculty of Medicine and Health Sciences, Universiti Tunku Abdul Rahman, Cheras, Malaysia
| |
Collapse
|
50
|
Khalili F, Akrami S, Safavi M, Mohammadi-Khanaposhtani M, Saeedi M, Ardestani SK, Larijani B, Zonouzi A, Tehrani MB, Mahdavi M. Design, Synthesis, In vitro Cytotoxic Activity Evaluation, and Study of Apoptosis Inducing Effect of New Styrylimidazo[1,2-a]Pyridines as Potent Anti-Breast Cancer Agents. Anticancer Agents Med Chem 2019; 19:265-275. [PMID: 30179142 DOI: 10.2174/1871520618666180903100835] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2018] [Revised: 07/16/2018] [Accepted: 08/21/2018] [Indexed: 11/22/2022]
Abstract
BACKGROUND This paper reports synthesis, cytotoxic activity, and apoptosis inducing effect of a novel series of styrylimidazo[1,2-a]pyridine derivatives. OBJECTIVE In this study, anti-cancer activity of novel styrylimidazo[1,2-a]pyridines was evaluated. METHODS Styrylimidazo[1,2-a]pyridine derivatives 4a-o were synthesized through a one-pot three-component reaction of 2-aminopyridines, cinnamaldehydes, and isocyanides in high yield. All synthesized compounds 4a-o were evaluated against breast cancer cell lines including MDA-MB-231, MCF-7, and T-47D using MTT assay. Apoptosis was evaluated by acridine orange/ethidium bromide staining, cell cycle analysis, and TUNEL assay as the mechanism of cell death. RESULTS Most of the synthesized compounds exhibited more potent cytotoxicity than standard drug, etoposide. Induction of apoptosis by the most cytotoxic compounds 4f, 4g, 4j, 4n, and 4m was confirmed through mentioned methods. CONCLUSION In conclusion, these results confirmed the potency of styrylimidazo[1,2-a]pyridines for further drug discovery developments in the field of anti-cancer agents.
Collapse
Affiliation(s)
- Faeze Khalili
- Institute of Biochemistry and Biophysics, Department of Biochemistry, University of Tehran, Tehran, Iran
| | - Sara Akrami
- School of Chemistry, College of Science, University of Tehran, Tehran, Iran
| | - Malihe Safavi
- Department of Biotechnology, Iranian Research Organization for Science and Technology (IROST), Tehran, Iran
| | - Maryam Mohammadi-Khanaposhtani
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Mina Saeedi
- Medicinal Plants Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran.,Persian Medicine and Pharmacy Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Sussan K Ardestani
- Institute of Biochemistry and Biophysics, Department of Biochemistry, University of Tehran, Tehran, Iran
| | - Bagher Larijani
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Afsaneh Zonouzi
- School of Chemistry, College of Science, University of Tehran, Tehran, Iran
| | - Maliheh B Tehrani
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Mahdavi
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|