1
|
Madhu LN, Kodali M, Upadhya R, Rao S, Somayaji Y, Attaluri S, Shuai B, Kirmani M, Gupta S, Maness N, Rao X, Cai JJ, Shetty AK. Extracellular vesicles from human-induced pluripotent stem cell-derived neural stem cells alleviate proinflammatory cascades within disease-associated microglia in Alzheimer's disease. J Extracell Vesicles 2024; 13:e12519. [PMID: 39499013 PMCID: PMC11536387 DOI: 10.1002/jev2.12519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 08/17/2024] [Accepted: 08/28/2024] [Indexed: 11/07/2024] Open
Abstract
As current treatments for Alzheimer's disease (AD) lack disease-modifying interventions, novel therapies capable of restraining AD progression and maintaining better brain function have great significance. Anti-inflammatory extracellular vesicles (EVs) derived from human induced pluripotent stem cell (hiPSC)-derived neural stem cells (NSCs) hold promise as a disease-modifying biologic for AD. This study directly addressed this issue by examining the effects of intranasal (IN) administrations of hiPSC-NSC-EVs in 3-month-old 5xFAD mice. IN administered hiPSC-NSC-EVs incorporated into microglia, including plaque-associated microglia, and encountered astrocyte soma and processes in the brain. Single-cell RNA sequencing revealed transcriptomic changes indicative of diminished activation of microglia and astrocytes. Multiple genes linked to disease-associated microglia, NOD-, LRR-, and pyrin domain-containing protein 3 (NLRP3)-inflammasome and interferon-1 (IFN-1) signalling displayed reduced expression in microglia. Adding hiPSC-NSC-EVs to cultured human microglia challenged with amyloid-beta oligomers resulted in similar effects. Astrocytes also displayed reduced expression of genes linked to IFN-1 and interleukin-6 signalling. Furthermore, the modulatory effects of hiPSC-NSC-EVs on microglia in the hippocampus persisted 2 months post-EV treatment without impacting their phagocytosis function. Such effects were evidenced by reductions in microglial clusters and inflammasome complexes, concentrations of mediators, and end products of NLRP3 inflammasome activation, the expression of genes and/or proteins involved in the activation of p38/mitogen-activated protein kinase and IFN-1 signalling, and unaltered phagocytosis function. The extent of astrocyte hypertrophy, amyloid-beta plaques, and p-tau were also reduced in the hippocampus. Such modulatory effects of hiPSC-NSC-EVs also led to better cognitive and mood function. Thus, early hiPSC-NSC-EV intervention in AD can maintain better brain function by reducing adverse neuroinflammatory signalling cascades, amyloid-beta plaque load, and p-tau. These results reflect the first demonstration of the efficacy of hiPSC-NSC-EVs to restrain neuroinflammatory signalling cascades in an AD model by inducing transcriptomic changes in activated microglia and reactive astrocytes.
Collapse
Affiliation(s)
- Leelavathi N. Madhu
- Institute for Regenerative Medicine, Department of Cell Biology and Genetics, College of MedicineTexas A&M University Health Science Center, College StationTexasUSA
| | - Maheedhar Kodali
- Institute for Regenerative Medicine, Department of Cell Biology and Genetics, College of MedicineTexas A&M University Health Science Center, College StationTexasUSA
| | - Raghavendra Upadhya
- Institute for Regenerative Medicine, Department of Cell Biology and Genetics, College of MedicineTexas A&M University Health Science Center, College StationTexasUSA
| | - Shama Rao
- Institute for Regenerative Medicine, Department of Cell Biology and Genetics, College of MedicineTexas A&M University Health Science Center, College StationTexasUSA
| | - Yogish Somayaji
- Institute for Regenerative Medicine, Department of Cell Biology and Genetics, College of MedicineTexas A&M University Health Science Center, College StationTexasUSA
| | - Sahithi Attaluri
- Institute for Regenerative Medicine, Department of Cell Biology and Genetics, College of MedicineTexas A&M University Health Science Center, College StationTexasUSA
| | - Bing Shuai
- Institute for Regenerative Medicine, Department of Cell Biology and Genetics, College of MedicineTexas A&M University Health Science Center, College StationTexasUSA
| | - Maha Kirmani
- Institute for Regenerative Medicine, Department of Cell Biology and Genetics, College of MedicineTexas A&M University Health Science Center, College StationTexasUSA
| | - Shreyan Gupta
- Department of Veterinary Integrative BiosciencesTexas A&M College of Veterinary Medicine, College StationTexasUSA
| | - Nathaniel Maness
- Institute for Regenerative Medicine, Department of Cell Biology and Genetics, College of MedicineTexas A&M University Health Science Center, College StationTexasUSA
| | - Xiaolan Rao
- Institute for Regenerative Medicine, Department of Cell Biology and Genetics, College of MedicineTexas A&M University Health Science Center, College StationTexasUSA
| | - James J. Cai
- Department of Veterinary Integrative BiosciencesTexas A&M College of Veterinary Medicine, College StationTexasUSA
| | - Ashok K. Shetty
- Institute for Regenerative Medicine, Department of Cell Biology and Genetics, College of MedicineTexas A&M University Health Science Center, College StationTexasUSA
| |
Collapse
|
2
|
Kodali M, Madhu LN, Kolla VSV, Attaluri S, Huard C, Somayaji Y, Shuai B, Jordan C, Rao X, Shetty S, Shetty AK. FDA-approved cannabidiol [Epidiolex ®] alleviates Gulf War Illness-linked cognitive and mood dysfunction, hyperalgesia, neuroinflammatory signaling, and declined neurogenesis. Mil Med Res 2024; 11:61. [PMID: 39169440 PMCID: PMC11340098 DOI: 10.1186/s40779-024-00563-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 08/05/2024] [Indexed: 08/23/2024] Open
Abstract
BACKGROUND Chronic Gulf War Illness (GWI) is characterized by cognitive and mood impairments, as well as persistent neuroinflammation and oxidative stress. This study aimed to investigate the efficacy of Epidiolex®, a Food and Drug Administration (FDA)-approved cannabidiol (CBD), in improving brain function in a rat model of chronic GWI. METHODS Six months after exposure to low doses of GWI-related chemicals [pyridostigmine bromide, N,N-diethyl-meta-toluamide (DEET), and permethrin (PER)] along with moderate stress, rats with chronic GWI were administered either vehicle (VEH) or CBD (20 mg/kg, oral) for 16 weeks. Neurobehavioral tests were conducted on 11 weeks after treatment initiation to evaluate the performance of rats in tasks related to associative recognition memory, object location memory, pattern separation, and sucrose preference. The effect of CBD on hyperalgesia was also examined. The brain tissues were processed for immunohistochemical and molecular studies following behavioral tests. RESULTS GWI rats treated with VEH exhibited impairments in all cognitive tasks and anhedonia, whereas CBD-treated GWI rats showed improvements in all cognitive tasks and no anhedonia. Additionally, CBD treatment alleviated hyperalgesia in GWI rats. Analysis of hippocampal tissues from VEH-treated rats revealed astrocyte hypertrophy and increased percentages of activated microglia presenting NOD-, LRR- and pyrin domain-containing protein 3 (NLRP3) complexes as well as elevated levels of proteins involved in NLRP3 inflammasome activation and Janus kinase/signal transducers and activators of the transcription (JAK/STAT) signaling. Furthermore, there were increased concentrations of proinflammatory and oxidative stress markers along with decreased neurogenesis. In contrast, the hippocampus from CBD-treated GWI rats displayed reduced levels of proteins mediating the activation of NLRP3 inflammasomes and JAK/STAT signaling, normalized concentrations of proinflammatory cytokines and oxidative stress markers, and improved neurogenesis. Notably, CBD treatment did not alter the concentration of endogenous cannabinoid anandamide in the hippocampus. CONCLUSIONS The use of an FDA-approved CBD (Epidiolex®) has been shown to effectively alleviate cognitive and mood impairments as well as hyperalgesia associated with chronic GWI. Importantly, the improvements observed in rats with chronic GWI in this study were attributed to the ability of CBD to significantly suppress signaling pathways that perpetuate chronic neuroinflammation.
Collapse
Affiliation(s)
- Maheedhar Kodali
- Institute for Regenerative Medicine, Department of Cell Biology and Genetics, Texas A&M University Health Science Center School of Medicine, College Station, TX, 77843, USA
| | - Leelavathi N Madhu
- Institute for Regenerative Medicine, Department of Cell Biology and Genetics, Texas A&M University Health Science Center School of Medicine, College Station, TX, 77843, USA
| | - Venkata Sai Vashishta Kolla
- Institute for Regenerative Medicine, Department of Cell Biology and Genetics, Texas A&M University Health Science Center School of Medicine, College Station, TX, 77843, USA
| | - Sahithi Attaluri
- Institute for Regenerative Medicine, Department of Cell Biology and Genetics, Texas A&M University Health Science Center School of Medicine, College Station, TX, 77843, USA
| | - Charles Huard
- Institute for Regenerative Medicine, Department of Cell Biology and Genetics, Texas A&M University Health Science Center School of Medicine, College Station, TX, 77843, USA
| | - Yogish Somayaji
- Institute for Regenerative Medicine, Department of Cell Biology and Genetics, Texas A&M University Health Science Center School of Medicine, College Station, TX, 77843, USA
| | - Bing Shuai
- Institute for Regenerative Medicine, Department of Cell Biology and Genetics, Texas A&M University Health Science Center School of Medicine, College Station, TX, 77843, USA
| | - Chase Jordan
- Institute for Regenerative Medicine, Department of Cell Biology and Genetics, Texas A&M University Health Science Center School of Medicine, College Station, TX, 77843, USA
| | - Xiaolan Rao
- Institute for Regenerative Medicine, Department of Cell Biology and Genetics, Texas A&M University Health Science Center School of Medicine, College Station, TX, 77843, USA
| | - Sanath Shetty
- Institute for Regenerative Medicine, Department of Cell Biology and Genetics, Texas A&M University Health Science Center School of Medicine, College Station, TX, 77843, USA
| | - Ashok K Shetty
- Institute for Regenerative Medicine, Department of Cell Biology and Genetics, Texas A&M University Health Science Center School of Medicine, College Station, TX, 77843, USA.
| |
Collapse
|
3
|
Madhu LN, Kodali M, Upadhya R, Rao S, Shuai B, Somayaji Y, Attaluri S, Kirmani M, Gupta S, Maness N, Rao X, Cai J, Shetty AK. Intranasally Administered EVs from hiPSC-derived NSCs Alter the Transcriptomic Profile of Activated Microglia and Conserve Brain Function in an Alzheimer's Model. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.18.576313. [PMID: 38293018 PMCID: PMC10827207 DOI: 10.1101/2024.01.18.576313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
Antiinflammatory extracellular vesicles (EVs) derived from human induced pluripotent stem cell (hiPSC)-derived neural stem cells (NSCs) hold promise as a disease-modifying biologic for Alzheimer's disease (AD). This study directly addressed this issue by examining the effects of intranasal administrations of hiPSC-NSC-EVs to 3-month-old 5xFAD mice. The EVs were internalized by all microglia, which led to reduced expression of multiple genes associated with disease-associated microglia, inflammasome, and interferon-1 signaling. Furthermore, the effects of hiPSC-NSC-EVs persisted for two months post-treatment in the hippocampus, evident from reduced microglial clusters, inflammasome complexes, and expression of proteins and/or genes linked to the activation of inflammasomes, p38/mitogen-activated protein kinase, and interferon-1 signaling. The amyloid-beta (Aβ) plaques, Aβ-42, and phosphorylated-tau concentrations were also diminished, leading to better cognitive and mood function in 5xFAD mice. Thus, early intervention with hiPSC-NSC-EVs in AD may help maintain better brain function by restraining the progression of adverse neuroinflammatory signaling cascades.
Collapse
|
4
|
Hara Y, Katsuyama T, Fukaya M, Sugawara T, Shiroshima T, Sadakata T, Osumi N, Sakagami H. ADP Ribosylation Factor 4 (Arf4) Regulates Radial Migration through N-Cadherin Trafficking during Cerebral Cortical Development. eNeuro 2023; 10:ENEURO.0125-23.2023. [PMID: 37848288 PMCID: PMC10630928 DOI: 10.1523/eneuro.0125-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 09/28/2023] [Accepted: 10/05/2023] [Indexed: 10/19/2023] Open
Abstract
During the development of the cerebral cortex, N-cadherin plays a crucial role in facilitating radial migration by enabling cell-to-cell adhesion between migrating neurons and radial glial fibers or Cajar-Reztius cells. ADP ribosylation factor 4 (Arf4) and Arf5, which belong to the Class II Arf small GTPase subfamily, control membrane trafficking in the endocytic and secretory pathways. However, their specific contribution to cerebral cortex development remains unclear. In this study, we sought to investigate the functional involvement of Class II Arfs in radial migration during the layer formation of the cerebral cortex using mouse embryos and pups. Our findings indicate that knock-down of Arf4, but not Arf5, resulted in the stalling of transfected neurons with disorientation of the Golgi in the upper intermediate zone (IZ) and reduction in the migration speed in both the IZ and cortical plate (CP). Migrating neurons with Arf4 knock-down exhibited cytoplasmic accumulation of N-cadherin, along with disturbed organelle morphology and distribution. Furthermore, supplementation of exogenous N-cadherin partially rescued the migration defect caused by Arf4 knock-down. In conclusion, our results suggest that Arf4 plays a crucial role in regulating radial migration via N-cadherin trafficking during cerebral cortical development.
Collapse
Affiliation(s)
- Yoshinobu Hara
- Department of Anatomy, Kitasato University School of Medicine, Sagamihara, Kanagawa 252-0374, Japan
| | - Takehiko Katsuyama
- Department of Anatomy, Kitasato University School of Medicine, Sagamihara, Kanagawa 252-0374, Japan
| | - Masahiro Fukaya
- Department of Anatomy, Kitasato University School of Medicine, Sagamihara, Kanagawa 252-0374, Japan
| | - Takeyuki Sugawara
- Department of Anatomy, Kitasato University School of Medicine, Sagamihara, Kanagawa 252-0374, Japan
| | - Tomoko Shiroshima
- Department of Anatomy, Kitasato University School of Medicine, Sagamihara, Kanagawa 252-0374, Japan
| | - Tetsushi Sadakata
- Education and Research Support Center, Gunma University Graduate School of Medicine, Maebashi, Gunma 371-8511, Japan
| | - Noriko Osumi
- Department of Developmental Neuroscience, Tohoku University Graduate School of Medicine, Sendai, Miyagi 980-8575, Japan
| | - Hiroyuki Sakagami
- Department of Anatomy, Kitasato University School of Medicine, Sagamihara, Kanagawa 252-0374, Japan
| |
Collapse
|
5
|
Rui M, Kong W, Wang W, Zheng T, Wang S, Xie W. Droj2 Facilitates Somatosensory Neurite Sculpting via GTP-Binding Protein Arf102F in Drosophila. Int J Mol Sci 2023; 24:13213. [PMID: 37686022 PMCID: PMC10487878 DOI: 10.3390/ijms241713213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 08/21/2023] [Accepted: 08/23/2023] [Indexed: 09/10/2023] Open
Abstract
Developmental remodeling of neurite is crucial for the accurate wiring of neural circuits in the developing nervous system in both vertebrates and invertebrates, and may also contribute to the pathogenesis of neuropsychiatric disorders, for instance, autism, Alzheimer's disease (AD), and schizophrenia. However, the molecular underpinnings underlying developmental remodeling are still not fully understood. Here, we have identified DnaJ-like-2 (Droj2), orthologous to human DNAJA1 and DNAJA4 that is predicted to be involved in protein refolding, as a developmental signal promoting dendrite sculpting of the class IV dendritic arborization (C4da) sensory neuron in Drosophila. We further show that Arf102F, a GTP-binding protein previously implicated in protein trafficking, serves downstream of Droj2 to govern neurite pruning of C4da sensory neurons. Intriguingly, our data consistently demonstrate that both Droj2 and Arf102F promote the downregulation of the conserved L1-type cell-adhesion molecule Neuroglian anterior to dendrite pruning. Mechanistically, Droj2 genetically interacts with Arf102F and promotes Neuroglian downregulation to initiate dendrite severing. Taken together, this systematic study sheds light on an unprecedented function of Droj2 and Arf102F in neuronal development.
Collapse
Affiliation(s)
- Menglong Rui
- The Key Laboratory of Developmental Genes and Human Disease, School of Life Science and Technology, Southeast University, Nanjing 210096, China
| | - Weiyu Kong
- The Key Laboratory of Developmental Genes and Human Disease, School of Life Science and Technology, Southeast University, Nanjing 210096, China
| | - Wanting Wang
- The Key Laboratory of Developmental Genes and Human Disease, School of Life Science and Technology, Southeast University, Nanjing 210096, China
| | - Ting Zheng
- The Key Laboratory of Developmental Genes and Human Disease, School of Life Science and Technology, Southeast University, Nanjing 210096, China
| | - Su Wang
- The Key Laboratory of Developmental Genes and Human Disease, School of Life Science and Technology, Southeast University, Nanjing 210096, China
- Co-Innovation Center of Neuroregeneration, Nantong University, Nantong 226019, China
| | - Wei Xie
- The Key Laboratory of Developmental Genes and Human Disease, School of Life Science and Technology, Southeast University, Nanjing 210096, China
| |
Collapse
|
6
|
Huseby CJ, Delvaux E, Brokaw DL, Coleman PD. Blood RNA transcripts reveal similar and differential alterations in fundamental cellular processes in Alzheimer's disease and other neurodegenerative diseases. Alzheimers Dement 2023; 19:2618-2632. [PMID: 36541444 PMCID: PMC11633037 DOI: 10.1002/alz.12880] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 09/30/2022] [Accepted: 10/21/2022] [Indexed: 12/24/2022]
Abstract
BACKGROUND Dysfunctional processes in Alzheimer's disease and other neurodegenerative diseases lead to neural degeneration in the central and peripheral nervous system. Research demonstrates that neurodegeneration of any kind is a systemic disease that may even begin outside of the region vulnerable to the disease. Neurodegenerative diseases are defined by the vulnerabilities and pathology occurring in the regions affected. METHOD A random forest machine learning analysis on whole blood transcriptomes from six neurodegenerative diseases generated unbiased disease-classifying RNA transcripts subsequently subjected to pathway analysis. RESULTS We report that transcripts of the blood transcriptome selected for each of the neurodegenerative diseases represent fundamental biological cell processes including transcription regulation, degranulation, immune response, protein synthesis, apoptosis, cytoskeletal components, ubiquitylation/proteasome, and mitochondrial complexes that are also affected in the brain and reveal common themes across six neurodegenerative diseases. CONCLUSION Neurodegenerative diseases share common dysfunctions in fundamental cellular processes. Identifying regional vulnerabilities will reveal unique disease mechanisms. HIGHLIGHTS Transcriptomics offer information about dysfunctional processes. Comparing multiple diseases will expose unique malfunctions within diseases. Blood RNA can be used ante mortem to track expression changes in neurodegenerative diseases. Protocol standardization will make public datasets compatible.
Collapse
Affiliation(s)
- Carol J. Huseby
- ASU-Banner Neurodegenerative Disease Research Center, Arizona State University, Tempe, Arizona, USA
| | - Elaine Delvaux
- ASU-Banner Neurodegenerative Disease Research Center, Arizona State University, Tempe, Arizona, USA
| | - Danielle L. Brokaw
- University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Paul D. Coleman
- ASU-Banner Neurodegenerative Disease Research Center, Arizona State University, Tempe, Arizona, USA
| |
Collapse
|
7
|
Kodali M, Madhu LN, Reger RL, Milutinovic B, Upadhya R, Gonzalez JJ, Attaluri S, Shuai B, Gitai DLG, Rao S, Choi JM, Jung SY, Shetty AK. Intranasally administered human MSC-derived extracellular vesicles inhibit NLRP3-p38/MAPK signaling after TBI and prevent chronic brain dysfunction. Brain Behav Immun 2023; 108:118-134. [PMID: 36427808 PMCID: PMC9974012 DOI: 10.1016/j.bbi.2022.11.014] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 10/21/2022] [Accepted: 11/19/2022] [Indexed: 11/25/2022] Open
Abstract
Traumatic brain injury (TBI) leads to lasting brain dysfunction with chronic neuroinflammation typified by nucleotide-binding domain leucine-rich repeat and pyrin domain-containing receptor 3 (NLRP3) inflammasome activation in microglia. This study probed whether a single intranasal (IN) administration of human mesenchymal stem cell-derived extracellular vesicles (hMSC-EVs) naturally enriched with activated microglia-modulating miRNAs can avert chronic adverse outcomes of TBI. Small RNA sequencing confirmed the enrichment of miRNAs capable of modulating activated microglia in hMSC-EV cargo. IN administration of hMSC-EVs into adult mice ninety minutes after the induction of a unilateral controlled cortical impact injury resulted in their incorporation into neurons and microglia in both injured and contralateral hemispheres. A single higher dose hMSC-EV treatment also inhibited NLRP3 inflammasome activation after TBI, evidenced by reduced NLRP3, apoptosis-associated speck-like protein containing a CARD, activated caspase-1, interleukin-1 beta, and IL-18 levels in the injured brain. Such inhibition in the acute phase of TBI endured in the chronic phase, which could also be gleaned from diminished NLRP3 inflammasome activation in microglia of TBI mice receiving hMSC-EVs. Proteomic analysis and validation revealed that higher dose hMSC-EV treatment thwarted the chronic activation of the p38 mitogen-activated protein kinase (MAPK) signaling pathway by IL-18, which decreased the release of proinflammatory cytokines. Inhibition of the chronic activation of NLRP3-p38/MAPK signaling after TBI also prevented long-term cognitive and mood impairments. Notably, the animals receiving higher doses of hMSC-EVs after TBI displayed better cognitive and mood function in all behavioral tests than animals receiving the vehicle after TBI. A lower dose of hMSC-EV treatment also partially improved cognitive and mood function. Thus, an optimal IN dose of hMSC-EVs naturally enriched with activated microglia-modulating miRNAs can inhibit the chronic activation of NLRP3-p38/MAPK signaling after TBI and prevent lasting brain dysfunction.
Collapse
Affiliation(s)
- Maheedhar Kodali
- Institute for Regenerative Medicine, Department of Cell Biology and Genetics, Texas A&M University School of Medicine, College Station, TX, USA
| | - Leelavathi N Madhu
- Institute for Regenerative Medicine, Department of Cell Biology and Genetics, Texas A&M University School of Medicine, College Station, TX, USA
| | - Roxanne L Reger
- Institute for Regenerative Medicine, Department of Cell Biology and Genetics, Texas A&M University School of Medicine, College Station, TX, USA
| | - Bojana Milutinovic
- Institute for Regenerative Medicine, Department of Cell Biology and Genetics, Texas A&M University School of Medicine, College Station, TX, USA
| | - Raghavendra Upadhya
- Institute for Regenerative Medicine, Department of Cell Biology and Genetics, Texas A&M University School of Medicine, College Station, TX, USA
| | - Jenny J Gonzalez
- Institute for Regenerative Medicine, Department of Cell Biology and Genetics, Texas A&M University School of Medicine, College Station, TX, USA
| | - Sahithi Attaluri
- Institute for Regenerative Medicine, Department of Cell Biology and Genetics, Texas A&M University School of Medicine, College Station, TX, USA
| | - Bing Shuai
- Institute for Regenerative Medicine, Department of Cell Biology and Genetics, Texas A&M University School of Medicine, College Station, TX, USA
| | - Daniel L G Gitai
- Institute of Biological Sciences and Health, Federal University of Alagoas, Brazil
| | - Shama Rao
- Institute for Regenerative Medicine, Department of Cell Biology and Genetics, Texas A&M University School of Medicine, College Station, TX, USA
| | - Jong M Choi
- Advanced Technology Core, Mass Spectrometry and Proteomics Core, Baylor College of Medicine, Houston, TX, USA
| | - Sung Y Jung
- The Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Ashok K Shetty
- Institute for Regenerative Medicine, Department of Cell Biology and Genetics, Texas A&M University School of Medicine, College Station, TX, USA.
| |
Collapse
|
8
|
Barth K, Vasić V, McDonald B, Heinig N, Wagner MC, Schumann U, Röhlecke C, Bicker F, Schumann L, Radyushkin K, Baumgart J, Tenzer S, Zipp F, Meinhardt M, Alitalo K, Tegeder I, Schmidt MHH. EGFL7 loss correlates with increased VEGF-D expression, upregulating hippocampal adult neurogenesis and improving spatial learning and memory. Cell Mol Life Sci 2023; 80:54. [PMID: 36715759 PMCID: PMC9886625 DOI: 10.1007/s00018-023-04685-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 12/28/2022] [Accepted: 01/03/2023] [Indexed: 01/31/2023]
Abstract
Neural stem cells reside in the subgranular zone, a specialized neurogenic niche of the hippocampus. Throughout adulthood, these cells give rise to neurons in the dentate gyrus, playing an important role in learning and memory. Given that these core cognitive processes are disrupted in numerous disease states, understanding the underlying mechanisms of neural stem cell proliferation in the subgranular zone is of direct practical interest. Here, we report that mature neurons, neural stem cells and neural precursor cells each secrete the neurovascular protein epidermal growth factor-like protein 7 (EGFL7) to shape this hippocampal niche. We further demonstrate that EGFL7 knock-out in a Nestin-CreERT2-based mouse model produces a pronounced upregulation of neurogenesis within the subgranular zone. RNA sequencing identified that the increased expression of the cytokine VEGF-D correlates significantly with the ablation of EGFL7. We substantiate this finding with intraventricular infusion of VEGF-D upregulating neurogenesis in vivo and further show that VEGF-D knock-out produces a downregulation of neurogenesis. Finally, behavioral studies in EGFL7 knock-out mice demonstrate greater maintenance of spatial memory and improved memory consolidation in the hippocampus by modulation of pattern separation. Taken together, our findings demonstrate that both EGFL7 and VEGF-D affect neurogenesis in the adult hippocampus, with the ablation of EGFL7 upregulating neurogenesis, increasing spatial learning and memory, and correlating with increased VEGF-D expression.
Collapse
Affiliation(s)
- Kathrin Barth
- Institute of Anatomy, Medical Faculty Carl Gustav Carus, Technische Universität Dresden School of Medicine, Fetscherstr. 74, 01307 Dresden, Germany
| | - Verica Vasić
- Institute of Medical Informatics and Biometry, Medical Faculty Carl Gustav Carus, Technische Universität Dresden School of Medicine, Dresden, Germany ,Institute of Anatomy, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Brennan McDonald
- Institute of Anatomy, Medical Faculty Carl Gustav Carus, Technische Universität Dresden School of Medicine, Fetscherstr. 74, 01307 Dresden, Germany
| | - Nora Heinig
- Institute of Anatomy, Medical Faculty Carl Gustav Carus, Technische Universität Dresden School of Medicine, Fetscherstr. 74, 01307 Dresden, Germany
| | - Marc-Christoph Wagner
- Institute of Anatomy, Medical Faculty Carl Gustav Carus, Technische Universität Dresden School of Medicine, Fetscherstr. 74, 01307 Dresden, Germany ,Institute of Medical Informatics and Biometry, Medical Faculty Carl Gustav Carus, Technische Universität Dresden School of Medicine, Dresden, Germany
| | - Ulrike Schumann
- Institute of Anatomy, Medical Faculty Carl Gustav Carus, Technische Universität Dresden School of Medicine, Fetscherstr. 74, 01307 Dresden, Germany
| | - Cora Röhlecke
- Institute of Anatomy, Medical Faculty Carl Gustav Carus, Technische Universität Dresden School of Medicine, Fetscherstr. 74, 01307 Dresden, Germany
| | - Frank Bicker
- Institute of Anatomy, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany ,Focus Program Translational Neuroscience (FTN), University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Lana Schumann
- Institute of Clinical Pharmacology, Goethe-University Hospital Frankfurt Am Main, Frankfurt, Germany
| | - Konstantin Radyushkin
- Focus Program Translational Neuroscience (FTN), University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany ,Mouse Behavior Outcome Unit, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Jan Baumgart
- Translational Animal Research Center (TARC), University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Stefan Tenzer
- Institute of Immunology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany ,Focus Program Immunotherapy (FZI), University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Frauke Zipp
- Focus Program Translational Neuroscience (FTN), University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany ,Focus Program Immunotherapy (FZI), University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany ,Department of Neurology, Rhine-Main Neuroscience Network (rmn2), University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Matthias Meinhardt
- Institute of Pathology, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Kari Alitalo
- Translational Cancer Medicine Program and iCAN Digital Precision Cancer Medicine Flagship, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Irmgard Tegeder
- Institute of Clinical Pharmacology, Goethe-University Hospital Frankfurt Am Main, Frankfurt, Germany
| | - Mirko H. H. Schmidt
- Institute of Anatomy, Medical Faculty Carl Gustav Carus, Technische Universität Dresden School of Medicine, Fetscherstr. 74, 01307 Dresden, Germany
| |
Collapse
|
9
|
Mallik B, Bhat S, Kumar V. Role of Bin‐Amphiphysin‐Rvs (BAR) domain proteins in mediating neuronal signaling and disease. Synapse 2022; 76:e22248. [DOI: 10.1002/syn.22248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 05/13/2022] [Accepted: 07/18/2022] [Indexed: 11/06/2022]
Affiliation(s)
- Bhagaban Mallik
- Department of Biological Sciences Indian Institute of Science Education and Research (IISER) Bhopal Indore Bypass Road Bhopal Madhya Pradesh 462 066 India
| | - Sajad Bhat
- Department of Biological Sciences Indian Institute of Science Education and Research (IISER) Bhopal Indore Bypass Road Bhopal Madhya Pradesh 462 066 India
| | - Vimlesh Kumar
- Department of Biological Sciences Indian Institute of Science Education and Research (IISER) Bhopal Indore Bypass Road Bhopal Madhya Pradesh 462 066 India
| |
Collapse
|
10
|
Loureiro-Campos E, Mateus-Pinheiro A, Patrício P, Soares-Cunha C, Silva J, Sardinha VM, Mendes-Pinheiro B, Silveira-Rosa T, Domingues AV, Rodrigues AJ, Oliveira J, Sousa N, Alves ND, Pinto L. Constitutive deficiency of the neurogenic hippocampal modulator AP2γ promotes anxiety-like behavior and cumulative memory deficits in mice from juvenile to adult periods. eLife 2021; 10:70685. [PMID: 34859784 PMCID: PMC8709574 DOI: 10.7554/elife.70685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 12/02/2021] [Indexed: 11/23/2022] Open
Abstract
The transcription factor activating protein two gamma (AP2γ) is an important regulator of neurogenesis both during embryonic development as well as in the postnatal brain, but its role for neurophysiology and behavior at distinct postnatal periods is still unclear. In this work, we explored the neurogenic, behavioral, and functional impact of a constitutive and heterozygous AP2γ deletion in mice from early postnatal development until adulthood. AP2γ deficiency promotes downregulation of hippocampal glutamatergic neurogenesis, altering the ontogeny of emotional and memory behaviors associated with hippocampus formation. The impairments induced by AP2γ constitutive deletion since early development leads to an anxious-like phenotype and memory impairments as early as the juvenile phase. These behavioral impairments either persist from the juvenile phase to adulthood or emerge in adult mice with deficits in behavioral flexibility and object location recognition. Collectively, we observed a progressive and cumulative impact of constitutive AP2γ deficiency on the hippocampal glutamatergic neurogenic process, as well as alterations on limbic-cortical connectivity, together with functional behavioral impairments. The results herein presented demonstrate the modulatory role exerted by the AP2γ transcription factor and the relevance of hippocampal neurogenesis in the development of emotional states and memory processes.
Collapse
Affiliation(s)
- Eduardo Loureiro-Campos
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's -PT Government Associate Laboratory, Guimarães, Portugal
| | - António Mateus-Pinheiro
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's -PT Government Associate Laboratory, Guimarães, Portugal
| | - Patrícia Patrício
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's -PT Government Associate Laboratory, Guimarães, Portugal
| | - Carina Soares-Cunha
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's -PT Government Associate Laboratory, Guimarães, Portugal
| | - Joana Silva
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's -PT Government Associate Laboratory, Guimarães, Portugal
| | - Vanessa Morais Sardinha
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's -PT Government Associate Laboratory, Guimarães, Portugal
| | - Bárbara Mendes-Pinheiro
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's -PT Government Associate Laboratory, Guimarães, Portugal
| | - Tiago Silveira-Rosa
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's -PT Government Associate Laboratory, Guimarães, Portugal
| | - Ana Verónica Domingues
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's -PT Government Associate Laboratory, Guimarães, Portugal
| | - Ana João Rodrigues
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
| | - João Oliveira
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's -PT Government Associate Laboratory, Guimarães, Portugal.,IPCA-EST-2Ai, Polytechnic Institute of Cávado and Ave, Applied Artificial Intelligence Laboratory, Campus of IPCA, Barcelos, Portugal
| | - Nuno Sousa
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's -PT Government Associate Laboratory, Guimarães, Portugal
| | - Nuno Dinis Alves
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's -PT Government Associate Laboratory, Guimarães, Portugal
| | - Luísa Pinto
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's -PT Government Associate Laboratory, Guimarães, Portugal
| |
Collapse
|
11
|
Hu L, Zhou Y, Yang J, Zhao X, Mao L, Zheng W, Zhao J, Guo M, Chen C, He Z, Xu L. MicroRNA-7 overexpression positively regulates the CD8 + SP cell development via targeting PIK3R1. Exp Cell Res 2021; 407:112824. [PMID: 34516985 DOI: 10.1016/j.yexcr.2021.112824] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 08/22/2021] [Accepted: 09/04/2021] [Indexed: 12/21/2022]
Abstract
microRNA-7 (miR-7), a distinct miRNA family member, has been reported to be involved in the biological functions of immune cells. However, the potential role of miR-7 in the CD8+ T cell development remains to be elucidated. In this study, we estimated the potential effects of miR-7 overexpression in the thymic CD8+ SP cell development using miR-7 overexpression mice. Our results showed that compared with those in control wild type (WT) mice, the volume, weight and total cell numbers of thymus in miR-7 overexpression (OE) mice increased significantly. The absolute cell number of CD8+ SP cells in miR-7 OE mice increased and its ability of activation and proliferation enhanced. Futhermore, we clarified that miR-7 overexpression had an intrinsic promote role in CD8+ SP cell development by adoptive cell transfer assay. Mechanistically, the expression level of PIK3R1, a target of miR-7, decreased significantly in CD8+ SP cells of miR-7 OE mice. Moreover, the expression level of phosphorylated (p)-AKT and p-ERK changed inversely and indicating that miR-7 overexpression impaired the balance of AKE and ERK pathways. In summary, our work reveals an essential role of miR-7 in promoting CD8+ SP cell development through the regulation of PIK3R1 and balance of AKT and ERK pathways.
Collapse
Affiliation(s)
- Lin Hu
- Special Key Laboratory of Gene Detection & Therapy of Guizhou Provincial Education Department, Guizhou, 563000, China; Department of Immunology & Talent Base of Biological Therapy of Guizhou Province, Zunyi Medical University, Guizhou, 563000, China
| | - Ya Zhou
- Special Key Laboratory of Gene Detection & Therapy of Guizhou Provincial Education Department, Guizhou, 563000, China; Department of Medical Physics, Zunyi Medical University, Zunyi, Guizhou, 563003, China
| | - Jing Yang
- Special Key Laboratory of Gene Detection & Therapy of Guizhou Provincial Education Department, Guizhou, 563000, China; Department of Immunology & Talent Base of Biological Therapy of Guizhou Province, Zunyi Medical University, Guizhou, 563000, China
| | - Xu Zhao
- Special Key Laboratory of Gene Detection & Therapy of Guizhou Provincial Education Department, Guizhou, 563000, China; Department of Immunology & Talent Base of Biological Therapy of Guizhou Province, Zunyi Medical University, Guizhou, 563000, China
| | - Ling Mao
- Special Key Laboratory of Gene Detection & Therapy of Guizhou Provincial Education Department, Guizhou, 563000, China; Department of Immunology & Talent Base of Biological Therapy of Guizhou Province, Zunyi Medical University, Guizhou, 563000, China
| | - Wen Zheng
- Department of Laboratory Medicine, Qiannan Medical University for Nationalities, Guizhou 558000, China
| | - Juanjuan Zhao
- Special Key Laboratory of Gene Detection & Therapy of Guizhou Provincial Education Department, Guizhou, 563000, China; Department of Immunology & Talent Base of Biological Therapy of Guizhou Province, Zunyi Medical University, Guizhou, 563000, China
| | - Mengmeng Guo
- Special Key Laboratory of Gene Detection & Therapy of Guizhou Provincial Education Department, Guizhou, 563000, China; Department of Immunology & Talent Base of Biological Therapy of Guizhou Province, Zunyi Medical University, Guizhou, 563000, China
| | - Chao Chen
- Special Key Laboratory of Gene Detection & Therapy of Guizhou Provincial Education Department, Guizhou, 563000, China; Department of Immunology & Talent Base of Biological Therapy of Guizhou Province, Zunyi Medical University, Guizhou, 563000, China
| | - Zhixu He
- Department of Paediatrics, Affiliated Hospital of Zunyi Medical University, Guizhou, 563000, China; Key Laboratory of Adult Stem Cell Transformation Research, Chinese Academy of Medical Sciences, Guizhou, 563000, China
| | - Lin Xu
- Special Key Laboratory of Gene Detection & Therapy of Guizhou Provincial Education Department, Guizhou, 563000, China; Department of Immunology & Talent Base of Biological Therapy of Guizhou Province, Zunyi Medical University, Guizhou, 563000, China.
| |
Collapse
|
12
|
Zhang Q, Zhang J, Ye J, Li X, Liu H, Ma X, Wang C, He K, Zhang W, Yuan J, Zhao Y, Xu H, Liu Q. Nuclear speckle specific hnRNP D-like prevents age- and AD-related cognitive decline by modulating RNA splicing. Mol Neurodegener 2021; 16:66. [PMID: 34551807 PMCID: PMC8456587 DOI: 10.1186/s13024-021-00485-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 08/12/2021] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND Aberrant alternative splicing plays critical role in aging and age-related diseases. Heterogeneous nuclear ribonucleoproteins (hnRNPs) reportedly regulate RNA splicing process. Whether and how hnRNPs contribute to age-related neurodegenerative diseases, especially Alzheimer's disease (AD), remain elusive. METHODS Immunoblotting and immunostaining were performed to determine expression patterns and cellular/subcellular localization of the long isoform of hnRNP D-like (L-DL), which is a hnRNP family member, in mouse hippocampus. Downregulation of L-DL in WT mice was achieved by AAV-mediated shRNA delivery, followed by memory-related behavioural tests. L-DL interactome was analysed by affinity-precipitation and mass spectrometry. Alternative RNA splicing was measured by RNA-seq and analyzed by bioinformatics-based approaches. Downregulation and upregulation of L-DL in APP/PS1 mice were performed using AAV-mediated transduction. RESULTS We show that L-DL is specifically localized to nuclear speckles. L-DL levels are decreased in the hippocampus of aged mouse brains and downregulation of L-DL impairs cognition in mice. L-DL serves as a structural component to recruit other speckle proteins, and regulates cytoskeleton- and synapse-related gene expression by altering RNA splicing. Mechanistically, these splicing changes are modulated via L-DL-mediated interaction of SF3B3, a core component of U2 snRNP, and U2AF65, a U2 spliceosome protein that guides U2 snRNP's binding to RNA. In addition, L-DL levels are decreased in APP/PS1 mouse brains. While downregulation of L-DL deteriorates memory deficits and overexpression of L-DL improves cognitive function in AD mice, by regulating the alternative splicing and expression of synaptic gene CAMKV. CONCLUSIONS Our findings define a molecular mechanism by which hnRNP L-DL regulates alternative RNA splicing, and establish a direct role for L-DL in AD-related synaptic dysfunction and memory decline.
Collapse
Affiliation(s)
- Qingyang Zhang
- Institute on Aging and Brain Disorders, The First Affiliated Hospital of USTC, Hefei National Laboratory for Physical Sciences at the Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, China
| | - Juan Zhang
- Institute on Aging and Brain Disorders, The First Affiliated Hospital of USTC, Hefei National Laboratory for Physical Sciences at the Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, China.,Anhui Province Key Laboratory of Biomedical Aging Research, University of Science and Technology of China, Hefei, 230026, China
| | - Jin Ye
- School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, China
| | - Xiaohui Li
- Institute on Aging and Brain Disorders, The First Affiliated Hospital of USTC, Hefei National Laboratory for Physical Sciences at the Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, China.,Anhui Province Key Laboratory of Biomedical Aging Research, University of Science and Technology of China, Hefei, 230026, China
| | - Hongda Liu
- Institute on Aging and Brain Disorders, The First Affiliated Hospital of USTC, Hefei National Laboratory for Physical Sciences at the Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, China
| | - Xiaolin Ma
- Institute on Aging and Brain Disorders, The First Affiliated Hospital of USTC, Hefei National Laboratory for Physical Sciences at the Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, China
| | - Chao Wang
- School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, China
| | - Keqiang He
- Department of Anesthesiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, China
| | - Wei Zhang
- Department of Anesthesiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, China
| | - Ji Yuan
- Department of Anesthesiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, China
| | - Yingjun Zhao
- The First Affiliated Hospital of Xiamen University, Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, Xiamen University, Xiamen, 361000, China
| | - Huaxi Xu
- The First Affiliated Hospital of Xiamen University, Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, Xiamen University, Xiamen, 361000, China.
| | - Qiang Liu
- Institute on Aging and Brain Disorders, The First Affiliated Hospital of USTC, Hefei National Laboratory for Physical Sciences at the Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, China. .,Anhui Province Key Laboratory of Biomedical Aging Research, University of Science and Technology of China, Hefei, 230026, China. .,Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, 650201, China.
| |
Collapse
|
13
|
Sutton NM, Ascoli GA. Spiking Neural Networks and Hippocampal Function: A Web-Accessible Survey of Simulations, Modeling Methods, and Underlying Theories. COGN SYST RES 2021; 70:80-92. [PMID: 34504394 DOI: 10.1016/j.cogsys.2021.07.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Computational modeling has contributed to hippocampal research in a wide variety of ways and through a large diversity of approaches, reflecting the many advanced cognitive roles of this brain region. The intensively studied neuron type circuitry of the hippocampus is a particularly conducive substrate for spiking neural models. Here we present an online knowledge base of spiking neural network simulations of hippocampal functions. First, we overview theories involving the hippocampal formation in subjects such as spatial representation, learning, and memory. Then we describe an original literature mining process to organize published reports in various key aspects, including: (i) subject area (e.g., navigation, pattern completion, epilepsy); (ii) level of modeling detail (Hodgkin-Huxley, integrate-and-fire, etc.); and (iii) theoretical framework (attractor dynamics, oscillatory interference, self-organizing maps, and others). Moreover, every peer-reviewed publication is also annotated to indicate the specific neuron types represented in the network simulation, establishing a direct link with the Hippocampome.org portal. The web interface of the knowledge base enables dynamic content browsing and advanced searches, and consistently presents evidence supporting every annotation. Moreover, users are given access to several types of statistical reports about the collection, a selection of which is summarized in this paper. This open access resource thus provides an interactive platform to survey spiking neural network models of hippocampal functions, compare available computational methods, and foster ideas for suitable new directions of research.
Collapse
Affiliation(s)
- Nate M Sutton
- Department of Bioengineering, 4400 University Drive, George Mason University, Fairfax, Virginia, 22030 (USA)
| | - Giorgio A Ascoli
- Department of Bioengineering, 4400 University Drive, George Mason University, Fairfax, Virginia, 22030 (USA).,Interdepartmental Neuroscience Program, 4400 University Drive, George Mason University, Fairfax, Virginia, 22030 (USA)
| |
Collapse
|
14
|
Lauri A, Fasano G, Venditti M, Dallapiccola B, Tartaglia M. In vivo Functional Genomics for Undiagnosed Patients: The Impact of Small GTPases Signaling Dysregulation at Pan-Embryo Developmental Scale. Front Cell Dev Biol 2021; 9:642235. [PMID: 34124035 PMCID: PMC8194860 DOI: 10.3389/fcell.2021.642235] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 03/12/2021] [Indexed: 12/24/2022] Open
Abstract
While individually rare, disorders affecting development collectively represent a substantial clinical, psychological, and socioeconomic burden to patients, families, and society. Insights into the molecular mechanisms underlying these disorders are required to speed up diagnosis, improve counseling, and optimize management toward targeted therapies. Genome sequencing is now unveiling previously unexplored genetic variations in undiagnosed patients, which require functional validation and mechanistic understanding, particularly when dealing with novel nosologic entities. Functional perturbations of key regulators acting on signals' intersections of evolutionarily conserved pathways in these pathological conditions hinder the fine balance between various developmental inputs governing morphogenesis and homeostasis. However, the distinct mechanisms by which these hubs orchestrate pathways to ensure the developmental coordinates are poorly understood. Integrative functional genomics implementing quantitative in vivo models of embryogenesis with subcellular precision in whole organisms contribute to answering these questions. Here, we review the current knowledge on genes and mechanisms critically involved in developmental syndromes and pediatric cancers, revealed by genomic sequencing and in vivo models such as insects, worms and fish. We focus on the monomeric GTPases of the RAS superfamily and their influence on crucial developmental signals and processes. We next discuss the effectiveness of exponentially growing functional assays employing tractable models to identify regulatory crossroads. Unprecedented sophistications are now possible in zebrafish, i.e., genome editing with single-nucleotide precision, nanoimaging, highly resolved recording of multiple small molecules activity, and simultaneous monitoring of brain circuits and complex behavioral response. These assets permit accurate real-time reporting of dynamic small GTPases-controlled processes in entire organisms, owning the potential to tackle rare disease mechanisms.
Collapse
Affiliation(s)
- Antonella Lauri
- Genetics and Rare Diseases Research Division, Ospedale Pediatrico Bambino Gesù, IRCCS, Rome, Italy
| | | | | | | | - Marco Tartaglia
- Genetics and Rare Diseases Research Division, Ospedale Pediatrico Bambino Gesù, IRCCS, Rome, Italy
| |
Collapse
|
15
|
Li X, Zhang J, Li D, He C, He K, Xue T, Wan L, Zhang C, Liu Q. Astrocytic ApoE reprograms neuronal cholesterol metabolism and histone-acetylation-mediated memory. Neuron 2021; 109:957-970.e8. [DOI: 10.1016/j.neuron.2021.01.005] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Revised: 10/10/2020] [Accepted: 01/06/2021] [Indexed: 12/14/2022]
|
16
|
Deletion of Class II ADP-Ribosylation Factors in Mice Causes Tremor by the Nav1.6 Loss in Cerebellar Purkinje Cell Axon Initial Segments. J Neurosci 2019; 39:6339-6353. [PMID: 31201232 DOI: 10.1523/jneurosci.2002-18.2019] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2018] [Revised: 05/14/2019] [Accepted: 05/31/2019] [Indexed: 12/29/2022] Open
Abstract
ADP-ribosylation factors (ARFs) are a family of small monomeric GTPases comprising six members categorized into three classes: class I (ARF1, 2, and 3), class II (ARF4 and 5), and class III (ARF6). In contrast to class I and III ARFs, which are the key regulators in vesicular membrane trafficking, the cellular function of class II ARFs remains unclear. In the present study, we generated class II ARF-deficient mice and found that ARF4+/-/ARF5-/- mice exhibited essential tremor (ET)-like behaviors. In vivo electrophysiological recordings revealed that ARF4+/-/ARF5-/- mice of both sexes exhibited abnormal brain activity when moving, raising the possibility of abnormal cerebellar excitability. Slice patch-clamp experiments demonstrated the reduced excitability of the cerebellar Purkinje cells (PCs) in ARF4+/-/ARF5-/- mice. Immunohistochemical and electrophysiological analyses revealed a severe and selective decrease of pore-forming voltage-dependent Na+ channel subunit Nav1.6, important for maintaining repetitive action potential firing, in the axon initial segment (AIS) of PCs. Importantly, this decrease in Nav1.6 protein localized in the AIS and the consequent tremors in ARF4+/-/ARF5-/- mice could be alleviated by the PC-specific expression of ARF5 using adeno-associated virus vectors. Together, our data demonstrate that the decreased expression of the class II ARF proteins in ARF4+/-/ARF5-/- mice, leading to a haploinsufficiency of ARF4 in the absence of ARF5, impairs the localization of Nav1.6 to the AIS and hence reduces the membrane excitability in PCs, resulting in the ET-like movement disorder. We suggest that class II ARFs function in localizing specific proteins, such as Nav1.6, to the AIS.SIGNIFICANCE STATEMENT We found that decreasing the expression of class II ARF proteins, through the generation of ARF4+/-/ARF5-/- mice, impairs Nav1.6 distribution to the axon initial segment (AIS) of cerebellar Purkinje cells (PCs), thereby resulting in the impairment of action potential firing of PCs. The ARF4+/-/ARF5-/- mutant mice exhibited movement-associated essential tremor (ET)-like behavior with pharmacological profiles similar to those in ET patients. The exogenous expression of ARF5 reduced the tremor phenotype and restored the localization of Nav1.6 immunoreactivity to the AIS in ARF4+/-/ARF5-/- mice. Thus, our results suggest that class II ARFs are involved in the localization of Nav1.6 to the AISs in cerebellar PCs and that the reduction of class II ARF activity leads to ET-like movement disorder.
Collapse
|
17
|
Fang YY, Zeng P, Qu N, Ning LN, Chu J, Zhang T, Zhou XW, Tian Q. Evidence of altered depression and dementia-related proteins in the brains of young rats after ovariectomy. J Neurochem 2018; 146:703-721. [DOI: 10.1111/jnc.14537] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 06/01/2018] [Accepted: 06/19/2018] [Indexed: 01/16/2023]
Affiliation(s)
- Ying-Yan Fang
- Department of Pathology and Pathophysiology; School of Basic Medicine; Tongji Medical College; Huazhong University of Science and Technology; Wuhan China
- Institute for Brain Research; Huazhong University of Science and Technology; Wuhan China
| | - Peng Zeng
- Department of Pathology and Pathophysiology; School of Basic Medicine; Tongji Medical College; Huazhong University of Science and Technology; Wuhan China
- Institute for Brain Research; Huazhong University of Science and Technology; Wuhan China
| | - Na Qu
- Institute for Brain Research; Huazhong University of Science and Technology; Wuhan China
- Affiliated Mental Health Center; Tongji Medical College; Huazhong University of Science and Technology; Wuhan China
| | - Lin-Na Ning
- Department of Pathology and Pathophysiology; School of Basic Medicine; Tongji Medical College; Huazhong University of Science and Technology; Wuhan China
- Institute for Brain Research; Huazhong University of Science and Technology; Wuhan China
| | - Jiang Chu
- Department of Pathology and Pathophysiology; School of Basic Medicine; Tongji Medical College; Huazhong University of Science and Technology; Wuhan China
- Institute for Brain Research; Huazhong University of Science and Technology; Wuhan China
| | - Teng Zhang
- Department of Pathology and Pathophysiology; School of Basic Medicine; Tongji Medical College; Huazhong University of Science and Technology; Wuhan China
- Institute for Brain Research; Huazhong University of Science and Technology; Wuhan China
| | - Xin-Wen Zhou
- Department of Pathology and Pathophysiology; School of Basic Medicine; Tongji Medical College; Huazhong University of Science and Technology; Wuhan China
- Institute for Brain Research; Huazhong University of Science and Technology; Wuhan China
| | - Qing Tian
- Department of Pathology and Pathophysiology; School of Basic Medicine; Tongji Medical College; Huazhong University of Science and Technology; Wuhan China
- Institute for Brain Research; Huazhong University of Science and Technology; Wuhan China
| |
Collapse
|
18
|
Ray S, Corenblum MJ, Anandhan A, Reed A, Ortiz FO, Zhang DD, Barnes CA, Madhavan L. A Role for Nrf2 Expression in Defining the Aging of Hippocampal Neural Stem Cells. Cell Transplant 2018; 27:589-606. [PMID: 29871525 PMCID: PMC6041888 DOI: 10.1177/0963689718774030] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Redox mechanisms are emerging as essential to stem cell function given their capacity to
influence a number of important signaling pathways governing stem cell survival and
regenerative activity. In this context, our recent work identified the reduced expression
of nuclear factor (erythroid-derived 2)-like 2, or Nrf2, in mediating the decline in
subventricular zone neural stem progenitor cell (NSPC) regeneration during aging. Since
Nrf2 is a major transcription factor at the heart of cellular redox regulation and
homeostasis, the current study investigates the role that it may play in the aging of
NSPCs that reside within the other major mammalian germinal niche located in the
subgranular zone (SGZ) of the dentate gyrus (DG) of the hippocampus. Using rats from
multiple aging stages ranging from newborn to old age, and aging Nrf2 knockout mice, we
first determined that, in contrast with subventricular zone (SVZ) NSPCs, Nrf2 expression
does not significantly affect overall DG NSPC viability with age. However, DG NSPCs
resembled SVZ stem cells, in that Nrf2 expression controlled their proliferation and the
balance of neuronal versus glial differentiation particularly in relation to a specific
critical period during middle age. Also, importantly, this Nrf2-based control of NSPC
regeneration was found to impact functional neurogenesis-related hippocampal behaviors,
particularly in the Morris water maze and in pattern separation tasks. Furthermore, the
enrichment of the hippocampal environment via the transplantation of Nrf2-overexpressing
NSPCs was able to mitigate the age-related decline in DG stem cell regeneration during the
critical middle-age period, and significantly improved pattern separation abilities. In
summary, these results emphasize the importance of Nrf2 in DG NSPC regeneration, and
support Nrf2 upregulation as a potential approach to advantageously modulate DG NSPC
activity with age.
Collapse
Affiliation(s)
- S Ray
- 1 Department of Neurology, University of Arizona, Tucson, AZ, USA.,2 Undergraduate Biology Research Program, University of Arizona, Tucson, AZ, USA.,3 Neuroscience and Cognitive Science Undergraduate Program, Tucson, AZ, USA
| | - M J Corenblum
- 1 Department of Neurology, University of Arizona, Tucson, AZ, USA
| | - A Anandhan
- 1 Department of Neurology, University of Arizona, Tucson, AZ, USA
| | - A Reed
- 1 Department of Neurology, University of Arizona, Tucson, AZ, USA.,3 Neuroscience and Cognitive Science Undergraduate Program, Tucson, AZ, USA
| | - F O Ortiz
- 1 Department of Neurology, University of Arizona, Tucson, AZ, USA.,3 Neuroscience and Cognitive Science Undergraduate Program, Tucson, AZ, USA
| | - D D Zhang
- 4 Pharmacology and Toxicology, University of Arizona, Tucson, AZ, USA
| | - C A Barnes
- 5 Departments of Psychology & Neuroscience, University of Arizona, Tucson, AZ, USA.,6 Evelyn F. McKnight Brain Institute, University of Arizona, Tucson, AZ, USA
| | - L Madhavan
- 1 Department of Neurology, University of Arizona, Tucson, AZ, USA.,6 Evelyn F. McKnight Brain Institute, University of Arizona, Tucson, AZ, USA
| |
Collapse
|
19
|
Bustos FJ, Jury N, Martinez P, Ampuero E, Campos M, Abarzúa S, Jaramillo K, Ibing S, Mardones MD, Haensgen H, Kzhyshkowska J, Tevy MF, Neve R, Sanhueza M, Varela-Nallar L, Montecino M, van Zundert B. NMDA receptor subunit composition controls dendritogenesis of hippocampal neurons through CAMKII, CREB-P, and H3K27ac. J Cell Physiol 2017; 232:3677-3692. [PMID: 28160495 DOI: 10.1002/jcp.25843] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Accepted: 02/03/2017] [Indexed: 12/29/2022]
Abstract
Dendrite arbor growth, or dendritogenesis, is choreographed by a diverse set of cues, including the NMDA receptor (NMDAR) subunits NR2A and NR2B. While NR1NR2B receptors are predominantly expressed in immature neurons and promote plasticity, NR1NR2A receptors are mainly expressed in mature neurons and induce circuit stability. How the different subunits regulate these processes is unclear, but this is likely related to the presence of their distinct C-terminal sequences that couple different signaling proteins. Calcium-calmodulin-dependent protein kinase II (CaMKII) is an interesting candidate as this protein can be activated by calcium influx through NMDARs. CaMKII triggers a series of biochemical signaling cascades, involving the phosphorylation of diverse targets. Among them, the activation of cAMP response element-binding protein (CREB-P) pathway triggers a plasticity-specific transcriptional program through unknown epigenetic mechanisms. Here, we found that dendritogenesis in hippocampal neurons is impaired by several well-characterized constructs (i.e., NR2B-RS/QD) and peptides (i.e., tatCN21) that specifically interfere with the recruitment and interaction of CaMKII with the NR2B C-terminal domain. Interestingly, we found that transduction of NR2AΔIN, a mutant NR2A construct with increased interaction to CaMKII, reactivates dendritogenesis in mature hippocampal neurons in vitro and in vivo. To gain insights into the signaling and epigenetic mechanisms underlying NMDAR-mediated dendritogenesis, we used immunofluorescence staining to detect CREB-P and acetylated lysine 27 of histone H3 (H3K27ac), an activation-associated histone tail mark. In contrast to control mature neurons, our data shows that activation of the NMDAR/CaMKII/ERK-P/CREB-P signaling axis in neurons expressing NR2AΔIN is not correlated with increased nuclear H3K27ac levels.
Collapse
Affiliation(s)
- Fernando J Bustos
- Center for Biomedical Research, Faculty of Biological Sciences and Faculty of Medicine, Universidad Andres Bello, Santiago, Chile
- FONDAP Center for Genome Regulation, Santiago, Chile
| | - Nur Jury
- Center for Biomedical Research, Faculty of Biological Sciences and Faculty of Medicine, Universidad Andres Bello, Santiago, Chile
| | - Pablo Martinez
- Center for Biomedical Research, Faculty of Biological Sciences and Faculty of Medicine, Universidad Andres Bello, Santiago, Chile
| | - Estibaliz Ampuero
- Center for Biomedical Research, Faculty of Biological Sciences and Faculty of Medicine, Universidad Andres Bello, Santiago, Chile
| | - Matias Campos
- Center for Biomedical Research, Faculty of Biological Sciences and Faculty of Medicine, Universidad Andres Bello, Santiago, Chile
| | - Sebastian Abarzúa
- Center for Biomedical Research, Faculty of Biological Sciences and Faculty of Medicine, Universidad Andres Bello, Santiago, Chile
| | - Karen Jaramillo
- Center for Biomedical Research, Faculty of Biological Sciences and Faculty of Medicine, Universidad Andres Bello, Santiago, Chile
- FONDAP Center for Genome Regulation, Santiago, Chile
| | - Susanne Ibing
- Institute of Transfusion Medicine and Immunology, Medical Faculty Mannheim, University of Heidelberg, German Red Cross Blood Service Baden-Württemberg-Hessen, Mannheim, Germany
| | - Muriel D Mardones
- Center for Biomedical Research, Faculty of Biological Sciences and Faculty of Medicine, Universidad Andres Bello, Santiago, Chile
| | - Henny Haensgen
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Julia Kzhyshkowska
- Institute of Transfusion Medicine and Immunology, Medical Faculty Mannheim, University of Heidelberg, German Red Cross Blood Service Baden-Württemberg-Hessen, Mannheim, Germany
| | - Maria Florencia Tevy
- Centro de Genómica y Bioinformática, Facultad de Ciencias, Universidad Mayor, Santiago, Chile
| | - Rachael Neve
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Magdalena Sanhueza
- Department of Biology, Faculty of Sciences, University of Chile, Santiago, Chile
| | - Lorena Varela-Nallar
- Center for Biomedical Research, Faculty of Biological Sciences and Faculty of Medicine, Universidad Andres Bello, Santiago, Chile
| | - Martín Montecino
- Center for Biomedical Research, Faculty of Biological Sciences and Faculty of Medicine, Universidad Andres Bello, Santiago, Chile
- FONDAP Center for Genome Regulation, Santiago, Chile
| | - Brigitte van Zundert
- Center for Biomedical Research, Faculty of Biological Sciences and Faculty of Medicine, Universidad Andres Bello, Santiago, Chile
| |
Collapse
|
20
|
Bustos FJ, Ampuero E, Jury N, Aguilar R, Falahi F, Toledo J, Ahumada J, Lata J, Cubillos P, Henríquez B, Guerra MV, Stehberg J, Neve RL, Inestrosa NC, Wyneken U, Fuenzalida M, Härtel S, Sena-Esteves M, Varela-Nallar L, Rots MG, Montecino M, van Zundert B. Epigenetic editing of the Dlg4/PSD95 gene improves cognition in aged and Alzheimer's disease mice. Brain 2017; 140:3252-3268. [PMID: 29155979 PMCID: PMC5841035 DOI: 10.1093/brain/awx272] [Citation(s) in RCA: 129] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Revised: 08/16/2017] [Accepted: 08/27/2017] [Indexed: 12/31/2022] Open
Abstract
The Dlg4 gene encodes for post-synaptic density protein 95 (PSD95), a major synaptic protein that clusters glutamate receptors and is critical for plasticity. PSD95 levels are diminished in ageing and neurodegenerative disorders, including Alzheimer's disease and Huntington's disease. The epigenetic mechanisms that (dys)regulate transcription of Dlg4/PSD95, or other plasticity genes, are largely unknown, limiting the development of targeted epigenome therapy. We analysed the Dlg4/PSD95 epigenetic landscape in hippocampal tissue and designed a Dlg4/PSD95 gene-targeting strategy: a Dlg4/PSD95 zinc finger DNA-binding domain was engineered and fused to effector domains to either repress (G9a, Suvdel76, SKD) or activate (VP64) transcription, generating artificial transcription factors or epigenetic editors (methylating H3K9). These epi-editors altered critical histone marks and subsequently Dlg4/PSD95 expression, which, importantly, impacted several hippocampal neuron plasticity processes. Intriguingly, transduction of the artificial transcription factor PSD95-VP64 rescued memory deficits in aged and Alzheimer's disease mice. Conclusively, this work validates PSD95 as a key player in memory and establishes epigenetic editing as a potential therapy to treat human neurological disorders.
Collapse
Affiliation(s)
- Fernando J Bustos
- Center for Biomedical Research, Faculty of Biological Sciences and Faculty of Medicine, Universidad Andres Bello, Avenida Republica 217, Santiago, Chile
- FONDAP Center for Genome Regulation, Chile
| | - Estibaliz Ampuero
- Center for Biomedical Research, Faculty of Biological Sciences and Faculty of Medicine, Universidad Andres Bello, Avenida Republica 217, Santiago, Chile
| | - Nur Jury
- Center for Biomedical Research, Faculty of Biological Sciences and Faculty of Medicine, Universidad Andres Bello, Avenida Republica 217, Santiago, Chile
| | - Rodrigo Aguilar
- Center for Biomedical Research, Faculty of Biological Sciences and Faculty of Medicine, Universidad Andres Bello, Avenida Republica 217, Santiago, Chile
- FONDAP Center for Genome Regulation, Chile
| | - Fahimeh Falahi
- University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Jorge Toledo
- Anatomy and Developmental Biology, SCIAN-Lab, Institute of Biomedical Sciences, Biomedical Neuroscience Institute, Center for Medical Informatics and Telemedicine CIMT, National Center for Health Information Systems CENS, Santiago, Chile
- Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Juan Ahumada
- Centro de Neurobiología y Plasticidad Cerebral, Departamento de Fisiología, Facultad de Ciencias, Universidad Valparaíso, Chile
| | - Jaclyn Lata
- Department of Neurology and Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA, USA
| | - Paula Cubillos
- Center for Biomedical Research, Faculty of Biological Sciences and Faculty of Medicine, Universidad Andres Bello, Avenida Republica 217, Santiago, Chile
| | - Berta Henríquez
- Center for Biomedical Research, Faculty of Biological Sciences and Faculty of Medicine, Universidad Andres Bello, Avenida Republica 217, Santiago, Chile
| | - Miguel V Guerra
- Center for Biomedical Research, Faculty of Biological Sciences and Faculty of Medicine, Universidad Andres Bello, Avenida Republica 217, Santiago, Chile
| | - Jimmy Stehberg
- Center for Biomedical Research, Faculty of Biological Sciences and Faculty of Medicine, Universidad Andres Bello, Avenida Republica 217, Santiago, Chile
| | - Rachael L Neve
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Nibaldo C Inestrosa
- CARE Biomedical Research Center, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Chile
| | - Ursula Wyneken
- Laboratorio de Neurociencias, Universidad de Los Andes, Santiago, Chile
| | - Marco Fuenzalida
- Centro de Neurobiología y Plasticidad Cerebral, Departamento de Fisiología, Facultad de Ciencias, Universidad Valparaíso, Chile
| | - Steffen Härtel
- Anatomy and Developmental Biology, SCIAN-Lab, Institute of Biomedical Sciences, Biomedical Neuroscience Institute, Center for Medical Informatics and Telemedicine CIMT, National Center for Health Information Systems CENS, Santiago, Chile
- Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Miguel Sena-Esteves
- Department of Neurology and Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA, USA
| | - Lorena Varela-Nallar
- Center for Biomedical Research, Faculty of Biological Sciences and Faculty of Medicine, Universidad Andres Bello, Avenida Republica 217, Santiago, Chile
| | - Marianne G Rots
- University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Martin Montecino
- Center for Biomedical Research, Faculty of Biological Sciences and Faculty of Medicine, Universidad Andres Bello, Avenida Republica 217, Santiago, Chile
- FONDAP Center for Genome Regulation, Chile
| | - Brigitte van Zundert
- Center for Biomedical Research, Faculty of Biological Sciences and Faculty of Medicine, Universidad Andres Bello, Avenida Republica 217, Santiago, Chile
| |
Collapse
|
21
|
Bonadio RS, Arcanjo AC, Lima EC, Vasconcelos AT, Silva RC, Horst FH, Azevedo RB, Poças-Fonseca MJ, F Longo JP. DNA methylation alterations induced by transient exposure of MCF-7 cells to maghemite nanoparticles. Nanomedicine (Lond) 2017; 12:2637-2649. [PMID: 29111877 DOI: 10.2217/nnm-2017-0241] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
AIM To evaluate the DNA methylation profile of MCF-7 cells during and after the treatment with maghemite nanoparticles (MNP-CIT). MATERIALS & METHODS Noncytotoxic MNP-CIT concentrations and cell morphology were evaluated by standard methods. DNA methylation was assessed by whole genome bisulfite sequencing. DNA methyltransferase (DNMT) genes expression was analyzed by qRT-PCR. RESULTS A total of 30 and 60 µgFeml-1 MNP-CIT accumulated in cytoplasm but did not present cytotoxic effects. The overall percentage of DNA methylation was not affected, but 58 gene-associated regions underwent DNA methylation reprogramming, including genes related to cancer onset. DNMT transcript levels were also modulated. CONCLUSION Transient exposure to MNP-CIT promoted epigenomic changes and altered the DNMT genes regulation in MCF-7 cells. These events should be considered for biomedical applications.
Collapse
Affiliation(s)
- Raphael S Bonadio
- Genetics & Morphology Department, University of Brasilia, Brasília, Brazil
| | | | | | | | - Renata C Silva
- National Institute of Metrology, Quality & Technology, Xerém, Duque de Caxias, Rio de Janeiro, Brazil
| | - Frederico H Horst
- Genetics & Morphology Department, University of Brasilia, Brasília, Brazil
| | - Ricardo B Azevedo
- Genetics & Morphology Department, University of Brasilia, Brasília, Brazil
| | | | - João Paulo F Longo
- Genetics & Morphology Department, University of Brasilia, Brasília, Brazil
| |
Collapse
|
22
|
Rodrigues FF, Harris TJC. Key roles of Arf small G proteins and biosynthetic trafficking for animal development. Small GTPases 2017; 10:403-410. [PMID: 28410007 DOI: 10.1080/21541248.2017.1304854] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Abstract
Although biosynthetic trafficking can function constitutively, it also functions specifically for certain developmental processes. These processes require either a large increase to biosynthesis or the biosynthesis and targeted trafficking of specific players. We review the conserved molecular mechanisms that direct biosynthetic trafficking, and discuss how their genetic disruption affects animal development. Specifically, we consider Arf small G proteins, such as Arf1 and Sar1, and their coat effectors, COPI and COPII, and how these proteins promote biosynthetic trafficking for cleavage of the Drosophila embryo, the growth of neuronal dendrites and synapses, extracellular matrix secretion for bone development, lumen development in epithelial tubes, notochord and neural tube development, and ciliogenesis. Specific need for the biosynthetic trafficking system is also evident from conserved CrebA/Creb3-like transcription factors increasing the expression of secretory machinery during several of these developmental processes. Moreover, dysfunctional trafficking leads to a range of developmental syndromes.
Collapse
Affiliation(s)
- Francisco F Rodrigues
- Department of Cell & Systems Biology, University of Toronto , Toronto , Ontario , Canada
| | - Tony J C Harris
- Department of Cell & Systems Biology, University of Toronto , Toronto , Ontario , Canada
| |
Collapse
|
23
|
Yadav S, Oses-Prieto JA, Peters CJ, Zhou J, Pleasure SJ, Burlingame AL, Jan LY, Jan YN. TAOK2 Kinase Mediates PSD95 Stability and Dendritic Spine Maturation through Septin7 Phosphorylation. Neuron 2017; 93:379-393. [PMID: 28065648 DOI: 10.1016/j.neuron.2016.12.006] [Citation(s) in RCA: 106] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Revised: 10/11/2016] [Accepted: 11/23/2016] [Indexed: 01/09/2023]
Abstract
Abnormalities in dendritic spines are manifestations of several neurodevelopmental and psychiatric diseases. TAOK2 is one of the genes in the 16p11.2 locus, copy number variations of which are associated with autism and schizophrenia. Here, we show that the kinase activity of the serine/threonine kinase encoded by TAOK2 is required for spine maturation. TAOK2 depletion results in unstable dendritic protrusions, mislocalized shaft-synapses, and loss of compartmentalization of NMDA receptor-mediated calcium influx. Using chemical-genetics and mass spectrometry, we identified several TAOK2 phosphorylation targets. We show that TAOK2 directly phosphorylates the cytoskeletal GTPase Septin7, at an evolutionary conserved residue. This phosphorylation induces translocation of Septin7 to the spine, where it associates with and stabilizes the scaffolding protein PSD95, promoting dendritic spine maturation. This study provides a mechanistic basis for postsynaptic stability and compartmentalization via TAOK2-Sept7 signaling, with implications toward understanding the potential role of TAOK2 in neurological deficits associated with the 16p11.2 region.
Collapse
Affiliation(s)
- Smita Yadav
- Departments of Physiology, Biochemistry, and Biophysics, Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Juan A Oses-Prieto
- Mass Spectrometry Facility, Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Christian J Peters
- Departments of Physiology, Biochemistry, and Biophysics, Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Jing Zhou
- Department of Neurology, Programs in Neuroscience and Developmental Biology, Institute for Regenerative Medicine, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Samuel J Pleasure
- Department of Neurology, Programs in Neuroscience and Developmental Biology, Institute for Regenerative Medicine, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Alma L Burlingame
- Mass Spectrometry Facility, Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Lily Y Jan
- Departments of Physiology, Biochemistry, and Biophysics, Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Yuh-Nung Jan
- Departments of Physiology, Biochemistry, and Biophysics, Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA 94158, USA.
| |
Collapse
|
24
|
Chavlis S, Petrantonakis PC, Poirazi P. Dendrites of dentate gyrus granule cells contribute to pattern separation by controlling sparsity. Hippocampus 2017; 27:89-110. [PMID: 27784124 PMCID: PMC5217096 DOI: 10.1002/hipo.22675] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Accepted: 10/25/2016] [Indexed: 12/24/2022]
Abstract
The hippocampus plays a key role in pattern separation, the process of transforming similar incoming information to highly dissimilar, nonverlapping representations. Sparse firing granule cells (GCs) in the dentate gyrus (DG) have been proposed to undertake this computation, but little is known about which of their properties influence pattern separation. Dendritic atrophy has been reported in diseases associated with pattern separation deficits, suggesting a possible role for dendrites in this phenomenon. To investigate whether and how the dendrites of GCs contribute to pattern separation, we build a simplified, biologically relevant, computational model of the DG. Our model suggests that the presence of GC dendrites is associated with high pattern separation efficiency while their atrophy leads to increased excitability and performance impairments. These impairments can be rescued by restoring GC sparsity to control levels through various manipulations. We predict that dendrites contribute to pattern separation as a mechanism for controlling sparsity. © 2016 The Authors Hippocampus Published by Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Spyridon Chavlis
- Institute of Molecular Biology and Biotechnology (IMBB), Foundation for Research and Technology, Hellas (FORTH)HeraklionCreteGreece
- Department of Biology, School of Sciences and EngineeringUniversity of CreteHeraklionCreteGreece
| | - Panagiotis C. Petrantonakis
- Institute of Molecular Biology and Biotechnology (IMBB), Foundation for Research and Technology, Hellas (FORTH)HeraklionCreteGreece
| | - Panayiota Poirazi
- Institute of Molecular Biology and Biotechnology (IMBB), Foundation for Research and Technology, Hellas (FORTH)HeraklionCreteGreece
| |
Collapse
|
25
|
Upadhya D, Hattiangady B, Shetty GA, Zanirati G, Kodali M, Shetty AK. Neural Stem Cell or Human Induced Pluripotent Stem Cell-Derived GABA-ergic Progenitor Cell Grafting in an Animal Model of Chronic Temporal Lobe Epilepsy. CURRENT PROTOCOLS IN STEM CELL BIOLOGY 2016; 38:2D.7.1-2D.7.47. [PMID: 27532817 PMCID: PMC5313261 DOI: 10.1002/cpsc.9] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Grafting of neural stem cells (NSCs) or GABA-ergic progenitor cells (GPCs) into the hippocampus could offer an alternative therapy to hippocampal resection in patients with drug-resistant chronic epilepsy, which afflicts >30% of temporal lobe epilepsy (TLE) cases. Multipotent, self-renewing NSCs could be expanded from multiple regions of the developing and adult brain, human embryonic stem cells (hESCs), and human induced pluripotent stem cells (hiPSCs). On the other hand, GPCs could be generated from the medial and lateral ganglionic eminences of the embryonic brain and from hESCs and hiPSCs. To provide comprehensive methodologies involved in testing the efficacy of transplantation of NSCs and GPCs in a rat model of chronic TLE, NSCs derived from the rat medial ganglionic eminence (MGE) and MGE-like GPCs derived from hiPSCs are taken as examples in this unit. The topics comprise description of the required materials, reagents and equipment, methods for obtaining rat MGE-NSCs and hiPSC-derived MGE-like GPCs in culture, generation of chronically epileptic rats, intrahippocampal grafting procedure, post-grafting evaluation of the effects of grafts on spontaneous recurrent seizures and cognitive and mood impairments, analyses of the yield and the fate of graft-derived cells, and the effects of grafts on the host hippocampus. © 2016 by John Wiley & Sons, Inc.
Collapse
Affiliation(s)
- Dinesh Upadhya
- Institute for Regenerative Medicine, Texas A&M University Health Science Center College of Medicine, Temple, Texas
- Research Service, Olin E. Teague Veterans' Medical Center, Central Texas Veterans Health Care System, Temple, Texas
- Department of Molecular and Cellular Medicine, Texas A&M University Health Science Center College of Medicine, College Station, Texas
| | - Bharathi Hattiangady
- Institute for Regenerative Medicine, Texas A&M University Health Science Center College of Medicine, Temple, Texas
- Research Service, Olin E. Teague Veterans' Medical Center, Central Texas Veterans Health Care System, Temple, Texas
- Department of Molecular and Cellular Medicine, Texas A&M University Health Science Center College of Medicine, College Station, Texas
| | - Geetha A Shetty
- Institute for Regenerative Medicine, Texas A&M University Health Science Center College of Medicine, Temple, Texas
- Research Service, Olin E. Teague Veterans' Medical Center, Central Texas Veterans Health Care System, Temple, Texas
- Department of Molecular and Cellular Medicine, Texas A&M University Health Science Center College of Medicine, College Station, Texas
| | - Gabriele Zanirati
- Institute for Regenerative Medicine, Texas A&M University Health Science Center College of Medicine, Temple, Texas
- Department of Molecular and Cellular Medicine, Texas A&M University Health Science Center College of Medicine, College Station, Texas
| | - Maheedhar Kodali
- Institute for Regenerative Medicine, Texas A&M University Health Science Center College of Medicine, Temple, Texas
- Research Service, Olin E. Teague Veterans' Medical Center, Central Texas Veterans Health Care System, Temple, Texas
- Department of Molecular and Cellular Medicine, Texas A&M University Health Science Center College of Medicine, College Station, Texas
| | - Ashok K Shetty
- Institute for Regenerative Medicine, Texas A&M University Health Science Center College of Medicine, Temple, Texas
- Research Service, Olin E. Teague Veterans' Medical Center, Central Texas Veterans Health Care System, Temple, Texas
- Department of Molecular and Cellular Medicine, Texas A&M University Health Science Center College of Medicine, College Station, Texas
| |
Collapse
|
26
|
Tracy TE, Sohn PD, Minami SS, Wang C, Min SW, Li Y, Zhou Y, Le D, Lo I, Ponnusamy R, Cong X, Schilling B, Ellerby LM, Huganir RL, Gan L. Acetylated Tau Obstructs KIBRA-Mediated Signaling in Synaptic Plasticity and Promotes Tauopathy-Related Memory Loss. Neuron 2016; 90:245-60. [PMID: 27041503 DOI: 10.1016/j.neuron.2016.03.005] [Citation(s) in RCA: 189] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Revised: 01/17/2016] [Accepted: 02/22/2016] [Indexed: 11/27/2022]
Abstract
Tau toxicity has been implicated in the emergence of synaptic dysfunction in Alzheimer's disease (AD), but the mechanism by which tau alters synapse physiology and leads to cognitive decline is unclear. Here we report abnormal acetylation of K274 and K281 on tau, identified in AD brains, promotes memory loss and disrupts synaptic plasticity by reducing postsynaptic KIdney/BRAin (KIBRA) protein, a memory-associated protein. Transgenic mice expressing human tau with lysine-to-glutamine mutations to mimic K274 and K281 acetylation (tauKQ) exhibit AD-related memory deficits and impaired hippocampal long-term potentiation (LTP). TauKQ reduces synaptic KIBRA levels and disrupts activity-induced postsynaptic actin remodeling and AMPA receptor insertion. The LTP deficit was rescued by promoting actin polymerization or by KIBRA expression. In AD patients with dementia, we found enhanced tau acetylation is linked to loss of KIBRA. These findings suggest a novel mechanism by which pathogenic tau causes synaptic dysfunction and cognitive decline in AD pathogenesis.
Collapse
Affiliation(s)
- Tara E Tracy
- Gladstone Institute of Neurological Disease, San Francisco, CA 91458, USA; Department of Neurology, University of California, San Francisco, San Francisco, CA 91458, USA
| | - Peter Dongmin Sohn
- Gladstone Institute of Neurological Disease, San Francisco, CA 91458, USA; Neuroscience Graduate Program, University of California, San Francisco, San Francisco, CA 91458, USA
| | - S Sakura Minami
- Gladstone Institute of Neurological Disease, San Francisco, CA 91458, USA; Department of Neurology, University of California, San Francisco, San Francisco, CA 91458, USA
| | - Chao Wang
- Gladstone Institute of Neurological Disease, San Francisco, CA 91458, USA; Department of Neurology, University of California, San Francisco, San Francisco, CA 91458, USA
| | - Sang-Won Min
- Gladstone Institute of Neurological Disease, San Francisco, CA 91458, USA; Department of Neurology, University of California, San Francisco, San Francisco, CA 91458, USA
| | - Yaqiao Li
- Gladstone Institute of Neurological Disease, San Francisco, CA 91458, USA
| | - Yungui Zhou
- Gladstone Institute of Neurological Disease, San Francisco, CA 91458, USA
| | - David Le
- Gladstone Institute of Neurological Disease, San Francisco, CA 91458, USA
| | - Iris Lo
- Gladstone Institute of Neurological Disease, San Francisco, CA 91458, USA
| | | | - Xin Cong
- Buck Institute for Research on Aging, Novato, CA 94945, USA
| | | | - Lisa M Ellerby
- Buck Institute for Research on Aging, Novato, CA 94945, USA
| | - Richard L Huganir
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Li Gan
- Gladstone Institute of Neurological Disease, San Francisco, CA 91458, USA; Department of Neurology, University of California, San Francisco, San Francisco, CA 91458, USA; Neuroscience Graduate Program, University of California, San Francisco, San Francisco, CA 91458, USA.
| |
Collapse
|
27
|
Kessels MM, Qualmann B. Different functional modes of BAR domain proteins in formation and plasticity of mammalian postsynapses. J Cell Sci 2015; 128:3177-85. [PMID: 26285709 DOI: 10.1242/jcs.174193] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
A plethora of cell biological processes involve modulations of cellular membranes. By using extended lipid-binding interfaces, some proteins have the power to shape membranes by attaching to them. Among such membrane shapers, the superfamily of Bin-Amphiphysin-Rvs (BAR) domain proteins has recently taken center stage. Extensive structural work on BAR domains has revealed a common curved fold that can serve as an extended membrane-binding interface to modulate membrane topologies and has allowed the grouping of the BAR domain superfamily into subfamilies with structurally slightly distinct BAR domain subtypes (N-BAR, BAR, F-BAR and I-BAR). Most BAR superfamily members are expressed in the mammalian nervous system. Neurons are elaborately shaped and highly compartmentalized cells. Therefore, analyses of synapse formation and of postsynaptic reorganization processes (synaptic plasticity) - a basis for learning and memory formation - has unveiled important physiological functions of BAR domain superfamily members. These recent advances, furthermore, have revealed that the functions of BAR domain proteins include different aspects. These functions are influenced by the often complex domain organization of BAR domain proteins. In this Commentary, we review these recent insights and propose to classify BAR domain protein functions into (1) membrane shaping, (2) physical integration, (3) action through signaling components, and (4) suppression of other BAR domain functions.
Collapse
Affiliation(s)
- Michael M Kessels
- Institute of Biochemistry I, Jena University Hospital/Friedrich-Schiller-University, Nonnenplan 2-4, 07743 Jena, Germany
| | - Britta Qualmann
- Institute of Biochemistry I, Jena University Hospital/Friedrich-Schiller-University, Nonnenplan 2-4, 07743 Jena, Germany
| |
Collapse
|
28
|
Trieu BH, Kramár EA, Cox CD, Jia Y, Wang W, Gall CM, Lynch G. Pronounced differences in signal processing and synaptic plasticity between piriform-hippocampal network stages: a prominent role for adenosine. J Physiol 2015; 593:2889-907. [PMID: 25902928 DOI: 10.1113/jp270398] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Accepted: 04/17/2015] [Indexed: 01/02/2023] Open
Abstract
KEY POINTS Extended trains of theta rhythm afferent activity lead to a biphasic response facilitation in field CA1 but not in the lateral perforant path input to the dentate gyrus. Processes that reverse long-term potentiation in field CA1 are not operative in the lateral perforant path: multiple lines of evidence indicate that this reflects differences in adenosine signalling. Adenosine A1 receptors modulate baseline synaptic transmission in the lateral olfactory tract but not the associational afferents of the piriform cortex. Levels of ecto-5'-nucleotidase (CD73), an enzyme that converts extracellular ATP into adenosine, are markedly different between regions and correlate with adenosine signalling and the efficacy of theta pulse stimulation in reversing long-term potentiation. Variations in transmitter mobilization, CD73 levels, and afferent divergence result in multivariate differences in signal processing through nodes in the cortico-hippocampal network. ABSTRACT The present study evaluated learning-related synaptic operations across the serial stages of the olfactory cortex-hippocampus network. Theta frequency stimulation produced very different time-varying responses in the Schaffer-commissural projections than in the lateral perforant path (LPP), an effect associated with distinctions in transmitter mobilization. Long-term potentiation (LTP) had a higher threshold in LPP field potential studies but not in voltage clamped neurons; coupled with input/output relationships, these results suggest that LTP threshold differences reflect the degree of input divergence. Theta pulse stimulation erased LTP in CA1 but not in the dentate gyrus (DG), although adenosine eliminated potentiation in both areas, suggesting that theta increases extracellular adenosine to a greater degree in CA1. Moreover, adenosine A1 receptor antagonism had larger effects on theta responses in CA1 than in the DG, and concentrations of ecto-5'-nucleotidase (CD73) were much higher in CA1. Input/output curves for two connections in the piriform cortex were similar to those for the LPP, whereas adenosine modulation again correlated with levels of CD73. In sum, multiple relays in a network extending from the piriform cortex through the hippocampus can be differentiated along three dimensions (input divergence, transmitter mobilization, adenosine modulation) that potently influence throughput and plasticity. A model that incorporates the regional differences, supplemented with data for three additional links, suggests that network output goes through three transitions during the processing of theta input. It is proposed that individuated relays allow the circuit to deal with different types of behavioural problems.
Collapse
Affiliation(s)
- Brian H Trieu
- Department of Anatomy and Neurobiology, University of California, Irvine, CA, USA
| | - Enikö A Kramár
- Department of Neurobiology and Behavior, University of California, Irvine, CA, USA
| | - Conor D Cox
- Department of Anatomy and Neurobiology, University of California, Irvine, CA, USA
| | - Yousheng Jia
- Department of Anatomy and Neurobiology, University of California, Irvine, CA, USA
| | - Weisheng Wang
- Department of Anatomy and Neurobiology, University of California, Irvine, CA, USA
| | - Christine M Gall
- Department of Anatomy and Neurobiology, University of California, Irvine, CA, USA.,Department of Neurobiology and Behavior, University of California, Irvine, CA, USA
| | - Gary Lynch
- Department of Anatomy and Neurobiology, University of California, Irvine, CA, USA.,Department of Psychiatry and Human Behavior, University of California, Irvine, CA, USA
| |
Collapse
|
29
|
Follit JA, San Agustin JT, Jonassen JA, Huang T, Rivera-Perez JA, Tremblay KD, Pazour GJ. Arf4 is required for Mammalian development but dispensable for ciliary assembly. PLoS Genet 2014; 10:e1004170. [PMID: 24586199 PMCID: PMC3930517 DOI: 10.1371/journal.pgen.1004170] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2012] [Accepted: 12/25/2013] [Indexed: 02/06/2023] Open
Abstract
The primary cilium is a sensory organelle, defects in which cause a wide range of human diseases including retinal degeneration, polycystic kidney disease and birth defects. The sensory functions of cilia require specific receptors to be targeted to the ciliary subdomain of the plasma membrane. Arf4 has been proposed to sort cargo destined for the cilium at the Golgi complex and deemed a key regulator of ciliary protein trafficking. In this work, we show that Arf4 binds to the ciliary targeting sequence (CTS) of fibrocystin. Knockdown of Arf4 indicates that it is not absolutely required for trafficking of the fibrocystin CTS to cilia as steady-state CTS levels are unaffected. However, we did observe a delay in delivery of newly synthesized CTS from the Golgi complex to the cilium when Arf4 was reduced. Arf4 mutant mice are embryonic lethal and die at mid-gestation shortly after node formation. Nodal cilia appeared normal and functioned properly to break left-right symmetry in Arf4 mutant embryos. At this stage of development Arf4 expression is highest in the visceral endoderm but we did not detect cilia on these cells. In the visceral endoderm, the lack of Arf4 caused defects in cell structure and apical protein localization. This work suggests that while Arf4 is not required for ciliary assembly, it is important for the efficient transport of fibrocystin to cilia, and also plays critical roles in non-ciliary processes. Primary cilia are ubiquitous sensory organelles that play vital roles in an ever-growing class of human diseases termed ciliopathies including obesity, retinal degeneration and polycystic kidney disease. The proper function of the primary cilium relies on a cell's ability to target and concentrate specific receptors to the ciliary membrane – a unique subdomain of the plasma membrane yet little is known about how receptors are trafficked to the primary cilium. Mutations affecting the ciliary localized receptor fibrocystin (PKHD1) cause autosomal recessive polycystic kidney disease, which affects approximately 1∶20,000 individuals. Previously we identified a motif located in the cytoplasmic domain of fibrocystin that is required for its ciliary localization. In this work we demonstrate that the ciliary targeting sequence (CTS) of fibrocystin interacts with the small G protein Arf4 and this interaction is important for the efficient delivery of the CTS to cilia in cultured cells. Disruption of Arf4 in mice results in defects in the non-ciliated visceral endoderm and death at mid-gestation indicating Arf4 has vital functions in addition to ciliary protein trafficking.
Collapse
Affiliation(s)
- John A. Follit
- Program in Molecular Medicine, University of Massachusetts Medical School, Biotech II, Worcester, Massachusetts, United States of America
| | - Jovenal T. San Agustin
- Program in Molecular Medicine, University of Massachusetts Medical School, Biotech II, Worcester, Massachusetts, United States of America
| | - Julie A. Jonassen
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Tingting Huang
- Department of Cell and Developmental Biology, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Jaime A. Rivera-Perez
- Department of Cell and Developmental Biology, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Kimberly D. Tremblay
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, Amherst, Massachusetts, United States of America
| | - Gregory J. Pazour
- Program in Molecular Medicine, University of Massachusetts Medical School, Biotech II, Worcester, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
30
|
Hamlin JNR, Schroeder LK, Fotouhi M, Dokainish H, Ioannou MS, Girard M, Summerfeldt N, Melançon P, McPherson PS. Scyl1 scaffolds class II Arfs to specific subcomplexes of coatomer through the γ-COP appendage domain. J Cell Sci 2014; 127:1454-63. [PMID: 24481816 DOI: 10.1242/jcs.136481] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Coatomer (COPI)-coated vesicles mediate membrane trafficking in the early secretory pathway. There are at least three subclasses of COPI coats and two classes of Arf GTPases that couple COPI coat proteins to membranes. Whether mechanisms exist to link specific Arfs to specific COPI subcomplexes is unknown. We now demonstrate that Scy1-like protein 1 (Scyl1), a member of the Scy1-like family of catalytically inactive protein kinases, oligomerizes through centrally located HEAT repeats and uses a C-terminal RKXX-COO(-) motif to interact directly with the appendage domain of coatomer subunit γ-2 (also known as COPG2 or γ2-COP). Through a distinct site, Scyl1 interacts selectively with class II Arfs, notably Arf4, thus linking class II Arfs to γ2-bearing COPI subcomplexes. Therefore, Scyl1 functions as a scaffold for key components of COPI coats, and disruption of the scaffolding function of Scyl1 causes tubulation of the endoplasmic reticulum (ER)-Golgi intermediate compartment (ERGIC) and the cis-Golgi, similar to that observed following the loss of Arf and Arf-guanine-nucleotide-exchange factor (GEF) function. Our data reveal that Scyl1 is a key organizer of a subset of the COPI machinery.
Collapse
Affiliation(s)
- Jason N R Hamlin
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC H3A 2B4, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Jain S, Wojdacz TK, Su YH. Challenges for the application of DNA methylation biomarkers in molecular diagnostic testing for cancer. Expert Rev Mol Diagn 2013; 13:283-94. [PMID: 23570406 DOI: 10.1586/erm.13.9] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Aberrant DNA methylation is ubiquitous in human cancer and has been shown to occur early during carcinogenesis, thus providing attractive potential biomarkers for the early detection of cancer. The introduction of genome-wide DNA methylation analysis comparing tumor and nonmalignant tissues resulted in the discovery of many regions that undergo aberrant methylation during carcinogenesis. Those regions can potentially be used as biomarkers for cancer detection. However, a biomarker will be useful for screening or early detection of cancer only if it can be detected in a noninvasive or minimally invasive fashion without tissue biopsy. The authors discuss the challenges in translating DNA methylation biomarkers to cancer diagnosis - including obstacles in assay development, tissue-specific methylation load on tumor suppressor genes, detecting markers with sufficient sensitivity and specificity in the periphery, and ways in which these obstacles can be overcome.
Collapse
Affiliation(s)
- Surbhi Jain
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA 18901, USA
| | | | | |
Collapse
|
32
|
Jain S, Yoon SY, Leung L, Knoferle J, Huang Y. Cellular source-specific effects of apolipoprotein (apo) E4 on dendrite arborization and dendritic spine development. PLoS One 2013; 8:e59478. [PMID: 23527202 PMCID: PMC3602301 DOI: 10.1371/journal.pone.0059478] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2012] [Accepted: 02/14/2013] [Indexed: 01/12/2023] Open
Abstract
Apolipoprotein (apo) E4 is the leading genetic risk factor for Alzheimer’s disease (AD), and it has a gene dose-dependent effect on the risk and age of onset of AD. Although apoE4 is primarily produced by astrocytes in the brain, neurons can also produce apoE4 under stress conditions. ApoE4 is known to inhibit neurite outgrowth and spine development in vitro and in vivo, but the potential influence of apoE4’s cellular source on dendritic arborization and spine development has not yet been investigated. In this study, we report impairments in dendritic arborization and a loss of spines, especially thin (learning) and mushroom (memory) spines, in the hippocampus and entorhinal cortex of 19–21-month-old female neuron-specific-enolase (NSE)-apoE4 and apoE4-knockin (KI) mice compared to their respective apoE3-expressing counterparts. In general, NSE-apoE4 mice had more severe and widespread deficits in dendritic arborization as well as spine density and morphology than apoE4-KI mice. The loss of dendritic spines, especially mushroom spines, occurred in NSE-apoE4 mice as early as 7–8 months of age. In contrast, glial fibrillary acidic protein (GFAP)-apoE4 mice, which express apoE4 solely in astrocytes, did not have impairments in their dendrite arborization or spine density and morphology compared to GFAP-apoE3 mice at both ages. These results indicate that the effects of apoE4 on dendrite arborization, spine density, and spine morphology depend critically on its cellular source, with neuronal apoE4 having more detrimental effects than astrocytic apoE4.
Collapse
Affiliation(s)
- Sachi Jain
- Gladstone Institute of Neurological Disease, San Francisco, California, United States of America
- Biomedical Sciences Graduate Program, University of California San Francisco, California, United States of America
| | - Seo Yeon Yoon
- Gladstone Institute of Neurological Disease, San Francisco, California, United States of America
| | - Laura Leung
- Gladstone Institute of Neurological Disease, San Francisco, California, United States of America
- Department of Neurology, University of California San Francisco, California, United States of America
| | - Johanna Knoferle
- Gladstone Institute of Neurological Disease, San Francisco, California, United States of America
- Department of Neurology, University of California San Francisco, California, United States of America
| | - Yadong Huang
- Gladstone Institute of Neurological Disease, San Francisco, California, United States of America
- Gladstone Institute of Cardiovascular Disease, San Francisco, California, United States of America
- Biomedical Sciences Graduate Program, University of California San Francisco, California, United States of America
- Department of Neurology, University of California San Francisco, California, United States of America
- Department of Pathology, University of California San Francisco, California, United States of America
- * E-mail:
| |
Collapse
|